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Abstract
Population protocols are a model of computation in which indistinguishable mobile agents interact
in pairs to decide a property of their initial configuration. Originally introduced by Angluin et. al.
in 2004 with a constant number of states, research nowadays focuses on protocols where the space
usage depends on the number of agents. The expressive power of population protocols has so far
however only been determined for protocols using o(log n) states, which compute only semilinear
predicates, and for Ω(n) states. This leaves a significant gap, particularly concerning protocols with
Θ(log n) or Θ(polylog n) states, which are the most common constructions in the literature. In this
paper we close the gap and prove that for any ε > 0 and f ∈ Ω(log n) ∩ O(n1−ε), both uniform and
non-uniform population protocols with Θ(f(n)) states can decide exactly NSPACE(f(n) log n).
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1 Introduction

Population protocols are a model of computation in which indistinguishable mobile agents
randomly interact in pairs to decide whether their initial configuration satisfies a given
property. The decision is taken by stable consensus; eventually all agents agree on whether
the property holds or not, and never change their mind again. While originally introduced
to model sensor networks [4], population protocols are also very close to chemical reaction
networks [23], a model in which agents are molecules and interactions are chemical reactions.

Originally agents were assumed to have a finite number of states [4, 5, 6], however
many predicates then provably require at least Ω(n) time to decide [21, 7, 1], as opposed to
recent breakthroughs of O(log n) time using O(log n) number of states (in some cases even
O(log log n) states) for important tasks like leader election [9] and majority [19]. Limiting
the number of states to logarithmic is important in most applications, especially the chemical
reaction setting, since a linear in n number of states would imply the unrealistic number of
approximately 1023 different chemical species. Therefore most recent literature focusses on
the polylogarithmic time and space setting, and determines time-space tradeoffs for various
important tasks like majority [3, 1, 2, 22, 8, 19], leader election [1, 22, 9] or estimating/counting
the population size [20, 16, 10, 17, 18].
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This leads to the interesting open problem of characterizing the class of predicates which
can be computed in polylogarithmic time using a logarithmic or polylogarithmic number of
states. There is however a fundamental problem with working on this question: Despite the
focus on O(log n) number of states in recent times, the expressive power for this number of
states (regardless of time) is still unknown.

More precisely, there is a gap in the existing literature: protocols with f(n) ∈ Ω(n) states
are known to have expressive power SNSPACE(n log f(n)) [14], i.e. symmetric predicates in
NSPACE(n log f(n)), while a subclass of protocols with o(log n) states can only compute
semilinear predicates [6, 14]. The latter result applies only to uniform population protocols,
i.e. protocols where the transitions are independent of the size of the population.

However, many constructions in the literature have e.g. Θ(log n) or Θ(polylog n) states.
This important case is not covered by the existing results. To the best of our knowledge,
the only research in this direction is [12], where the expressive power is characterised for
polylog(n) number of states for a similar model – not population protocols themselves. Most
importantly, their results do not lead to a complete characterization for Θ(log n) states since
they lose some log factors in their characterization of polylog(n).

In this paper, we fill the gap by proving that for functions f(n) ∈ Ω(log n) ∩ O(n1−ε),
where ε > 0, population protocol with f(n) states compute exactly SNSPACE(f(n) · log n),
i.e. the symmetric predicates computable by a non-deterministic Turing machine using
O(f(n) · log n) space. This result applies to both uniform and non-uniform protocols. (The
function f needs to fulfil some technical conditions.)

With this result, the expressive power of uniform population protocols is characterised in
all cases, and for non-uniform protocols it is characterised in the case of Ω(log n) states. (A
slight gap between O(n1−ε) and Ω(n) remains.)

2 Preliminaries

▶ Definition 1. A protocol scheme P is a 5-tuple (Q, Σ, δ, I, O) of
a (not necessarily finite) set of states Q,
a finite input alphabet Σ,
a (partial) transition function δ : Q × Q → Q × Q,
an injective input mapping I : Σ → Q,
an output mapping O : Q → {0, 1}.

A configuration of P is a finite multiset C ∈ NQ, which represents a collection of agents
with states in Q. A step C → C ′ in P occurs by choosing two agents from C and letting
them interact via δ, i.e. if their states are p, q in C, then their new states in C ′ will be δ(p, q).

We write →∗ for the reflexive and transitive closure of →, and say that a configuration C ′

is reachable from C if C →∗ C ′. The input to P consists of a multiset w ∈ NΣ. Every input
w can be mapped to its corresponding initial configuration by applying I to every letter in w

A configuration C is a b-consensus for b ∈ {0, 1} if O(q) = b for all q such that C(q) ̸= 0,
i.e. if every state which occurs in the configuration has output b. A configuration C is stable
with output b if every configuration C ′ reachable from C is a b-consensus.

A run ρ is an infinite sequence of configurations ρ = (C0, C1, . . . ) such that Ci → Ci+1
for all i ∈ N. A run is fair if for all configurations C which occur infinitely often in ρ, i.e.
such that there are infinitely many i with Ci = C, every configuration C ′ reachable from
C occurs infinitely often in ρ. A run has output b if some configuration Ci along the run is
stable with output b (and hence all Cj for j ≥ i are also stable with output b).
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An input w ∈ NΣ has output b if every fair run starting at its corresponding initial
configuration Î(w) has output b. The protocol scheme P computes a predicate φ : NΣ → {0, 1}
if every input w has output φ(w).

Let us provide an example which also shows how to treat infinite sets Q.

▶ Example 2. Consider Q := {0}∪{2i | i ∈ N}, and define δ(2i, 2i) = (2i+1, 0). Let Σ = {x},
and let x 7→ 20 be the input mapping. Then a configuration is initial if every agent is in state
20. Intuitively this protocol will eventually end up with the binary representation of the
number of agents. Namely each transition preserves the total sum of all agents’ values, and
every transition increases the number of agents in 0, so this protocol in fact always reaches a
terminal configuration.

Regarding the infinite state space, intuitively the protocol uses ⌊log n⌋ + 2 states, namely
⌊log n⌋ + 1 powers of two and 0. The other states cannot be reached with n agents.

Accordingly we now define the state complexity of a protocol scheme. A state q ∈ Q is
coverable from some initial configuration C0 if there exists a configuration C reachable from
C0 which fulfils C(q) > 0. The state complexity S(n) of P for n agents is the number of
states q ∈ Q which are coverable from some initial configuration with n agents.

▶ Example 3. In the scheme of Example 2, let Cn be the unique initial configuration with n

agents, i.e. Cn(20) = n and Cn(q) = 0 otherwise. For n ≥ 2, the states coverable from Cn

are exactly {0} ∪ {2i | i ≤ log n}. Hence the state complexity is S(n) = ⌊log n⌋ + 2.

As defined so far, protocol schemes are not necessarily computable. Hence actual
population protocols require some uniformity condition.

▶ Definition 4. A uniform population protocol P = (Q, Σ, δ, I, O) is a protocol scheme
together with a bijection Q → {0, 1}∗ to represent Q via binary strings, such that the functions
δ, I, O are computable by linear space Turing-machines (TMs).

We remark that “linear space” then in terms of our n, the number of agents, is O(log S(n))
space (since the input of the machine is a representation of a state).

In the literature on uniform population protocols, e.g. [13, 14, 20, 16], often agents are
defined as TMs and states hence automatically assumed to be represented as binary strings.
We avoid talking about the exact implementation of a protocol via TMs because it introduces
an additional logarithm in the number of states and potentially confuses the reader, while
most examples are clearly computable.

▶ Example 5. In the protocol scheme of Example 2 we represent states by the binary
representation of the exponent. Clearly incrementing natural numbers or setting the number
to a fixed value are possible by a linear space TM, hence this is a uniform population protocol.

Next we define a more general class of population protocols, which we call weakly uniform.
This class includes all known population protocols, and our results also hold for this class,
which shows that having a different protocol for every n does not strengthen the model.

▶ Definition 6. A finite population protocol is a protocol scheme with a finite set Q.
A population protocol P is an infinite family (Pn)n∈N = (Qn, Σ, δn, In, On)n of finite

population protocols. The state complexity for inputs of size n is S(n) := |Qn|.
P is weakly uniform if there exist TMs Mδ, MI , MO using O(S(n)) space which compute

δn, In and On, respectively, taking n as additional input.
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The configurations of P with n agents are exactly the configurations of Pn with n agents,
and accordingly the semantics of steps, runs and acceptance are inherited from Pn.

The protocol for a given population size n is allowed to differ completely from the protocol
for n − 1 agents, as long as TMs are still able to evaluate transitions, input and output.
Usually this is not fully utilised, with the most common case of a non-uniform protocol being
that log n is encoded into the transition function [19].

Clearly uniform population protocols are weakly uniform. Namely let P = (Q, Σ, δ, I, O)
be a protocol scheme. Then for every n ∈ N we let Qn be the set of states coverable by some
initial configuration with n agents, similar to the definition of state complexity, and define
Pn := (Qn, Σ, δn|Q2

n
, I, O|Qn

), where f |A is the restriction of f to inputs in A. This protocol
family computes the same predicate, and is weakly-uniform with the same state complexity.

Next we define the complexity classes for our main result. Let f : N → N be a function.
f is space-constructible if there exists a TM M which computes f using O(f(n)) space.
Given a space-constructible function f : N → N, we denote by NSPACE(f(n)) the class
of predicates computable by a non-deterministic Turing-machine in O(f(n)) space, and
by SNSPACE(f(n)) the class of symmetric (i.e. only depending on the count of letters)
predicates in NSPACE(f(n)). Similarly, let UPP(f(n)) be the class of predicates computable
by uniform population protocols with O(f(n)) space, and WUPP(f(n)) be the class of
predicates computable by weakly-uniform population protocols with O(f(n)) space.

3 Main Result

We give a characterisation for the expressive power of both uniform and weakly uniform
population protocols with f(n) states, where f ∈ Ω(log n) ∩ O(n1−ε), for some ε > 0. For
technical reasons, we must place a few limitations on f(n) (see the full paper [15] for details).
We will refer to a function f fulfilling these requirements as reasonable.

Our bound applies to uniform and weakly uniform protocols. As mentioned in the previous
section, the latter includes, to the best of our knowledge, all non-uniform constructions from
the literature.

▶ Theorem 7. Let ε > 0 and let f ∈ Ω(log n) ∩ O(n1−ε) be reasonable. Then

UPP(f(n)) = WUPP(f(n)) = SNSPACE(f(n) · log n)

Proof. This will follow from Proposition 8 and Theorem 9. ◀

In particular, we have UPP(log n) = WUPP(log n) = SNSPACE(log2 n).

▶ Proposition 8 (Upper Bound). Let ε > 0 and let f ∈ Ω(log n) ∩ O(n1−ε) be space-
constructible. Then

UPP(f(n)) ⊆ WUPP(f(n)) ⊆ SNSPACE(f(n) log n)

Proof (sketch). UPP(f(n)) ⊆ WUPP(f(n)) is trivial/was explained in Section 2.
WUPP(f(n)) ⊆ SNSPACE(f(n) log n) can be shown using a reduction to a reachability
problem in the configuration graph as in [11]. ◀

Our main contribution is the proof of the lower bound:

▶ Theorem 9 (Lower Bound). Let ε > 0 and let f ∈ Ω(log n) ∩ O(n1−ε) be reasonable. Then

SNSPACE(f(n) log n) ⊆ UPP(f(n))
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Proof (sketch). We construct a uniform population protocol P = (Q, Σ, δ, I, O), simulating
a counter machine with |Σ| input counters using space O(2f(n) log n), which is equivalent to a
O(f(n) log n) space-bounded Turing machine.

Initialisation. Our first goal is to reach a configuration where the number of agents n is
known. By this we mean, that we want to have ⌊log n⌋ + 1 uniquely indentifiable “counter
agents”, each of which stores one bit of the binary representation of n. We use a similar
approach as in Example 2 to achieve this:

(Ctr, i, 1), (Ctr, i, 1) 7→ (Ctr, i + 1, 1), (Ctr, i, 0) for i ∈ N
(Ctr, i, 0), (Ctr, i, b) 7→ (Ctr, i, b), (Ldr, i + 1) for i ∈ N

〈counter〉

Here (Ctr, i, 1) encodes that the i-th bit in the binary representation of n is set, while (Ctr, i, 0)
represents an unset bit. The first transition is analogous to Example 2, but instead of simply
sending the second agent to state 0, it also remembers which bit it represents. The second
transition gets rid of additional agents storing the same bit.

Among the remaining agents we now want to elect one leader, who knows how many bits
n has. We will refer to all agents which are neither counters nor a leader as free:

(Ldr, i), (Ldr, j) 7→ (Ldr, j), Free for i, j ∈ N, i ≤ j

(Ldr, i), (Ctr, j, b) 7→ (Ldr, j), (Ctr, j, b) for i, j ∈ N, i ≤ j
〈leader〉

The first transition here is a standard leader election, the second informs the leader of the
number of bits required to store n.

At some point a configuration will be reached, where the binary counting and leader
elections have been completed. Note that there is no way of telling for certain when this is
the case. For now, we will assume that we have reached such a configuration and describe
how to solve this problem later on.

Once n is known, we gain the ability to loop over all agents: each of the counter agents
stores an additional, initially unset, bit. Every agent stores a marker flag. The Leader can
then apply operations to all agents by sequentially interacting with them and setting the
marker flag. Each time the leader interacts with an agent which has the marker flag unset,
it increments the second value stored in the counter agents. If at some point both values
match, then, as the first value is n, all of the agents must have been marked. In particular
this allows the leader to check if an agent with a certain state does not exist. Normally this
is quite difficult for population protocols, as agents in the queried state might not take part
in any interactions for an arbitrarily long time.

Simulating Counter Machines. Often, when population protocols need to simulate some
type of counter, either a unary [5], or binary encoding [12], is used. Neither approach works
for us, as we need to be able to count up to 2f(n) log n, but a unary encoding with n agents is
bounded by n, and a binary encoding with f(n) distinguishable digits is bounded by 2f(n).
Instead we use a mixed-radix positional encoding with the base bi ∈ Ω( n

f(n) ) for every digit
i. To achieve this, the leader evenly divides the remaining free agents into Ω(f(n)) groups,
each encoding one digit. Recall that the leader can detect when no free agents remain, so it
will know when this process is finished. Within each digit unary counting is used, that is,
each agent in that digit stores one counter bit and the overall value of the digit is the sum of
all counter bits. The commands of the counter machine involve manipulating these digits, by
either incrementing, or decrementing the encoded values, as well as checking whether they
are zero. For the latter, the leader again uses the ability to detect whether a state is present
in the population.

DISC 2024
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Resets. The counter machine simulation described in the previous section relies on the
looping and absence checks enabled by the data structures set up during initialisation.
However, there is no way of being certain that the initialisation has finished. We solve this
by raising a dirty flag each time a transition from the initialisation phase occurs. When seen
by the leader, this will trigger a reset, where the leader will move all agents back to state
Free, once again relying on being able to count the number of agents. When the last reset
occurs, the counter agents must encode the correct value of n, and the leader is thus able to
iterate over all agents. Care must be taken s.t. other agents do not interact with agents in
Free while the reset is ongoing, e.g. when only half of the agents have moved to Free, and the
others are still some intermediate states. ◀
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