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Abstract
While linearizability is a fundamental correctness condition for distributed systems, ensuring the
linearizability of implementations can be quite complex. An essential aspect of linearizable imple-
mentations of concurrent objects is the need to preserve the real-time order of operations. In many
settings, however, processes cannot determine the precise timing and relative real-time ordering of
operations. Indeed, in an asynchronous system, the only ordering information available to them is
based on the fact that sending a message precedes its delivery. We show that as a result, message
chains must be used extensively to ensure linearizability. This paper studies the communication
requirements of linearizable implementations of atomic registers in asynchronous message passing
systems. We start by proving two general theorems that relate message chains to the ability to
delay and reorder actions and operations in an execution of an asynchronous system, without the
changes being noticeable to the processes. These are then used to prove that linearizable register
implementations must create extensive message chains among operations of all types. In particular,
our results imply that linearizable implementations in asynchronous systems are necessarily costly
and nontrivial, and provide insight into their structure.
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1 Introduction

Linearizability [15] is a fundamental correctness criterion and is the gold standard for concur-
rent implementations of shared objects. Informally, an object implementation is linearizable
if in each one of its executions, operations appear to occur instantaneously, in a way that is
consistent with the execution and the object’s specification. Linearizable implementations
have been developed for a variety of concurrent objects [1, 20, 14] and is also widely used
in the context of state-machine replication (SMR) mechanisms [23, 11, 22]. Understanding
the costs that linearizable implementations imply and optimizing their performance is thus
crucial. Lower bounds on linearizable implementations are rare in the literature. Our paper
makes a significant step towards capturing inherent costs of linearizability in the important
case of linearizable register implementations, and provides a new formal tool for capturing
the necessary structure of communication in register implementations.
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33:2 Communication Requirements for Linearizable Registers

In an execution of a linearizable implementation, the actions performed and values
observed by processes depend on the real-time ordering of non-overlapping operations [15].
However, processes do not have direct access to real time in the asynchronous setting, and
this makes satisfying linearizability especially challenging. The only way processes can obtain
information about the real-time order of events in asynchronous message-passing systems is
via message chains (cf. Lamport’s happens before relation [18]). Roughly speaking, a message
chain connects process i at (real) time t and process j ̸= i at t′ if there is a sequence of
messages starting with a message sent by i at or after t, ending with a message received
by j no later than time t′, such that every message is received by the sender of the following
message in the sequence, before the following message is sent.1 Message chains can be used to
ensure the relative real-time order of events. Moreover, as we formally show, in the absence
of a message chain relating events at distinct processes, there can be no way to tell what
their real-time order is. This paper establishes the central role that message chains must
play in achieving linearizability in an asynchronous system.

Registers constitute a central abstraction in distributed computing. In their seminal
paper [4], Attiya, Bar-Noy and Dolev provide a linearizable implementation of single-writer
multi-reader (SWMR) registers in an asynchronous message passing model where processes
are prone to crash failures. This implementation was extended to the multi-writer multi-
reader (MWMR) case in [19]. Since then, there has been significant interest in implementing
registers in asynchronous message passing models. In [4], quorum systems are used to
guarantee a message chain between every pair of non-overlapping operations. This is costly,
of course, both in communication and in execution time. Is it necessary?

In a linearizable implementation of a MWMR register, every process can issue reads
and writes, and a read should intuitively return the most recent value written. It is to be
expected that a reader must be able to access previous write operations, and especially the
one whose value its read operation returns. But should writing a new value, for example,
require message chains from all previous reads and writes? Must a process that has read a
value communicate this fact to others? Interestingly, we show in this work that typically, the
answer is yes. Moreover, we prove that every operation of a fault-tolerant implementation of
a MWMR register must communicate with a quorum set before it completes.

The main contributions of this paper are
1. We show that in a linearizable implementation of a register in an asynchronous setting,

every operation, regardless of type, might need to have a message chain to arbitrary
operations in the future. Moreover, in an f -resilient implementation, before a process
can complete an operation, it must construct a round-trip message chain interaction with
nodes in a quorum set of size greater than f . These requirements apply to every execution
and thus, provide a natural way for establishing lower bounds on the performance of
register implementations and related applications not only in the worst case, but also
in optimistic executions (a.k.a. fast paths) [22, 17, 10]. We expect this work to serve as
a tool for analyzing the efficiencies of existing implementations and also as a guide for
implementing new linearizable objects in the future.

2. We show these results by formulating and proving two useful and general theorems about
coordination in asynchronous systems. One relates message chains to the ability to delay
particular actions in an execution of an asynchronous system for an arbitrary amount of
time, without the delay being noticeable to any process in the system. The other relates
them to the ability to change the relative real-time order of operations on concurrent
objects in manners that may cause violations of linearizability requirements.

1 A formal definition appears in Section 3.2.
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Interestingly, a significant amount of communication in a linearizable implementation is
required for timing purposes, rather than for transferring information about data values. Our
results apply verbatim if message passing is replaced by communication via asynchronous
single-writer single-reader (SWSR) registers or in hybrid models ([2]) for a suitably modified
notion of message chains. They also extend to other variants of linearizability, such as strict
linearizability [3].

This paper is structured as follows: Section 2 presents related work. In Section 3 we
present the model and preliminary definitions and results about message chains, real time
ordering and the local equivalence of runs. In Section 4 we prove a theorem about the
ability to delaying actions in a way that processes cannot notice. This is used in Section 5 to
show that certain operations can be reordered in a run, in a similar fashion. These results,
which can be applied to arbitrary objects, are next used for the study of atomic register
implementations. Section 6 contains definitions of registers and linearization in our setting.
Section 7 provides general results showing the need for message chains between operations in
executions of linearizable register implementations. In Section 8 we show how the presence
of failures combined with the results of the previous sections imply the necessity of using
quorum systems.

2 Related Work

Attiya, Bar-Noy and Dolev’s paper (ABD) [4] shows how to implement shared memory via
message passing in an asynchronous message passing model where processes are prone to
crash failures. Their algorithm (which we shall call ABD) is f -resilient and makes use of
quorum systems. Each write or read operation performs two communication rounds. In each
communication round by p, process p sends messages to all n processes and waits for replies
from n − f processes before it proceeds to the next communication round.

In [10] and [16], Dutta et al. and Huang et al., respectively, consider a model consisting
of disjoint sets of servers, writers and readers and where at least one process can fail (f ≥ 1).
They study implementations of an atomic register where read or write operations are fast,
by which they mean that the operations terminate following a single communication round.
In [10], an SWMR register implementation is provided with fast reads and writes, if the
number of readers is small enough relative to the number of servers and the maximal number
of failures. They also prove that MWMR register implementations with both fast read and
fast writes are impossible. [16] proves that implementations with fast writes are impossible
and by showing under which conditions (on the number of failures) implementations with
fast reads exist. The models of [10, 16] assume crash failures. Our results in Sections 4-7 are
valid both when processes are guaranteed to be reliable (no failures) and in the presence of
crash failures.

In [21] Naser-Pastoriza et al. consider networks where channels may disconnect. As
one of that paper’s main contributions, it establishes minimal connectivity requirements for
linearizable implementations of registers in a crash fault environment where channels can
drop messages. Informally, it is shown that (1) all processes where obstruction-freedom holds
must be strongly connected via correct channels; and (2). If the implementation tolerates
k process crashes and n = 2k + 1, then any process where obstruction-freedom holds must
belong to a set of more than k correct processes strongly connected by correct channels.

The works [6, 8, 9] show that quorum failure detectors, introduced by Delporte-Gallet et
al. in [8], are the weakest failure detectors enabling the implementation of an atomic register
object in asynchronous message passing systems. This class of failure detectors capture
the minimal information regarding failures that processes must possess to in linearizable
implementation of registers.

DISC 2024



33:4 Communication Requirements for Linearizable Registers

Variants of linearizability that differ in the way crashes are handled have been defined in
the context of NVRAMs; see Ben-David et. al [5] for a survey. Another important variant
is strong linearizability, introduced by Golab et. al in [13]. There it is shown that in a
randomized algorithm, executions behave exactly as if using atomic objects if and only if the
implementation is strongly linearizable. It has been shown that registers do not have strongly
linearizable implementations in the message passing model. Our results in Sections 4–6 are
valid in asynchronous models in general and can thus also be used in the analysis and the
study of such variants of linearizability.

3 Model and Preliminary Definitions

3.1 Model
While asynchronous systems are often captured using an interleaving model, we adopt the
asynchronous message passing model from [12], in which several events can take places at
the same time. This facilitates reasoning about the time at which actions and operations
occur, and analyzing the possibility of modifying the timing of some operations while leaving
the timing of other operations unchanged. We briefly describe the model here and refer
the reader to Appendix A for the complete detailed model. The detailed model is required
mainly for the proof of Theorem 6 which is lays the technical basis for most of our analysis.

We consider an asynchronous message passing model with n processes, connected by
a communicated network, modelled by a directed graph where an edge from process i to
process j is called a channel, and denoted by chani,j . The environment, which plays the
role of the adversary, is in charge of scheduling processes, of delivering messages, and of
invoking operations (such as reads, writes etc.) at a process. A run of the system is an
infinite sequence r = r(0), r(1), . . . of global states, where each global state r(m) determines
a local state for each process, denoted by ri(m). We identify time with the natural numbers,
and consider r(m) to be the system’s state at time m in r. For ease of exposition, we assume
that messages along a channel are delivered in FIFO order. Moreover, we assume that the
local state of a process i keeps track of of the events it has been involved in so far: all actions
it has performed, all messages it sent and received, and all operations invoked at i, up to
the current time. Asynchrony of the system is captured by assuming that processes moves,
message deliveries and operation invocation are scheduled in an arbitrary nondeterministic
order. Thus messages can take any amount of time to be delivered, and processes can
refrain from performing moves for arbitrarily long time intervals. We consider actions to be
performed in rounds, where round m occurs between time m and time m + 1. The transition
from r(m) to r(m + 1) is based on the actions performed by the environment and by all
processes that move in round m + 1.

A process i is said to be correct in r if it is allowed to move (by the environment) infinitely
often in r. Otherwise process i is faulty (or crashes) in r. We say that a message µ is lost in r

if it is sent in r and never delivered. A system is said to be reliable if no process ever fails
and no message is ever lost, in any of its runs. Finally, a protocol is said to be f -resilient if
it acts correctly in all runs in which no more than f processes are faulty.

3.2 Message Chains, Real-time Ordering and Local Equivalence
As stated in the introduction, the real-time order of events in a system plays a central
role in linearizable protocols. The main source of information about the order of events in
asynchronous systems are message chains. We denote by θ = ⟨p, t⟩ a process-time pair (or
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a node) consisting of the process p and time t. Such a pair is used to refer to the point on p’s
timeline at real time t. We can inductively define a message chain between nodes of a given
run as follows.

▶ Definition 1 (Message chains). There is a message chain from θ = ⟨p, t⟩ to θ′ = ⟨q, t′⟩
in a run r, denoted by θ ⇝r θ′, if
(1a) p = q and t < t′,
(1b) p sends a message to q in round t + 1 of r, which arrives no later than in round t′, or
(2) there exists θ′′ such that θ ⇝r θ′′ and θ′′ ⇝r θ′.

Lamport calls “⇝r” the happens before relation [18]. As we now show, the existence of
message chains indeed implies real-time ordering. We write θ <r θ′ if θ = ⟨p, t⟩ and θ′ = {q, t′}
are nodes in r and t < t′. An immediate implication of Definition 1 is

▶ Observation 2. If θ ⇝r θ′ then θ <r θ′.

Proof. Let θ = ⟨p, t⟩ and θ′ = ⟨q, t′⟩. The proof is by induction on the minimal number of
applications of step (2) in Definition 1 needed to establish that θ ⇝r θ′. If θ ⇝r θ′ by (1a)
then t < t′. Similarly, if it is by (1b), then t < t′ because a message sent in round t + 1
can only arrive in a round t′ ≥ t + 1 > t. Finally, if θ ⇝r θ′ by clause (2), then for some
node θ′′ = ⟨p′′, t′′⟩ we have that θ ⇝r θ′′ and θ′′ ⇝r θ′, where, inductively, t < t′′ and t′′ < t.
It follows that t < t′, as required. ◀

The converse is not true: It is possible for θ to appear before θ′ in real time, without a
message chain between them. As we shall see, however, in the absence of a message chain,
processes will not be able to detect the ordering between the nodes.

Roughly speaking, the information available to a process at a given point is determined
by its local state there. A process is unable to distinguish between runs in which it passes
through the same sequence of local states. We will find it useful to consider when two runs
cannot ever be distinguished by any of the processes. Formally:

▶ Definition 3 (Local Equivalence). Two runs r and r′ are called locally equivalent, denoted
by r ≈ r′, if for every process j, a local state ℓj of j appears in r iff ℓj appears in r′.

Recall that the local state of a process i consists of its local history so far. Consequently, an
equivalent definition of local equivalence is that if two runs are locally equivalent, then every
process starts in the same state, performs the same actions and sends and receives the same
messages, all in the same order, in both runs.

A node θ = ⟨i, t⟩ of i in r is said to correspond to node θ′ = ⟨j, t′⟩ of r′, denoted by θ ∼ θ′,
if i = j (they refer to the same process) and the process has the same local state at both
(i.e., ri(r) = r′

i(t′)). We will make use of the following properties of local equivalence (the
proof of Lemma 4 appears in the Appendix):

▶ Lemma 4. Let r and r′ be two runs such that r ≈ r′. Then
(i) If θ1 ⇝r θ2 then θ′

1 ⇝r′ θ′
2 holds for all nodes θ′

1 and θ′
2 of r′ such that θ1 ∼ θ′

1
and θ2 ∼ θ′

2

(ii) If r is a run of protocol P , then r′ is also a run of P

(iii) A process i fails in r iff it fails in r′, and similarly
(iv) A message µ is lost in r iff the same message is lost in r′

DISC 2024



33:6 Communication Requirements for Linearizable Registers

4 Delaying the Future while Maintaining the Past

We are now ready to state and prove the main theorem that will allow us to capture the subtle
interaction between message chains and the ability to reorder operations in an asynchronous
system.

▶ Definition 5 (The past of θ). For a node θ in a run r, we define pastr(θ) ≜ {θ′ | θ′ ⇝r θ}.

Chandy and Misra have already shown that, in a precise sense, in an asynchronous system,
a process at a given node cannot know about the occurrence of any events except for ones
that appear in its past [7]. Our theorem will show that for any given node θ in a run r

(which we think of as a “pivot node”) all events that occur outside pastr(θ) can be pushed
into the future by an arbitrary amount ∆ > 0, without any node observing the change.
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Figure 1 Delaying events by ∆ relative to the past of a node θ (the “pivot”).

▶ Theorem 6 (Delaying the future). Fix a run r of a protocol P , a node θ = ⟨i, t⟩, and a delay
∆ > 0. For each process j denote by tj the minimal time l ≥ 0 such that ⟨j, l⟩ ⇝̸r θ (i.e.,
⟨j, tj⟩ is the first point of j that is not in the past of θ in r). Then there exists a run r′ ≈ r

satisfying, for every process j:

rj(m) =
{

r′
j(m) for all m ≤ tj

r′
j(m + ∆) for all m ≥ tj + 1

This theorem lays the technical foundation for most of our analysis in this paper. We
start by providing a sketch of its proof, and follow with the full proof.

Proof sketch. Recall that we are given r, θ and ∆. For every process j there is an earliest
time tj such that ⟨j, tj⟩ /∈ pastr(θ). We now construct a run r′ that agrees with r on all nodes
of pastr(θ). I.e., for every node θ′ = ⟨p, t′⟩ ∈ pastr(θ), then the same actions occur in round t′

on p’s timeline, and rp(t′) = r′
p(t′). Moreover, outside of pastr(θ) the run r′ is defined as

follows. The environment in r′ “puts to sleep” every process j (by performing skipj actions)
for a duration of ∆ rounds starting from round tj + 1 and ending in round tj + ∆. Every
message that, in r, is delivered to j at a round m > tj is delivered ∆ rounds later, i.e., in
round m + ∆, in r′. Similarly, every message sent by i after time ti in r is sent ∆ rounds
later in r′. A crucial property of this construction is that, by definition of ⇝r, if the sending
of a message is delayed by ∆ in r′ – the sending node is not in pastr(θ) – then its delivery is
delayed by ∆ as well. Consequently, every message sent in r′ is delivered at a time that is
greater than the time it is sent, and so r′ is a legal run. What remains is to check that the
run r′ is indeed locally equivalent to r. This careful and somewhat tedious task is performed
in the full proof that follows below. ◀
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As illustrated in Figure 1, the run r′ contains a band of inactivity that is ∆ rounds deep
in front of the boundary of pastr(θ). Since ∆ can be chosen arbitrarily, Theorem 6 can be
used to rearrange any activity that does not involve nodes of pastr(θ), even events that may
be very early, to occur strictly after θ in r′. Crucially, no process is ever able to distinguish
among the two runs.

Proof of Theorem 6. To simplify the case analysis in our proof, we define

shift∆[m, tj ] ≜
{

m m ≤ tj

m + ∆ m ≥ tj + 1

Notice that the range of shift∆[m, tj ] for m ≥ 0 is the set of times m′ not in the interval
tj + 1 ≤ m′ ≤ tj + ∆. Moreover, observe that shift∆[m − 1, tj ] = shift∆[m, tj ] − 1 for all
m > 0 such that m ̸= tj + 1. We shall construct a run r′ ≈ r satisfying, for every process j

and all m ≥ 0:
(i) rj(m) = r′

j(shift∆[m, tj ]) for all m ≥ 0, and
(ii) Process j performs the same actions and receives the same messages in round m of r

and in round shift∆[m, tj ] of r′, for all m ≥ 1.

We construct r′ as follows. Both runs start in the same initial state: r′(0) = r(0). Denote
the environment’s action in r in round m by η(r, m) = (η1(r, m), . . . , ηn(r, m)). For every
process j the environment’s actions ηj satisfies ηj(r′, m′) ≜ skipj for all m′ in the range
tj + 1 ≤ m′ ≤ tj + ∆. For all m ≥ 0 we define

ηj(r′, shift∆[m, tj ]) ≜

{
ηj(r, m) if ηj(r, m) ∈ {skipj , movej , invokej(x)}
deliverj(|µ, shift∆[mh, th]|, h) if ηj(r, m) = deliverj(|µ, mh|, h)

As for process actions, for all j and m > 0, if ηj(r′, shift∆[m, tj ]) = movej and
r′

j(m − 1) = rj(m − 1) then j performs the same action αj ∈ Pj(rj(m − 1)) in round
shift∆[m, tj ] of r′ as in round m of r, and otherwise it performs an arbitrary action from
Pj(r′

j(shift∆[m − 1, tj ]) in round shift∆[m, tj ] of r′. Notice that, by definition, all pro-
cesses follow the protocol P = (P1, . . . , Pn) in r′. Moreover, observe the following useful
property of r′:

▷ Claim 7. r′
j(shift∆[m, tj ] − 1) = r′

j(shift∆[m − 1, tj ]) for all m > 0.

Proof. We consider two cases:
m = tj + 1: Observe that r′(tj + ∆ + 1) = r′(tj + ∆) = · · · = r′(tj) since by definition
of the run r′, we have that ηj(r′, m′) = skipj for all tj + 1 ≤ m′ ≤ tj + ∆. So,
r′

j(shift∆[m, tj ] − 1) = r′
j(shift∆[tj + 1, tj ] − 1) = r′

j(tj + 1 + ∆ − 1) = r′
j(tj + ∆) =

r′
j(tj) = r′

j(shift∆[m − 1, tj ]).
0 < m ̸= tj + 1: If m ≤ tj then by definition of shift∆ we have that shift∆[m, tj ] = m

and shift∆[m − 1, tj ] = m − 1 = shift∆[m, tj ] − 1. Similarly, if m > tj + 1 then
shift∆[m, tj ] = m + ∆ and shift∆[m − 1, tj ] = m − 1 + ∆ = shift∆[m, tj ] − 1. In both
cases we obtain that r′

j(shift∆[m, tj ] − 1) = r′
j(shift∆[m − 1, tj ]), as desired. ◁

We are now ready to prove that r′ is a legal run of P satisfying (i) and (ii). We prove
this by induction on m ≥ 0, for all processes j.

Base, m = 0: By definition of r′ we have that r′
j(0) = rj(0).

Step, m > 0: Assume inductively that (i) and (ii) hold for all processes h at all times
strictly smaller than m. We start by establishing:

▷ Claim 8. If a message µ sent by a process h at time mh is delivered to j in round m of r,
then |µ, shift∆[mh, th]| ∈ chanhj at time shift∆[m, tj ] − 1 of r′.

DISC 2024



33:8 Communication Requirements for Linearizable Registers

Proof. Clearly, if µ is delivered to j in round m of r then ηj(r, m) = deliverj(|µ, mh|, h)
for some process h ̸= j and round mh < m. By the inductive assumption for h and
mh < m, we have that µ is sent in round shift∆[mh, th] of r′. In addition, by definition
of r′, for all m′ < shift∆[m, tj ] it holds that ηj(r′, m′) ̸= deliverj(|µ, shift∆[mh, th], h).
So |µ, shift∆[mh, th]| ∈ chanhj at time shift∆[m, tj ] − 1 in r′. ◁

Recall that we have by the inductive assumption that r′
j(shift∆[m − 1, tj ]) = rj(m − 1).

Claim 7 thus implies that

r′
j(shift∆[m, tj ] − 1) = rj(m − 1). (1)

We can now show that (i) and (ii) hold for j and m by cases depending on the environment’s
action ηj(r, m) in round m of r:

ηj(r, m) = skipj : By definition of ηj for r′, we have that ηj(r′, shift∆[m]) = skipj .
So, r′

j(shift∆[m, tj ]) = r′
j(shift∆[m, tj ] − 1) = rj(m − 1), proving (i). Moreover, no

action is performed by j neither in r nor in r′ and no message is delivered to j in either
case, ensuring that (ii) also holds.
ηj(r, m) = invokej(x): In this case, ηj(r′, shift∆[m]) = invokej(x), implying that
r′

j(shift∆[m, tj ]) = rj(m).
ηj(r, m) = movej : In this case, ηj(r′, shift∆[m]) = movej by definition of ηj for r′. By
(1) we have that r′

j(shift∆[m, tj ] − 1) = rj(m − 1). So by definition of r′, process j

performs the same action αj ∈ Pj(rj(m)) in the round shift∆[m, tj ] of r′ as it does in
the round m of r. This also ensures r′

j(shift∆[m, tj ]) = rj(m). In addition, no message
is delivered in round m of r and none is delivered to it in round shift∆[m, tj ] of r′.
ηj(r, m) = deliverj(|µ, mh|, h): In this case, no action is performed by j. By definition,
ηj(r′, shift∆[m, tj ]) = deliverj(|µ, shift∆[mh, th]|, h). Recall that by (1) we have
r′

j(shift∆[m, tj ] − 1) = rj(m − 1). We now show that µ is delivered in r in round m iff
it is delivered in r′ in round shift∆[m, tj ].

If µ is delivered in round m of r then by Claim 8 we have that |µ, shift∆[mh, th]| ∈
chanhj at time shift∆[m, tj ] − 1 in r′ so µ is delivered in round shift∆[m] of r′ as
well.
Otherwise, i.e., µ is not delivered in round m of r. Assume by way of contradiction
that µ is delivered in round shift∆[m, tj ] of r′. So |µ, shift∆[mh, th]| ∈ chanhj at time
shift∆[m, tj ] − 1 in r′ and thus µ is sent in round shift∆[mh, th] < shift∆[m, tj ]
of r′. By the inductive hypothesis, µ is sent in round mh of r . Since µ is not
delivered in round m of r, while ηj(r, m) = deliverj(|µ, mh|), we have that µ is
delivered in some round m′ < m of r. So by Claim 8, µ must be delivered at time
shift∆[m′, tj ] < shift∆[m, tj ] in r′. Hence, |µ, shift∆[mh, th]| /∈ chanhj at time
shift∆[m, tj ]−1 in r′, contradicting the fact that µ is delivered in round shift∆[m, tj ]
of r′.

We thus obtain that rj(m) = r′
j(shift∆[m, tj ]), and that the same actions (none in this

case) and the same messages are delivered in round m of r and in round shift∆[m, tj ]
of r′. ◀

5 Operations

To capitalize on the power of Theorem 6, we now set out to show how operations on distributed
objects can be rearranged while maintaining local equivalence. We consider operations that
are associated with individual processes. An operation O of type O2 starts with an invocation

2 While processes are typically able to perform particular types of operations on concurrent objects,
such as reads, writes, etc., many different instances of an operation may appear in a given run. Every
instance of an operation has a type.
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input invokei(O, arg) from the environment to process i, and ends when process i performs
a matching response action returni(O, arg) ∈ Acti. Operation invocations in our model are
nondeterministic and asynchronous – the environment can issue them at arbitrary times.3
Operations can have invocation or return parameters, which appeared as arg in the above
notation. E.g., a write invocation to a register will have a parameter v (the value to be
written), while the response to a read on the register will provide the value v′ being read.

We say that an operation X occurs between nodes θ = ⟨i, t⟩ and θ′ = ⟨i, t′⟩ in r if X’s
invocation by the environment (of the form invokei(·)) occurs in round t in r and process i

performs X’s response action in round t′. In this case we denote X.s ≜ θ and X.e ≜ θ′, and use
tX.s(r) to denote the operation’s starting time t and tX.e(r) to denote its ending time t′. When
the run is clear from the context we do not precise it. An operation O is completed in a run r

if r contains both the invocation and response of O, otherwise O is pending. Observe that in
a crash prone environment, it is not possible to guarantee that every operation completes,
since once a process crashes, it is not able to issue a response.

▶ Definition 9 (Real-time order and concurrency). For two operations X and Y in r we say
that X precedes Y in r, denoted X <r Y, if tX.e(r) < tY.s(r), i.e., if X completes before Y is
invoked. If neither X precedes Y nor Y precedes X, then X and Y are considered concurrent
in r. Finally, X is said to run in isolation in r if no operation is concurrent to X in r.

▶ Definition 10 (Message chains among operations). We write X⇝⇝⇝r Y and say that there is
a message chain between the operations X and Y in r if X.s⇝r Y.e.

Notice that X ⇝⇝⇝r Y does not imply that X happens before Y in real time (i.e., it does not
imply that X <r Y). Rather, it only implies that Y does not end before X starts (i.e., Y ̸<r X).
Moreover, while “⇝r” among individual nodes is transitive, “⇝⇝⇝r” among operations is not.

An operation X of i in the run r is said to correspond to operation X′ of j in r′, denoted
by X ∼ X′, if i = j (they are performed by the same process), X.s ∼ X′.s and X.e ∼ X′.e. Note
that for locally equivalent runs r ≈ r′, for every operation X in r there is a corresponding
operation X′ in r′. In the sequel, we will often refer to corresponding operations in different
runs by the same name. Observe that, by the definition of ⇝⇝⇝r and Lemma 4, if X⇝⇝⇝r Y and
r ≈ r′ then X⇝⇝⇝r′ Y.

We are now ready to use Theorem 6 to show that if a run does not contain a message
chain from one operation to another operation, then operations in the run can be reordered
so that the former operation takes place strictly after the latter one. More formally:

▶ Theorem 11 (Moving one operation ahead of the other). Let X and Y be two operations
in a run r. If Y completes in r and X ̸⇝⇝⇝r Y, then there exists a run r′ ≈ r in which both (i)
Y <r′ X and (ii) X <r′ Z holds for every completing operation Z in r such that X <r Z and
Z ̸⇝⇝⇝r Y.

Proof. Let r′ be the run built in the proof of Theorem 6 wrt. the run r with pivot θ = Y.e

and delay ∆ = tY.e(r) − tX.s(r) + 1. By Theorem 6 we have that r ≈ r′, so each process
performs the same operations and in the same local order. By the assumption, X ̸⇝⇝⇝r Y, i.e.,
X.s ̸⇝r Y.e, so X is moved forward by ∆ while Y happens at the same real time in both r

and r′. We thus have that Y <r′ X because

tX.s(r′) = tX.s(r) + ∆ = tX.s(r) + tY.e(r) − tX.s(r) + 1 = tY.e(r) + 1 = tY.e(r′) + 1 > tY.e(r′).

3 We assume for simplicity that following an invokei, the environment will not issue another invokei to
the same process before i has provided a matching response.
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Finally, let Z be an operation in r such that Z ̸⇝⇝⇝r Y and X <r Z. Since Z ̸⇝⇝⇝r Y, the real times
of both X.e and Z.s in r′ are shifted by ∆ relative to their times in r. Thus, X <r Z implies
that X ends before Z starts in r′ also, i.e., X <r′ Z. ◀

6 Registers and Linearizability

A register is a shared object that supports two types of operations: reads R and writes
W . We focus on implementing a MWMR (multi-writer multi-reader) register, in which
every process can perform reads and writes, in an asynchronous message-passing system.
Simulating a register in an asynchronous system has a long tradition in distributed computing,
starting with the work of [4]. When implementing registers in the message passing model,
one typically aims to mimic the behaviour of an atomic register. A register is called atomic
if its read and write operations are instantaneous, and each read operation returns the
value written by the most recent write operation (or some default initial value if no such
write exists). The standard correctness property required of such a simulation is Herlihy
and Wing’s linearizability condition [15]. Roughly speaking, an object implementation is
linearizable if, although operations can be concurrent, operations behave as if they occur in
a sequential order that is consistent with the real-time order in which operations actually
occur: if an operation O terminates before an operation O′ starts, then O is ordered before O′.
More formally:

We denote by invokei(W, v) the invocation of a write operation of value v at process i and
by returni(W ) the response to a write operation. (Recall that the invocation is an external
input that process i receives from the environment, while the response is an action that i

performs.) Similarly, invokei(R) denotes the invocation of a read operation at process i

and by returni(R, v) the response to a read operation returning value v. We say that an
invocation invokei(·) and a response returni(·) are matching if they both are by the same
process and in addition, they both are invocation and response of an operation of the same
type.

▶ Definition 12 (Sequential History). A sequential history is a sequence H = S0, S1, ... of
invocations and responses in which the even numbered elements S2k are invocations and the
odd numbered ones are responses, and where S2k and S2k+1 are matching invocations and
responses whenever S2k+1 is an element of H.

We use the following notation:

▶ Notation 1. Let H be a sequential history and let X, Y be two operations in H. We denote
X <H Y the fact that X’s response appears before Y’s invocation in H.

▶ Definition 13. An atomic register history is a sequential history H in which every read
operation returns the most recently written value, and if no value is written before the read,
then it returns the default value ⊥.

▶ Definition 14 (Linearization). A linearization of a run r is an atomic register history H

satisfying the following.
The elements of H consist of the invocations and responses of all completed operations
in r, possibly some invocations of pending operations in r, and for each invocation of a
pending operation that appears in H, a matching response.
If X <r Y and the invocation of Y appears in H, then X <H Y.
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▶ Definition 15 (Linearizable Protocols). P is a (live) linearizable atomic register protocol
( l.a.r.p.) if for every run r of P :

every operation invoked at a nonfaulty process in r completes, and
there exists a linearization of r as defined above.

Unless explicitly mentioned otherwise, all of the runs r in our formal statements below
are assumed to be runs of an l.a.r.p. P .

7 Communication Requirements for Linearizable Registers

In this section, we study the properties of linearizable atomic register protocols in the
asynchronous message passing model. Since linearizability is local [15], it suffices to focus
on implementing a single register, since a correct implementation will be compatible with
linearizable implementations of other registers and objects. We assume for ease of exposition
that a given value can be written to the register at most once in any given run. (It follows
that if the value v is written in r, we can denote the write operation by W(v)).

We say that an operation X is a v-operation and write Xv if (i) X is a read that returns
value v, or (ii) X is a write operation writing v. In every linearization history of a run r of an
l.a.r.p., a read operation returning a value v ̸= ⊥ must be preceded be an operation writing
the value v. A direct application of Theorem 11 allows us to formally prove that, as expected,
a read operation returning v must receive a message chain from the operation writing v:

▶ Lemma 16. If a read operation Xv in r returns a value v ̸= ⊥ then W(v)⇝⇝⇝r Xv.

Proof. Let r be a run of a l.a.r.p. P , and assume by way of contradiction that there is an
operation Xv with v ̸= ⊥ in r such that W(v) ̸⇝⇝⇝r Xv. Since Xv is assumed to return v, it
completes in r. Applying Theorem 11 wrt. X = Xv and Y = W(v) we obtain a run r′ ≈ r such
that Xv <r′ W(v). By Lemma 4(ii) we have r′ is a run of P as well. It follows that r′ must
have a linearization H. But by linearizability, H must be such that Xv <H W(v). Since v is
written only once, there is no write of v before Xv in H, contradicting the required properties
of a linearization. ◀

Lemma 16 proves an obvious connection: For a value to be read, someone must write
this value, and the reader must receive information that this has occurred. But as we shall
see, linearizability also forces the existence of other message chains; indeed, most pairs of
operations in an execution must be related by a message chain.

A straightforward standard but very useful implication of linearizability for atomic
registers is captured by the following lemma.

▶ Lemma 17 (no a-b-a). Let Xa <r Yb <r Zc be three completing operations in a run r of a
l.a.r.p. P . If a ̸= b then a ̸= c.

Proof. We first show the following claim:

▷ Claim 18. Let Rv be a completing read operation occurring in r and let H be a linearization
of r. Then (i) W(v) <H Rv, and moreover (ii) there is no value v′ ̸= v s.t. W(v) <H W(v′) <H Rv.

Proof. Recall that the sequential specification of a register states that a read must return
the most recent written value. The fact that the value v must have been written implies (i).
The fact that it is the last written value linearized before Rv implies (ii). ◁
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Returning to the proof of Lemma 17, let H be a linearization of r. Clearly, the real time
order requirement of linearizability implies that Xa <H Yb <H Zc. By Claim 18 (i), we have
that W(a) ≤H Xa and W(b) ≤H Yb. Combining these inequalities with Claim 18 (ii), we obtain
that W(a) ≤H Xa <H W(b) ≤H Yb ≤H Zc. If Zc is a write operation then a ̸= c results from
the fact that W(a) <H Zc and that the value a can be written at most once in r. If Zc is
a read operation, then it cannot return a since the value a is not the last written value
before Zc (since W(a) <H W(b)). ◀

Lemmas 16 and 17 explain the second communication round of the ABD algorithm [4], also
known as Write-Back: Roughly speaking, the Write-Back of a read R returning value v

guarantees that the reader knows that for every future read R′, the run will contain a message
chain from W(v) through R to R′.

Based on Theorem 11 and Lemma 17, we are now in a position to prove our most powerful
result about linearizable implementations of atomic registers, which shows that they must
create message chains between operations of all types: Reads to writes, writes to writes,
reads to reads and writes to reads. Intuitively, Theorem 19 shows that if a value b is read,
then every b-operation must be reached by a message chain from all other earlier operations.

▶ Theorem 19 (Linearizability entails message chains). Let Rb be a completing read operation
in r and let Yb be a b-operation that completes in r such that Rb ̸⇝⇝⇝ Yb. Then for every c ≠ b

and operation Xc <r Rb, the run r contains a message chain Xc⇝⇝⇝r Yb.

Proof. Assume by way of contradiction that there is an operation Xc <r Rb such that
Xc ̸⇝⇝⇝r Yb. First notice that all three operations Xc, Yb and Rb complete in r′, since Rb and Yb

complete by assumption and Xc <r Rb. We apply Theorem 11 wrt. X = Xc and Y = Yb

and obtain a run r′ ≈ r such that Yb <r′ Xc. Moreover, since Xc <r Rb, we also have by
Theorem 11 (ii) that Xc <r′ Rb. We thus obtain Yb <r′ Xc <r′ Rb for values b ̸= c. This
contradicts Lemma 17, completing the proof. ◀

Intuitively, Theorem 19 shows that read or write operations involving a value that is
actually read (i.e., returned by a read operation) must receive message chains from practically
all earlier operations. We can show that the same can be true more broadly, e.g., even for a
completing write operation W(v) where v is never read in the run.

▶ Corollary 20. Let Xa <r Yb and assume that Yb completes in r. If Yb runs in isolation in r

and a ̸= b, then Xa⇝⇝⇝r Yb.

Proof. Let r be a run satisfying the assumptions. There exists a run r′ such that (i) r′ is
identical to r up to tY b.e(r) (in particular, r′(m) = r(m) for all 0 ≤ m ≤ tYb.e), and (ii) there
is an invocation of a read operation R in round tYb.e + 1 of r′, at a process i that is nonfaulty
in r′. Since i is nonfaulty, R completes in r′. Moreover, since Yb runs in isolation and R starts
after Yb ends, the value returned by R must be b. We obtain a run r′ in which Yb <r′ Rb and
Xa <r′ Rb with a ̸= b. So by Theorem 19 we have that Xa⇝⇝⇝r′ Yb. Since r′(m) = r(m) for all
0 ≤ m ≤ tYb.e it follows that Xa⇝⇝⇝r Yb, as claimed. ◀

8 Failures and Quorums

By assumption, invocations of reads and writes to a register are spontaneous events, which
is modeled by assuming that they are determined by the adversary (or the environment
in our terminology) in a nondeterministic fashion. Intuitively, in a completing register
implementation, the adversary can at any point wait for all operations to return and then
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perform a read. Suppose that this read operation is invoked at time t and that the value
it returns is v. Then, by Theorem 19, the resulting run r must contain message chains
X⇝⇝⇝r W(v) from every operation X that completed before time t to the write operation W(v).
Therefore, before it can complete, every operation X must ensure that message chains from X
to future operations can be constructed. There are several ways to ensure this in a reliable
system. One way is by requiring the process on which X is invoked to construct a message
chain to all other processes before X returns. This essentially requires a broadcast to all
processes that starts after X is invoked. Another way to ensure this is by having every
transaction Y coordinate a convergecast to it from all processes, that is initiated after Y is
invoked. Each of these can be rather costly. A third, and possibly more cost effective way
can be to assign a distinguished coordinator process c for the register object, and ensure
that every operation X creates a message chain to c that is followed by a message chain
back from c to the process invoking X. Notice that none of these strategies can be used in a
system in which one or more processes can crash: After a crash, neither the broadcast nor
the convergecast would be able to complete. Similarly, a coordinator c as described above
would be a single point of failure, and once it crashes no operation could complete.

We now show that in a system in which up to f processes can crash, Theorem 19 implies
that an operation must complete round-trip communications with at least f other processes
before it can terminate. We proceed as follows.

▶ Definition 21. We say that a process p observes a completed operation X in a run r if r

contains a message chain from X.s to ⟨p, tX.e⟩. (The message chain reaches p by the time
operation X completes.) Process p is called a witness for X in r if r contains a message chain
from X.s to X.e that contains a p-node θ = ⟨p, t⟩.

▶ Lemma 22. Let P be an f -resilient l.a.r.p., and let X be a completed operation in a run r

of P . Then more than f processes must observe X in r.

Proof. Assume, by way of contradiction, that no more than f processes observe X in r.
Let r′ be a run of P that coincides with r up to time tX.e, in which all processes that have
observed X fail from round tX.e + 1 (and no other process crashes), in which all operations
that are concurrent with X complete and, after they do, a write operation W(v) (for a value v

not previously written) runs in isolation, followed by a completed read. Since all processes
that observed X in r′ crash before W(v) is invoked, X ̸⇝⇝⇝r′ W(v). The read returns v, and so
Theorem 19 implies that X⇝⇝⇝r′ W(v), contradiction. ◀

We can now show that in f -resilient l.a.r.p.’s, every operation must perform at least one
round-trip communication to all members of a quorum set of size at least f . Formally:

▶ Theorem 23. Let P be an f -resilient l.a.r.p., and let X be a completed operation in a run r

of P . Then r must contain more than f witnesses for X.

Proof. Assume by way of contradiction that there is a run r of P that contains ≤ f witnesses
for X. Notice that for every witness p for X in r there must be a node ⟨p, t⟩ ⇝r X.e. We
apply Theorem 6 to r with pivot X.e and delay ∆ = tX.e − tX.s + 1, to obtain a run r′ ≈ r.
By Lemma 4(iii) the run r′ is a run of P . By choice of ∆, only processes with nodes in
pastr′(X.e) can observe X in r′, so every observer of X must be a witness for X. By construction
pastr(X.e) = pastr′(X.e), and so there are no more than f witnesses for X in r′. It follows
that no more than f processes observe X in r′, contradicting Lemma 22 . ◀

The ABD algorithm requires the number of processes to satisfy n ≥ 2f + 1 [4]. This ensures
that every two sets of n − f processes intersect in at least one process, i.e., each operation
communicates with a quorum set. We remark that although Theorem 23 implies the need to
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communicate with quorum sets, the Write-Back round is not always necessary. If a reader of v

receives message chains from all processes that are in a quorum set that W(v) communicated
with in the first round, then the message chains of Lemma 16 can be guaranteed without
the Write-Back. The algorithm of [10] is based on this type of observation. In addition,
strengthening the results of [21], our work implies that the channels that are shown to exist
in [21] must in fact be used to interact with quorums.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. Journal of the ACM (JACM), 40(4):873–890, 1993. doi:
10.1145/153724.153741.

2 Marcos K. Aguilera, Naama Ben-David, Irina Calciu, Rachid Guerraoui, Erez Petrank, and
Sam Toueg. Passing messages while sharing memory. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, PODC ’18, pages 51–60, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3212734.3212741.

3 Marcos K Aguilera and Svend Frølund. Strict linearizability and the power of aborting.
Technical Report HPL-2003-241, 2003.

4 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing
systems. J. ACM, 42(1):124–142, January 1995. doi:10.1145/200836.200869.

5 Naama Ben-David, Michal Friedman, and Yuanhao Wei. Survey of persistent memory
correctness conditions. arXiv preprint arXiv:2208.11114, 2022. doi:10.48550/arXiv.2208.
11114.

6 François Bonnet and Michel Raynal. A simple proof of the necessity of the failure detector
sigma to implement an atomic register in asynchronous message-passing systems. Information
Processing Letters, 110(4):153–157, 2010. doi:10.1016/j.ipl.2009.11.011.

7 K. M. Chandy and J. Misra. How processes learn. Distributed Computing, 1(1):40–52, 1986.
doi:10.1007/BF01843569.

8 Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos, Petr
Kouznetsov, and Sam Toueg. The weakest failure detectors to solve certain fundamental
problems in distributed computing. In Proceedings of the twenty-third annual ACM symposium
on Principles of distributed computing, pages 338–346, 2004. doi:10.1145/1011767.1011818.

9 Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Andreas Tielmann. The
weakest failure detector for message passing set-agreement. In International Symposium on
Distributed Computing, pages 109–120. Springer, 2008. doi:10.1007/978-3-540-87779-0_8.

10 Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Arindam Chakraborty. How fast can a
distributed atomic read be? In Proceedings of the Twenty-Third Annual ACM Symposium on
Principles of Distributed Computing, PODC ’04, pages 236–245, New York, NY, USA, 2004.
Association for Computing Machinery. doi:10.1145/1011767.1011802.

11 Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin,
and Pierre Sutra. State-machine replication for planet-scale systems. In Proceedings of the
Fifteenth European Conference on Computer Systems, EuroSys ’20, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3342195.3387543.

12 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
Knowledge. MIT Press, Cambridge, Mass., 2003.

13 Wojciech Golab, Lisa Higham, and Philipp Woelfel. Linearizable implementations do not
suffice for randomized distributed computation. In Proceedings of the Forty-Third Annual
ACM Symposium on Theory of Computing, STOC ’11, pages 373–382, New York, NY, USA,
2011. Association for Computing Machinery. doi:10.1145/1993636.1993687.

14 Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. The art of multiprocessor
programming. Newnes, 2020.

https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/3212734.3212741
https://doi.org/10.1145/200836.200869
https://doi.org/10.48550/arXiv.2208.11114
https://doi.org/10.48550/arXiv.2208.11114
https://doi.org/10.1016/j.ipl.2009.11.011
https://doi.org/10.1007/BF01843569
https://doi.org/10.1145/1011767.1011818
https://doi.org/10.1007/978-3-540-87779-0_8
https://doi.org/10.1145/1011767.1011802
https://doi.org/10.1145/3342195.3387543
https://doi.org/10.1145/1993636.1993687


R. Nataf and Y. Moses 33:15

15 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990. doi:
10.1145/78969.78972.

16 Kaile Huang, Yu Huang, and Hengfeng Wei. Fine-grained analysis on fast implementations of
distributed multi-writer atomic registers. In Proceedings of the 39th Symposium on Principles
of Distributed Computing, PODC ’20, pages 200–209, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3382734.3405698.

17 Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data structures.
ACM SIGPLAN Notices, 47(8):141–150, 2012. doi:10.1145/2145816.2145835.

18 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, July 1978. doi:10.1145/359545.359563.

19 N.A. Lynch and A.A. Shvartsman. Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In Proceedings of IEEE 27th International Symposium on
Fault Tolerant Computing, pages 272–281, 1997. doi:10.1109/FTCS.1997.614100.

20 Maged M Michael and Michael L Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing, pages 267–275, 1996. doi:10.1145/248052.248106.

21 Alejandro Naser-Pastoriza, Gregory Chockler, and Alexey Gotsman. Fault-Tolerant Computing
with Unreliable Channels. In Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada,
and Yukiko Yamauchi, editors, 27th International Conference on Principles of Distributed
Systems (OPODIS 2023), volume 286 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 21:1–21:21, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.OPODIS.2023.21.

22 Fedor Ryabinin, Alexey Gotsman, and Pierre Sutra. SwiftPaxos: Fast Geo-Replicated state
machines. In 21st USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24), pages 345–369, Santa Clara, CA, April 2024. USENIX Association. URL: https:
//www.usenix.org/conference/nsdi24/presentation/ryabinin.

23 Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: a
tutorial. ACM Comput. Surv., 22(4):299–319, December 1990. doi:10.1145/98163.98167.

A Detailed Model

Our model is based on the asynchronous message passing model of Fagin et al. [9]. We
consider a set Π of n processes. connected via a communication network Net, defined by
a directed graph (Π, E). Every edge (i, j) ∈ E is associated with a channel, and denoted
by chanij , consisting of a set of records of the form |µ, t|. Such a record represents the fact
that µ was sent by i to j in round t and is still in transit (i.e., it has not been delivered
yet). In addition to the processes, the environment (denoted by e) models what is commonly
referred to as the adversary.

Actions: For i ∈ Π, the set of actions Acti it can perform consists of local actions αi

(possibly including a no_opi action) and message send actions of the form sendi(µ, j).
The environment actions will play the role of determining when messages are delivered,
when processes are scheduled to move and external inputs to individual processes. Thus,
an environment action αe is a tuple η⃗ = ⟨η1, ..., ηn⟩ containing a component ηi for every
process i. Each ηi is either movei, skipi, invokei(x), or deliveri(|µ, t|, j) for some
message µ and process j ̸= i. The movei action means that i performs an action according
to its protocol as defined below; skipi means that i is ignored in the current round;
invokei(x) means that i will receive the external input x, while deliveri(|µ, t|, j) means
that i will receive the message µ from j, provided that this message is in transit, and is
the next message to be delivered in FIFO order.

DISC 2024

https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3382734.3405698
https://doi.org/10.1145/2145816.2145835
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/FTCS.1997.614100
https://doi.org/10.1145/248052.248106
https://doi.org/10.4230/LIPIcs.OPODIS.2023.21
https://www.usenix.org/conference/nsdi24/presentation/ryabinin
https://www.usenix.org/conference/nsdi24/presentation/ryabinin
https://doi.org/10.1145/98163.98167


33:16 Communication Requirements for Linearizable Registers

States: The local state of a process at any given point is its local event history hi,
containing an initial value and a sequence of local events: all the messages i received,
external inputs and all the actions i performed, all arranged in the order in which i

observed them. The local state of the environment contains the complete record of
all actions performed so far, as well as the current contents of chanij for all network
edges (i, j) ∈ E. A global state is a tuple g = (ℓe, ℓ1, . . . , ℓn) containing a state for the
environment and a state for each one of the processes. An initial global state is one in
which all local states contain only the initial values.
Protocols: A protocol Pi associates a nonempty set of actions (of Acti) with every local
state of the process i. If Pi(ℓi) = S, then the action performed by i when scheduled to
move in state ℓi will be one of the elements of S. A protocol for the processes has the
form P = (P1, . . . , Pn), and it associates a protocol Pi with every process i ∈ Π.
Environment Protocol: The environment’s protocol, which we denote by P a

e , is given
by P a

e (ℓe) ≜ {η⃗ : η⃗ ∈ Acte}. In words, P a
e (ℓe) performs, for every process i ∈ P ,

an independent, nondeterministic choice of ηi among the possibilities of movei, skipi,
deliveri(·, ·) or invokei(·).
Transition Function: A joint action is a tuple (η⃗, α1, . . . , αn) with η⃗ ∈ Acte and
αi ∈ Acti for each i ∈ Π. The transition function modifies the environment’s local state ℓe

by appending the current round’s joint action at the end of the event history h. Local
states are transformed as follows: If ηi = movei then the action αi ∈ Pi(ℓi) that i performs
(as recorded in the joint action added to h) is appended at the end of hi. Moreover, if
ηi = movei and i’s action is sendi(µ, j) where (i, j) is a link in Net, then a record |µ, m|,
where m is the current (sending) round, is added to chanij . Similarly, if ηi = invokei(·),
then this external input is appended at the end of hi. If ηi = deliveri(|µ, t|, j) and |µ, t|
is the oldest message in chanji(m) (the message µ was sent in round t by j, is still in
transit at the current time m, and is the next message to be delivered according to FIFO
order), then this record |µ, t| is removed from chanji and (j, µ) is appended to the end
of hi. In this case, µ is said to be delivered in round m in r. The local state ℓi of i ∈ P

remains unchanged if ηi = skipi or if ηi = deliveri(|µ, t|, j) and |µ, t| /∈ chanji(m), and
the i-component in the joint action α⃗m performed at time m is ‘⊥i’.
Runs: A run r is an infinite sequence of global states, whose first element r(0) is the
initial global state and we use r(m) to denote the (m + 1)th state in the sequence. We
identify time with the natural numbers, and think of r(m) as being the global state at
time m in r. We denote by ri(m) the local state of process i in r(m).
Run of a protocol P : A run r is called a run of P if

(i) r(0) is an initial global state, and
(ii) for every m ≥ 0, there is a joint action α⃗ = (η⃗, α1, . . . , αn) with η⃗ ∈ Acte and

αi ∈ Pi(ri(m)) for every i = 1, . . . , n such that r(m + 1) is obtained by applying the
transition function to α⃗ and r(m).

A protocol Pi is deterministic if it always specifies a unique action, i.e., if Pi(ℓi) = S then
|S| = 1. We remark that while processes may or may not follow a deterministic protocol, the
environment’s protocol is highly nondeterministic. The asynchronous aspect of an a.m.p. is
captured mainly by the environment’s protocol and the transition function: The environment
can delay the delivery of a message for arbitrarily long, and it can similarly delay a process
from taking a step, and this is independent of how many steps others take, and of whether
they receive messages sent to them. Moreover, the transition function is such that a process’
local state changes only if the process either receives a message, takes a step, or that the
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environment’s action is an invocation. Thus, it has no way of telling whether and how much
time has passed since its last move.

Crashes and loss of messages. A process i is said to be correct in r if it is allowed to move
(ηi = movei) infinitely often in r. Otherwise process i is faulty (or crashes) in r. We say that
a message µ is lost in r if it is sent in r and never delivered.

A system is said to be reliable if no process ever fails and no message is ever lost, in any
of its runs. A protocol is said to be f-resilient if it acts correctly in all runs in which no
more than f processes are faulty.

We now restate and prove Lemma 4.

▶ Lemma 4. Let r and r′ be two runs such that r ≈ r′. Then
(i) If θ1 ⇝r θ2 then θ′

1 ⇝r′ θ′
2 holds for all nodes θ′

1 and θ′
2 of r′ such that θ1 ∼ θ′

1
and θ2 ∼ θ′

2
(ii) If r is a run of protocol P , then r′ is also a run of P

(iii) A process i fails in r iff it fails in r′, and similarly
(iv) A message µ is lost in r iff the same message is lost in r′

Proof. We prove each one of the claims.
(i) Let θ1, θ2 in r such that θ1 ⇝r θ2. Denote by θ1 = α1, α2, . . . , αk = θ2 the nodes

constituting this message chain such that αi+1 is obtained from αi applying (1a) or
(1b) of Definition 1. We prove by induction on k that αk has a corresponding message
chain α′

1 ⇝r′ α′
k in r′ when α1 ∼ α′

1 and αk ∼ α′
k.

Base: k = 1. The base case results directly from the fact that every local state in r

appears in r′ and vice-versa. Thus there is α′
1 ∼ α1 in r′.

Step: Let k > 1 and assume inductively that the claim holds for θ1 = α1, α2, . . . , αk−1.
If αk is obtained from αk−1 by (1a) of Definition 1, then let α′

k−1 = ⟨p, tk−1⟩ be the
node of r′ such that αk−1 ∼ α′

k−1. By local equivalence between r and r′ there must
be a node α′

k ∼ αk of p in r′, and the claim holds.
If αk is obtained from αk−1 by (1b), meaning that a message is sent at node αk−1 and
arrives no later than at αk = ⟨p, tk⟩, then since the send and the delivery of messages
are registered in processes local states, we have by definition of locally equivalence that
this message is also sent at α′

k−1 and arrives no later than a node α′
k ∼ αk of p in r′.

(ii) Assume r is a run of P . We show that if action αi is performed in r′ then it is an action
of P . Let α′

i be an action performed by i in r′ and denote by li the state of i right after
performing this operation . By definition of local equivalence, there is a point in r such
that i has local state li in r. I.e., i performed action α′

i in r, which by assumption is a
run of P .

(iii) If a process i fails in r, then there is a time t from which the environment action of i

is not movei anymore. Thus, there is a finite number of actions registered to its local
state along the run. By definition of local equivalence, this is the case also for r′, i.e., i

fails also in r′.
(iv) Let µ be a message sent by i to j at node θ in r. It follows from item (i) that µ is

sent at some node θ′ ∼ θ in r′. If µ is lost in r, then this message is never delivered to
process j and thus this reception is never added to the local state of j. By item (i) it
follows µ is also lost in r′. ◀
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