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Abstract
The distributed computing literature considers multiple options for modeling communication. Most
simply, communication is categorized as either synchronous or asynchronous. Synchronous commu-
nication assumes that messages get delivered within a publicly known timeframe and that parties’
clocks are synchronized. Asynchronous communication, on the other hand, only assumes that
messages get delivered eventually. A more nuanced approach, or a middle ground between the two
extremes, is given by the partially synchronous model, which is arguably the most realistic option.
This model comes in two commonly considered flavors:

(i) The Global Stabilization Time (GST) model: after an (unknown) amount of time, the network
becomes synchronous. This captures scenarios where network issues are transient.

(ii) The Unknown Latency (UL) model: the network is, in fact, synchronous, but the message
delay bound is unknown.

This work formally establishes that any time-agnostic property that can be achieved by a protocol
in the UL model can also be achieved by a (possibly different) protocol in the GST model. By
time-agnostic, we mean properties that can depend on the order in which events happen but not
on time as measured by the parties. Most properties considered in distributed computing are
time-agnostic. The converse was already known, even without the time-agnostic requirement, so our
result shows that the two network conditions are, under one sensible assumption, equally demanding.
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1 Introduction

Distributed computing systems underpin a vast array of contemporary technological ad-
vancements, ranging from cloud computing platforms to blockchain networks. These systems
rely on protocols to ensure consistency and reliability even when faced with challenges such
as message delays and node failures. A cornerstone of designing robust protocols lies in
understanding the communication model assumed by the distributed system. Within the
distributed computing literature, the synchronous and asynchronous communication models
remain the two best-established paradigms. The synchronous model assumes a publicly
known upper bound ∆ on message delays and that parties hold synchronized clocks. This
idealized setting facilitates the design of elegant round-based protocols that often achieve
very high resilience thresholds. However, the synchronous model exhibits a fundamental
limitation: any deviation from the assumed message delay bound ∆ can render synchronous
protocols entirely ineffective, potentially leading to complete breakdowns of the protocols.
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The asynchronous model, on the other hand, only assumes that messages get delivered
eventually. This inherent flexibility empowers the asynchronous model to support protocols
that can gracefully adapt to any network conditions. However, asynchronous protocols
typically exhibit lower resilience thresholds compared to their synchronous counterparts, and
even achieving agreement when parties might crash is impossible without randomization [3].
Hence, neither of these two extremes perfectly captures real-world systems: the synchronous
model’s assumptions are too strong, while the asynchronous model is too pessimistic. In this
work, we are concerned with a middle ground between the two: the partially synchronous
model, a nuanced paradigm that bridges the gap between the two, introduced by Dwork,
Lynch, and Stockmeyer [2]. The work of [2] proposes two definitions for the partially
synchronous model, described below (see the next section for the formal definitions).

The Global Stabilization Time (GST) model. This variant acknowledges that there might
be periods of unpredictable delays due to network congestion or outages but also assumes
that these disruptions eventually resolve and the system stabilizes. [2] explains how this
intuition can be faithfully captured with a simple model, known as the Global Stabilization
Time (GST) model: there is an unknown “Global Stabilization Time” T after which the
system behaves synchronously for a publicly-known message delivery bound ∆. In particular,
there is a publicly known amount of time ∆ such that every message sent at time t is delivered
by time max(t, T) + ∆.

The Unknown Latency (UL) model. In this variant, the system is, in fact, always syn-
chronous: there is a value ∆ such that every message sent by time t is delivered by time
t + ∆. However, as opposed to the synchronous model, the value of ∆ is unknown to the
protocol.

The relationship between the two. The two models are conjectured to be equivalent, in the
sense that any property that can be achieved by a protocol in one can also be achieved in the
other. In fact, there is an elegant folklore reduction from the UL model to the GST model,
presented in [1], which we explain next. Consider a protocol Π achieving some property
X in the UL model. Let us run Π in the GST model, where a value of ∆ is provided and
guaranteed to hold eventually, but Π ignores it. Consider any execution ε of Π in this setting:
the model ensures that there is a time T such that all messages in ε sent at time t get
delivered by time max(t, T) + ∆. Hence, in ε all messages get delivered within time T + ∆,
so from the parties’ perspective, they might just as well be running in UL with the unknown
bound on message delay being T + ∆. Hence, ε is also a legal execution of Π in UL. As a
result, the set of executions of Π in GST is a subset of its set of executions in UL. Since Π

satisfies X in UL, it also satisfies X in GST.
The same blog post [1] also explains the reverse direction: a protocol designed for the

GST model can be transformed into an equivalent protocol for the UL model, but only if
it satisfies a certain property, namely, that the protocol’s guarantees are still maintained if
the assumed value of ∆ changes dynamically. This way, one may increment the assumed ∆

whenever a timeout of the protocol expires, and eventually, the assumed ∆ exceeds the real
one. However, as [1] points out, assuming this property is with loss of generality. Whether
the converse holds is still an open question.1

1 The incorrect proof also implicitly assumes the time-agnostic property which we introduce in the next
paragraph.
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Our contribution. In this work, we answer this question in the affirmative under the
relatively minor technical assumption of only considering “time-agnostic” properties. A
protocol property is time-agnostic if whether it holds for a given execution of a protocol can
only depend on the relative order in which events happened, but not on time as measured
by the parties in the execution. We note that most properties considered in distributed
computing are indeed time-agnostic; e.g., whether some consensus protocol satisfies a given
agreement conditions. Bounds on message complexity can also be accommodated, but the
same is not true about running time. Additionally, we will only show our result assuming
that the environment provides a global perfect clock to the parties, that is their only way
of telling time. On a similar note, we consider randomized protocols, but do not consider
probabilistic properties, such as “with probability at least 0.5 all parties terminate”. We
leave a formal argument considering imperfect clocks and probabilistic properties for future
work. On the other hand, our proof works in adversarial settings, i.e., crashes or byzantine
behavior. The key idea in our proof is that, instead of estimating the actual value of ∆ in
the UL model, like in the argument of [1], we continuously slow down the parties’ clocks.
This is achieved by the parties applying a wrapper function on top of the time measurements
returned by the system clock. This way, the parties simulate running the GST protocol with
a continuously increasing value of ∆, which eventually exceeds the actual unknown ∆ of the
UL model, hence allowing the guarantees of the GST protocol that we are running to apply.

2 Preliminaries

We consider a fixed set of n parties in a network, where links model communication channels.
The parties are running a (possibly randomized) protocol over the network. For each party,
the protocol is specified by a state transition diagram, where a party’s state is defined by its
local variables. The initial state of a party is then defined by any initial inputs and random
coins. The transitions are deterministic (but may depend on the party’s random coins).
Without loss of generality, a party’s transition to another state is triggered by the receipt
of a message, or specific changes in time (e.g., waiting a predefined amount of time). State
changes are instantaneous and include all required local computations and the corresponding
sending of messages (i.e., these instructions are executed atomically). The receipt of messages,
on the other hand, will be controlled by the message system, which we discuss below.

Messages. Messages are held in a global message system: this maintains a set containing
tuples (Ps,Pr,m, c), where Ps is the sender of the message, Pr is a receiver of the message,
m is the content of the message, and c is a unique identifier assigned by the message system.
The message system is controlled by the adversary and may decide when to deliver these
messages (subject to the constraints of the communication model). For simplicity, we assume
that the message system keeps delivering messages even after the receivers have terminated
(if the protocol allows it) or crashed. Otherwise, claims of the form “eventually all messages
get delivered within ∆ time units” would not be meaningful for terminated receivers.

Global clock. We assume that parties have access to a common global clock denoted
by Clock, which is their only source of time. Abstractly, Clock is represented by an
increasing and continuous function Clock : R⩾0 → R⩾0 that maps real time to system
time. In particular, at real time t, the parties can atomically query the global clock to read
off a “system time” of Clock(t). Neither the parties nor the adversary have access to the
actual definition of the function Clock. Instead, they can only use the global clock as an
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oracle to receive the current system time. Depending on the environment, the system time
may coincide with real time, in which case Clock is RealClock(t) = t, but this is not
necessarily the case.

Protocol execution models. A protocol execution model M captures all requirements and
guarantees of the environment under which a protocol runs. For our scope, communication
in M always happens through message passing as already described. Moreover, M specifies a
global clock function Clock that the parties use to tell time. Other aspects of the execution
environment can appear as part of the guarantees of M, such as message delay bounds
or other timing constraints. Two examples of such models M are GST(∆, Clock) and
UL(∆, Clock), formally introduced below. Note that the guarantees of a fixed model M are
concrete: e.g., messages are delivered within ∆ time units for a fixed ∆; in contrast, often in
the literature, models usually refer to families of models (in this particular case, parameterized
by ∆). Last but not least, M specifies the power of the adversary. On top of controlling the
scheduler within the model’s timing constraints, the adversary might, for instance, make
parties crash, fail to send certain messages or deviate from the protocol arbitrarily (i.e.,
byzantine behavior). Model M should specify precisely which faults are possible and under
what circumstances (e.g., if the adversary is adaptive, computationally bounded, and how
many parties it can corrupt). The parties are not aware of the clock function used: this
is supplied by the environment as an oracle, with no access to its implementation. More
abstractly, a model M specifies for each protocol Π its set of legal executions ε, defined next.

Executions. Consider a protocol Π running in a model M where parties measure time using
function Clock. An execution of Π is defined by the parties’ initial states and a (possibly
infinite) collection of events, denoted by events(ε). Each event in events(ε) is a tuple (t,
ReceivedMsgs, P, q, SentMsgs) signifying that, at system time t (i.e., as observed by the
parties using function Clock), party P received the (possibly empty) multiset of messages
ReceivedMsgs from the message system, P’s state became q (possibly the same state it was
already in), and P sent the (possibly empty) multiset of messages SentMsgs to the message
system. We say that a message msg = (Ps,Pr,m, c) was sent at system time t in execu-
tion ε if events(ε) contains some event (t, ReceivedMsgs,Ps,q, SentMsgs) with msg ∈
SentMsgs. Similarly, we say that a message msg = (Ps,Pr,m, c) was received at system
time t in execution ε if events(ε) contains some event (t, ReceivedMsgs,Pr,q, SentMsgs)
with msg ∈ ReceivedMsgs. Note that a message sent/received at system time t is sen-
t/received at real time Clock−1(t). We have made the deliberate choice to timestamp
executions in system time as this is the perspective that parties perceive them from. This
will allow us to map between executions with different clock functions in our main result.

The GST model. The GST model has as parameters a clock function Clock that the
environment provides to the parties to tell the time when running a protocol, and ∆, to be
supplied to protocols designed for the model when instantiated for a specific ∆. We write
GST(∆, Clock) for the model instantiated with specific parameters ∆ and Clock. The
model guarantees that, for every protocol Π and every execution ε of Π in the model, there
exists a time T measured in real time such that every message in ε sent at real time t is
received by real time max(t, T) + ∆. The model can be altered to give the adversary more
power than controlling the scheduler; e.g., to corrupt parties.
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The UL model. The UL model has as parameters a clock function Clock that the
environment similarly provides to the parties, and ∆, not to be supplied to protocols designed
for the model. We write UL(∆, Clock) for the model instantiated with specific parameters
∆ and Clock. The model guarantees that, for every protocol Π and every execution ε of Π
in the model, any message in ε sent at real time t is received by real time t+∆. This model
can also be altered to give more power to the adversary.

Protocol properties. We define a protocol property as a set of allowed executions; e.g.,
the property that all parties eventually terminate, or that they produce some outputs. A
protocol achieves a property in a model M if all its legal executions in that model satisfy
the property, i.e., are in the set of executions allowed by the property. Note that modeling
certain properties this way is non-trivial, as executions alone do not contain, e.g., who are
the byzantine parties and when they were corrupted. However, even such properties can be
modeled: executions may contain changes of states that do not follow from the protocol’s
state transition to model parties misbehaving, or one can modify executions to include
corruption events to make the process more transparent. In this paper, we are concerned with
time-agnostic properties, defined next. We call two executions ε, ε ′ equivalent if they differ
only in the timestamps of the events and agree on the relative order of the events. A property
X is time-agnostic if for any two equivalent executions ε, ε ′ it holds that ε ∈ X ⇐⇒ ε ′ ∈ X.

Augmented models. Our result will be very general: we will consider an arbitrary protocol
Π designed for the GST model, instantiated with a publicly-known eventual message delay
bound of 1, that satisfies a given time-agnostic property in GST(1, RealClock). We will
show how Π can be transformed into a protocol Π ′ that only depends on Π that satisfies
the same property in UL(∆, RealClock), irrespective of the value of ∆. Moreover, if we
augment both the GST model and the UL model with the same kind of additional power
for the adversary, the same statement holds, with the same proof. For simplicity, in the
following, we assume the basic models, but we note that we also get the result for a plethora
of more interesting fault settings, e.g., byzantine faults and crashes.

3 Our Reduction

This section presents the proof of our main result, stated below.

▶ Theorem 1. Any time-agnostic property that can be achieved by a protocol in the GST
model can also be achieved by a protocol in the UL model.

As previously mentioned, the key idea behind our reduction will be slowing down time.
Given a protocol Π achieving a time-agnostic property X in GST(1, RealClock), we
construct a protocol Π ′ such that any execution ε ′ of Π ′ in UL(∆, RealClock) for some ∆

unbeknownst to the protocol is equivalent to a legal execution ε of Π in GST(1, RealClock),
hence also achieving property X. Protocol Π ′ will simulate running Π with a modified system
clock that continuously slows down, so that equal intervals of time measured in the simulated
system will represent longer and longer spans of real time. Moreover, we need that the
modified system clock eventually gets arbitrarily slow. This way, since Π is designed to
have property X if, once sufficient time passes, every message gets delivered within 1 unit of
system time, this will eventually be the case: the clock gets slow enough for 1 unit of system
time to correspond to a span of real time exceeding the unknown message delay bound.
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More specifically, Π ′ will simulate Π running with system clock SlowClock : R⩾0 → R⩾0
given by SlowClock(t) =

√
t (any increasing function whose derivative tends to 0 as t → ∞

will suffice). Whenever a party in the simulated Π queries the global clock and the answer
would have normally been (real time) t, Π ′ replaces the answer with SlowClock(t): from
the perspective of the simulated Π, the system clock is SlowClock.

The first lemma below shows the required result assuming that Π is running standalone
but with system clock SlowClock. The second lemma lifts it to the protocol Π ′ that runs
with system clock RealClock, but simulates Π running with system clock SlowClock.
A short discussion of why this implies Theorem 1 follows.

▶ Lemma 2. Consider a protocol Π and a legal execution ε of Π in UL(∆, SlowClock).
Then, ε is a legal execution of Π in GST(1, RealClock).

Proof. Consider an execution ε of Π in UL(∆, SlowClock), which guarantees that any
message sent at real time t is delivered by real time t+∆. From the perspective of the parties,
however, time is measured using SlowClock, so in ε, the parties observe that any message
sent at system time SlowClock(t) is delivered by system time SlowClock(t+∆). Let us
consider SlowClock(t+∆)−SlowClock(t) =

√
t+ ∆−

√
t to understand how the message

delay observed by the parties evolves with t. Taking the derivative, the function is strictly
decreasing with t, so the observed network delay gets smaller and smaller as time passes.
Subsequently, let us find a bound t0 on t such that starting at real time t0, the observed
network delay is bounded by 1; i.e., let us solve

√
t+ ∆−

√
t ⩽ 1. If ∆ < 1, this happens for

t ⩾ 0. Otherwise, ∆ ⩾ 1, and this happens for t ⩾ 1
4 (∆− 1)2. Hence, starting at real time

1
4 (max{1,∆}−1)2, the observed (system) network delay is bounded by 1. Writing the same in
terms of system time, starting at system time T :=

√
1
4 (max{1,∆}− 1)2 = 1

2 (max{1,∆}− 1),
the system network delay is bounded by 1. In particular, this means that a message sent
at system time t in ε is delivered by system time max{t, T }+ 1. Hence, ε could just as well
be an execution of Π in GST(1, RealClock) with global stabilization time T because the
parties and the adversary are unaware of the clock function used. ◀

▶ Lemma 3. If protocol Π achieves a time-agnostic property X in GST(1, RealClock),
there is a protocol Π ′ depending only on Π that achieves X in UL(∆, RealClock) ∀∆ ⩾ 0.

Proof. In protocol Π ′ parties run protocol Π but apply the function SlowClock : R⩾0 →
R⩾0 as a wrapper over the global clock’s responses to the queries. In particular, whenever
a party queries the global clock in Π and the time returned is t, the party evaluates
SlowClock(t) and takes this as the answer instead. Every execution ε ′ of Π ′ in some
model M corresponds to an equivalent execution ε of Π in M where the clock function
provided by the environment is composed with SlowClock. Namely, every event e present
in ε and ε ′ is timestamped t in ε and SlowClock(t) in ε ′.

Hence, for any ∆ ⩾ 0, any legal execution ε ′ of Π ′ in UL(∆, RealClock) corresponds
to a legal execution ε of Π in UL(∆, SlowClock) that is equivalent to ε ′. By Lemma 2,
ε is also a legal execution of Π in GST(1, RealClock). Since Π achieves property X in
GST(1, RealClock), it follows that ε ∈ X, and hence, since X is time-agnostic, ε ′ ∈ X.
Since ε ′ was an arbitrary execution of Π ′ in UL(∆, RealClock) and ∆ ⩾ 0 was arbitrary,
it follows that Π ′ satisfies property X in UL(∆, RealClock) for all ∆ ⩾ 0. ◀

Proof of Theorem 1. If Π denotes the set of all protocols, a protocol designed for the GST
model is, in fact, a protocol family Π : R⩾0 → Π, one for each potential value of the publicly-
known eventual message delay bound. Π achieves a property in GST(∆, RealClock) for
some ∆ ⩾ 0 iff all executions of Π(∆) achieve this property in GST(∆, RealClock).
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Let Π be a protocol achieving a time-agnostic property X in the GST model. We only
need that Π(1) satisfies X in GST(1, RealClock): applying Lemma 3 to Π(1), we get that
Π ′ satisfies X in UL(∆, RealClock) for all ∆ ⩾ 0, implying the conclusion. ◀
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