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Abstract
The concept of extension-based proofs models the idea of a valency argument, which is widely used
in distributed computing. Extension-based proofs are limited in power: it has been shown that there
is no extension-based proof of the impossibility of a wait-free protocol for (n, k)-set agreement among
n > k ≥ 2 processes. There are only a few tasks that have been proven to have no extension-based
proof of the impossibility, since the techniques in these works are closely related to the specific task.

We give a necessary and sufficient condition for colorless tasks to have no extension-based proofs
of the impossibility of wait-free protocols in the NIIS model. We introduce a general adversarial
strategy decoupled from any concrete task specification. In this strategy, some properties of the
chromatic subdivision that is widely used in distributed computing are proved.
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1 Introduction

One of the most important results in distributed computing, due to Fischer, Lynch, and
Paterson [7], is that there is no deterministic protocol that solves the consensus task in
the asynchronous message passing system. The key idea of their proof is called a valency
argument, which proves the existence of an infinite execution in which no process terminates.

The (n, k)-set agreement task, which is a generalization of the consensus task, was first
proposed by Chaudhuri [6]. The (n, k)-set agreement task was independently shown to have
no wait-free protocol by Borowsky and Gafni [4], Herlihy and Shavit [8], and Saks and
Zaharoglou [11]. Topological techniques were used to prove these results.

In [1], Alistarh, Aspnes, Ellen, Gelashvili and Zhu pointed out the differences between
valency arguments and combinatorial or topological techniques. In the proof by Fischer,
Lynch and Paterson, an infinite execution can be constructed by extending an initial execution
infinitely often. In contrast, in those proofs using combinatorial techniques, the existence of
a bad execution is proved, but not explicitly constructed. [1] generalized this type of proof
and called it an extension-based proof. An extension-based proof is defined as an interaction
between a prover and a protocol that claims to solve a task. The prover tries to find out
some errors in the protocol by submitting queries to the protocol. If the prover manages
to do so, then the prover wins against the protocol. If there exists a prover that can win
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against any protocol that claims to solve a task, we say that this task has an extension-based
impossibility proof. The proof of the impossibility of consensus is an example of an extension-
based proof. In the same paper, they showed that there are no extension-based proofs for the
impossibility of a wait-free protocol for the (n, k)-set agreement in the non-uniform iterated
immediate snapshot (NIIS) model. The same result was proved in the non-uniform iterated
snapshot (NIS) model in the journal version [2]. Some tasks [3, 10] that are closely related
to the set agreement task and 1-dimensional colorless tasks have also been shown to have no
extension-based proofs.

Do other tasks also have no extension-based impossibility proofs? One way to generate
new results is to find a condition that characterizes the tasks that have extension-based
impossibility proofs. A task is specified by a tuple (I, O, ∆) . A protocol solves a task
(I, O, ∆) if, starting with any input values in I, processes decide on output values in O after
communicating with each other for some steps according to the protocol, respecting the
input/output relation ∆. Both I and O are closed under containment, since processes are
assumed to be faulty and may crash at any time. We can show that a task (I, O, ∆) has
no extension-based proofs if we can design an adversarial strategy that can construct an
adaptive protocol that wins against any extension-based prover.

In this paper, we focus on a subset of tasks called colorless tasks. A colorless task is
defined only in terms of input and output values, without process ids. All our discussions
use the definition and related consequences of tasks rather than those specified for colorless
tasks. So why do we talk about colorless tasks while adopting the form of general tasks?
Part of our design needs a property (Property 1) of the input/output relation ∆.

▶ Property 1. In any possible execution, if a process is allowed to output a value v, then
any other process that has seen a superset of the values seen by this process is also allowed to
output the value v.

This property is intrinsic for colorless tasks.

2 Model

An immediate snapshot (IS) object, introduced by Borowsky and Gafni in [5] consists of an
array and supports only one type of operation, called a writeread operation, where a process
with id i writes a value to the i-th cell of the array and returns a snapshot of the array
immediately following the write. The writeread operations performed to some IS object by
different processes are said to be concurrent if all snapshots occur after all writes to the array
are finished.

The NIIS model assumes an unbounded sequence of IS objects IS1, IS2 · · · . (n + 1)
sequential threads of control, called processes, Π = {p0, p1 . . . pn} , communicate through IS
objects to solve decision tasks. A protocol is a distributed program to solve a task. In any
execution of a protocol in the NIIS model, each process pi performs a writeread operation on
each IS object starting from IS1. Initially, pi’s state contains its identifier i and its input
value. Each time pi performs a writeread operation on some IS object ISj using its current
state si as argument, and sets its current state si to its identifier i and the response of its
writeread operation. Then pi consults a map δ to determine whether it should terminate
and output a value. If δ(si) ̸=⊥, pi outputs δ(si) and terminates. Otherwise, it continues to
access this next IS object. Therefore, each NIIS protocol is determined by a decision map δ

from a local state to output values or ⊥.
A configuration C consists of the contents of each shared object and the state of each

process. However, since each process remembers its entire history and only process pi can
write to the i-th component of each IS object, a configuration is fully determined by the
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states of processes in this configuration. An initial configuration consists of the input values
and process ids of all processes. A process is active in a configuration if it has not terminated.
A configuration is terminated if all processes have terminated.

A scheduler repeatedly chooses a set of processes that are poised to perform writeread
operations on the same IS object concurrently. A schedule α is an ordered sequence of
sets of processes chosen by the scheduler. Let C be a reachable configuration in which all
active processes have accessed the same number of IS objects. For any set P of processes, a
P -only 1-round schedule from C is an ordered partition of processes in P that are active in
C. A P -only r-round schedule from C is a schedule α1α2 · · · αr such that each αi is a P -only
1-round schedule from Cα1 · · · αi−1. A full r-round schedule from C is a P -only r-round
schedule from C where P = Π.

An (abstract) simplex is the set of all subsets of some finite set. There is a natural
geometric interpretation of an (abstract) simplex. In this paper, we use the two definitions
interchangeably. An n-simplex S spanned by a set of affinely independent vertices {v⃗0, . . . v⃗n}
is defined to be the set of all points x such that x =

∑n
i=0 tiv⃗i where

∑n
i=0 ti = 1 and ti ≥ 0

for all i. Any simplex T spanned by a subset of {v⃗0, . . . v⃗n} is called a face of S. An (abstract)
simplicial complex is a finite collection K of sets that is closed under subset: for any set
S ∈ K, if S

′ ⊆ S, then S
′ ∈ K.

For a task, all possible input or output values can be represented by a simplicial complex,
called an input complex I or an output complex O. Each vertex s⃗ of these simplices is labeled
with a process id and a value that are denoted by ids(v⃗) and vals(s⃗), respectively. The
topological task specification is defined as a carrier map that carries each simplex S of the
input complex to a subcomplex of the output complex.

Like tasks, protocols can be represented in terms of combinatorial topology. The i-th
protocol complex consists of all simplices, represents configurations that are reachable from
some initial configuration by a i-round schedule. The i-th execution map is a carrier map
that carries each initial configuration to all configurations reached from it in the i-th protocol
complex. A protocol is represented by (I, P, Ξ) and a simplicial map δ : P → O where I is
the input complex, P is the i-th protocol complex, and Ξ is the i-th execution map, for some
non-negative integer i. We say that a protocol (I, P, Ξ) solves a task (I, O, ∆) if δ(Ξ(sk)) is
in ∆(sk) for each sk ∈ I.

Hoest and Shavit [9] showed that the i-th protocol complex of an NIIS protocol is equal
to χi(I, δ), where χ is the non-uniform chromatic subdivision constructed from the NIIS
protocol. Let U be any simplex in I. A partial protocol δU with respect to U specifies
whether a process should output a value(and which output if so) in each configuration reached
from an initial configuration that contains U , by a schedule in which ids(U) is the first set
of processes. The i-th protocol complex of a partial protocol δU with respect to U is defined
as follows.

F0(U) is the set of all simplices in I that contain U .
F1(U) is the subcomplex of χ(F0(U), δU ) consisting of all simplices representing configur-
ations reachable via 1-round schedules in which the processes in ids(U) have the input
values vals(U) and ids(U) is the first set of processes to take a step.
For i ≥ 1, Fi+1(U) = χ(Fi(U), δU ) consists of all simplices representing configurations
reachable via (i + 1)-round schedules in which the processes in ids(U) have the input
values vals(U) and ids(U) is the first set of processes to take a step.
Similarly, a partial protocol with respect to U can be represented topologically as

(F0(U),Fi(U), Ξ). The i-th execution map Ξ is a carrier map that carries each initial
configuration in F0(U) to all configurations reached from it in Fi(U). We say that a partial
protocol δU with respect to U satisfies the task specification ∆ if δU (Ξ(sk)) is in ∆(sk) for
each sk ∈ I where Ξ(sk) is not empty.
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3 Motivation and summary

In this section, we give a description of the motivation behind our necessary and sufficient
condition for a colorless task defined by (I, O, ∆) to have no restricted extension-based
proofs.

The (n, k)-set agreement task is the first task that was shown to have no extension-based
impossibility proofs. As shown in [1], given any extension-based prover, the adversary will
pretend to have a protocol for the (n, k)-set agreement task during phase 1 of the interaction.
But after the prover chooses a schedule at the end of phase 1, the adversary can assign a
valid output value to each undefined configuration that the prover can reach in the later
phases. In other words, the adversary has a partial protocol compatible with the existing
assigned values that satisfies the task specification of the (n, k)-set agreement after phase 1.
We divide the adversarial strategy into two parts: In this first part, the adversary adaptively
defines a protocol in response to any specific prover’s queries during the first r phases. In
the second part, the adversary designs a partial protocol after the end of phase r so that the
prover is doomed to lose.

If the adversary can prevent the prover from finding a problem in the first r phases and
construct a partial protocol after phase r, no matter what queries the prover makes during
the first r phases and which configurations the prover has chosen at the end of the first r
phases, we say that the adversary can finalize after phase r. We can show that the adversary
can win against any extension-based prover, if and only if the adversary can finalize after
phase r for some positive integer r.

In this paper, we introduce the idea behind our necessary and sufficient condition for
finalization after phase 1. Most of the techniques used in the proof for larger values of r are
introduced in the proof of this case.

We start with a necessary condition assuming that no queries are submitted by the prover
during phase 1: there must exist a partial protocol with respect to any possible simplex
U ∈ I. We use the asynchronous computability theorem to give a topological condition for a
task to have a partial protocol with respect to each U ∈ I.

Then we allow the prover to submit queries in phase 1. In the protocol complex of
a partial protocol, the output values of some configurations may already be determined
during the interaction of phase 1. For two simplices U1 and U2 in I and each simplex S in
F1(U1) ∩ F1(U2), we consider the configuration, denoted by CEN(S) , reached from S via a
schedule that repeats the set of processes ids(S) until all processes in ids(S) terminate. We
say that two partial protocols δU1 and δU2 are compatible if the output values of CEN(S)
are the same under δU1 and δU2 for each possible S. A set of partial protocols is compatible
if any two partial protocols are compatible. We show that an enhanced necessary condition
for finalization after phase 1 is that the set of partial protocols is compatible.

Then we prove that a task (I, O, ∆) has a set of compatible partial protocols {δU |U ∈ I}
then the adversary can always finalize after phase 1, by showing how the adversary can
construct an adaptive protocol to win against any prover using this set of compatible partial
protocols which can be assumed to terminate after rm rounds.

The adversary uses an infinite sequence of complexes S0, S1... and an integer t (current
complex) to represent the adaptive protocol, in which S0 = I. Our adversary maintains
three invariants in the interaction with an extension-based prover. For each 0 ≤ r < t and
each vertex v ∈ Sr , δ(v) is defined. If v is a vertex in St, then δ(v) is undefined or δ(v) ̸=⊥.
If a vertex s represents the state of a process in a configuration that the prover has reached,
then δ(v) is defined. The second invariant is about the safety of the adaptive protocol. The
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output values defined by the adaptive protocol will not violate the task specification. To
achieve this, the adversary defines the δ values using the output values obtained from the set
of partial protocols. The third invariant is that the active distance between a configuration
terminated with output values given by δU1 and a configuration terminated with output
values given by δU2 , where U2 ̸= U1 is at least 3.

The adversary sets δ(v) =⊥ for each vertex in Sr where r ≤ rm. The only question is
to decide δ for a vertex in Sr where r > rm. Each terminated vertex has a simplex U of I
as its label, indicating which partial protocol its δ value is from. If v is reached from some
n-simplex sn in Frm

(U) and has a label U , the adversary can use the value of δU (v′) where
sn ∈ Frm(U) and v

′ is the vertex of sn with the same process id as v. A problem here is that
sometimes the adversary has to terminate v with a different label U

′ to avoid an infinite
execution.

If an n-simplex sn in Chrm(I) is not in Frm(U ′), but shares a simplex ss with Frm(U ′),
we define an n-simplex in Frm

(U ′) as the canonical neighbor of sn with the label U
′ . If v

has the label U
′ ̸= U , the adversary can use the value of δU ′ (N(sn, U

′)) where sn ∈ Frm
(U)

and v
′ is the vertex of sn with the same process id as v. An implementation of canonical

neighbors is provided such that this assignment of output values does not violate the carrier
map.

We show that using our adversarial strategy, the prover cannot win in phase 1, which
means that the prover has chosen some configuration to end phase 1. Let U be the simplex
in I representing the first set of processes in the schedule from some initial configuration
to the chosen configuration and their input values. In the subdivision of each n-simplex
sn ∈ Frm

(U), the δ values of terminated vertices are obtained from δU (sn) or δU ′ (N(sn, U
′)).

Configurations with different labels are separated according to invariant (3). Although
δU or δU ′ are two different partial protocols, they have the same output values for some
configuration CEN(S) since they are compatible by assumption for some shared simplex
S ∈ F1(U) ∩ F1(U ′). There is a sequence of output assignments from δU ′ (τ) to δU (CEN(S))
and then to δU (sn) for some shared simplex S such that only one process changes its
output values in two adjacent output assignments, where τ is a dim(CEN(S))-dimensional
subsimplex of N(sn, U

′). The colorless condition is used here since the dimension of CEN(S)
is less than n = dim(sn). The adversary terminates the vertices adjacent to the vertices
terminated with the label U

′ using the output assignments of this sequence until the output
values of the outermost layer are in δU (sn). Finally, the adversary can define the δ value
of each remaining undefined vertex using δU (sn). A partial protocol with respect to U is
constructed.

▶ Theorem 1. For a colorless task (I, O, ∆), there exists an adversary that can finalize after
the first round to win against any restricted extension-based prover if and only if there exists
a compatible set of partial protocols, each of which corresponds to a simplex U ∈ I.
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