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Abstract
We resolve one of the longest-standing questions about autonomous mobile robots in a surprising
way.

Distinct Gathering is the fundamental cooperation task of letting robots, initially scattered
across the plane in distinct locations, gather in an arbitrary single point. The scheduler Round
Robin cyclically activates the robots one by one in a fixed order. When activated, a robot perceives
all robot locations and moves wherever it wants based only on this information. For n = 2 robots,
the task is trivial. What happens for n ≥ 3 has remained an open problem for decades by now.
The established conjecture declares the task to be impossible in this case. We prove that it is
indeed impossible for n = 3 but, to great surprise, possible again for any n ≥ 4. We go beyond the
standard requirements by providing a very robust algorithm that does not require any consistency
or self-consistency for the local Cartesian maps perceived by the robots and works even for non-rigid
movement, that is, if robots may be unpredictably stopped and deactivated during a movement.
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1 Introduction

Mobile robotics is an active field that studies which cooperation tasks can be performed
by simplistic mobile robots. The underlying motivation is to develop cheap, reliable, and
robust robots to be employed in disaster relief, for example. Suzuki and Yamashita [25]
introduced the default Look-Compute-Move model: The robots are all identical, oblivious,
and represented by points in the Euclidean plane. Whenever activated by some scheduler, a
robot observes all robot locations in a local Cartesian coordinate system (which might be
arbitrarily scaled, rotated, and mirrored with respect to the global coordinate system) and
then moves wherever it wants. This model is sometimes referred to as Oblot (for oblivious
robots), and has been the object of intensive study [1, 2, 3, 4, 5, 6, 11, 12, 15, 16, 18, 23].
The simplest scheduler is the fully synchronous one, which always activates all robots
synchronously. The second most basic and simple scheduler is arguably Round Robin, which
lets the all robots move in orderly turns, one by one, always in the same order. The standard
textbook by Flocchini et al. [13] and the newer textbook [10] provide an excellent overview
of the basic models and literature.

Gathering all robots in a single point is arguably the most fundamental cooperation task
and has consequently garnered the attention of many researchers [1, 2, 3, 4, 5, 6, 7, 8, 11,
14, 17, 18, 19, 20, 22, 24]. Gathering is trivial under the fully synchronous scheduler; each

© Fabian Frei and Koichi Wada;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 48; pp. 48:1–48:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabian.frei@inf.ethz.ch
https://orcid.org/0000-0002-1368-3205
mailto:wada@hosei.ac.jp
https://orcid.org/0000-0002-5351-1459
https://doi.org/10.4230/LIPIcs.DISC.2024.48
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


48:2 Brief Announcement: Distinct Gathering Under Round Robin

robot moves to the center of gravity, where they meet after a single activation. This strategy
fails for Round Robin; the robots will converge but never meet. Instead, the easy solution is
to target a point of maximum multiplicity [25, Thm. 3.4]. Without multiplicity detection,
gathering more than two robots is much more difficult. Indeed, it becomes impossible, at
least if we weaken the model such to allow for initial configurations where some robots
occupy the same location [21, Sec. 3]. This task variant is sometimes called Self-Stabilizing
Gathering to distinguish it from the original task introduced in Suzuki and Yamashita’s
seminal paper [25], which assumes that the robots all start from distinct locations. This
original version used to be called just Gathering, but is nowadays often referred to as Distinct
Gathering to avoid ambiguity. It is an obvious and by now decades-old research problem
whether Distinct Gathering is still possible for more than two robots under Round Robin,
the simplest scheduler besides the fully synchronous one. Most recently, it was tackled again
by an algorithm that solves the problem at least under the two additional assumptions that
the robots have some internal memory and share a unit distance [26, Sect. 4, Alg. 10]. But
the general consensus remained that Distinct Gathering is likely impossible under Round
Robin without additional assumptions. A conjecture by Défago et al. made this explicit. [9,
Conj. 2]. They corroborated their conjecture by proving the impossibility under the plausible
assumption that any successful algorithm is a so-called rapid-gathering algorithm [9, Conj. 1].
Our results disprove both of these conjectures and resolve the open question by showing
that Distinct Gathering under Round Robin, while indeed impossible for three robots,
unexpectedly becomes feasible again for four and more robots. We go beyond the default
robustness requirements by considering non-rigid movement with an unknown minimum
movement distance: Any robot may be stopped at arbitrary times after some unknown
minimal movement distance (e.g., due to overheating). This causes it to lose all of its memory
and leaves it to wait for its next activation by the scheduler. We can provide an algorithm
that works even under these exceptionally adverse conditions.

2 Detailed Model Description

In this section, we define the task to be solved, the robot model, and the considered scheduler.

▶ Definition 1 (Gathering and Distinct Gathering). Gathering is the task to gather n robots,
which are initially scattered arbitrarily across the Euclidean plane in unknown locations. The
gathering is achieved if after a finite number of activation steps all robots stay co-located
in a single point forever – which point of the plane the robots choose as their gathering
point is irrelevant. Distinct gathering is the same task with the additional guarantee that all
robots occupy different locations in the initial configuration. We call a configuration with this
property that no two robots share a location, a distinct configuration.

▶ Definition 2 (Robot Model). The robots are all identical and anonymous (so they are
indistinguishable and do not even have any internal ID) and all run the same algorithm.
They are very simplistic and can see and move only when activated by an external scheduler.
Upon activation a robot always executes a so-called Look-Compute-Move cycle:

Look-Compute-Move Cycle. The robot first looks around and detects all current robot
locations. Then it uses this information, which is sometimes called a snapshot, to decide
where to move and what trajectory to follow. For the upper bounds announced in this paper,
we even restrict ourselves to robots moving on straight lines towards the computed target.
Finally, the robot moves to its target along the pre-computed path, ignoring everything else.
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In particular, the robots are crash-resistant; there movement is not affected in any way
by them passing each other or being collocated with each other. Under the often standard
assumption of rigid movement, the robot always reaches its target, which concludes the
Look-Compute-Move cycle.

Local Maps. Our robots are located in the Euclidean plane and assumed to be dimensionless;
they can thus be represented by points. The robots perceive the locations of the other robots
with absolute precision, but only relative to a Cartesian map (i.e., a map with two orthogonal
axes that have the same unit length) with the observing robot at the origin. Importantly,
there are no further guarantees for consistency between the robots, neither for the perceived
unit length nor the rotation of the axes nor the chirality. (Gathering would indeed be trivial
with fully consistent maps.) Moreover, we do not even assume any self-consistency for these
properties either. In other words, an adversary may arbitrarily scale, rotate, and mirror the
map perceived by the robot upon each activation.

No Multiplicity Detection. We assume that the robots cannot detect multiplicity, that is,
whether any perceived location is shared by multiple robots or not. This includes the location
of the observing robot itself; it cannot sense directly whether or not it is accompanied.

Obliviousness. The robots are stateless (often referred to as oblivious): They possess no
persistent memory and can thus only use the location information gathered upon activation to
compute their movement path, and as soon as a robot stops, it forgets this information, too.

We now define the scheduler under which Distinct Gathering is examined in this paper.

▶ Definition 3 (Round Robin). Round Robin is the scheduler the activates the robots one
by one, according to a fixed but previously unknown order, in an ever-continuing cycle
covering all robots. We call any consecutive activation of all n robots a round. Just as the
fully-synchronous scheduler, Round Robin is a natural special case of the semi-synchronous
scheduler; that is, it always waits with the activation of a robot until all robots have stopped
moving.

Finally, we distinguish between the standard model of rigid movement and the assumption
of the less reliable non-rigid movement, which models various adverse situations such as
robots overheating or running out of energy during their movement.

▶ Definition 4 (Rigid and Non-Rigid Movement). Robots with so-called rigid movement always
reach their target when executing a Look-Compute-Move. The opposite is non-rigid movement,
where a robot’s movement may be stopped at any time by an adversary, as long as the robot
has moved some minimum distance during its current cycle. This prematurely ends the robot’s
Look-Compute-Move cycle. For our algorithm, we assume the harshest variant of non-rigid
movement where the robots have no knowledge of the minimum movement distances.

3 Previous Results and Conjectures

Distinct Gathering is trivial under Round Robin for the case of n = 2 robots, often referred
to as Rendezvous: It suffices for every activated robot to target to location of the other robot.
The task becomes far more interesting and challenging for n ≥ 3, however. Whether it is
feasible or not has remained a prominent open question in the field for over two decades by
now. It has been tackled repeatedly, most recently in a paper by Terai et al., who showed how
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to solve the problem at least using the quite strong additional assumptions that the robots
have some internal memory, share a unit distance, and that all movements are rigid [26,
Sect. 4, Alg. 10]. But the general consensus has remained that Distinct Gathering is most
likely impossible under Round Robin under the standard assumptions outlined above. The
following conjecture by Défago et al. makes this explicit. [9, Conj. 2].

▶ Conjecture 5 (Cf. Défago et al. [9, Conj. 2]). There is no algorithm solving Distinct
Gathering under Round Robin for n ≥ 3 robots under the default assumptions detailed in
Section 2.

They corroborate their assumption by proving [9, Thm. 16] the impossibility of Distinct
Gathering under Round Robin under the assumption that any algorithm solving this problem
is a so-called rapid-gathering algorithm [9, Conj. 1].

▶ Definition 6 (Rapid-gathering algorithm, cf. Défago et al. [9, Def. 1]). Any algorithm is a
rapid-gathering algorithm if there is an initial configuration of n robots in distinct locations
and a Round Robin activation order such that the algorithm gathers all robots within n − 1
activations.

▶ Conjecture 7 (Cf. Défago et al. [9, Conj. 1]). Every algorithm for Gathering under Round
Robin is a rapid-gathering algorithm.

They further substantiate this plausible claim by considering a series of convincing examples.

4 New Results

We are able to resolve the open question about the feasibility of Distinct Gathering under
Round Robin, giving a quite surprising answer that might seem contradictory at first sight.

On the one hand, we prove with Theorem 8 that the problem is indeed impossible to
solve for the case of n = 3. On the other hand, we show with Theorem 9 that it unexpectedly
becomes feasible again for four and more robots, even though these robots have to pass
through three-point configurations during the execution of their algorithm. We first formally
state the result for three robots.

▶ Theorem 8. Distinct Gathering under the Round Robin is impossible for n = 3 robots
under the default model detailed in Section 2.

Proof Sketch. Due to the space constraints, we can unfortunately not even provide a
full proof sketch here since some of the details are quite subtle and require an extensive
description. We restrict ourselves to mentioning here the following. The proof relies on
first assuming towards contradiction that there is a gathering algorithm, then choosing an
arbitrary initial configuration and a schedule, then considering the last configuration before
last transition from a three-point configuration to a two-point configuration by the given
algorithm under this schedule, and then considering both what could or could not have
happened with this mentioned configuration as an alternative initial configuration under the
different possible schedules and how the algorithm must further behave under the originally
chosen schedule. ◀

We remark that Theorem 8 unifies and strengthens two separate impossibility results
by Défago et al. [9, Theorems 14 and 15] at the same time for n = 3, extending one from
(Self-Stabilizing) Gathering to Distinct Gathering and the other from so-called k-bounded
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schedulers to the heavily restricted Round Robin scheduler1. It confirms both Conjecture 5
and Conjecture 7 in the case n = 3. The natural assumption would now be that this result
extends beyond three robots to the case of n ≥ 4 because gathering more robots seems to
only increase the difficulty of the problem. Indeed, any initial distinct configuration with
four or more robots is forced to pass through a three-point configuration under Round Robin
before a gathering can be achieved. Surprisingly, we can show that this argumentation is
flawed by providing an algorithm that solves the problems for any given n ≥ 4.

▶ Theorem 9. Distinct Gathering under Round Robin can be solved for any given n ≥ 4
under the default model detailed in Section 2. The result holds even for robots restricted to
moving to their target in a straight line and assuming non-rigid movement with an unknown
minimal movement distance.

Theorem 9 disproves the established Conjectures 5 and 7 and resolves the long-standing open
question about the feasibility of Distinct Gathering under Round Robin.

Proof Sketch. It is possible to distinguish seven main phases of the algorithm. It typically
passes through these phases in the given order, but some phases may be skipped depending
on the initial configuration. Moreover, in some cases it becomes necessary for the algorithm
to restart the current phase or even return to previous phases. A graphic representation of
the phases and the possible transitions between them is given in Figure 1.

Due to the space restrictions we can only provide a brief outline of the purpose of each
phase.

The purpose of the first phase is to create a configuration whose robot locations form at
most one isosceles right triangle or multiple isosceles right triangles with one robot that is
part of all of them. The first phase ends once such a configuration is attained. The second
phase has a very similar goal, namely a configuration with exactly one isosceles right triangle
or multiple isosceles right triangles with one robot that is part of all of them. The third
phase creates a configuration with exactly one isosceles right triangle. Everything up to start
of the fourth phase maintains distinct locations for all the robots. In the fourth phase, all
robots except for the one located at the vertex of the isosceles right triangle move to the
closer one of the two endpoints of the base of this triangle. In the fifth phase, the robot at
the vertex moves down along the altitude to the midpoint of the triangle’s base, resulting in
a midpoint configuration, which means that one robot is exactly at the midpoint between
two other ones. In the sixth phase, all robots start targeting this midpoint. This phase ends
as soon as a two-point configuration is created or a robot fails to reach its target. In the
latter case, a non-midpoint three-point configuration may result, which triggers the start
of the eighth phase that restores a midpoint configuration. If a four-point configuration
results at the end of the sixth phase, then the seventh phase begins and ends by creating
another unique isosceles right triangle, leading back to the fourth phase. The last option at
the end of the sixth phase is that a two-point configuration is created, which starts the ninth
phase. In this phase, all robots target the opposite observed location. This can either end in
a gathering or create another three-point configuration, which means moving back to the
sixth or eighth phase. One might suspect that the algorithm could be stuck in an infinite

1 Note that the cited paper implicitly assumes neither consistency nor self-consistency in the maps of the
robots, not even for the unit distance, as evidenced by the remark in the proof of Theorem 14 that all
two-point configurations are indistinguishable. For the cited proofs, this assumption is insubstantial
and easily removed by considering not arbitrary, but a very specific two-point configurations. In other
cases, however, it might be crucial whether the perceived unit distance is self-consistent for each robot.
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loop of robots swapping locations in the ninth phase. The proof that this does not happen
relies an a sequence of invariants maintained through the execution of the previous phases.
To prove termination of the algorithm, we need to show the termination of each phase, but
also that looping back to previous phases can happen only a finite number of times. This
is possible by showing that the configuration’s diameter decreases substantially with every
throwback to a previous phase, which lets us assume rigid movement after a finite number of
phase transitions. Rigid movement prevents any transition back to the sixth, seventh, or
eighth phase, and thus guarantees that the robots eventually all gather at the end of the
ninth phase. ◀
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Figure 1 The phase transition diagram for the algorithm solving Distinct Gathering for more
than three robots under Round Robin. Typical configurations that might occur at the start of each
phase are shown. The arrows indicate the possible phase transitions. It is proved that no infinite
loops can occur.
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