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Abstract
Consensus is arguably the most studied problem in distributed computing as a whole, and particularly
in distributed message-passing settings. Research on consensus has considered various failure types,
memory constraints, and much more. Surprisingly, almost all of this work assumes that messages
are passed in a complete network, i.e., each process has a direct link to every other process. Set
agreement, a relaxed variant of consensus, has also been heavily studied in different settings, yet
research on it has also been limited to complete networks. We address this situation by considering
consensus and set agreement in general networks, i.e., that can have an arbitrary graph G as
their communication graph. We focus on fault-prone networks, where up to t nodes may crash
and irrevocably stop communicating, and present upper and lower bounds for such networks. We
establish the following collection of results:

The consensus algorithm by [Castañeda et al., 2023] is optimal for all graphs, and not only for
symmetric graphs.
This algorithm can be extended to a generic algorithm for k-set agreement, for every k ≥ 1. For
k = 1, our generic algorithm coincides with the existing one for consensus.
All these algorithms can be extended to the case where the number t of failures exceeds the
connectivity κ of the graph, while the existing consensus algorithm assumed that t < κ.
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47:2 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structures

1 Introduction

The standard synchronous t-resilient message-passing model, for t ≥ 0, assumes n ≥ 2 nodes
labeled from 1 to n and connected as a clique, i.e., as a complete graph Kn. Computation
proceeds in synchronous rounds, during which every node can send a message to every other
node, receive the message sent by every other node, and perform some local computation. Up
to t nodes may crash during the execution of an algorithm, and when a node v crashes at some
round r ≥ 1 it stops functioning after round r and never recovers. Moreover, some (possibly
all) of the messages sent by v at round r may be lost. This model has been extensively
studied in the literature [2, 7]. In particular, it is known that consensus can be solved in
t + 1 rounds in the t-resilient model [6], and this is optimal for every t < n − 1 as far as the
worst-case complexity is concerned [1, 6]. Similarly, k-set agreement, in which the cardinality
of the set of output values decided by the (correct) nodes must not exceed k, is known to be
solvable in ⌊t/k⌋ + 1 rounds, which are also necessary [4].

It is only very recently that the synchronous t-resilient model has been extended to settings
in which the complete communication graph Kn is replaced by an arbitrary communication
graph G [3, 5]. Specifically, let κ(G) denote the node-connectivity of G, which is the smallest
number of nodes whose removal disconnects G. If the number of failures is smaller than the
connectivity of the graph, i.e., if t < κ(G), then consensus in G can be solved in radius(G, t)
rounds in the t-resilient model [3], where radius(G, t) generalizes the standard notion of
graph radius to the scenarios in which up to t nodes may crash. For t = 0, radius(G, 0) is
the standard radius of the graph G, and, for the complete graph Kn, radius(Kn, t) = t + 1
for every 0 ≤ t < n − 1 (while radius(Kn, n − 1) = n − 1). Therefore, the radius(G, t) upper
bound for consensus in G in the t-resilient model generalizes the seminal t + 1 upper bound
for consensus in Kn in the same model. The algorithm of [3] is oblivious, that is, the output
of a node is solely based on the set of pairs (node-identifier, input-value) collected by that
node during radius(G, t) rounds (and not, e.g., from whom, when, and how many times it
received each of these pairs). In other words, the consensus algorithm of [3] is generic, i.e., it
applies to any graph G.

For a fixed graph G, the optimality of the consensus algorithm performing in radius(G, t)
rounds is left as an open question in [3]. It was conjectured there that for every graph G and
every 0 ≤ t < κ(G), no oblivious algorithms can solve consensus in G in less than radius(G, t)
rounds, but this was only proved for the specific case of symmetric (a.k.a. vertex-transitive)
graphs. This lower bound does not come entirely as a surprise since all nodes of a symmetric
graph have the same eccentricity (i.e., maximum distance to any other node), even when
generalized to include crash failures. The fact that all nodes have the same eccentricity
implies that they can merely be ordered according to their identifiers for selecting the output
value from the received pairs (node-identifier, input-value). Instead, if the graph is not
symmetric, a node that received a pair (node-identifier, input-value) after radius(G, t) rounds
does not known whether all the nodes have received this pair, and thus the choice of the
output value from the set of received pairs is more subtle. This not only complicates the
design of an upper bound but also makes the determination of a lower bound more involved.

2 The Model

We use the (synchronous) t-resilient model for networks as defined in [3]. Let G = (V, E)
be an n-node undirected graph, which is also connected and simple (i.e., no multiple edges
nor self-loops). Initially, every node knows the graph G, that is, it knows the identifiers of
all nodes and how they are connected. The uncertainty is thus not related to the initial
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structure of the connections, but is only due to the presence of potential failures. More
specifically, computation in G proceeds as a sequence of synchronous rounds, and each node
may fail by crashing – when a node crashes, it stops functioning and never recover. However,
if a node v crashes at round r it may still succeeds in sending messages to a subset of its
set N(v) of neighbors.

For every positive integer t ≥ 0, the t-resilient model assumes that at most t nodes may
crash. A failure pattern is thus defined as a set φ = {(v, Fv, fv) | v ∈ F} where F ⊂ V ,
0 ≤ |F | ≤ t, is the set of faulty nodes in φ, and a triplet (v, Fv, fv) designates that v ∈ F

fails at round fv and fails to send messages to the nodes of Fv, ∅ ̸= Fv ⊆ N(v), at this
round. In any execution of an algorithm in the t-resilient model, the nodes know t, but do
not know in advance which failure pattern occurs. The set of all failure patterns in which at
most t nodes fail is denoted by Φ(t)

all .
The eccentricity of a node v in G with respect to a failure pattern φ, denoted by ecc(v, φ),

is the minimum number of rounds for broadcasting a message from v to all correct nodes
of G under φ. The broadcast protocol is by flooding, i.e., when a node receives a message
at round r, it forwards it to all its neighbors at round r + 1. Note that ecc(v, φ) might be
infinite, in case v cannot broadcast to all correct nodes in G under φ. Let

Φ⋆
v = {φ ∈ Φ(t)

all | ecc(v, φ) < ∞}

denote the set of failure patterns in the t-resilient model in which v eventually manages to
broadcast to all correct nodes. The t-resilient radius of G is then defined as

radius(G, t) = min
v∈V

max
φ∈Φ⋆

v

ecc(v, φ).

Castañeda et al. [3] have designed a generic oblivious consensus algorithm which, for every
graph G, and every number t of failures with t < κ(G), runs in radius(G, t) rounds. In
addition, they have shown that, for every symmetric graph G, and every t < κ(G), no
oblivious algorithms can solve consensus in G with t crash failures in less than radius(G, t)
rounds.

3 Our Results

We extend the investigation of the t-resilient model in arbitrary graphs, in various com-
plementary directions. The proofs of these results can be found in the full version of the
paper.

3.1 Lower Bounds
We establish a general lower bound for consensus in the aforementioned synchronous t-resilient
model for network, which states that the oblivious consensus algorithm from [3] is optimal
among oblivious algorithms for every graph G, and not only for symmetric graphs.

▶ Theorem 1. For every graph G and every t < κ(G), consensus in G cannot be solved in
less than radius(G, t) rounds by an oblivious algorithm in the t-resilient model.

3.2 Set-Agreement
We demonstrate the existence of a generic oblivious algorithm for k-set agreement. This
algorithm is generic in the sense that it obeys a general structure: (1) flooding the graph with
the inputs of a predetermined “core set” of nodes C(G) ⊆ V , for R(G) rounds, and (2) after
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R(G) rounds, letting every node v ∈ V pick the input of the node u ∈ C(G) with smallest
identifier among all the nodes in C(G) received by v. We show that for every graph G,
every t < κ(G), and every k ≥ 1, k-set agreement is solved in radius(G, t, k) rounds, where
radius(G, t, k) extends the standard notion of graph radius to the case in which there are k

centers, and whenever up to t nodes can crash. For t = 0 and k = 1, radius(G, t, k) coincides
with the standard radius of G. Moreover, for k = 1, radius(G, t, 1) = radius(G, t).

More concretely, like in the k-center problem, we consider broadcast in G from a set
S ⊆ V of k nodes by flooding, and radius(G, t, k) essentially denotes the minimum, taken
over all sets S of k nodes, of the broadcast time of S, i.e., of the smallest number of rounds
sufficient to guarantee that every non-faulty node receives information from at least one node
in S. The definition is a bit more subtle though, as the broadcast time of S actually depend
on the failure pattern (i.e., which nodes crash and when), and it may even be the case that
S cannot broadcast at all for some failure patterns (e.g., whenever all nodes in S crash at
the first round without sending any messages to their neighbors). More specifically, for every
set S ⊆ V of size at most k, let the eccentricity of S with respect to a failure pattern φ,
denoted by ecc(S, φ), be the minimum number of rounds such that whenever every node in
S broadcasts information, every correct node of G under φ receives the information sent by
at least one of the nodes in S. Let

Φ∞
S = {φ ∈ Φ(t)

all | ecc(S, φ) = ∞},

and let Φ⋆
S = Φ(t)

all ∖ Φ∞
S . The k-center t-resilient radius of G is then defined as

radius(G, t, k) = min
S⊆V
|S|≤k

max
φ∈Φ⋆

S

ecc(S, φ).

▶ Theorem 2. For every graph G, every k ≥ 1, and every t < κ(G), k-set agreement in G

can be solved in radius(G, t, k) rounds by an oblivious algorithm in the t-resilient model.

3.3 Beyond the Connectivity Threshold
Finally, inspired by [5], we extend the study of consensus and set agreement in the t-resilient
model in arbitrary graphs to the case where the number t of crash failures is arbitrary, i.e.,
not necessarily lower than the connectivity κ(G) of the considered graph G. We show that
our generic k-set agreement algorithm, which include the case of consensus for k = 1, can
be extended to this framework, at the mere cost of relaxing consensus and k-set agreement
to impose agreement to hold within each connected component of the graph resulting from
removing the faulty nodes from G. Under this somehow unavoidable relaxation, we present
extension of the consensus algorithm from [3] in particular, and of our k-set agreement
algorithm in general, to t-resilient models for t ≥ κ(G), and express the round complexities of
these algorithms in term of a straightforward extension of the radius notion to disconnected
graphs.

4 Discussion

We have completed the picture for consensus in the t-resilient model for arbitrary graphs, by
proving that the consensus algorithm in [3] is optimal among oblivious algorithms. Moreover,
we have designed a generic (oblivious) algorithm for k-set agreement in arbitrary graph G

performing in radius(G, t, k) rounds under the t-resilient model, for t < κ(G).
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Our results open a vast domain for further investigations. In particular, what could
be said for sets of failure patterns Φ other than Φ(t)

all ? Another intriguing and potentially
challenging area for further research is exploring scenarios where no upper bound on the
number of failing nodes is assumed, while concentrating solely on failure patterns that do
not result in the disconnection of the graph. Finally, the design of early-stopping algorithms
in the t-resilient model for arbitrary graphs is also highly desirable. The algorithms in [5],
early stopping and others, are very promising, but their analysis must be refined to a grain
finer than the stretches of the failure patterns, by focusing, e.g., on eccentricities and radii.
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