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Abstract
The dual of a planar graph G is a planar graph G∗ that has a vertex for each face of G and an
edge for each pair of adjacent faces of G. The profound relationship between a planar graph and its
dual has been the algorithmic basis for solving numerous (centralized) classical problems on planar
graphs involving distances, flows, and cuts. In the distributed setting however, the only use of planar
duality is for finding a recursive decomposition of G [DISC 2017, STOC 2019].

In this paper, we extend the distributed algorithmic toolkit (such as recursive decompositions
and minor-aggregations) to work on the dual graph G∗. These tools can then facilitate various
algorithms on G by solving a suitable dual problem on G∗. Given a directed planar graph G with
hop-diameter D, our key result is an Õ(D2)-round algorithm1 for Single Source Shortest Paths on
G∗, which then implies an Õ(D2)-round algorithm for Maximum st-Flow on G. Prior to our work, no
Õ(Poly(D))-round algorithm was known for Maximum st-Flow. We further obtain a D · no(1)-rounds
(1 + ϵ)-approximation algorithm for Maximum st-Flow on G when G is undirected and s and t lie on
the same face. Finally, we give a near optimal Õ(D)-round algorithm for computing the weighted
girth of G.

The main challenges in our work are that G∗ is not the communication graph (e.g., a vertex of G

is mapped to multiple vertices of G∗), and that the diameter of G∗ can be much larger than D (i.e.,
possibly by a linear factor). We overcome these challenges by carefully defining and maintaining
subgraphs of the dual graph G∗ while applying the recursive decomposition on the primal graph G.
The main technical difficulty, is that along the recursive decomposition, a face of G gets shattered
into (disconnected) components yet we still need to treat it as a dual node.
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1 Introduction

Distributed algorithms for network optimization problems have a long and rich history.
These problems are commonly studied under the CONGEST model [18] where the network is
abstracted as an n-vertex graph G = (V, E) with hop-diameter D; communications occur in
synchronous rounds, and per round, O(log n) bits can be sent along each edge. A sequence of

1 The Õ(·) notation is used to omit poly log n factors.
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breakthrough results provided Õ(D +
√

n)-round algorithms for fundamental graph problems,
such as minimum spanning tree (MST) [6], approximate shortest-paths [16], minimum cuts [3],
and approximate flow [9]. For general n-vertex graphs Õ(D +

√
n) rounds is known to be

near optimal, existentially [20].
A major and concentrated effort has been invested in designing improved solutions for

special graph families that escape the topology of the worst-case lower bound graphs of [20].
The lower bound graph is sparse, and of arboricity two, so it belongs to many graph families.
Arguably, one of the most interesting non-trivial families that escapes it, is the family of
planar graphs. Thus, a significant focus has been given to the family of planar graphs,
due to their frequent appearance in practice and because of their rich structural properties.
In their seminal work, Ghaffari and Haeupler [7, 8] initiated the line of distributed planar
graph algorithms based on the notion of low-congestion shortcuts. The latter serves the
communication backbone for obtaining Õ(D)-round algorithms for MST [8], minimum cut
[8, 11] and approximate shortest paths [21,22] in planar graphs.

An additional key tool in working with planar graphs, starting with the seminal work of
Lipton and Tarjan [15], is that of a planar separator path: a path whose removal from the
graph leaves connected components that are a constant factor smaller. Ghaffari and Parter
[10] presented a Õ(D)-round randomized algorithm for computing a cycle separator of size
O(D) which consists of a separator path plus one additional edge (that is possibly a virtual
edge that is not in G). By now, planar separators are a key ingredient in a collection of
Õ(poly(D))-round solutions for problems such as DFS [10], distance computation [14], and
reachability [17]. An important aspect of the planar separator algorithm of [10] is that it
employs a computation on the dual graph, by communicating over the primal graph.

Primal maximum flow via dual SSSP. Our goal in this paper is to expand the algorithmic
toolkit for performing computation on the dual graph. This allows us to exploit the profound
algorithmic duality in planar graphs, in which solving a problem A in the dual graph provides
a solution for problem B in the primal graph. Within this context, our focus is on the
Maximum st-Flow problem (in directed planar graphs with edge capacities) which asks to
compute the maximum amount of flow that can be sent from a source vertex s to a target
vertex t while respecting edge capacities. The Maximum st-flow problem is arguably one of
the most classical problems in theoretical computer science, extensively studied since the
50’s, and still admitting breakthrough results in the sequential setting, such as the recent
almost linear time algorithm by Chen, Kyng, Liu, Peng, Gutenberg and Sachdeva [1]. Despite
persistent attempts over the years, our understanding of the distributed complexity of the
Maximum st-flow problem is still quite lacking. For general undirected n-vertex graphs, there
is a (1 + o(1))-approximation algorithm that runs in (

√
n + D)no(1) rounds, by Ghaffari,

Karrenbauer, Kuhn, Lenzen and Patt-Shamir [9]. For directed n-vertex planar graphs, a
D · n1/2+o(1)-round exact algorithm has been given by de Vos [2]. No better tradeoffs are
known for undirected planar graphs. In lack of any Õ(poly(D))-round maximum st-flow
algorithm for directed planar graphs (not even when allowing approximation) we ask:

▶ Question 1.1. Is it possible to compute the maximum st-flow in directed planar graphs
within Õ(poly(D)) rounds?

In directed planar graphs with integral edge-capacities, it is known from the 80’s [23]
that the maximum st-flow can be found by solving at most log λ instances of Single Source
Shortest Paths (SSSP) with positive and negative edge-lengths on the dual graph G∗, where λ

is the maximum st-flow value. Their algorithm exploits the fact that any capacity-respecting
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flow in G can be decomposed into (1) a not necessarily capacity-respecting st-flow of the
same value, and (2) a feasible circulation. Since G is planar, a feasible circulation can be
obtained by a feasible potential over its faces (i.e., nodes of G∗); It is known that distances
in G∗ from any source constitute a feasible potential over its nodes. Hence, dual SSSP
immediately implies primal maximum st-flow. We answer Question 1.1 in the affirmative
by designing a Õ(D2)-round SSSP algorithm on the dual graph G∗. Our algorithm works
in the most general setting (i.e. when G∗ is directed and has positive and negative integral
edge-lengths) and matches the fastest known exact SSSP algorithm in the primal graph. We
show:

▶ Theorem 1.2 (Exact Maximum st-Flow in Directed Planar Graph). There is a randomized
distributed algorithm that given an n-vertex directed planar communication network G with
hop-diameter D and integral edge-capacities, and two vertices s, t, computes the maximum
st-flow value and assignment in Õ(D2) rounds.

No prior Õ(poly(D)) algorithm has been known for this problem, not even when allowing
a constant approximation. We further improve the running time to D · no(1) rounds for the
case of a (1 + ϵ)-approximation, provided that G is undirected and that s and t both lie on
the same face:

▶ Theorem 1.3 (Approximate Maximum st-Flow in Undirected st-Planar Graphs). There is a
randomized distributed algorithm that given an n-vertex undirected planar communication
network G with hop-diameter D and integral edge-capacities, and two vertices s, t lying on the
same face, computes a (1 + ϵ)-approximation of the maximum st-flow value and a matching
assignment in D · no(1) rounds.

This latter result is also obtained by exploiting the duality between flows and distances.
Our algorithm is based on an approximate SSSP algorithm that runs in D · no(1) rounds in
planar graphs [22]. Our implementation of the algorithm on the dual graph matches its round
complexity in the primal graph. Our almost-optimal round complexity improves significantly
over the current algorithm for general graphs that runs in (

√
n + D)no(1) rounds [9].

Primal weighted girth via dual cuts. A distance parameter of considerable interest is the
network girth. For unweighted graphs, the girth is the length of the smallest cycle in the
graph. For weighted graphs, the girth is the cycle of minimal total edge weight. Distributed
girth computation has been studied over the years mainly for general n-vertex unweighted
graphs. Frischknecht, Holzer and Wattenhofer [5] provided an Ω(

√
n)-round lower bound

for computing a (2 − ϵ) approximation of the unweighted girth. The state-of-the-art upper
bound for the unweighted girth problem is a (2 − ϵ) approximation in Õ(n2/3 + D) rounds,
obtained by combining the works of Peleg, Roditty and Tal [19] and Holzer and Wattenhofer
[12]. The weighted girth problem has been shown to admit a near-optimal lower bound of
Ω̃(n) rounds in general graphs by Hua, Qian, Yu, Shi and Jin [13]. Turning to planar graphs,
Parter [17] devised a Õ(D2) round algorithm for computing the weighted girth in directed
planar graphs via SSSP computations. For undirected and unweighted planar graphs, the
(unweighted) girth can be computed in Õ(D) rounds by replacing the Õ(D2)-round SSSP
algorithm by a O(D)-round BFS algorithm. In light of this gap, we ask:

▶ Question 1.4. Is it possible to compute the weighted girth of an undirected weighted planar
graph within (near-optimal) Õ(D) rounds?

We answer this question in the affirmative by taking a different, non distance-related,
approach than that taken in prior work. Our Õ(D) round algorithm exploits the useful
duality between cuts and cycles. We present a dual framework of the minor-aggregation
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model. Using it, we can simulate the primal exact minimum cut algorithm of Ghaffari and
Zuzic [11] on the dual graph. This dual simulation matches the primal round complexity.
The solution to the dual cut problem immediately yields a solution to the primal weighted
girth problem. We show:

▶ Theorem 1.5 (Planar Weighted Girth). There is a randomized distributed algorithm that
given an n-vertex undirected weighted planar communication network G with hop-diameter
D, computes the weighted girth (and finds a corresponding cycle) in Õ(D) rounds.

As the algorithmic power of the minor-aggregation model is currently limited to undirected
graphs, it will be interesting to devise improved girth algorithms for directed planar graphs
as well.

2 Technical Overview

Our results are based on two main (primal) tools that we extend to work on the dual graph:
Minor Aggregation and Bounded Diameter Decomposition. We highlight the key ideas of
these techniques and the challenges encountered in their dual implementation. For all the
algorithms that we implement in the dual graph, we match the primal round complexity.

2.1 Minor-Aggregations in the Dual

An important recent development in the field of distributed computing was a new model
of computation, called the minor-aggregation model introduced by Zuzic r⃝2 Goranci r⃝
Ye r⃝ Haeupler r⃝ Sun [22], then extended by Ghaffari and Zuzic [11] to support working
with virtual nodes added to the input graph. Recent state-of-art algorithms for various
classical problems can be formulated in the minor-aggregation model (e.g., the exact min-cut
algorithm of [11], and the undirected shortest paths approximation algorithms of [21,22]).
Motivated by the algorithmic power of this model, we provide an implementation of the
minor aggregation model in the dual graph. The round complexity of our implementation
matches its primal complexity. As noted by [22], minor aggregations can be implemented by
solving the (simpler) part-wise aggregation task, where one needs to compute an aggregate
function in a collection of vertex-disjoint connected parts of the graph. The planar separator
algorithm of [10] implicitly implements a part-wise aggregation algorithm in the dual graph.
Our contribution is in providing an explicit and generalized implementation of the dual
part-wise aggregation problem and using it to implement the minor-aggregation model in
the dual graph. We then use this algorithm for computing the exact minimum weighted cut
in the dual graph, which by duality provides a solution to the weighted girth problem in
the primal graph. We also use it to simulate the recent approximate SSSP by [22] in the
dual graph, leading to our approximate max st-flow algorithm. Since currently there are fast
SSSP minor-aggregation algorithms only for undirected graphs with positive weights, this
approach leads to an approximate max st-flow algorithm in undirected planar graphs when s

and t are on the same face. To solve the more general version of the max flow problem, we
need additional tools described next.

2 r⃝ is used to denote that the authors’ ordering is randomized, as the authors ask to cite their work this
way.
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2.2 SSSP in the Dual
Bounded diameter decompositions. The Bounded Diameter Decomposition (BDD), in-
troduced by Li and Parter [14] is an algorithmic tool for solving graph problems in a
divide-and-conquer manner, in the CONGEST model. Intuitively, the BDD plays an analo-
gous role to planar separator decomposition in the centralized setting, in the following sense.
The centralized divide-and-conquer approach repetitively removes the separator vertices from
the graph and recurses on the remaining subgraphs that are (a constant factor) smaller in
size. For the algorithmic applications it is only important that the size of the separator
and the remaining subgraphs are small. In the distributed setting, it is desired to obtain
a separator of O(D) size in all recursive subgraphs, allowing a fast (Õ(poly(D))-round)
broadcast of separator related information (e.g. pairwise distances), which is in particular
useful for a divide-and-conquer approach. While this can be obtained in the first recursion
level, once we remove the first separator, the remaining subgraphs are smaller in size, but
they may have considerably larger diameter, even up to Θ(n). Allowing the algorithm to
use the other subgraphs, to provide shortcut paths, creates the possibility of congestion
as now many subproblems may need to use the same edge. These two opposing dilation
and congestion forces are settled by the BDD algorithm, in a near optimal manner. The
BDD provides a hierarchical graph decomposition of O(log n) layers. The subgraphs (called
bags) obtained in each recursive level are nearly edge-disjoint (sharing only the edges of the
separator) and of diameter Õ(D). I.e., allowing one to apply an algorithm on all bags of the
same level simultaneously without incurring more than a poly log n factor overhead in the
round complexity of running the same algorithm on the original network of communication
(which has a small diameter of D). There might be as many as Õ(D) children of a bag (all a
constant factor smaller than their parent bag). However, the number of child bags has no
importance, as we can work on all of them in parallel. BDDs have proven to be useful for
divide-and-conquer CONGEST algorithms on the (primal) graph G (e.g. distance labeling,
diameter approximation, routing schemes and reachability [4, 14,17]).

Our approach: recurse on primal, solve on dual. Due to the wide applicability of BDDs
for solving graph problems in planar graphs, we would like to exploit them also for solving
problems on the dual graph. A natural approach could be to simulate a BDD algorithm on
the dual network. However, there are several barriers. First, it is unclear how to simulate a
general algorithm on the dual network, as this is not our communication network. Second,
the diameter of the dual graph can be large (possibly linear) and the running time of the
algorithm depends on the graph diameter. To overcome it we take a different approach. We
apply a divide-and-conquer approach on the dual graph G∗ by using the BDD computation
on the primal graph G. Taking a dual lens on the primal BDD introduces several challenges
that arise when one needs to define the dual bags from the given primal bags. This primal
to dual translation is rather non-trivial due to critical gaps that arise when one needs to
maintain information w.r.t faces of G, rather than vertices of G, over the recursive BDD
procedure, as we elaborate next.

Challenge I: shattered faces. Throughout, we refer to faces of the primal graph G as nodes
(rather than vertices) of the dual graph G∗. In the primal graph, a vertex is an atomic unit,
which keeps its identity throughout the computation. The situation in the dual graph is
considerably more involved. Consider a constant diameter (primal) graph with a face f

with Θ(n) edges. Throughout the recursive BDD, the vertices of the face f are split among
multiple faces, and eventually f is shattered among possibly a linear number of leaf bags.

DISC 2024
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This means that a node in a dual bag does no longer correspond to a face f of the primal
bag, but rather to a subset of edges of f . This creates a challenge in the divide-and-conquer
computation, where one needs to assemble fragments of information from multiple bags.

Challenge II: virtual edges. For the BDD implementation, it is crucial for the separator
to be a simple cycle. This was obtained in [10] by adding a single artificial (virtual) edge.
The virtual edges are embedded in a way that preserve planarity, but they require special
treatment since they are not part of the communication graph. In the primal BDD, the role
of the virtual edge is limited to defining the child bags, and can be discarded afterwards. This
use-and-forget mindset can no longer be applied in our setting. We elaborate. In a primal
divide-and-conquer algorithm, the separator is thought of as a subset of vertices where each
path in G from one side of the separator to the other side must intersect the separator at a
vertex. In our case, since we are working with the dual graph, we have that paths in G∗ from
one side of separator to the other side must intersect the separator at an edge. That is, we
view the separator as an edge-separator (i.e., a cut in the dual graph) not a vertex-separator.
This is challenging because now we need to take into account the virtual edge that is not a
real edge of G but is an edge of the separator.

Our approach. To deal with the above challenges, we work as follows. First, we analyze the
way faces are partitioned during the BDD algorithm. We prove that in each bag X of the
BDD there is at most one face of G that can be partitioned between the different child bags
of X and was not partitioned in previous levels, this is exactly the face f that contains the
virtual edge of the bag. We call the different parts of f that appear in different child bags
face-parts. Since the decomposition has O(log n) levels, overall we have at most O(log n)
face-parts in each bag. For a bag X, we define a dual bag X∗ as follows. The nodes of X∗

are the faces and face-parts of G that appear in X, where two nodes are connected by a dual
edge if they share a primal edge in X. If X = G, this is exactly the dual graph G∗. The
nodes g in X∗ will be simulated by the vertices of the corresponding face or face-part, and
each dual edge adjacent to g will be known by one of these vertices.

Our next goal is to use the decomposition in order to compute distances in the dual graph.
More concretely, we compute distance labels. Each node in a bag X∗ gets a short label of size
Õ(D), such that given the labels of two nodes in X∗ we can deduce their distance. We take a
recursive approach. We first compute distance labels in the child bags of a dual bag X∗ and
then combine them to compute distances in X∗. To do so, we identify a set of Õ(D) special
nodes F

X
in X∗, that contain nodes adjacent to the separator, as well as nodes corresponding

to faces or face-parts that are partitioned between child bags of X∗. We prove that any
shortest path in X∗ is either entirely contained in one of the child bags (and hence we already
computed the distances recursively), or has a special node in F

X
. Hence, it is enough to store

in the label of a node g its distances from nodes in F
X

and its label in the child bag of X∗

that contains g (if g is partitioned to several child bags, g is in F
X

, and in this case we just
store the distances to nodes in F

X
without a recursive label). Finally, we broadcast Õ(D2)

information that includes labels of nodes in F
X

(or corresponding face-parts) in the child
bags, and the edges of the separator, and prove that based on this information nodes can
deduce locally their distance label in X∗. This follows as each shortest path is either entirely
contained in a child bag, or can be broken up to subpaths whose endpoints are in F

X
, and

are either entirely contained in a child bag (and hence their distance can be deduced from
the labels we broadcast), or use a separator edge between different child bags (we broadcast
all these edges), or use face-parts of the same face that are contained in different child bags
(in this case, we connect the corresponding face-parts with a zero weight edge).
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