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Abstract
Consider that there are k ≤ n agents in a simple, connected, and undirected graph G = (V,E) with
n nodes and m edges. The goal of the dispersion problem is to move these k agents to mutually
distinct nodes. Agents can communicate only when they are at the same node, and no other
communication means, such as whiteboards, are available. We assume that the agents operate
synchronously. We consider two scenarios: when all agents are initially located at a single node
(rooted setting) and when they are initially distributed over one or more nodes (general setting).
Kshemkalyani and Sharma presented a dispersion algorithm for the general setting, which uses
O(mk) time and log(k + ∆) bits of memory per agent [OPODIS 2021], where mk is the maximum
number of edges in any induced subgraph of G with k nodes, and ∆ is the maximum degree of
G. This algorithm is currently the fastest in the literature, as no o(mk)-time algorithm has been
discovered, even for the rooted setting. In this paper, we present significantly faster algorithms for
both the rooted and the general settings. First, we present an algorithm for the rooted setting that
solves the dispersion problem in O(k log min(k,∆)) = O(k log k) time using O(log(k + ∆)) bits of
memory per agent. Next, we propose an algorithm for the general setting that achieves dispersion in
O(k log k · log min(k,∆)) = O(k log2 k) time using O(log(k+ ∆)) bits. Finally, for the rooted setting,
we give a time-optimal (i.e., O(k)-time) algorithm with O(∆ + log k) bits of space per agent. All
algorithms presented in this paper work only in the synchronous setting, while several algorithms in
the literature, including the one given by Kshemkalyani and Sharma at OPODIS 2021, work in the
asynchronous setting.
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1 Introduction

In this paper, we focus on the dispersion problem involving mobile entities, referred to
as mobile agents, or simply, agents. At the start of an execution, k agents are arbitrarily
positioned at nodes of an undirected graph G = (V,E) with n nodes and m edges. The
objective is to ensure that all agents are located at mutually distinct nodes. This problem

© Yuichi Sudo, Masahiro Shibata, Junya Nakamura, Yonghwan Kim, and Toshimitsu Masuzawa;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 38; pp. 38:1–38:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sudo@hosei.ac.jp
https://orcid.org/0000-0002-4442-1750
mailto:shibata@csn.kyutech.ac.jp
https://orcid.org/0000-0003-1414-8033
mailto:junya@imc.tut.ac.jp
https://orcid.org/0000-0002-1363-4358
mailto:kim@nitech.ac.jp
https://orcid.org/0000-0002-5437-7626
mailto:masuzawa@ist.osaka-u.ac.jp
https://orcid.org/0000-0003-4628-6393
https://doi.org/10.4230/LIPIcs.DISC.2024.38
https://doi.org/10.48550/arXiv.2310.04376
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


38:2 Near-Linear Time Dispersion of Mobile Agents

Table 1 Dispersion of mobile agents on an arbitrary graph (τ = min(k,∆)) The algorithm of [7]
needs to know an asymptotically tight upper bound on mk in advance. (Since mk ≤ min(m, k∆,

(
k
2

)
),

knowing tight upper bounds on m, k, and ∆ is sufficient, but it increases the running time to
O(min(m, k∆,

(
k
2

)
) log k).) The log k term can be eliminated from the space complexities marked

with daggers (†) if you choose to disregard the memory space required for each agent to store its own
identifier. For example, the proposed algorithm mentioned in Theorem 8 requires only O(log ∆) bits
per agent. The space complexity of the first algorithm given by [6], which is marked with a double
dagger (‡), can be decreased to O(k log ∆) if we assume that the number of possible agent-identifiers
is O(k). All algorithms listed in this table are deterministic.

Memory per agent Time General/Rooted Async./Sync.
[2] O(log(k + ∆)) † O(mk) rooted async.
[10] O(D + ∆ log k) O(D∆(D + ∆)) rooted async.

Theorem 8 O(log(k + ∆)) † O(k log τ) rooted sync.
Theorem 12 O(∆ + log k) † O(k) rooted sync.

[6] O(k log(k + ∆)) ‡ O(mk) general async.
[6] O(D log ∆ + log k) † O(∆D) general async.
[6] O(log(k + ∆)) O(mk · k) general async.
[7] O(log(k + ∆)) O(mk log k) general sync.
[16] O(log(k + ∆)) O(mk log k) general sync.
[11] O(log(k + ∆)) O(mk) general async.

Theorem 10 O(log(k + ∆)) O(k log2 k) general sync.
Lower bound any Ω(k) any any

was originally proposed by Augustine and Moses Jr. [2] in 2018. A particularly intriguing
aspect of this problem is the unique computation model. Unlike many other models involving
mobile agents on graphs, we do not have access to node identifiers, nor can we use local
memory at each node. In this setting, an agent cannot retrieve or store any information from
or on a node when it visits. However, each of the k agents possesses a unique identifier and
can communicate with each other when they are at the same node in the graph. The agents
must collaboratively solve the dispersion problem through this direct communication.

Several algorithms have been introduced in the literature to solve the dispersion problem.
This problem has been examined in two different contexts within the literature: the rooted
setting and the general setting. In the rooted setting, all k agents initially reside at a single
node. On the other hand, the general setting imposes no restrictions on the initial placement
of the k agents. For any i ∈ [1, n], we define mi as the maximum number of edges in any
i-node induced subgraph of G. The parameter mk, where k is the number of agents, serves
as an upper bound on the number of edges connecting two nodes, each hosting at least one
agent, in any configuration. Consequently, mk frequently appears in the time complexities
of dispersion algorithms. This is because (i) solving the dispersion problem essentially
requires finding k distinct nodes, and (ii) the simple depth-first search (DFS), employed as a
submodule by many dispersion algorithms, needs to explore mk edges to find k nodes.

Table 1 provides a summary of various dispersion algorithms found in the literature, all
designed for arbitrary graphs. Here, ∆ and D are the maximum degree and the diameter of
a graph, respectively, and τ = min(k,∆). Augustine and Moses Jr. [2] introduced a simple
algorithm, based on depth-first search (DFS), for the rooted setting. This algorithm solves
the dispersion problem in O(mk) time using O(log ∆) bits of space per agent. Kshemkalyani
and Ali [6] provides two algorithms that accomplish dispersion in the general setting: an
O(mk)-time and O(k log(k+ ∆))-space algorithm, and an O(mk · k)-time and O(log(k+ ∆))-
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space algorithm, offering a trade-off between time and space. The first is faster but needs
more space, while the second is slower but more memory-efficient. Kshemkalyani, Molla,
and Sharma [7] found a middle ground with an algorithm that runs in O(mk log k) time and
uses O(log(k + ∆)) bits of each agent’s memory. This algorithm, however, requires a priori
global knowledge, asymptotically tight upper bounds on mk, to attain its time upper bound.
Shintaku, Sudo, Kakugawa, and Masuzawa [16] managed to eliminate this requirement for
global knowledge. More recently, Kshemkalyani and Sharma [11] removed the log k factor
from the running time. This algorithm also works in an asynchronous setting, meaning the
agents do not need to share a common clock. Any dispersion algorithm requires at least
Ω(k) time, which is almost trivial, but we will provide a proof for completeness in this paper.
No other lower bounds on the time complexity of dispersion have been established in the
literature. Thus, there is still a significant gap between the best known upper bound O(mk)
and this lower bound of Ω(k) because mk = Θ(k2) holds in many graph classes. Note that
mk = Θ(k2) may hold even in a sparse graph when k = O(

√
n).

All the algorithms mentioned above are based on DFS. However, a few algorithms
[6, 10] are designed based on BFS (breadth-first search) and exhibit different performance
characteristics. Notably, their upper bounds on running time do not depend on the number
of agents k, but depend on diameter D and the maximum degree ∆ of a graph.
▶ Note 1 (Space Complexity). Conforming to the convention in the studies of mobile agents
[5], this paper, including Table 1, evaluates the space complexity of an algorithm as the
maximum size of persistent memory needed by an agent during its execution. Persistent
memory refers to the information an agent carries when it moves from one node to another
and does not include the working memory used for local computations at nodes. This
persistent memory includes the space required to store its own identifier. Since the k agents
are labeled with unique identifiers, every algorithm requires O(log k) bits per agent.
▶ Note 2 (Parameter mk). The parameter mk is introduced in this paper and has not been
previously utilized in the literature. Traditionally, the running times of DFS-based algorithms
are represented using the parameter min(m, k∆) or min(m, k∆,

(
k
2
)
), which are always greater

than or equal to mk. The parameter mk may be better to represent them because there are
some graph classes where mk = o(k2) while min(m, k∆,

(
k
2
)
) = Ω(k2).

1.1 Our Contribution
In this paper, we drastically reduce the gap between the upper bound O(mk) and the lower
bound Ω(k) mentioned earlier. As previously noted, mk = Θ(k2) may hold even in sparse
graphs, making this gap significant. Let τ = min(k,∆). We present two algorithms: one for
the rooted setting that achieves dispersion in O(k log τ) = O(k log k) time using O(log ∆) bits,
and the other for the general setting that achieves dispersion in O(k log k · log τ) = O(k log2 k)
time using O(log(k + ∆)) bits. The upper bounds obtained here match the lower bounds in
both the rooted and the general settings when ignoring poly-logarithmic factors.

To achieve this upper bound, we introduce a new technique. Like many existing algorithms,
our algorithms are based on Depth-First Search (DFS). That is, we let agents run DFS on a
graph and place or settle an agent at each unvisited node they find. Each time unsettled
agents find an unvisited node v, one of the agents settles at v, and the others try to find
an unvisited neighbor of v. If such a neighbor exists, they move to it. If no such neighbor
exists, they go back to the parent of v in the DFS tree. To find an unvisited neighbor, all
DFS-based dispersion algorithms in the literature make the unsettled agents visit those
neighbors sequentially, i.e., one by one. This process obviously requires Ω(τ) time. We break
this barrier and find an unvisited neighbor of v in O(log τ) = O(log k) time, with the help of
the agents already settled at neighbors of the current location v.

DISC 2024



38:4 Near-Linear Time Dispersion of Mobile Agents

Our goal here is to find any one unvisited neighbor of v if it exists, not to find all of them.
Consider the case where there are only two agents a and b at v, a is settled at v, and b is still
an unsettled agent. Agent b visits a neighbor of v and if b finds a settled agent at that node,
b brings that agent to v. Consequently, there are two agents on v, excluding a, so we can use
these two to visit two neighbors of v in parallel. Again, if there are settled agents on both
nodes, those agents will be brought to v. Importantly, the number of agents at v, excluding
a, doubles each time this process is repeated until an unvisited neighbor is found. Therefore,
over time, we can check neighbors of v in parallel with an exponentially increasing number of
agents. As a result, we can finish this search or probing process in O(log τ) time. Thereafter,
we allow the helping agents we brought to v to return to their original nodes, or their homes.
Since we perform the probing process only O(k) times in total throughout DFS, a simple
analysis shows that dispersion can be achieved in O(k log τ) time in the rooted setting. We
call the resulting DFS the HEO (Helping Each Other)-DFS in this paper.

In the general setting, like in existing studies, we conduct multiple DFSs in parallel, each
starting from a different node. While the DFS performed in existing research requires Θ(mk)
time, we use HEO-DFS, thus each DFS completes in O(k log τ) time. Thus, at first glance,
it seems that dispersion can be achieved in O(k log τ) time. However, this analysis does
not work so simply because each DFS interferes with each other. Our proposed algorithm
employs the method devised by Shintaku et al. [16] to efficiently merge multiple DFSs and
run HEO-DFSs in parallel with this method. The merge process incurs an O(log k) overhead,
so we solve the dispersion problem in O(k(log k) · (log τ)) = O(k log2 k) time.

It might seem that the overhead can be eliminated by using the DFS parallelization
method proposed by Kshemkalyani and Sharma [11], instead of the method of Shintaku et
al. [16]. However, this is not the case because our HEO-DFS is not compatible with the
parallelization method of Kshemkalyani and Sharma. Specifically, their method entails a
process such that one DFS absorbs another when multiple DFSs collide. During this process,
it is necessary to gather the agents in the absorbed side to a single node, which requires
Θ(mk) time. Our speed-up idea effectively works for finding an unvisited neighbor, but it
does not work for the acceleration of gathering agents dispersed on multiple nodes. Therefore,
it is unlikely that our HEO-DFS can be combined with the method of Kshemkalyani and
Sharma.

The two algorithms mentioned above are nearly time-optimal, i.e., requiring O(k · logc k)
time for some constant c. We also demonstrate that in the rooted setting, a time-optimal
algorithm based on the HEO-DFS can be achieved if significantly more space is available,
specifically O(∆) bits per agent.

To the best of our knowledge, HEO-DFS is a novel approach, and no similar techniques
have been used in the literature concerning mobile agents and mobile robots. While we
demonstrate that HEO-DFS significantly reduces the running time of dispersion algorithms,
this technique may also prove useful for addressing other fundamental problems such as
exploration and gathering.

A drawback of our HEO-DFS is that it fundamentally requires a synchronous model, even
in the rooted setting; i.e., it does not function in an asynchronous model. In HEO-DFS, we
attempt to find an unvisited neighbor of the current location with the help of agents settled
on other neighbors. These agents must return to their homes once the probing process is
completed. In an asynchronous model, unsettled agents (and/or helping agents) may visit
those homes before their owners return, disrupting the consistent behavior of HEO-DFS.
Therefore, the algorithm provided by Kshemkalyani and Sharma [11] remains the fastest
for the asynchronous model. It is still an open question whether there exists a o(k2)-time
algorithm that accommodates asynchronicity.
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▶ Note 3 (Termination). In this paper, we do not explicitly mention how the agents terminate
the execution of a given algorithm. In many cases, termination is straightforward without
any additional assumptions in the rooted setting, while in the general setting, additional
assumptions are required. Specifically, in the general setting, all algorithms listed in Table 1,
except for the O(∆d)-time algorithm presented in [8] 1, require both a synchronous setting
and global knowledge such as (asymptotically tight upper bounds on) mk and k. With
these assumptions, the agents can easily terminate simultaneously after a sufficiently large
number of steps, e.g., Θ(k log2 k) steps in our algorithm for the general setting. Thus,
when termination is required, our general setting algorithm no longer exhibits disadvantages
compared to existing algorithms: all existing algorithms, except for the O(∆D)-time one [8],
also require a synchronous setting (and some global knowledge).

For completeness, we present how the agents terminate in our algorithms for the rooted
setting, which is almost trivial, in the arXiv version [19].

1.2 Further Related Work

The dispersion problem has been studied not only for arbitrary undirected graphs but also
for graphs with restricted topologies such as trees [2], grids [7, 9], and dynamic rings [1].
Additionally, several studies have explored randomized algorithms to minimize the space
complexity of dispersion [13, 4], and others have focused on fault-tolerant dispersion [12, 3].
Kshemkalyani et al. [10] introduced the global communication model, where all agents can
communicate with each other regardless of their locations. In contrast, the standard model,
where only the agents co-located at the same node can communicate with each other, is
sometimes referred to as the local communication model. All algorithms listed in Table 1
assume the local communication model and are deterministic.

Exploration by a single mobile agent is closely related to the dispersion problem. The
exploration problem requires an agent to visit all nodes of a graph. Many studies have
addressed the exploration problem, and numerous efficient algorithms, both in terms of time
and space, have been presented in the literature [15, 14, 17, 18]. In contrast to exploration,
the dispersion problem only requires finding k nodes, and we can use k agents to achieve this.
Our HEO-DFS take advantage of these differences to solve the dispersion problem efficiently.

2 Preliminaries

Let G = (V,E) be any simple, undirected, and connected graph. Let n = |V | and m = |E|.
We denote the set of neighbors of node v ∈ V by N(v) = {u ∈ V | {u, v} ∈ E} and the
degree of a node v by δv = |N(v)|. Let ∆ = maxv∈V δv, i.e., ∆ is the maximum degree of
G. The nodes are anonymous, i.e., they do not have unique identifiers. However, the edges
incident to a node v are locally labeled at v so that an agent located at v can distinguish
those edges. Specifically, those edges have distinct labels 0, 1, . . . , δv − 1 at node v. We call
these local labels port numbers. We denote the port number assigned at v for edge {v, u} by
pv(u). Each edge {v, u} has two endpoints, thus has labels pu(v) and pv(u). Note that these
labels are independent, i.e., pu(v) ̸= pv(u) may hold. For any v ∈ V , we define N(v, i) as the
node u ∈ N(v) such that pv(u) = i. For simplicity, we define N(v,⊥) = v for all v ∈ V .

1 However, in this algorithm, the agents do not terminate simultaneously, and they require the ability to
detect whether or not there is a terminated agent at the current location.

DISC 2024



38:6 Near-Linear Time Dispersion of Mobile Agents

We consider that k agents exist in graph G, where k ≤ n. The set of all agents is denoted
by A. Each agent is always located at some node in G, i.e., the move of an agent is atomic and
an agent is never located at an edge at any time step (or just step). The agents have unique
identifiers, i.e., each agent a has a positive integer as its identifier a.ID such that a.ID ̸= b.ID
for any b ∈ A\{a}. The agents know a common upper bound idmax ≥ maxa∈A a.ID such that
idmax = poly(k), thus the agents can store the identifier of any agent on O(log k) space. Each
agent has a read-only variable a.pin ∈ {0, 1, . . . ,∆− 1} ∪ {⊥}. At time step 0, a.pin = ⊥
holds. For any t ≥ 1, if a moves from u to v at step t− 1, a.pin is set to pv(u) (or the port
of v incoming from u) at the beginning of step t. If a does not move at step t− 1, a.pin is
set to ⊥. We call the value of a.pin the incoming port of a. The values of all variables in
agent a, excluding its identifier a.ID and special variables a.pin, a.pout, constitute the state
of a. (We will see what is a.pout later.)

The agents are synchronous and are given a common algorithm A. An algorithm A
must specify the initial state sinit of agents. All agents are in state sinit at time step 0. Let
A(v, t) ⊆ A denote the set of agents located at node v at time step t ≥ 0. At each time step
t ≥ 0, each agent a ∈ A(v, t) is given the following information as the inputs: (i) the degree
of v, (ii) its identifier a.ID, and (iii) a sequence of triples ((b.ID, sb, b.pin))b∈A(v,t), where sb

is the current state of b. Note that each a ∈ A(v, t) can obtain its current state sa and a.pin
from the sequence of triples since a is given its ID as the second information. Then, it updates
the variables in its memory space in step t, including a variable a.pout ∈ {⊥, 0, 1, . . . , δv− 1},
according to algorithm A. Finally, each agent a ∈ A(v, t) moves to node N(v, a.pout). Since
we defined N(v,⊥) = v above, agent a with a.pout = ⊥ stays in v in step t.

A node does not have any local memory accessible by the agents. Thus, the agents can
coordinate only by communicating with the co-located agents. No agents are given any
global knowledge such as m, ∆, k, and mk in advance.

A function C : A→MA× V ×{⊥, 0, 1, . . . ,∆− 1} is called a global state of the network
or a configuration if C(a) = (s, v, q) yields q = ⊥ or q < δv for any a ∈ A, where MA is the
(possibly infinite) set of all agent-states. A configuration specifies the state, location, and
incoming port of each a ∈ A. In this paper, we consider only deterministic algorithms. Thus,
if the network is in a configuration C at a time step t, a configuration C ′ in the next step
t+ 1 is uniquely determined. We denote this configuration C ′ by nextA(C). The execution
ΞA(C0) of algorithm A starting from a configuration C0 is defined as an infinite sequence
C0, C1, . . . of configurations such that Ct+1 = nextA(Ct) for all t = 0, 1, . . . . We say that a
configuration C0 is initial if the states of all agents are sinit and the incoming ports of all
agents are ⊥ in C0. Moreover, in the rooted setting, we restrict the initial configurations to
those where all agents are located at a single node.

▶ Definition 4 (Dispersion Problem). A configuration C of an algorithm A is called legitimate
if (i) all agents in A are located in different nodes in C, and (ii) no agent changes its location
in execution ΞA(C). We say that A solves the dispersion problem if execution ΞA(C0) reaches
a legitimate configuration for any initial configuration C0.

We evaluate the time complexity or running time of algorithm A as the maximum number
of steps until ΞA(C0) reaches a legitimate configuration, where the maximum is taken over
all initial configurations C0. Let M′

A ⊆MA be the set of all agent-states that can appear
in any possible execution of A starting from any initial configuration. We evaluate the space
complexity or memory space of algorithm A as log2 |M′

A|+ log2 idmax, i.e., the maximum
number of bits required to represent an agent-state that may appear in those executions,
plus the number of bits required for each agent to store its own identifier. This implies that
we exclude the size of the working memory used for deciding the destination and updating
states, as well as the space for storing input information, except for the agent’s own identifier.
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Throughout this paper, we denote by [i, j] the set of integers {i, i + 1, ..., j}. We have
[i, j] = ∅ when j < i. When the base of a logarithm is not specified, it is assumed to be 2.
We frequently use τ = min(k,∆). We define ν(a, t) as the node where agent a resides at time
step t. We also omit time step t from any function in the form f(∗, t) and just write f(∗) if t
is clear from the context. For example, we just write A(v) and ν(a) instead of A(v, t) and
ν(a, t).

We have the following remark considering the fact that G can be a simple path.

▶ Remark 5. For any dispersion algorithm A, there exists a graph G such that an execution
of A requires Ω(k) time steps to achieve dispersion on both the rooted and the general
settings.

In the two algorithms we present in this paper, RootedDisp and GeneralDisp, each
agent maintains a variable a.settled ∈ {⊥,⊤}. We say that an agent a is a settler when
a.settled = ⊤, and an explorer otherwise. All agents are explorers initially. Once an
explorer becomes a settler, it never becomes an explorer again. Let t be the time at which
an agent a becomes a settler. Thereafter, we call the location of a at that time, i.e., ν(a, t),
the home of a. Formally, a’s home at t′ ≥ 0, denoted by ξ(a, t′), is defined as ξ(a, t′) = ⊥ if
t′ < t and ξ(a, t′) = ν(a, t) otherwise. It is worth mentioning that a settler may temporarily
leave its home. Hence ξ(a, t′) = ν(a, t′) may not always hold even after a becomes a settler,
i.e., even if t′ ≥ t. However, by definition, no agent changes its home. We say that an agent
a settles when it becomes a settler.

When a node u is a home of an agent at time step t, we call this agent the settler of
u and denote it as ψ(u, t). Formally, if there exists an agent a such that ξ(a, t) = u, then
ψ(u, t) = a; otherwise, ψ(u, t) = ⊥. This function ψ is well defined for the two presentented
algorithms because they ensure that no two agents share a common home. We say that a
node u is unsettled at time step t if ψ(u, t) = ⊥, and settled otherwise.

3 Rooted Dispersion

In this section, we present an algorithm, RootedDisp, that solves the dispersion problem
in the rooted setting. That is, it operates under the assumption that all agents are initially
located at a single node s ∈ V . This algorithm straightforwardly implements the strategy of
the HEO-DFS, which we presented in Section 1. The time and space complexities of this
algorithm are O(k log τ) steps and O(log(k + ∆)) bits, respectively.

In an execution of Algorithm RootedDisp, the agent with the largest ID, denoted as
amax, serves as the leader. Note that every agent can easily determine whether it is amax or
not at time step 0 by comparing the IDs of all agents. Then, amax conducts a depth-first
search (DFS), while the other agents move with the leader and one of them settles at
an unsettled node when they visit it. If amax encounters an unsettled node without any
accompanying agents, amax settles itself on that node, achieving dispersion. During a DFS,
amax must determine (i) whether there is an unsettled neighbor of the current location, and
(ii) if so, which neighbor is unsettled. To make this decision, all DFS-based algorithms in the
literature have amax visit neighbors one by one until it finds an unsettled node, which clearly
requires Ω(τ) steps. RootedDisp, in contrast, makes this decision in O(log τ) steps with
the help of the agents that have already settled on the neighbors of the current location.

The pseudocode for Algorithm RootedDisp is shown in Algorithm 1. This pseudocode
consists of two parts: the main function (lines 1–12) and the function Probe() (lines 13–23).
As mentioned in the previous section, every agent a maintains a variable a.settled ∈ {⊥,⊤},
which decides whether a is an explorer or a settler. In addition, the settler ψ(w) of a node w

DISC 2024
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Figure 1 The behavior of the agents when the leader amax invokes Probe() at the center node
w in RootedDisp. A black circle, triangle, and rectangle represent a leader (amax), a non-leader
explorer, and a settler, respectively. The integers in the leftmost figure represents port numbers. In
every two time steps, the number of agents on w excluding ψ(w) doubles (i.e., 2 → 4 → 8) until
some agent detects an unsettled neighbor of w. After that, amax lets the helping settlers go back to
their homes.

maintains two variables, ψ(w).parent, ψ(w).next ∈ [0, δw − 1]∪⊥ for the main function. As
we will see later, the following are guaranteed each time amax invokes Probe() at node w:

If there exists an unsettled node in N(w), the corresponding port number will be stored in
ψ(w).next. More precisely, an integer i such that N(w, i) = u and ψ(u) = ⊥ is assigned
to ψ(w).next.
If all neighbors are settled, ψ(w).next will be set to ⊥.
Probe() will return in O(log τ) time.

The main function performs a depth-first search using function Probe() to achieve
dispersion. At the beginning of the execution, all agents are located at the same node s.
Initially, the agent with the smallest ID settles at node s, and ψ(s).parent is set to ⊥ (lines
1–2). Then, as long as there are unsettled nodes in N(ν(amax)), all explorers move to one
of those nodes together (lines 7–8). We call this kind of movements forward moves. After
each forward move from a node w to u, the agent with the smallest ID among A(u) settles
on u, and ψ(u).parent is set to i with N(u, i) = w (lines 9–10). For any node u ∈ V , if
ψ(u).parent ≠ ⊥, we say that w = N(u, ψ(u).parent) is a parent of u. By line 9–10, each
of the nodes except for the starting node s will have its parent as soon as it becomes settled.
When the current location has no unsettled neighbors, all explorers move to the parent of the
current location (lines 11–12). We call this kind of movements backward moves or retreats.
Finally, amax terminates when it settles (line 3).

Since the number of agents is k, the DFS-traversal stops after amax makes a forward move
k− 1 times. The agent amax makes a backward move at most once from any node. Therefore,
excluding the execution time of Probe(), the execution of the main function completes in
O(k) time. Furthermore, the function Probe() is invoked at most 2(k − 1) times, once
after each forward move and once after each backward move. Since a single invocation of
Probe() requires O(log τ) time, the overall execution time of RootedDisp can be bounded
by O(k log τ) time.

Let us describe the behavior of the function Probe(), assuming that it is invoked on
node w at time step t. Figure 1 may help the readers to understand the behavior. In the
execution of Probe(), the leader amax employs the explorers present on w and (a portion of)
the settlers at N(w) to search for an unsettled node in N(w). We implement this process
with a variable ψ(w).checked ∈ [−1, δw − 1] for the settler ψ(w). Specifically, explorers
at node w verify whether the neighbors of w are unsettled or not in the order of port
numbers and store the most recently checked port number in ψ(w).checked. Consequently,
ψ(w).checked = ℓ implies that the neighbors N(w, 0), N(w, 1), . . . , N(w, ℓ) are settled. Let
x = |A(w, t) \ {ψ(w)}|, i.e., there are x agents at w when Probe() is invoked, excluding ψ(w).
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Algorithm 1 RootedDisp.

1 b.settled← ⊤, where b is the agent with the smallest ID in A(s)
// b settles at the starting node s

2 b.parent← ⊥
3 while amax.settled = ⊥ do
4 Probe()
5 Let w = ν(amax)
6 if ψ(w).next ̸= ⊥ then
7 Let u = N(w,ψ(w).next) // u is an unsetteled node here
8 All explorers in A(w) go to u
9 b′.settled← ⊤, where b′ is the agent with the smallest ID in A(u)

10 b′.parent← amax.pin
11 else
12 All explorers in A(w) go back to node N(w,ψ(w).parent).

13 function Probe():
14 Let w = ν(amax).
15 (ψ(w).next, ψ(w).checked)← (⊥,−1)
16 while ψ(w).checked ̸= δw − 1 do
17 Let a1, a2, . . . , ax be the agents in A(w) \ {ψ(w)}, and let

∆′ = min(x, δw − 1− ψ(w).checked). For each i = 1, 2, . . . ,∆′, assign ai to
the neighboring node ui = N(w, i+ ψ(w).checked), and let ai make a round
trip between w and ui. In other words, make ai move in the order
w → ui → w. If ai finds a settler at ui, it will bring the settler ψ(ui) back to
w.

18 if there exists ai that did not bring ψ(ui) back to w then
19 ψ(w).next← i+ ψ(w).checked // ui must be unsettled
20 Break the while loop.
21 else
22 ψ(w).checked← ψ(w).checked + ∆′

23 Let all settlers except for ψ(w) go back to their homes.

In the first iteration of the while loop (lines 16–22), the min(x, δw) agents concurrently visit
min(x, δw) neighbors and then return to w (lines 17–18). This entire process takes exactly
two time steps. These agents bring back all the settlers, at most one for each neighbor, they
find. If there is an agent that does not find a settler, then the node visited by that agent must
be unsettled. In such a case, the port used by one of these agents is stored in ψ(w).next,
and the while loop terminates (lines 20–21).2 If all x agents bring back one agent each, then
there are 2x agents on w, excluding ψ(w). In the second iteration of the while loop, these 2x
agents visit the next 2x neighbors and search for unsettled neighbors in a similar way. As
long as no unsettled neighbors are discovered, the number of agents on w, excluding ψ(w),

2 For simplicity, we reset ψ(w).checked to −1 each time we invoke Probe() at w, so we do not use the
information about which ports were already checked in the past invocation of Probe(). As a result, the
value of ψ(w).next computed by Probe does not have to be the minimum port leading to an unsettled
neighbor of w.
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doubles with each iteration of the while loop. Since there are at most τ = min(k,∆) settled
nodes in N(w), after running the while loop at most O(log(τ/x)) = O(log τ) times, either an
unsettled node will be found, or the search will be concluded without finding any unsettled
nodes. In the latter case, since ψ(w).next is initialized to ⊥ when Probe() is called (line 15),
ψ(w).next = ⊥ will also be valid at the end of the while loop, allowing amax to verify that all
neighbors of w are settled. After the while loop ends, the settlers brought back to w return
to their homes (line 23). This process of “returning to their homes” requires the agents to
remember the port number leading to their home from w. However, we exclude this process
from the pseudocode because it can be implemented in a straightforward manner, and it
requires only O(log ∆) bits of each agent’s memory. In conclusion, we have the following
lemma.

▶ Lemma 6. Each time Probe() is invoked on node w ∈ V , Probe() finishes in O(log τ)
time. At the end of Probe(), it is guaranteed that: (i) if there exists an unsettled node in
N(w), then N(w,ψ(w).next) is unsettled, and (ii) if there are no unsettled nodes in N(w),
then ψ(w).next = ⊥ holds true.

▶ Lemma 7. Each agent requires O(log(k + ∆)) bits of memory to execute RootedDisp.

Proof. In this algorithm, an agent handles several O(log ∆)-bit variable, next, checked,
parent, as well as the port number that the settler ψ(u) needs to remember in order to
return to node u from node w at line 23 after coming at line 17. Every other variable can be
stored in a constant space. Therefore, the space complexity is O(log(k + ∆)) bits, adding
the memory space to store the agent’s identifier. ◀

▶ Theorem 8. In the rooted setting, algorithm RootedDisp solves the dispersion problem
within O(k log τ) time using O(log(k + ∆)) bits of space per agent.

Proof. As long as there is an unsettled neighbor of the current location, amax makes a forward
move to one of those nodes. If there is no such neighbor, amax makes a backward move to
the parent node of the current location. Since the graph is connected, this DFS-traversal
clearly visits k nodes with exactly k − 1 forward moves and at most k − 1 backward moves.
Thus, the number of calls to Probe() is at most 2(k − 1) times. By Lemma 6, the execution
of RootedDisp achieves dispersion within O(k log τ) time. ◀

4 General Dispersion

4.1 Overview
In this section, we present an algorithm GeneralDisp that solves the dispersion problem
in O(k log τ · log k) = O(k log2 k) time, using O(log(k + ∆)) bits of each agent’s memory,
in the general setting. Unlike the rooted setting, the agents are deployed arbitrarily. In
GeneralDisp, we view the agents located at the same starting node as a single group and
achieve rapid dispersion by having each group perform a HEO-DFS in parallel, sometimes
merging groups. We show that by employing the group merge method given by Shintaku et
al. [16], say Zombie Method, we can parallelize HEO-DFS by accepting an additive factor of
log k to the space complexity and a multiplicative factor of log k to the time complexity. We
have made substantial modifications to the Zombie Method to avoid conflicts between the
function Probe() of HEO-DFS and the behavior of the Zombie Method.

As defined in Section 2, agents a with a.settled = ⊤ are called settlers, and the other
agents are called explorers. In addition, in GeneralDisp, we classify explorers to two
classes, leaders and zombies, depending on a variable leader ∈ [0, idmax]. We call an



Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa 38:11

explorer a a leader if a.leader = a.ID, otherwise a zombie. Each agent a initially has
a.leader = a.ID, so all agents are leaders at the start of an execution of GeneralDisp. As
we will see later, a leader may become a zombie and a zombie will eventually become a
settler, whereas a zombie never becomes a leader again, and a settler never becomes a leader
or zombie again. Among the agents in A(v, t), the set of leaders (resp., zombies, settlers)
staying at v in time step t is denoted by AL(v, t) (resp., AZ(v, t), AS(v, t)). By definition,
A(v, t) = AL(v, t) ∪AZ(v, t) ∪AS(v, t).

We introduce a variable level ∈ N to bound the execution time of GeneralDisp. We
call the value of a.level the level of agent a. The level of every agent is 1 initially. The
pair (a.leader, a.level) serves as the group identifier: when agent a is a leader or settler,
we say that a belongs to a group (a.leader, a.level). By definition, for any (ℓ, i) ∈ N2, a
group (ℓ, i) has at most one leader. A zombie does not belong to any group. However, when
it accompanies a leader, it joins the HEO-DFS of that leader. We define a relationship ≺
between any two non-zombies a and b using these group identifiers as follows:

a ≺ b ⇔ (a.level < b.level) ∨ (a.level = b.level ∧ a.leader < b.leader).

We say that agent a is weaker than b if a ≺ b, and that a is stronger than b otherwise.
Initially, all agents are leaders and each forms a group of size one. In the first time step,

the strongest agent at each node turns all the other co-located agents into zombies (if exists).
From then on, each leader performs a HEO-DFS while leading those zombies. For any leader
a, we define the territory of a as

Va = {v ∈ V | ∃b ∈ A : ψ(v) = b ∧ b.leader = a.ID ∧ b.level = a.level}.

Each time a leader a visits an unsettled node, it settles one of the accompanying zombies (if
exists), giving it a’s group identifier (a.leader, a.level). That is, a expands its territory. If
a node outside a’s territory is detected during the probing process of HEO-DFS, that node
is considered unsettled even though it belongs to the territory of another leader. As a result,
a may move forward to a node u that is inside another leader’s territory. If that node u
belongs to the territory of a weaker group, a incorporates the settler ψ(u) into its own group
by giving ψ(u) its group identifier (a.leader, a.level). If a leader a encounters a stronger
leader or a stronger settler during its HEO-DFS, a becomes a zombie and terminates its
own HEO-DFS. If there is a leader at the current location ν(a) when a becomes a zombie, a
joins the HEO-DFS of that leader. Otherwise, the agent a, now a zombie, chases a stronger
leader by moving through the port ψ(v).next at each node v. Unlike RootedDisp, a leader
updates ψ(v).next with the most recently used port even when it makes a backward move.
This ensures that a catches up to a leader eventually, at which point a joins the HEO-DFS
led by the leader.

Unlike RootedDisp, a leader does not settle itself at a node in the final stage of HEO-
DFS. The leader a suspends the HEO-DFS if it visits an unsettled node but it has no
accompanying zombies to settle at that time. A leader who has suspended the HEO-DFS due
to the absence of accompanying zombies is called a waiting leader. Conversely, a leader with
accompanying zombies is called an active leader. A waiting leader a resumes the HEO-DFS
when a zombie catches up to a at ν(a). As we will see later, the execution of GeneralDisp
ensures that all agents eventually become either waiting leaders or settlers, each residing at
a distinct node. The agents have solved the dispersion once such a configuration is reached
because thereafter no agent moves and no two agents are co-located.

When a leader a encounters a zombie z with the same level, a increments its level by one,
and z resets its level to zero. This “level up” changes the identifier of a’s group, i.e., from
(a.ID, i) to (a.ID, i+ 1) for some i. By the definition of the territory, at this point, a loses
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Table 2 Slot Assignments.

Slot Number Role Initiative Pseudocode
Slot 1 Leader election Leaders 2
Slot 2 Settle, increment level, etc. Leaders 3
Slots 3 Move to join Probe() Settlers 4

Slots 4–8 Probe() Leaders 3
Slot 9–10 Chase for leaders Zombies 5
Slot 11–12 Move forward/backward Leaders 2

all nodes from its territory except for the current location. That is, each time a leader a
increases its level, it restarts its HEO-DFS from the beginning. Note that this “level up”
event also occurs when two leaders a, b (b ≺ a) with the same level meet (and there is no
stronger agent at the location) because then b becomes a zombie after it finds a stronger
leader a, which results in the event that a leader a encounters a zombie with the same level,
say b. We have the following lemma here.

▶ Lemma 9. The level of an agent is always at most log2 k + 1.

Proof. A level-up event requires one leader a and one zombie b with the same level. That
zombie b will get level 0. Thereafter, b never triggers a level-up event again because the level
of a leader is monotonically non-decreasing starting from level 1. Therefore, for any i ≥ 1,
the number of agents that can reach level i is at most ⌊k/2i−1⌋, leading the lemma. ◀

Therefore, each leader performs HEO-DFS at most O(log k) times. According to the
analysis in Section 3, each HEO-DFS completes in O(k log τ) time, which seems to imply that
GeneralDisp finishes in O((log k) · (k log τ)) = O(k log2 k) time. However, this analysis does
not take into account the length of the period during which leaders suspend their HEO-DFS.
Thus, it is not clear whether a naive implementation of the strategy described above would
achieve the dispersion in O(k log2 k) time. Following Shintaku et al. [16], we vary the speed
of zombies chasing leaders based on a certain condition, which bounds the execution time by
O(k log2 k) time.

We give zombies different chasing speeds as follows. First, we classify zombies based
on two variables levelL and levelS that each zombie manages. For any zombie z, we
call z.levelL and z.levelS the location level and swarm level of z. When a leader z
becomes a zombie, it initializes both z.levelL and z.levelS with its level, i.e., z.level.
Thereafter, a zombie z copies the level of ψ(ν(z)) to z.levelL and updates z.levelS to be
max{b.level | b ∈ AZ(ν(z))} in every O(1) time steps. Since a zombie only chases a leader
with an equal or greater level, z.levelS ≤ z.levelL always holds. We say that a zombie z
is strong if z.levelS = z.levelL; z is weak otherwise. Then, we exploit the assumption that
the agents are synchronous and let weak zombies move twice as frequently as strong zombies
to chase a leader. As we will prove later, this difference in chasing speed results in a desirable
property of GeneralDisp, namely that min({a.level | a ∈ AAL} ∪ {z.levelL | z ∈ AZ})
is monotone non-decreasing and increases by at least one in every O(k log τ) steps, where
AAL is the set of active leaders and AZ is the set of zombies both in the whole graph, until
AAL ∪AZ becomes empty. Thus, by Lemma 9, AAL ∪AZ becomes empty and the dispersion
is achieved in O(k log τ · log k) = O(k log2 k) steps.
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Figure 2 The behavior of explorers when their leader invokes Probe() at the center node w in
GeneralDisp. A black circle, triangle, and rectangle represent a leader, a zombie, and a settler,
respectively. The integers in the top left figure represents port numbers.

4.2 Implementation

In GeneralDisp, we group every 12 time steps into one unit, with each unit consisting of
twelve slots. In other words, time steps 0, 1, 2, . . . are classified into twelve slots. Specifically,
each time step t ≥ 0 is assigned to slot (t mod 12) + 1. For example, time step 26 is in slot 3,
and time step 47 is in slot 12. Dividing all time steps into twelve slots helps to reduce the
interference of multiple HEO-DFSs and allows us to set different “chasing speeds” for weak
and strong zombies. Table 2 summarizes the roles of each slot.

Essentially, slots 1–2 are designated for leader election (i.e., group merging), slots 3–8 for
probing, slots 9–10 for zombie chasing, and slots 11–12 for forward and backward movement
in DFS traversal. It is important to note that settlers always stay at their home during slots
1–2 and 9–12. Hence, once a settler leaves its home, it returns within O(1) steps. This is not
the case in RootedDisp, where a settler in helping mode does not return home until its
leader completes the probing process. In GeneralDisp, this frequent return home enables
leaders to detect collisions with other groups: if a leader enters another group’s territory, it
will certainly notice the intrusion during the next slot 1, as it encounters a settler from that
group.

Thus, the probing process in GeneralDisp slightly differs from that in RootedDisp.
Consider a leader al starting the probing process at a node w (refer to Figure 2). The
objective here is to identify any neighboring node of w that lies outside al’s territory, if
such exists. During slots 6–7, explorers at w visit its neighbors and return in parallel. If an
explorer b encounters a settler s at a node u ∈ N(w) in slot 6, b does not bring s back to w
in slot 7. Instead, b requests s to enter helping mode, wherein s records the port number to
w in the variable s.help ∈ N ∪ ⊥ (A settler s is in helping mode if and only if s.mode ̸= ⊥).
The helping settler s moves to w via port s.help in the subsequent slot 3, joins the probing
in slots 6-7, and returns to its home u again in slot 8. Leader al expects that the exact
ψ(w).checked helping settlers arrives at w in each slot 3. If this does not occur, al detects
a non-territorial neighbor in slot 4 by checking the pin variable of the helping settlers at
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w. Similar to RootedDisp’s probing process, the total number of explorers and helping
settlers at w doubles until such a neighbor is detected, concluding the process in O(log τ)
steps. Subsequently, al reverts the helping settlers at w to non-helping mode by setting their
help variable to ⊥ and instructs them to return to their homes in slot 5.

As mentioned earlier, we differentiate the chasing speed of weak zombies and strong
zombies. Specifically, weak zombies move in both slots 9 and 10, while strong zombies move
only in slot 10.

We left the detailed implementation of GeneralDisp including pseudocodes and the
complete proofs of its correctness and time complexity to the appendix due to space constraints.
We give only a proof sketch here for the following main theorem.

▶ Theorem 10. In the general setting, there exists an algorithm that solves the dispersion
problem within O(k log τ · log k) time using O(log(k + ∆)) bits of space per agent.

▶ Proof Sketch. It suffices to show that AAL ∪AZ becomes empty within O(k log τ · log k)
steps, at which point every agent is either a waiting leader or a settler, thereby achieving
dispersion. We obtain this bound from Lemma 9 and the fact that α = min({a.level |
a ∈ AAL} ∪ {z.levelL | z ∈ AZ}) increases by at least one in every O(k log τ) time steps
unless AAL ∪AZ becomes empty (Lemma 15 in Appendix). We can prove Lemma 15 roughly
as follows. Suppose α = i. First, all weak zombies at location level i vanish within O(k)
steps as they move faster than leaders and strong zombies, eventually encountering a leader,
higher-level settlers or stronger zombies. Thereafter, no new weak zombies at location level i
are created. Subsequently, without weak zombies at location level i, waiting leaders at level i
do not resume active HEO-DFS without increasing its level, which leads to the disappearance
of active leaders at level i within O(k log τ) steps. Finally, strong zombies chasing leaders at
level i catch up to those leaders within O(k) steps or find higher-level settlers, resulting in
the increase of their location level. Hence, all zombies with location level i and active leaders
at level i are eliminated within O(k log τ) steps. ◀

5 For Further Improvement in Time Complexities

In the previous sections, we introduced nearly time-optimal dispersion algorithms: an
O(k log τ)-time algorithm for the rooted setting and an O(k log2 k)-time algorithm for the
general setting. This raises a crucial question: is it possible to develop a truly time-optimal
algorithm, specifically an O(k)-time algorithm, even if it requires much more space? In this
section, we affirmatively answer this question for the rooted setting. We present an O(k)-time
algorithm that utilizes O(∆ + log k) bits of space per agent. However, the feasibility of an
O(k)-time algorithm in the general setting remains open.

We refer to the new algorithm as RootedOpt in this section. In RootedDisp, with
O(log(k + ∆)) bits of space, each settler ψ(w) cannot memorize the exact set of settled
neighbors of w. Instead, it only remembers the maximum i such that the first i neighbors
of w are settled. In contrast, RootedOpt allows each settler ψ(w) to remember all settled
neighbors of w using O(∆) bits, which significantly helps to eliminate an O(log τ) factor from
the time complexity. However, somewhat surprisingly, both the design of the new algorithm
and the analysis of its execution time are non-trivial.

Below, we outline the modifications made to RootedDisp to obtain RootedOpt. We
expect that most readers will grasp the behavior of RootedOpt simply by reviewing the
following key differences, while we provide the pseudocode for RootedOpt in the arXiv
version [19].
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In RootedOpt, each settler ψ(w) maintains an array variable ψ(w).checked of size δw.
Each element of ψ(w).checked[i] takes a value from the set {0, 1,⊥}. The assignment
ψ(w).checked[i] = 0 (respectively, 1) indicates that the neighbor N(w, i) is unsettled
(respectively, settled). The value ⊥ is utilized exclusively during the probing process,
meaning that the neighbor N(w, i) has yet to be checked for its settled status. For any
c ∈ {0, 1,⊥}, we define Uc(u) = {N(u, i) | i ∈ [0, δw − 1], ψ(w).checked[i] = c}.
Consider that the unique leader amax invokes the probing process Probe() at a node
w. (Remember that amax is the unique leader that has the maximum identifier at the
beginning of the execution.) In RootedDisp, the probing process terminates as soon
as any agent finds an unsettled neighbor. However, in RootedOpt, the process only
ends when all of w’s neighbors are probed or when at least ℓ unsettled neighbors are
found, where ℓ is the number of explorers. In the former case, the probing process is
now complete: U⊥(w) is empty, and U0(w) equals the set of unsettled neighbors of w. In
the latter case, the explorers go to distinct ℓ unsettled nodes and settle there, thereby
achieving dispersion.
Consider an agent a making a round trip w → u→ w during Probe(), where u = N(w, p)
for some p ∈ [0, δw−1]. If a does not encounter a settler at u, it simply sets ψ(w).checked[i]
to 0. On the other hand, if a settler is found at u, a sets ψ(w).checked[i] to 1 and
additionally sets ψ(u).checked[q] to 1, where q ∈ [0, δu − 1] is the port number such that
w = N(u, q). This modification ensures that U0(u) remains equal to the set of unsettled
neighbors of u when the explorers go back to u.
In RootedDisp, the leader amax invokes Probe() after each forward or backward move.
However, in RootedOpt, amax only invokes Probe() after making a forward move. This
change does not compromise the correctness of RootedOpt because when amax makes a
backward move to a node w, ψ(w) accurately remembers its unsettled neighbors due to
the modification mentioned earlier.

One might think that the probing process Probe() in RootedOpt could take longer time
than in RootedDisp, as it only finishes after all neighbors of the current location have been
probed or after finding ℓ unsettled neighbors, where ℓ is the number of explorers. Particularly,
there seems to be a concern that during the probing at a node w, the number of agents,
excluding ψ(w), may not always double: this event occurs when some agents discover an
unsettled neighbor. Despite that, we deny this conjecture at least asymptotically, that is, we
have the following lemma.

▶ Lemma 11. Assume that amax invokes Probe() at node w during the execution of
RootedOpt, and exactly ℓ explorers including amax exists at the time. Then, Probe()
finishes within O(1) + max(0, 2⌈log τ − log ℓ⌉) time.

Proof. If ℓ ≥ τ , we have ℓ ≥ min(∆, k) = ∆ because ℓ < k. Then, the lemma trivially holds:
Probe() finishes in a constant time. Thus, we consider the case ℓ < τ . Let t be the time step
at which amax invokes Probe() at a node w, and let z = ⌈log τ − log ℓ⌉ + 1. It suffices to
show that U⊥(w, t′) = ∅ or |U0(w, t′)| ≥ ℓ holds for some t′ ∈ [t, t+ 2z +O(1)]. Assume for
contradiction that this does not hold. For any r ∈ [0, z], we define f(r) = Xr ·2r−1 +Yr, where
Xr = |U0(w, t+ 2r)| and Yr = |A(w, t+ 2r) \ {ψ(w)}|. By definition, f(0) = 0 · 20−1 + ℓ = ℓ.
Under the above assumption, for any r = 0, 1, . . . , z − 1, the agents in A(w, t+ 2r) move to
distinct neighbors in U⊥(w, t+ 2r) in time step t+ 2r, and bring back all settlers they find,
at most one for each neighbor, in time step t+ 2r + 1. Let α be the number of those settlers
i.e., α = Yr+1 − Yr. Note that Xr+1 −Xr = Yr − α holds here. Then, irrespective of α, we
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obtain

f(r + 1) = Xr+1 · 2r + Yr+1 = (Xr + Yr − α) · 2r + Yr + α

= Xr · 2r + (2r − 1)(Yr − α) + 2 · Yr ≥ 2(Xr · 2r−1 + Yr) = 2f(r),

where we use 2r ≥ 1 and Yr−α = Xr+1−Xr ≥ 0 in the above inequality. Therefore, we have
f(z) ≥ ℓ · 2z, whereas we have assumed (for contradiction) that Xz = |U0(w, t + 2z)| < ℓ,
thus f(z) = Xz · 2z−1 + Yz ≤ (ℓ− 1)2z−1 + Yz holds. This yields |A(w, t+ 2z) \ {ψ(w)}| =
Yz ≥ ℓ · 2z − (ℓ − 1)2z−1 = (ℓ + 1)2z−1 ≥ (ℓ + 1)τ/ℓ > τ . Since τ = min(∆, k), we have
τ = ∆ or τ = k. In the former case, Yk > ∆ agents at w are enough to visit all neighbors in
U⊥(w, t+ 2z) in time step t+ 2z, thus U⊥(w, t+ 2z + 2) = ∅ holds, a contradiction. In the
latter case, there are |A(w, t+ 2z)| ≥ k + 2 agents in w at time step t+ 2z, a contradiction.
Therefore, U⊥(w, t′) = ∅ or |U0(w, t′)| ≥ ℓ holds at time step t′ ≤ t+ 2z + 2. ◀

▶ Theorem 12. In the rooted setting, algorithm RootedOpt solves the dispersion problem
within O(k) time using O(∆ + log k) bits of space per agent.

Proof. The unique leader amax invokes Probe() only when it settles an agent, except for when
amax itself becomes settled. Therefore, amax invokes Probe exactly k−1 times, with precisely
k−i explorers present at the i-th invocation. By Lemma 11, the total number of steps required
for the k−1 executions of Probe() is at most

∑k−1
ℓ=1 (log k− log ℓ+O(1)) = k log k− (log(k!)−

log k) +O(k) = O(k), where we apply Stirling’s formula, i.e., log(k!) = k log k− k+O(log k).
As demonstrated in Section 3, both forward and backward moves also require a total time of
O(k). Thus, RootedOpt completes in O(k) time. Regarding space complexity, the array
variable checked is the primary factor, needing O(∆) bits per agent. Other variables require
only O(log ∆) bits. ◀

6 Discussion

It is worth mentioning that while HEO-DFS does not function in a fully asynchronous model,
where movement between two nodes may require an unbounded period, it does not require a
fully synchronous model in the rooted setting. Specifically, RootedDisp and RootedOpt
can operate under an asynchronous scheduler if every movement of agents between nodes is
atomic, i.e., each agent is always located at a node and never on an edge at any time step.
Under this scheduler, after the probing process is completed at a node v, unsettled agents can
wait for all helping settlers to leave v before they themselves depart. Since every movement
is atomic, when unsettled agents visit the home node of one of these settlers, the settler has
already returned. Thus, RootedDisp and RootedOpt functions under any fair scheduler
that guarantees every movement is atomic. However, this move-atomicity is not sufficient
for GeneralDisp, because this algorithm, designed for the general setting, differentiates
the moving speeds of agents based on their roles – leader, strong zombie, or weak zombie –
which inherently requires a fully synchronous scheduler.
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Algorithm 2 The behavior of a leader a.

1 while true do
2 /*************** Slot 1 begins ***************/
3 Let w = ν(a).
4 if ∃b ∈ AL(w) ∪AS(w) : a ≺ b then
5 a.levelL ← a.levelS ← a.level
6 a.leader← b.leader // a becomes a zombie and stops Algorithm 2

7 /*************** Slot 2 begins ***************/
8 if A(w) ̸= {a} then // a is an active leader if A(w) ̸= {a}
9 if ψ(w) = ⊥ ∨ ψ(w) ≺ a then

10 if ψ(w) = ⊥ then
11 Settle one zombie in AZ(w) at w
12 ψ(w).parent← a.parent // Initially, a.parent = ⊥
13 if ∃b ∈ AZ(w) : a.level = b.level then
14 (a.level, b.level)← (a.level + 1, 0)
15 ψ(w).parent← ⊥
16 a.InitProbe← true
17 (ψ(w).leader, ψ(w).level)← (a.ID, a.level)
18 if a.InitProbe = true then // Initially, a.InitProbe = true
19 (ψ(w).next, ψ(w).checked, ψ(w).help, ψ(w).done)← (⊥,−1,⊥, false)
20 a.InitProbe← false
21 Probe(a) // See Algorithm 3
22 if ψ(w).done = true then
23 /*************** Slot 11 begins ***************/
24 if ψ(w).next = ⊥ then
25 ψ(w).next← ψ(w).parent // for backward move

26 All agents in A(w) \ {ψ(w)} move to N(w,ψ(w).next)
27 /*************** Slot 12 begins ***************/
28 a.parent← a.pin
29 a.InitProbe← true

A Detail Implementation of General Dispersion

The pseudocode for the GeneralDisp algorithm is shown in Algorithms 2, 3, 4, and 5. In
slots 1, 2, 4–8, 11, and 12, agents operate only under the instruction of a leader. Algorithms
2 and 3 define how each leader a operates and gives instructions in those slots. Algorithm
4 defines the behavior of settlers in slot 3. Algorithm 5 specifies the behavior of zombies
in slots 9 and 10. Note that each agent needs to manage an O(1)-bit variable to identify
the slot of the current time step, but for simplicity, the process related to its update is not
included in the pseudocode because it can be implemented in a naive way.

First, we explain the behavior of a leader a. Let w be the node where a is located in slot
1. We make leader election in slot 1 (lines 4–6). Leader a becomes a zombie when it finds a
stronger leader or settler on w. If a becomes a zombie, it no longer runs Algorithms 2 and 3,
and runs only Algorithm 5. Consider that a survives the leader election in slot 1. In slot 2, if
there are no agents other than a on w, a is a waiting leader and does nothing until the next
slot 1. Otherwise, the leader a (i) settles one of the accompanying zombies if w is unsettled,



Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa 38:19

Algorithm 3 Probe(a).

30 /*************** Slot 4 begins ***************/
31 Let w = ν(a).

32 ψ(w).next(w)←
{

minP if P ̸= ∅
⊥ otherwise,

33 where P = [0, ψ(w).checked] \ {b.pin | b ∈ AS(w) \ {ψ(a)}}
34 b.help← ⊥ for all b ∈ AS(w) with b ≺ a.
35 Let all agents b ∈ AS(w) with b ≺ a go back to their homes
36 if ψ(w).next ̸= ⊥ ∨ ψ(w).checked = δw − 1 then
37 /*************** Slot 5 begins ***************/
38 Execute b.help← ⊥ for each b ∈ AS(w) \ {ψ(w)}
39 Let all agents in AS(w) \ {ψ(w)} go back to their homes.
40 ψ(w).done← true
41 else
42 /*************** Slot 6 begins ***************/
43 Let {a1, a2, . . . , ax} be the set of agents in A(w) \ {ψ(w)}
44 Let ∆′ = min(x, δw − 1− ψ(w).checked)
45 Let ui = N(w, i+ ψ(w).checked) for i = 1, 2, . . . ,∆′

46 for each ai ∈ {a1, a2, . . . , a∆′} in parallel do
47 ai moves to ui.
48 /*************** Slot 7 begins ***************/
49 if (ai.leader, ai.level) = (ψ(ui).leader, ψ(ui).level) then
50 ai.found← true
51 ψ(ui).help← ai.pin
52 else
53 ai.found← false
54 Move to N(ui, ai.pin)
55 /*************** Slot 8 begins ***************/
56 if ∃i ∈ [1,∆′] : ai.found = false then
57 ψ(w).next← i+ ψ(w).checked

58 ψ(w).checked← ψ(w).checked + ∆′

59 Let all agents in AS(w) \ {ψ(w)} go back to their homes.

Algorithm 4 The behavior of a settler s in Slot 3.

60 /*************** Slot 3 begins ***************/
61 Move to N(ν(s), s.help) if s.help ̸= ⊥.
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Algorithm 5 The behavior of a zombie z in Slots 9 and 10.

62 /*************** Slot 9 begins ***************/
63 (z.levelL, z.levelS)← (ψ(w).level,max{z′.level | z′ ∈ AZ(ν(z)})
64 if AL(ν(z)) = ∅ and z is a weak zombie then
65 Move to N(ν(z), ψ(ν(z)).next)
66 /*************** Slot 10 begins ***************/
67 if AL(ν(z)) = ∅ then
68 Move to N(ν(z), ψ(ν(z)).next)

(ii) updates its level if it finds a zombie with the same level, and (iii) gives the settler ψ(w) its
group identifier (a.ID, a.level) (lines 9–17). Note that settlers may leave their homes only
in slots 3–8 (to join Probe()), thus a can correctly determine whether ψ(w) = ⊥ or not here
(lines 9–10). If ψ(w) ≺ a, this procedure incorporates ψ(w) into a’s group, i.e., expands the
territory of a. Each leader a manages a flag variable a.InitProbe ∈ {false, true}, initially
set to true. This flag is raised each time a requires probing, i.e., after it makes a forward
or backward move (line 29), and when it increases its level (line 16). If the flag is raised,
it initializes the variables used for Probe(), say ψ(w).next, ψ(w).checked, ψ(w).help, and
ψ(w).done in slot 2 (line 19).

Thereafter, a invokes Probe() at the end of slot 2. This subroutine runs in slots 4–8.
While Probe() in RootedDisp returns the control to the main function after completing
the probing, i.e., determining whether or not an unsettled neighbor exists, Probe() in
GeneralDisp returns the control each time slot 8 ends even if it does not complete the
probing. Consider that there are x− 1 accompanying zombies when a leader a begins the
probing. First, a leader a and the x− 1 accompanying zombies join the probing. Each of
them, say b, moves from a node w to one of its neighbors u ∈ N(w) in slot 6 (line 47) and goes
back to w in slot 7 (line 54). If b finds a settler in the same group at u, it sets ψ(u).help to
b.pin (line 51). As long as s.help ≠ ⊥, a settler s at a node v goes to a neighbor N(v, s.help)
in slot 3 (line 60, Algorithm 4). Hence, in the next slot 3, that settler ψ(u) goes to w. If
there are 2x agents at w excluding ψ(w), those 2x agents perform the same process in the
next slots 6 and 7, that is, they go to unprobed neighbors, update the help of settlers in
the same group (if exists), and go back to w. In slot 8, a sends the helping settlers back to
their home. The number of agents joining the probing at w, i.e., |A(w) \ {ψ(w)}|, doubles
at each iteration of this process until they find a node without a settler in the same group
or finish probing all neighbors in N(w). Thus, like RootedDisp, the probing finishes in
O(log τ) time steps. At this time, ψ(w).next = ⊥ holds if all neighbors in N(w) are settled
by settlers in the same group. Otherwise, N(w,ψ(w).next) is unsettled or settled by a settler
in another group. Then, in the next slot 5, a resets the help of all settlers at w to ⊥ except
for ψ(w), lets them go back to their homes, and sets ψ(w).done to true, indicating that
the probing is done (lines 38–40). The probing process described above may be prevented
by a stronger leader b when b visits a node v ∈ N(w) such that ψ(v) belongs to a’s group
and ψ(v).help ̸= ⊥. Then, b incorporates ψ(v) into b’s group, and set ψ(v).help to ⊥ (line
19), so ψ(v) never goes to w to help a’s probing. However, this event actually speeds up a’s
probing: a identifies this event when noticing that ψ(v) does not arrive at w in the next slot
4. As a result, a can set ψ(w).next to p where N(w, p) = v (lines 32–34).

Note that, even during the probing process at node w, leader a might become a zombie if
it meets a stronger leader b in slot 1. Some settlers might then move to w in the next slot 3
to help a, not knowing a is now a zombie. In these situations, b changes the help of these
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settlers to ⊥ and sends them back to their homes in slot 4. Thereafter, those settlers remain
at their home at least until they are incorporated into another group.

If a leader a at w observes ψ(w).done = true, it makes a forward or backward move
in slot 11 (lines 22–29). Each time a makes a forward or backward move to a node u, it
remembers a.pin in a.parent after the move (line 28). This port number will be stored
on the variable ψ(u).parent when a settles a zombie on u or a incorporates ψ(u) from the
territory of another group. Note that this event occurs only when the last move is forward.
Thus, like RootedDisp, a constructs a DFS tree in its territory. It is inevitable to use a
variable a.parent tentatively since a.pin is updated every step by definition of a special
variable pin and a may become a waiting leader after moving to u. Unlike RootedDisp, a
records the most recently used port to move in ψ(ν(a)).next even when it makes a backward
move (lines 24–25). This allows a zombie to chase a leader.

The behavior of zombies in slots 9 and 10 is very simple (lines 61–67). A zombie always
updates its location and swarm levels in slot 9 (line 62). A zombie z not accompanying
a leader always chases a leader by moving through the port ψ(ν(z)).next. As mentioned
earlier, we differentiate the chasing speed of weak zombies and strong zombies. Specifically,
weak zombies move in both slots 9 and 10, while strong zombies move only in slot 10 (lines
63–67).

▶ Lemma 13. The location level of a zombie is monotonically non-decreasing.

Proof. Neither a leader nor a settler decreases its level in GeneralDisp. When a zombie
z does not accompany a leader, it chases a leader through port ψ(ν(z)).next. This port
ψ(ν(z)).next is updated only if a leader makes a forward or backward move from ν(z), and
the leader updates the level of ψ(N(ν(z), ψ(ν(z)).next)) if it is smaller than its level. Thus,
a zombie never decreases its location level by chasing a leader. When a zombie z accompanies
a leader, the leader copies its level to ψ(ν(z)).level in slot 2, which is copied to z.levelL in
slot 8. The leader that z accompanies may change but does not change to a weaker leader.
Thus, a zombie never decreases its location level when accompanying a leader. ◀

B Proofs of Theorem 10

Remember that AZ and AAL are the set of zombies and the set of active leaders, respectively,
in the whole graph. We have the following lemma.

▶ Lemma 14. For any i ≥ 0, the number of weak zombies with a location level i is
monotonically non-increasing starting from any configuration where min({a.level | a ∈
AAL} ∪ {z.levelL | z ∈ AZ}) = i.

Proof. Let C be a configuration where min({a.level | a ∈ AAL}∪{z.levelL | z ∈ AZ}) = i.
When a leader with level i becomes a zombie, its location level is i (line 5). So, a leader
with level i may become a strong zombie with a location level i but never becomes a weak
zombie with a location level i. The swarm level of a zombie decreases only when the zombie
accompanies a leader (and this leader settles another zombie). Thus, a strong zombie with a
location level i that does not accompany a leader cannot become a weak zombie without
increasing its location level. Moreover, starting from C, a strong zombie with location level i
must increase its location level when it encounters a leader in slot 1. Hence, the number of
weak zombies with a location level i is monotonically decreasing. ◀

▶ Lemma 15. min({a.level | a ∈ AAL}∪{z.levelL | z ∈ AZ}) is monotone non-decreasing
and increases by at least one in every O(k log τ) time steps unless AAL ∪AZ becomes empty.
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Proof. Let i be an integer i ≥ 0 and C a configuration where min({a.level | a ∈ AAL} ∪
{z.levelL | z ∈ AZ}) = i. It suffices to show that leaders with level i and zombies with
location level i disappear in O(k log τ) time steps starting from C.

Consider an execution starting from C. By Lemma 14, a weak zombie with location
level i is never newly created in this execution. Let z be any weak zombie with a location
level i that does not accompany a leader in a configuration C. In every 12 slots, z moves
twice, while a strong zombie and a leader move only once, excluding the movement for the
probing. Therefore, z catches up to a strong zombie and becomes strong too, catches up to
a leader with level i, or increases its location level in O(k) time steps. When z catches up
to a leader, it joins the HEO-DFS of the leader, or this leader becomes a zombie. In the
latter case, z becomes a strong zombie. Thus, z settles or becomes a strong zombie (with
the current leader) in O(k log τ) time steps. Therefore, the number of weak zombies with
location level i becomes zero in O(k log τ) steps. After that, no waiting leader with level
i resumes its HEO-DFS without increasing its level because there is no weak zombie with
location level i. Therefore, every active leader with location level i becomes a zombie with
location level at least i+ 1 or a waiting leader in O(k log τ) steps. Thus, active leaders with
location level i also disappear in O(k log τ) steps. From this time, no leader moves in the
territory of a group with level i or less. Hence, every strong zombie with location level i
increases its location level or catches up to a waiting leader. Since the level of a waiting
leader is at least i, the latter event also increases z’s level by at least one. ◀

Since an agent in GeneralDisp manages only a constant number of variables, each with
O(log(k + ∆)) bits, Lemmas 9 and 15 yield Theorem 10.
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