
Asynchronous Fault-Tolerant Distributed Proper
Coloring of Graphs
Alkida Balliu #

Gran Sasso Science Institute, L’Aquila, Italy

Pierre Fraigniaud #

IRIF - CNRS & Univ. Paris Cité, France

Patrick Lambein-Monette #

Unaffiliated

Dennis Olivetti #

Gran Sasso Science Institute, L’Aquila, Italy

Mikaël Rabie #

IRIF - Université Paris Cité, France

Abstract

We revisit asynchronous computing in networks of crash-prone processes, under the asynchronous
variant of the standard LOCAL model, recently introduced by Fraigniaud et al. [DISC 2022]. We
focus on the vertex coloring problem, and our contributions concern both lower and upper bounds
for this problem.

On the upper bound side, we design an algorithm tolerating an arbitrarily large number of crash
failures that computes an O(∆2)-coloring of any n-node graph of maximum degree ∆, in O(log⋆ n)
rounds. This extends Linial’s seminal result from the (synchronous failure-free) LOCAL model to its
asynchronous crash-prone variant. Then, by allowing a dependency on ∆ on the runtime, we show
that we can reduce the colors to

(
1
2 (∆ + 1)(∆ + 2) − 1

)
. For cycles (i.e., for ∆ = 2), our algorithm

achieves a 5-coloring of any n-node cycle, in O(log⋆ n) rounds. This improves the known 6-coloring
algorithm by Fraigniaud et al., and fixes a bug in their algorithm, which was erroneously claimed to
produce a 5-coloring.

On the lower bound side, we show that, for k < 5, and for every prime integer n, no algorithm
can k-color the n-node cycle in the asynchronous crash-prone variant of LOCAL, independently from
the round-complexities of the algorithms. This lower bound is obtained by reduction from an original
extension of the impossibility of solving weak symmetry-breaking in the wait-free shared-memory
model. We show that this impossibility still holds even if the processes are provided with inputs
susceptible to help breaking symmetry.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases LOCAL model, Graph Coloring, Renaming, Weak Symmetry-Breaking,
Fault-Tolerance, Wait-Free Computing

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.5

Related Version Full Version: https://arxiv.org/abs/2408.10971

Funding Partially funded by MUR (Italy) Department of Excellence 2023 - 2027, the PNRR MIUR
research project GAMING “Graph Algorithms and MinINg for Green agents” (PE0000013, CUP
D13C24000430001), and by the French ANR projects DUCAT (ANR-20-CE48-0006) and QuDATA
(ANR-18-CE47-0010).

© Alkida Balliu, Pierre Fraigniaud, Patrick Lambein-Monette, Dennis Olivetti, and Mikaël Rabie;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 5; pp. 5:1–5:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alkida.balliu@gssi.it
https://orcid.org/0000-0001-5293-8365
mailto:pierre.fraigniaud@irif.fr
https://orcid.org/0000-0003-4534-4803
mailto:patrick@lambein.name
mailto:dennis.olivetti@gssi.it
https://orcid.org/0000-0002-6600-6443
mailto:mikael.rabie@irif.fr
https://orcid.org/0000-0001-6782-7625
https://doi.org/10.4230/LIPIcs.DISC.2024.5
https://arxiv.org/abs/2408.10971
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

1 Introduction

1.1 Asynchrony, Failures, and Networks
To what extent a global solution to a computational problem can be obtained from locally
available data? What can be computed locally? These are some of the questions that were
asked, and partially answered 30 years ago in two seminal papers [23, 25] in the field of
distributed network computing. Since then, tremendous progress has been made about these
questions, and even detailed books [22, 27] can only touch a small fraction of the content
of the current literature on this topic. Nevertheless, the vast majority of the achievements
on local computing have been obtained in synchronous failure-free models, among which the
most common ones are referred to as LOCAL [23] and CONGEST [27].

In both models, processing nodes occupy the vertices of a graph, and exchange messages
along the edges of that graph. They all start at the same time, and computing proceeds as a
sequence of synchronous rounds. At each round, every pair of adjacent nodes can exchange
messages (one in each direction), and every node can perform some individual computation.
CONGEST differs from LOCAL only as far as the message size is concerned: messages are
bounded to be of size at most B bits in CONGEST (it is common to set B = O(log n)). There
are at least two solid reasons why such elegant but simplistic models should be considered.
First, they ideally capture the notion of spatial locality, as algorithms performing in t rounds
produce an output at each node that is solely based on the t-neighborhood of the node.
Second, the existence of efficient synchronizers [3, 4, 19] enables to implement algorithms
designed for synchronous models on asynchronous networks, with only limited slowdown.

Yet, models such as LOCAL and CONGEST suffer from one notable limitation: they
ignore the potential presence of failures. Indeed, transient failures have been addressed in
the framework of self-stabilization, but crash or malign failures are mostly ignored in the
framework of local computing in networks. Instead, studying the interplay of asynchrony and
failures has been the main topic of interest of distributed computing in general [2, 24, 28], since
the seminal “FLP impossibility result” stating that consensus is impossible in asynchronous
systems with failures, even under the restriction that at most one crash failure may occur [15].
However, the design of algorithms dedicated to asynchronous crash-prone systems have
been mostly performed in shared-memory or message-passing models: the former assumes
that processes exchange information by writing and reading in a shared memory; the latter
assumes that any two processes can exchange messages directly along a private channel.
While these two models are excellent abstractions of very many types of distributed systems,
ranging from multi-core architectures to large-scale computing platforms, they do not enable
the study of spatial locality, as the structure of the physical network is abstracted away.

An attempt to resolve this tension between synchronous failure-free computing in networks,
and asynchronous computing in crash-prone systems has been recently proposed [16], by
considering asynchronous networks subject to crash failures.

1.2 The ASYNC LOCAL Model
The asynchronous crash-prone LOCAL model1 (ASYNC LOCAL in short), introduced in [16],
aims at capturing a setting that is a hybrid between shared memory and network computing.

1 One could also consider the variant ASYNC CONGEST of ASYNC LOCAL by limiting to O(log n) bits
the size of the registers in which nodes read and write, but we restrict ourselves to the LOCAL variant,
as standard wait-free computing does not generally restrict the size of the registers.

A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:3

This model can be described conceptually in two possible ways (see Section 2.1 for more
details):

The ASYNC LOCAL model can be viewed as the standard wait-free shared-memory
model [2, 21] in which the read-access to other process’s registers is restricted. It bears
similarities with the atomic state model in self-stabilization [9]. In an n-process system,
each process i ∈ [n] can solely read the registers of processes j ∈ NG(i), where NG(i)
denotes the set of neighbors of vertex i in a graph G. That is, the wait-free shared-memory
model is the ASYNC LOCAL model in which the graph G is fixed to be the complete
graph (or clique) Kn.
The ASYNC LOCAL model can alternatively be viewed as the standard LOCAL model [22,
27] in which each node writes in its local register(s) instead of sending messages, and
reads the registers of its neighbors instead of receiving messages from them. In addition,
ASYNC LOCAL allows asynchronous executions, that is, each process reads and writes at
its own pace, which may vary with time, and it may even crash (i.e., stop functioning,
and never recover). Note that, as for LOCAL, the graph G is unknown to the nodes
in ASYNC LOCAL, as it is typically the input to the problems of interest in network
computing.

In the framework of asynchronous computing, the computing elements are referred to as
processes, whereas they are referred to as nodes in the context of computing in networks, but
we use these two terms indistinctly. The terminology “wait-free” refers to the fact that (1) an
arbitrarily large number of processes can crash, and (2) a node cannot distinguish whether
a neighboring node has crashed or is simply slow, from which it follows that a node must
never “wait” for some action performed by another node, and must terminate independently
from which of the other nodes have crashed (unless itself has crashed).

It was shown in [16] that the computing power of ASYNC LOCAL is radically different
from the one of LOCAL. Indeed, the authors proved that constructing a maximal independent
set (MIS) is simply impossible in ASYNC LOCAL, even in the n-node cycles Cn, n ≥ 3, while,
on cycles, it just takes Θ(log⋆ n) rounds in LOCAL [12, 23]. However, the authors show
also that proper coloring Cn is possible in ASYNC LOCAL, to the expense of using a larger
palette of colors, i.e., 6 colors instead of just 3 as in LOCAL (a 5-coloring algorithm is also
claimed in [16], but, as we shall show later, there is a bug in that algorithm). Indeed, a
simple reduction to renaming (see [2] for the definition) shows that, under the ASYNC LOCAL
model, no algorithms can proper color all graphs of maximum degree ∆ using less than
2∆ + 1 colors whenever ∆ + 1 is a power of a prime. This is because ASYNC LOCAL and
standard shared-memory coincides when the graph is a clique of n = ∆ + 1 nodes. The
main result in [16] is a distributed asynchronous algorithm in the ASYNC LOCAL model that
achieves proper 6-coloring of any n-node cycle, n ≥ 3, in O(log⋆ n) rounds, which is optimal
thanks to [23]. In ASYNC LOCAL, the round-complexity of an algorithm is the maximum,
taken over all nodes, and all executions, of the number of times a node writes in its register,
and reads the registers of its neighbors.

1.3 Our results
In a nutshell, we show that there exists an algorithm for proper coloring graphs with maximum
degree ∆ in the ASYNC LOCAL model, using a palette of 1

2 (∆+1)(∆+2)−1 colors, resulting
into a 5-coloring algorithm for the cycles. This result was obtained by first showing how to
implement Linial’s coloring algorithm in the asynchronous setting, and then by developing
a new technique based on reallocating identifiers to nodes. Note that even implementing

DISC 2024

5:4 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

Linial’s coloring algorithm asynchronously is not straightforward, as it is not even clear
whether the trivial recoloring algorithm that proceeds iteratively over all color classes can
be implemented in the ASYNC LOCAL model. Moreover, we show that, for infinitely many
values of n, 5-coloring the n-node cycles is the best that can be achieved in ASYNC LOCAL.
This significantly improves the lower bound in [16] on the number of colors required for
proper coloring cycles under ASYNC LOCAL, which held for n = 3 only.

Obtaining our lower bound required to revisit entirely the known lower bound on weak
symmetry breaking2 in the standard asynchronous shared-memory model, by considering
the impact of a priori “knowledge” given to the processes. For instance, if the processes
know a priori that one process is given advice 0, and one process is given advice 1, then
weak symmetry breaking becomes trivially solvable. For which a priori knowledge weak
symmetry breaking becomes trivially solvable, and for which it remains unsolvable? We show
that answering this novel question for specific types of a priori knowledge results into new
impossibility results for the standard asynchronous shared-memory model, which translate
into lower bounds and impossibility results in the ASYNC LOCAL model.

We stress the fact that while all (Turing computable) tasks are solvable in the LOCAL
model, not all taks are solvable in ASYNC LOCAL, yet we also address complexity issues, by
showing that, for constant ∆, our

(1
2 (∆ + 1)(∆ + 2) − 1

)
-coloring algorithm performs in

O(log⋆ n) rounds in ASYNC LOCAL, that is, as fast as the Ω(log⋆ n) lower bound [23] on the
number of rounds required for coloring cycles in the synchronous failure-free LOCAL model.
These results are detailed next.

1.3.1 Proper Coloring
We mostly focus on distributed proper coloring, arguably one of the most important and
thoroughly studied symmetry-breaking tasks in network computing – see, e.g., [17, 18, 20]
for recent results on the matter3. First, we show that Linial’s technique from [23] based on
cover-free families of set systems can be used asynchronously, for the design of an O(∆2)-
coloring of graphs of maximum degree ∆, running in O(log⋆ n) rounds in n-node graphs
under ASYNC LOCAL. Then we show that the approach from [16] for 6-coloring cycles can
be generalized to color arbitrary graphs. Specifically, we design an algorithm computing a
(∆+1)(∆+2)

2 -coloring in graphs of maximum degree ∆ running in O(log⋆ n) + f(∆) rounds
under ASYNC LOCAL, where the additional term f(∆) depends on ∆ only. This line of
results culminates in the design of an algorithm enabling to save one color, i.e., that computes
a

((∆+1)(∆+2)
2 − 1

)
-coloring, still running in O(log⋆ n) + f(∆) for some function f . Reducing

the color palette by just one color may seem of little importance, but it is not, for two reasons.
First, a palette of size (∆+1)(∆+2)

2 − 1 is the best that we are aware of for which it is possible
to proper color all graphs of maximum degree ∆ in O(log⋆ n) rounds in ASYNC LOCAL
(ignoring the additional term depending on ∆ only). Saving one more color appears to be
challenging. Second, in the case of cycles, i.e., ∆ = 2, this allows us to fix a bug in the
5-coloring algorithm from [16]. Indeed, this latter algorithm is shown to be erroneous, as

2 Weak symmetry breaking is the task in which processes start with no inputs, and each process must
output 0 or 1, under the constraint that, whenever all processes terminate, at least one process must
output 0, and at least one process must output 1.

3 In the context of distributed computing in networks, especially in the LOCAL and CONGEST models,
one is interested in properly coloring graphs with maximum degree ∆ using a palette of f(∆) colors,
where f(∆) grows slowly with ∆. One typical example is f(∆) = ∆ + 1 as all graphs of maximum
degree ∆ can be properly colored with ∆ + 1 colors, but one is also interested in larger functions f , e.g.,
f(∆) = Θ(∆2), whenever this choice enables to obtain faster algorithms.

A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:5

there are schedulings of the nodes that result in livelocks preventing the algorithm from
terminating. Nevertheless, our algorithm shows that 5-coloring the n-node cycles in O(log⋆ n)
rounds under ASYNC LOCAL is indeed possible.

1.3.2 Lower Bounds and Impossibility Results
Our second line of contribution is related to lower bounds on the size of the color palette
enabling to proper color graphs asynchronously. It was observed in [16] that since the class
of graphs with maximum degree ∆ includes the clique with n = ∆ + 1 nodes, and since
renaming [2] in a set of less than 2N − 1 names cannot be done wait-free in N -process shared-
memory systems whenever N is a power of a prime, proper coloring graphs of maximum
degree ∆ in ASYNC LOCAL cannot be achieved with a color palette smaller than 2∆ + 1
colors, i.e., 5 colors in the case of cycles (independently from the number of rounds). However,
the question of whether one can 4- or even 3-color long cycles (i.e., excluding the specific case
of the clique C3) under ASYNC LOCAL was left open in [16]. We show that this is impossible
whenever n is prime, that is, there are infinitely many values of n for which 5-coloring the
n-node cycle is the best that can be achieved in ASYNC LOCAL.

1.3.3 Reduction from Weak Symmetry-Breaking with Inputs
We achieve our lower bound on the number of colors thanks to a result of independent
interest in the standard framework of wait-free shared-memory computing. We show that
there are no symmetric wait-free algorithms solving weak symmetry-breaking [2] in n-process
asynchronous shared-memory systems whenever n is prime, even if processes are provided
with inputs from a non-prime-divisible and order-invariant set of inputs. We achieve this
impossibility result by extending the proof in [1] for weak symmetry-breaking to the case in
which processes have inputs that do not trivially break symmetry. Our impossibility result for
weak symmetry-breaking with inputs has other consequences on the ASYNC LOCAL model,
including the facts that weak 2-coloring is impossible in cycles of prime size, and that, for
every even ∆ ≥ 2, there is an infinite family of regular graphs for which (∆ + 2)-coloring
cannot be solved in ASYNC LOCAL.

Finally, using different techniques, we also show that even a weak variant of maximal
independent set (MIS) cannot be solved in cycles with at least 7 nodes, and that, for every
∆ ≥ 2, (∆ + 1)-coloring trees of maximum degree ∆ is impossible under ASYNC LOCAL.

1.4 Related Work
The combination of asynchrony and failures in the general framework of distributed computing
in networks has been studied a lot in the context of self-stabilization. The latter deals with
transient failures susceptible to modify the content of some of the variables defining the
states of the nodes. The role of a self-stabilizing algorithm is therefore to guarantee that if
the network is in an illegal configuration (i.e., a configuration not satisfying some specific
correctness condition), then it will automatically return to a legal configuration, and will
remain in a legal configuration, unless some other failure(s) occur. Self-stabilizing graph
coloring algorithms have been designed [5, 6, 7, 8]. However, these algorithms provide solutions
only for executions during which there are no failures. Instead, in ASYNC LOCAL, failures
may occur at any time during the execution, and once a process crashes it never recovers.
This has important consequences on what can or cannot be computed in ASYNC LOCAL.
For instance, 3-coloring the n-node cycle is possible in a self-stabilizing manner for every
n ≥ 3, while we show that even 4-coloring the n-node cycle is impossible for infinitely many n

(namely, for all prime n).

DISC 2024

5:6 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

It is also worth mentioning [11, 13], which introduced the DECOUPLED model, where crash-
prone processes occupy the nodes of a reliable and synchronous network. The DECOUPLED
model is stronger than ASYNC LOCAL, and indeed it was shown that if there exists an
algorithm solving a task in the LOCAL model, then there exists an algorithm solving that
task in the DECOUPLED model as well, with limited slowdown. Instead, we show that even
a weak variant of MIS is impossible in large cycles under ASYNC LOCAL.

Another field of research very much related to our work is the study of synchronous
networks with failures, whether it be crash or even malicious process failures, or message
omission failures (see, e.g., [10, 26, 29, 30]). In these models, the focus has mostly been
put on the study of tasks such as consensus and set-agreement. The ASYNC LOCAL model
somehow mixes some of the key aspects of the models considered in these work, including
the presence of crash failures, and the fact that the communications are mediated by a
graph distinct from the complete graph. The same way standard wait-free computing in
shared-memory systems can be viewed as one specific instance of the oblivious message
adversary model, wait-free computing in the ASYNC LOCAL model in a graph G may be
viewed as the instance of the oblivious message adversary model in which messages can only
be sent along the edges of the graph G. We however focus on solving graphs problems such
as coloring or independent set, motivated by the need to solve various symmetry breaking
problems in networks, including frequency assignment and cluster decomposition. For such
problems, it is more more convenient to use the framework of ASYNC LOCAL, in which the
graph G is part of the input, as in the LOCAL model.

2 Model and Definitions

We first recall the ASYNC LOCAL model as introduced in [16], and then provide an example
for an algorithm in this model.

2.1 The ASYNC LOCAL model
Like the LOCAL model [27], the ASYNC LOCAL model assumes a set of n ≥ 1 processes,
each process occupying a distinct node of an n-vertex graph G = (V, E), which is supposed
to be simple and connected. Each process, i.e., each node v ∈ V , has an identifier idv that is
supposed to be unique in the graph. The identifiers are not necessarily between 1 and n,
but they are supposed to be stored on O(log n) bits. That is, all node identifiers lie in the
integer interval [1, N] for some bound N = poly(n). Like in the asynchronous shared-memory
model, every node v comes equipped with a single-writer/multiple-reader register R(v) in
which it can write values. However, in contrast with the shared-memory model, only v’s
neighbors in the graph G are able to read its register R(v), and symmetrically, node v can
only read the registers R(w) of nodes w ∈ NG(v) = {u ∈ V | {u, v} ∈ E}. We assume that
each node can write in its register, and then read all its neighbors’ registers, in a single
atomic operation. Neighboring nodes can perform this write&read operation concurrently, in
which case they both read the value concurrently written in the other node’s register. This
communication primitive is thus akin to an immediate snapshot object with read accesses
mediated by a graph, in a similar manner to the atomic state model in the context of self-
stabilizing algorithms [9]. Computation proceeds asynchronously, and each node may crash,
in which case it stops functioning, and it never recovers. Therefore, in the particular case of
the clique G = Kn, ASYNC LOCAL boils down to the standard asynchronous crash-prone
shared-memory model with immediate snapshots [2]. The registers are of unbounded size.
Therefore, as in the LOCAL model, and as in most wait-free computing models [21] as well,
we can assume full-information protocols, in which every node writes its entire state in its
register, and read the states of its neighbors in their registers.

A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:7

Remark. Due to its nature, the ASYNC LOCAL model may have also been named “iterated
immediate local snapshot”. Nevertheless, for its close connection to the standard LOCAL
model used for the study of graph problems (e.g., coloring) in distributed computing, we
preferred to stick to the terminology ASYNC LOCAL.

Input. In addition to its identifier idv, every node v may be provided with some input,
denoted by inputv. The latter may be the number n of nodes in the graph, or an upper
bound N on n, or any label ℓ(v) ∈ {0, 1}∗ whose semantic depends on the context (e.g.,
it may represent a boolean mark, or a color, etc.). Note that the network G is typically
unknown to the nodes, even if some specific parameters may be provided to each node as
input, such as the maximum degree ∆ of G.

Algorithm. An algorithm A for the ASYNC LOCAL model may be described by two func-
tions:

Init: used to initialize the state of each node, as a function of its input;
Alg: used to update the state of a node, as a function of its current state, and of the
states of its neighbors.

Scheduling. An execution of an algorithm A depends on how the nodes are scheduled. A
scheduling is a sequence S = S1, S2, . . . of subsets Si ⊆ V of nodes. For every i ≥ 1, the
set Si denotes the set of nodes that are activated at step i. Each of these nodes performs
an immediate-snapshot, and updates its state accordingly. For instance, the scheduling
{u, v}, {v}, {v}, {v}, . . . represents the execution in which nodes u and v run concurrently
at the first step, and then v runs solo, i.e., v is the only node activated at every step i ≥ 2.
That is, u has crashed after step 1, and all the nodes w /∈ {u, v} had crashed initially, none of
them taking any step. Instead, the scheduling V, V, V, . . . represents a synchronous execution
in which no node crashes.

Full-Information Protocols. For every v ∈ V , let OldStatev,1 ← ⊥, and NewStatev,1 ←
Init(idv, inputv). For every i ≥ 1, the variable OldStatev,i represents what a neighbor
of v gets whenever reading the memory of v, and NewStatev,i represents the updated
state of v, which will become visible to its neighbors the next time v is scheduled. More
specifically, for every i ≥ 1, if v /∈ Si, then OldStatev,i+1 ← OldStatev,i and NewStatev,i+1 ←
NewStatev,i. Instead, if v ∈ Si, then OldStatev,i+1 ← NewStatev,i, and NewStatev,i+1 ←
Alg(OldStatev,i+1, {OldStateu,i+1 | u ∈ NG(v)}). In other words, all nodes that are scheduled
at step i write their current state, then read the state of their neighbors, and then use the
obtained knowledge in order to update their state. The new states resulting from these
updates will become visible to their neighbors the next time that they are scheduled. That
is, we model a setting in which writing and then reading the state of the neighbors is an
atomic operation, but it may take some time to compute a new state.

Termination. We let Terminated(x) be a special state denoting that a node terminates
with output x. If a node v satisfies NewStatev,t = Terminated(x) at some step t ≥ 1, then v

decides the output x, and it is assumed that if v is scheduled again in the future, then its
state does not change, that is, NewStatev,t+i = NewStatev,t for all i ≥ 1.

DISC 2024

5:8 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

Algorithm 1 An algorithm for 6-coloring cycles. Code of node v, with sole input idv.

procedure CycleSixColoring(idv)
x← idv; a← 0; b← 0; ▷ (x, a, b) is the state s of v

repeat forever
(s1, s2)←WriteSnapshot(s) ▷ s1 and s2 are the states of the two neighbors of v

if (a, b) /∈ {(s1.a, s1.b), (s2.a, s2.b)} then return (a, b)
else ▷ In the following: si = ⊥ =⇒ (si.x = ⊥) ∧ (si.a = ⊥) ∧ (si.b = ⊥).

a← minN∖ {si.a | (i ∈ {1, 2}) ∧ (si ̸= ⊥) ∧ (si.x > x)}
b← minN∖ {si.b | (i ∈ {1, 2}) ∧ (si ̸= ⊥) ∧ (si.x < x)}

end if
end repeat

end procedure

Round complexity. The runtime of a node v is defined as

Tv = |{i ≥ 1 | v ∈ Si and NewStatev,i ̸= Terminated(x) for any possible output x}|.

That is, the runtime of a v is equal to how many times v is scheduled before it terminates.
The runtime of an algorithm on a graph G = (V, E) is then max{Tv | v ∈ V }. The runtime
of an algorithm in a graph class G is the maximum runtime of the algorithm, over all graphs
G ∈ G. The runtime of an algorithm may depend on the identifiers given to the nodes.
However, as said before, we use the standard assumption that the identifiers are from the
interval [1, N] where N = poly(n). The runtime is thus typically expressed as a function of
n (the order of the graph) and ∆ (the maximum degree of the graph). The complexity of a
problem is the minimum runtime (as a function of n and ∆) among all possible algorithms
that solve the problem. The typical graph class we are interested in is G∆, the class of all
graphs with maximum degree ∆.

Remark. In absence of failures, and if all nodes run synchronously, the runtime of an algorithm
in the ASYNC LOCAL model is identical to its runtime in the LOCAL model.

2.2 Algorithm Description
While an algorithm can be formally described by providing the two functions Init and Alg,
we now describe an alternative, and possibly easier way of describing an algorithm. An
example is provided in Algorithm 1 from [16], which is aiming at solving 6-coloring in cycles.
This algorithm uses the function WriteSnapshot(s), which allows to perform an immediate
snapshot (i.e., a write of the current state s immediately followed by a snapshot of all the
states of the neighbors), and uses the function return, which explicitly provides the output
(instead of using Terminated(x)).

In Algorithm 1, the state s of each (non terminated) node is a triplet s = (x, a, b) of
natural numbers. Given a state s, s.x, s.a, and s.b respectively denote the first, second, and
third element in s. The state of a terminated node is a pair (a, b) of natural numbers. One
can check (see [16]) that the output pairs (a, b) can take at most 6 different values.

The state s of a node v is updated by updating some of all of its components x, a, or b.
Actually, the entry x = idv does not change. The entry a is updated to the smallest natural
number excluding the a-values used by neighbors of larger identifiers, and b is updated to the
smallest natural number excluding the b-values used by the neighbors of smaller identifiers.
These values are equal to ⊥ if they have not yet been written in the register (i.e., if a neighbor

A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:9

has not yet performed a single write). If a node v notices that its current state (x, a, b) is
such that (a, b) is different from the (a, b)-pairs of both neighbors, then v terminates, and
decides color (a, b). An example of an execution of Algorithm 1 is provided in Appendix A.

3 Results and Road Map

We have now all ingredients sufficient to formally state our results.

3.1 Algorithms for ASYNC LOCAL
We first show (cf. Section 4) that Linial’s O(∆2)-coloring algorithm can be adapted to work
in the asynchronous wait-free setting.

▶ Theorem 1. For every ∆ ≥ 2, the round-complexity of O(∆2)-coloring graphs of maximum
degree ∆ in the ASYNC LOCAL model is O(log∗ n).

Then, we show (cf. Section 5) that, at the cost of increasing the runtime by an additive
factor depending on ∆, it is possible to reduce the number of colors from O(∆2) to (∆ +
1)(∆ + 2)/2.

▶ Theorem 2. For every ∆ ≥ 2, the round-complexity of 1
2 (∆ + 1)(∆ + 2)-coloring graphs of

maximum degree ∆ in the ASYNC LOCAL model is O(log∗ n) + f(∆), where f is a function
depending on ∆ only.

Finally, we show (cf. Section 6) that we can exploit the fact that the coloring produced
by Theorem 2 satisfies special properties for reducing the size of the color palette by one.

▶ Theorem 3. For every ∆ ≥ 2, the round-complexity of (1
2 (∆ + 1)(∆ + 2)− 1)-coloring

graphs of maximum degree ∆ in the ASYNC LOCAL model is O(log∗ n) + f(∆), for some
function f that only depends on ∆.

An important consequence of this result is the case ∆ = 2. Theorem 3 shows that there
is an algorithm for 5-coloring cycles. While such an algorithm was already claimed to exist
in [16], we show (cf. Appendix B) that the algorithm supporting that claim is erroneous.
Specifically, we provide an instance in which the algorithm does not terminate. Theorem 3
provides a novel algorithm, which allows us to establish the following result.

▶ Corollary 4. The round-complexity of 5-coloring cycles in the ASYNC LOCAL model is
O(log∗ n).

3.2 Impossibility Results
As pointed out in [16] several impossibility results for ASYNC LOCAL are mere consequences of
the fact the this model coincides with the standard wait-free shared-memory model whenever
the underlying graph G is a clique Kn. This is for instance the case of the impossibility of
4-coloring C3 (by reduction from renaming), and the impossibility of constructing a maximal
independent set, i.e., MIS (by reduction from strong symmetry breaking). Whether or
not it is possible to 4-color cycles Cn for n > 3 was left open in [16]. We show that, for
infinitely many values of n, the problem of 4-coloring the n-node cycle Cn is not solvable in
ASYNC LOCAL. To establish this result, we prove a result of independent interest, in the
framework of wait-free shared memory computing. Specifically, we extend the proof in [1]
that weak symmetry breaking is impossible in the wait-free shared memory systems. We show

DISC 2024

5:10 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

that this problem remains impossible even if some input are provided to the processes, which
may potentially help them to break symmetry. The set of possible inputs has to agree with
some restrictions, called non-prime-divisible and order-invariant (with respect to a particular
subset of processes). Roughly, the set of possible input assignments must not be divisible by
the number n of processes whenever n is prime, and it must be closed under permuting the
identifiers of a particular subset of the processes by an order-invariant permutation. Also
recall that an algorithm is symmetric if for every execution α on a subset P of processes,
and for every permutation π : [n]→ [n] order preserving on P , we have that, for every i ∈ P ,
process i outputs x in α if and only if process π(i) outputs x on the execution π(α) resulting
from permuting the scheduling of the processes in P according to α. Our impossibility results
are shown in the full version.

▶ Theorem 5. Let n be a prime number. There are no symmetric wait-free deterministic
algorithms solving weak symmetry break in the asynchronous wait-free shared memory model
with n processes, even if the processes are provided with inputs from a non-prime-divisible
and order-invariant set of inputs.

Theorem 5 has three important consequences.

▶ Corollary 6. Let n ≥ 3 be a prime number. The problem of 4-coloring the n-node cycle
cannot be solved deterministically in ASYNC LOCAL.

A weaker form of symmetry breaking is weak 2-coloring [25]. It is required to 2-color the
input graph such that every (non isolated) node has at least one neighbor colored with a
different color.

▶ Corollary 7. Let n ≥ 3 be a prime number. The problem of weak 2-coloring the n-node
cycle cannot be solved deterministically in ASYNC LOCAL.

Finally, we prove that, for even values of ∆, there are a infinitely many ∆-regular graphs
that cannot be (∆ + 2)-colored in ASYNC LOCAL. This extends the lower bound of 2∆ + 1
colors, which applies only for the clique of ∆ + 1 nodes with ∆ + 1 power of a prime, to an
infinite family of graphs with maximum degree ∆.

▶ Corollary 8. Let ∆ be an even number, and let n > ∆ be a prime number. The problem of
(∆+2)-coloring n-node ∆-regular graphs cannot be solved deterministically in ASYNC LOCAL.

We complete the lower bound analysis with some additional results. The version of MIS
considered in [16], which was proved impossible to solve, asks the nodes to output a set of
vertices which forms an MIS in the graph induced by the correct nodes. Instead, we consider
a weaker variant of MIS, asking the nodes to output a set of vertices which forms an MIS in
the graph whenever all processes are correct, i.e., no crashes occurred. We show that even
this weaker variant of MIS is impossible in ASYNC LOCAL.

▶ Theorem 9. For every n ≥ 7, no deterministic algorithms can solve weak MIS in the
n-node cycle under ASYNC LOCAL.

Finally, we show impossibility results for coloring general graphs.

▶ Theorem 10. For every ∆ ≥ 2, no deterministic algorithms can solve (∆ + 1)-coloring in
trees of maximum degree ∆ under ASYNC LOCAL.

We conclude, in Section 7, with some open questions.

A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:11

4 Coloring General Graphs with O(∆2) Colors

In this section, we provide a simple algorithm for coloring a graph with O(∆2) colors. This
algorithm is an adaptation of Linial’s coloring algorithm [23] (which is designed to work in
the LOCAL model) to the asynchronous setting. More in detail, we prove the following result.

▶ Theorem 1. For every ∆ ≥ 2, the round-complexity of O(∆2)-coloring graphs of maximum
degree ∆ in the ASYNC LOCAL model is O(log∗ n).

In order to prove this result, we start by summarizing Linial’s coloring algorithm, and
then we show how to adapt it to the wait-free setting. We start by recalling the notion of set
systems and of cover-free family of sets.

▶ Definition 11. A set system is a pair (X,F), where X is a set, and F is a collection
of subsets of X. A set system (X,F) is a k-cover-free family if, for every choice of k + 1
distinct sets S0, S1, . . . , Sk in F , the following holds: S0 ∖

⋃k
i=1 Si ̸= ∅.

To provide an intuition about how to use these two definitions, let us assume that the
nodes of the input graph G are properly c-colored, and let us assume that there exists a
∆-cover-free family (X,F) satisfying c ≤ |F|. It follows from these assumptions that there
exists a one-to-one function f from the set of colors to F . W.l.o.g., assume that X contains
the numbers in {1, . . . , |X|}. One step of Linial’s algorithm is able to recolor the nodes with
c′ = |X| colors, as follows.
1. Every node v communicates with its d neighbors to get their current colors c1, . . . , cd,

where d ≤ ∆ is the degree of v.
2. Every node v computes Xv = f(cv) ∖

⋃d
i=1 f(ci), where cv is the color of v, and then

recolors itself with the minimum value in Xv.
Note that Xv is guaranteed to be non-empty by the fact that (X,F) is a ∆-cover-free family,
and that the obtained color c′

v satisfies 1 ≤ c′
v ≤ c′. Linial’s coloring algorithm repeats this

process multiple times, each time using a different cover-free family. The runtime and the
resulting number of colors depend on the choice of cover-free families. We summarize the
cover-free families used by Linial’s algorithm in the following two lemma.

▶ Lemma 12 ([23]). (a) For any c > ∆, there exists a ∆-cover-free family (X,F) with c ≤ |F|,
and |X| ≤ 5⌈∆2 log c⌉. (b) There exists a ∆-cover-free family (X,F) with 10∆3 ≤ |F|, and
|X| ≤ (4∆ + 1)2.

In [23], Lemma 12 has been proved in a non-constructive way. However, it is possible to
obtain a similar statement by using polynomials over finite fields [14]. We will use the above
lemma as a black-box. However, the correctness of our algorithm will be independent from
which specific cover-free family construction is used.

We now discuss how these cover-free families are used. Linial’s algorithm, in its standard
formulation for LOCAL, requires the nodes to be aware of an upper bound N on the size of
the identifier space. At the first round, nodes recolor themselves by using 5⌈∆2 log N⌉ colors,
thanks to a cover-free family from Lemma 12(a) with parameter c = N . We denote by f1 the
one-to-one function used by the nodes to map their color to the elements of the cover-free
family. At the second round, nodes use the cover-free family from Lemma 12(a) with parameter
c = 5⌈∆2 log N⌉, from which they obtain a coloring that uses 5⌈∆2 log(5⌈∆2 log N⌉)⌉ colors.
We denote by f2 the one-to-one function used by the nodes to map their color to the elements
of the cover-free family. The nodes repeat this process multiple times, each time using a
cover-free family from Lemma 12(a) with parameter c equal to the amount of colors obtained

DISC 2024

5:12 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

Algorithm 2 O(∆2)-coloring arbitrary graph. Code of node v: idv ∈ {1, . . . , N}; inputv = N .

1: procedure WaitFreeLinial(idv,inputv)
2: S ← (idv,⊥, . . .⊥); ▷ S is an array of length T + 1 = O(log⋆ N), and is the state s of

v

3: for i = 1 to T do
4: (s1, . . . , sd)←WriteSnapshot(s)
5: A← {sj .S[i] | (j ∈ {1, . . . , d}) ∧ (sj .S[i] ̸= ⊥)} ▷ ith entry of each array sj .S

6: S[i + 1]← min fi(S[i]) ∖
⋃

a∈A fi(a)
7: end for
8: return s[T + 1]
9: end procedure

in the previous rounds. Linial proved that it takes O(log∗ N) rounds to reach a coloring that
uses at most 10∆3 colors. Since it is typically assumed that N = poly(n), the runtime is
O(log∗ n). At this point, the cover-free family from Lemma 12(b) is used to get a coloring
that uses (4∆ + 1)2 = O(∆2) colors.

Let us denote by T the number of rounds performed in total, including the last round that
uses the family from Lemma 12(b) for reducing the number of colors to at most (4∆ + 1)2.
For 1 ≤ i ≤ T , let fi be the one-to-one function used by the nodes to map their colors to the
elements of the cover-free family while executing the ith round of Linial’s algorithm.

The Algorithm. Let us show that the approach used in Linial’s LOCAL algorithm can
be adapted to work in ASYNC LOCAL as well. We assume that inputv contains the same
upper bound N on the range of identifiers. So, in particular, every node v can compute T

as a function of inputv. The adaptation of Linial’s coloring algorithm to ASYNC LOCAL
is displayed as Algorithm 2. The main challenge when running Linial’s algorithm in the
ASYNC LOCAL model comes from the fact that a vertex v may be in the ith iteration of
Linial’s algorithm, while a neighbor u of v may be in iteration j ̸= i. Nevertheless, we will
prove that our adaptation of Linial’s algorithm correctly handles these cases. The runtime of
Algorithm 2 is clearly O(log∗ n). The proof that Algorithm 2 is correct can be found in the
full version.

5 Reducing the Colors to (∆ + 1)(∆ + 2)/2

In this section, we show that, at the cost of increasing the running time by an additive factor
depending on ∆ only, we can decrease the amount of colors from O(∆2) to 1

2 (∆ + 1)(∆ + 2).

▶ Theorem 2. For every ∆ ≥ 2, the round-complexity of 1
2 (∆ + 1)(∆ + 2)-coloring graphs of

maximum degree ∆ in the ASYNC LOCAL model is O(log∗ n) + f(∆), where f is a function
depending on ∆ only.

The algorithm that we provide is a generalization to general graphs of the 6-coloring
algorithm for cycles presented in [16], and restated in Algorithm 1. On a high-level, the
algorithms works as follows. First, we compute an initial O(∆2)-coloring of the nodes. Then,
the final color of each node is given by a pair (a, b). This pair is computed by repeatedly
updating the values of a and b until the pair is different from the pairs of the neighbors. The
value of a is updated as a function of the a-values of the neighbors with larger initial color,
while the value of b is updated as a function of the b-values of the neighbors with smaller
initial color.

A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:13

Algorithm 3 Reducing the number of colors from O(∆2) to (∆ + 1)(∆ + 2)/2.

1: procedure SaveColors(idv,inputv)
2: x← inputv; (a, b)← (0, 0) ▷ x ∈ [O(∆2)] is the original color of v

3: repeat forever ▷ s = (x, a, b) is the state of v

4: (s1, . . . , sd)←WriteSnapshot(s)
5: if (a, b) /∈ {(si.a, si.b) | (i ∈ {1, . . . , dv}) ∧ (si ̸= ⊥)} then return (a, b)
6: else
7: a← minN∖ {si.a | (i ∈ {1, . . . , dv}) ∧ (si ̸= ⊥) ∧ (x < si.x)}
8: b← minN∖ {si.b | (i ∈ {1, . . . , dv}) ∧ (si ̸= ⊥) ∧ (x > si.x)}
9: end if

10: end repeat
11: end procedure

The algorithm. In order to prove Theorem 2, we first analyze the algorithm SaveColors,
displayed as Algorithm 3. Given an O(∆2)-coloring as input, this procedure produces a
((∆+1)(∆+2)/2)-coloring, in f(∆) rounds for some function f . Theorem 2 follows by running
Algorithm WaitFreeLinialReduced below, in which if a node v is running SaveColors
while some neighbor u of v is still running WaitFreeLinial, then v treats the memory of u

as ⊥.
procedure WaitFreeLinialReduced(idv,inputv)

cv ←WaitFreeLinial(idv, inputv)
return SaveColors(idv, cv)

end procedure
The proofs of correctness and runtime of Algorithm 3 can be found in the full version of

the paper.

6 Saving One More Color

We now modify Algorithm 3 in order to save one additional color. This new algorithm, shown
in Algorithm 4, allows us to establish the following theorem.

▶ Theorem 3. For every ∆ ≥ 2, the round-complexity of (1
2 (∆ + 1)(∆ + 2)− 1)-coloring

graphs of maximum degree ∆ in the ASYNC LOCAL model is O(log∗ n) + f(∆), for some
function f that only depends on ∆.

An important consequence of this result is Corollary 4, that is, the existence of a 5-coloring
algorithm for the cycles in the ASYNC LOCAL model. This result is original because the
5-coloring algorithm proposed in [16] has a bug (cf. Appendix B where we exhibit an instance
of 5-coloring C4 for which the algorithm in [16] does not terminate).

6.1 Intuition of the algorithm
We start by providing the high level idea of the algorithm. The algorithm that we provide
is similar to Algorithm 3, and it exploits some special properties of the pairs (a, b) that it
produces. Specifically, we modify Algorithm 3 such that, if a node outputs the pair (∆, 0),
then none of its neighbors output the pair (0, ∆). In this case, we can identify the pairs (∆, 0)
and (0, ∆) as the same color, reducing the amount of colors in use by one.

Notice that a node that outputs the pair (∆, 0) is necessarily a local minimum with
respect to the node identifiers, and similarly a node that outputs the pair (0, ∆) is necessarily
a local maximum. The problematic case of neighbors outputting both pairs (∆, 0) and (0, ∆)

DISC 2024

5:14 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

can therefore only happen when the both neighbors are local extrema. However, for such
neighboring nodes to reach a state where they would output problematic pairs, some specific
conditions must hold which can be handled by the nodes as a specific case.

More in detail, in such a situation, we make nodes flip their relative ordering: if node u

is a local minimum and node v is a local maximum, then u will treat v as smaller when
comparing their x variables, and v will treat u as larger. By flipping relative ordering, we are
forcing neighboring local extrema with pairs (∆, 0) and (0, ∆) to stop being local extrema,
leading them to change their output pairs. This modification will affect the termination time,
and hence we also need to introduce new terminating conditions.

6.2 Formal Description
The algorithm is displayed in Algorithm 4, but some of its functions are presented below.

Treating special pairs as equal. The first modification applied to Algorithm 3 is the
following. In line 5, instead of directly using the pairs (a, b) of the node, and the pairs of its
neighbors, we first map them by using the function Map shown below. Observe that Map
behaves as the identity function for all pairs different from (∆, 0), and it maps (∆, 0) to
(0, ∆). In this way, the algorithm behaves similarly as the original one, except that it forbids
neighboring nodes with pairs (0, ∆) and (∆, 0) to terminate, since after applying Map, they
are both mapped to (0, ∆), and hence they are treated as having the same pair.

procedure Map(a,b)
if (a, b) = (∆, 0) then return (0, ∆)
else return (a, b)
end if

end procedure

A new ordering relation. In Algorithm 3, nodes exploit their variables x (that is, the given
coloring) to determine an ordering relation between them. In the new algorithm, each node
keeps an additional variable f , which is a set of identifiers. The semantic is the following.
For two nodes u and v, if u ∈ v.f or v ∈ u.f , then the ordering w.r.t. their variables x is
flipped. We call an edge {u, v} flipped whenever u ∈ v.f or v ∈ u.f .

Let us define two auxiliary Boolean functions that are used by a node v to determine
whether the ordering relation with a neighbor u should be considered flipped or not. These
functions take as input the state sv and su of the two (neighboring) nodes. The variable z,
as will be shown in the algorithm, stores the identifier of the node.

procedure IsNotFlipped(sv, su)
return (sv ̸= ⊥) ∧ (su ̸= ⊥) ∧ (su.z /∈ sv.f) ∧ (sv.z /∈ su.f)

end procedure
procedure IsFlipped(sv, su)

return (sv ̸= ⊥) ∧ (su ̸= ⊥) ∧
(
(su.z ∈ sv.f) ∨ (sv.z ∈ su.f)

)
end procedure
We are now ready to define the new ordering relation. For this purpose, we define two

functions that, given the state s of the node, and the state si of its ith neighbors, return
the neighbors that are considered smaller, and the neighbors that are considered larger,
respectively.

A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:15

procedure Smaller(s,(s1, . . . , sk))
return

{
i ∈ {1, . . . , k} |

(
(IsNotFlipped(s, si) ∧ (s.x > si.x)

)
∨

(
IsFlipped(s, si) ∧ (s.x < si.x)

)}
end procedure
procedure Larger(s,(s1, . . . , sk))

return
{

i ∈ {1, . . . , k} |
(
IsNotFlipped(s, si) ∧ (s.x < si.x)

)
∨

(
IsFlipped(s, si) ∧ (s.x > si.x)

)}
end procedure

Special termination. We also define a function that provides an extra termination condition.
It relies on an additional function that detects a neighborhood with special properties. It
uses some variables α and β that are both set to true if a node has at least one smaller
neighbor (that is, it is not a local minima), and it has at least one larger neighbor (that
is, it is not a local maxima). We assume that the maximum degree ∆ is part of the input
provided to the nodes.

procedure SpecialNeighborhood(s,(s1, . . . , s∆))
return

((∧∆
i=1(si ̸= ⊥)

)
∧

(
{s.a, s.b}∪(∪∆

i=1{si.a, si.b}) ⊆ {0, . . . , ∆−1}
)
∧ s.α ∧ s.β

∧
(∧∆

i=1
(
(si.α ∨ |Smaller(si, [s])| = 1) ∧ (si.β ∨ |Larger(si, [s])| = 1)

)))
end procedure
That is, a neighborhood of a node v is special if (1) node v has seen all its neighbors,

(2) they are precisely ∆, (3) the a and b variables of the node and of all its neighbors are in
{0, . . . , ∆− 1}, and (4) node v and all its neighbors have at least one smaller, and at least
one larger neighbor. The reason why we use the condition si.α ∨ |Smaller(si, [s])| = 1 for
checking whether a node has at least one smaller neighbor, instead of just using si.α is the
following. Let u be the node with state si, and v be the node with state s. It could be the
case that v is smaller than u, but u has been scheduled earlier than v. So it may be the case
that u has never seen v. In this case, we could get that u.α is false, even though u has v

as smaller neighbor. For this reason, node v computes whether u.α would become true if u

were to be scheduled one additional round, by checking whether v is smaller than u using
the condition |Smaller(si, [s])| = 1. A similar reasoning is applied for checking whether
a node has at least one larger neighbor. Note that, in the algorithm, once a node sets α

(resp. β) to true, that is when it realizes that it is not a local minima (resp., maxima), it will
never change its value. The reason is that, as we will prove later, a node never becomes a
local minima (resp., maxima) by flipping edges. We now introduce the special termination
condition. According to this special condition, a node terminates if (1) its neighborhood
is special, and (2) it is a local maxima according to the original ordering, that is, before
flipping any edge.

procedure SpecialTermination(s,(s1, . . . , s∆))
return SpecialNeighborhood(s, (s1, . . . , s∆)) ∧

(
∀i ∈ {1, . . . , ∆}, s.x > si.x

)
end procedure

The new algorithm. The algorithm is displayed as Algorithm 4. Like in the case of
Algorithm 3, we assume that inputv is the result of running WaitFreeLinial. Observe that
the algorithm is similar to Algorithm 3, with only three exceptions. First, it identifies (0, ∆)
with (∆, 0) when checking for termination at line 6. Second, it uses the custom ordering
relation induced by the functions Smaller and Larger at lines 11 and 12. Third, it has
an additional termination condition at line 17. The proof that Algorithm 4 is correct, and
the analysis of its runtime can be found in the full version.

DISC 2024

5:16 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

Algorithm 4 Saving 1 color from palette [1
2 (∆ + 1)(∆ + 2)]. Algorithm of node v with color

inputv.

1: procedure SaveOneMoreColor(idv,inputv)
2: a← 0; b← 0 ; x← inputv ; z ← idv

3: f ← {}; α← false; β ← false ▷ s = (a, b, x, f, α, β, z) is the state of node v

4: repeat forever
5: (s1, . . . , s∆)←WriteSnapshot(s) ▷ if dv < ∆, we assume si = ⊥, ∀i > dv

6: if Map(a, b) /∈ {Map(si.a, si.b) | i ∈ {1, . . . , ∆}∧si ̸= ⊥} then return Map(a, b)
7: else
8: if (a = ∆) ∨ (b = ∆) then ▷ We compute the flipped edges.
9: f ← f ∪

{
si.z | (i ∈ {1, . . . , ∆})(si ̸= ⊥) ∧

(
(si.a = ∆) ∨ (si.b = ∆)

)}
10: end if
11: a← N∖ {si.a | i ∈ Larger(s, (s1, . . . , s∆))}
12: b← N∖ {si.b | i ∈ Smaller(s, (s1, . . . , s∆))}
13: if |Smaller(s, (s1, . . . , s∆))| ≥ 1 then α← true
14: end if
15: if |Larger(s, (s1, . . . , s∆))| ≥ 1 then β ← true
16: end if
17: if SpecialTermination(s, (s1, . . . , s∆)) then return (0, ∆)
18: end if
19: end if
20: end repeat
21: end procedure

7 Open Questions

We have shown that every n-node graph of maximum degree ∆ can be properly colored with
1
2 (∆ + 1)(∆ + 2) − 1 colors in ASYNC LOCAL, in O(log⋆ n) + f(∆) rounds. The number
of colors may seem large, but the ASYNC LOCAL model is considerably weaker than the
(synchronous and failure-free) LOCAL model. In particular, it is known that even the clique
with n = ∆ + 1 nodes cannot be colored with less than 2∆ + 1 colors in ASYNC LOCAL
(whenever ∆ + 1 is power of a prime), and we have shown that there exists an infinite family
of regular graphs with even degree ∆ that cannot be colored with less than ∆ + 3 colors
in ASYNC LOCAL. One major question as far as solving graph problems in asynchronous
crash-prone networks is thus the following.

Open Problem: Is there a (2∆ + 1)-coloring algorithm for graphs with maximum degree ∆
in the ASYNC LOCAL model, for every ∆ ≥ 2?

Of course, if one puts aside cliques, there might be a coloring algorithm for ASYNC LOCAL
using a palette of less than 2∆ + 1 colors. However, we have shown that, for ∆ = 2, the
bound 2∆ + 1 = 5 is tight for infinitely many cycles. The only generic bound applying to
infinitely many graphs of maximum degree ∆ is however only ∆ + 3, so there might be room
for improvement. Yet, saving even just a single color in a palette of 1

2 (∆ + 1)(∆ + 2) colors
was very delicate and difficult. So, progressing from a quadratic number of colors to a linear
number of colors appears to be a challenge in ASYNC LOCAL.

Finally, we question the efficiency of randomized algorithms in the ASYNC LOCAL model.

Open Problem: To which extent randomized algorithms help in the ASYNC LOCAL model,
in term of both complexity and computability?

A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:17

References
1 Hagit Attiya and Ami Paz. Counting-based impossibility proofs for set agreement and renaming.

J. Parallel Distributed Comput., 87:1–12, 2016. doi:10.1016/J.JPDC.2015.09.002.
2 Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and

advanced topics. Wiley, 2004.
3 Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Michael E. Saks. Adapting to

asynchronous dynamic networks. In 24th ACM Symposium on Theory of Computing (STOC),
pages 557–570, 1992.

4 Baruch Awerbuch and David Peleg. Network synchronization with polylogarithmic overhead.
In 31st IEEE Symposium on Foundations of Computer Science (FOCS), pages 514–522, 1990.
doi:10.1109/FSCS.1990.89572.

5 Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (δ + 1)-
coloring below szegedy-vishwanathan barrier, and applications to self-stabilization and to
restricted-bandwidth models. In 37th ACM Symposium on Principles of Distributed Computing
(PODC), pages 437–446, 2018. URL: https://dl.acm.org/citation.cfm?id=3212769.

6 Samuel Bernard, Stéphane Devismes, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil.
Optimal deterministic self-stabilizing vertex coloring in unidirectional anonymous networks. In
23rd IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pages
1–8, 2009. doi:10.1109/IPDPS.2009.5161053.

7 Jean R. S. Blair and Fredrik Manne. An efficient self-stabilizing distance-2 coloring algorithm.
Theoretical Computer Science, 444:28–39, 2012. doi:10.1016/J.TCS.2012.01.034.

8 Lélia Blin, Laurent Feuilloley, and Gabriel Le Bouder. Brief announcement: Memory lower
bounds for self-stabilization. In 33rd International Symposium on Distributed Computing
(DISC), volume 146 of LIPIcs, pages 37:1–37:3. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPICS.DISC.2019.37.

9 Lélia Blin and Sébastien Tixeuil. Compact deterministic self-stabilizing leader election - the
exponential advantage of being talkative. In 27th Int. Symp. on Distributed Computing (DISC),
volume 8205 of LNCS, pages 76–90. Springer, 2013. doi:10.1007/978-3-642-41527-2_6.

10 Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, and
Corentin Travers. Synchronous t-resilient consensus in arbitrary graphs. Inf. Comput.,
292:105035, 2023. doi:10.1016/J.IC.2023.105035.

11 Armando Castañeda, Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and
Michel Raynal. Making local algorithms wait-free: the case of ring coloring. Theory of
Computing Systems, 63(2):344–365, 2019. doi:10.1007/S00224-017-9772-Y.

12 Richard Cole and Uzi Vishkin. Deterministic coin tossing and accelerating cascades: micro
and macro techniques for designing parallel algorithms. In 18th ACM Symposium on Theory
of Computing (STOC), pages 206–219, 1986. doi:10.1145/12130.12151.

13 Carole Delporte-Gallet, Hugues Fauconnier, Pierre Fraigniaud, and Mikaël Rabie. Distributed
computing in the asynchronous LOCAL model. In 21st International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS), LNCS 11914, pages 105–110. Springer,
2019.

14 P. Erdös, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered by the
union ofr others. Israel Journal of Mathematics, 51(1):79–89, 1985.

15 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

16 Pierre Fraigniaud, Patrick Lambein-Monette, and Mikaël Rabie. Fault tolerant coloring of the
asynchronous cycle. In 36th Int. Symp. on Distributed Computing (DISC), volume 246 of LIPIcs,
pages 23:1–23:22. Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.DISC.2022.23.

17 Marc Fuchs and Fabian Kuhn. List defective colorings: Distributed algorithms and applications.
In 37th Int. Symp. on Distributed Computing (DISC), volume 281 of LIPIcs, pages 22:1–22:23.
Schloss Dagstuhl - Leibniz-Zentrum für Inf., 2023. doi:10.4230/LIPICS.DISC.2023.22.

DISC 2024

https://doi.org/10.1016/J.JPDC.2015.09.002
https://doi.org/10.1109/FSCS.1990.89572
https://dl.acm.org/citation.cfm?id=3212769
https://doi.org/10.1109/IPDPS.2009.5161053
https://doi.org/10.1016/J.TCS.2012.01.034
https://doi.org/10.4230/LIPICS.DISC.2019.37
https://doi.org/10.1007/978-3-642-41527-2_6
https://doi.org/10.1016/J.IC.2023.105035
https://doi.org/10.1007/S00224-017-9772-Y
https://doi.org/10.1145/12130.12151
https://doi.org/10.1145/3149.214121
https://doi.org/10.4230/LIPICS.DISC.2022.23
https://doi.org/10.4230/LIPICS.DISC.2023.22

5:18 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

18 Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster,
and without network decomposition. In 62nd IEEE Symposium on Foundations of Computer
Science (FOCS), pages 1009–1020, 2021. doi:10.1109/FOCS52979.2021.00101.

19 Mohsen Ghaffari and Anton Trygub. A near-optimal deterministic distributed synchronizer.
In 42th ACM Symposium on Principles of Distributed Computing (PODC), pages 180–189,
2023. doi:10.1145/3583668.3594598.

20 Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. Near-optimal
distributed degree+1 coloring. In 54th ACM Symposium on Theory of Computing (STOC),
pages 450–463, 2022. doi:10.1145/3519935.3520023.

21 Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2013.

22 Juho Hirvonen and Jukka Suomela. Distributed Algorithms. Creative Commons, 2020.
23 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,

1992. doi:10.1137/0221015.
24 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
25 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J. Comput.,

24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.
26 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. Topological characterization of consensus

under general message adversaries. In 38th ACM Symposium on Principles of Distributed
Computing (PODC), pages 218–227, 2019. doi:10.1145/3293611.3331624.

27 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
28 Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic Approach.

Springer, 2018. doi:10.1007/978-3-319-94141-7.
29 Nicola Santoro and Peter Widmayer. Time is not a healer. In 6th Annual Symposium on

Theoretical Aspects of Computer Science (STACS), volume 349 of LNCS, pages 304–313.
Springer, 1989. doi:10.1007/BFB0028994.

30 Kyrill Winkler, Ami Paz, Hugo Rincon Galeana, Stefan Schmid, and Ulrich Schmid. The time
complexity of consensus under oblivious message adversaries. In 14th Innovations in Theoretical
Computer Science Conference (ITCS), volume 251 of LIPIcs, pages 100:1–100:28. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ITCS.2023.100.

https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.1145/3583668.3594598
https://doi.org/10.1145/3519935.3520023
https://doi.org/10.1137/0221015
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1145/3293611.3331624
https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1007/BFB0028994
https://doi.org/10.4230/LIPICS.ITCS.2023.100

A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:19

A Example of an execution of an algorithm for 6-coloring cycles

An example of an execution of Algorithm 1 is provided in Table 1, in which the old and new
states of each node after each step is displayed.

Table 1 An example of execution of Algorithm 1, for the cycle C5 with consecutive node identifiers
(3, 5, 4, 1, 6). The example corresponds to the scheduling S = {1, 3, 5}, {4, 5}, {3, 4}, {6}, {6}, . . . ,
and T stands for Terminated. At each step, the states that are updated are highlighted in bold.

3 5 4 1 6
Old New Old New Old New Old New Old New

Initialization ⊥ (3, 0, 0) ⊥ (5, 0, 0) ⊥ (4, 0, 0) ⊥ (1, 0, 0) ⊥ (6, 0, 0)
{1, 3, 5}

after write (3, 0, 0) (3, 0, 0) (5, 0, 0) (5, 0, 0) ⊥ (4, 0, 0) (1, 0, 0) (1, 0, 0) ⊥ (6, 0, 0)
update (3, 0, 0) (3, 1, 0) (5, 0, 0) (5, 0, 1) ⊥ (4, 0, 0) (1, 0, 0) T (0, 0) ⊥ (6, 0, 0)
{4, 5}

after write (3, 0, 0) (3, 1, 0) (5, 0, 1) (5, 0, 1) (4, 0, 0) (4, 0, 0) (1, 0, 0) T (0, 0) ⊥ (6, 0, 0)
update (3, 0, 0) (3, 1, 0) (5, 0, 1) T (0, 1) (4, 0, 0) (4, 1, 1) (1, 0, 0) T (0, 0) ⊥ (6, 0, 0)
{3, 4}

after write (3, 1, 0) (3, 1, 0) (5, 0, 1) T (0, 1) (4, 1, 1) (4, 1, 1) (1, 0, 0) T (0, 0) ⊥ (6, 0, 0)
update (3, 1, 0) T (1, 0) (5, 0, 1) T (0, 1) (4, 1, 1) T (1, 1) (1, 0, 0) T (0, 0) ⊥ (6, 0, 0)

{6}
after write (3, 1, 0) T (1, 0) (5, 0, 1) T (0, 1) (4, 1, 1) T (1, 1) (1, 0, 0) T (0, 0) (6, 0, 0) (6, 0, 0)

update (3, 1, 0) T (1, 0) (5, 0, 1) T (0, 1) (4, 1, 1) T (1, 1) (1, 0, 0) T (0, 0) (6, 0, 0) (6, 0, 1)
{6}

after write (3, 1, 0) T (1, 0) (5, 0, 1) T (0, 1) (4, 1, 1) T (1, 1) (1, 0, 0) T (0, 0) (6, 0, 1) (6, 0, 1)
update (3, 1, 0) T (1, 0) (5, 0, 1) T (0, 1) (4, 1, 1) T (1, 1) (1, 0, 0) T (0, 0) (6, 0, 1) T (0, 1)

B A Counterexample for an Existing Algorithm for 5-Coloring Cycles

We merely exhibit an instance of 5-coloring C4 for which the algorithm in [16] does not
terminate4. The algorithm presented in [16] is shown in Algorithm 5. In Table 2, we provide
an example of execution where the algorithm loops forever.

4 For the interested reader, we found this counterexample by implementing a simulator for the
ASYNC LOCAL model. This simulator tests a given algorithm with random schedulings.

DISC 2024

5:20 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

Algorithm 5 The (erroneous) 5-coloring algorithm of [16].

procedure FiveColoring(idv,inputv)
x← idv; a← 0; b← 0 ▷ s = (x, a, b) is the state of node v

repeat forever
(s1, s2)←WriteSnapshot(s)
P + ← {i ∈ {1, 2} | si ̸= ⊥ ∧ si.x > x} ▷ neighbors with larger id
C+ ← {xi.a | i ∈ P +} ∪ {xi.b | i ∈ P +} ▷ a and b of neighbors with larger id
C ← {xi.a | i ∈ {1, 2} ∧ si ̸= ⊥} ∪ {xi.b | i ∈ {1, 2} ∧ si ̸= ⊥} ▷ a and b of all

neighbors
if a /∈ C then return a

else
if b /∈ C then return b

else
a← minN∖ C+

b← minN∖ C

end if
end if

end repeat
end procedure

Table 2 An example of execution where Algorithm 5 loops, for a 4-cycle with nodes’ identifiers
(3, 4, 2, 1) in consecutive order. The example is for the scheduling {2, 3, 4}, {1, 3, 4}, {3, 4}, {3, 4},
Observe that the state obtained after scheduling {1, 3, 4} is the same state as the one obtained after
the fourth step (when {3, 4} is scheduled for the second time). Therefore, there exists a scheduling
that makes the algorithm looping forever.

3 4 2 1
Old New Old New Old New Old New

Initialization ⊥ (3, 0, 0) ⊥ (4, 0, 0) ⊥ (2, 0, 0) ⊥ (1, 0, 0)
{2, 3, 4}

after write (3, 0, 0) (3, 0, 0) (4, 0, 0) (4, 0, 0) (2, 0, 0) (2, 0, 0) ⊥ (1, 0, 0)
update (3, 0, 0) (3, 1, 1) (4, 0, 0) (4, 0, 1) (2, 0, 0) (2, 1, 1) ⊥ (1, 0, 0)
{1, 3, 4}

after write (3, 1, 1) (3, 1, 1) (4, 0, 1) (4, 0, 1) (2, 0, 0) (2, 1, 1) (1, 0, 0) (1, 0, 0)
update (3, 1, 1) (3, 2, 2) (4, 0, 1) (4, 0, 2) (2, 0, 0) (2, 1, 1) (1, 0, 0) (1, 2, 2)
{3, 4}

after write (3, 2, 2) (3, 2, 2) (4, 0, 2) (4, 0, 2) (2, 0, 0) (2, 1, 1) (1, 0, 0) (1, 2, 2)
update (3, 2, 2) (3, 1, 1) (4, 0, 2) (4, 0, 1) (2, 0, 0) (2, 1, 1) (1, 0, 0) (1, 2, 2)
{3, 4}

after write (3, 1, 1) (3, 1, 1) (4, 0, 1) (4, 0, 1) (2, 0, 0) (2, 1, 1) (1, 0, 0) (1, 2, 2)
update (3, 1, 1) (3, 2, 2) (4, 0, 1) (4, 0, 2) (2, 0, 0) (2, 1, 1) (1, 0, 0) (1, 2, 2)

	1 Introduction
	1.1 Asynchrony, Failures, and Networks
	1.2 The ASYNC LOCAL Model
	1.3 Our results
	1.3.1 Proper Coloring
	1.3.2 Lower Bounds and Impossibility Results
	1.3.3 Reduction from Weak Symmetry-Breaking with Inputs

	1.4 Related Work

	2 Model and Definitions
	2.1 The ASYNC LOCAL model
	2.2 Algorithm Description

	3 Results and Road Map
	3.1 Algorithms for ASYNC LOCAL
	3.2 Impossibility Results

	4 Coloring General Graphs with O(Delta^2) Colors
	5 Reducing the Colors to (Delta+1)(Delta+2)/2
	6 Saving One More Color
	6.1 Intuition of the algorithm
	6.2 Formal Description

	7 Open Questions
	A Example of an execution of an algorithm for 6-coloring cycles
	B A Counterexample for an Existing Algorithm for 5-Coloring Cycles

