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Abstract
We study the Uniform Circle Formation (UCF) problem for a swarm of n autonomous mobile
robots operating in Look-Compute-Move (LCM) cycles on the Euclidean plane. We assume our
robots are luminous, i.e. equipped with a persistent light that can assume a color chosen from a
fixed palette, and opaque, i.e. not able to see beyond a collinear robot. Robots are said to collide if
they share positions or their paths intersect within concurrent LCM cycles. To solve UCF, a swarm
of n robots must autonomously arrange themselves so that each robot occupies a vertex of the same
regular n-gon not fixed in advance. In terms of efficiency, the goal is to design an algorithm that
optimizes (or provides a tradeoff between) two fundamental performance metrics: (i) the execution
time and (ii) the size of the color palette.

In this paper, we develop a deterministic algorithm solving UCF avoiding collisions in O(1)-time
with O(1) colors under the asynchronous scheduler, which is asymptotically optimal with respect to
both time and number of colors used, the first such result. Furthermore, the algorithm proposed
here minimizes for the first time what we call the computational SEC, i.e. the smallest circular area
where robots operate throughout the whole algorithm.
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1 Introduction

The Look-Compute-Move (LCM) model [13, 14] is a theoretical model used to study swarms
of mobile robots and design distributed algorithms for solving collaborative problems for such
systems. Robots are idle by default, but they can be activated by a scheduler. When a robot
is activated, it performs an LCM cycle: it first obtains a snapshot of its surroundings (Look),
then computes the new destination based on the snapshot (Compute), and finally moves
straight to the computed destination (Move). After that, the robot becomes idle again. The
scheduler can be fully synchronous (FSYN C), semi-synchronous (SSYN C), or asynchronous
(ASYN C). Most of the literature considers very simple and limited robots: they are assumed
to be punctiform agents that can operate in the Euclidean plane, autonomous (no external
control), anonymous (no internal identifiers), indistinguishable (no external identifiers),
homogeneous (execute the same algorithm), and disoriented robots (each robot has its local
coordinate system without any assumption of global orientation).
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Table 1 Existing UCF deterministic solutions for n ≥ 1 luminous-opaque robots on the plane,
avoiding collisions. x ∈ [1, O(log log n)].

Algorithm Time (in epochs) Number of Colors Computational SEC Scheduler

[8] O(1) O(1) Not minimized FSYN C

[11] O(1) O(1) Not minimized SSYN C

[11] O(n) O(1) Not minimized

ASYN C

[9] O(log n) O(1) Not minimized

Generic [20] O(x) O
Ä
n1/2xä

Not minimized

OptTime [20] O(1) O(
√

n) Not minimized

OptColor [20] O(log log n) O(1) Not minimized

OptTime&Color (this paper) O(1) O(1) Minimized

In this work, we consider opaque robots [1, 7, 8, 9, 20, 22, 23] thus they experience
obstructed visibility in case of collinearities (if robots a, b, c are collinear, then a and c cannot
see each other). To cope with this restrictive condition, we assume each robot is equipped
with a light whose color can be updated at the beginning of its Move step choosing it from a
fixed palette and persists until its next update. Since such a light is visible to both the robot
itself and the other robots, the luminous model [3, 9, 16, 20, 21, 22, 23] grants robots both
a persistent internal state (memory) and a direct communication means with other robots.
Except for lights, robots have no other persistent memory or communication means. We say
that two robots collide if either (i) they share the same position at a given time or (ii) their
paths towards their destinations intersect within concurrent LCM cycles. We assume that
our robots do not tolerate collisions and that robot movements are rigid, i.e., in each Move,
the robot stops only after reaching its computed destination.

Contributions. We consider the Uniform Circle Formation (UCF) problem [4, 5, 6, 15,
17, 18, 19, 24]: starting from an arbitrary configuration where n robots lie on distinct points on
a plane, robots must autonomously arrange themselves to form a regular n-gon, independently
of its position, orientation, and scale. We propose a deterministic algorithm solving UCF in
the luminous-opaque model under ASYN C, avoiding collisions. Our algorithm runs in O(1)
time using a O(1)-size palette, and it minimizes a spatial metric that we call computational
SEC, i.e. the smallest circle containing all the points the robots touch during the execution
of the algorithm. Note that forcing the swarm to act within the circular area delimited
by their initial configuration may represent a realistic requirement in critical scenarios (e.g.
lack of space or no guarantee about the safety of the space around robots). Previous works
[8, 9, 10, 11, 20] have investigated UCF under the same model: their results are summarized
in Table 1 in comparison with our contribution.

Challenge and techniques. The main challenge of this work was to make robots exploit
parallelism (thus achieving a O(1) runtime) even in conditions of asynchrony and obstructed
visibility, always keeping the size of the color palette constant and avoiding collisions among
robots. For this purpose, the key techniques adopted along our algorithm include the
arrangement of robots along an (inner) circle in a mirror-symmetric pattern, the Beacon
Directed Curve Positioning procedure [22], and a novel rank encoding technique (existing
techniques in [2, 9] do not fit our assumptions and requirements).
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2 Algorithm Overview

Table 2 Sub-problems composing Uniform Circle Formation.

Initial Configuration Complete Visibility Circle Formation Uniform Transformation

Confinit Confconvex Confcircle Confregular

Let Confinit be an arbitrary initial configuration of n robots on distinct points on R2,
all with the same color off. Given a configuration Conf , we indicate with SEC(Conf) the
smallest circle enclosing all the robots in Conf . Our algorithm ensures that any robot acts
within the circular area delimited by SEC(Confinit), thus minimizing the computational
SEC. We now provide an overview of the different phases and procedures composing our
algorithm which transforms Confinit into a regular configuration Confregular (see Figure 1).
Such procedures work in O(1) time and use a O(1)-size palette of colors.

We factorize UCF into three sub-problems (see Table 2): (i) Complete Visibility, (ii)
Circle Formation, and lastly (iii) Uniform Transformation. Starting from Confinit,
we (i) exploit the Complete Visibility solution in [22] to arrange robots on the vertices of
a convex polygon, forming the configuration Confconvex. After that, (ii) a simple procedure
safely transforms Confconvex into Confcircle where all the robots lie on SEC(Confconvex).
From now on, let us call this circle as Cir: no robot will move out from Cir. Step (iii) aims
to equally distribute the robots on the perimeter of Cir, thus solving UCF.

Our Uniform Transformation solution entails a different algorithmic approach accord-
ing to the geometric properties of Confcircle. Specifically, we classify Confcircle into three
categories: Confregular (where robots already form a regular polygon, so they do nothing),
Confbiangular (biangular configuration presented in [5], where there exist two different angles
α, β such that each robot forms a central angle α with one of its two adjacent robots and β

with the other one), and Confperiodic. Confbiangular (see Figure 2a) can be converted into
a regular configuration through a similar approach to the strategy introduced in [5]: our
approach guarantees robots to minimize the computational SEC. The most challenging case
is the periodic configuration Confperiodic, for which we developed a sequence of multi-step
procedures to form the target regular polygon, as depicted in Figure 1.

Confinit

Confconvex

Confcircle

Confperiodic Confunisect Confoddblock Confsmallcircle

Confbiangular

Confregular
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Figure 1 Transition diagram among configurations while solving UCF. The arrows without
numbering denote a transition with only color change (no robot moves). The parameter q is the
number of robots in each uniform sector of Confunisect.
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3 Uniform Transformation

Biangular case
We propose a new approach to transform Confbiangular into Confregular, taking inspiration
from [5]. Let P be the n-gon formed by the robots in Confbiangular. In [5], robots spot the
target regular n-gon P ′ which encloses P , such that robots lie on alternative edges of P ′,
and then slide on the edges of P ′ until they stop on its vertices (Figure 2b). This simple
approach however does not guarantee to minimize the computational SEC. Thus, we make
robots spot a n-gon P ′′ inscribed in P , so that robots can slide on the larger edges of P until
they reach the vertices of P ′′, without moving outside SEC(Confbiangular) (Figure 2c).

a
b

a

b
a

b

a

b

(a) Confbiangular. (b) Regular n-gon P ′ [5]. (c) Regular n-gon P ′′.

Figure 2 Arrangement of Confbiangular in a regular n-gon.

Periodic case
We propose a sequence of procedures to transform Confperiodic into Confregular. In
Confperiodic, all the n robots non-uniformly lie on the same circle Cir, in a periodic pattern1,
without forming a biangular configuration.

Procedure Split. Confperiodic is partitioned into k ≥ 2 circular sectors Υ0, . . . , Υk−1 such
that (i) they have the same arc length and (ii) they are size-balanced (i.e. containing
the same number of robots), and (iii) they are chiral (i.e. the robots are arranged in an
asymmetric pattern along the arc of each Υi). The number of sectors k depends on the
degree of periodicity of Confperiodic. We call such sectors as uniform sectors. Within each
Υi, some robots will be elected as leaders to fix its boundaries Bi, Bi+1, whereas two other
robots (left- and right-colored) will be elected and made to move to fix the chirality of Υi.
Let q be the number of robots inside each Υi (except for its boundaries). From now on, each
group of q robots works independently and in parallel within each Υi. The next procedures
aim to uniformly arrange the q robots of each Υi along the arc of Υi, in order to cover the
vertices of the target regular n-gon (also called uniform positions).

Procedure Sequential Match. This procedure is executed if q < 12, i.e., the number
of robots is relatively small compared to the number of robots involved along the other
procedures of the algorithm. In this case, we adopt a sequential schema to make robots
reach their uniform positions along the arc of Υi. Specifically, following the orientation of
Υi, robots reach their target vertex in turn.

1 We consider an asymmetric configuration as a special case of Confperiodic.
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Procedure Odd Block. This procedure (and the following ones) is executed if q ≥ 12.
Within each sector Υi, two robots are elected as guards to fix the boundaries and chirality of
a structure called odd block. An odd block for Υi is a circular sector completely contained in
Υi, having the same origin and radius as Υi. Moreover, the arc of the odd block contains an
odd number of uniform positions. Let L be the chord joining the left guard (blockL-colored)
with the right guard (blockR-colored) of the odd block. One robot is elected as the median
robot and reaches the midpoint of the arc cut by L. The other robots on the sector arc
of Υi are now moved to the chord L by implementing the Beacon Directed Curve
Positioning strategy (BDCP) [22], setting their color as chord. See Figure 3.

Bi Bi+1

median

blockL blockR
L

Figure 3 Odd block built inside Υi, delimited by the guards blockL and blockR. All the robots
of the sector (except for the median one) have migrated to the block chord L.

Procedure Small Circle. Let C be the circle within the odd block such that it passes
through the median robot and such that L becomes its tangent. This procedure aims to place
all the chord robots on L on the two halves of C, Cw and Ce, in perfect mirror-symmetry.
Firstly, all the chord robots reach C traveling along the trajectories connecting their initial
position on L with the median robot. After that, all the robots on Cw migrate towards Ce by
implementing BDCP. Eventually, the robots on Ce split into two equal groups, and one of
the groups comes back to Cw forming a mirror symmetric configuration on C. See Figure 4.

ρ

ΓeΓw

L

CeCw

w1 e1
w2 e2

w3 e3

w4 e4
w5 e5

w6 e6

Figure 4 The small circle C built inside the odd block. All the robots (except for the block
guards) are equally distributed on Cw and Ce.

Procedure Slice. Let ρ be the diameter of C passing through the median robot. Let Γw

and Γe be the left and right halves of the odd-block arc, cut by ρ. This procedure aims to
uniformly arrange robots from C on the arc of the odd block. We now use a strategy to
provide a rank to the robots on Ce (Cw, resp.) so that a robot with rank j moves to the j-th
uniform position on Γe (Γw, resp.). In particular, the robots on Cw move to new positions
on Cw to encode their rank using the angular distance with a fixed robot. Thus, the robots
from Ce can obtain their ranks using the Cw group as a reference. Then, the robots of each
group (first the right one, then the left one) migrate on ρ on their projections, then they
recompute their rank and reach their target vertices on Γe and Γw. See Figure 5.

DISC 2024
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U ′
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Figure 5 Each robot on ρ uses the two robots on Ce (here green) to recompute its rank j and its
target uniform position U ′

j .

After each uniform sector Υi completes the algorithm, the n robots are equally distributed
on Cir, thus solving UCF. Theorem 1 summarizes our result.

▶ Theorem 1 (Uniform Circle Formation). Given any Confinit of n off-colored robots
on distinct points on a plane, the robots reposition to Confregular solving UCF in O(1)
epochs using O(1) colors under ASYN C, avoiding collisions, always performing within
SEC(Confinit).

As a corollary, our UCF algorithm asymptotically optimizes both the computational time
(number of epochs) and the size of the palette (number of colors), and minimizes the
computational SEC.
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