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Abstract
In distributed systems, situations often arise where some nodes each holds a collection of tokens,
and all nodes collectively need to determine whether all tokens are distinct. For example, if each
token represents a logged-in user, the problem corresponds to checking whether there are duplicate
logins. Similarly, if each token represents a data object or a timestamp, the problem corresponds to
checking whether there are conflicting operations in distributed databases. In distributed computing
theory, unique identifiers generation is also related to this problem: each node generates one token,
which is its identifier, then a verification phase is needed to ensure that all identifiers are unique.

In this paper, we formalize and initiate the study of token collision. In this problem, a collection
of k tokens, each represented by some length-L bit string, are distributed to n nodes of an anonymous
CONGEST network in an arbitrary manner. The nodes need to determine whether there are tokens
with an identical value. We present near optimal deterministic algorithms for the token collision
problem with Õ(D + k ·L/ log n) round complexity, where D denotes the network diameter. Besides
high efficiency, the prior knowledge required by our algorithms is also limited. For completeness, we
further present a near optimal randomized algorithm for token collision.
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1 Introduction

Imagine the following scenario: a group of servers is hosting an online-banking, online-gaming,
or online-exam service; for security reasons, users are not allowed to log into multiple servers
simultaneously. If we interpret each logged-in user as a token, the servers need to check
whether all active tokens are distinct. Similar problems could also arise in distributed
database systems. For example, in some distributed databases, optimistic concurrency
control schemes are employed to increase concurrency and performance [17]. Motivation for
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such schemes is the observation that system clients are unlikely to access the same object
concurrently. Nonetheless, before the system commit clients’ transactions, verification must
be performed to ensure that all read and write operations are disjoint or that no operations
occur at the same time, otherwise a rollback is necessary. In this setting, tokens represent
data objects or timestamps [19, 20].

Apart from above practical scenarios, detecting colliding tokens is also important from a
theoretical perspective as we can interpret identifiers as tokens. Specifically, it is well-known
that a number of fundamental distributed computing tasks, such as coloring, leader election,
bipartiteness testing, and planarity testing, are impossible to resolve deterministically in
anonymous networks [3, 15, 21]. Hence, unique identifiers generation becomes an important
primitive for anonymous networks, as it breaks the symmetry within the network, thus
making the aforementioned tasks possible. Moreover, the lengths of these identifiers could
affect the performance of corresponding algorithms; examples include renaming algorithms,
Linial’s classical n-to-∆2 coloring algorithm [21], recent deterministic network decomposition
algorithms by Ghaffari et al. [11], and recent MST algorithm focusing on energy complexity [5].
A plausible approach for generating unique identifiers in anonymous networks is to employ
randomness: for instance, each of the n nodes generates an identifier by sampling Θ(log n)
uniform random bits; by the birthday paradox, all identifiers are distinct with probability
at least 1 − 1/n. However, this is a Monte Carlo algorithm that is subject to error. If we
seek a Las Vegas (i.e., zero-error) algorithm for generating unique identifiers in anonymous
networks, a deterministic algorithm for detecting colliding identifiers (i.e., tokens) is necessary:
nodes repeatedly run a (Monte Carlo) randomized identifiers generation algorithm and use a
deterministic algorithm to check whether the generated identifiers are unique.

Despite the various applications for token collision, somewhat surprisingly, this problem
has not been explicitly studied in the context of distributed computing to the best of our
knowledge. In this paper, we initiate the study of this generic distributed computing task,
and we begin by giving a definition for it:

▶ Definition 1 (Token Collision). Assume that there are k tokens, each having a value
represented by a length-L binary string. Consider a distributed system consisting of n nodes.
The k tokens are divided into n collections, some of which may be empty. Each of the n

nodes is assigned one collection as input. In the token collision problem, the nodes need to
determine whether there are tokens with identical value.

We focus on understanding the time complexity of token collision in anonymous networks.
The reason for considering anonymous networks is two-fold. First, if nodes in a distributed
system already have unique identifiers, then token collision (or almost any distributed
computing task) could be resolved by first electing the node with the smallest identifier as the
leader, then aggregate necessary information to the leader, and finally let the leader locally
compute the result and disseminate the result to the rest of the network.1 Second, anonymous
networks also arise in real-world scenarios. For example, the nodes in a distributed system
(e.g., sensor networks) may be indistinguishable since they are fabricated in a large-scale
industrial process, in which equipping every node with a unique identifier is not economically
feasible (e.g., MAC addresses are not necessarily unique nowadays). In other cases nodes
may not wish to reveal their identities out of privacy or security concerns.

1 Nonetheless, our lower bounds for token collision hold even for named networks, and our algorithms
nearly match these lower bounds. Thus, anonymity does not make token collision harder.
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We consider standard CONGEST model [21] in distributed computing. A CONGEST
network is described by a graph G = (V, E) with |V | = n nodes being processors with
unlimited computational power (we do not exploit this ability in this paper) and edges
being communication channels with bounded bandwidth. Specifically, we assume that any
message sent through a channel cannot exceed Θ(log n) bits. To simplify presentation, we
often use B = Θ(log n) to denote this bandwidth limitation. Processors exchange messages
synchronously, round-by-round along the channels. When proving impossibility results for
the token collision problem, we also consider an alternate model known as the LOCAL
model [18], where communication channels have unbounded bandwidth.

1.1 Results and contribution
Deterministic scenario. We first consider the case where the tokens are not too large –
particularly, every token can fit into one message. In this scenario, we offer a deterministic
algorithm that works so long as every node knows the exact value of n or k.

▶ Theorem 2 (Deterministic Upper Bound, Part 1). In an n-node anonymous CONGEST
network with diameter D, for any instance of the token collision problem in which k tokens
are encoded by length-L bit strings, if every node knows the exact value of n or k, then there
exists an O(D + k · L/ log n)-round deterministic algorithm when L = O(log n).

The above theorem implies when L = Θ(log n), token collision can be resolved within
O(D+k) rounds. As a result, one could easily derive a Las Vegas unique identifiers generation
algorithm with O(n) expected runtime. On the other hand, for problem instances where
tokens are small – L = o(log n) in particular, the runtime of the algorithm is O(D) + o(k).

At a high level, our algorithm tries to find the token(s) that have the global minimum
value and selects the node(s) that own(s) such token(s) as leader(s). Critically, our algorithm
may elect multiple nodes as leaders, so it does not solve the leader election problem. (In fact,
leader election cannot be solved deterministically in our setting.) Nevertheless, alongside this
election process, BFS-trees will be built with these leaders being the roots, thus the network
graph becomes a forest logically. Then, by convergecasting [4] tokens within each tree and
computing the size of each tree, root nodes can correctly determine the result. Similar ideas
have been used in the design of Las Vegas leader election algorithms, but the analysis of our
deterministic algorithm is more challenging, see Section 1.2 for more discussion.

We then extend our algorithm to the scenario where each token cannot fit into one
message, this could occur in applications like plagiarism checking in which each token is a
text segment. In this case, a simple solution is to divide each token into Θ(L/ log n) parts,
and use multiple rounds to simulate one round of our above algorithm. However, the resulting
algorithm would have a round complexity of O((D + k) ·L/ log n), which is too large. Instead,
we devise a variant that uses pipelining techniques and extend the analysis accordingly. The
following theorem states the time complexity of this variant.

▶ Theorem 3 (Deterministic Upper Bound, Part 2). In an n-node anonymous CONGEST
network with diameter D, for any instance of the token collision problem in which k tokens
are encoded by length-L bit strings, if every node knows the exact value of n or k, then there
exists an O(D · max{(log(L/ log n))/ log n, 1} + k · L/ log n)-round deterministic algorithm
when L = ω(log n).

To complement the algorithmic results, we have also established a lower bound on the
round complexity of the token collision problem.

DISC 2024
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▶ Theorem 4 (Deterministic Lower Bound). In an n-node anonymous CONGEST network
with diameter D, there are instances of the token collision problem in which k tokens are
encoded by length-L bit strings such that, any deterministic algorithm requires Ω(D + k · (L −
log k + 1)/ log n) rounds to solve it when 2L ≥ k.

It is easy to verify, if L ≥ (1 + δ) log k for some constant δ > 0, then the round complexity
of our algorithm is tight when L = O(log n), and near-optimal (within multiplicative
log(L/ log n)/ log n factor) when L = ω(log n). We also note that the assumption of 2L ≥ k

is without loss of generality, as otherwise collision must occur. To obtain the lower bound,
we reduce a variant of the set-disjointness problem in the study of two-party communication
complexity to the token collision problem.

Another advantage of our algorithm is that it requires little prior knowledge. Beside input
tokens, each node only needs to know the value of n or the value of k. In particular, nodes do
not need to know the network diameter D. In fact, we can prove via an indistinguishability
argument that without any global knowledge, deterministic token collision detection is
impossible. (Nonetheless, what is the minimal prior knowledge required remains to be an
interesting open question.)

▶ Theorem 5 (Impossibility Result). In the anonymous LOCAL model, if every node has
no knowledge regarding the network graph except being able to count and communicate over
adjacent links locally, and if every node also has no knowledge regarding the tokens except
the ones given as local input, then there is no deterministic algorithm that solves the token
collision problem.

Randomized scenario. We also investigate the randomized round complexity of token
collision. At the upper bound side, selecting a unique leader can be easily achieved with
desirable probability when randomness is allowed. Then a random hash function is employed
to reduce the bit-length of tokens if they are too large, without increasing the probability of
collision significantly in case tokens are distinct. Finally, with a convergecast process similar
to the deterministic algorithm, the unique leader can collect all tokens and determine whether
there are collisions. At the lower bound side, we again employ the strategy of reduction, and
utilize existing results on the hardness of randomized set-disjointness to obtain the desired
result. Our findings for the randomized scenario are summarized below; see Appendix B for
more details. Note that in contrast with the deterministic setting, the length of the token L

no longer appears in the lower bound, and L’s impact on the upper bound is also limited.

▶ Theorem 6 (Randomized Upper and Lower Bound). Consider an n-node anonymous
CONGEST network with diameter D. For any instance of the token collision problem with
k tokens, if every node knows the exact value of n or k, then there exists a randomized
algorithm that solves it in O(D · max{(log(log k/ log n))/ log n, 1} + k · log k/ log n + L/ log n)
rounds with probability at least 1 − 1/k. On the other hand, assuming 2L ≥ k, there are
instances of the token collision problem with k tokens such that any randomized algorithm
that succeeds with probability at least 2/3 requires Ω(D + k/ log n) rounds.

1.2 Related work and discussion
Though token collision has not been explicitly studied in distributed computing, similar
problems have been investigated elsewhere. For example, element distinctness, which decides
whether a given set of elements are distinct, has been extensively studied in the context
of query complexity. Specifically, linear lower bounds were proved for deterministic and
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randomized algorithms [7, 12]. A sublinear quantum algorithm was proposed by Buhrman
et al. [9], which applies O(n3/4) quantum queries. The upper bound was later improved
to O(n2/3) by Ambainis using quantum walk [2], and matched the lower bound given by
Aaronson and Shi [1]. To the best of our knowledge, this paper is the first one that studies
token collision in classical distributed computing models, focusing on round complexity.

Token collision is also related to leader election, a classical and fundamental distributed
computing primitive, in several aspects.

On the one hand, the design of Las Vegas leader election algorithms [14, 23, 10] share
similar ideas with ours. In those algorithms, usually nodes first randomly generate identifiers,
then the node with the smallest identifier is elected as the leader if that identifier is owned by
a single node, otherwise the process restarts. As can be seen, the problem of checking whether
the smallest identifier is unique is a variant of the token collision problem. Indeed, the
routine developed by Tel in [23] for this checking procedure is very similar to our algorithm.
Nonetheless, the analysis in our setting is more involved: in the context of Las Vegas leader
election, restart when the smallest identifier is unique is fine (i.e., false negative is fine), yet
in our context this is unacceptable. In fact, proving such false negative will not occur is
highly non-trivial (see Lemma 12 in Section 4). Moreover, our algorithm can handle the
scenario that tokens are of arbitrary size, making it more generic.

On the other hand, as mentioned earlier, with a unique leader almost any distributed
computing problem can be solved. This observation raises the question that whether defining
and studying token collision is necessary. We believe the answer is positive. First, the leader
election approach is not necessarily better. Taking the unique identifiers generation problem
as an example, the approach of “first elect a leader and then let the leader aggregate and
check whether the generated identifiers are unique” share same round complexity with our
algorithm. Second, and more importantly, in situations where leader election is infeasible
(e.g., deterministic leader election in anonymous networks, randomized leader election that
always terminates in anonymous rings of unknown size) [24], our algorithm still works with
deterministic correctness and time complexity guarantees.

2 Preliminary

In this section, we briefly introduce some known results on the communication complexity of
the set-disjointness problem as it is used in our lower bound proof.

Communication complexity was introduced by Yao [25], which is nowadays a versatile
method to prove lower bounds in distributed computing. In the two-party communication
complexity model, two players Alice and Bob, respectively, receive x ∈ X and y ∈ Y as
input and need to compute f(x, y), where f : X × Y → Z is a two-argument function. The
communication complexity of f is the minimum number of bits Alice and Bob need to
exchange to compute f(x, y) for any input x and y.

The problem of set-disjointness (denoted as DISJ) is one of the most well-studied problems
in communication complexity [16, 22, 6], where Alice and Bob are given a set, respectively,
and they need to decide whether their sets are disjoint. In this paper, we are interested in a
variant of set-disjointness: DISJp

q :
([p]

q

)
×

([p]
q

)
→ {0, 1}. Alice is given a set S ⊆ [p] and Bob

is given a set T ⊆ [p], where |S| = |T | = q. They aim to determine whether the two sets are
disjoint, that is, DISJp

q(S, T ) = 1 iff S ∩ T = ∅. The communication complexity of DISJp
q is

established by Håstad and Widgerson [13].

▶ Fact 7 ([13]). For every q ≤ p/2, D(DISJp
q) = Ω(log

(
p
q

)
) and R1/3(DISJp

q) = Ω(q).
Here, D(DISJp

q) denotes the deterministic communication complexity of problem DISJp
q , and

R1/3(DISJp
q) denotes the randomized communication complexity of problem DISJp

q with the
probability of error being at most 1/3.

DISC 2024
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3 The Deterministic Algorithm

In this section, we focus on the most common scenario where each token can be fitted into
one message (that is, L = O(log n)). We will extend our algorithm to other settings later.

Broadly speaking, our algorithm can be divided into two parts: the first part concerns
with building rooted BFS-trees, while the second part concerns with calculating the size
of the BFS-trees and aggregating tokens at the roots for decision-making. Although the
high-level idea of our algorithm is not complicated, implementing it correctly and efficiently
is non-trivial, especially in the setting where nodes only have limited global knowledge.

We now describe the algorithm in detail. (Complete pseudocode of the algorithm is
provided in Appendix A.)

Build BFS-tree(s). Initially, each node v sets its identifier to be the smallest token it
received as input, or a special symbol if v received no token. Then, it attempts to construct
a BFS-tree rooted at itself by broadcasting its identifier to its neighbors in each round.
Whenever v receives a smaller identifier from some neighbor u, it updates its identifier to
match that of neighbor u. Moreover, it designates u as its parent and sends a notification to
its parent in all subsequent rounds. As a result, whenever v changes its identifier to that of
some neighbor u’s, node v is appending the BFS-tree rooted at itself to the BFS-tree that
includes u. We note that each node v uses a variable ridv to store its identifier. Intuitively,
ridv stores the root’s identifier of the BFS-tree that v belongs to.2 We also note that each
node v uses an integer pv ∈ [∆v] to store its parent, where ∆v is the degree of v. That is,
each node v locally labels each incident edge with a unique integer in [∆v], and uses the edge
label as its local identity for the node at the other endpoint of the edge.

When node v discovers that all of its neighbors share the same identifier as itself, it
attempts to ascertain whether the BFS-tree rooted at itself is fully constructed. To this end,
note that the BFS-tree rooted at node v consists of node v and the BFS-trees rooted at its
children. Therefore, our algorithm’s criterion for node v to confirm that the BFS-tree rooted
at itself is fully constructed is: all v’s neighbors share v’s identifier and the BFS-trees rooted
at its children are fully constructed. To implement this idea, each node v stores a boolean
variable fv to indicate whether the BFS-tree construction process is completed, and fv is
sent to v’s parent in each round. Initially fv is false, and fv becomes true if: (1) all v’s
neighbors share identical identifier as v; and (2) each child u of v has fu = true or v has no
children (that is, v is a leaf node).

Lastly, if node v determines that the BFS-tree rooted at itself is fully constructed and it
does not have a parent, then it broadcasts a termination signal to its neighbors once and stops
the BFS-tree building procedure. The node v will then proceed to the second stage of the
algorithm. On the other hand, whenever a node receives a termination signal, it also stops its
BFS-tree building procedure, broadcasts this signal to all neighbors once, and then proceed
to the second stage of the algorithm. During algorithm execution, each node v uses a boolean
variable buildv to maintain this signal: buildv is initially true, and will be set to false

when v’s BFS-tree building procedure is done. Notice that if there are multiple BFS-trees
being constructed simultaneously, after the first one completes, the flooding mechanism of
the termination signal may stop the remaining ones from being completed. Nonetheless, such
disruption is fine: the existence of multiple BFS-trees implies there are token collisions, and
our algorithm can correctly detect this later.

2 This is merely an “intuition” and not always true during BFS-tree construction, as identifiers are
propagating gradually and tree shape may change frequently.
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Detect token collision. The token-collision detection procedure has two main tasks: com-
pute BFS-tree’s size and aggregate tokens. A node only starts this procedure if itself and all
its neighbors have terminated the BFS-tree construction procedure.

To determine the size of the BFS-tree rooted at itself, node v first identifies its children.
It filters out the neighbors that have the same identifier as itself and have designated node
v as their parent. Node v uses chiv to store this set of children. If node v finds that all
of its children in chiv have already computed the size of their respective BFS-trees, then
node v can calculate the size of the BFS-tree rooted at itself. This is done by summing up
the sizes of the BFS-trees rooted at its children and adding one to account for node v itself.
During algorithm execution, each node v uses cntv to track the size of the BFS-tree rooted
at itself. Initially cntv is set to a special symbol ⊥. Later when v has finished counting,
cntv becomes an integer.

It remains to aggregate the tokens. In each round, after node v receives all messages
(which may include tokens from its children), if v has a parent u and the token list of v is
not empty, then v ejects one token from its token list and sends that token to u in the next
round. Node v also needs to tell its parent u whether all tokens in the BFS-tree rooted at
v has already been transferred to u. To this end, in each round, after v has received all
messages, if the token list of v is empty and every child of v indicates all tokens have already
been transferred to v, then v concludes that all tokens in the BFS-tree rooted at itself has
already been transferred to its parent. It will inform its parent u about this in the next
round. During algorithm execution, each node v uses xv to store its token list and uses elev

to denote the token that v intends to send to its parent. We note that elev is set to ⊥ when
v’s token list is empty (that is, |xv| = 0) and every child w of v indicates all tokens in the
subtree rooted at w has been transferred to v (that is, w tells v elew =⊥); and elev is set to
⊤ when v’s token list is empty but some child w of v indicates there still are tokens pending
to be transferred to v (that is, w tells v elew = ⊤).

If node v does not have a parent, it must be the root of some entire BFS-tree and is
responsible for deciding the result of token collision. To this end, once v has obtained the
size of the BFS-tree rooted at itself and all its children signal that the tokens have been
transferred to v, it determines the result of token collision as follows. In the case that all
nodes know the exact value of n, if the size of the BFS-tree rooted at v equals n and no
token collision is found in the token list of v, then v can confirm the non-existence of token
collision. Otherwise, a token collision must exist. In the case that all nodes know the exact
value of k, if the size of the token list of v equals k and no token collision is found, then
v can confirm the non-existence of token collision. Otherwise, a token collision must exist.
Node v uses a boolean variable resv to store the result. It will broadcast the result to all its
neighbors once in the next round and then halt. Upon receiving the result, every node also
broadcasts the result to its neighbors once in the next round and then halts.

4 Analysis of the Deterministic Algorithm

In this section, we show the correctness of our algorithm and analyze its running time.
Omitted proofs are provided in the full version of the paper.

4.1 Correctness

We begin with the correctness guarantees: if all nodes know n or k, then all nodes return an
identical and correct result on whether there are collisions among the k tokens.

DISC 2024
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To prove the above claim, we first argue the correctness of our BFS-tree construction
procedure. Specifically, we intend to show that our algorithm always maintains a directed
forest G′ = (V, E′) where a directed edge (v, u) ∈ E′ if node v assigns node u as its parent.
To this end, we introduce the notion of identifier-induced graph.

▶ Definition 8 (Identifier-induced Graph). At the end of any round, define directed graph
G′ = (V, E′) as the identifier-induced graph in the following way: V is the node set of the
network graph, and a directed edge (v, u) ∈ E′ if v assigns u as its parent.

To show that the identifier-induced graph is a forest, we begin with the following
observation. Recall that each node v uses variable rid to store its identifier. Intuitively, this
lemma holds since node v only updates the value of ridv to the value of ridu and sets its
parent pointer to u when v receives ridu from some neighbor u with ridu < ridv.

▶ Lemma 9. At the end of any round, for any directed path in the identifier-induced graph,
the identifiers of the nodes along the directed path are non-increasing.

Then, we can show the identifier-induced graph is a directed forest containing one or
more rooted trees. To prove the lemma, the key is to show there are no directed cycles in
the identifier-induced graph, which can be done by induction on round number.

▶ Lemma 10. At the end of any round, the identifier-induced graph is a directed forest in
which every weakly connected component is a rooted tree. In particular, in each tree, the
unique node with no parent is the root of that tree.3

Next, we show an important property regarding the rooted trees in the identifier-induced
graph. Intuitively, it states that within each such tree, nodes may have different identifiers,
but for any subtree within the tree, the nodes that have identical identifiers with the root of
the subtree are connected and are at the “top” of the subtree.

▶ Lemma 11. At the end of any round, for any node r, within the subtree rooted at node r

in the identifier-induced graph, the subgraph induced by the nodes having identical identifier
with node r is also a tree rooted at node r.

The following key lemma shows that when there are no token collisions, the BFS-tree
building procedure constructs a single rooted tree containing all nodes. Though the claim
seems straightforward, proving it rigorously turns out to be highly non-trivial.

▶ Lemma 12. If there are no token collisions, then after all nodes quit the BFS-Tree-
Building procedure – that is, after each node v sets buildv = false, the identifier-induced
graph contains a single tree rooted at the node having the minimum token as input, and all
nodes in that tree have identical identifier.

Proof sketch. Throughout the proof, assume there are no token collisions. For each node
v, let idv denote the minimum token that v received as input. Let vmin denote the unique
node having the smallest input token. For any two nodes u, v ∈ V , let dist(u, v) denote
the distance between u and v in the network graph G. Define d = maxv∈V dist(v, vmin).
For any node v, let dv denote the distance between node v and the nearest node u with idu

smaller than v. That is, dv = minu∈V,idu<idv dist(u, v). We set dvmin = +∞.
We make the following three claims and prove their correctness via induction on rounds.

These claims highlight the key properties our BFS-tree building procedure can enforce.

3 A weakly connected component of a directed graph is a connected component of the graph when ignoring
edge directions.
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1. No node quits the BFS-tree building procedure within d rounds. Formally, for any
0 ≤ i ≤ d, each node v has buildv = true by the end of round i.

2. For any node v, any 0 ≤ i ≤ d, let node û be the unique node that has minimum id
among all nodes u with dist(u, v) ≤ i. At the end of round i, we have ridv = idû.
Formally, at the end of round i, it holds that ridv = minu∈V,dist(u,v)≤i idu.

3. For any node v, any 0 ≤ i ≤ d, at the end of round i, one of the following cases holds.
Case I: dv > 2i. The nodes with distance at most i to v form a height-i tree rooted at v

in the identifier-induced graph. Moreover, for any node u with distance i to v, for any
node w on the directed path from u to v in the rooted tree, it holds that fw = false.
Case II: i < dv ≤ 2i. There is a tree rooted at v in the identifier-induced graph. Let
node w denote the unique node with distance dv to node v that has the smallest id.
There exists a node u with dist(u, v) = dv − i − 1 and dist(u, w) = i + 1 such that f
is false for all nodes along the length-(dv − i − 1) directed path from u to v in the
identifier-induced graph.
Case III: dv ≤ i. Node v has a parent in the identifier-induced graph.

The claims above easily lead to the lemma. By Item 1, no node will quite the BFS-
Tree-Building procedure within d rounds. By Item 2, at the end of round d, all nodes
have identical rid, which is idvmin

. By Case I of Item 3, at the end of round d, all nodes
form a single tree rooted at vmin in the identifier-induced graph. Moreover, no node will
ever change parent or rid later. ◀

We now proceed to argue the correctness of the token aggregation process, which will
lead to the correctness of our entire algorithm. Recalling Lemma 11, we begin by defining
identifier-induced subtree to facilitate presentation.

▶ Definition 13 (Identifier-induced Subtree). At the end of any round, for any node r,
within the subtree rooted at r in the identifier-induced graph, call the subtree induced by the
nodes that have identical identifier with r as the identifier-induced subtree rooted at r.

Our first lemma regarding the correctness of the token aggregation process states that,
informally, every root r in the identifier-induced graph correctly computes the size of the
identifier-induced subtree rooted at r if it outputs a decision for the token collision problem.

▶ Lemma 14. Assume that in some round i, node v runs procedure Token-Collision-
Detection and within that procedure updates resv for the first time (so that after the
update resv ̸=⊥), then by the end of round i, the value of cntv equals the size of the
identifier-induced subtree rooted at v.

Proof sketch. Notice that in our algorithm, only a root node in the identifier-induced graph
can update its res within procedure Token-Collision-Detection, so v must be a root
node in the identifier-induced graph by the end of round i. Let Tv,i be the identifier-induced
subtree rooted at v by the end of round i. We need to show that cntv equals the size of Tv,i

by the end of round i.
To prove the above result, we make the following claim and prove it via an induction

on round number: for any node u, if iu is the first round in which u updates cntu to some
non-⊥ value, then cntu equals the size of Tu,iu

by the end of round iu, where Tu,iu
is the

identifier-induced subtree rooted at u by the end of round iu. Moreover, by the end of any
round i′ > iu, cntu remains unchanged and Tu,i′ is identical to Tu,iu

.
With the above claim, the lemma is easy to obtain. Assume iv is the first round in which

v updates cntv to some non-⊥ value, then cntv equals the size of Tv,iv by the end of round
iv. Later, at the end of round i, when v updates res to some non-⊥ value in procedure
Token-Collision-Detection, cntv’s value remains unchanged and is |Tv,iv | = |Tv,i|. ◀
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Our second lemma regarding the correctness of the token aggregation process states that,
informally, every root r in the identifier-induced graph correctly collects the tokens within the
identifier-induced subtree rooted at r if it outputs a decision for the token collision problem.
The high-level strategy for proving this lemma is similar to the proof of Lemma 14, but the
details are more involved as the convergecast process is more complicated.

▶ Lemma 15. Assume that in some round i, node v runs procedure Token-Collision-
Detection and within that procedure updates resv for the first time (so that after the update
resv ̸=⊥), then by the end of round i, node v collects each token owned by the nodes within
the identifier-induced subtree rooted at v exactly once.

At this point, we are ready to show the correctness of our algorithm.

▶ Lemma 16. After all nodes halt (that is, res ̸=⊥), they return the correct result.

Proof. Notice that by algorithm description and Lemma 10, only root nodes in the identifier-
induced graph can generate res ̸=⊥, other nodes can only passively adopt res ̸=⊥ from
neighbors. So, let v be an arbitrary node that generates res ̸=⊥ and assume this happens in
round iv, then v must be a root in the identifier-induced graph by the end of round iv. Let
Tv,iv

denote the identifier-induced subtree rooted at v by the end of round iv.
First consider the case v sets res = true (that is, there are no token collisions). Then

by Lemma 14 and Lemma 15, v has correctly collected the tokens in Tv,iv
and correctly

counted the size of Tv,iv
by the end of round iv, implying that Tv,iv

contains all input tokens
and there are no collisions among input tokens; that is, the result v generated is correct.
Moreover, since Tv,iv

is of size n, it must be the only tree in the identifier-induced graph. As
a result, all nodes other than v will only passively adopt the result generated by v, implying
that all nodes return identical result.

Next, consider the case v sets res = false (that is, there are token collisions). Then,
again, by Lemma 14 and Lemma 15, v has correctly collected the tokens in Tv,iv

and correctly
counted the size of Tv,iv

by the end of round iv. Since v sets res to false, there are three
possible reasons:

All nodes know n but |Tv,iv
| ̸= n. Recall Lemma 12, which states that if there are no

token collisions, then there is only one tree in the identifier-induced graph that contains
all nodes and all tokens. Hence, if |Tv,iv

| ̸= n, then there are indeed token collisions.
Furthermore, for any other root node u in the identifier-induced graph that also generates
an res ̸=⊥ by the end of some round iu, node u must have also found |Tu,iu

| ≠ n and set
res = false. Therefore, in this case, all nodes output the correct result.
All nodes know k but the number of tokens v has collected is not k. By a similar argument
as in the first case, we can conclude that all nodes output the correct result.
Node v finds collisions among the tokens it has collected. In this case, v’s decision to
generate res = false is obviously correct. Moreover, for any other root node u in the
identifier-induced graph that also generates an res ≠⊥, that res must be false, as the
identifier-induced subtree rooted at u will not contain all n nodes or all k tokens.

This completes the proof of the lemma. ◀

4.2 Complexity
We now proceed to analyze the time complexity of the algorithm. The first lemma states
that any identifier-induced subtree rooted at some node that has a global minimum token
as input has limited height – particularly, O(D). Moreover, each such node is a root in
identifier-induced graph.
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▶ Lemma 17. Let v be a node having a minimum token as input. Then at the end of any
round, v is a root in the identifier-induced graph, and the identifier-induced subtree rooted at
v has height O(D).

With Lemma 17, we argue that all nodes finish BFS-Tree-Building in O(D) rounds.

▶ Lemma 18. After O(D) rounds, every node v quits BFS-Tree-Building (that is,
buildv = false).

Proof. To prove the lemma, we only need to show that some node will quit BFS-Tree-
Building within O(D) rounds. This is because the flooding mechanism of a false-valued
build variable ensures, once a node v sets buildv = false, all other nodes will set build to
false within (at most) another D rounds.

If some node quits BFS-Tree-Building within D rounds then we are done, so assume
that this is not true. Then, by the end of round D, global minimum token’s value is known
by every node. Particularly, by the end of round D, each node has an rid with a value
equals to some global minimum token. In other words, by the end of round D, each node is
in some identifier-induced subtree rooted at some node that has a global minimum token as
input. Moreover, no node will change its rid or parent ever since. By Lemma 17, any tree
rooted at some node that has a global minimum token as input has O(D) height.

Now, by our algorithm, starting from round D + 1, nodes within any such tree will start
setting f to true from leaves to root. Since the height of any such tree is O(D), after O(D)
rounds, either some node already sets build to false and quits BFS-Tree-Building, or
some root of such tree sets build to false and quits BFS-Tree-Building. In both cases,
some node quits BFS-Tree-Building within O(D) rounds since the start of execution. ◀

The next lemma states the time complexity of our algorithm.

▶ Lemma 19. After O(D + k) rounds, every node v halts (that is, v returns res ̸=⊥).

Proof sketch. Recall that our algorithm guarantees that if one node generates an res ̸=⊥
and then halts, then this res is broadcast to all other nodes. Hence, all other nodes will halt
within another D rounds. As a result, to prove the lemma, we show that some node will
halt within O(D + k) rounds. To this end, we show that after all nodes quit BFS-Tree-
Building which happens within O(D) rounds (by Lemma 18), there exists a tree in the
identifier-induced graph of height O(D) (by Lemma 17), and the convergecast process inside
this tree take O(D + k) rounds. ◀

4.3 Proof of the main theorem
We now prove Theorem 2. When L = Θ(log n) – meaning that each message can fit at most
a constant number of tokens, by Lemma 16 and Lemma 19, the theorem is immediate.

When L = o(log n), to prove the theorem, we make a small modification to our algorithm:
in the convergecast process, whenever a node forwards tokens to its parent, it packs as many
tokens in a message as possible (particularly, Θ((log n)/L) tokens in a message). Intuitively,
this means that our algorithm is convergecasting Θ(kL/ log n) “packed tokens” each of size
Θ(log n), and each of these “packed tokens” contains Θ((log n)/L) real tokens. Hence, the
total runtime of our algorithm is still O(D + kL/ log n) rounds.

The above argument is valid if, for every node that has some token(s) as input, that node
receives at least Θ((log n)/L) tokens. If some node only receives o((log n)/L) tokens as input
(e.g., only one token), then a more careful analysis is required. Specifically, assume that
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there are x nodes that each receives o((log n)/L) tokens as input, call these nodes Vx, and
the nodes in Vx in total have kx tokens. So, there are n − x nodes that each receives at least
Θ((log n)/L) tokens as input, call these nodes Vx, and the nodes in Vx in total have k − kx

tokens. Imagine a process in which we first aggregate the tokens owned by Vx, and then
aggregate the tokens owned by Vx. By the above analysis, aggregating the tokens owned by
Vx takes O(D + (k − kx)L/ log n) rounds. On the other hand, for each token owned by some
node in Vx, within O(D) rounds, it either reaches the root, or arrives at a node that has at
least Θ((log n)/L) tokens pending to be sent. Effectively, this means that starting from the
round we process the tokens owned by Vx, in O(D) rounds, we again arrive at a scenario in
which each node that has pending tokens to send has at least Θ((log n)/L) tokens in its token
list. As a result, these kx tokens owned by Vx will all reach the root within O(D +kxL/ log n)
rounds. Note that our modified algorithm cannot be slower than the imagined process, so
the runtime of our modified algorithm when L = o(log n) is O(D + kL/ log n).

5 Generalizing the Deterministic Algorithm when Tokens are Large

When tokens are large, L = ω(log n) in particular, the time complexity of the BFS-tree
building process and the token aggregation process are both affected. As mentioned in
Section 1, we can apply the simple strategy of using L/ log n rounds to simulate one round of
our algorithm (as a token can be transferred in L/ log n rounds), but the resulting algorithm
would be too slow. Instead, in this section, we introduce and analyze a variant of our
algorithm that costs only O(D · max{ log(L/ log n)

log n , 1} + k · L
log n ) rounds when L = ω(log n).

The high level framework of this variant is the same as the algorithm introduced in
Section 3: first build BFS-tree(s) and then detect token collisions within the tree(s). In this
section, we focus on introducing the process of building BFS-tree(s) as the latter component
is almost identical with the original algorithm. (Complete pseudocode of this variant is
provided in Appendix A.) For the ease of presentation, we use B = Θ(log n) to denote the
bandwidth of CONGEST networks throughout this section.

5.1 Algorithm description
We first explain the key idea that allows this variant to be faster than the simulation strategy.
Recall that in the original BFS-tree building process, each node v needs to record the
minimum token it has seen in ridv, and this is done by exchanging tokens in their entirety
with neighbors. However, a key observation is, the relative order of two binary strings can be
determined by a prefix of the strings that includes the most significant bit where they differ.
As a result, we can employ the strategy that identifiers are sent successively starting from
the most significant bit. Whenever a node v finds a prefix from some neighbor u is strictly
smaller than the prefix of its current identifier, v updates its identifier to match the prefix
and designates u as its parent. Moreover, when v sends its updated identifier, it does not
need to restart from the first bit; instead, v starts from the bit where the updated identifier
differs from the previous identifier. Effectively, we obtain an efficient “pipeline” approach on
identifier broadcasting that can speed up the BFS-tree building process.

Build BFS-tree(s). We now detail how to implement the above idea. Similar to the original
algorithm, each node v attempts to construct a BFS-tree rooted at itself by broadcasting its
identifier ridv. Due to bandwidth limitation, each identifier is divided into multiple pieces
so that one piece can fit into one message. Denote these pieces as ridv[1], · · · , ridv[⌈L/B⌉],
where ridv[1] contains the B most significant bits while ridv[⌈L/B⌉] contains the B least
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significant bits. The BFS-tree building procedure contains multiple iterations, each of which
contains Θ( log (L/B)

B ) rounds. In each iteration, Θ( log (L/B)
B ) identifier pieces are sent, along

with the position of the first sent piece in ridv – we use sentv to denote this position.
(Notice that sending sentv may require log (L/B)

B rounds when L is large, this is why each
iteration may contain multiple rounds.) Each node v locally maintains an identifier prefix
for each neighbor based on received pieces. Whenever v finds a prefix of some neighbor u is
strictly smaller than the prefix of its current identifier, v updates its identifier to match the
prefix and designates u as its parent. At this point, v should send the updated identifier to
neighbors. Particularly, v starts with the first piece where the updated identifier differs from
v’s previous identifier. This implies v may send non-successive piece position, in which case
each neighbor of v should abandon the old prefix of v and record the new one.

Node v waits until all neighbors and itself have sent complete identifiers. Then, if v finds
that all neighbors share the same identifier as itself, it attempts to ascertain whether the
BFS-tree rooted at itself is fully constructed. Similar to the original algorithm, each node v

uses a boolean variable fv to indicate whether BFS-tree construction is completed. Initially
fv is false, and fv becomes true if: (1) v and all its neighbors have sent complete identifiers;
(2) v and all its neighbors have identical identifier; and (3) each child u of v has fu = true or
v has no children.

Lastly, if node v determines that the BFS-tree rooted at itself is fully constructed and it
does not have a parent, then it terminates the BFS-tree building procedure and broadcasts a
termination signal to all neighbors once. The node will then proceed to the second stage of
the algorithm. Any node receiving such a signal will also forward it to neighbors once, stop
the BFS-tree building procedure, and proceed to the second stage of the algorithm.

5.2 Analysis
The analysis for the above generalized algorithm is similar to the analysis for the original
algorithm. Most claims and lemmas can carry over with little or no modifications, so are
the proofs for these claims and lemmas. Others, however, require non-trivial extension or
adjustments. To avoid redundancy, we only state these claims and lemmas here and provide
proofs that require noticeable extension or adjustments in the full paper.

Correctness. The definition for identifier-induced graph remains unchanged in the general-
ized setting, except that such graph is defined at the end of each iteration.

▶ Definition 20 (Analogue of Definition 8). At the end of any iteration, define directed graph
G′ = (V, E′) as the identifier-induced graph in the following way: V is the node set of the
network graph, and a directed edge (v, u) ∈ E′ if v assigns u as its parent.

Following lemma is an analogue of Lemma 9, its proof is almost identical to that of
Lemma 9, with small adjustments to account for the fact that identifiers are sent in pieces.

▶ Lemma 21 (Analogue of Lemma 9). At the end of any iteration, for any directed path in the
identifier-induced graph, the identifiers of the nodes along the directed path are non-increasing.

With Lemma 21, analogues of Lemma 10 and Lemma 11 hold automatically.

▶ Lemma 22 (Analogue of Lemma 10). At the end of any iteration, the identifier-induced
graph is a directed forest in which every weakly connected component is a rooted tree. In
particular, in each tree, the unique node with no parent is the root of that tree.
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▶ Lemma 23 (Analogue of Lemma 11). At the end of any iteration, for any node r that has
sent its complete identifier to neighbors (that is, sentr = ⌈L/B⌉), within the subtree rooted
at node r in the identifier-induced graph, the subgraph induced by the nodes having identical
identifier with node r is also a tree rooted at node r.

Lemma 12 is critical for the original algorithm, which states that a single BFS tree
containing all nodes will be built when there are no token collisions. In the generalized
setting, this claim still holds, but the proof needs to be extended in a non-trivial fashion to
deal with the complication introduced by the pipeline approach for sending identifiers.

▶ Lemma 24 (Analogue of Lemma 12). If there are no token collisions, then after all nodes
quit the BFS-Tree-Building procedure, the identifier-induced graph contains a single tree
rooted at the node having the minimum token as input, and all nodes in that tree have
identical identifier.

Much like the case of Definition 20, the definition for identifier-induced subtree remains
largely unchanged in the generalized setting.

▶ Definition 25 (Analogue of Definition 13). At the end of any iteration, for any node r that
has sent its complete identifier to neighbors (that is, sentr = ⌈L/B⌉), within the subtree
rooted at r in the identifier-induced graph, call the subtree induced by the nodes having
identical identifier with r as the identifier-induced subtree rooted at r.

Lemma 14 and Lemma 15 (and their proofs) still hold in the generalized setting, as we
utilize the mechanism in the original algorithm for counting tree size and aggregating tokens.

▶ Lemma 26 (Analogue of Lemma 14). Assume that in some iteration i, node v runs procedure
Token-Collision-Detection and within that procedure updates resv for the first time (so
that after the update resv ̸=⊥), then by the end of iteration i, the value of cntv equals the
size of the identifier-induced subtree rooted at v.

▶ Lemma 27 (Analogue of Lemma 15). Assume that in some iteration i, node v runs procedure
Token-Collision-Detection and within that procedure updates resv for the first time
(so that after the update resv ̸=⊥), then by the end of iteration i, node v collects each token
owned by the nodes within the identifier-induced subtree rooted at v exactly once.

We conclude this part with the following lemma which shows the correctness of our
generalized algorithm, its proof is essentially identical to that of Lemma 16.

▶ Lemma 28 (Analogue of Lemma 16). After all nodes halt (that is, res ̸=⊥), they return
identical and correct result.

Complexity. We now analyze the round complexity of the generalized algorithm, focusing
on the BFS-tree construction process. Firstly, an analogue of Lemma 17 can be established.

▶ Lemma 29 (Analogue of Lemma 17). Let v be a node having a minimum token as
input. At the end of any iteration, if v has sent its complete identifier to neighbors (that is,
sentv = ⌈L/B⌉), then v is a root in the identifier-induced graph, and the identifier-induced
subtree rooted at v has height O(D).

The next lemma states the time consumption of the BFS-tree construction process, it
highlights the advantage of using the pipelining approach over the simulation approach.
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▶ Lemma 30 (Analogue of Lemma 18). After O(D + L
log(L/ log n) ) iterations, every node v

quits BFS-Tree-Building (that is, buildv = false).

The last lemma shows the total time complexity of the generalized algorithm.

▶ Lemma 31 (Analogue of Lemma 19). After O(D · log(L/ log n)
log n + k · L

log n ) rounds, every node
v halts (that is, v returns res ̸=⊥).

Proof of the main theorem. Combine Lemma 28 and Lemma 31, Theorem 3 is immediate.

6 Impossibility Result and Lower Bound for Deterministic Algorithms

Impossibility result. Recall Theorem 5 which states that if each node has no knowledge
about the network graph except being able to count and communicate over adjacent links,
and if each node also has no knowledge regarding the tokens except the ones being given as
input, then the token collision problem has no deterministic solution.

To obtain the above impossibility, the key intuition is: to solve the problem, nodes need
to exchange their input tokens in some manner; but in the anonymous setting with no global
knowledge regarding network graph or input tokens, whenever a node receives a token from
some neighbor that collide with its own input, the node cannot reliably determine whether
this token originates from itself or some other node, yet the correctness of any algorithm
depends on being able to distinguish these two scenarios.

We now provide a complete proof. Note that our impossibility result is strong in that we
can construct counterexamples for any network size n ≥ 3.

Proof of Theorem 5. Assume that there is an algorithm A that solves the token collision
problem in the considered setting. For any n ≥ 3, we consider two problem instances. The
first instance – henceforth called Cn – is a ring consisting of n nodes, denoted as v1, v2, · · · , vn.
Each node in the network obtains one token as input. Particularly, for any i ∈ [n], node vi

has a token with value i. The second instance – henceforth called C2n – is a ring consisting
of 2n nodes. To construct C2n, we first build two paths. The first path contains n nodes,
denoted as v′1, v′2, · · · , v′n; the second path also contains n nodes, denoted as u1, u2, · · · , un.
Then, we connect v′n with u1, and connect un with v′1. At this point, we have a ring. Each
node in C2n obtains one token as input. Particularly, for any i ∈ [n], node v′i and node ui

each has a token with value i.
Clearly, token collisions exist in C2n but not in Cn, yet we will prove that A outputs

identical results in both instances, resulting in a contradiction. Specifically, call the execution
of A on Cn as α and the execution of A on C2n as β, we will prove by induction that by the
end of every round, for any i ∈ [n], the internal states of nodes vi, v′i and ui are identical.

The base case, which is immediately after initialization (i.e., round 0), trivially holds.
Assume that the claim holds for all rounds up to the end of round r ≥ 0, now consider

round r + 1. Fix an arbitrary i ∈ [n], by the induction hypothesis, nodes vi−1 and v′i−1 have
identical states by the end of round r. Hence, in round r + 1, the message (if any) vi−1 sends
to vi and the message (if any) v′i−1 sends to v′i will be identical. Similarly, in round r + 1, the
message (if any) vi+1 sends to vi and the message (if any) v′i+1 sends to v′i will be identical.
Also, notice that by the end of round r, by the induction hypothesis, vi and v′i have identical
states. Hence, during round r + 1, the local views of vi and v′i are identical. In other words,
for any v̂ ∈ {vi, v′i}, node v̂ cannot distinguish whether it is in α or β. Therefore, by the end
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of round r + 1, nodes vi and v′i have identical states. By a similar argument, we can show
that by the end of round r + 1, nodes vi and ui also have identical states. This completes
the proof of the inductive step, hence proving the claim.

Since A solves the token collision problem, α and β both terminate. Moreover, due to
the above claim, nodes in α and β output identical results, resulting in a contradiction. ◀

Deterministic lower bound. We reduce the set-disjointness problem to the token collision
problem and obtain the following theorem. Theorem 4 is an immediate corollary of it (by
setting mincut(G) = 1).

▶ Theorem 32. Recall the parameters n, k, L introduced in the definition of the token collision
problem (that is, Definition 1). Consider a size-n CONGEST network G = (V, E) with
diameter D. Assuming 2L ≥ k, any deterministic algorithm that solves the token collision
problem takes Ω(D + k(L−log k+1)

mincut(G)·log n ) rounds. Here, mincut(G) denotes the mincut of G. That
is, mincut(G) = minU⊂V |{(u, v) ∈ E | u ∈ U, v ∈ V \ U}|.

Proof. Let (U, V \ U) be a partition of V that attains mincut(G). Let u ∈ U and v ∈ V \ U

be a pair of farthest nodes between U and V \ U . Assume that u and v are assigned token
sets S and T respectively, each containing k/2 tokens.

Notice that Ω(D) is a lower bound for the token collision problem, as the distance between
u and v is Θ(D), and they need to communicate with each other to solve the problem.

On the other hand, recall the two-party communication model and the set-disjointness
problem introduced in Section 2. Since 2L ≥ k, by setting p = 2L and q = k/2, it holds
q ≤ p/2. Recall the bandwidth of the network is B = Θ(log n). We claim, if there exists
an r-round algorithm that deterministically solves token collision in the CONGEST model,
then Alice and Bob can compute DISJp

q(S, T ) by communicating at most 2rB · mincut(G)
bits. Specifically, they can run the r-round algorithm by having Alice and Bob simulate
nodes in U and V \ U respectively. Communication between Alice and Bob is necessary only
when messages (each of which is at most B bits) are exchanged between nodes in U and
V \ U in the simulation. Apply Fact 7, we have 2r · mincut(G) · B = Ω(log

(
p
q

)
), implying

r = Ω( k(L−log k+1)
mincut(G)·B ) = Ω( k(L−log k+1)

mincut(G)·log n ). ◀
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Appendix

A Pseudocode of the Deterministic Algorithms

Main algorithm executed at each node v.
1: buildv ← true, xv ← v’s input tokens, ridv ← min{xv}, pv ←⊥, chiv ←⊥, fv ← false.
2: cntv ←⊥, elev ← ⊤, resv ←⊥. ▷ End of initialization.
3: for (each round) do
4: for (each incident edge with label i ∈ [∆v]) do
5: ischildi ← I[pv == i]. ▷ ischildi indicates whether edge i connects to the parent of v.
6: Send ⟨resv, buildv, ridv, ischildi, fv, cntv, elev⟩ through edge i.
7: if (resv ̸=⊥) then Return resv as final result. ▷ Termination.
8: For i ∈ [∆v ], let mi = ⟨resi, buildi, ridi, ischildi, fi, cnti, elei⟩ be the message received via edge i.
9: for (each edge i ∈ [∆v]) do

10: if (resi ̸=⊥) then resv ← resi.
11: buildv ← buildv ∧ buildi.
12: if (buildv == true) then Execute Procedure BFS-Tree-Building.
13: else Execute Procedure Token-Collision-Detection.

Procedure BFS-Tree-Building executed at node v.
1: IDv ← {ridi | i ∈ [∆v]}.
2: if (min{IDv} < ridv) then
3: Let j ∈ [∆v] be one edge label satisfying ridj == min{IDv}.
4: ridv ← ridj , pv ← j, fv ← false. ▷ Notice that fv is reset to false.
5: else if (max{IDv} == ridv) then
6: chiv ← {i | i ∈ [∆v] and ischildi == true}.
7: if ((∀i ∈ chiv, fi == true) or chiv == ∅) then fv ← true.
8: if (pv ==⊥ and fv == true) then buildv ← false.

Procedure Token-Collision-Detection executed at node v.
1: chiv ← {i | i ∈ [∆v] and buildi == false and ischildi == true and ridi == ridv}.
2: Append {elei | i ∈ chiv and elei ∈ {0, 1}L} to xv.
3: if (∀i ∈ [∆v], buildi == false) then
4: if ((∀i ∈ chiv, cnti ̸=⊥) or chiv == ∅) then cntv ← 1 +

∑
i∈chiv

cnti.

5: if (pv ̸=⊥) then
6: if (|xv| > 0) then Eject one token from xv and let that token be elev.
7: else if ((∀i ∈ chiv, elei ==⊥) or chiv == ∅) then elev ←⊥.
8: else elev ← ⊤.
9: else if (cntv ̸=⊥ and ((∀i ∈ chiv, elei ==⊥) or chiv == ∅)) then

10: if (know value of n and cntv == n and no token collision in xv) then resv ← true.
11: else if (know value of k and |xv| == k and no token collision in xv) then resv ← true.
12: else resv ← false.

Figure 1 Pseudocode of the deterministic token collision algorithm.

The complete pseudocode of the algorithm in Section 3 is given in Figure 1. Below are
the explanations of some key variables that are used in the pseudocode. For any node v,

buildv: a boolean variable indicating whether BFS-tree building is ongoing for v.
ridv: the identifier of v, intuitively it stores the root of the BFS-tree that v belongs to.
pv: the label of the edge connecting to the parent of v.
chiv: the set of edge labels representing the children of v.
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fv: a boolean variable indicating whether the BFS-tree rooted at v is fully constructed.
cntv: the size of the BFS-tree rooted at v.
elev: if elev /∈ {⊥, ⊤}, then it is the token that v intends to send to its parent in the
next round; if elev = ⊤, it indicates that there may exist a token in the BFS-tree rooted
at v that has not been transferred to v’s parent; if elev =⊥, it indicates that all tokens
in the BFS-tree rooted at v have already been transferred to v’s parent.
resv: the result of the token collision problem, that is, the algorithm’s output at node v.

The pseudocode of the algorithm introduced in Section 5, which deals with the case that
tokens are large, are given in Figure 2.

B Token Collision for the Randomized Scenario

For the sake of completeness, in this section, we briefly discuss the round complexity of the
token collision problem when randomization is allowed.

Randomized upper bound. We first describe a randomized algorithm that solves token
collision with probability at least 1 − 1/k within O(D · log((log k)/ log n)

log n + k · log k
log n + L

log n )
rounds, hence proving the upper bound part of Theorem 6.

To begin with, we elect a leader among the nodes that have at least one token as input.
Notice that there are at most k such nodes. Hence, by letting each such node v uniformly
and independently sample idv ∈ {0, 1}c log k for some sufficiently large constant c, there is
a unique node v̂ that obtains the global minimum id with probability at least 1 − 1/kc−2.
If we let each node continuously broadcast the minimum id that it ever received, a size-n
BFS tree rooted at v̂ would be constructed with probability at least 1 − 1/kc−2. Moreover,
by using the pipelining approach we introduced in Section 5, this process takes at most
O(D · log((log k)/ log n)

log n + log k
log n ) rounds (see Lemma 30).

Once a size-n BFS tree is built, the root – which is also the leader – will collect all tokens
to determine whether collisions exist. Notice that with randomization, we do not have to
transfer each token in its entirety. In particular, we can leverage the following fact on the
collision probability of random hash function to reduce the length of each token.

▶ Fact 33 ([8]). For any set S ⊆ [2L] of size |S| = k and any β ≥ 0, there exists a random
hash function h : [2L] → [q] with q = O(k2+β) such that, with probability at least 1 − 1/kβ,
it holds that h(x) ̸= h(y) for all x, y ∈ S with x ̸= y. Moreover, h can be constructed using
O(L) random bits.

Therefore, after BFS-tree construction, the leader can generate O(L) random bits for
constructing the random hash function, and broadcast these bits to all nodes in O(D + L

log n )
rounds. Then, each node uses the random hash function to reduce the length of its tokens
to O(log k) bits. Finally, the k tokens each of length O(log k) is aggregated to the root in
O(D + k · log k

log n ) rounds.
Clearly, the total runtime of the algorithm is

O

(
D · log((log k)/ log n)

log n
+ k · log k

log n
+ L

log n

)
,

and it succeeds with probability at least 1 − 1/k.

Randomized lower bound. The lower bound part of Theorem 6 can be obtained in the same
manner as the proof of Theorem 32 by using the randomized lower bound of set-disjointness
mentioned in Fact 7. We omit its proof to avoid redundancy.
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Main algorithm executed at each node v for large tokens.
1: buildv ← true, xv ← v’s input tokens, ridv ← min{xv}, pv ←⊥, chiv ←⊥, fv ← false.
2: Initialize four vectors {ridi}i∈[∆v ], {senti}i∈[∆v ], {elei}i∈{0,··· ,∆v}, and {sentei}i∈{0,··· ,∆v}.
3: Set ele0 ← ⊤; for any i ∈ [∆v], set senti ← 0, ridi ← 2L − 1, sentei ← 0.
4: M ← ⌈L/B⌉, P ← ⌈(log ⌈L/B⌉)/B⌉. ▷ End of initialization.
5: for (each iteration containing Θ( log (L/B)

B
) rounds) do

6: l← sentv + 1, r ← min(sentv + P, M).
7: for (each incident edge with label i ∈ [∆v]) do
8: ischildi ← I[pv == i].
9: Send ⟨resv, buildv, ridv[l, · · · , r], sentv, ischildi, fv, cntv, elev⟩ through edge i.

10: sentv ← r.
11: if (resv ̸=⊥) then Return resv as final result. ▷ Termination.
12: Let mi = ⟨resi, buildi, rid′

i, sent′
i, ischildi, fi, cnti, ele′

i⟩ be the message received via edge i ∈ [∆v].
13: for (each edge i ∈ [∆v]) do
14: l← sent′

i + 1, r ← min(sent′
i + P, M), senti ← r, ridi[l, · · · , r]← rid′

i, fill ridi[r + 1, · · · , M ] with 1.
15: if (resi ̸=⊥) then resv ← resi.
16: buildv ← buildv ∧ buildi.
17: if (buildv == true) then Execute Procedure BFS-Tree-Building for large tokens.
18: else Execute Procedure Token-Collision-Detection for large tokens.

Procedure BFS-Tree-Building executed at node v for large tokens.
1: IDv ← {ridi | i ∈ [∆v]}.
2: if (min{IDv} < ridv) then
3: if (pv ̸=⊥ and ridpv

== min{IDv}) then j ← pv.
4: else Let j ∈ [∆v] be one edge label satisfying ridj == min{IDv}.
5: ridv ← ridj , sentv ← sent′

j , pv ← j, fv ← false. ▷ Notice that fv is reset to false.
6: else if (max{IDv} == ridv and sentv == M and (∀i ∈ [∆v], senti == M)) then
7: chiv ← {i | i ∈ [∆v] and ischildi == true}.
8: if ((∀i ∈ chiv, fi == true) or chiv == ∅) then fv ← true.
9: if (pv ==⊥ and fv == true) then buildv ← false.

Procedure Token-Collision-Detection executed at node v for large tokens.
1: chiv ← {i | i ∈ [∆v] and buildi == false and ischildi == true and senti ==

M and ridi == ridv}.
2: for (i ∈ chiv and ele′

i /∈ {⊤,⊥}) do
3: elei[sentei + 1, · · · , min(sentei + P, M)]← ele′

i, sentei ← min(sentei + P, M).
4: if (sentei == M) then Append elei to xv and set sentei ← 0.
5: if ((∀i ∈ [∆v], buildi == false) and sentv == M) then
6: if ((∀i ∈ chiv, cnti ̸=⊥) or chiv == ∅) then cntv ← 1 +

∑
i∈chiv

cnti.

7: if (pv ̸=⊥) then
8: if (sente0 ̸= 0) then
9: l← sente0 + 1, r ← min(sente0 + P, M), elev ← ele0[l, · · · , r], sente0 ← r mod M .

10: else if (|xv| > 0) then
11: Eject one token from xv and let that token be ele0.
12: elev ← ele0[1, · · · , P ], sente0 ← P .
13: else if ((∀i ∈ chiv, elei ==⊥) or chiv == ∅) then elev ←⊥.
14: else elev ← ⊤.
15: else if (cntv ̸=⊥ and ((∀i ∈ chiv, elei ==⊥) or chiv == ∅)) then
16: if (know value of n and cntv == n and no token collision in xv) then resv ← true.
17: else if (know value of k and |xv| == k and no token collision in xv) then resv ← true.
18: else resv ← false.

Figure 2 Pseudocode of the deterministic token collision algorithm for large tokens.
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