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Abstract
Broadcast is a ubiquitous distributed computing problem that underpins many other system tasks. In
static, connected networks, it was recently shown that broadcast is solvable without any node memory
and only constant-size messages in worst-case asymptotically optimal time (Hussak and Trehan,
PODC’19/STACS’20/DC’23). In the dynamic setting of adversarial topology changes, however,
existing algorithms rely on identifiers, port labels, or polynomial memory to solve broadcast and
compute functions over node inputs. We investigate space-efficient, terminating broadcast algorithms
for anonymous, synchronous, 1-interval connected dynamic networks and introduce the first memory
lower bounds in this setting. Specifically, we prove that broadcast with termination detection is
impossible for idle-start algorithms (where only the broadcaster can initially send messages) and
otherwise requires Ω(log n) memory per node, where n is the number of nodes in the network. Even
if the termination condition is relaxed to stabilizing termination (eventually no additional messages
are sent), we show that any idle-start algorithm must use ω(1) memory per node, separating the
static and dynamic settings for anonymous broadcast. This lower bound is not far from optimal, as
we present an algorithm that solves broadcast with stabilizing termination using O(log n) memory
per node in worst-case asymptotically optimal time. In sum, these results reveal the necessity of
non-constant memory for nontrivial terminating computation in anonymous dynamic networks.
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1 Introduction

Distributed algorithms for dynamic networks enable processes to coordinate even as the
communication links between them change over time, often rapidly and adversarially [1, 8].
When once a process disconnecting from a distributed system was viewed as a rare crash
fault to tolerate, research over the last two decades has come to view dynamics as natural or
even necessary to a system’s function. Application domains such as self-stabilizing overlay
networks [2, 19], blockchains [4, 21], and swarm robotics [20,22] are defined by their rapidly
changing or physically moving components, forcing algorithms to achieve their goals by
leveraging – or more often operating in spite of – these dynamics.

Despite the challenges, many fundamental problems have been addressed under adversarial
dynamics, including broadcast, consensus, and leader election (see [3, 5] for complementary
surveys). However, many of these algorithms endow their nodes with unique identifiers,
port labels for locally distinguishing among their neighbors, (approximate) knowledge of
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the number of nodes in the network, or superlinear memories. Taking inspiration from
collective behavior in biological complex systems of computationally weak entities – such as
foraging in ant colonies [10,32], aggregation in slime mold spore migrations [36], and energy
distribution in microbiomes [28,33] – we question to what extent these additional capabilities
are necessary. Specifically, we consider dynamic networks of anonymous nodes (lacking
both unique identifiers and port labels) with limited memory. As an aside, anonymity is
a desirable feature in its own right for engineering privacy-sensitive applications, such as
Bluetooth-based contact tracing [35].

We consider the fundamental problem of synchronous broadcast, in which all nodes in
a network must eventually be informed of some information originating at a single node.
In static, connected networks, broadcast can be solved without any persistent memory
at all: the amnesiac flooding algorithm [23–25] – in which nodes forward copies of any
message they receive to any neighbor that did not send them the message in the last round
– informs all nodes (correctness) and allows them to eventually stop sending additional
messages (stabilizing termination) within worst-case asymptotically optimal time. But even
when adversarial dynamics are constrained to maintain network connectivity in every round,
a longstanding conjecture states that dynamic broadcast with stabilizing termination is
impossible in O(log n) memory without node identifiers or knowledge of n [31], let alone
without any memory at all. We summarize our contributions as follows.

Our Contributions. All results are proven with respect to deterministic algorithms run by
anonymous nodes (lacking identifiers and port labels) in a dynamic network whose topology
can change arbitrarily but remains connected in each synchronous round. In this setting:

Broadcast with termination detection – i.e., the broadcaster must eventually decide
broadcast is complete – is impossible for idle-start algorithms where only the broadcaster
can initially send messages (Section 2) and otherwise requires Ω(log n) space (Section 3).
Any idle-start algorithm solving broadcast with stabilizing termination – i.e., eventually
no additional messages are sent – must have ω(1) space complexity (Section 4). We then
present an algorithm solving broadcast with stabilizing termination in O(log n) space
and worst-case asymptotically optimal time (Section 5).

We note that although synchronous systems are typically seen as less general than
asynchronous ones, it is actually the opposite for the purposes of lower bounds. Since an
asynchronous adversary can always simulate a synchronous one, any impossibility results or
lower bounds proven w.r.t. synchrony will apply to both types of systems.

1.1 Model
Dynamic Networks. We consider a synchronous dynamic network comprising a fixed set of
nodes V . Nodes communicate with each other via message passing over a communication
graph whose topology changes over time. We model this topology as a time-varying graph
G = (V, E, T, ρ) where V is the set of nodes, E is the static set of undirected edges that
may appear in the graph, T = N is the lifetime of the graph, and ρ : E × T → {0, 1} is
the presence function indicating whether an edge exists at a given time [8]. We refer to
the set of edges present at time t ∈ T as Et = {e ∈ E : ρ(e, t) = 1} and the undirected
graph Gt = (V, Et) as the snapshot of G at time t ∈ T . We assume an adversary controls
the presence function ρ and that E is the complete set of edges on V ; i.e., we do not limit
which edges the adversary can introduce. We do, however, follow the majority of dynamic
broadcast literature (e.g., [8, 12,26,27,31]) in assuming 1-interval-connectivity (also called
“always-connected snapshots”); i.e., the adversary may make arbitrary topological changes at
each time t ∈ T so long as each snapshot Gt is connected.
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Node Capabilities. Motivated by computationally weak individuals in biological collectives
(e.g., cells, microbes, social insects, etc.), we consider nodes that are anonymous, lacking
unique identifiers, and have no knowledge or approximation of any global measure, including
the number of nodes n. We further assume that nodes have no port labels; i.e., they cannot
count or locally distinguish among their neighbors. Consequently, when a node communicates
with its neighbors via message passing, it does so using a broadcast mechanism, sending the
same message to all its current neighbors.

Algorithms and Execution. Each node in the time-varying graph G synchronously executes
the same distributed algorithm A. All nodes are initialized at time t = 0, and each
synchronous round t starting at time t proceeds as follows:
1. The adversary fixes the network topology Gt for round t.
2. Each node may send a message to its neighbors in Gt according to algorithm A as a

function of its current state.
3. Each node may perform a state transition according to algorithm A as a function of its

current state and the multiset of messages it (reliably) receives from its neighbors in Gt.

Memory. In this paper, we are primarily concerned with an algorithm’s space complexity,
the maximum number of bits a node uses to store its state between rounds. As usual for
distributed systems, we are interested in the asymptotic growth of this measure as a function
of n = |V |, the number of nodes. We emphasize that even if nodes have Ω(log n) memory
– sufficient for storing unique identifiers – they are anonymous and are not assigned such
identifiers a priori. We also note that we do not analyze message complexity directly, as our
execution model specifies nodes that send messages based only on their states; thus, there
are at most as many message types as states.

Broadcast. In the broadcast problem, every node starts in the same state except for a single
node known as the broadcaster that is trying to deliver some information to every other node
in the network. We say that a node is informed if it is the broadcaster or has previously
received a message from an informed node. All other nodes are uninformed. A broadcast
is complete when every node in the network is informed. A distributed algorithm A solves
the broadcast problem in t rounds if, for any time-varying graph whose nodes all execute A,
broadcast is completed by the end of round t.

Idle-Start. A node is idle if it will not send a message in the subsequent round, and will not
change its state if it does not receive a message (this has also been called “quiescent” [29],
though that term is overloaded in this context). Some broadcast algorithms critically rely on
initializing all nodes as non-idle at time t = 0; conversely, an idle-start algorithm initializes
all nodes except the broadcaster as idle.

Termination. A simple solution to broadcast is to make every informed node continuously
send messages. Since we assume 1-interval connectivity, there is always at least one uninformed
node receiving a message from an informed node in each round, so this algorithm solves
broadcast in O(n) rounds. This runtime bound is worst-case asymptotically optimal, but
a smoothed analysis reveals significant improvements on more “typical” topologies [17,18].
This algorithm also achieves Θ(1) space complexity, since nodes need only remember whether
they’re informed. However, nodes sending messages forever creates undesirable congestion
and precludes the system from advancing to further tasks, e.g., starting a new broadcast
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or using the broadcast information as part of a larger algorithm. Thus, we seek algorithms
meeting some kind of termination conditions. An algorithm achieves stabilizing termination
if every node becomes idle within finite time. An algorithm achieves the stronger condition
of termination detection if the broadcaster correctly and irrevocably decides that broadcast
is complete (i.e., by entering a terminating state) within finite time.

1.2 Related Work

Broadcast is a ubiquitous and well-studied distributed computing problem, often appearing
as a building block in more complex tasks. In static, connected networks, broadcast with
stabilizing termination is solvable without any node memory (and thus without identifiers)
and only Θ(1) message complexity in worst-case asymptotically optimal time, though port
labels are required to distinguish among neighbors [23,24]. In a recent extension of this work,
the same algorithm was proven correct under node and edge deletion dynamics [25], but
breaks down under more general adversarial dynamics. With this inspiration, our focus is
space-efficient, terminating algorithms for broadcast in anonymous dynamic networks.

Early works on dynamic broadcast typically assumed stronger node capabilities. A series
of works on shortest, fastest, and foremost broadcast assumed local identifiers enabling a
node u to maintain a consistent label for any neighbor v, even if v disconnected from and later
reconnected to u [6–8]. This assumption enables the construction of time-invariant logical
structures like spanning trees, which – when combined with the assumption of recurrent
dynamics (edges will eventually reappear) – reduces dynamic broadcast to static routing on
these structures. Similar techniques are used when assuming both unique node identifiers and
shared knowledge of n, the number of nodes in the network [34]. Among these early works,
only O’Dell and Wattenhofer [31] share our focus on anonymous nodes and space complexity.
They conjectured that no algorithm can solve broadcast with stabilizing termination in
O(log n) space when nodes are anonymous and have no knowledge of n. Interestingly, we
prove this is solvable in our model (Section 5), though we do not disprove their conjecture
since our model’s synchrony is not directly comparable to their combination of asynchronous
time, bounded message latency, and disconnection detection for re-broadcasting messages.

A parallel line of work investigated what functions a dynamic network can deterministically
compute over its nodes’ inputs [27]. In the context of anonymous dynamic networks, most
results focus on the (exact) counting problem [9,11,14,15,26,30], which terminating broadcast
reduces to in O(n) time and O(log n) space: once the broadcaster knows the number of
nodes n, it need only wait n rounds before every other node must have been informed (since
the dynamic network is 1-interval connected), at which point it can terminate. These works
recently culminated in the exact characterization by Di Luna and Viglietta [12, 13] showing
that anonymous dynamic networks with at least one leader can compute only the multi-
aggregate functions – those for which a node’s output depends only on its own input and the
multiset of all nodes’ inputs – and do so in optimal (linear) time. However, their algorithm
uses Θ(n3 log n) space in the worst case [16], leaving open what memory is necessary. Our
impossibility results and memory lower bounds for terminating broadcast (Sections 2–4)
shed light on this question, as many nontrivial multi-aggregate functions require information
from at least one node to be communicated to all other nodes (e.g., minimums/maximums,
averages, exact and generalized counting, etc.).



G. Parzych and J. J. Daymude 35:5

...

G

b

v0 v1 v2 vk vk+1
P

(a) End of Round 0.

b

v0 v1 v2 vk vk+1...

G

P

(b) End of Round 1.

b

v0 v1 v2 vk vk+1...

G

P

(c) End of Round k.

Figure 1 The time-varying graph G used in the proof of Theorem 1. In each round t, the
broadcaster b is connected to node vt in the path P . Informed nodes are shown in green. When b

declares broadcast to be complete in round k, node vk+1 is still uninformed.

2 Impossibility Results for Termination Detection

We begin by proving that there is no idle-start algorithm – i.e., one in which only the
broadcaster can initially send messages – that solves broadcast with termination detection in
our setting. The idea behind the proof is as follows. Supposing to the contrary that such an
algorithm A exists, it must solve broadcast and detect termination on any static, connected
network G. So we consider an execution of A on an extension of G as a time-varying graph
G that we carefully construct to achieve two goals: (1) the execution of A on G in the
time-varying graph G is identical to its execution on G alone, and (2) there is an idle node in
G that is sequestered from ever being informed. This drives a contradiction: the broadcaster
must detect termination in G because it does so on G alone, but will do so incorrectly because
there is still an uninformed node.

▶ Theorem 1. No deterministic idle-start algorithm can solve broadcast with termination
detection for anonymous, synchronous, 1-interval connected dynamic networks.

Proof. Suppose to the contrary that there exists an idle-start algorithm A solving broadcast
with termination detection in our setting. Let G be any static, connected graph and let b

be any node in G. If A is executed on G with b as the broadcaster, there must exist some
round k during which b correctly and irrevocably declares broadcast to be complete.

Construct a time-varying graph G as follows (see Figure 1). First, G contains the static
graph G as a fixed part; i.e., all edges of G will remain present throughout the lifetime of G.
Additionally, G contains a fixed path P = v0v1 · · · vk+1 of k + 2 nodes. Finally, in each round
t ∈ {0, . . . , k}, there is a single edge {b, vt} connecting the broadcaster b to the path P .

Consider the execution of A on G with b as the broadcaster. We argue by induction on
t ∈ {0, . . . , k} that in round t, (1) all nodes in G send the same messages and perform the same
state transitions as they did in the execution of A on G, and (2) the nodes {vt+1, . . . , vk+1}
remain idle and uninformed. In round t = 0, only the broadcaster b potentially sends
messages and changes state since A is an idle-start algorithm. Recall that nodes have no
port labels and no knowledge of n. Thus, b must send the same messages and perform the
same state transition as in the execution of A on G. The only neighbor of b in the path P is
v0, so nodes {v1, . . . , vk+1} receive no messages and remain idle and uninformed.

Now suppose the claim holds up to and including some round 0 ≤ t < k. By the induction
hypothesis, all nodes in G have the same states at the start of round t + 1 as in the execution
of A on G, and thus send the same messages. However, since {b, vt+1} is the only edge
between G and P in round t + 1, b could in principle make a divergent state transition if it
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receives a message from vt+1. But by the induction hypothesis, vt+1 is idle and thus sends
no messages in round t + 1. For this same reason, nodes {vt+2, . . . , vk+1} receive no messages
and remain idle and uninformed in round t + 1.

Therefore, in round k, the broadcaster b irrevocably declares broadcast to be complete
just as it did in the static setting, but vk+1 remains uninformed, a contradiction. ◀

A related line of research investigates the computability of functions in dynamic networks
with no or multiple leaders. Di Luna and Viglietta have recently shown that if the number
of leaders is known, nodes can compute the same functions as systems with a single leader.
However, they found that if the number of leaders is unknown, then it is impossible for nodes
to compute the size of the network with termination detection [13]. Using similar ideas to
our previous proof, we can show that broadcast with termination detection is also impossible
without knowing the number of broadcasters. Since broadcast can be reduced to counting the
size of the network (simply broadcast for n rounds after receiving the count), our theorem
implies the result of Di Luna and Viglietta. However, since we are unaware of any reduction
from counting to broadcast, ours seems to be slightly more general.

▶ Theorem 2. Even without an idle start, no deterministic algorithm can solve broadcast with
termination detection for anonymous, synchronous, 1-interval connected dynamic networks
if nodes have no knowledge of the number of broadcasters.

Proof. Suppose for contradiction that an algorithm A solves broadcast with termination
detection without giving nodes knowledge of the number of broadcasters. Let the configuration
of a dynamic network at time t be the multiset of node states at the start of round t. Let
C0, C1, . . . , Cx be the sequence of configurations that occur from running A on the complete
graph K3 with a single broadcaster, where Cx is the first configuration in which the broadcaster
declares termination. We will create a new time-varying graph G on which A will incorrectly
terminate. First create 2x copies of C0, with each copy having a single broadcaster and two
non-broadcasters. Add a path p0p1 . . . px of x + 1 nodes and for each copy of C0, choose one
of the non-broadcaster nodes and attach it to p0; this will be the first snapshot of G.

Suppose that in C1, the broadcaster was in state β1 and the non-broadcasters in state
α1. By symmetry of the graphs, after the first round of executing A on G, each copy of C0
will have a node in state β1 and a node in state α1, while the node attached to p0 will be
in some other unknown state. Thus there are 2x nodes in state β1 and 2x nodes in state
α1. Use all the nodes in state α1 and half the nodes in state β1 to create 2x−1 copies of the
configuration C1. Attach all of the unused nodes from the copies of C0 to p1. Again, choose
a single non-broadcaster node from each copy of C1, and attach them to p1. Then run A for
one additional round. If β2 and α2 are the states of the broadcaster and non-broadcasters in
C2 respectively, then by symmetry, our graph after this round will have 2x−1 copies each of
β2 and α2. We can now use these nodes to create 2x−2 copies of C2.

Continuing on in this way, we can create 2x−i copies of configuration Ci for each i ∈
{0, . . . , x} while only informing a single node in the path at a time. Thus, after x rounds, we
will have 2x−x = 1 copy of Cx and px will still be uninformed. But the broadcaster in the
copy of Cx will have declared termination, contradicting the correctness of A. ◀

3 Memory Lower Bound for Termination Detection

In an idle-start algorithm, nodes have no indication of whether they have idle, uninformed
neighbors. This drives the indistinguishability result at the center of Theorem 1: a static,
connected graph cannot tell if it’s the entire network or a subgraph in a larger whole. Without
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Figure 2 The inductive construction of configuration Ci as described in the proof of Theorem 3.
The key idea is to find a new pair of states (βi, αi) that is not already in (β0, α0), . . . , (βi−1, αi−1)
by arranging a previously identified reachable configuration Ck and extending the corresponding
execution of A by one additional round.

the constraints of an idle-start, however, this particular contradiction – and its corresponding
impossibility result – disappears. For example, the history tree algorithm of Di Luna and
Viglietta solves broadcast in this setting in linear time and Θ(n3 log n) space [16]. Still, all
such algorithms must use at least logarithmic memory, as we now show.

▶ Theorem 3. Any algorithm that solves broadcast with termination detection for anonymous,
synchronous, 1-interval connected dynamic networks must have Ω(log n) space complexity.

Proof. Consider any (non-idle-start) algorithm A that solves broadcast with termination
detection. Let f(n) be the maximum number of states that A uses when run on dynamic
networks of at most n nodes. We will show that f(n) ≥ n1/2 for all n ≥ 1, implying that A
uses log(f(n)) ≥ log(n1/2) = Ω(log n) space.

Suppose to the contrary that there exists an n0 ≥ 1 such that f(n0) < n
1/2
0 . A

configuration C is reachable (from an initial configuration) if there exists a time-varying
graph G and time t such that the execution of A on G for t rounds results in configuration C.
We will find a sequence of n0 reachable configurations (Ci)n0−1

i=0 where each Ci is a disjoint
union of multisets1 of states Bi ∪ Ai ∪ Pi ∪ Gi satisfying:

1. |Ci| = 2n0,
2. Bi = {βi}, where βi is the state of the broadcaster,
3. Ai = {αi}n0−i−1, exactly n0 − i − 1 copies of the same state αi,

1 A multiset X is a disjoint union of multisets Y ∪ Z if the multiplicity of any element x ∈ X is the sum
of multiplicities of x in Y and Z.
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4. |Pi| ≥ n0 − i and contains only uninformed states,
5. Gi = Ci \ (Bi ∪ Ai ∪ Pi), and
6. (βi, αi) ̸= (βj , αj) for all j ̸= i.

Initially, the broadcaster is in some state β0 and all other nodes are uninformed in some
state α0 ̸= β0. Define the initial configuration C0 by letting B0 = {β0}, A0 = {α0}n0−1,
P0 = {α0}n0 , and G0 = ∅. Clearly, C0 is reachable and meets the above conditions.

Now consider any 1 ≤ i < n0 and suppose that C0, . . . , Ci−1 have already been defined;
we define Ci recursively as follows (see Figure 2 for an illustration). Let D = (D0, . . . , Dx)
be the sequence of configurations obtained by running A on Kn0−i+1, the complete graph
on n0 − i + 1 nodes, where Dx is the first configuration in which the broadcaster declares
termination. Note that, by the symmetry of the complete graph, each configuration in D has
one state for the broadcaster and one state shared by every other node. Let j ∈ {0, . . . , x}
and k ∈ {0, . . . , i − 1} be such that βk ∈ Dj and Dj \ {βk} ⊆ Ak and for any other j′, k′

fulfilling this condition, j′ ≤ j. Note that such a j must exist since, firstly, D0 is the initial
configuration of Kn0−i+1 and thus β0 ∈ D0 and D0 \ {β0} = {α0}n0−i ⊆ {α0}n0−1 = A0;
and secondly, the sequence D is finite since A terminates in finite time. We also have j < x

since otherwise there exists a configuration Ck containing |Pk| ≥ n0 − k > 0 uninformed
nodes (by induction), but βk ∈ Dx is a terminating state, contradicting the correctness of A.

Configuration Ck is reachable, so there is some time-varying graph upon which the
execution of A will within finite time be in configuration Ck = Bk ∪ Ak ∪ Pk ∪ Gk. We
extend this execution by putting this graph into the following topology and executing A for
a single additional round. In a slight abuse of notation, we refer here to configurations as
sets of nodes instead of multisets of states since edge dynamics make nodes in the same state
interchangeable. Choose any subset A′

k ⊆ Ak of n0 − i nodes (which is well-defined since
|Ak| = n0 − k − 1 ≥ n0 − i by induction) and arrange them with Bk as a complete graph
Kn0−i+1. Arrange the nodes in Pk as a path. Connect these components by attaching an
end p ∈ Pk of the path to some node a ∈ A′

k and connect every node in Gk ∪ (Ak \ A′
k) only

to this node a. Let Ci be the configuration obtained after executing one round of A on this
topology. Clearly Ci is reachable; we show next that it satisfies the required conditions.

1. |Ci| = |Ck| = 2n0 as desired.
2. Let Bi = {βi} be the state of the unique node in Bk after this one additional round.
3. Consider any two nodes a1, a2 ∈ A′

k \ {a} before execution of the round. Notice that they
are both connected to Bk and every node in A′

k except for themselves. By induction,
every node in A′

k has the same state αk. Thus, a1 and a2 receive the same sets of messages
from their neighbors, so they transition to the same state in the next round. Let αi be
this state shared by all nodes in A′

k \ {a} after the round’s execution and let Ai be the
corresponding configuration. Thus Ai = {αi}|A′

k|−1 = {αi}n0−i−1 as desired.
4. Consider any node v ∈ Pk \ {p} before execution of the round. By induction, v and its

neighbors are uninformed. Thus, v receives no message from an informed node in the
subsequent round and remains uninformed. Let Pi be the (states of) nodes Pk \ {p}. By
induction, we have |Pi| = |Pk| − 1 ≥ n0 − k − 1 ≥ n0 − i as desired.

5. Gi = Ci \ (Bi ∪ Ai ∪ Pi) is simply defined as all the remaining nodes from Ck.
6. Suppose for contradiction that (βi, αi) = (βℓ, αℓ) for some ℓ ∈ {0, . . . , i − 1}. Recall that

the configuration Dj = {βk} ∪ {αk}n0−i was obtained by running A on Kn0−i+1 and Dj

is not the final configuration of that execution. Moreover, observe that when we extended
the execution reaching Ck by one round, we reconstructed this exact configuration
and topology by arranging A′

k ∪ Bk as a complete graph. When running A for one
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additional round on this component, the broadcaster in Dj and Bk transitions from
βk to βi and the non-broadcasters in Dj and A′

k \ {a} transition from αk to αi. Thus,
Dj+1 = {βi} ∪ {αi}n0−i = {βℓ} ∪ {αℓ}n0−i, by supposition. But this implies βℓ ∈ Dj+1
and Dj+1 \ {βℓ} = {αℓ}n0−i ⊆ {αℓ}n0−ℓ = Aℓ, contradicting the maximality of j.

Thus, we obtain the desired sequence of n0 reachable configurations (Ci)n0−1
i=0 and their

corresponding distinct state pairs (βi, αi). The initial state pair (β0, α0) appears in every
execution of A and the remaining state pairs (βi, αi) for i ≥ 1 appear in executions of A on
complete graphs Kn0−i+1 of at most n0 nodes. But the maximum number of states A can
use on dynamic networks of at most n0 nodes is f(n0) < n

1/2
0 , so there are only f(n0)2 < n0

distinct state pairs, a contradiction. ◀

4 Memory Lower Bound for Stabilizing Termination from Idle-Start

We now turn our attention from termination detection to stabilizing termination, requiring
only that all nodes are eventually informed and stop sending messages. In this section, we
prove that any idle-start algorithm solving broadcast with stabilizing termination must
use superconstant memory. This shows that stabilizing broadcast is strictly harder in
dynamic networks than in the static setting, which has a trivial constant-memory algorithm
(if uninformed and receiving a message, become informed and forward the message to all
neighbors) and even permits an algorithm with no persistent memory at all [23,24].

Our proof will use similar time-varying graphs as in the proofs of Theorems 1 and 3.
However, those proofs derived contradictions from the broadcaster declaring termination
too early, a condition that cannot be used in the case of stabilizing termination. Instead,
we suppose a constant memory algorithm exists and use it to create an infinite sequence of
configurations satisfying some very specific properties. We show in Lemma 6, however, that
no infinite sequence with these properties exists.

In Lemma 5, we show that the time an algorithm takes to stabilize on a static complete
graph, starting from any reachable configuration, depends only on the number of states used
and not on the number of nodes in the graph. This will be useful in our proof since we
consider algorithms using constant memory, thus implying a fixed bound on the stabilization
time for any complete graph, regardless of size. To this end, we define the following function.

▶ Definition 4. Let f(k) be the minimum number of rounds such that for any idle-start
algorithm A solving broadcast with stabilizing termination using at most k states and any
configuration C reachable by A, an execution of A on a static complete graph starting in
configuration C stabilizes within f(k) rounds.

We first prove that this function is well-defined and bounded.

▶ Lemma 5. f(k) ≤ 3k!

Proof. Let A be an idle-start algorithm solving broadcast with stabilizing termination using
only k states and consider its execution on a static complete graph starting from some
reachable configuration C. At each round, consider partitioning the nodes into ℓ ≤ k sets by
their current state. In each round, any nodes with the same state receive the same messages
from their neighbors and transition to the same next state, so nodes sharing a state continue
to do so throughout the execution. Thus, although the number of sets ℓ can decrease over
time as some nodes converge to the same state, it can never increase. If there are ℓ sets of
nodes with distinct states at one time, there are

(
k
ℓ

)
possibilities for what these states are

and ℓ! ways for these states to be assigned to the sets. Again, since the number of of sets
can decrease, ℓ may take on any value in {1, . . . , k} throughout the execution.
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Since A is deterministic, if the same assignment of states to the same sets ever occurs
twice in an execution, the algorithm must be in a loop. However, this can not happen since
C is reachable and thus A must stabilize in finite time. Thus, the maximum number of
configurations A can visit before stabilizing is

k∑
ℓ=1

(
k

ℓ

)
· ℓ! =

k∑
ℓ=1

k!
(k − ℓ)! = k! ·

k−1∑
i=0

1
i! ≤ k! · e ◀

Our next lemma sets us up for the contradiction in Theorem 7.

▶ Lemma 6. Let S = {S1, S2, . . . } be a collection of multisets Si which are each the disjoint
union of multisets Ai ∪ Bi with elements from [n] = {1, . . . , n} satisfying |Ai| = k, |Bi| is
finite, and ¬(Aj = Ai ∧ Bj ⊆ Bi) for all i ̸= j. Then |S| is finite.

Proof. Suppose for contradiction that S is an infinite collection fulfilling these conditions.
Since each Ai contains elements from [n] and |Ai| = k, there are only a finite number of
possible definitions for the multiset Ai. Since S is infinite, it must contain some infinite
subcollection S ′ = {S′

1, S′
2, . . .} ⊆ S such that A′

i = A′
j for all S′

i, S′
j ∈ S ′. Thus, for S to

fulfill the conditions, we must have B′
i ̸⊆ B′

j for all S′
i ̸= S′

j . We will derive a contradiction
by finding multisets in X0 = {B′

i | S′
i ∈ S ′} such that one is a subset of the other. In fact,

we show something much more general: X0 contains an infinite subcollection of equivalent
multisets, i.e., multisets containing the same elements with the same multiplicities.

We will use #(S, i) to denote the multiplicity of element i ∈ [n] in multiset S. Choose
any multiset X ∈ X0. For each i ∈ [n], let X (i)

1 = {B′ ∈ X0 \ {X} | #(B′, i) < #(X, i)} be
the collection of multisets of X0 containing fewer instances of i than X. Each B′ ∈ X0 \ {X}
must exist in at least one of these collections since X ̸⊆ B′. But there are only n collections
X (1)

1 , . . . , X (n)
1 , and X0 is infinite, so there must exist a collection X (i1)

1 that is infinite. For
each 0 ≤ j < #(X, i1), let X (i1,j)

1 = {B′ ∈ X (i1)
1 | #(B′, i1) = j} be the multisets in X (i1)

1
containing exactly j instances of element i1. Once again, there are infinitely many multisets
in X (i1)

1 but only a finite range of multiplicities j, so at least one collection X (i1,j)
1 is infinite.

Call this one X1.
Next define X2 in a similar way, but using X1 in place of X0. By our construction, every

multiset in X1 contains the same number of instances of element i1 ∈ [n]. When defining
X2 then, we will have X (i1)

2 = ∅. Thus, there will be an element i2 ∈ [n] with i2 ̸= i1 such
that every multiset in X2 has the same number of instances of i2. Since X2 ⊂ X1, every
multiset in X2 has the same number of instances of both i1 and i2. If we continue to define
the collections X3, . . . , Xn in this way, all multisets in each Xj will have the same numbers of
instances of i1, . . . , ij . Thus, for every X, Y ∈ Xn and i ∈ [n], #(X, i) = #(Y, i). But then Xn

is an infinite subcollection of equivalent multisets in X0, a contradiction. ◀

We now prove our superconstant memory lower bound.

▶ Theorem 7. Any idle-start algorithm that solves broadcast with stabilizing termination for
anonymous, synchronous, 1-interval connected dynamic networks must use ω(1) memory.

Proof. Suppose for contradiction that A is an idle-start algorithm with Θ(1) space complexity
that solves broadcast with stabilizing termination. Then there is a constant k such that A
never uses more than k states. Note that throughout the rest of this proof, f(k) is well-defined
and has finite value by Lemma 5. We will show that the existence of this algorithm A
contradicts Lemma 6 by constructing an infinite sequence of reachable configurations (Ci)∞

i=0
where each Ci is a disjoint union of multisets Si ∪ Ti satisfying:
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...

Ki · f(k)

Round 0

If there exists a j < i with Sj = Si' and Tj ⊆ Ti', then:

Round 1

f(k) rounds

Round f(k)

x

p0 p1 p2 pf(k)-1

x

p0 p1 p2 pf(k)-1...

... ...

...

...

Ki · f(k)

K(j+1) · f(k) K(j+1) · f(k)

...

Ki · f(k)

x

p0 p1 p2 pf(k)-1

x

p0 p1 p2 pf(k)-1

x

p0 p1 p2 pf(k)-1

Ti'

new Ti'Sj∪Tj

Ti' \ Tj

Si'

new Si'

Figure 3 The time-varying graph structures used in the proof of Theorem 7.

1. |Si| = f(k),
2. |Ti| = i · f(k), and
3. ¬(Sj = Si ∧ Tj ⊆ Ti) for all j ̸= i.

Initially, the broadcaster is in some state β0 and all other nodes are in some other state
α0 ̸= β0. Define the initial configuration C0 by letting S0 = {β0} ∪ {α0}f(k)−1 and T0 = ∅.
Clearly, C0 is reachable and satisfies the above conditions.

Now consider any i ≥ 1 and suppose configurations C0, . . . , Ci−1 have already been
defined; we inductively define Ci as follows. Construct a time-varying graph G from two
static components: the complete graph Ki·f(k) on i · f(k) nodes (including the broadcaster)
and a path p0p1 · · · pf(k)−1 (Figure 3, top). In each round t ∈ {0, . . . , f(k) − 1}, these
components are connected by a single edge {x, pt}, where x ∈ Ki·f(k) is some fixed node. It
can be easily shown – as we did by induction in the proof of Theorem 1 – that the nodes in
Ki·f(k) send the same messages and transition to the same states in an execution of A on
G as they would in an execution of A on Ki·f(k) by itself. By definition, these executions
must stabilize on Ki·f(k) within f(k) rounds. At this point, let S′

i and T ′
i be the multisets of

states of the nodes in the path and complete graph, respectively.
If there is no j ∈ {0, . . . , i−1} such that Sj = S′

i and Tj ⊆ T ′
i , then we define configuration

Ci as Si = S′
i and Ti = T ′

i . Otherwise, if such a j does exist, we extend the execution of A
on G as follows (Figure 3, bottom). Arrange the nodes of Cj = Sj ∪ Tj as the complete graph
K(j+1)·f(k) and any f(k) nodes from T ′

i \ Tj as a path p0p1 · · · pf(k)−1; attach the remaining
nodes to the far end pf(k)−1 of the path. Then repeat the same process as before, executing
A for f(k) rounds when these components are connected in round t by a single edge {x, pt},
where x ∈ K(j+1)·f(k) is any fixed node. Configuration Cj is reachable by induction, and
again all nodes of K(j+1)·f(k) must send the same messages and transition to the same states
in the execution of A on G as they would in an execution of A on K(j+1)·f(k) alone. So, by
definition of f(k), all nodes in K(j+1)·f(k) must be idle after these f(k) rounds. Also, pf(k)−1
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remains idle throughout this extended execution, so the initially idle non-path nodes attached
to it are also idle at this time. Redefine S′

i as the f(k) path nodes and T ′
i as all other nodes,

which as we’ve argued will all be idle. Again, if there is no j ∈ {0, . . . , i − 1} such that
Sj = S′

i and Tj ⊆ T ′
i , then define configuration Ci as Si = S′

i and Ti = T ′
i ; otherwise, extend

the execution of A on G by another f(k) rounds as above.
Suppose for contradiction that the condition for defining Ci is never met and the execution

of A on G is extended forever. In every round of this execution, there is at least one idle
node. So consider the execution of A on a modified G containing an extra node that is
attached to some idle node in each round. This execution is identical to the one on G, but
the extra node would never leave its initial state α0. Thus, there must also be non-idle nodes
in every round, or else this execution stabilizes with uninformed nodes, contradicting the
correctness of A. But then this infinite execution contains non-idle nodes in every round,
contradicting the supposition that A eventually stabilizes. Thus, multisets S′

i and T ′
i with

the desired condition will be found in finite time. Clearly, Ci = Si ∪ Ti = S′
i ∪ T ′

i is reachable;
we conclude by showing it satisfies the required conditions.

1. Every intermediate S′
i is defined as the states of nodes in the path components which

always comprise f(k) nodes. Thus, |Si| = f(k).
2. The time-varying graph G is defined on |Ki·f(k)| + |p0p1 · · · pf(k)−1| = (i + 1) · f(k) nodes.

Since |Si| = f(k), we have |Ti| = i · f(k).
3. Consider any j ̸= i. If j < i then this condition must be met since the execution defining

Ci only stopped once it was true. Otherwise, if j > i, then by Condition 2, |Tj | > |Ti|
and thus Tj ̸⊆ Ti is trivially true.

Thus, the infinite sequence (Ci)∞
i=0 can be defined fulfilling all of the conditions above.

But this contradicts Lemma 6 stating that all such sequences are finite. ◀

5 A Logspace Algorithm for Stabilizing Termination

In this section, we shift our attention from impossibilities and lower bounds to an idle-start
algorithm called Countdown that solves broadcast with stabilizing termination in our
anonymous, dynamic setting. This algorithm uses O(log n) memory – which is not far from
the ω(1) lower bound of Theorem 7 – and stabilizes in O(n) rounds which is worst-case
asymptotically optimal.

At a high level, the Countdown algorithm (Algorithm 1) coordinates a sequence of
broadcast attempts, each lasting twice as many rounds as its predecessor until one succeeds.
To facilitate these attempts, nodes store two values: Current, the number of rounds remaining
in the current attempt; and Maximum, the total duration of the current attempt. In each
round, non-idle nodes involved in an ongoing attempt broadcast their Current and Maximum
values to their neighbors and then decrement Current. Idle nodes that were previously not
involved in the attempt but receive these messages will join in by setting their own Current
and Maximum values accordingly. This continues until messages are sent with Current = 0,
indicating the end of the current attempt. If any idle node receives such a message, it detects
that the broadcast should have gone on for longer. It responds by initiating a new broadcast
attempt whose duration is double the previous one. These attempts continue until some
attempt makes all nodes non-idle, at which point no node will initiate another attempt and
the algorithm will stabilize.

Before analyzing this algorithm’s correctness and complexity, we define some notation. Let
v.vart denote the value of variable var in the state of node v at time t (i.e., the start of round t).
In this notation, the Countdown algorithm initializes the broadcaster b with b.Current0 = 0
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Algorithm 1 Countdown for Node v.

Initialization. Set Current to 0 and Maximum to 1 if v is the broadcaster and both variables to
−1 otherwise.

Sending Messages.
1: if Current ̸= −1 then
2: Send: msg(Current, Maximum)

State Transitions.
3: if Current ̸= −1 then
4: Current← Current− 1
5: else if a message msg(c, m) was received then
6: if c = 0 then ▷ Initiate a new attempt.
7: Current← 2m

8: Maximum← 2m

9: else if c > 0 then ▷ Join the ongoing attempt.
10: Current← c− 1
11: Maximum← m

and b.Maximum0 = 1 and all other nodes v ̸= b with v.Current0 = v.Maximum0 = −1. Denote
the set of non-idle nodes in round t as St = {v ∈ V : v.Currentt ̸= −1}. We begin our
analysis by proving that all non-idle nodes share the same Current and Maximum values.

▶ Lemma 8. For all times t and any non-idle node v ∈ St, we have v.Currentt = ct and
v.Maximumt = mt, where c0 = 0, m0 = 1, and

(ct+1, mt+1) =
{

(2mt, 2mt) if ct = 0;
(ct − 1, mt) otherwise.

Proof. Argue by induction on t. Only the broadcaster b is initially non-idle, so c0 =
b.Current0 = 0 and m0 = b.Maximum0 = 1 by initialization. Now suppose the lemma holds
up to and including some time t ≥ 0 and let ct and mt be the unique values of v.Currentt

and v.Maximumt for all v ∈ St, respectively. Consider any node v ∈ St+1; if none exist, the
lemma holds trivially. We have two cases:

1. ct = 0. Suppose to the contrary that v ∈ St; i.e., v was also non-idle at time t. Then
v.Currentt = ct = 0. Thus, v must execute Line 4 in round t, yielding v.Currentt+1 = −1
and becoming idle by time t+1, a contradiction. So v was idle at time t but became non-idle
by time t + 1, meaning it must have received one or more messages from non-idle nodes in
round t. By Line 2 and the induction hypothesis, all of those messages are msg(ct = 0, mt).
So v must execute Lines 7–8 in round t, yielding v.Currentt+1 = v.Maximumt+1 = 2mt.
Our choice of v ∈ St+1 was arbitrary, so ct+1 = mt+1 = 2mt.

2. ct > 0. First suppose v ∈ St. Then v.Currentt = ct > 0, so v executes Line 4 in round t,
yielding v.Currentt+1 = ct − 1 and v.Maximumt+1 = mt as claimed. Now suppose v ̸∈ St.
To transition from idle to non-idle in round t, v must receive one or more messages from
non-idle nodes in round t. By Line 2, all of those messages are msg(ct > 0, mt). So v

must execute Lines 10–11, yielding v.Currentt+1 = ct − 1 and v.Maximumt+1 = mt. Our
choice of v ∈ St+1 was arbitrary, so ct+1 = ct − 1 and mt+1 = mt. ◀

Using the ct and mt values defined in Lemma 8, we next show that a broadcast attempt
lasting k rounds either informs all nodes and stabilizes or involves at least k + 1 non-idle
nodes before initiating a new attempt.
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▶ Lemma 9. If k := ct = mt > 0, then either (1) St+k = V and St+k+1 = ∅, or (2)
|St+k| ≥ k + 1 and ct+k+1 = mt+k+1 = 2k.

Proof. Consider any time t at which k := ct = mt > 0, the start of a new broadcast attempt
by the set of nodes St. First suppose that for some 0 ≤ i ≤ k, we have St+i = V ; i.e., all
nodes are non-idle. By Lemma 8, we have ct+i = ct − i. Since all nodes v are non-idle at time
t + i and thus have v.Currentt+i = ct+i = ct − i, they all execute Line 4 in round t + i by
decrementing v.Current. If i < k, then v.Currentt+i+1 = ct −i−1 ̸= −1, so all nodes remain
non-idle and the process repeats; otherwise, if i = k, then v.Currentt+i+1 = ct − k − 1 = −1.
This renders all nodes idle at time t + k + 1, so Case 1 has occurred.

Now suppose that St+i ̸= V for all 0 ≤ i ≤ k; i.e., there is at least one idle node
throughout the attempt. We argue by induction on 0 ≤ i ≤ k that |St+i| ≥ |St| + i; i.e., at
least one idle node becomes non-idle in each round. The i = 0 case holds trivially, so suppose
the claim holds up to and including some i < k. Since ct+i = ct − i = k − i by Lemma 8, any
node in St+i must remain non-idle until time t + i + ct+i = t + k. So |St+i+1| ≥ |St+i|. If
the induction hypothesis is in fact a strict inequality, we are done:

|St+i| > |St| + i ⇒ |St+i+1| ≥ |St+i| ≥ |St| + i + 1.

So suppose instead that |St+i| = |St| + i. There must exist non-idle nodes at time t + 1 since
ct+1 = ct − 1 > −1 by Lemma 8, and there must exist idle nodes at time t + 1 by supposition.
Thus, since the dynamic network is 1-interval connected, there must be some idle node
v ∈ V \ St+i that receives a message from a non-idle node in round t + 1, causing v to become
non-idle (Lines 7–8 or 10–11). By the induction hypothesis, |St+i+1| ≥ |St+i|+1 = |St|+i+1.

By this induction argument, we have |St+k| ≥ |St| + k ≥ k + 1. By Lemma 8, we have
that ct+k = ct − k = 0, and with another application of the same lemma, we conclude that
ct+k+1 = mt+k+1 = 2mt+k = 2mt = 2k. So Case 2 has occurred. ◀

Our algorithm’s correctness follows from the previous lemma and its time and space
complexities are obtained with straightforward counting arguments.

▶ Theorem 10. Countdown (Algorithm 1) correctly solves broadcast with stabilizing
termination from an idle start in O(n) rounds and O(log n) space for anonymous, synchronous,
1-interval connected dynamic networks.

Proof. By Lemma 8, we have c1 = m1 = 2, allowing us to apply Lemma 9. But suppose
to the contrary that this and all subsequent applications of the lemma result in Case 2 –
where a new attempt is initiated with double the duration – and not Case 1, where all nodes
are informed (St+k = V ) and the algorithm stabilizes (St+k+1 = ∅). Then there exists an
attempt of duration k ≥ n, which, by Lemma 9, ends with |St+k| ≥ k + 1 ≥ n + 1 non-idle
nodes. But there are only n nodes in the network, a contradiction. So Countdown must
inform all nodes and stabilize in finite time.

It remains to bound runtime and memory. Each time a new broadcast attempt is
initiated, the Maximum variable is doubled and the algorithm runs for another Maximum
rounds. As we already showed, once Maximum reaches or exceeds n, the subsequent attempt
will inform all nodes and stabilize. Thus, Maximum doubles at most ⌈log2 n⌉ times, meaning
Countdown stabilizes in at most

∑⌈log2 n⌉
i=0 2i = O(21+⌈log2 n⌉ − 1) = O(n) rounds. This

analysis also shows that the largest attainable Maximum value before its final doubling is
n − 1, so Maximum ≤ 2(n − 1) = O(n). Since −1 ≤ Current ≤ Maximum, we also have
Current = O(n), implying that Countdown has O(log n) space complexity. ◀
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6 Conclusion

This paper investigated what memory is necessary for anonymous, synchronous, 1-interval
connected dynamic networks to deterministically solve broadcast with some termination
conditions. We considered both termination detection where the broadcaster must eventually
declare that every node has been informed and stabilizing termination where nodes must
eventually stop sending messages. Combining our results with the established literature, we
now know the following about this problem:

Termination Detection. Regardless of memory, broadcast with termination detection is
impossible for idle-start algorithms (Theorem 1) and for non-idle-start algorithms when the
number of broadcasters is unknown (Theorem 2). Any (non-idle-start) algorithm solving
broadcast with termination detection must use Ω(log n) memory per node (Theorem 3).
The best known space complexity for this problem follows from Di Luna and Viglietta’s
history trees algorithm which uses O(n3 log n) memory in the worst case [16].
Stabilizing Termination. Any idle-start algorithm solving broadcast with stabilizing
termination must use ω(1) memory per node (Theorem 7). As a positive result, this
problem is solvable with logarithmic memory under standard synchrony: Countdown
is a O(log n) memory, linear time algorithm achieving stabilizing termination without
identifiers or knowledge of n (Theorem 10).

For stabilizing termination, our ω(1) memory bound holds only for idle-start algorithms
and our O(log n) memory Countdown algorithm happens to be idle-start. In the non-idle-
start regime where non-broadcaster nodes can send messages from their initial states, can we
obtain a sublogarithmic space algorithm? Can any lower bound be shown? The contradiction
at the heart of our lower bound technique for idle-start algorithms identified configurations
Ci that are reachable with or without an extra uninformed node. In the non-idle-start case,
however, this extra uninformed node may send new and unaccounted for messages and we
can no longer guarantee Ci will still be reached, requiring a different approach.

The Ω(log n) and O(n3 log n) memory bounds for termination detection leave open a
significant gap for further improvement. Our logarithmic lower bound shows that termination
detection requires enough memory to count to n, and indeed there is a straightforward
solution for termination detection if (an upper bound on) n can be obtained: simply wait
for n rounds after broadcasting information for the first time and then declare all nodes
have been informed. Can broadcast with termination detection be achieved without solving
exact counting? If not, what approaches could yield algorithms for exact counting that are
more space-efficient than history trees? Viglietta recently proposed the existence of logspace
counting algorithms as an open problem unlikely to be solved by history trees [37]; we are
unsure such algorithms exist at all, as we suspect our Ω(log n) bound can be improved.

Finally, we note that all impossibility results and lower bounds in this paper apply also
to any problem broadcast reduces to, such as exact counting. Thus, these results and any
future improvements shed important light on the requirements of nontrivial terminating
computation in anonymous dynamic networks.
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