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Abstract
This paper deals with local certification, specifically locally checkable proofs: given a graph property,
the task is to certify whether a graph satisfies the property. The verification of this certification
needs to be done locally without the knowledge of the whole graph.

We examine the trade-off between the visibility radius and the size of certificates. We describe a
procedure that decreases the radius by encoding the neighbourhood of each vertex into its certificate.
We also provide a corresponding lower bound on the required certificate size increase, showing that
such an approach is close to optimal.
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1 Introduction

The problem studied in this paper involves certifying a global graph property without having
complete knowledge of the entire graph. In particular, we study the model of locally checkable
proofs of Göös and Suomela [4].

In this model, an algorithm called a verifier examines the local neighbourhood of each
vertex up to some fixed distance, called the radius. On each vertex, the verifier either accepts
if it cannot deny that the graph has the desired property, or rejects if it is certain that the
property does not hold. The final decision about the property is then made as follows: If the
verifier rejected on at least one vertex, the decision is that the property does not hold. If it
accepts on all vertices, the decision is that the property holds.

To enhance the decision-making capabilities of the model, the vertices are equipped with
unique identifiers and possibly more general labels. Furthermore, each vertex is given a
certificate. Certificates are bit-strings that are used to help the verifier in deciding the answer
about the property. The verifier reads the certificates in its local view as a part of its input.
For each graph that satisfies the property, the verifier must accept for at least one assignment
of certificates. If the graph does not satisfy the property, the verifier must reject every
assignment.
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The key notion of local certification is that of a proof labeling scheme, which is a pair (f, A),
where A is the verifier and f gives each graph with the property a certificate assignment
that is accepted by A. An intuitive example is k-colorability. If k is a constant the coloring
can be provided in the certificates.

Previous work and our contribution

Similar models have been studied under different names [5, 6]. The name local certification
is a general term used for the similar models [1].

It has been previously shown how, and under which conditions, certificate size can be
decreased at the cost of increasing the visibility radius [2, 3]. We provide a similar result,
showing how the visibility radius can be decreased at the cost of increasing the certificate
size. We also provide a corresponding lower bound on the necessary certificate size increase.

There is a crucial distinction between these two problems. While the mentioned results
allow increasing the radius while decreasing the size of certificates in the general case, the
implied inverse procedure of decreasing the radius works only for the very particular type of
proof labeling schemes that result from the original procedure. The novelty of our results
lies in allowing the decrease of the radius of any proof labeling schemes.

2 Preliminaries

All the graphs are assumed to be undirected and simple with possible labels. We also assume
that all graphs are connected, as two different connected components have no way to interact
with each other. Formally G = (V, E, L) where L : V → {0, 1}∗. The vertices are assigned
integer identifiers, and we assume that V = {1, . . . , n}. The set of neighbours of a vertex v is
denoted as NG(v), distance between u, v as dG(u, v), and the set of vertices within distance
r from v as V [v, r], also called the r-local neighborhood of v.

A graph property is a set of graphs that is closed under isomorphism, that is, its membership
does not depend on the choice of identifiers. A certificate assignment P for G is a function
P : V (G) → {0, 1}∗ that associates a certificate with each vertex. We say that P has size s

if |P (v)| ≤ s(n) for every v. A verifier is a function that takes as an input a graph G, its
certificate assignment P and v ∈ V (G) and outputs either 0 or 1.

We denote the induced subgraph G[V [v, r]] as G[v, r], and the restriction of P to
V [v, r] as P [v, r], that is P [v, r] : V [v, r] → {0, 1}∗. A verifier A is r-local if A(G, P, v) =
A(G[v, r], P [v, r], v) for all G, P , and v. An r-local proof labeling scheme certifying a property
of labeled graphs P is a pair (f, A), where A is an r-local verifier and f assigns to each
G ∈ P a certificate assignment such that the following properties hold.

Completeness: If G ∈ P, then A(G[v, r], P [v, r], v) = 1 for all v, where P = f(G).
Soundness: If G /∈ P, then for every certificate assignment P ′, there is v such that
A(G[v, r], P ′[v, r], v) = 0.

We say that (f, A) has a size s : N → N if |f(G)(v)| ≤ s(|V (G)|) for all G ∈ P and v ∈ V (G).

3 Decreasing the radius of a proof labeling scheme

In this section, we state that given an r-local (fr, Ar) certifying a property P, we can
construct an (r − δ)-local (f, A) certifying P for any δ < r at the cost of increasing the
certificate size. The increase of the certificate size can be expressed as a function of the size
of the input graph and its maximum degree. The result is precisely formulated as follows.
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▶ Theorem 1. Given an r-local proof labeling scheme (fr, Ar) of size s certifying a graph
property P, for every δ < r, we can construct an (r − δ)-local proof labeling scheme certifying
P with certificates of the size O((∆ − 1)δ(∆ log(n) + s(n) + ℓ(n))) where ℓ(n) is the maximum
size of a label and ∆ ≥ 3 is the maximum degree of the input graph.

Note that in the case of ∆ = 2, the maximum size of a δ-neighborhood of a vertex grows only
linearly with δ and we may obtain the bound on certificate size of O(δ(∆ log(n)+s(n)+ℓ(n))).

While the idea is simple, the proof is technical; therefore, due to space constraints, we
decided to omit the proof from this brief announcement. The complete proof is available
in the full version of the paper. Here we provide only the following overview of the proof
technique.

When the verifier Ar is invoked on v, it is given G[v, r] and P [v, r] on its input. If we
want to reduce that information to G[v, r − δ], P [v, r − δ], a first step can be to move the
now missing information into the certificates. The first obstacle comes from the fact that
information in the certificates may not be true (as opposed to G[v, r] provided on the input)
and must be verified.

The essential idea is to have each vertex hold its δ-neighbourhood in its certificate. This
allows other vertices within distance r − δ to gain information about the entire distance r

neighbourhood and feed this information to the original r-local verifier.

4 Lower bound on the increase of certificate size

This section aims to show that there are proof labeling schemes for which the radius can
be decreased by δ only if we also increase the certificate size by C(∆ − 1)δ−1, where C is a
fixed constant. We present a property of labeled graphs, for which we also provide a proof
labeling scheme and both an upper and a lower bound on its size.

Let ∆ ≥ 3, then we define P∆ so that a labeled G ∈ P∆ if and only if it satisfies all of
the following three properties. For an example of a graph with the property, see Figure 1.

Property 1 (Tree structure): G has a single vertex of degree 2, denoted as R(G) (or just R),
which is adjacent to two complete (∆ − 1)-nary trees of the same size.

Property 2 (Label structure): For every vertex v except for the root R(G), the label L(v)
encodes an integer a ∈ {1, 2, . . . , ∆ − 1} that uniquely defines its order among its siblings.
Additionally, if deg(v) = 1, then L(v) also encodes one bit b ∈ {0, 1}. Therefore, on leaves
L(v) encodes a pair (a, b). The label L(R(G)) is empty.

This allows us to define LT (G) and RT (G) as the the subtrees rooted at the first and second
child of R(G) respectively. Furthermore, it allows us to naturally order the leaves of G.
We denote as S(v) the binary string created by taking the values of b on all leaves in their
natural order in the subtree rooted at v. We define S(G) = S(R(G)).

Property 3 (String structure): S(G) = XX for some binary string X, i.e. S(G) is a result of
concatenating a string X with itself once.

Now we describe a proof labeling scheme of P∆.

▶ Lemma 2. Graph property P∆ has an r-local proof labeling scheme of size C · n/(∆ − 1)r−1

for every r ≥ 1 and a fixed C.

The lemma provides an upper bound on the optimal certificate size for a given radius. This
is then used together with a corresponding lower bound, to show a lower bound on the
necessary increase of the certificate size of P∆ when decreasing the radius.

DISC 2024
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1 1 1 1 1 1 1 1 10 0 0 0 0 0 0

R(G)
LT (G) RT (G)

S(G)

T (Hi)

1 1 1 1 1 1 1 1 10 0 0 0 0 0 0

1001
1100 0010

1111 1001 1111
1100 0010

Figure 1 An example of a graph with property P∆ with ∆ = 5. Here, R(G) is the root, LT (G)
and RT (G) are the left and the right subtrees, S(G) is the sequence in the leaves, and the red strings
are certificates. The subgraph T (Hi) is used in the proof of Lemma 3 and corresponds to r = 2.

The proof is straightforward but lengthy. The main idea is to encode for each vertex v in
its certificate the string S(v) of the whole subtree rooted in v. Since the verifier can see up
to distance r, it is not necessary to encode the string in the vertices for which d(v, R) < r.
See Figure 1 for an example and the full paper for the whole proof.

Now, we show a lower bound on the required certificate size to locally certify P∆.

▶ Lemma 3. For all r-local proof labeling schemes certifying P∆ of size s, it holds that
s(n) ≥ (n · ε)/(12(∆ − 1)r) for a large enough n and all ε < 1.

Proof. The idea is inspired by the proof of Theorem 6.1 of Göös and Suomela [4]. Following
their approach, we will show that for every supposed proof labeling scheme of size less
than (n · ε)/(12(∆ − 1)r), we can construct an instance not in P∆ which the verifier would
necessarily accept.

Suppose there exists an r-local proof labeling scheme (A, f) certifying P∆ such that
for every n′ there exists n ≥ n′ such that s(n) < (n · ε)/(12(∆ − 1)r). For an instance
Hi ∈ P∆, let T (Hi) denote V [R(Hi), r]. Let ∼ be a binary relation on P∆ defined so that
Hi ∼ Hj if and only if f(Hi)[T (Hi)] = f(Hj)[T (Hj)] and Hi[T (Hi)] = Hj [T (Hj)], that is
both the subgraphs on T (Hi), T (Hj), and their certificates as assigned by f are the same.
The equality of induced subgraphs here means the equality of the identifiers, the labels, and
the edges. Note that ∼ is an equivalence. See again Figure 1 for an illustration.

Let P∆[n] be the set of instances in P∆ on n vertices with a fixed identifier assignment,
meaning the identifier of a vertex with a given position in the tree is the same in all the
instances.

▷ Claim 4. For all n′, there exists n ≥ n′ and H1, H2 ∈ P∆[n] such that H1 ∼ H2 and
S(H1) ̸= S(H2).

Proof. We will show that for large enough n, the number of possible binary sequences in
the leaves of instances in P∆[n] is greater than the number of equivalence classes of ∼
when restricted to P∆[n]. By the assumption, each vertex has less than (n · ε)/(12(∆ − 1)r)
certificate bits, thus for an instance Hi ∈ P∆[n], there are at most 2(n·ε)/(12(∆−1)r)·|T (Hi)|

different certificate assignments on T (Hi), and at most (∆ − 1)|T (Hi)| different assignments
of labels on T (Hi). The rest of the structure on T (Hi), including the identifiers is fixed by
the fact that Hi ∈ P∆[n].

Furthermore, observe that |T (Hi)| = 1 + 2
∑r−1

i=0 (∆ − 1)i ≤ 3(∆ − 1)r as ∆ ≥ 3. In total,
we have that ∼ has on P∆[n] at most 2(n·ε)/4 · (∆ − 1)3(∆−1)r different classes.

On the other hand, each instance has at least n/4 leaves in the left subtree and thus
there are at least 2n/4 different possible binary strings in the left subtree. It remains to
observe that 2(n·ε)/4 · (∆ − 1)3(∆−1)r

< 2n/4 for large enough n. Therefore by the pigeonhole
principle, there are H1, H2 ∈ P∆[n] such that S(H1) ̸= S(H2) and H1 ∼ H2. ◁
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Now, we take H1, H2 ∈ P∆[n] such that H1 ∼ H2 and S(H1) ̸= S(H2) and construct
H ′ = (V ′, E′, L′) by starting with H1[T (H1)] = H2[T (H2)] and completing the left subtree
by LT (H1) and the right subtree by RT (H2). Formally, let LS(G) be the neighbour of R(G)
in LT (G) and RS(G) the neighbour in RT (G). Then

V ′ = V (LT (H1)) ∪ V (RT (H2)) ∪ {R(H1)}
E′ = E(LT (H1)) ∪ E(RT (H2)) ∪ {R(H ′), LS(H1)} ∪ {R(H ′), RS(H2)}).

Observe that the identifier assignment of H ′ is the same as those of H1 and H2, hence by
construction, we have that H ′ satisfies Properties 1 and 2 and the verifier can not reject
H ′ on their basis. Furthermore, observe that H ′ /∈ P∆ as the string in the leaves does not
satisfy Property 3.

Now, we choose the certificate assignment on H ′ as

P (v) =
{

f(H1)(v) if v ∈ LT (H ′) ∪ {R(H ′)}
f(H2)(v) otherwise

▷ Claim 5. For all v ∈ V (H ′) it holds A[H ′[v, r], P [v, r]] = 1.

It follows from the construction that the local neighbourhood of any v with is exactly the
same as in the original graph. For the complete proof see the full version of the paper.

We have demonstrated that there is an instance H ′ /∈ P∆ which is accepted by A,
contradicting the assumption that (f, A) certifies P∆. This finishes the proof. ◀

Now, we are ready to prove there are proof labeling schemes, such that the increase of
certificate size by C(∆ − 1)δ−1 is necessary when decreasing the radius by δ.

▶ Theorem 6. There is an r-local proof labeling scheme of size sr such that after decreasing
its radius by δ, for any possible resulting r − δ-local proof labeling scheme of size s′

r−δ and
every large enough n, it holds that s′

r−δ(n) ≥ sr(n) · C(∆ − 1)δ−1 where ∆ is the maximum
degree of the input graph and C is a fixed constant.

Proof. Consider the property P∆. By Lemma 2, it can be certified by a proof labeling
scheme of size sr with sr(n) ≤ C ′ · n/(∆ − 1)r−1 for every large enough n. By Lemma 3, for
every large enough n and a fixed C, we have:

s′
r−δ(n) ≥ (n · ε)/(12(∆ − 1)r−δ) ≥ ε

12C ′ · sr(n) · (∆ − 1)r−1−(r−δ) = sr(n) · C(∆ − 1)δ−1◀

5 Conclusion

A question to consider is the price of decreasing radius depending on the properties being
certified. While our approach works in general, there may be more efficient certification
methods for specific properties.

In Section 4, the presented results require that we allow labels on the vertices of the
input graph. We believe that the same results can be achieved for graphs without labels, by
substituting the labels with an appropriate construction.

DISC 2024



49:6 Brief Announcement: Decreasing Verification Radius in Local Certification

References
1 Laurent Feuilloley. Introduction to local certification. Discrete Mathematics & Theoretical

Computer Science, 23(Distributed Computing and Networking), 2021. doi:10.46298/dmtcs.
6280.

2 Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry. Redun-
dancy in distributed proofs. Distributed Comput., 34(2):113–132, 2021. doi:10.1007/
S00446-020-00386-Z.

3 Orr Fischer, Rotem Oshman, and Dana Shamir. Explicit space-time tradeoffs for proof
labeling schemes in graphs with small separators. In Quentin Bramas, Vincent Gramoli, and
Alessia Milani, editors, 25th International Conference on Principles of Distributed Systems
(OPODIS 2021), volume 217 of LIPIcs, pages 21:1–21:22. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/
LIPIcs.OPODIS.2021.21.

4 Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory of
Computing, 12(1):1–33, 2016. doi:10.4086/toc.2016.v012a019.

5 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Comput.,
22(4):215–233, 2010. doi:10.1007/S00446-010-0095-3.

6 David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000. doi:10.1137/
1.9780898719772.

https://doi.org/10.46298/dmtcs.6280
https://doi.org/10.46298/dmtcs.6280
https://doi.org/10.1007/S00446-020-00386-Z
https://doi.org/10.1007/S00446-020-00386-Z
https://doi.org/10.4230/LIPIcs.OPODIS.2021.21
https://doi.org/10.4230/LIPIcs.OPODIS.2021.21
https://doi.org/10.4086/toc.2016.v012a019
https://doi.org/10.1007/S00446-010-0095-3
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1137/1.9780898719772

	1 Introduction
	2 Preliminaries
	3 Decreasing the radius of a proof labeling scheme
	4 Lower bound on the increase of certificate size
	5 Conclusion

