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Abstract
In contrast to proof-of-work replication, Byzantine quorum systems maintain consistency across
replicas with higher throughput, modest energy consumption, and deterministic liveness guarantees.
If complemented with heterogeneous trust and open membership, they have the potential to serve as
blockchains backbone. This paper presents a general model of heterogeneous quorum systems where
each participant can declare its own quorums, and captures the consistency, availability and inclusion
properties of these systems. In order to support open membership, it then presents reconfiguration
protocols for heterogeneous quorum systems including joining and leaving of a process, and adding
and removing of a quorum, and further, proves their correctness in the face of Byzantine attacks.
The design of the protocols is informed by the trade-offs that the paper proves for the properties that
reconfigurations can preserve. The paper further presents a graph characterization of heterogeneous
quorum systems, and its application for reconfiguration optimization.
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1 Introduction

Banks have been traditionally closed; only established institutions could hold accounts and
execute transactions. With regulations in place, this centralized model can preserve the
integrity of transactions. However, it makes transactions across these institutions costly
and slow; further, it keeps the power in the hands of a few. In pursuit of decentralization,
Bitcoin [17] provided open membership: any node can join the Bitcoin network, and validate
and process transactions. It maintains a consistent replication of an append-only ledger,
called the blockchain, on a dynamic set of global hosts including potentially malicious ones.
However, it suffers from a few drawbacks: low throughput, high energy consumption, and
only probabilistic guarantees of commitment [9, 10].

Maintaining consistent replication in the presence of malicious processes has been the
topic of Byzantine replicated systems for decades. PBFT [5] and its numerous following
variants [21, 16, 22, 19, 2, 20] can maintain consistent replication when the network size
is at least three times the size of potentially Byzantine coalitions, have higher throughput
than Bitcoin, have modest energy consumption, give participants equal power, and provide
deterministic liveness guarantees. Unfortunately, however, their quorums are uniform and
their membership is closed. Their trust preferences, i.e., the quorums of processes are fixed
and homogeneous across the network. Further, their set of participants are fixed; thus,
in contrast to proof-of-work replication that provides permissionless blockchains, classical
Byzantine replication only provides permissioned blockchains.
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Can the best of both worlds come together? Can we keep the consistency, throughput,
modest energy consumption and equity of Byzantine replicated systems, and bring hetero-
geneous trust [6, 4, 1] and open membership to it? Openness challenges classical assumptions.
With global information about the processes and their quorums, classical quorum systems
could be configured at the outset to satisfy consistency and availability properties. However,
open quorum systems relinquish global information as processes specify their own quorums,
and can further join, leave, and reconfigure their quorums. As the other processes may be
unaware of these changes, consistency and availability may be violated after and even while
these reconfigurations happen.

Projects such as Ripple [18] and Stellar [15] pioneered, and follow-up research [14, 13, 8, 3]
moved towards this goal, and presented quorum systems where nodes can specify their own
quorums, and can join and leave. In fact, the Stellar network has a high churn. In previous
works, the consistency of the network is either assumed to be maintained by user preferences
or a structured hierarchy of nodes, is provided only in divided clusters of processes, or can
be temporarily violated and is periodically checked across the network. Reconfigurations can
compromise the consistency or availability of the replicated system. The loss of consistency
can be the antecedent to a fork and double-spending. An important open problem is
reconfiguration protocols for heterogeneous quorum systems with provable security guarantees.
The protocols are expected to avoid external central oracles, or downtime.

In this paper, we first present a general model of heterogeneous quorum systems where
each process declares its individual set of quorums, and then formally capture the properties
of these systems: consistency, availability and inclusion. We then consider the reconfiguration
of heterogeneous quorum systems: joining and leaving of a process, and adding and removing
of a quorum. To cater for the protocols such as broadcast and consensus that use the quorum
system, the reconfiguration protocols are expected to preserve the above properties.

The safety of consensus naturally relies on the consistency (or quorum intersection)
property: every pair of quorums intersect at a well-behaved process. Intuitively, if an
operation communicates with a quorum, and a later operation communicates with another
quorum, only a well-behaved process in their intersection can make the second aware of the
first. A quorum system is available for a process if it has a well-behaved quorum for that
process. Intuitively, the quorum system is responsive to that process through that quorum.
The less known property is quorum inclusion. Roughly speaking, every quorum should
include a quorum of each of its members. This property trivially holds for homogeneous
quorum systems where every quorum is uniformly a quorum of all its members, but should
be explicitly maintained for heterogeneous quorum systems. We show that quorum inclusion
interestingly lets processes in the included quorum make local decisions while preserving
properties of the including quorum. We precisely capture and illustrate these properties.

We then present quorum graphs, a graph characterization of heterogeneous quorum
systems with the above properties. It is known that strongly connected components of a
graph form a directed acyclic graph (DAG). We prove that a quorum graph has only one
sink component, and preserving consistency reduces to preserving quorum intersections in
this component. This fact has an important implication for optimization of reconfiguration
protocols. Any change outside the sink component preserves consistency, and therefore, can
avoid synchronization with other processes. Thus, we present a decentralized sink discovery
protocol that can find whether a process is in the sink.

In addition to consistency, availability and inclusion, reconfiguration protocols are expected
to preserve policies. Each process declares its own trust policy: it specifies the quorums that
it trusts. In particular, it does not trust strict subsets of its individual quorums. Thus, a
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policy-preserving reconfiguration should not shrink any quorum. We present a join protocol
that preserves all the above properties. We present trade-offs for the properties that the
leave, remove and add reconfiguration protocols can preserve. We show that there is no leave
or remove protocol that can preserve both the policies and availability. Thus, we present two
protocols: a protocol that preserves policies, and another that preserves availability. Both
preserve consistency and inclusion. Then, we show that there is no add protocol that can
preserve both the policies and consistency. Therefore, since we never sacrifice consistency,
we present a protocol that preserves all properties except the policies.

We observe that under reconfiguration, quorum inclusion is critical to preserve not
only availability but also consistency. Sometimes, reconfigurations can only eventually
reconstruct inclusion, but can preserve weaker notions of inclusion that are sufficient to
preserve consistency and availability. We capture these notions, prove that they are preserved,
and use them to prove that the other properties are preserved.

In summary, this project makes the following contributions.
A graph characterization of heterogeneous quorum systems, and its application to optimize
reconfiguration and a sink discovery protocol
Trade-offs between reconfiguration guarantees
Reconfiguration protocols for joining and leaving of a process, and adding and removing
of a quorum, and their proofs of correctness

In this short paper, we present an overview of the leave protocol. The full paper [12]
presents all the above contributions more coherently.

2 Quorum Systems

Processes. A quorum system is hosted on a set of processes P. In each execution, P is
partitioned into Byzantine B and well-behaved W = P \ B processes. Well-behaved processes
follow the given protocols; however, Byzantine processes can deviate from the protocols
arbitrarily. Furthermore, a well-behaved process does not know the set of well-behaved
processes W or Byzantine processes B. The active processes A ⊆ P are the current members
of the system. As we will see, quorum systems can be reconfigured, and the active set can
change: processes can join and the active set grows, and conversely, processes can leave, and
the active set shrinks. We consider partially synchronous networks [7], i.e., if both the sender
and receiver are well-behaved, the message will be eventually delivered within a bounded
delay after an unknown GST (Global stabilization Time). Processes can exchange messages
on authenticated point-to-point links.

Individual Quorums. Processes can have different trust assumptions: trust is a subjective
matter, and therefore, heterogeneous. We capture a heterogeneous model of quorum systems
where each process can specify its individual set of quorums.

An individual quorum q of a process p is a non-empty subset of processes in P that p

trusts to collectively perform an operation. Every quorum of a process p naturally contains p

itself. (However, this is not necessary for any theorem in this paper.) By the above definition,
any superset of a quorum of p is also a quorum of p. Thus, the set of quorums of p is
superset-closed and has minimal members. (Consider a set of sets S = {s}. We say that
S is superset-closed, if any superset s′ of any member s of S is a member of S as well.) A
process p doesn’t need to keep any quorum other than its minimal quorums: any of its other
quorums include extra processes that p can perform operations without. Thus, we consider
only the (individual) minimal quorums of p. Any superset of such a quorum is a quorum for
p. We denote a set of quorums as Q. We denote the union of a set of quorums Q as ∪Q.

DISC 2024
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▶ Definition 1 (Quorum System). A heterogeneous quorum system (HQS) Q maps each
active process to a non-empty set of individual minimal quorums.

The mapping models the fact that each process has only a local view of its own individual
minimal quorums. Further, since the behavior of Byzantine processes can be arbitrary, we
leave their individual quorums unspecified.

W
P

p
q′ q

Figure 1 Quorum inclusion of q for P . Process p is a member of q that falls inside P , and q′ is a
quorum of p. Well-behaved processes of q′ (shown as green) should be a subset of q.

The consistency, availability and inclusion properties are expected to be provided by a
quorum system, and maintained by a reconfiguration protocol. We adapt consistency and
availability for HQS [11], and define the new notion of inclusion.

▶ Definition 2 (Consistency, Quorum Intersection). A quorum system Q is consistent (i.e.,
has quorum intersection) at a set of well-behaved processes P iff the quorums of well-behaved
processes have quorum intersection at P , i.e., ∀p, p′ ∈ W. ∀q ∈ Q(p), q′ ∈ Q(p′). q∩q′∩P ̸= ∅.

▶ Definition 3 (Availability). A quorum system is available for processes P at a set of
well-behaved processes P ′ iff every process in P has at least a quorum that is a subset of P ′.
We say that a quorum system is available inside P iff it is available for P at P .

▶ Definition 4 (Blocking Set). A set of processes P is a blocking set for a process p (or is
p-blocking) iff P intersects every quorum of p.

▶ Lemma 5. In every quorum system that is available inside a set of processes P , every
blocking set of every process in P intersects P .

▶ Definition 6 (Quorum inclusion). Consider a quorum system Q, and a subset P of its
well-behaved processes. A quorum q is quorum including for P iff for every process p in the
intersection of q and P , there is a quorum q′ of p such that well-behaved processes of q′ are
a subset of q, i.e., including(q, P ) := ∀p ∈ q ∩ P. ∃q′ ∈ Q(p). q′ ∩ W ⊆ q. A quorum system
Q is quorum including for P iff every quorum of well-behaved processes of Q is quorum
including for P , i.e., ∀p ∈ W. ∀q ∈ Q(p). including(q, P ).

The set P is often implicitly the set of all well-behaved processes W. Quorum inclusion
was inspired by and weakens quorum sharing [14]. Quorum sharing requires conditions on
the Byzantine processes in q and q′, and is too strong to maintain. We presented quorum
inclusion that is weaker than quorum sharing. It requires a quorum q′ only for well-behaved
processes of q, and requires only the well-behaved subset of q′ to be a subset of q. We will
see in Section 3 that quorum inclusion is sufficient to support quorum intersection.

▶ Definition 7 (Outlived). A quorum system Q is outlived for a set of well-behaved processes
O iff (1) Q is consistent at O, (2) available inside O, and (3) quorum including for O.

The safety and liveness properties of outlived processes outlive Byzantine attacks, hence
the name. The protocols reconfigure an outlived quorum system into another.
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3 Leave Protocol

Based on the trade-offs presented in the full paper, we present the availability-preserving
and consistency-preserving protocols (AC protocols) in Algorithm 1. We then intuitively
explain how it preserves the properties of the quorum system.

Algorithm 1 Leave Protocol.
1 Implements: Leave and Remove
2 request : Leave
3 response : LeaveComplete | LeaveFail
4 Variables:
5 Q ▷ Individual minimal quorums of self
6 tomb : 2P ← ∅
7 (in-sink : Boolean, F : 2P)← Discovery(Q)
8 Uses:
9 tob : TotalOrderBroadcast

10 apl : (∪Q) ∪ F 7→ AuthPPoint2PointLink
11 upon request Leave
12 if in-sink then
13 if ∀q1, q2 ∈ Q, (q1 ∩ q2)\{self} is self -blocking then
14 tob request Check(self , Q)
15 else
16 response LeaveFail
17 else
18 response LeaveComplete
19 apl(p) request Left(self) for each p ∈ F

20 upon response tob, Check(p′, Q′)
21 if ∃q1, q2 ∈ Q′. (q1 ∩ q2) \ ({p′} ∪ tomb) is not p′-blocking then
22 if p′ = self then
23 response LeaveFail
24 else
25 tomb ← tomb ∪ {p′}
26 if p′ = self then
27 response LeaveComplete
28 apl(p) request Left(self) for each p ∈ F

29 upon response apl(p), Left(p)
30 Q← {q \ {p} | q ∈ Q}

Variables and sub-protocols. Each process keeps its own set of individual minimal quorums
Q. It also keeps the set tomb that records the processes that might have left. The full paper
presents an optimization opportunity for the coordination needed to preserve consistency:
when the quorum system has quorum sharing, only processes in the sink component need
coordination. Therefore, each process stores whether it is in the sink component as the
in-sink boolean, and its follower processes (i.e., processes that have this process in their
quorums) as the set F . (The sink information is just used for an optimization, and the
protocol can execute without it.)

The protocol uses a total-order broadcast tob, and authenticated point-to-point links apl
(to processes in the quorums Q and followers F ). Total-order broadcast provides a broadcast
interface on top of consensus [15, 14, 8, 11]. The consensus and total-order broadcast
abstractions [11] require quorum intersection for safety, and quorum availability and inclusion
for liveness. As we will show, the reconfiguration protocols preserve both of these properties
for outlived quorum systems. We note that if a protocol naively uses tob to globally order
and process reconfigurations, then since each process only knows its own quorums, it cannot
independently check if the properties of the quorum system are preserved.

DISC 2024
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Protocol. When a process requests to leave (at L. 11), it first checks whether it is in the
sink component (at L. 12). If it is not in the sink, then it can apply the optimizations
that are shown with the blue color. The process can simply leave without synchronization
(at L. 18); it only needs to inform its follower set so that they can preserve their quorum
availability. It sends a Left message to its followers (at L. 19). Every well-behaved process
that receives the message (at L. 29) removes the sender from its quorums (at L. 30). If the
quorum system does not have quorum sharing or the sink information is not available, the
protocol can be conservative (remove the blue lines) and always perform the coordination
that we will consider next.

On the other hand, when the requesting process is in the sink component, its absence
can put quorum intersection in danger. Therefore, it first locally checks a condition (at
L. 13). The check is just an optimization not to attempt leave requests that are locally
known to fail. We will consider this condition in the next subsection. If the check fails,
the leave request fails (at L. 16). If the local check passes, the process broadcasts a Check
request together with its quorums (at L. 14). If processes receive and check concurrent leave
requests in different orders, they may concurrently approve leave requests for all processes in
a quorum intersection. Therefore, a total-order broadcast tob is used to enforce a total order
for processing of Check messages. When a process receives a Check request with a set of
quorums Q, it locally checks a condition for Q (at L. 21). This check is similar to the check
above but is repeated in the total order of deliveries by the tob. If the condition fails, the
leave request fails (at L. 23). If it passes, the leaving process is added to the tomb set (at
L. 25), and the leaving process informs its followers, and leaves (at lines 27 and 28). Let’s
now consider the condition and see how it preserves quorum intersection and inclusion.

p∗p1 p2
q∗

1 q∗
2

q1 q2

Figure 2 The Leave Protocol, Preserving Quorum Intersection.

Quorum Intersection. Let us first see an intuitive explanation of the condition, and why it
preserves quorum intersection. We assume that the quorum system is outlived: there is a set
of processes O such that the quorum system has quorum intersection at O, quorum inclusion
for O, and quorum availability inside O. As shown in Figure 2, consider well-behaved
processes p1 and p2 with quorums q1 and q2 respectively, and let p∗ be a process at the
intersection of q1 and q2 in O. The goal is to allow p∗ to leave only if the intersection of q1
and q2 contains another process in O. By the quorum inclusion property, p∗ should have
quorums q∗

1 and q∗
2 such that their well-behaved processes are included inside q1 and q2

respectively. Each process adds to its tomb set every process whose Check request passes.
The total-order-broadcast tob delivers the Check requests in the same order across processes.
Therefore, the result of the check and the updated tomb set is the same across processes after
processing each request. Consider a Check request of a process p′ which is ordered before
that of p∗. If the check for p′ is passed and it leaves, then the tomb set of p∗ contains p′.
Consider when the Check request of p∗ is processed. The check ensures that p∗ is approved
to leave only if the intersection of q∗

1 and q∗
2 modulo the tomb set and p∗ is p∗-blocking. By

Lemma 5, since the quorum system is available inside O, this means that the intersection
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of q∗
1 and q∗

2 after both p′ and p∗ leave still intersects O. A process p in O remains in the
intersection of q∗

1 and q∗
2 . Therefore, by quorum inclusion, p remains in the intersection of q1

and q2. Thus, outlived quorum intersection is preserved for q1 and q2.
Once the tob delivers the Check message of the leaving process p∗ to p∗ itself, it can locally

decide whether it is safe to leave. We note that the local check ensures a global property:
quorum intersection for the whole quorum system. We also note that both quorum inclusion
and quorum availability are needed to preserve quorum intersection. Further, we note that
outlived quorum intersection is not affected if a Byzantine process leaves: the outlived
processes where quorums intersect are by definition a subset of well-behaved processes.

Quorum inclusion. Now let us elaborate on the quorum inclusion property that we just
used. When a process p′ leaves, it sends Left messages to its followers (at either L. 19 or
L. 28). The followers later remove p′ from their quorums (at L. 29-L. 30). These updates are
not atomic and happen over time. Therefore, there might be a window when a process p′ is
removed from the quorum q1 (that we saw above), but not yet removed from q∗

1 . Therefore,
quorum inclusion only eventually holds. However, we observe that in the meanwhile, a
weaker notion of quorum inclusion, that we call active quorum inclusion, is preserved. It
considers inclusion only for the active set of processes A = P \ L, i.e., it excludes the subset
L of processes that have already left. It requires the quorum q∗

1 to be a subset of q1 modulo
L. More precisely, it requires q∗

1 ∩ W \ L ⊆ q1. This weaker notion is enough to preserve
quorum intersection. In the above discussion for quorum intersection, the process p that
remains in the intersection is not in the tomb set; therefore, it is an active process. Since it
is in q∗

1 and q∗
2 , by active quorum inclusion, it will be in q1 and q2 as well.
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