
Sing a Song of Simplex
Victor Shoup #

Offchain Labs, New York City, NY, USA

Abstract
We flesh out some details of the recently proposed Simplex atomic broadcast protocol, and modify it so
that leaders disperse blocks in a more communication-efficient fashion. The resulting protocol, called
DispersedSimplex, maintains the simplicity and excellent – indeed, optimal – latency characteristics
of the original Simplex protocol. We also present a variant that supports “stable leaders”. We also
suggest a number of practical optimizations and provide concrete performance estimates that take
into account not just network latency but also network bandwidth limitations and computational
costs.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols

Keywords and phrases Consensus, Atomic broadcast, Blockchain

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.37

Related Version Full Version: https://eprint.iacr.org/2023/1916 [22]

Acknowledgements Thanks to Benjamin Chan and Rafael Pass for helpful discussions on the Simplex
protocol. Thanks to Ed Felten for suggesting the “packet-switching pipeline” strategy in Section 3.5.

1 Introduction

Byzantine fault tolerance (BFT) is the ability of a computing system to endure arbitrary (i.e.,
Byzantine) failures of some of its components while still functioning properly as a whole. One
approach to achieving BFT is via state machine replication [21]: the logic of the system is
replicated across a number of machines, each of which maintains state, and updates its state
by executing a sequence of transactions. In order to ensure that the non-faulty machines
end up in the same state, they must each deterministically execute the same sequence of
transactions. This is achieved by using a protocol for atomic broadcast.

In an atomic broadcast protocol, we have a committee of n parties, some of which are
honest (and follow the protocol), and some of which are corrupt (and may behave arbitrarily).
Roughly speaking, such an atomic broadcast protocol allows the honest parties to schedule a
sequence of transactions in a consistent way, so that each honest party schedules the same
transactions in the same order. Each party receives various transactions as input – these
inputs are received incrementally over time, not all at once. It may be required that a
transaction satisfy some type of validity condition, which can be verified locally by each
party. These details are application specific and will not be further discussed. Each party
outputs an ordered sequence of transactions – these outputs are generated incrementally, not
all at once. One key security property of any secure atomic broadcast protocol is safety,
which means that each honest party outputs the same sequence of transactions. Another key
property of any secure atomic broadcast protocol is liveness. There are different notions of
liveness one can consider, but the basic idea is that the protocol should not get stuck and
stop outputting transactions.

Different protocols make different assumptions about the latency guarantees of the network
and the number of corrupt parties. Here, we assume that the number of corrupt parties is
less than n/3, and we consider protocols that are guaranteed to provide safety without any
latency assumption, and that are guaranteed to provide liveness only in intervals of “network
synchrony”, in which the latency is below a certain defined threshold. This is the partial

© Victor Shoup;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 37; pp. 37:1–37:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:victor@shoup.net
https://orcid.org/0009-0003-6996-5660
https://doi.org/10.4230/LIPIcs.DISC.2024.37
https://eprint.iacr.org/2023/1916
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Sing a Song of Simplex

synchrony model, introduced in [12]. The bound of n/3 on the number of corrupt parties is
optimal in this model. Many quite practical atomic broadcast protocols have been proposed
in this model, starting with the classic PBFT protocol [8], and this is still an area of active
research.

In this paper, we consider the recently proposed Simplex atomic broadcast protocol [9].
Like many other recent protocols in this space (such as HotStuff [27] and HotStuff-2 [19]),
Simplex is a leader-based, permissioned blockchain protocol: the protocol proceeds in slots
(a.k.a., views, rounds), so that in each slot a leader proposes a block of transactions, and
these blocks get added to a tree of blocks. Over time, a path of committed blocks in this
tree emerges – safety ensures that all parties agree on the same path of committed blocks.
In these protocols, leaders typically are rotated in each slot – either in a round-robin fashion
or using some pseudo-random sequence – which also has the nice effect of mitigating against
censorship of transactions. The protocol relies on authenticated communication links and a
PKI to support digital signatures (preferably aggregate or threshold signatures for better
communication complexity).

Simplex is a wonderfully simple, efficient, and elegant protocol. In this paper, we add to
the Simplex story in a number of ways:

We flesh out some missing (but crucial) details of the Simplex protocol that are needed
to get a protocol with acceptable communication complexity. Along the way, we make a
few other simplifications; in particular, we observe that while the Simplex protocol as
specified in [9] relies on hash-based chaining of blocks, this turns out to be unnecessary.
More importantly, we modify the protocol so that leaders disperse blocks in a more
communication-efficient fashion, while maintaining its simplicity and excellent – in-
deed, optimal – latency characteristics. We call this variation on the Simplex protocol
DispersedSimplex.
We give a detailed analysis of DispersedSimplex (safety, liveness, and performance), and
discuss a number of important implementation details, arguing – based on concrete micro-
benchmarks and realistic assumptions on network behavior – that despite its simplicity,
in typical scenarios, DispersedSimplex should perform quite well in practice, even for
n ≈ 100.
We present and analyze a variant of DispersedSimplex that supports “stable leaders” (the
paper [9] did not investigate such a variant). We argue that this variant can achieve
even better performance, mainly because a stable leader can drive the protocol at a
significantly faster rate than a constantly rotating leader. The mechanism for failing
over from an unresponsive leader is very simple and lightweight (no more complicated or
expensive than rotating leaders as in the basic version of the protocol).

In the full version [22] of this paper, we also show how to improve communication complexity
using the improved data dissemination techniques of [16, 17], and (perhaps of more theoretical
interest) how to get by without any signatures (at the expense of somewhat higher latency).

In Appendix C, we also compare DispersedSimplex to other protocols in the literature.
As we will argue, DispersedSimplex, especially the variants that combine stable leaders and
better data dissemination techniques, should perform as well as or better than any other
state-of-the-art atomic broadcast protocol (including leader-based protocols such as HotStuff
[27] and HotStuff-2 [19], as well as DAG-based protocols such as [23]), at least in terms
of common-case throughput and latency. Again, these arguments are based on concrete
micro-benchmarks and assumptions on network behavior, and they suggest that it would be
worthwhile to measure the actual performance of a well-engineered implementation.

V. Shoup 37:3

2 The DispersedSimplex protocol

Like many other protocols in this area, the Simplex protocol iterates through slots (a.k.a.,
views, rounds), where in each slot there is a designated leader who proposes a new block,
which is chained to a parent block, and two rounds of voting are used to commit the block.
Moreover, to improve latency, the protocol is “pipelined”, in the sense that it optimistically
moves onto the next slot as soon as the first round of voting succeeds, before the block for
that slot is committed. Leaders may be rotated in each slot, either in a round-robin fashion or
using some pseudo-random sequence. The DispersedSimplex protocol has the same structure
as the Simplex protocol; however, instead of broadcasting the block directly, the slot leader
uses well-known techniques for information dispersal to disseminate large blocks in a way
that keeps the overall communication complexity low and avoids a bandwidth bottleneck at
the leader. In particular, the communication is balanced, meaning that each party, including
the leader, transmits roughly the same about of data over the network. We will show how
the information dispersal can be interleaved with the proposal phase and the first voting
round so that no extra latency is incurred.

2.1 Preliminaries

We have a committee of n parties, P1, . . . , Pn, at most t < n/3 of which are corrupt. We
assume the parties are connected by authenticated point-to-point channels. We will not
generally assume network synchrony. However, we say the network is δ-synchronous over an
interval [a, b + δ] if every message sent from an honest party P at time T ≤ b to an honest
party Q is received by Q before time T + δ. In this case, for all T ∈ [a, b], we say that the
network is δ-synchronous at time T .

2.1.1 Signatures

We make use of an (n− t)-out-of-n threshold signature scheme. We refer to a signature share
and a signature certificate: signature shares from n− t on a given message may be combined
to form a signature certificate on that message. This can be implemented as (i) a set of
signatures, or (ii) an aggregate signature scheme (such as one based on BLS signatures [5] as
in [4]), or (iii) a threshold version of an ordinary signature scheme (such as one again based
on BLS signatures as in [3]). Implementations (ii) and (iii) will result in much more compact
threshold signatures, and (iii) requires a set-up phase to distribute shares of a signing key.

The security property for such a threshold signature scheme is the Quorum Size
Property: it is infeasible to produce a signature certificate on a message m, unless n− t− t′

honest parties have issued signature shares on m, where t′ ≤ t is the number of corrupt
parties.

Under our assumption that the number of corrupt parties is strictly less than n/3, one can
easily establish the following Quorum Intersection Property: it is infeasible to produce
signature certificates on two distinct messages m and m′, unless at least one honest party
issued signature shares on both m and m′.

2.1.2 Information dispersal

We explicitly make use of well-known techniques for asynchronous verifiable information
dispersal (AVID) techniques involving erasure codes and Merkle trees (introduced in [6]).

DISC 2024

37:4 Sing a Song of Simplex

Erasure codes

For integer parameters k ≥ d ≥ 1, a (k, d)-erasure code encodes a bit string M as a vector
(f1, . . . , fk) of k fragments in such a way that any d such fragments may be used to efficiently
reconstruct M . Note that for variable-length M , the reconstruction algorithm also takes as
input the length β of M . The reconstruction algorithm may fail (for example, a formatting
error) – if it fails it returns ⊥, while if it succeeds it returns a message that when re-encoded
will yield k fragments that agree with the original subset of d fragments. We assume that all
fragments have the same size, which is determined as a function of k, d, and β.

Using a Reed-Solomon code, which is based on polynomial interpolation, we can realize a
(k, d)-erasure code so that if |M | = β, then each fragment has size ≈ β/d. More precisely,
using a Reed-Solomon code over binary finite fields, we can always construct a code such that
fragments are of size at most max(⌈β/d⌉, ⌈log2(k)⌉) – the term ⌈log2(k)⌉ comes from the
fact that we need to work with a field of cardinality at least k. In what follows, we will use
the more general upper bound of β/d + O(log(k)) on fragment size, which serves as an upper
bound for the above construction, as well as for other constructions and implementations
(which may impose additional restrictions on the length of fragments, such as being a multiple
of some specific constant).

In our protocol, the payload of block will be encoded using an (n, n− 2t)-erasure code.
Such an erasure code encodes a payload M as a vector of fragments (f1, . . . , fn), any n− 2t

of which can be used to reconstruct M . This leads to a data expansion rate of (at most)
roughly 3; that is,

∑
i|fi| ≈ n/(n− 2t) · |M | < 3|M |.

Merkle trees

Recall that a Merkle tree allows one party P to commit to a vector of values (v1, . . . , vk)
using a collision-resistant hash function by building a (full) binary tree whose leaves are
the hashes of v1, . . . , vk, and where each internal node of the tree is the hash of its two
children. The root r of the tree is the commitment. Party P may “open” the commitment
at a position i ∈ [k] by revealing vi along with a “validation path” πi, which consists of the
siblings of all nodes along the path in the tree from the hash of vi to the root r. We call πi a
validation path from the root under r to the value vi at position i. Such a validation path is
checked by recomputing the nodes along the corresponding path in the tree, and verifying
that the recomputed root is equal to the given commitment r. The collision resistance of the
hash function ensures that P cannot open the commitment to two different values at a given
position.

Encoding and decoding

For a given payload M of length β, we will encode M as a vector of fragments (f1, . . . , fn)
using an (n, n− 2t)-erasure code, and then form a Merkle tree with root r whose leaves are
the hashes of f1, . . . , fn. We define the tag τ := (β, r).

For a tag τ = (β, r), we shall call (fi, πi) a certified fragment for τ at position i if (i)
fi has the correct length of a fragment for a message of length β, and (ii) πi is a correct
validation path from the root under r to the fragment fi at position i.

The function Encode takes as input a payload M . It builds a Merkle tree for M as above
with root r (encoding M as a vector of fragments, and then building the Merkle tree whose
leaves are the hashes of all of these fragments). It returns

(
τ, {(fi, πi)}i∈[n]

)
, where τ is the

tag (β, r), β is the length of M , and each (fi, πi) is a certified fragment for τ at position i.

V. Shoup 37:5

The function Decode takes as input
(

τ, {{(fi, πi)}i∈I
)
, where τ = (β, r) is a tag, I is

a subset of [n] of size n− 2t, and each (fi, πi) is a certified fragment for τ at position i. It
first reconstructs a message M ′ from the fragments {fi}i∈I , using the size parameter β. If
M ′ = ⊥, it returns ⊥. Otherwise, it encodes M ′ as a vector of fragments (f ′

1, . . . , f ′
n) and

Merkle tree with root r′ from (f ′
1, . . . , f ′

n). If r′ ̸= r, it returns ⊥. Otherwise, it returns M ′.
Under collision resistance for the hash function used for the Merkle trees, any n − 2t

certified fragments for given tag τ will decode to the same payload – moreover, if τ is the
output of the encoding function, these fragments will decode to M (and therefore, if the
decoding function outputs ⊥, we can be sure that τ was maliciously constructed). This
observation is the basis for the protocols in [11, 18, 26]. Moreover, with this approach, we do
not need to use anything like an “erasure code proof system” (as in [2]), which would add
significant computational complexity (and in particular, the erasure coding would have to be
done using parameters compatible with the proof system, which would likely lead to much
less efficient encoding and decoding algorithms).

2.2 Protocol data objects

2.2.1 Blocks

A block B is of the form Block(v, v′, τ), where (i) v = 1, 2, . . . is the slot number associated
with the block (we say B is a block for slot v), (ii) v′ < v is the slot number of B’s parent
block (v′ = 0 if B’s parent is a notional “genesis” block), and (iii) τ is a tag obtained by
encoding B’s payload M . For simplicity, we call a certified fragment for the tag τ a certified
fragment for B.

2.2.2 Support, commit, and complaint shares and certificates

A support share from party Pi on block B is of the form SuppShare(B, σi, fi, πi), where σi

is a valid signature share from Pi on Supp(B), and (fi, πi) is a certified fragment for B

at position i. A support certificate on B is of the form SuppCert(B, σ), where σ is a valid
signature certificate on Supp(B).

A commit share from party Pi on slot v is of the form CommitShare(v, σi), where σi is
a valid signature share from Pi on Commit(v). A commit certificate on v is of the form
CommitCert(v, σ), where σ is a valid signature certificate on Commit(v).

A complaint share from party Pi on slot v is of the form ComplaintShare(v, σi), where σi

is a valid signature share from Pi on Complaint(v). A complaint certificate on v is of the
form ComplaintCert(v, σ), where σ is a valid signature certificate on Complaint(v).

2.3 Subprotocols

We describe our protocol in terms of a main protocol and a few simple subprotocols. In
our presentation, these subprotocols are all running concurrently with each other and with
the main protocol: a single party can be thought of as running a local instance of the main
protocol and each of the subprotocols on different threads on the same CPU. However, this
particular architecture is mainly intended just for ease of presentation. We describe first the
data structures and logic of the subprotocols.

DISC 2024

37:6 Sing a Song of Simplex

2.3.1 Certificate pool
Each party maintains a certificate pool. Whenever a party receives a quorum of n− t support,
commit, or complaint shares, and it does not already have a corresponding certificate, it
will generate a certificate, add it to the pool, and broadcast the certificate to all parties.
Similarly, whenever a party receives a support, commit, or complaint certificate, and it does
not already have a corresponding certificate, it will add it to the pool, and broadcast the
certificate to all parties.

2.3.2 Complete block tree
Each party also maintains a complete block tree, which is a tree of blocks rooted at a notional
genesis block at slot 0. Under cryptographic assumptions, we will see that there will be at
most one block for any given slot in the tree. A block B = Block(v, v′, τ) is added to the
tree if each of the following holds:

the certificate pool contains a support certificate for B;
v′ = 0 or the complete block tree contains a parent block B′ = Block(v′, ·, ·);
the party has received a quorum of n− 2t support shares for B, from which the party
can reconstruct the effective payload M of B as M ← Decode(τ, {(fi, πi)}i∈I), where
{(fi, πi)}i∈I is the corresponding collection of certified fragments for τ ;
M ̸= ⊥ and satisfies some correctness predicate that may depend of the path of blocks
(and their payloads) from genesis to block B′.

Note that nothing is broadcast when a block is added to the tree.

2.3.3 Block commitment
We say that a block B for slot v is explicitly committed by party P if the complete block tree
of P contains B and the certificate pool of P contains a commit certificate for slot v. In this
case, we say that all of the predecessors of block B in the complete block tree are implicitly
committed by P . The notional genesis block is always considered to be a committed block.
The payloads of committed blocks may be then transmitted in order to the “execution layer”
of the protocol stack of a replicated state machine.

2.4 The main protocol
The logic of the main protocol for a party Pj is described in Fig. 1. In the description,
leader(v) denotes the leader for slot v – as discussed above, leaders may be rotated in each
slot, either in a round-robin fashion or using some pseudo-random sequence. The details for
generating and validating block proposals are described below. In the main protocol, a party
makes its decisions based on the objects in its certificate pool and its complete block tree
(which are maintained as described in Section 2.3) and the objects it has received from other
parties over authenticated channels. The core of the protocol is expressed in terms of a “wait
until either” statement which triggers one of several clauses based different preconditions.
Although not strictly necessary, for concreteness, we assume that if more than one clause’s
precondition is satisfied, then the syntactically first such clause is triggered.

The basic idea is this. The leader for slot v will send each party a block proposal for
a block B. Upon receiving such a block proposal, each party validates the proposal and
then sends a support share for B to all parties. Each party will move onto the next slot
when it adds B to its complete block tree; however, if too much time elapses before that
happens, it will broadcast a complaint share, and move onto the next slot when it obtains a

V. Shoup 37:7

corresponding complaint certificate. Note that when a party moves onto the next slot by
virtue of adding B to its complete block tree, it will also issue a commit share for v, but
only if it has not already issued a complaint share for slot v – this rule is essential for safety.

DispersedSimplex: main loop for party Pj

vlast ← 0
for v = 1, 2, . . .

Tstart ← clock(), done← proposed← supported← complained← false
while not done do

wait until either:
the certificate pool contains a complaint certificate for slot v ⇒

done← true
the complete block tree contains a block for slot v ⇒

if not complained then broadcast a commit share for v
done← true, vlast ← v

not complained and clock() > Tstart + ∆timeout ⇒
complained← true, broadcast a complaint share for slot v

leader(v) = Pj and not proposed ⇒
proposed← true

(∗) generate block proposal material B, (f1, π1), . . . , (fn, πn)
for i ∈ [n]: send BlockProp(B, fi, πi) to Pi

(∗∗) not supported and received from leader(v) a valid block proposal
BlockProp(B, fj , πj) ⇒

supported← true
generate a signature share σj on Supp(B)
broadcast the support share SuppShare(B, σj , fj , πj)

Figure 1 Logic for main loop of DispersedSimplex protocol for party Pj

2.4.1 Generating block proposals
The logic for generating block proposal material B, (f1, π1), . . . , (fn, πn) in slot v at line (∗)
is as follows: (i) build a payload M that validly extends the path in the complete block
tree ending at the block for slot vlast; (ii) compute (τ, {(fi, πi)}i∈[n])← Encode(M); (iii) set
B := Block(v, vlast, τ).

2.4.2 Validating block proposals
To check if BlockProp(B, fj , πj) is a valid block proposal from the leader in slot v at line (∗∗),
party Pj checks that each of the following conditions holds: (i) B is of the form Block(v, v′, τ),
where v′ < v and the complete block tree contains a block for slot v′; (ii) the certificate pool
contains complaint certificates for slots v′ + 1, . . . , v − 1; (iii) (fj , πj) is a certified fragment
for τ at position j.

Note that even if some of the conditions do not hold at a given point in time, they may
hold at a later point in time. When party Pj sees a block proposal in slot v, it can check
the stated conditions – if these conditions fail due to the lack of either a parent block in the
complete block tree or a complaint certificate, these conditions will need to be rechecked
whenever a new block is added to the complete block tree or a new complaint certificate is
added to the certificate pool. We will discuss below (in Appendix B.1) how to efficiently
implement the test that the certificate pool contains the necessary complaint certificates
using a data structure whose size is proportional to the gap between current slot and the
last committed slot so that the amortized cost of these tests is O(1) per slot.

DISC 2024

37:8 Sing a Song of Simplex

3 Analysis

By abuse of terminology, we state security properties unconditionally – they implicitly
assume the security of the threshold signature scheme and the collision resistance of the
hash functions used to build Merkle trees, and should be understood to hold with all but
negligible probability for all efficient adversaries.

3.1 Initial observations
We state some basic properties:
Uniqueness and Validity Property: Suppose that a block B for some slot v is added to the

complete block tree of some party. Then no other block for slot v can be added to the
complete block tree of that party or any other party. Moreover, if the leader for slot v is
honest, B must have been proposed by that leader.
The first part follows from the Quorum Intersection Property, based on the fact an honest
party issues a support share for at most one block per slot. The second part follows from
the Quorum Size Property.

Completeness Property: If an object X appears in the certificate pool (so X is a support,
commit, or complaint certificate) or in the complete block tree (so X is a block), then X

(or its equivalent) will eventually appear in the corresponding pool/tree of every other
party.1 Moreover, if X appears in a party’s pool/tree at a time T at which the network
is δ-synchronous, it will appear in every party’s pool/tree before time T + δ.
For the support, commit, and complaint certificates, this is clear. For the blocks in
the complete block tree, we are relying on the Quorum Size Property: when a support
certificate for a block B is added to the support pool, at least n − 2t honest parties
must have already broadcast support shares for B, which contain B as well as fragments
sufficient to reconstruct B’s payload.

Incompatibility of Complaint and Commit Property: It is impossible to produce both a
complaint and commit certificate for the same slot v.
This follows from the Quorum Intersection Property, based on the fact that in each slot,
an honest party will never issue both a complaint share and a commit share.

3.2 Safety
Safety follows immediately from the following lemma. See Appendix A.1 for a proof.

▶ Lemma 1 (Safety). Suppose a party P explicitly commits a block B for slot v, and a block
C for slot w ≥ v is in the complete block tree of some party Q. Then B is an ancestor of C

in Q’s complete block tree.

3.3 Liveness
Liveness follows immediately from the following lemmas. The first lemma analyzes the
optimistic case where the network is synchronous and the leader of a given slot is honest,
showing that the leader’s block will be committed. See Appendix A.2 for a proof.

1 Note that the “or equivalent” qualification is necessary to account for signature certificates, if these are
not necessarily unique.

V. Shoup 37:9

▶ Lemma 2 (Liveness I). Consider a particular slot v ≥ 1 and suppose the leader for slot
v is an honest party Q. Suppose that the first honest party P to enter the loop iteration
for slot v does so at time T . Further suppose that the network is δ-synchronous over the
interval [T, T + 3δ] for some δ with ∆timeout ≥ 3δ. Then each honest party will finish the
loop iteration before time T + 3δ by adding Q’s proposed block B to its complete block tree.
and will eventually commit B. Moreover, each honest party will eventually commit B, and
this will happen before time T + 4δ if the network remains δ-synchronous over the interval
[T, T + 4δ].

The second lemma analyzes the pessimistic case, when the network is asynchronous or
the leader of a given round is corrupt. It says that eventually, all honest parties will move on
to the next round. See Appendix A.3 for a proof.

▶ Lemma 3 (Liveness II). Suppose that the network is δ-synchronous over an interval
[T, T + ∆timeout + 2δ], for an arbitrary value of δ, and that at time T , some honest party is
in the loop iteration for slot v and all other honest parties are in a loop iteration for v or a
previous slot. Then before time T + ∆timeout + 2δ, all honest parties finish the loop iteration
for slot v.

We note that in periods of asynchrony, for any slot v in which the leader Q is honest, if
any block is committed in slot v, it must have been the block proposed by Q. This follows
from the (second part of the) Uniqueness and Validity Property.

We also remark that by the Incompatibility of Complaint and Commit Property, for
a valid block B, the slot number of B’s parent block cannot be less than that of the last
committed block. This property is enables a practical implementation to keep the storage
bounded using standard techniques of checkpointing and garbage collection (and perhaps
with standard techniques for dynamically increasing timeouts until commitments are seen).

3.4 Complexity estimates

3.4.1 Communication complexity

We measure the communication complexity per slot. This is the sum over all honest parties
P and all parties Q of the bit-length of all slot-v-specific messages sent from P to Q. The
communication complexity per slot of DispersedSimplex is easily seen to be bounded by
3nβ + O(n2(κ + λ log n)), where (i) β is a bound on the size of a block, (ii) κ is a bound on
the size of a threshold signature share or certificate, and (iii) λ is a bound on the size of the
hash function outputs used for Merkle trees. Indeed, the cost breaks down as follows: (i)
3nβ + O(n2 log n) for disseminating payload fragments, (ii) O(n2 log n · λ) for disseminating
Merkle paths, and (iii) O(n2κ) for disseminating signature shares and certificates. If blocks
are large, in particular, if β ≫ n(κ+λ log n), the communication complexity will be dominated
by the cost of disseminating the payload fragments.

Moreover, the communication load is balanced, meaning that each party, including the
leader for a slot, transmits roughly the same about of data over the network. In fact, as we
described the protocol, for large β, each non-leader transmits about 3β bits in total, while
the leader transmits about 6β bits in total. In Section 3.5, we discuss a simple variation
in which the leader also transmits only about 3β bits. In the full version [22], we discuss a
variation in which each party transmits only 1.5β–2β bits.

DISC 2024

37:10 Sing a Song of Simplex

3.4.2 Latency
We may also measure various notions of latency. We define:

optimistic proposal-commit latency: assuming the leader is honest, and that the network
is appropriately synchronous, the time it takes for the leader’s proposal to be committed
by all honest parties (same as the notion of “proposal confirmation time” in [9]);
optimistic consecutive-proposal latency: assuming two consecutive leaders are honest, and
that the network is appropriately synchronous, the amount of time that elapses between
when they make their respective proposals (similar to the notion of “optimistic block
time” in [9]).

If a given transaction is submitted to the system (i.e., to all parties), the sum of these two
latencies upper bounds the total time it takes for a transaction to be included in a proposal
and then committed. The optimistic consecutive-proposal latency also upper bounds what
we might call the optimistic reciprocal block throughput, the reciprocal of the rate at which
blocks are proposed (and committed) in a steady state where all leaders are honest and the
network is appropriately synchronous.

For DispersedSimplex, just as for Simplex, we readily see that if the network is δ-
synchronous with ∆timeout ≥ 3δ, then the optimistic proposal-commit latency is 3δ and the
optimistic consecutive-proposal latency is 2δ. This proposal-commit latency is optimal (it
matches lower bound in [1] for psync-BB).

It is also useful to look at the latency between proposals made between non-consecutive
honest leaders. That is, if leaders in slots v and v + k + 1 are honest, but the k leaders in the
intervening slots are crashed or corrupt, how much time may elapse between the time the
leader in slot v makes its proposal and the time the leader in slot v + k + 1 makes its proposal.
Let us call this the optimistic k-gap proposal latency. For DispersedSimplex, just as for
Simplex, this is 2δ + k · (∆timeout + δ). If leaders are chosen at random, then the probability
that there is a gap of size k between slots with honest leaders decreases exponentially with k.
We note that DispersedSimplex protocol is optimistically responsive, meaning that it runs as
fast as the network will allow so long as leaders are honest.

3.5 Other costs and concrete estimates
The above analysis abstracts away a number of practically important details. Indeed, our
latency estimates in Section 3.4.2 only took into account propagation delays caused by
network latency, but did not take into account transmission delay (caused by limited network
bandwidth) and computation delay (caused by limited compute bandwidth).

In this section, we discuss other costs and make some concrete estimates for performance
under specific assumptions. We are generally interested in values of n up to around 100,
where each of the n parties is running commodity hardware and connected to a WAN with
typical network bandwidth and latency.

We first consider the computational cost of erasure coding. This should not have a
significant impact on the overall system performance, assuming one uses a reasonably
good implementation of erasure coding algorithms. One such implementation is the
reed-solomon-simd library at https://github.com/AndersTrier/reed-solomon-simd,
which is based on [15, 14]. We benchmarked this implementation with parameters cor-
responding to t = 32 and n = 3t+1 = 97 and payload sizes of 100KB and 1MB on a Macbook
Pro with an Apple M1 Max CPU. The encoder runs at a rate of nearly 2GB/s for both
payload sizes. The decoder runs at a rate of about 250MB/s for the 100KB payload and
about 500MB/s per second for the 1MB payload. Generally, the encoder speed is independent

https://github.com/AndersTrier/reed-solomon-simd

V. Shoup 37:11

of the payload size and the decoder speed increases with the payload size (because fixed
costs get amortized). At these speeds, it is very unlikely that the erasure coding will be a
bottleneck.

We next consider the computational cost of signature generation, verification, and
aggregation. Let us assume we use aggregate BLS signatures with the standard proof-of-
possession mitigation against rogue-key attacks, so that public keys and signatures are very
cheaply aggregated by simply adding them together. On the same hardware above, we
benchmarked the blst library at https://github.com/supranational/blst. The cost of
signing or verifying one BLS signature is well under 1ms, and the cost of adding public keys
and signatures in the aggregation process can be effectively ignored (at least for quorums
of size up to a few hundred). To aggregate many unverified BLS signatures, a party P can
very cheaply aggregate the unverified signatures and then verify the result. If the aggregate
verification fails, P will have to perform a much more expensive search to find out which of
the individual signatures were bad. However, once the bad signatures are found, since the
parties that contributed those signatures must be corrupt, P can simply ignore all signatures
(and indeed all messages) sent from these parties going forward. This works because we are
assuming the signatures are sent over authenticated channels (although P cannot publicly
prove their corrupt behavior, unless the BLS signatures are themselves authenticated using
some cheaper digital signature, such as EdDsa). Thus, over the long run, the cost of verifying
and aggregating a set of individual signatures is essentially just the cost of one BLS signature
verification. Similarly, when a party P receives an aggregate signature from another party,
if the verification of that aggregate signature fails, P can simply ignore that party going
forward.

The other main computational cost to consider is that of hashing. On the same hardware
mentioned above, the openssl implementation of SHA256 runs at a speed of 2GB/s.

With these benchmarks, and additional assumptions on network bandwidth and latency,
we can estimate the performance (latency and throughput) of the protocol (in the optimistic
setting). We shall assume network bandwidth of 1Gb/s (i.e., 125MB/s) and that the protocol
is running over a WAN, so that there is essentially no contention for network bandwidth among
the parties. Specifically, our assumption is that all parties can simultaneously transmit to the
network at a rate of 1Gb/s. We shall assume a network latency of 100ms (so it takes 100ms for
a packet to travel from P to Q once P has transmitted the packet, which is generally consistent
with round-trip times reported in https://www.cloudping.co/grid/p_90/timeframe/1D).

The protocol’s performance will depend on: (i) transmission delay, the delay per slot
induced by network bandwidth, (ii) propagation delay, the delay per slot induced by the
network latency, and (iii) computation delay, the delay induced by computation. The
optimistic consecutive-proposal latency is just the sum of these delays and throughput is the
block size β divided by the sum of these delays. Here, we will assume that β is the number
of bytes in a block. Of course, β also impacts transmission and computation delay.

We will make one small change to the protocol that will streamline its execution. Namely,
instead of using an (n, n− 2t)-erasure code, we will use an (n− 1, n− 2t− 1)-erasure code,
and adopt the convention that the leader does not hold a fragment. We note that with this
change, the encoding of a block is still at most 3β bytes, and that the above benchmarks for
n = 97 are still valid. With this change, the way the block data flows through the network
in a given slot is as follows:

the leader encodes a block of size β as a codeword of size ≈ 3β, and transmits to each of
the n− 1 other parties its fragment, which has size ≈ 3β/n, so that the leader transmits
a total of ≈ 3β bytes across the network.

DISC 2024

https://github.com/supranational/blst
https://www.cloudping.co/grid/p_90/timeframe/1D

37:12 Sing a Song of Simplex

each party other than the leader broadcasts its fragment of size ≈ 3β/n to the n − 2
other parties (besides itself and the leader), so each such party transmits a total of ≈ 3β

bytes across the network.
Assuming fragments are sufficiently large, each fragment can be broken up into many packets,
and a simple “packet-switching pipeline” strategy can be used to minimize the transmission
delay. Specifically, the leader begins by sending to each other party P the first packet of
P ’s fragment, then it sends to each other party P the second packet of P ’s fragment, and
so on; at the same time, when a party P receives one packet of its own fragment from the
leader, it immediately broadcasts that fragment to all other parties. One sees that with this
simple “packet-switching pipeline” strategy, the transmission delay per slot is roughly 3β

bytes divided by the network bandwidth available to each party (without pipelining, it would
be twice as much). With a network bandwidth of 1Gb/s, this translates into a transmission
delay per slot of about 25ms for every 1MB of (original, unencoded) block data.

Next, consider propagation delay. This is twice the network latency, so 2 · 100ms = 200ms
under our assumptions. To make things more concrete, let us choose a block size that roughly
balances transmission and propagation delay, so a block size of 8MB. With a block size this
large, and for n ≈ 100, the size of each fragment is ≈ 240KB, large enough to make the
simple “packet-switching pipeline” strategy feasible (with packets of size ≈ 1KB, a party
can transmit one packet to each other party in time under 1ms).

Third, consider computation delay. There are several components to this:
erasure coding: the leader encodes β bytes of data, and then each receiving party decodes
and encodes the same amount of data; with our given estimates (for n = 97), this takes
2 · 4ms + 16ms = 24ms. Using multiple cores, this could likely be reduced significantly.
hashing: the leader hashes 3β bytes of data, and then each receiving party hashes the
same amount of data; with our given estimates, this takes 2 · 12ms = 24ms. However,
the hashing done by the leader can overlap entirely with the transmission delay (the
hashing can be done concurrently with the transmission of the fragments). For the
receiving parties, in a typical execution, of the 3β bytes of data they need to hash, at
least 2β bytes of hashing can overlap with the transmission delay (assuming the hashing
is done as packets are received). If they receive support shares from all other parties, no
more hashing needs to be done. In the worst case, they need to hash β bytes (after the
re-encoding step), and with our given estimates, this takes 4ms. Using multiple cores,
this could likely be reduced even more.
signing and aggregating: each party generates a support share and then forms a support
certificate. With our given estimates, this takes a total of 2ms. However, the 1ms of
time spent forming a support certificate easily overlap the above 4ms of hashing time
(assuming multiple cores). We do not count here the cost of processing commit shares
and certificates, as these can be performed on a separate core.

This all adds up to a computation delay of 24ms + 4ms + 1ms = 29ms, and we will round this
up to 40ms to be conservative (although by exploiting multiple cores, it could be much less).

With these parameters, we estimate the total delay per slot as: 200ms for transmission,
200ms for propagation, 40ms for computation. This translates to a throughput of 8MB every
440ms, so about 18MB per second. The optimistic consecutive-proposal latency is 440ms
and the optimistic proposal-commit latency is that plus about 100ms, so about 540ms.

To get a better understanding of this setting, consider the following example timeline.
Suppose that at time T a leader starts transmitting the packets of a block. By time (roughly)
T + 100ms the other parties start echoing these packets. By time (again, roughly) T + 200ms
the leader finishes transmitting packets and transmits the remaining elements of its block

V. Shoup 37:13

proposal. By time T + 300ms all of these packets and remaining elements have been echoed
by the other parties; moreover, by this same time, the other parties have validated the block
proposal and have broadcast a signature share on a corresponding support message. By time
T + 400ms, the other parties have received all the fragments and other data they need, and
then perform 40ms of computation to finish the slot with a block in the complete block tree
by time T + 440ms.

Note that all of the above estimates are essentially independent of n. Indeed, the
component of propagation and computation delay that depends on n will be a very small
fraction of the total for block sizes of at least 1MB and for n up to several hundred.

Appendix B briefly presents some minor implementation details and simple variations of
DispersedSimplex.

4 Stable leaders

In many settings, it makes sense to keep a leader that is doing a good job in place for an
extended number of slots. There are a number of advantages to this. For example, whenever
such a crashed party is selected as a leader, the protocol has to wait sufficiently long to “time
out” and move to the next slot, effectively wasting the equivalent of a few slots. In contrast,
if a leader by default stays in place for, say, 1000 slots, when we come to a crashed leader,
we will still waste the equivalent of a few slots, but this will be a much smaller percentage of
all slots. Another advantage is that if transactions are being submitted to the system by
external clients, then (just as in classical PBFT) these transactions can typically just be sent
to a stable leader. Yet another advantage, as we will discuss below, is that a stable leader
can drive the protocol even faster, achieving both higher throughput and lower latency.

The Simplex protocol has such a very natural internal logic to it that the logic for
maintaining stable leaders suggests itself almost immediately. Let us say that by default a
leader will stay in place for a certain number of consecutive slots, which we call an epoch.
For example, one epoch might be 1000 consecutive slots.

So that we can move to the next epoch as soon as we detect a faulty leader, we shall
adopt the convention that a complaint certificate for a slot v effectively covers the rest of
the epoch containing v.
In order to maintain safety, this means that any party that issues a complaint share for a
slot v must abstain from issuing a commit certificate in slot v and all remaining slots of
the interval containing v.
This means that once one honest party issues a complaint share for a slot v, it may not
be possible to commit a block in slot v or in any of the remaining slots of the interval
containing v, even though blocks may continue to be supported and added to the complete
block tree.
Therefore, in order to maintain liveness, we introduce logic that prevents parties from
moving too far ahead of the slot of the last committed block in an epoch.

The details of our protocol, which we call StableDispersedSimplex, are in Fig. 2. Note
that for any slot number v, begin(v) denotes the first slot number of the epoch containing v,
while end(v) denotes the last slot number in an epoch. The value k is a constant parameter,
which can be set to 1 or any other small positive integer. The logic to go to the next slot
on seeing an approved block ensures that the approved blocks do not get more than k slots
ahead of the committed blocks (and if the network is well behaved and the leader is honest,
it should never get more than 1 slot ahead).

DISC 2024

37:14 Sing a Song of Simplex

StableDispersedSimplex: main loop for party Pj

vlast ← 0, v ← 1
repeat forever

Tstart ← clock(), done← proposed← supported← complained← false
if v = begin(v) then complainedInEpoch← false // new epoch
while not done do

wait until either:
the certificate pool contains a complaint certificate for any slot in [begin(v) . . v]⇒

done← true, v ← end(v) + 1 // go to next epoch
the complete block tree contains a block for slot v and

(v = end(v) or there is a committed block for all slots in [begin(v) . . v − k]) ⇒
if not complainedInEpoch then broadcast a commit share for v
done← true, vlast ← v, v ← v + 1 // go to next slot

not complained and (complainedInEpoch or clock() > Tstart + ∆timeout) ⇒
complained← complainedInEpoch← true
broadcast a complaint share for slot v

// The rest is the same as in Fig. 1

Figure 2 Logic for main loop of StableDispersedSimplex protocol for party Pj

The protocol makes use of the identical subprotocols for maintaining the certificate pool
and complete block tree. The logic for generating block proposals is identical to that in the
basic protocol.

The logic for validating block proposals is the same as in the basic protocol, except as
follows. First, if v > begin(v), we require that v = v′ + 1, which enshrines the fact that
an honest leader should propose blocks with consecutive slot numbers. Second, instead of
checking that the certificate pool contains complaint certificates for slots v′ + 1, . . . , v − 1,
we check that it contains complaint certificates that effectively cover this interval – that
is, for each w ∈ [v′ + 1 . . v − 1], there exists a complaint certificate for a slot u such that
w ∈ [u . . end(u)]. It is an easy exercise to generalize the data structures and algorithms in
Appendix B.1 to work in this setting. One sees that this protocol is identical to the basic
protocol if all epochs are of size 1.

4.1 Analysis
We sketch here the main ideas of the safety and liveness analysis for this protocol.

The basic properties in Section 3.1 hold here as well, except that the Incompatibility of
Complaint and Commit Property generalizes here as follows: if a complaint certificate for a
slot v has been produced, then it is impossible to produce a commit certificate for any slot
in [v . . end(v)]. This follows from the Quorum Intersection Property and the fact that if an
honest party issues a complaint share in slot v, it will not issue a complaint share in v or any
subsequent round in the same epoch as v.

Lemma 1 holds for this protocol as stated. The proof of Lemma 1 go through with
essentially no change, other than to note the fact that we use complain certificates that cover
the interval [v′ + 1 . . v − 1]. Lemma 2 may be adjusted as follows (proof in Appendix A.4):

▶ Lemma 4 (Liveness I – stable leader version). Consider a particular slot v ≥ 1 and suppose
the leader for slot v is an honest party Q. Suppose that the first honest party P to enter the
loop iteration for slot v does so at time T . Further suppose that the network is δ-synchronous
over the interval [T, T + 3δ] for some δ with ∆timeout ≥ 3δ. Then before time T + 3δ, each
honest party will reach a loop iteration ≥ v. In addition, if each honest party issues a commit

V. Shoup 37:15

share in rounds begin(v), . . . , v − 1, then each honest party will finish loop iteration v before
time T + 3δ, by adding Q’s proposed block B to its complete block tree and issuing a commit
share for round v.

The lemma is stated as it is so that by repeated application of the lemma, it follows that
so long as the network remains appropriately synchronous, an honest leader will continue to
get all of its proposals committed.

Lemma 3 holds for this protocol essentially as stated – the conclusion would be better
worded as “all honest parties have entered the loop iteration for some slot w > v”. The
proof only needs to be changed to reflect the fact that before time T + δ, every honest party
either enters the loop iteration for slot v or moves to the next epoch because of a complaint
certificate for some round in [begin(v) . . v − 1]. In the latter case, before time T + 2δ, all
honest parties will have moved to the next epoch.

4.2 Improved performance through stability
As mentioned above, performance can be improved by having stable leaders. To see how, let
us return to the concrete example in Section 3.5, with the parameters used there: n ≈ 100
parties connected over a WAN, 1Gb/s bandwidth, 100ms latency, and an 8MB block size.

In the example timeline we gave there, if the leader starts transmitting the packets of
a block at time T , then by time (roughly) T + 200ms the leader stops transmitting, but
the other parties will not finish the slot until time (again, roughly) T + 440ms. With a
constantly rotating leader, the leader for the next slot will wait until this time before it
begins transmitting the packets of its block. However, a stable leader can start transmitting
these packets already at time T + 200ms. Indeed, between time T and T + 200ms, it could
have gathered the transactions for its next block (and even performed the erasure encoding of
that block), so that it can start transmitting the these packets right away at time T + 200ms.

Thus, throughout an epoch where the leader is honest and the network is synchronous,
we basically get another level of pipelining, with the leader starting a new slot every 200ms.
Note that in these circumstances, all parties will essentially fully utilize all available network
bandwidth. (Achieving all this assumes multi-threading on a few cores.) This translates to a
throughput of 8MB every 200ms, so about 40MB per second. The optimistic consecutive-
proposal latency is 200ms. The optimistic proposal-commit latency remains the same as in
the rotating leaders version, so about 540ms.

Finally, we note that while the stable leader may nearly saturate its upload bandwidth, it
is not consuming very much download bandwidth, which leaves plenty of bandwidth available
for downloading transactions that are submitted directly to the stable leader by external
clients.

See Appendix B.3 for simple variations on StableDispersedSimplex. In the full version
[22], we (i) give a more extended version of the above example timeline, (ii) show how to
double the throughput to 80MB per second using the improved data dissemination techniques
in [17] without impacting latency, and (iii) discuss performance, quality, and censorship
attacks on StableDispersedSimplex, and ways of mitigating against them.

References
1 Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzantine

broadcast: A complete categorization, 2021. arXiv:2102.07240, http://arxiv.org/abs/2102.
07240.

DISC 2024

http://arxiv.org/abs/2102.07240
http://arxiv.org/abs/2102.07240

37:16 Sing a Song of Simplex

2 Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. Succinct erasure coding proof
systems. Cryptology ePrint Archive, Paper 2021/1500, 2021. URL: https://eprint.iacr.
org/2021/1500.

3 Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, Public Key Cryptography
- PKC 2003, 6th International Workshop on Theory and Practice in Public Key Cryptography,
Miami, FL, USA, January 6-8, 2003, Proceedings, volume 2567 of Lecture Notes in Computer
Science, pages 31–46. Springer, 2003. doi:10.1007/3-540-36288-6_3.

4 Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. Cryptology ePrint Archive, Paper 2018/483, 2018. URL: https://eprint.iacr.
org/2018/483.

5 Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin
Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on
the Theory and Application of Cryptology and Information Security, Gold Coast, Australia,
December 9-13, 2001, Proceedings, volume 2248 of Lecture Notes in Computer Science, pages
514–532. Springer, 2001. doi:10.1007/3-540-45682-1_30.

6 Christian Cachin and Stefano Tessaro. Asynchronous verifiable information dispersal. In Pierre
Fraigniaud, editor, Distributed Computing, 19th International Conference, DISC 2005, Cracow,
Poland, September 26-29, 2005, Proceedings, volume 3724 of Lecture Notes in Computer
Science, pages 503–504. Springer, 2005. doi:10.1007/11561927_42.

7 Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor Shoup, and
Dominic Williams. Internet computer consensus. Cryptology ePrint Archive, Report 2021/632,
2021. URL: https://ia.cr/2021/632.

8 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Margo I. Seltzer and
Paul J. Leach, editors, Proceedings of the Third USENIX Symposium on Operating Systems
Design and Implementation (OSDI), New Orleans, Louisiana, USA, February 22-25, 1999,
pages 173–186. USENIX Association, 1999. URL: https://dl.acm.org/citation.cfm?id=
296824.

9 Benjamin Y. Chan and Rafael Pass. Simplex consensus: A simple and fast consensus
protocol. In Guy N. Rothblum and Hoeteck Wee, editors, Theory of Cryptography - 21st
International Conference, TCC 2023, volume 14372 of Lecture Notes in Computer Science,
pages 452–479. Springer, 2023. Also at https://eprint.iacr.org/2023/463. doi:10.1007/
978-3-031-48624-1_17.

10 George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal
and Tusk: a DAG-based mempool and efficient BFT consensus. In Yérom-David Bromberg,
Anne-Marie Kermarrec, and Christos Kozyrakis, editors, EuroSys ’22: Seventeenth European
Conference on Computer Systems, Rennes, France, April 5 - 8, 2022, pages 34–50. ACM,
2022. Also at arXiv:2105.11827, http://arxiv.org/abs/2105.11827. doi:10.1145/3492321.
3519594.

11 S. Dolev and Z. Wang. SodsBC: Stream of distributed secrets for quantum-safe blockchain. In
2020 IEEE International Conference on Blockchain (Blockchain), pages 247–256, Los Alamitos,
CA, USA, 2020. IEEE Computer Society.

12 Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, 1988. doi:10.1145/42282.42283.

13 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need is
DAG. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM
Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021,
pages 165–175. ACM, 2021. Also at arXiv:2102.08325, http://arxiv.org/abs/2102.08325.
doi:10.1145/3465084.3467905.

14 Sian-Jheng Lin, Tareq Y. Al-Naffouri, Yunghsiang S. Han, and Wei-Ho Chung. Novel poly-
nomial basis with fast Fourier transform and its application to Reed-Solomon erasure codes.
IEEE Trans. Inf. Theory, 62(11):6284–6299, 2016. doi:10.1109/TIT.2016.2608892.

https://eprint.iacr.org/2021/1500
https://eprint.iacr.org/2021/1500
https://doi.org/10.1007/3-540-36288-6_3
https://eprint.iacr.org/2018/483
https://eprint.iacr.org/2018/483
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/11561927_42
https://ia.cr/2021/632
https://dl.acm.org/citation.cfm?id=296824
https://dl.acm.org/citation.cfm?id=296824
https://eprint.iacr.org/2023/463
https://doi.org/10.1007/978-3-031-48624-1_17
https://doi.org/10.1007/978-3-031-48624-1_17
http://arxiv.org/abs/2105.11827
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/42282.42283
http://arxiv.org/abs/2102.08325
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.1109/TIT.2016.2608892

V. Shoup 37:17

15 Sian-Jheng Lin and Wei-Ho Chung. An efficient (n, k) information dispersal algorithm for
high code rate system over Fermat fields. IEEE Commun. Lett., 16(12):2036–2039, 2012.
doi:10.1109/LCOMM.2012.112012.121322.

16 Thomas Locher. Byzantine reliable broadcast with low communication and time complexity,
2024. arXiv:2404.08070, http://arxiv.org/abs/2404.08070.

17 Thomas Locher and Victor Shoup. MiniCast: Minimizing the communication complexity
of reliable broadcast. Cryptology ePrint Archive, Paper 2024/571, 2024. URL: https:
//eprint.iacr.org/2024/571.

18 Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-MVBA: Optimal multi-valued
validated asynchronous byzantine agreement, revisited. In Yuval Emek and Christian Cachin,
editors, PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event,
Italy, August 3-7, 2020, pages 129–138. ACM, 2020. doi:10.1145/3382734.3405707.

19 Dahlia Malkhi and Kartik Nayak. Extended abstract: HotStuff-2: Optimal two-phase respon-
sive BFT. Cryptology ePrint Archive, Paper 2023/397, 2023. URL: https://eprint.iacr.
org/2023/397.

20 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of BFT
protocols. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages 31–42. ACM, 2016.
Also at https://eprint.iacr.org/2016/199. doi:10.1145/2976749.2978399.

21 Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299–319, 1990. doi:10.1145/98163.98167.

22 Victor Shoup. Sing a song of simplex. Cryptology ePrint Archive, Paper 2023/1916, 2023.
URL: https://eprint.iacr.org/2023/1916.

23 Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and Zekun Li. Shoal: Improving dag-bft
latency and robustness, 2023. arXiv:2306.03058, http://arxiv.org/abs/2306.03058.

24 Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bull-
shark: DAG BFT protocols made practical. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022,
pages 2705–2718. ACM, 2022. Also at arXiv:2201.05677, http://arxiv.org/abs/2201.05677.
doi:10.1145/3548606.3559361.

25 Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, and Marko Vukolić. Mir-BFT:
High-throughput robust bft for decentralized networks, 2019. arXiv:1906.05552, http://arxiv.
org/abs/1906.05552.

26 Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse. Dis-
persedLedger: High-throughput byzantine consensus on variable bandwidth networks, 2021.
arXiv:2110.04371, http://arxiv.org/abs/2110.04371.

27 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. HotStuff:
BFT consensus in the lens of blockchain, 2018. arXiv:1803.05069, http://arxiv.org/abs/
1803.05069.

A Some proofs

A.1 Proof of Lemma 1
By the Incompatibility of Complaint and Commit Property, no complaint certificate for slot
v can be produced. Let C ′ be the parent of C and suppose w′ is the slot number of C ′.
Since C ′ is in Q’s complete block tree, a support certificate for C ′ must have been produced,
which means at least one honest party must have issued a support share for C ′, which means
v ≤ w′ < w. The inequality v ≤ w′ follows from the fact that there is no complaint certificate
for slot v, and an honest party will issue a support share for C only if it has complaint
certificates for slots w′ + 1, . . . , w − 1.

DISC 2024

https://doi.org/10.1109/LCOMM.2012.112012.121322
http://arxiv.org/abs/2404.08070
https://eprint.iacr.org/2024/571
https://eprint.iacr.org/2024/571
https://doi.org/10.1145/3382734.3405707
https://eprint.iacr.org/2023/397
https://eprint.iacr.org/2023/397
https://eprint.iacr.org/2016/199
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/98163.98167
https://eprint.iacr.org/2023/1916
http://arxiv.org/abs/2306.03058
http://arxiv.org/abs/2201.05677
https://doi.org/10.1145/3548606.3559361
http://arxiv.org/abs/1906.05552
http://arxiv.org/abs/1906.05552
http://arxiv.org/abs/2110.04371
http://arxiv.org/abs/1803.05069
http://arxiv.org/abs/1803.05069

37:18 Sing a Song of Simplex

If v = w′, we are done by the (first part of the) Uniqueness and Validity Property, and if
v < w′, we can repeat the argument inductively with C ′ in place of C.

A.2 Proof of Lemma 2
By the Completeness Property, before time T + δ, each honest party will enter the loop
iteration for slot v by time T + δ, having either a complaint certificate for slot v − 1 or a
block for slot v− 1 in its complete block tree. So before time T + δ, the leader Q will propose
a block B that extends a block B′ with slot number v′ < v. By the logic of the protocol, we
know that Q must have complaint certificates for slots v′ + 1, . . . , v − 1 at the time it makes
its proposal. Again by the Completeness Property, before time T + 2δ, each honest party
will have B′ in its complete block tree and all of these complaint certificates in its certificate
pool, and moreover, will receive Q’s proposal before this time, and hence will broadcast a
support share for Q’s proposal by this time. Therefore, before time T + 3δ, each honest party
will have added B to its complete block tree. By the assumption that ∆timeout ≥ 3δ, when
each honest party adds B to its complete block tree, the complaint condition will not have
been met, and therefore, each honest party will issue a commit share for v at this time. If
the network remains δ-synchronous, the commit shares will be received by all honest parties
before time T + 4δ.

A.3 Proof of Lemma 3
By the Completeness Property, every honest party will enter the loop iteration for slot v

before time T + δ. By time T + δ + ∆timeout, every honest party will have either added a
block for slot v to its complete block tree or broadcast a complaint share for slot v. In either
case, less than δ time units later all honest parties will have finished the loop iteration for
slot v.

A.4 Proof of Lemma 4
The proof goes through with essentially no change in the case where v is the first slot in an
epoch. For later slots in the epoch, we need to add the extra assumption that each honest
party issued a commit share for all previous slots in the epoch – and so did not issue a
complaint share in those slots. This guarantees that before time T + δ all honest parties
will enter the loop iteration for slot v, and that before time T + 2δ, not only will all honest
parties issue support shares for Q’s proposal but will also commit the block for slot v − 1.
Therefore, before time T + 3δ, each party will finish the loop iteration for slot v as stated.

B Some implementation details and minor variations

B.1 Implementing the block proposal validation logic
To validate a proposal for a block B in slot v whose parent is a block B′ in slot v′, a party
needs to check if its complaint pool contains complaint certificates for slots v′ + 1, . . . , v − 1.
Here is a simple, practical way to do this.

Suppose that when a party enters the loop iteration for slot v, the highest slot number for
which it has committed is vcom. We know by the Incompatibility of Complaint and Commit
Property, there can never be a complaint certificate for slot vcom. So the party can maintain
two data structures.

V. Shoup 37:19

A doubly linked list of those slots in the range {vcom, . . . , v − 1} for which it does not
have a complaint certificate, in order from lowest to highest.
A lookup table from {vcom, . . . , v−1} to nodes in this doubly linked list – this table could
just be a dynamic, circular array.

Then, the party can perform the following operations:
Whenever a new complaint certificate appears for a slot in the range {vcom, . . . , v − 1}, it
accesses the corresponding node via the lookup table and removes it from the linked list.
When the value of vcom or v is increased, it updates both the lookup table and linked list
in the obvious way.

For each slot, a constant amount of work is performed to maintain this data structure.
Moreover, at any point in time, a party can find in constant time the highest slot number
v∗ < v for which it has complaint certificates for slots v∗ + 1, . . . , v − 1.

B.2 Simple variations
We mention here a few simple variations of DispersedSimplex.

Choice of parent block. In the protocol, the leader in slot v proposes a new block whose
parent is Bprev. In fact, the leader is free to choose as the parent block any block B′ for
a slot v′ such that v′ < v and the leader’s complaint pool contains complaint certificates
for each slot v′ + 1, . . . , v − 1.
Moving on from bad blocks. In the protocol, in managing the complete block tree, when a
party reconstructs the payload and finds that it is bad (either ⊥ or otherwise invalid),
it effectively just ignores the block and the slot will eventually time out. In a variation,
parties could simply issue a complaint share right away, without waiting to time out.
Withholding support after complaining. As we described the protocol, a party may issue a
support share in a slot even if it has already issued a complaint share in that slot. This
rule is not essential and the protocol would also provide both safety and liveness if a
party chose not to issue a support share in this case.
Optimizing small payloads. For small payloads, instead of erasure coding the payload and
dispersing fragments, the leader could just disperse the payload directly. A support share
would also contain the payload as well. Alternatively, we could use an erasure code with
different parameters that was more suitable for small payloads.

B.3 Simple variations on StableDispersedSimplex
The variations discussed in Appendix B.2 can be adapted to StableDispersedSimplex as well.
Note that the variation in which support is withheld after complaining may be implemented
so that after a party issues complaint share in an epoch, that party will not issue any more
support shares in the epoch. This implementation will have the effect of dislodging the
leader somewhat earlier. However, with this as well as with all of the other variations in
Appendix B.2, the results for StableDispersedSimplex still hold.

C Comparison to other protocols

C.1 Simplex
As already mentioned above in Section 3.4.2, the optimistic proposal-commit latency (3δ)
and the optimistic consecutive-proposal latency (2δ) of DispersedSimplex are the same as
for Simplex. A proper comparison of the communication complexity of DispersedSimplex
and Simplex is not really possible. This is because description of Simplex in [9] is a bit

DISC 2024

37:20 Sing a Song of Simplex

problematic. Taking the description of the protocol in Section 2.1 of [9] literally, in each
slot, every party sends a copy of the entire blockchain, along with a support or complaint
certificate for every slot from genesis, to every other party. This is clearly entirely impractical,
and one must assume the authors of [9] mean this only in some figurative sense, although
very little guidance is given as to what it should mean literally. Elsewhere (in particular in
Section 3.4 of [9]) it is suggested that messages are much smaller (but without any details).

The variant of DispersedSimplex discussed in Appendix B.2 for small payloads, with
no erasure coding, can be viewed as a fully specified, practical version of Simplex. The
DispersedSimplex protocol itself then shows how to get even better communication complexity
through erasure codes, but without increasing latency. Note that DispersedSimplex is
optimistically responsive, just like Simplex.

C.2 HotStuff and HotStuff-2
We may also compare DispersedSimplex to HotStuff [27] and the recently proposed improve-
ment HotStuff-2 [19].

C.2.1 Latency
HotStuff-2 has an optimistic proposal-commit latency of 5δ while HotStuff has a an optimistic
proposal-commit latency of 7δ. Pipelined versions of these protocols can achieve an optimistic
consecutive-proposal latency 2δ. Thus, (pipelined versions of) HotStuff and HotStuff-2 have
the same optimistic consecutive-proposal latency of DispersedSimplex, but have worse
optimistic proposal-commit latency (which is just 3δ for DispersedSimplex).

We note that HotStuff and HotStuff-2 are optimistically responsive, just like Dispersed-
Simplex and Simplex.

C.2.2 Communication complexity
The reported communication complexity of HotStuff and HotStuff-2 is O(n(β + κ + λ)).
Recall that β bounds the block size, κ the signature share/certificate size, and λ the hash
size. For small blocks, specifically if β ≪ n(κ + λ log n), this communication complexity is
better than that of DispersedSimplex, which is O(nβ +n2(κ+λ log n)), as we discussed above
in Section 3.4.1. However, this reported communication cost does not actually take into
account the cost of reliable block dissemination. In these protocols, the leader is (apparently)
supposed to simply send its proposed block to each party – at least, that is what is written
in [27].

This creates two problems. First, there is no mechanism specified that ensures that all
honest parties obtain the payloads of committed blocks. Naive mechanisms in which parties
simply poll other parties for missing blocks can easily degenerate into O(n2β) communication
complexity: all corrupt parties could simply ask for a block from all honest parties. If
information dispersal techniques are used to ensure data availability, this would again make
the communication complexity quadratic in n. So at best, the communication complexity
of these protocols is better only for small blocks and only assuming corrupt parties do not
misbehave too much.

Second, if the description in [27] is taken literally, the communication load in HotStuff
(and apparently HotStuff-2) is very unbalanced. This can create a communication bottleneck
at the leader. Indeed, as demonstrated empirically in [20, 25], it seems that for systems
with moderate network size (n up to a hundred or so) and large block sizes, taking care

V. Shoup 37:21

to disseminate blocks to all parties in a way that does not create a bottleneck at the
leader is more important in practice than worrying about the quadratic dependence on n

in the communication complexity. In contrast, as mentioned above in Section 3.4.1, the
communication load of DispersedSimplex is balanced. That is, each party, including the leader,
transmits roughly the same about of data over the network. Thus, while in HotStuff (and
HotStuff-2), the leader has to transmit O(nβ) bytes across the network, in DispersedSimplex,
the leader (and every party) transmits O(β) bytes across the network.

C.2.3 Concrete estimates
It would be interesting to perform a careful empirical investigation to compare the real-
world performance of DispersedSimplex and (pipelined) HotStuff/HotStuff-2 under various
parameter settings. However, we can attempt to make a “back of the envelope” calculation,
similar to what we did in Section 3.5. With the parameters we used there (1Gb/s network
bandwidth and 100ms network latency), the propagation delay per slot would be the same,
so about 200ms, and the computation delay would be less. As for the transmission delay,
if the block size is β bytes, then in each slot the leader has to transmit a total of nβ bytes
across the network. As a specific example, let us say n ≈ 100, so the transmission delay
would be about 800ms for every 1MB of block data. This is obviously much worse than the
25ms per 1MB of block data for DispersedSimplex. With these estimates, the best possible
throughput that could be achieved is 1.25MB of block data per second. More concretely,
suppose we set the block size to 1MB. So ignoring computation delay (which is just a few
ms),

the throughput is about 1MB per second (vs 18MB per second for DispersedSimplex,
or 40MB per second for StableDispersedSimplex discussed in Section 4.2, or 80MB per
second for the improved version of StableDispersedSimplex in the full version [22]),
the optimistic consecutive-proposal latency is 1s (vs 440ms for DispersedSimplex, or
200ms for StableDispersedSimplex), and
(for HotStuff-2) the optimistic proposal-commit latency is that plus about 300ms, so
about 1.3s (vs 540ms for any of the variants of DispersedSimplex discussed here).

In the above calculations, we saw that for an unbalanced protocol like HotStuff (or
PBFT), as n increases, the throughput should decrease, and the latency should increase,
while in a balanced protocol like DispersedSimplex, throughput and latency should not
depend very much on n. This type of behavior has been confirmed experimentally in papers
such as [20, 25], although not for the exact protocols considered here. Also, while we focused
on throughput and latency, there are other costs to consider – namely, the monetary (or
other) costs associated with transmitting a certain amount of data. These costs are directly
proportional to the overall communication complexity, and it is indeed true that erasure
coding does inflate these costs by a factor of 3 (although this can be reduced to a factor of 1.5
as discussed in the full version [22]). Another factor to potentially consider is the fact that
for a balanced protocol like DispersedSimplex, the rate at which each party is transmitting
is fairy constant, while for protocols like HotStuff, it is very bursty.

C.3 ICC
The Simplex protocol bears a passing resemblance to the ICC protocols ICC in [7]. The main
difference is that for the ICC protocols, if the leader for a slot v is perceived to fail, then
instead of simply timing out, a (somewhat complicated) fail-over mechanism is triggered
that will eventually add a block to the complete block tree for slot v that is proposed by

DISC 2024

37:22 Sing a Song of Simplex

a different party. Latency and communication costs in the optimistic setting for protocols
ICC0 and ICC1 in [7] are very similar to that of Simplex. We note that protocol ICC2 in [7]
employs information dispersal techniques to get better communication complexity, but at
the expense extra latency. Thus, DispersedSimplex is both simpler and more efficient than
that any of the ICC protocols.

C.4 DAG-based atomic broadcast protocols
Recently, there has been a flurry of papers on DAG-based atomic broadcast protocols
[13, 10, 24, 23]. One of the attractions of these protocols is that, by design, they are
leaderless and thereby avoid the bandwidth bottleneck that some leader-based protocols can
exhibit. Indeed, as stated in [10]: “decoupling transaction dissemination from the critical
path of consensus is the key to blockchain scalability”. As mentioned above, the papers
[20, 25] already demonstrated the importance of taking care to disseminate blocks to all
parties in a way that does not create such a bottleneck. We also mentioned above that
protocol ICC2 in [7] shows how to do this in a leader-based protocol, and we have shown
in this paper how DispersedSimplex achieves this in a leader-based protocol with optimal
proposal-commit latency. As shown in Section 4, a stable-leader variant of DispersedSimplex
can achieve even better performance, and specifically, when the leader is honest and the
network is synchronous, all parties will essentially fully utilize all available network bandwidth.
Thus, it is not entirely clear to us that the leader-bottleneck problem exhibited by some
earlier leader-based protocols is a valid reason to abandon leader-based protocols entirely,
especially since leader-based protocols (such as DispersedSimplex) still exhibit superior (and
essentially optimal) latency characteristics. Moreover, it is also not entirely clear to us that
“decoupling transaction dissemination from the critical path of consensus” is an inherently
good idea: while such a decoupling may be good from a software engineering point of view, as
we demonstrate with DispersedSimplex, it is precisely by tightly coupling dissemination with
consensus that we can fully utilize network bandwidth without sacrificing optimal latency,
using a quite simple and elegant protocol.

There are many metrics on which consensus protocols may be compared. While DAG-
based consensus protocols may well be superior on some metrics, it does not appear (based on
our analysis) that the core metrics of common-case throughput and latency are among them.

	1 Introduction
	2 The DispersedSimplex protocol
	2.1 Preliminaries
	2.1.1 Signatures
	2.1.2 Information dispersal

	2.2 Protocol data objects
	2.2.1 Blocks
	2.2.2 Support, commit, and complaint shares and certificates

	2.3 Subprotocols
	2.3.1 Certificate pool
	2.3.2 Complete block tree
	2.3.3 Block commitment

	2.4 The main protocol
	2.4.1 Generating block proposals
	2.4.2 Validating block proposals

	3 Analysis
	3.1 Initial observations
	3.2 Safety
	3.3 Liveness
	3.4 Complexity estimates
	3.4.1 Communication complexity
	3.4.2 Latency

	3.5 Other costs and concrete estimates

	4 Stable leaders
	4.1 Analysis
	4.2 Improved performance through stability

	A Some proofs
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2
	A.3 Proof of Lemma 3
	A.4 Proof of Lemma 4

	B Some implementation details and minor variations
	B.1 Implementing the block proposal validation logic
	B.2 Simple variations
	B.3 Simple variations on StableDispersedSimplex

	C Comparison to other protocols
	C.1 Simplex
	C.2 HotStuff and HotStuff-2
	C.2.1 Latency
	C.2.2 Communication complexity
	C.2.3 Concrete estimates

	C.3 ICC
	C.4 DAG-based atomic broadcast protocols

