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Abstract
The topological view on distributed computing represents a task T as a relation ∆ between the
complex I of its inputs and the complex O of its outputs. A cornerstone result in the field is an
elegant computability characterization of the solvability of colorless tasks in terms of I, O and ∆.
Essentially, a colorless task is wait-free solvable if and only if there is a continuous map from the
geometric realization of I to that of O that respects ∆.

This paper makes headway towards providing an analogous characterization for general tasks,
which are not necessarily colorless, by concentrating on the case of three-process inputless tasks. Our
key contribution is identifying local articulation points as an obstacle for the solvability of general
tasks, and defining a topological deformation on the output complex of a task T , which eliminates
these points by splitting them, to obtain a new task T ′, with an adjusted relation ∆′ between
the input complex I and an output complex O′ without articulation points. We obtain a new
characterization of wait-free solvability of three-process general tasks: T is wait-free solvable if and
only if there is a continuous map from the geometric realization of I to that of O′ that respects ∆′.
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1 Introduction

For more than thirty years, distributed computing has been studied through the lens of
topology, developing a deep understanding of the solvability of tasks. In this approach, a
simplex represents a configuration as a set of vertexes, each representing the state of one
process. In general, each vertex has an associated process id, sometimes referred to as its
color. Tasks are triples (I, O, ∆), where I and O are simplicial complexes modelling the
inputs and outputs of the task, and ∆ is a relation specifying the possible valid outputs,
∆(σ), for each input simplex σ ∈ I. For any initial configuration σ of I, each process starts
with an input vertex of σ colored by its ID, and must decide on an output vertex with its
color, such that the vertices decided by the processes form a simplex τ of ∆(σ).
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Figure 1 The majority consensus task: input complex (left), output complex (center) and output
complex after splitting (right).

A major contribution of the topological approach is a set of novel impossibility results
and algorithms for specific tasks, through fundamental characterizations of solvable tasks in
various distributed computing models. Beyond telling us what is solvable and what is not,
characterization results tell us what makes tasks unsolvable, indicating the obstructions to
solvability, and sometimes pointing how these obstructions can be avoided.

The focus of this work is on wait-free protocols for solving a task in a read/write shared
memory system. A cornerstone result for this model is the asynchronous computability
theorem (ACT) of Herlihy and Shavit [18] (see also [14, Theorem 11.2.1]). The remarkable
insight of this theorem is that a protocol solving a task in this model corresponds to a
color-preserving simplicial mapping from a chromatic subdivision of the input complex into
allowable outputs in the output complex.

As stated, however, the ACT does not provide us with a direct connection to standard
topology notions relating the topology of the input and the output complexes. Such a
characterization is so far known only for colorless tasks [7, 15]. A colorless task is defined
only in terms of input and output values, regardless of the number of processes involved,
and regardless of which process has a particular input or output value; accordingly, I and
O consist of sets of values, without process IDs. Well-known examples are the consensus
task [10] and its generalization to set consensus [8]. Colorless tasks are simpler to analyze
and in particular, they have an elegant computability characterization in terms of their
input and output complexes [14, 17]: a colorless task is wait-free solvable if and only if there
is a continuous map from |I| to |O| respecting ∆. Recall that |K| denotes the geometric
realization of a simplicial complex.

A similar characterization for general tasks, which are not necessarily colorless, has eluded
researchers. General tasks that cannot be stated as colorless tasks are sometimes called
chromatic. Several such tasks have been studied, notably renaming [3]. A simple example
is the majority consensus task. In this weaker form of binary consensus, it is allowed to
decide different values (when processes do not all start with the same input), but only if
more processes decide 0 than 1. Figure 1 illustrates this task for a single three-process input
configuration: two processes start with 1 and the other with 0. Tasks whose input complex
contains a single facet are called inputless in the literature. Impossibility results are usually
achieved using inputless versions of tasks, which is also the case in our examples, and we
concentrate on such tasks in this work. In our figures, processes are identified by black, grey
and white colors, and their respective inputs are inside the vertices, and with the analogous
convention for output values, the output complex, where the respective output values are
inside vertices.

Researchers have tried to characterize the solvability of general tasks in terms of continuous
maps, analogous to the colorless characterization. The value of such a characterization would
not only be due to its direct nature from the input complex to the output complex, but also
due to the direct connection to topology: continuous maps between spaces.
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Link(P1, 1)

Figure 2 The hourglass task: input complex (left), output complex (center left), output complex
after splitting (center right) and the link of the local articulation point (right).

The quest for such a characterization has failed, because it is not true that a chromatic
task is solvable if and only if there is a continuous map from the input to the output complex.
This has been demonstrated with the hourglass task (Figure 2) in [14, Section 11.1]. The
hourglass task is an inputless task, where each process running solo decides on 0. Process P0
(black) running concurrently with either P1 or P2 can also (in addition to their solo values)
decide on their respective vertexes, with output 1. While P1 and P2 running concurrently can
additionally decide their respective vertices with value 2. When all three run concurrently,
any triangle is a valid output simplex. Despite there being a continuous map from the input
to the output complex respecting the input/output relation for the hourglass task, the task
is unsolvable. The same holds for the majority consensus task, as proved in our paper.

2 Our Results

This paper proves a necessary and sufficient condition for the solvability of colored three-
process inputless tasks, (I, O, ∆), directly from the input complex, not to the output complex,
O, since this is impossible, but to an output complex O′, easily derived from O.

Our study goes through identifying a notion of a local articulation point (LAP) in
the output complex: a vertex whose neighborhood, its link in the topological parlance, is
disconnected. Figure 2(right) depicts the link of a vertex in the hourglass task, which is a
graph consisting of two connected components: the output edges compatible with the vertex
of P1 deciding 1.

We show a novel method for dealing with each local articulation point by splitting the
output complex around it, eventually creating a link-connected output complex O′. See
the right-hand side of Figure 1, for splitting the majority consensus task, and Figure 2, for
splitting the hourglass task. This yields a task T ′, with the same input complex I as the
original task and an adjusted relation ∆′ between I and O′. We show that the solvability
of the original general task is equivalent to the solvability of the task derived from T by
eliminating all the LAPs.

▶ Theorem 1 (informal). T is solvable if and only if T ′ is solvable.

When T is inputless, this implies that it is wait-free solvable if and only if there is a
continuous map from the geometric realization of I to that of O′, which respects ∆′.

▶ Theorem 2 (informal). A general inputless task T = (I, O, ∆) is solvable if and only if
there is a continuous map from |I| to |O′| carried by ∆′.

The following necessary condition is useful when considering specific tasks:

DISC 2024
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▶ Corollary 3. A general task (I, O, ∆) is not solvable if there is an edge {x, x′} ∈ I such
that for every y ∈ ∆(x) and y′ ∈ ∆(x′), any path from y to y′ in ∆({x, x′}) goes through a
LAP.

This corollary can be used to prove the impossibility of solving the majority consensus
task, the hourglass task, and of the pinwheel task, which we define in the full paper.

Three-Process Tasks as a Stepping-Stone for Future Investigation. The restriction to
three processes could be seen as a limitation of our results, and indeed it is a stepping-stone
for future investigation. However, there are several reasons for concentrating on this case.

First, in this case there is no need to use algebraic topology, making the paper accessible
to a wider audience.

Second, the case of three processes has played an important role in past research, because
it is the smallest dimension where topological properties beyond graph connectivity appear.
In this case, two types of obstructions – local articulation points and contractibility – are
neatly identifiable. In smaller dimensions, e.g., for two-process tasks, if the output complex
has a local articulation point then it is also not connected (in the graph-theoretic sense), and
hence, it is not solvable. Indeed, for two-process general tasks, there is a characterization
based on continuous maps (a consequence of [14, Theorem 2.5.2], analogous to the seminal
one for message passing models [5]). On the other hand, in dimensions higher than 2, i.e.,
with four or more processes, a disconnected link may be connected (in the graph-theoretic
sense).

Finally, undecidability results such as [11,16] are proved using colorless loop agreement
tasks [15,16,21], defined using an output complex O, and a loop in it. Roughly, each process
starts on one of three distinguished vertexes of the loop; if they start on the same vertex, they
decide on this vertex; if they start on two distinct distinguished vertexes, then they decide
vertices belonging to the same edge along the path linking their starting vertexes; finally,
if they start on all three distinguished vertices, then they can decide vertexes belonging to
any simplex of O. Like all colorless tasks, loop agreement is defined independently of the
number of processes. Notice however that it is defined on two-dimensional input and output
complexes, and hence, all the arguments are essentially in the three-process case. Moreover,
some results [15, Theorem 5.4] do not generalize to more than three processes. Note that
our approach is different from the one used in [11], where the undecidability of three-process
tasks was proved by a reduction from the contractibility problem to the task-solvability
problem. The contractibility problem asks whether a given loop of a simplicial complex can
be continuously transformed into a point, a problem which is known to be undecidable even
for 2-dimensional simplicial complexes (see, e.g., [23]). Gafni and Koutsoupias prove the
reduction by showing that contractibility is undecidable for the special case of chromatic
complexes and loops of length 3. To do so, they first show that the contractibility problem is
undecidable for link-connected two-dimensional complexes. We instead transform the output
complex to be link-connected, and can then argue directly about colorless tasks.

3 Discussion and Related Work

This paper provides a new characterization for wait-free solvability of general three-process
tasks, which is based on splitting local articulation points. We prove that the task T is
wait-free solvable if and only if there is a continuous map from the geometric realization of
the input complex of T to the geometric realization of the deformed output complex, which
respects the deformed task mapping.
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Our characterization exposes two types of obstructions to solvability: The first, which
exists only in chromatic tasks, are local articulation points; these obstructions can be
effectively detected (and removed). The second is identical to the one that exists for colorless
tasks, namely, the existence of a continuous map from the geometric realization of I to that of
O′ carried by ∆′. The locality of the former obstruction makes it an ideal target for extension-
based impossibility proofs [2, 4]. The latter obstruction is known to be undecidable [11,15],
as it is closely related to the topological notion of loop contractibility.

Link connectivity has showed up in previous papers about chromatic tasks, starting with
the work of Herlihy and Shavit [18]. Nevertheless, our paper is the first to identify the precise
role of link connectivity, by concentrating on the special case of three process.

There are two previous approximations to continuous characterization. First, when
assuming link connectivity, there are sufficiency results for general tasks ( [22] and [14,
Section 11.5]), without a matching necessary condition. Another related notion are continuous
tasks [12], which have an input/output specification that is a continuous function between
the geometric realizations of the input and output complex. The characterization is that a
task is solvable if and only if there exists a chromatic function (a notion introduced in this
paper) from the input complex I to the output complex O respecting the task specification.
Our characterization is in contrast more explicit about the obstructions (since it exposes the
role of local articulation points), and establishes a direct connection with colorless solvability
(after removing articulation points, colored and colorless solvability are the same).

Havlicek [13] have studied the goal of identifying computable obstructions to wait-free
solvability, taking into account that any such mechanism must be necessarily incomplete,
due to the known undecidability of this problem [11, 15]. The mechanism presented by
Havlicek can nevertheless find obstructions for consensus and other tasks, but only those
related to homology groups. It would be interesting to extend it to deal with the type of link
connectivity obstructions studied here.

The full paper presents new chromatic versions of consensus, majority consensus, ap-
proximate agreement, majority approximate agreement, and set agreement, pinwheel task,
that may be of interest on their own. They are obtained by removing some output triangles.
Notice that removing output simplexes is the opposite of what is done in the condition-based
approach [20], where instead input simplexes are removed to obtain an easier task, instead of
a harder one.

Removing output simplexes to obtain our new tasks perturbs the symmetry of the original
tasks, so that the chromatic version can no longer be defined without referring to ids. It
would be interesting to derive a systematic way of transforming any colorless task in this
way. It would be also interesting to consider the same idea but for any number of processes,
n, and investigate the simplexes than need to be removed to obtain a decidable obstruction.
That is, removing some output simplexes of k ≤ n processes, while otherwise leaving the
task unchanged. For what value of k the obstruction becomes decidable?

Pseudospheres [1] are a succinct mathematical notation that was used in the topological
approach of distributed computing to state that any process can take any value. Our examples
leave intact all the pseudospheres of dimension 1, while destroying those of dimension 2.
It would be nice to generalize the examples to higher dimensions (and more than three
processes).

Our splitting deformation draws upon work on modelling of real-world objects, used
in computer-aided design (CAD) [19]. There is a long line of papers studying splitting
deformations mostly of two and three-dimensional simplicial complexes, because these are
the dimensions of most graphics applications (and for technical reasons, as discussed in,

DISC 2024
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Leila De Floriani, Mostefa M. Mesmoudi, Franco Morando and 
Enrico Puppo, Decomposing non-manifold objects in arbitrary 
dimensions, Graphical Models, 2003

Figure 3 [9, Figure 1] An example (a) of a non-manifold object (described by a 3D simplicial
complex made of tetrahedra, triangles, and edges) with a dangling edge (A) and a dangling surface
formed by two triangles (B) and (C) and its decomposition (b) into “simple” components.

e.g. [6]), although there is also work on higher dimensional complexes. The same splitting we
do has been used (e.g. [9, Fig.1], replicated in Figure 3), but not to fix a disconnected link;
instead, the interest has been in doing additional splittings, even of edges, because the goal
in this research line is to decompose a non-manifold complex into an assembly of manifolds,
or at least into components that belong to simpler, well-understood class of complexes where
efficient data structures are known.
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