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Abstract
Gradient clock synchronisation (GCS) algorithms minimise the worst-case clock offset between the
nodes in a distributed network of diameter D and size n. They achieve optimal offsets of Θ(log D)
locally, i.e. between adjacent nodes [8], and Θ(D) globally [1]. A key open problem in this area is to
achieve fault tolerance at minimal overhead in terms of the number of edges.

In this work, we achieve this goal under the assumption of an average-case distribution of faults,
i.e., nodes fail with independent probability p ∈ o(n−1/2). In more detail, we present a self-stabilising
GCS algorithm for a grid-like directed graph with in- and out-degrees of 3. Note that even for
tolerating a single fault, this degree is necessary. Moreover, the failure probability p is the largest
possible ensuring the necessary condition that for each node at most one in-neighbour fails with
probability 1 − o(1). Our algorithm achieves asymptotically optimal local skew of Θ(log D) with
probability 1 − o(1); this holds under general worst-case assumptions on link delay and clock speed
variations, provided they change slowly relative to the speed of the system.

On the one hand, our results are of practical interest. As we discuss with care, the fault model
is suitable for synchronously clocked hardware. Since our algorithm can simultaneously sustain
a constant number of arbitrary changes due to faults in each clock cycle, it achieves sufficient
robustness to dramatically increase the size of synchronously clocked Systems-on-Chip.

On the other hand, our result is of a theoretical and algorithmic nature. We show that for a
worst-case distribution of f 1-local faulty nodes within our fault model’s locality constraints, our
algorithm achieves a local skew of O(5f log D), while for our model with probabilistic distribution of
faults the algorithm achieves O(log D). Our work raises questions for further theoretical investigation
on techniques for fault tolerance and trade-offs between fault distribution and edge density of graphs.
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1 The Basic Problem

The problems of distributed clock synchronisation and distribution are concerned with
getting nodes in a network to agree on a common notion of time, expressed by their output
logical clocks. The extent of disagreement is quantified by clock skews i.e. the maximum
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instantaneous difference in the output clock values of two nodes. An algorithm for this
problem must seek to minimise two kinds of skew: local skew, i.e. clock skews between
adjacent nodes, and global skew,i.e. clock skews between any pair of nodes in the network.
Equally such an algorithm must be resilient to faults, both permanent and transient. From a
pragmatic standpoint, we would like to achieve all the above properties without cluttering
up our graph with replicated nodes and edges.

In this work we study the problem of distributing clock signals through a grid like graph
of diameter D with optimal global and local clock skews of respectively O(D) and O(log D),
which is self stabilising and resilient to a reasonable distribution of faults. Finally, we would
like to achieve the aforementioned resilience to faults by adding the minimum possible amount
of edge and vertex redundancy into our network. While this last requirement arises from
our desire to clock VLSI systems, the question is of independent theoretical interest since
edge connectivity is an expensive resource in several domains. Our results challenge the
notion that fault tolerance always requires masses of edge and vertex replication, by showing
that reasonable levels of fault tolerance can be achieved at little loss of optimal performance
without excessive edge replication. We summarise our desiderata below:

Fault-Tolerant Clock Synchronisation Problem (Informal)

Compute at each node of a distributed system a logical clock with the following
properties.

Minimising Global Skew: The skew between any pair of nodes i.e. Global Skew
is minimised as a function of the network diameter D: Θ(D).
Minimising Local Skew: The skew between adjacent pairs of nodes i.e. Local
Skew is minimised as a function of the network diameter D: Θ(log D).
Fault Tolerance: A set of at most f permanently faulty processes according to
a given fault model does not increase clock skews (up to a constant factor).
Self-Stabilisation: After system-wide transient (i.e., temporary) faults, the
processes re-converge to optimal skews.
Optimal Edge Density: Achieve the above in a network topology with minimal
node degree.

2 Our Model

We describe a slightly simplified model and leave the motivation behind it to Section 4.

Our Network: We describe our grid-like network here. Starting with a simple connected
base graph H = (V, E) of minimum degree 2 and diameter D, we derive the graph G =
(VG, EG) for synchronisation as follows: for each ℓ ∈ N we create a copy Vℓ of V . Denoting
by (v, ℓ) the copy of v ∈ V in Vℓ, we define Eℓ := {((v, ℓ), (w, ℓ+ 1)) | {v, w} ∈ E ∨v = w}.
We now obtain G by setting VG :=

⋃
ℓ∈N Vℓ and EG :=

⋃
ℓ∈N Eℓ. That is, for each layer

ℓ ∈ N we have a copy of v ∈ V , which has outgoing edges to the copies of itself and all its
neighbours on layer ℓ + 1, where ℓ is bounded from above by some value in Θ(

√
n). Since

VG is a DAG, we refer to out-neighbours as successors and in-neighbours as predecessors.
An example base graph and the construction of two layers from it are shown in Figure 1.
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Figure 1 The figure on the bottom shows an example base graph and the figure on the top shows
a two layer example of the grid graph constructed from the base graph.

Fault Model: An unknown subset F ⊂ VG is faulty, meaning that these nodes do not
adhere to the clock distribution protocol. We assume that each node fails independently
with probability p ∈ o(1/

√
n).2 In particular, this entails that with probability 1 − o(1),

no node has two faulty predecessors, i.e., faults are 1-local.
Communication: Each node can broadcast pulse messages on its out-edges. If node
vℓ ∈ Vℓ broadcasts at time tv,ℓ, its successors receive its message at (potentially different)
times from [tv,ℓ + d − u, tv,ℓ + d]. The maximum end-to-end delay d includes computation-
induced ones. Typically, the delay uncertainty u is much smaller than d. We assume
delays change much slower than the output clock frequency. Faulty nodes can send pulses
at arbitrarily.
Local Clocks and Computations: Each node (v, ℓ) has an imperfect local time
reference by query access to a hardware clock Hv,ℓ : R≥0 → R≥0 satisfying

∀t < t′ ∈ R≥0, t′ − t ≤ Hv,ℓ(t′) − Hv,ℓ(t) ≤ ϑ(t′ − t)

for a drift parameter ϑ > 1. No phase relation is assumed between the hardware clocks.
Hardware clock speeds change slowly relative to the frequency of the output clocks.
Computations are deterministic and can be triggered by arrival of messages or timers off
the hardware clocks.
Output and Skew: The algorithm outputs logical clocks in the form of pulses such
the pulses generated by correct nodes are synchronised. For simplicity, we assume that
correct nodes on layer 0 generate well-synchronised pulses at times tk

v,0 for k ∈ N>0 at a
frequency we control. Other correct nodes generate pulses tk

v,ℓ, k ∈ N>0, based on the
pulse messages received from their predecessors. We seek to minimise the worst-case
local skew that the algorithm guarantees. The local skew is defined as the largest offset
between the k-th pulses of adjacent nodes on the same layer or pulses k and k + 1 of
adjacent nodes on layers ℓ and ℓ + 1, whichever is larger. Formally, for ℓ ∈ N, we define

Lℓ := sup
k∈N

max
{v,w}∈E

(v,ℓ),(w,ℓ)/∈F

{|tk
v,ℓ − tk

w,ℓ|}, Lℓ,ℓ+1 := sup
k∈N

max
((v,ℓ),(w,ℓ+1))∈Eℓ

(v,ℓ),(w,ℓ+1)/∈F

{|tk+1
v,ℓ − tk

w,ℓ+1|},

and L := supℓ∈N max{Lℓ, Lℓ,ℓ+1}.
Between consecutive layers, we synchronise consecutive pulses. After initialisation, which
is complete once the first pulse propagated through the grid, this is equivalent to a
layer-dependent index shift of pulse numbers.

2 We stress that this requirement is not stronger than that of [3, 10] and [2] for f = 1 in any practical
sense. If faults correlate in a way clustering them together, it is likely that neighbours fail. Assuming
independence (or, more generally, negative correlation) captures “faults do not cluster” in the most
straightforward way that allows us to exploit this property beyond immediate neighbours.

DISC 2024
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3 The Key Technical Ingredients and Results

Our results are obtained from a medley of two lines of results, see Table 1 for a summary.

Clock Synchronisation and Optimal Skews: This line dates back to the work of
Fan and Lynch [4], who introduced the problem of gradient clock synchronisation (hereon
the GCS problem), which expanded the clock synchronisation problem to general graphs.
A fruitful line of work [1, 7, 8] established both lower and upper bounds of Θ(log D)
on skews that could be achieved. In fact the aptly named GCS (family of) algorithms
additionally guaranteed the property of resilience to transient faults i.e. self-stabilisation.
However the GCS algorithm is stubbornly intolerant of even a single faulty node that can
lie to different neighbours which are otherwise distantly connected. In [2], the authors
achieved resilience to 1-local faults by a massive replication of the vertices and edges
in the original network (based on a general scheme with factor-O(f2) edge overhead),
but requiring 20-fold edge replication and 4-fold vertex replication renders the scheme
impractical.
Fault Tolerance Clock Distribution in Sparse Grids: The other line of work [3, 10]
focused on protocols for distributing a signal generated from a fault tolerant base network
across a grid with fault tolerance and optimal edge connectivity. In these schemes, the
nodes have no local hardware clocks of their own. They forward pulses as they received
them according to the forwarding protocol. TRIX [10] has a simple pulse forwarding
rule: Each node receives 3 copies of each pulse from 3 grid-adjacent in-neighbours and
forwards the median copy. It achieves 1-local fault tolerance at the cost of 2 extra edges
per node, but with O(D) local skew.

Our Idea. It is useful to think of the pulses output by clock synchronisation and distribution
schemes as discrete time points in a logical clock value they generate for each time instant.
Thus we can speak of our logical clock functions being set forward or backward or have its
rate of change altered. In the actual algorithm this is handled by altering the time at which
successive pulses of the output clock are emitted.

We seek the best of both worlds described above. The GCS algorithm follows a “move
slowly to the midpoint of all your neighbours’ clocks up to a discrete value κ” rule, i.e.
the gradient rule. Here κ is a constant picked by the algorithm designer that subsumes
measurement errors from all the potential sources of uncertainty, that arise when nodes
estimate their neighbours’ logical clock values. The GCS algorithm offers optimal local skew,
but poor fault tolerance.

In the TRIX distribution scheme nodes adjust their logical clocks immediately per a
“jump immediately to the median clock of three” rule to pick one of three pulses as reference,
i.e. the median rule. These nodes have no local reference and they merely forward pulses as
they receive the second copy of each pulse. This scheme offers excellent 1-local fault tolerance
but has sub-optimal O(D) local skew.

Gradient TRIX. Our scheme Gradient TRIX attempts to combine these two rules as follows:
It adapts a generalisation of the TRIX grid, described in Section 2. In particular, unlike
TRIX, the nodes now have local clock references.
The simple median pulse forwarding rule is replaced by a wait and forward rule configurable
according to a parameter Λ that dictates the time period we seek to achieve for the
output pulses. This fixes Λ as well as κ = Ω

(
u +

(
1 − 1

ϑ

)
(Λ − d)

)
.
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The pulse forwarding rule is a variant of the GCS algorithm that safely and consistently
combines the gradient rule with a modified median rule. More specifically, in addition
to discrete adaptations of traditional GCS, typically called Slow and Fast conditions [9,
Definition 9 and 10], we have a third set of Jump Conditions [9, Definition 11].

Intuitively, each row of the grid is playing a pass the GCS parcel game. For the duration of
forwarding one pulse, each row is pretending to simulate a variation of the GCS algorithm
on the base graph and then pass the baton to the next row. It is in this intuition that one
can glimpse the idea behind the skew result of Theorem 1.

▶ Theorem 1. If there are no faults, then Lℓ ≤ 4κ(2 + log D) for all ℓ ∈ N.

This bound also accounts for suitable parameter choices that ensure that adjacent rows are
closely synchronised, while a much more challenging version of the gradient property ensures
synchronisation within the rows of the grid-like graph.

Up to technical details, the algorithm’s self-stabilisation property is an immediate con-
sequence of the directed propagation of pulses through the grid; once the first layer starts
generating pulses at the right frequency with small local skew, the other layers follow.

▶ Theorem 2. The pulse propagation algorithm can be implemented in a self-stabilising way.
It stabilises within O(

√
n) pulses.

Further, f permanent 1-local faults in the grid become temporary faults from the
perspective of the GCS algorithm simulated on the base graph. However, for each row
containing such a faulty node, the local skew might be increased by a constant factor in
the worst case. Thus, we get what appears to be a substantial skew build up in the worst
situation that f 1-local faults permit.

▶ Theorem 3. If there are at most f faulty nodes and none in layer 0, then Lℓ ∈ O(5f κ log D).

However, when faults are uniformly randomly distributed with each node being faulty
with probability i.i.d. o(1/

√
n), the faults are sufficiently sparse that self-stabilisation of

the simulated GCS algorithm will reduce the local skew fast enough to prevent the above
exponential increase.

▶ Theorem 4. With probability 1 − o(1), Lℓ ∈ O(κ log D) for all ℓ ∈ N.

A limitation of our results inherent to the directed propagation of pulses that ensures
self-stabilisation of the overall scheme is that sudden changes in the timing of many links
disrupt synchronisation.

▶ Theorem 5. If faulty nodes do not change the timing of their output pulses, then L ∈
O(κ log D) with probability 1 − o(1).

On the other hand, in the considered application scenario of clock distribution on chips,
the scheme is strong enough to handle the expected limited changes that occur in a clock
cycle, i.e., a sub-nanosecond timescale.

▶ Corollary 6. With probability 1 − o(1), L ∈ O(κ log D) even when in each pulse (i) a
constant number of faulty nodes change their output behaviour and timing, (ii) link delays
vary by up to n−1/2u log D, and (iii) hardware clock speeds vary by up to n−1/2(ϑ − 1) log D.

3 Given a graph topology G, the augmented graph contains a 3f + 1-clique of replica vertices for each
node v in G and Θ(f2) copies of each edge {v, w} ∈ G corresponding to all the possible pairs of the
replicas of v and w

DISC 2024
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Table 1 Comparison with related work. Except GCS, “resilience” refers to Byzantine fault-
tolerance, i.e., worst-case behaviour of faulty nodes. However, in our work the fault model is
restricted: Only a few faulty nodes change their behaviour within a short amount of time. In turn,
we are the first to simultaneously achieve optimal skew bounds, self-stabilisation, and minimal
degrees.

method global skew local skew resilience self-stab. graph topology
LW [11] O(1) O(1) < n/3 no complete (D = 1)
KL [6] O(1) O(1) < n/3 yes complete (D = 1)
HEX [3] O(dD) d+O(u2D/d) 1-local yes grid-like,

suboptimal degree
TRIX [10] O(uD2) O(uD) 1-local yes grid-like,

optimal degree
GCS [8] O(uD) O(u log D) crashes only yes arbitrary
Fault-tolerant
GCS [2]

O(uD) O(u log D) f -local yes Θ(f2)-augmented
arbitrary graph3

Gradient TRIX
(this work)

O(uD) O(u log D) independent
p ∈ o(n−1/2)

yes grid-like,
optimal degree

Gradient TRIX
(this work)

O(uD) O(5f u log D) 1-local,
f faults

yes grid-like,
optimal degree

4 Motivating our Model: An Exercise in Theory Building

In this final section, we take a closer look at some of our modelling choices that might appear
strange at first glance. A key motivation of this work is to produce theoretically correct
algorithms which can be applied to the synchronous clocking of VLSI systems. This guides
our modelling choices on two fronts:

Our Topology: At a very high level, we would like to synchronise so-called clock islands
on modern VLSI systems that currently rely on expensive asynchronous communication.
This naturally suggests a grid-like topology. However, a simple grid does not suffice.
Even with our extremely sparse network connectivity, we require each node in every row
to have three neighbours in adjacent rows, meaning that the nodes at the right and left
boundary “miss” a neighbour. Mathematically, the most elegant solution would be a
cylinder, but embedding it on a rectangular grid induces a wasteful factor 2 overhead.
Instead, we fall back to replicating each node on the right and left boundary once and
connecting the two copies. Our scheme is phrased in a more general way, allowing for
arbitrary base graphs of minimum degree 2. Our approach achieves this at asymptotically
negligible overhead.
Our Fault Model: Here, we strike a fine balance between practical viability and the
theoretical optimum. A large class of permanent faults can be chalked up to manufacturing
process variations and ageing. While there are correlations, the dominant contributing
factors are approximately i.i.d. Further variations due to long voltage droops and
temperature variations happen over times ranging a few microseconds to milliseconds [5,
chp. 7]; orders of magnitude longer than the typical clock cycle. This justifies assuming
that most delays do not change dramatically between consecutive pulses. Note that local
oscillators are, ultimately, timed by such delays, so this applies to changes in hardware
clock speeds as well.
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