Connectivity Labeling in Faulty Colored Graphs

Asaf Petruschka &

Weizmann Institute of Science, Rehovot, Israel
Shay Spair &
Weizmann Institute of Science, Rehovot, Israel

Elad Tzalik &

Weizmann Institute of Science, Rehovot, Israel

—— Abstract

Fault-tolerant connectivity labelings are schemes that, given an n-vertex graph G = (V, E) and a
parameter f, produce succinct yet informative labels for the elements of the graph. Given only the
labels of two vertices u, v and of the elements in a faulty-set F' with |F| < f, one can determine if
u, v are connected in G — F, the surviving graph after removing F'. For the edge or vertex faults
models, i.e., F C E or F C V, a sequence of recent work established schemes with poly(f,logn)-bit
labels for general graphs. This paper considers the color faults model, recently introduced in the
context of spanners [Petruschka, Sapir and Tzalik, ITCS ’24], which accounts for known correlations
between failures. Here, the edges (or vertices) of the input G are arbitrarily colored, and the faulty
elements in F' are colors; a failing color causes all edges (vertices) of that color to crash. While
treating color faults by naivly applying solutions for many failing edges or vertices is inefficient, the
known correlations could potentially be exploited to provide better solutions.

Our main contribution is settling the label length complexity for connectivity under one color
fault (f = 1). The existing implicit solution, by black-box application of the state-of-the-art scheme
for edge faults of [Dory and Parter, PODC ’21], might yield labels of Q(n) bits. We provide a
deterministic scheme with labels of O(y/n) bits in the worst case, and a matching lower bound.
Moreover, our scheme is universally optimal: even schemes tailored to handle only colorings of
one specific graph topology (i.e., may store the topology “for free”) cannot produce asymptotically
smaller labels. We characterize the optimal length by a new graph parameter bp(G) called the ball
packing number. We further extend our labeling approach to yield a routing scheme avoiding a single
forbidden color, with routing tables of size O(bp(G)) bits. We also consider the centralized setting,
and show an O(n)—space oracle, answering connectivity queries under one color fault in O(l) time.
Curiously, by our results, no oracle with such space can be evenly distributed as labels.

Turning to f > 2 color faults, we give a randomized labeling scheme with O~(n171/2f )-bit
labels, along with a lower bound of Q(nlfl/(f“)) bits. For f = 2, we make partial improvement
by providing labels of O(diam(G)+/n) bits, and show that this scheme is (nearly) optimal when
diam(G) = O(1).

Additionally, we present a general reduction from the above all-pairs formulation of fault-tolerant
connectivity labeling (in any fault model) to the single-source variant, which could also be applicable
for centralized oracles, streaming, or dynamic algorithms.
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1 Introduction

Labeling schemes are important distributed graph data structures with diverse applications
in graph algorithms and distributed computing, concerned with assigning the vertices of
a graph (and possibly also other elements, such as edges) with succinct yet informative
labels. Many real-life networks are often error-prone by nature, which motivates the study of
fault-tolerant graph structures and services. In a fault-tolerant connectivity labeling scheme,
we are given an n-vertex graph G = (V, E) and an integer f, and should assign short labels
to the elements of G, such that the following holds: For every pair of vertices u,v € V and
faulty-set F with |F| < f, one can determine if v and v are connected in G — F by merely
inspecting the labels of the elements in {u,v} U F. The main complexity measure is the
maximal label length (in bits), while construction and query time are secondary measures.

The concept of edge/vertex-fault-tolerant labeling, aka forbidden set labeling, was ex-
plicitly introduced by Courcelle and Twigg [9]. Earlier work on fault-tolerant connectivity
and distance labeling focused on graph families such as planar graphs and graphs with
bounded treewidth or doubling dimension [9, 8, 1, 2]. Up until recently, designing edge- or
vertex-fault-tolerant connectivity labels for general graphs remained fairly open. Dory and
Parter [10] were the first to construct randomized labeling schemes for connectivity under
f edge faults, where a query is answered correctly with high probability,’ with length of
O(min{f +logn,log® n}) bits. Tzumi, Emek, Wadayama and Masuzawa [21] derandomized
this construction, showing deterministic labels of O( f?) bits.2 Turning to f vertex faults,
Parter and Petruschka [32] designed connectivity labels for f < 2 with O(1) bits. Very
recently, Parter, Petruschka and Pettie [33] provided a randomized scheme for f vertex faults
with O(f?) bits and a derandomized version with O(f7) bits, along with a lower bound of
Q(f) bits. Another important research area which is closely related to fault-tolerant labeling
concerns the design of forbidden-set routing schemes, see e.g. [9, 1, 2, 10, 33]. (Further
background on such routing schemes is given in Section 1.1.1.)

In this work, we consider labeling schemes for connectivity under color faults, a model
that was very recently introduced in the context of graph spanners [34], which intuitively
accounts for known correlations between failures. In this model, the edges or vertices of the
input graph G are arbitrarily partitioned into classes, or equivalently, associated with colors,
and a set F' of f such color classes might fail. A failing color causes all edges (vertices) of
that color to crash.The surviving subgraph G — F is formed by deleting every edge? or vertex
with color from F. The scheme must assign labels to the vertices and to the colors of G,
so that a connectivity query (u,v, F') can be answered by inspecting only the labels of the
vertices u,v and of the colors in F'.

This new notion generalizes edge/vertex fault-tolerant schemes, that are obtained in the
special case when each edge or vertex has a unique color. However, in the general case, even
a single color fault may correspond to many and arbitrarily spread edge/vertex faults, which
poses a major challenge. Tackling this issue by naively applying the existing solutions for

! Throughout, the term with high probability (w.h.p.) stands for probability at least 1 — 1/n%, where
a > 0 is a constant that can be made arbitrarily large through increasing the relevant complexity
measure by a constant factor.

2 Throughout, the O(-) notation hides polylog(fn) factors.

3 In the edge-colored case we naturally allow multi-graphs where parallel edges may have different colors.
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many individual edge/vertex faults (i.e., by letting the label of a color store all labels given
to elements in its class) may result in very large labels of Q(n) bits or more, even when f = 1.
On a high level, this work shows that the correlation between the faulty edges/vertices,
predetermined by the colors, can be used to construct much better solutions.

Related Work on Colored Graphs. Faulty colored classes have been used to model Shared
Risk Resource Groups (SRRG) in optical telecommunication networks, multi-layered networks,
and various other practical contexts; see [7, 24, 40] and the references therein. Previous work
mainly focused on centralized algorithms for colored variants of classical graph problems
(and their hardness). A notable such problem is diverse routing, where the goal is to find
two (or more) color disjoint paths between two vertices [20, 12, 27]. Another is the colored
variant of minimum cut, known also as the hedge connectivity, where the objective is to
determine the minimum number of colors (aka hedges) whose removal disconnects the graph;
see e.g. [16, 39, 14].

A different line of work focuses on distances to or between color classes, and specifically
on (centralized) data structures that, given a query (v, ¢), report the closest c-colored vertex
to v in the graph, or the (approximate) distance from it [19, 5, 26, 15, 36, 13].

Remark on Color Lists. One might ask what happens if the correlated sets of failures
are allowed to have some “bounded” overlap. This can be modeled by color lists: every
vertex/edge has a small list of associated colors, and the failure of any one of them will cause
its crash. In some problems, the relevant complexity measures might be affected even when
lists only have some constant size, see e.g. [34]. However, all the results of the current paper
can be easily shown to hold with color lists of constant size, and we therefore focus only on
the disjoint color classes model.

1.1 Our Results

We initiate the study of fault-tolerant labeling schemes in colored graphs. All of our results
apply both to edge-colored and to vertex-colored (multi)-graphs.

1.1.1 Single Color Fault (f = 1)

For f =1, i.e., a single faulty color, we (nearly) settle the complexity of the problem, by
showing a simple construction of labels with length O(y/nlogn) bits, along with a matching
lower bound of Q(y/n) bits. In fact, our scheme provides a strong beyond worst-case guarantee:
for every given graph G, the length of the assigned labels is (nearly) the best possible, even
compared to schemes that are tailor-made to only handle colorings of the topology in G,or
equivalently, are allowed to store the uncolored topology “for free” in all the labels. (By the
topology of G, we mean the uncolored graph obtained from G by ignoring the colors. Slightly
abusing notation, we refer to this object as the graph topology G, rather than the colored
graph G.) Guarantees of this form, known as universal optimality, have sparked major
interest in the graph algorithms community, and particularly in recent years, following the
influential work of Haeupler, Wajc and Zuzic [18] in the distributed setting. On an intuitive
level, the universal optimality implies that even when restricting attention to any class of
graphs, e.g. planar graphs, our scheme performs asymptotically as well as the optimal scheme
for this specific class. We note that one cannot compete with a scheme that is optimal for
the given graph and its coloring (aka “instance optimal”), as such a tailor-made scheme may
store the entire colored graph “for free”, and the labels merely need to specify the query.
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DISC 2024



36:4

Connectivity Labeling in Faulty Colored Graphs

Our universally optimal labels are based on a new graph parameter called the ball packing
number, denoted by bp(G). When disregarding minor nuances by assuming G is connected,
bp(G) is the maximum integer r such that one can fit r disjoint balls of radius r in the
topology of G (see formal definition in Section 3.1). The ball packing number of an n-vertex
graph is always at most y/n, but often much smaller. For example, bp(G) is smaller than the
diameter of G. In Section 3, we show the following:

» Theorem 1 (f =1, informal). There is a connectivity labeling scheme for one color fault,
that for every n-vertex graph G, assigns O(bp(G)logn)-bit labels. Moreover, Q(bp(G))-bit
labels are necessary, even for labeling schemes tailor-made for the topology of G, i.e., where
the uncolored topology is given in addition to the query labels.

The lower bound in Theorem 1 is information-theoretic, obtained via communication
complexity. The upper bound is based on observing that (when G is connected) there is a
subset A of O(bp(G)) vertices which is O(bp(G))-ruling: every vertex in G has a path to A
of length O(bp(G)).

Routing Schemes. Building upon our labeling scheme, we additionally provide a routing
scheme for avoiding any single forbidden color. This is a natural extension of the forbidden-set
routing framework, initially introduced by [9] (see also [1, 2, 10, 33]), to the setting of colored
graphs. We refer the reader to [10] for an overview of forbidden-set routing, and related
settings. Such a routing scheme consists of two algorithms. The first is a preprocessing
(centralized) algorithm that computes routing tables to be stored at each vertex of G, and
labels for the vertices and the colors. The second is a distributed routing algorithm that
enables routing a message M from a source vertex s to a target vertex t avoiding edges of
color c. Initially, the labels of s,t, ¢ are found in the source s. Then, at each intermediate
node v in the route, v should use the information in its table, and in the (short) header of
the message, to determine where the message should be sent; formally, v should compute the
port number of the next edge to be taken from v (which must not be of color ¢). It may also
edit the header for future purposes. The main concern is minimizing the size of the tables
and labels, and even more so of the header (as it is communicated through the route). We
show:

» Theorem 2. There is a deterministic routing scheme for avoiding one forbidden color
such that, for a given colored n-vertex graph G, the following hold:

The routing tables stored at the vertices are all of size O(bp(G)logn) bits.

The labels assigned to the vertices and the colors are of size O(bp(G)logn) bits.

The header size required for routing a message is of O(logn) bits.

Another important concern is optimizing the stretch of the routing scheme, which is
the ratio between the length of the routing path and the length of the shortest s, path in
G — c¢. Unfortunately, our routing scheme does not provide good stretch guarantees, and
optimizing it is an interesting direction for future work. We note, however, that the need to
avoid edges of color ¢ by itself poses a nontrivial challenge, and black-box application of the
state-of-the-art routings schemes of Dory and Parter [10] for avoiding f = Q(n) individual
edges would yield large labels, tables and headers, and large stretch (all become Q(n)).

Centralized Oracles. We end our discussion for f = 1 by considering centralized oracles
(data structures) for connectivity under a single color fault. In this setting, one can utilize
centralization to improve on the naive approach of storing all labels. We note that this
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problem can be solved using existing O(n)-space and O(loglogn)-query time oracles for
nearest colored ancestor on trees [28, 15], yielding the same bounds for single color fault
connectivity oracles. Interestingly, our lower bound shows that oracles with such space
cannot be evenly distributed into labels.

1.1.2 f Color Faults

It has been widely noted that in fault-tolerant settings, handling even two faults may be
significantly more challenging than handling a single fault. Such phenomena appeared, e.g.,
in distance oracles [11], min-cut oracles [3], reachability oracles [6] and distance preservers
[29, 17, 30]. In our case, this is manifested in generalized upper and lower bounds on the
label length required to support f color faults, exhibiting a gap when f > 2; our upper
bound is roughly O(n1*1/2f) bits, while the lower bound is Q(n'~*/(f+1)) bits (both equal
O(y/n) when f =1).

» Theorem 3 (f > 2 upper bound, informal). There is a randomized labeling scheme for
connectivity under f color faults with label length of min{fnl_l/Qf,n} - polylog(fn) bits.

» Theorem 4 (f > 2 lower bound, informal). A labeling scheme for connectivity under f
color faults must have label length of Q(n'=Y D) bits for constant f, hence Q(n*—°M) bits

for f=w(1).

Curiously, in the seemingly unrelated problem of small-size fault-tolerant distance pre-
servers (FT-BFS) introduced by Parter and Peleg [31], there is a similar gap in the known
bounds for f > 3, of O(nz’l/zf) and Q(n?~1/U+1) edges [29, 4]. Notably, for the case of
f =2, Parter [29] provided a tight upper bound of O(n°/?), later simplified by Gupta and
Khan [17]. Revealing connections between FT-BFS structures and the labels problem of this
paper is an intriguing direction for future work.

Apart from the gap between the bounds, there are a few more noteworthy differences
from the case of a single color fault. First, the scheme of Theorem 3 is randomized, as
opposed to the deterministic scheme for f =1 (Theorem 1). Moreover, the construction is
based on different techniques, combining three main ingredients: (1) sparsification tools for
colored graphs [34], (2) the (randomized) edge fault-tolerant labeling scheme of [10], and
(3) a recursive approach of [32]. Second, the lower bound of Theorem 4 is ezistential (but
still information-theoretic): it relies on choosing a fixed “worst-case” graph topology, and
encoding information by coloring it and storing some of the resulting labels. We further
argue that this technique cannot yield a lower bound stronger than Q(nlfl/ (f +1)) bits. This
is due to the observation that a color whose label is not stored can be considered never faulty,
combined with the existence of efficient labeling schemes when the number of colors is small.

For the special case of two color faults, we provide another scheme, with label length of
O(D+/n) bits for graphs of diameter at most D.

» Theorem 5 (f = 2 upper bound, informal). There is a labeling scheme for connectivity
under two color faults with label length of O(D+/n) bits.

This beats the general scheme when D = O(n'/4~¢), and demonstrates that the existential
Q(n?/3) lower bound does not apply to graphs with diameter D = O(n'/%=¢). Further, this
scheme is existentially optimal (up to logarithmic factors) for graphs with D = O(1). We
hope this construction could serve as a stepping stone towards closing the current gap between
our bounds, and towards generalizing bp(G) for the case of f = 2. Table 1 summarizes our
main results on connectivity labeling under color faults.
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Table 1 A summary of our results on f color fault-tolerant connectivity labeling schemes. The
table shows the provided length bounds (in bits) for such schemes.

No. faults Upper bound Lower bound
f=1 O(bp(G)) = O(y/n) | Thm 1 | Q(bp(G)) (Q(y/n) in worst-case) | Thm 1
f—2 O(diiim(G)\/ﬁ) Thm 5 (/3
O(n3/4)
Thm 4
f — O(l) O(nl—l/Qf) Thm 3 Q(nl—l/(f+1))
f=w() O(n) Q')

Due to space limitations, the full discussion and formal proofs for f > 2 color faults are
deferred to the full version of the paper.

1.1.3 Equivalence Between All-Pairs and Single-Source Connectivity

In the single-source variant of fault-tolerant connectivity, given are an n-vertex graph G
with a designated source vertex s, and an integer f. It is then required to support queries of
the form (u, F'), where u € V and F is a faulty-set of size at most f, by reporting whether
u is connected to s in G — F. Here, and throughout this discussion, we do not care about
the type of faulty elements; these could be edges, vertices or colors. For concreteness, we
focus our discussion on labeling schemes, although it applies more generally to other models,
e.g., centralized oracles, streaming, and dynamic algorithms. Clearly, every labeling scheme
for all-pairs fault-tolerant connectivity can be transformed into a single-source variant by
including s’s label in all other labels, which at most doubles the label length. We consider
the converse direction, and show that a single-source scheme can be used as a black-box to
obtain an all-pairs scheme with only a small overhead in length.

» Theorem 6 (Single-source reduction, informal). Suppose there is a single-source f fault-
tolerant connectivity labeling scheme using labels of at most b(n, f) bits. Then, there is an
all-pairs [ fault-tolerant connectivity labeling scheme with O(b(n + 1, f))-bit labels.

The reduction is based on the following idea. Suppose we add a new source vertex s to G,
and include each edge from s to the other vertices independently with probability p. Given a
query (u,v, F'), if u,v are originally connected in G — F', they must agree on connectivity
to the new source s, regardless of p. However, if u,v are disconnected in G — F, and p is
such that 1/p is roughly the size of u’s connected component in G — F', then with constant
probability, u and v will disagree on connectivity to s. The full proof appears in Section 4.

1.2 Discussion and Future Directions

While our work provides an essentially complete picture for the case of a single color fault, our

results for f > 2 color faults still leave open many interesting directions for future research:
Can we close the gap between the O(nl_l/zf) and Q(n'~1/U*1) bounds? Concretely, is
there a labeling scheme for connectivity under f = 2 color faults with labels of O(n?/?3)
bits? Can our solution for low-diameter graphs be utilized to obtain such a scheme?
Is there a graph parameter that generalizes bp(G) and characterizes the length of a
universally optimal labeling scheme for f > 27 Notably, even very simple graphs with
small diameter and ball packing number admit a lower bound of Q(+/n) bits for f = 2
(as shown in the full version).
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Can we provide non-trivial centralized oracles for connectivity under f > 2 color faults?
Are there routing schemes for avoiding f > 2 forbidden colors with small header size?
Our labeling scheme for f > 2 could be extended to such a routing scheme, but with a
large header size of O(n'~1/2") bits.
Another intriguing direction is going beyond connectivity queries; a natural goal is to
additionally obtain approximate distances, which is open even for f = 1. This problem is
closely related to providing forbidden color routing schemes with good stretch guarantees.

2 Preliminaries

Colored Graphs. Throughout, we denote the given input graph by G, which is an undirected
graph with n vertices V = V(G), and m edges E = E(G). The graph G may be a multi-graph,
i.e., there may be several different edges with the same endpoints (parallel edges). The edges
or the vertices of G are each given a color from a set of C possible colors. The coloring is
arbitrary; there are no “legality” restrictions (e.g., edges sharing an endpoint may have the
same color). Without loss of generality, we sometimes assume that C' < max{m,n}, and that
the set of colors is [C]. For a (faulty) subset of colors F, we denote by G — F' the subgraph
of G where all edges (or vertices) with color from F are deleted. When F is a singleton
F = {c}, we use the shorthand G — c.

In some cases, we refer only to the topology of the graph, and ignore the coloring. Put
differently, we sometimes consider the family of inputs given by all different colorings of
a fixed graph. This object is referred to as the graph topology G, rather than the graph
G. We denote by distg(u,v) the number of edges in a u-v shortest path (and oo if no
such path exist). For a non-empty A C V, the distance from v € V to A is defined as
distg(u, A) = min{distg(u,a) | a € A}.

Our presentation focuses, somewhat arbitrarily, on the edge-colored case; throughout, this
case is assumed to hold unless we explicitly state otherwise. This is justified by the following
discussion.

Vertex vs. Edge Colorings. An edge-colored instance can be reduced to a vertex-colored
one, and vice versa, by subdividing each edge* e = {u, v} into two edges {u,x.} and {x.,v},
where z. is a new vertex. If the original instance has edge colors, we give the new instance
vertex colors, by coloring each new vertex z. with the original color of the edge e. (The
original vertices get a new “never-failing” color.) For the other direction, we color each of
{u,z.} and {z.,v} by the color of the original vertex incident to it, i.e., {u,z.} gets u’s
color, and {z., v} gets v’s color.

These easy reductions increase the number of vertices to n 4+ m, which a prioi might seem
problematic. However, as shown by [34], given any fixed (constant) bound f on the number
of faulty colors, one can replace a given input instance (either vertex- or edge-colored) by
an equivalent sparse subgraph with only O(n) edges, that has the same connectivity as the
original graph under any set of at most f color faults. So, by sparsifying before applying the
reduction, the number of vertices increases only to O(n). Moreover, all our results translate
rather seamlessly between the edge-colored and the vertex-colored cases, even without the
general reductions presented above (we explain this separately for each result).

4 Throughout, we slightly abuse notation and write e = {u,v} to say that e has endpoints u, v, even
though there might be several different edges with these endpoints.
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Vertex and Component IDs. We assume w.l.o.g. that the vertices have unique O(logn)-bit
identifiers from [n], where id(v) denotes the identifier of v € V. Using these, we define
identifiers for connected components in subgraphs of G, as follows. When G’ is a subgraph
of G and v € V(G’), we define cid(v, G’) = min{id(u) | u,v connected in G'}. This ensures
cid(u, G") = cid(v, G") iff u,v are in the same connected component in G’. Therefore, if one
can compute cid(v, G — F) from the labels of v, F, then, using the same labels, one can
answer connectivity queries subject to faults.

Indexing Lower Bound. Our lower bounds rely on the classic indexing lower bound from
communication complexity. In the one-way communication problem INDEX(N), Alice holds
a string z € {0,1}", and Bob holds an index i € [0, N — 1]. The goal is for Alice to
send a message to Bob, such that Bob can recover z;, the i-th bit of x. Crucially, the
communication is one-way; Bob cannot send any message to Alice. The protocols are allowed
to be randomized, in which case both Alice and Bob have access to a public random string.
The following lower bound on the number of bits Alice is required to send is well-known (see
[25, 23, 22]).

» Lemma 7 (Indexing Lower Bound [23]). Every one-way communication protocol (even with
shared randomness) for INDEX(N) must use Q(N) bits of communication.

3 Single Color Fault

In this section, we study the connectivity problem under one color fault. That is, given
two vertices u, v and a faulty color ¢, one should be able to determine if u, v are connected
in G — c¢. In Sections 3.1 and 3.2 we focus on labeling schemes, and provide universally
optimal upper and lower bounds. Section 3.3 then discusses routing in the presence of a
single forbidden color. In Section 3.5 we change gears and provide centralized oracles for the
problem.

3.1 Our Labeling Scheme and the Ball Packing Number

We first show a scheme that works when G is connected. Connectivity cannot be assumed
without losing generality, because of the color labels: A color gets only one label, which
should support connectivity queries in every connected component of the input. Later, in
Appendix A, we show how to remove this assumption. Consider the following procedure:
starting from an arbitrary vertex ag, iteratively choose a vertex a; which satisfies

diStG(aia {aOa ceey ai—l}) = 7:7

until no such vertex exists. Suppose the procedure halts at the k-th iteration, with the set of
chosen vertices A = {ag,...,ax—1}. Then every vertex v € V has distance less than k from
A. We use A to construct O(klogn)-bit labels, as follows.
Label L(c) of color ¢ € [C]: For every a € A, store cid(a, G — ¢).
Label L(v) of vertex v € V: Let P(v) be a shortest path connecting v to A, and let
a(v) be its endpoint in A. For every color ¢ present in P(v), store cid(v,G — ¢). Also,
store id(a(v)).
Answering queries is straightforward as given L(v) and L(c), one can readily compute
cid(v, G — ¢): If the color ¢ appears on the path P(v), then cid(v,G — ¢) is found in L(v).
Otherwise, P(v) connects between v and a(v) in G — ¢, hence cid(v, G — ¢) = cid(a(v), G — ¢),
and the latter is stored in L(c).
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The labels have length of O(y/nlogn) bits, as follows. Consider the A-vertices chosen
at iteration [k/2] or later. By construction, each of these |k/2] vertices is at distance at
least [k/2] from all others. Hence, the balls of radius |k/4] (in the metric induced by G)
centered at these vertices are disjoint, and each such ball contains at least [k/4] vertices.

Thus, [k/2] - |k/4] < n,so k= O(y/n).

The length of the labels assigned by this simple scheme turns out to be not only existentially
optimal, but also universally optimal (both up to a factor of logn). By existential optimality,
we mean that every labeling scheme for connectivity under one color fault must have Q(y/n)-
bit labels on some worst-case colored graph G. The stronger universal optimality means that
for every graph topology G, every such labeling scheme, even tailor-made for GG, must assign
Q(k)-bit labels (for some coloring of G).

The Ball-Packing Number. To prove the aforementioned universal optimality of our scheme,
we introduce a graph parameter called the ball-packing number. As the name suggests, this
parameter concerns packing disjoint balls in the metric induced by the graph topology G. Its
relation to faulty-color connectivity is hinted by the previous analysis using a “ball packing
argument” to obtain the O(y/n) bound. We next give the formal definitions and some
immediate observations.

» Definition 8 (Proper r-ball). For every integer r > 0, the r-ball in G centered at v € V(G),
denoted Bg(v,71), consists of all vertices of distance at most v from v. That is,

Ba(v,r) ={u € V(GQ) | distg(v,u) < r}.

The r-ball Bg(v,r) is called proper if there exists uw € Bg(v,r) that realizes the radius, i.e.,
distg(u,v) = r. Note that if the radius v from v is not realized, then there exists r' < r
such that the radius 1’ is realized, and Bg(v,r") = Ba(v,r) as sets of vertices. So, whether
B(v,r) is proper depends not only on the set of vertices in this ball, but also on the specified
parameter r.

» Observation 9. If r < distg(u,v) < oo, then Bg(u,r) and Bg(v,r) are proper r-balls.

» Definition 10 (Ball-packing number). The ball-packing number of G, denoted bp(G), is
the maximum integer r such that there exist at least r vertex-disjoint proper r-balls in G.

» Observation 11. (i) For every n-vertex graph G, bp(G) < \/n. (ii) For some graphs G,
we also have bp(G) = Q(y/n) (e.g., when G is a path).

A Ball-Packing Upper Bound. Our length analysis for the above scheme in fact showed
the existence of at least |k/2] disjoint and proper |k/4|-balls, implying that k = O(bp(G))
by Definition 10. Minor adaptations to this scheme to handle several connected components
in G yields the following theorem, whose proof is deferred to Appendix A.

» Theorem 12. There is a deterministic labeling scheme for connectivity under one color
fault that, when given as input an n-vertex graph G, assigns labels of length O(bp(G)logn)
bits. The query time is O(1) (in the RAM model).

» Remark 13. By Observation 11(i), the label length is always bounded by O(y/nlogn) bits.
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3.2 A Ball-Packing Lower Bound
We now show an (bp(G)) bound on the maximal label length.

» Theorem 14. Let G be a graph topology. Suppose there is a (possibly randomized) labeling
scheme for connectivity under one color fault, that assigns labels of length at most b bits for
every coloring of G. Then b = Q(bp(G)).

» Remark 15. By the above theorem and Observation 11(ii), every labeling scheme for all
topologies must assign Q(y/n)-bit labels on some input, which proves Theorem 4 for the
special case f = 1.

Proof of Theorem 14. Denote r = bp(G). The proof uses the labeling scheme and the graph
topology G to construct a communication protocol for INDEX(r?). Let x = zgxy - - - x,2_; be
the input string given to Alice, where each z; € {0,1}. Let i* be the index given to Bob,
where 0 < i* <72 — 1. On a high level, the communication protocol works as follows. Both
Alice and Bob know the (uncolored) graph topology G in advance, as part of the protocol.
Alice colors the edges of her copy of G according to her input x, and applies the labeling
scheme to compute labels for the vertices and colors. She then sends O(r) such labels to
Bob, and he recovers x;= by using the labels to answer a connectivity query in the colored
graph. As the total number of sent bits is O(b - r), it follows by Lemma 7 that b-r = Q(r?),
and hence b = Q(r) = Q(bp(G)). The rest of this proof is devoted to the full description of
the protocol.

In order to color G, Alice does the following. She uses the color palette {0,1,...,7—1}U
{L}, where the symbol L is used instead of r to stress that L is a special never failing color
in the protocol. Let vy, vy ...,v._1 be centers of r disjoint proper r-balls in G, which exist
by Definition 10 of Ball-Packing, and since r = bp(G). For every k,l € [0,r), define

Ey o {{u, w} € E | distg (v, w) =l and distg (vy, w) =1+ 1}.

In other words, Ej; is the set of edges connecting layers [ and [ + 1 of the k-th ball B(vg, 7).
As the layers in a ball are disjoint, and the balls themselves are disjoint, the sets {Ey ;}x; are
mutually disjoint. Alice colors these edge-sets by the following rule: For every i € [0,72 — 1],
she decomposes it as ¢ = kr + [ with [,k € [0,r). If 2; = 1, the edges in Ej; get the color
l. Otherwise, when x; = 0, these edges get the null-color L. Every additional edge in G,
outside of the sets {Ej ;}., is also colored by L. The purpose of this coloring is to ensure
the following property, for k,1 € [0,7) and ¢ = kr + I: If 2; = 0, then (the induced graph
on) Bg(vg,r) does not contain any l-colored edges and its vertices are connected in G — .
However, if x; = 1, then E} ; is colored by [, hence in G — [, vj, is disconnected from every u
for which distg(u,vg) > 1.

Next, we describe the message sent by Alice. For 0 < k < r — 1, let ux € V with
distg (ug,vg) = 7, which exists by Definition 8, as Bg(vg,r) is a proper r-ball. Alice
applies the labeling scheme on the colored GG, and sends to Bob the labels of the vertices
VOy«vvsUp_1,Ug,-..,Ur_1, and of the colors 0,...,r — 1. This amounts to 3r labels.

Finally, we describe Bob’s strategy. He decomposes i* as i* = k*r 4 [* with k*,1* € [0,r),
and uses the labels of vg«, ug~,* to query the connectivity of vg« and ug« in G — [*. If the
answer is disconnected, Bob determines that x; = 1, and if it is connected, he determines
that x;« = 0. By the previously described property of the coloring, Bob indeed recovers z;«
correctly. Thus, this protocol solves INDEX(72), which concludes the proof.

This proof extends quite easily to vertex-colored graphs; Alice can color the vertices in
the [-th layer of B(vy,r) instead of the edges Ej ;. <
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3.3 Forbidden Color Routing

We next consider designing routing schemes with a forbidden color, with our goal being to
prove Theorem 2 (see Section 1.1.1 for definitions and statement).

For the sake of simplicity, we assume that when c is the color to be avoided, the graph
G — c is connected. (In particular, this also implies that G is connected.) Intuitively, this
assumption is reasonable as we cannot route between different connected components of
G — ¢. To check if the routing is even possible (i.e., if s and ¢ are in the same connected
component), we can use the connectivity labels of Theorem 12 at the beginning of the
procedure. Technically, this assumption can be easily removed, at the cost of introducing
some additional clutter.

3.3.1 Basic Tools

We start with some basic building blocks on which our scheme is used. First, we crucially use
the existence of the set A constructed in the labeling procedure of Section 3.1. The following
lemma summarizes its critical properties:

» Lemma 16. There is a vertex set A C 'V such that |A| = O(bp(G)), and every vertex
v €V has distg(v, A) = O(bp(G)).

Next, we use (in a black-box manner) a standard building block in many routing schemes:
the Thorup-Zwick tree routing scheme [35]. Its properties are summarized in the following
lemma:

» Lemma 17 (Tree Routing [35]). Let T be an n-vertex tree. One can assign each vertex
v € V(T) a routing table Ry (v) and a destination label Lz (v) with respect to the tree T,
both of O(logn) bits. For any two vertices u,v € V(T), given Rr(u) and Lr(v), one can
find the port number of the T-edge from u that heads in the direction of v in T.

We now define several trees that are crucial for our scheme.

First, we construct a specific spanning tree T' of G, designed so that the V-to-A shortest
paths in G are tree paths in T'. Recall that for every v € V', P(v) is a shortest path connecting
v to A, and a(v) is the A-endpoint of this path (see the beginning of Section 3.1). We choose
the paths P(v) consistently, so that if vertex u appears on P(v), then P(u) is a subpath of

P(v). This ensures that the union of the paths | J, oy P(v) is a forest. The tree T is created

by connecting the parts of this forest by arbitrary edges. We root T' at an arbitrary vertex r.

After the failure of color ¢, the tree T breaks into fragments (the connected components
of T'— ¢). We define the recovery tree of color ¢, denoted T, as a spanning tree of G — ¢
obtained by connecting the fragments of 7' — ¢ via additional edges of G — ¢. These edges are
called the recovery edges of T,, and the fragments of T' — ¢ are also called fragments of 7.

For u,v € V and color ¢, we denote e(u, v, c) as the first recovery edge appearing in the

u-to-v path in T, (when such exists). Note that we treat this path as directed from u to v.

Accordingly, we think of e(u, v, c) as a directed edge (x,y) where its first vertex x is closer to
u, and its second vertex y is closer to v. Thus, e(u,v,c) and e(v,u, c) may refer to the same
edge, but in opposite directions. We will use a basic data block denoted FirstRecEdge(u, v, ¢)
storing the following information regarding e(u, v, ¢):

The port number of e(u, v, ¢), from its first vertex z to its second vertex y.

The tree-routing label w.r.t. T of the first vertex x, i.e. Ly(x).

A Boolean indicating whether the second vertex y and v lie in the same fragment of T — c.
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Note that FirstRecEdge(u, v, c) consists of O(logn) bits.
Finally, we classify the fragments of a recovery tree T, (and of T — ¢) into two types:
A-fragments: fragments that contain at least one vertex from A.
B-fragments: fragments that are disjoint from A.

Our construction of T' ensures the following property:

» Lemma 18. For every color ¢, if vertex v € V is in a B-fragment of T — ¢, then ¢ € P(v),
i.e., the color ¢ appears on the path P(v).

Proof. By construction, the path P(v) is a tree path in T connecting v to some a € A. As v
is in a B-fragment of T — ¢, this path cannot survive in T — ¢, hence ¢ appears on it. <

3.4 Construction of Routing Tables and Labels

We now formally describe the construction of the tables and labels of our scheme, by
Algorithms 1-3. An overview of how these are used to route messages, which provides the
intuition behind their construction, is provided in the next Section 3.4.1. At first read, it
may be beneficial to skip ahead and start with the overview, while referring to the current
section to see how the information storage described there is realized formally.

Algorithm 1 Creating the table R(v) of vertex v.

1. store Rr(v)

2: store port number of the edge from v to its parent in T’
3: ¢(v) + color of edge from v to its parent in T > undefined if v = r
4: store c(v)

5: for each vertex a € A do
6 store FirstRecEdge(v, a, c(v))
7

8

: for each color ¢ € P(v) do
store Rr, (v)

Algorithm 2 Creating the label L(v) of vertex v.

store L (v)

store a(v), the A-endpoint of P(v)

: for each color ¢ € P(v) do

a(v, ¢) < an A-vertex in the nearest A-fragment to v in 7,
store FirstRecEdge(a(v, ¢), v, ¢)

store Lt (v)

@ T W

Algorithm 3 Creating the label L(c) of color c.

1: for each vertex a € A do
2: store FirstRecEdge(r, a, )

Size Analysis. It is easily verified that each store instruction in Algorithms 1-3 adds
O(logn) bits of storage. In all of these algorithms, the number of such instructions is
O(]P(v)| + |A]), which is O(bp(G)) by Lemma 16. Hence, the total size of any R(v), L(v) or
L(c) is O(bp(G) logn) bits.
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3.4.1 Overview of the Routing Scheme

We are now ready to present our forbidden color routing scheme. Here, we give an overview

which conveys the main technical ideas. The formal details are provided in Appendix B.

Our scheme is best described via two special cases; in the first case, ¢ is in an A-fragment,
and in the second case, the s-to-t path in T, is only via B-fragments. These two cases are
combined to obtain the full routing scheme, essentially by first routing to the A-fragment
that is nearest to ¢ in T, and then routing from that A-fragment to ¢ (crucially, this route
does not contain A-fragments).

First Case: t is in an A-fragment. Suppose an even stronger assumption, that we are
actually given a vertex a* € A that is in the same fragment as t. We will resolve this
assumption only at the wrap-up of this section. The general strategy is to try and follow the
s-to-t path in the recovery tree T,. This path is of the form PjoejoPyoeq0---0ey0 Py, where
each P; is a path in a fragment X; of T — ¢, and the e; edges are recovery edges connecting
between fragments, so that X, is the fragment of ¢ in 7' — ¢. Rather than following this path
directly, our goal will be to route from one fragment to the next, through the corresponding
recovery edge.

As there are only O(bp(G)) A-fragments, every v € V can store O(logn) bits for each
A-fragment. However, the A-fragments depend on the failing color, so the routing table
of v cannot store said information for every color. To overcome this obstacle, note that in
every fragment in T — ¢ (besides the one containing the root r), the root of the fragment
is connected to its parent via a c-colored edge. We leverage this property, and let the root
v of every fragment in T — ¢ store, for every a € A, the first recovery edge e(v, a,c) on the
path from v to @ in T,. Thus, when reaching the fragment X; of T'— ¢, we first go up as
far as possible, until we hit the root of X;. In the general case, this is a vertex v; such that
the edge to its parent is of color ¢. Therefore, v; stores in its table the next recovery edge
e; = e(v;,a*,c) we aim to traverse. The special case of v; = r is resolved using the color
labels. The color ¢ stores, for every a € A, the first recovery edge e(r, a, ¢); at the start of the

routing procedure, s extracts the information regarding e(r, a*, ¢) and writes it in the header.

So, we discover e; in v;, and next we use the Thorup-Zwick routing of Lemma 17 on T’
to get to the first endpoint of e;. The path leading us to this endpoint is fault-free (it is
contained in the fragment X;). Then, we traverse e;, and continue in the same manner in
the next fragment X 1.

Once we reach the A-fragment that contains a* and ¢, we again use the Thorup-Zwick
routing of Lemma 17 on T'. For that we also need Ly (¢), which s can learn from the label of
t and write in the header at the beginning of the procedure.

Second Case: the s-to-t path in T is only via B-fragments. As every vertex v in the
s-to-t path in T, is in a B-fragment of T'— ¢, by Lemma 18, ¢ € P(v). Thus, v can store the
relevant tree-routing table Ryp (v). Essentially, every v has to store such routing table for
every color in P(v). Also, since ¢ € P(v), t can store in its label L(t) the tree-routing label
Lt (t), and the latter can be extracted by s and placed on the header of the message at the
beginning of the procedure. Hence, we can simply route the message using Thorup-Zwick
routing scheme of Lemma 17 on 7.

Putting It Together. We now wrap-up the full routing procedure. If ¢ ¢ P(t), then t is

connected to a(t), and we get the first case with a* = a(t), which can be stored in ¢’s label.

Thus, suppose ¢ € P(t). Since |P(t)| = O(bp(G)), the label of ¢t can store O(logn) bits for
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every color on P(t), and specifically for the color ¢ of interest. If ¢ is in an A-fragment in
T — ¢, then t can pick an arbitrary A-vertex in its fragment as a*, and again we reduce to
the first case. Suppose t is in a B-fragment in 7' — c. In this case, ¢ sets a* to be an A-vertex
from the nearest A-fragment to ¢ in T,.. The label of ¢t can store a* and the first recovery
edge from a* towards ¢ (i.e., e(a*,t,c)) At the beginning of the procedure, s can find the
information regarding a* and e(a*,t, ¢) in t’s label, and write it on the message header. Now,
routing from s to the fragment of a* is by done by the first case, traversing this fragment
towards e(a*,t, c) is done using Thorup-Zwick tree-routing on T, and after taking this edge,
we can route the message to ¢t according to the second case.

3.5 Centralized Oracles and Nearest Colored Ancestors

In the centralized setting of oracles for connectivity under one color fault, the objective
is to preprocess the colored graph G into a low-space centralized data structure (oracle)
that, when queried with (the names/ids of) two vertices u,v € V and a color ¢, can quickly
report if w and v are connected in G — ¢. The labeling scheme of Theorem 12 implies such a
data structure with O(n!-) space and O(1) query time.5 (The bounds for centralized data
structures are in the standard RAM model with ©(log n)-bit words.) By the lower bound of
Theorem 14, such a data structure with space o(n'->) cannot be “evenly distributed” into
labels.

However, utilizing centralization, we can achieve O(n) space with only O(loglogn) query
time. This is obtained by a reduction to the nearest colored ancestor problem, studied by
Muthukrishnan and Miiller [28] and by Gawrychowski, Landau, Mozes and Weimann [15].
They showed that a rooted n-vertex forest with colored vertices can be processed into an
O(n)-space data structure, that given a vertex v and a color ¢, returns the nearest c-colored
ancestor of v (or reports that none exist) in O(loglogn) time. The reduction is as follows.
Choose a maximal spanning forest T" for G, and root each tree of the forest in the vertex with
minimum id. For each vertex uw € V', assign it with the color d of the edge connecting w to its
parent in 7. Additionally, store cid(u, G — d) in the vertex u. (The roots get a null-color and
store their ids, which are also their cids in every subgraph of G.) Now, construct a nearest
color ancestor data structure for 7" as in [28, 15]. Given a query v € V and color ¢, we can
find the nearest c-colored ancestor w of v in O(loglogn) time. As w is nearest, the T-path
from v to w in T does not contain c-colored edges, implying that cid(v, G —¢) = cid(w, G —¢),
and the latter is stored at w. (If no such c-colored ancestor exists, take w as the root,
and proceed similarly.) Given u,v € V and color ¢, apply the above procedure twice, and
determine the connectivity of u,v in G — ¢ by comparing their cids, within O(loglogn) time.
We therefore get:

» Theorem 19. Fuvery colored n-vertex graph G can be processed into an O(n)-space central-
ized oracle that given a query of u,v € V and color ¢, reports if u,v are connected in G — ¢
in O(loglogn) time.

The reduction raises an alternative approach for constructing connectivity labels for one
color fault, via providing a labeling scheme for the nearest colored ancestor problem. In
Appendix C we show that indeed, such a scheme with O(y/n)-bit labels exists.

5 The data structure stores all vertex labels, and the labels of all colors that appear in some fixed maximal
spanning forest 7' of G. We can ignore all other colors, as their failure does not change the connectivity

in G.
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4 Reduction from All-Pairs to Single-Source

In the single-source variant of fault-tolerant connectivity, the input graph G comes with a
designated source vertex s. The queries to be supported are of the form (u, F'), where u € V
and F' is a faulty set of size at most f. It is required to report if u is connected to the source
s in G — F. The following result shows that this variant is equivalent to the all-pairs variant,
up to logn factors. The result holds whether the faults are edges, vertices, or colors, hence
we do not specify the type of faults.

» Theorem 20. Let f > 1. Suppose there is a (possibly randomized) single-source f fault-
tolerant connectivity labeling scheme that assigns labels of at most b(n, f) bits on every
n-vertex graph. Then, there is a randomized all-pairs f fault-tolerant connectivity labeling
scheme that assigns labels of length O(b(n + 1, f) - log;2 n) bits on every n-vertex graph.

Proof.

Labeling. Foreachi,jwith1l <4 < [aln(n)/In(0.9)],1 < j < [log, n]+2 we independently
construct a graph Gj; as follows: Start with G, add a new vertex s;;, and independently for
each v € V, add a new edge connecting s;; to v with probability 277, The vertex s;5 and the
new edges are treated as non-failing. That is, in case of color faults, they get a null-color L
that does not appear in G. For each element (vertex/edge/color) x of G, its label L(x) is the
concatenation of all L;;(z), where the L;;(-) are the labels given by the single-source scheme
to the instance G;; with designated source s;;. The claimed length bound is immediate.

Answering queries. Let u,w € V, and let F' be a fault-set of size at most f. Given
L(u), L(w) and {L(x) | € F'}, we should determine if u,w are connected in G — F. To this
end, for each ¢, j, we use the L;;(-) labels of u, F' to determine if u is connected to s;; in G,
and do the same with w instead of u. If the answers are always identical for v and w, we
output connected. Otherwise, we output disconnected.

Analysis. We have made only O(log2 n) queries using the single-source scheme, so, with
high probability, all of these are answered correctly. Assume this from now on.

If u,w are connected in G — F', then this is also true for all G;; — F', so they must agree
on the connectivity to s;; in this graph. Hence, in this case, the answers for v and w are
always identical, and we correctly output connected.

Suppose now that v and w are disconnected in G — F'. Let U be the set of vertices in u’s
connected component in G — F. Define W analogously for w. Without loss of generality,
assume |U| < |W/|. Let j be such that 2972 < |U| < 2971, Let N[(j) be the number of edges

between s;; and U in G;;, and define N&i,) similarly. By Markov’s inequality,

Pr[Ny =0 >1-E[NP]=1-|U]-277 >1-2"1.277 =1/2.

On the other hand,

o
PSS 0.

PN > 1) =1-(1-27)"">1-(1-279)
Since U and W are disjoint, N[(Ji ) and Né[i/) are independent random variables. Hence, with
probability at least 0.1, the source s;; is connected to w but not to v in G;; — F', and the
answers for u and w given by the L;;(-)-labels are different. As the graphs {G;;}; are formed
independently, the probability there exists an ¢ for which w is connected to s;; and u is
disconnected from s;; is at least 1 — (0.9)* 7/ (09 = 1 1 /p* In this case, the output is
disconnected, as required. <
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Single Color Fault: Proof of Theorem 12

Labeling. The labeling procedure is presented as Algorithm 4.

Algorithm 4 Labeling for one color fault.

Require: Colored graph G.
Ensure: Labels L(v) for each vertex v € V, and L(c) for each color c.

— =
_= O

Ap «{a € V' ]id(a) = cid(a, G)} > vertices w/ min id in each connected component of G
A0
11
while there exists vertex a; € V with distg(a;, Ao U A) =i do
1+ i+ 1
for each vertex v € V' do > create the label L(v)
a(v) < a closest vertex to v from AgU A in G
P(v) < a shortest v-to-a(v) path in G
store in L(v) the id of a(v), id(a(v))
store in L(v) a dictionary that maps key d to value cid(v, G — d), for every color d
on P(v)

. for each color ¢ do > create the label L(c)

store in L(c) the name of the color ¢
store in L(c) a dictionary that maps key id(a) to value cid(a, G — ¢), for each a € A

Answering queries. As before, it suffices to show that one can report cid(v, G — ¢) merely
from the labels L(v) and L(c). This is done as follows. If the key ¢ appears in the dictionary of
L(v), then cid(v, G —c¢) is the corresponding value, and we are done. Otherwise, P(v) does not
contain the color ¢, so it connects v to a(v) in G—e¢, and therefore cid(v, G—c¢) = cid(a(v), G—c).
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Recall that a(v) € Ag U A. If the key id(a(v)) appears in the dictionary of L(c), then
cid(a(v), G — ¢) is the corresponding value, and we are done. Otherwise, it must be that
a(v) € Ap. Recall that Aj contains vertices having minimum id in their connected component
in G. This implies that cid(a(v),G — ¢) = id(a(v)), and the latter is stored in L(v).

Length analysis. Let k be the halting iteration of the while loop in Algorithm 4 (line 4).

Then |A| = k — 1, so the length of each color label is O(klogn) bits. Also, by the while
condition, each vertex v € V has distance less than &k from Ag U A in G, so P(v) contains less
than k edges, hence also less than k colors. Therefore, the length of L(v) is also O(klogn)
bits.

We now prove that k = O(bp(G)). Let A’ = {a; | i > [k/2]} be the “second half” of
chosen A-vertices. Note that |A’| > k/2. For each i = 1,...k — 1, denote by A; the state of
set A right after the i-th iteration. If a;,a; € A" with i > j, then a; € A;_;, hence

diste(aq, a;) > distg(ai, Ao U Ai—1) =1 > [k/2].

Therefore, B(a;, |k/4]) and B(a;, |k/4]) are disjoint. Also, if a; € A’, then distg(a;, Ao U
A) =i > |k/4], so Observation 9 implies that B(a;, |k/4]) is proper. Thus, the collection
of |k/4]-balls centered at the A’ vertices certifies that |k/4] < bp(G), which concludes the
proof.

» Remark 21. The proof extends seamlessly to vertex-colored graphs. It is worth noting that
if the vertex a(v) has the color ¢, then cid(v, G — ¢) is stored in L(v) (since a(v) € P(v)).

B Forbidden Color Routing

This section gives the formal description of the routing procedure, overviewed in Section 3.4.1.

At the beginning of the procedure, s holds the labels L(s), L(t) and L(c¢) and should
route the message M to t avoiding the color ¢. As described in Section 3.4.1, the routing
procedure will have two phases. In the first phase, the message is routed to the fragment of
T — ¢ that contains a carefully chosen vertex a* € A. In the second phase, it is routed from
this fragment to the target ¢.

Initialization at s. First, s determines the vertex a* as follows: If ¢ € P(t), then a* = a(t, ¢),
which is found in L(¢). Otherwise, a* = a(t), the A-endpoint of P(t), which is again found
in L(t). Next, s creates the initial header of the message M, that contains:

The name of the color c.

The name of the vertex a*.

The block FirstRecEdge(r, a*, ¢), found in L(c).

The tree-routing label Lp(t), found in L(t).

If ¢ € P(t), the block FirstRecEdge(a*,t,¢) and the tree-routing label Lt (¢), found in

L(T).
This information will permanently stay in the header of M throughout the routing procedure,
and we refer to it as the permanent header. Verifying that it requires O(logn) bits is
immediate.

First Phase: Routing from s to the Fragment of a*. As in Section 3.4.1, let ey, ea,...¢p
be the recovery edges on the s-to-a* path in T, (according to order of appearance), each
connecting between fragments X;_; and X; of T — c¢. Denote by v; the root of fragment X;,
and thus e; = e(v;, a*, ¢). Recall that we aim to route the message through these edges and
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reach the last fragment X,, which is an A-fragment containing a*, according to the following
strategy: Upon reaching a fragment X; # X,, we go up until we reach its root v;, extract
information regarding the next recovery edge e;, and use Thorup-Zwick tree-routing on 7" in
order to get to e;. We then traverse it to reach X;, and repeat the process.
We now describe this routing procedure formally. The header of M contains two updating
fields:
M.UP: stores a Boolean value
M.NEXT: stores a block referring to the next recovery edge in the path, of the form
FirstRecEdge(-, a*, ¢).
Clearly, this requires O(logn) bits of storage. We will maintain the following invariant:
(1): TIf the message is currently in the fragment X; # X, and M.UP = 0, then M.NEXT
stores information referring to e;.

At initialization, s sets M.UP < True and M.NEXT « L (a null symbol), which trivially
satisfies the invariant (I). We will use the field M.UP also to mark that we are still in the
first phase of the routing. During the first phase, it will be a valid Boolean value. When we
reach the fragment X,, we set M.UP to L to notify the beginning of the second phase. While
M.UP #1 (i.e., during the first phase), upon the arrival of M to a vertex v, it executes the
code presented in Algorithm 5 to determine the next hop.

Algorithm 5 First phase: Routing M from v towards the fragment of a* (while M.UP #.1).

1: if M.UP = True then

2: if v # r and ¢(v) # ¢ then

3: send M through the port to v’s parent in T, found in R(v)

4: else

5: find FirstRecEdge(v,a*,¢), in permanent header when v = r, or in R(v) when

c(v) =c¢

6: M NEXT < FirstRecEdge(v, a*, ¢)

7 M.UP « False

8: if M.UP = False then

9 x + first vertex of the edge e found in M.NEXT
10: if v # x then
11: send M in direction of z in T, using Lr(z) from M.NEXT, and Rr(v) from R(v)
12: else >U=2
13: if second vertex of e is in X, (as indicated by M.NEXT) then
14: M.UP 1 > will reach Xy in next step, and then done
15: else
16: M.UP < True
17: send M through the port of the edge e found in M.NEXT

Invariant (I) is maintained when setting M.UP <« False in Algorithm 5, since we
previously set M.NEXT to e(v,a*, c), which is the first recovery edge in the v-to-a* path in
T., and thus, when v € X;, this edge equals e;. When the message first reaches a vertex
s’ € Xy, the field M.UP contains a null value 1, and we start the second phase of the routing
procedure, as described next.

Second Phase: Routing from the Fragment of a* to t. Here, we use the careful choice
of the vertex a*. The easier case is when ¢ ¢ P(t). In this case, a* = a(v), and ¢ is in the
same fragment as a* by Lemma 18. Therefore, we can use the Thorup-Zwick routing of
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Lemma 17 on T to route the message M from s’ to t. Note that the label Lr(t) is found
in the permanent header, and that each intermediate vertex v on the path has Ry (v) in its
table.

We now treat the case where ¢ € P(t). In this case, a* = a(t, ¢), which is defined to be an
A-vertex in the nearest A-fragment to ¢ in T,, and hence, X, is that nearest A-fragment to ¢
in T,.. Since ¢ € P(t), the permanent header stores FirstRecEdge(a*,t,c), or specifies that

the first recovery edge e(a*,t, c) is undefined, i.e. that a* and ¢ are in the same fragment.

In the latter case, we can act exactly as above and route the message over T. So, assume
FirstRecEdge(a*, t, ¢) is found.

Let x and y be the first and second vertices of e(a*,t,¢). Then FirstRecEdge(a*,t,c)
contains Lr(x), so we can route the message between s',x € X, using the Thorup-Zwick
routing of Lemma 17 on T. We then traverse the edge e(a*,t,c) from x to y, where the
relevant port is stored in the permanent header. We now make the following important
observation:

» Lemma 22. If v is a vertex on the y-to-t path in T., then its table R(v) must contain
RTC (’U)

Proof. First, we note that v must be a B-fragment. Indeed, if v were in an A-fragment, then
this would be a closer A-fragment to ¢t than X, in T, which is a contradiction. Therefore,
by Lemma 18, it must be that ¢ € P(v). This means that Ry (v) is stored in R(v) by
Algorithm 1. <

Note that L, (t) is found in the permanent header, as ¢ € P(t). Thus, we can route M from
y to t along the connecting path in the recovery tree T, using the Thorup-Zwick routing of
Lemma 17 on T,.. This concludes the routing procedure.

C Nearest Colored Ancestor Labels

In this section, we show how the O(n)-space, O(loglog n)-query time nearest colored ancestor
data structure of [15] can be used to obtain O(y/nlogn)-bit labels for this problem.

The labels version of nearest colored ancestor is formally defined as follows. Given a
rooted n-vertex forest T" with colored vertices, where each vertex v has an arbitrary unique
O(logn)-bit identifier id(v), the goal is to assign short labels to each vertex and color in T,
so that the id of the nearest c-colored ancestor of vertex v can be reported by inspecting the
labels of ¢ and v. The reduction from the centralized setting implies that such a labeling
scheme can be used “as is”for connectivity under one color fault.® First, by Theorem 14, we
get:

» Corollary 23. FEvery labeling scheme for mearest colored ancestor in n-vertex forests must
have label length Q(y/n) bits. Furthermore, this holds even for paths, as their ball-packing
number is Q(y/n).

» Remark 24. The above lower bound can be strengthened to Q(y/nlogn). This is by
considering the problem that our scheme actually solves: report the minimum id of a vertex
connected to v in G — ¢, from the labels of v and ¢. For this problem, one can extend the
proof of Theorem 14 to show an Q(y/nlogn)-bit lower bound for paths. The reduction
described above shows that a nearest colored ancestor labeling scheme can be used to report
such minimum ids.

6 When constructing the nearest colored ancestor labels in the reduction, we augment the id of each
vertex v with cid(v, G — ¢), where c is the color of the tree edge from v to its parent.
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The data structure in [15] can, in fact, be transformed into O(y/nlogn)-bit labels. We
first briefly explain how this data structure works. Each vertex v gets two time-stamps
pre(v), post(v), which are the first and last times a DFS traversal in T reaches v. The time-
stamps of c-colored vertices are inserted to a predecessor structure [37, 38] for color ¢. For
each time-stamp of a (c-colored) vertex u, we also store the id of the nearest c-colored (strict)
ancestor of u. A query (v, ¢) is answered by finding the predecessor of pre(v) in the structure
of ¢. If the result is pre(u), then u is returned. If it is post(u), then the ancestor pointed by u
is returned. Correctness follows by standard properties of DFS time-stamps. The predecessor
structure for ¢ answers queries in O(loglogn) time, and takes up O(|V;|) space (in words),
where V, is the set of c-colored vertices. The total space is O(>_.|V.|) = O(n).

To construct the labels, let H = {c | |V.| > v/n} be the highly prevalent colors, and R be
the rest of the colors. As there are only n vertices, |H| = O(y/n). We can therefore afford to
let each vertex v explicitly store in its label the id of its nearest c-color ancestor, for each
¢ € ‘H. To handle the remaining R-colors, we store in the label of each ¢ € R the predecessor
structure for ¢, which only requires O(|V;|logn) = O(y/nlogn) bits. By augmenting the
vertex labels with pre(-) times (requiring only O(logn) additional bits), we can also answer
queries with colors in R. We obtain:

» Corollary 25. There is a labeling scheme for nearest colored ancestor in n-vertex forests,
with labels of length O(y/nlogn) bits. Queries are answered in O(loglogn) time.
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