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Abstract
In this paper, we present two self-stabilizing algorithms that enable a single (mobile) agent to explore
graphs. The agent visits all nodes starting from any configuration, i.e., regardless of the initial state
of the agent, the initial states of all nodes, and the initial location of the agent. We evaluate the
algorithms using two metrics: cover time, which is the number of moves required to visit all nodes,
and memory usage, which includes the storage needed for the state of the agent and the state of each
node. The first algorithm is randomized. Given an integer c = Ω(n), the cover time of this algorithm
is optimal, i.e., O(m) in expectation, and the memory requirements for the agent and each node
v are O(log c) and O(log(c + δv)) bits, respectively, where n and m are the numbers of nodes and
edges, respectively, and δv is the degree of v. The second algorithm is deterministic. It requires an
input integer k ≥ max(D, δmax), where D and δmax are the diameter and the maximum degree of
the graph, respectively. The cover time of this algorithm is O(m + nD), and it uses O(log k) bits
both for agent memory and each node.
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1 Introduction

We focus on the exploration problem involving a single mobile entity, referred to as a mobile
agent or simply an agent, within any undirected, simple, and connected graph G = (V, E).
This agent, functioning as a finite state machine, migrates from node to node via edges at
each time step. Upon visiting a node, the agent can access and modify the node’s local
memory, known as a whiteboard. The graph is anonymous, i.e., nodes lack unique identifiers.
Our objective is to enable the agent to visit every node in the graph in as few steps as possible
while minimizing the memory usage of both the agent and the whiteboards. This exploration
problem, fundamental in the study of mobile computing entities, has been extensively studied
[13, 11, 18, 7, 8, 15]. Exploration algorithms have frequently served as a foundation for
solving other fundamental problems such as rendezvous, gathering, dispersion, and gossip
sharing.
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In this paper, we tackle the exploration problem under a more challenging setting: self-
stabilizing exploration [13, 8]. We do not presuppose any specific initial global state (or
configuration) of the network. This means that at the start of the exploration, (i) the agent’s
location within G is arbitrary, (ii) the agent’s state is arbitrary, and (iii) the content of each
whiteboard is arbitrary. The agent is required to visit all nodes in G from any potentially
inconsistent configuration. Generally, an algorithm is considered self-stabilizing [4] for
problem P if it can solve P starting from any configuration. Self-stabilizing algorithms are
capable of handling any type of transient faults, such as temporary memory corruption,
making their design both practically and theoretically significant.

Generally speaking, several studies tackle a variety of problems involving mobile agents
in the self-stabilizing setting [2, 8, 10]. In this setting, the number of agents in the graph is
fixed. In our case (i.e., self-stabilizing exploration by a single agent), the number of agents is
always exactly one: we do not consider configurations where no agent exists, or where two or
more agents are present. Therefore, this setting may be particularly suitable for applications
where physical robots operates in a field represented by an undirected graph, and the robots
can leave information in some way at each intersection in the field.

One might think that this problem, self-stabilizing exploration by a single agent, fall
outside the scope of distributed computing because only a single mobile agent is considered.
However, we believe this is not the case, as the information accessible to the single agent is
distributed throughout the entire graph. When minimizing agent memory, the agent must
manage the necessary information distributed across the whiteboards throughout the graph.
This situation often illustrates the trade-off between time complexity and agent memory,
which is one of the essential aspects of distributed computing. Moreover, as mentioned earlier,
exploration algorithms often serve as a fundamental building block for addressing other
problems related to mobile agents. Therefore, our randomized and deterministic algorithms,
introduced in this paper, could be used to solve various (more distributed) problems, such as
rendezvous, gathering, gossiping, and leader election, in a self-stabilizing manner.

Throughout this paper, we denote the number of nodes, the number of edges, the diameter
of a graph by n, m, and D, respectively. We denote the degree of a node v by δv, and define
δmin = minv∈V δv and δmax = maxv∈V δv.

1.1 Related Work
If we are allowed to use randomization, we can easily solve the self-stabilizing exploration
with a well known strategy called the simple random walk. When the agent visits a node
v ∈ V , it simply chooses a node as the next destination uniformly at random among N(v),
where N(v) is the set of all neighbors of v in G. In other words, it moves to any node
u ∈ N(v) with probability Pv,u = 1/δv. It is well known that the agent running this simple
algorithm visits all nodes in G within O(min(mn, mD log n)) steps in expectation where
n = |V |, m = |E|, and D is the diameter of G. (See [1, 9].) Since the agent is oblivious (i.e.,
the agent does not bring any information at a migration between two nodes) and does not
use whiteboards, the simple random walk is obviously a self-stabilizing exploration algorithm.

Ikeda, Kubo, and Yamashita [7] improved the cover time (i.e., the number of steps
to visit all nodes) of the simple random walk by setting the transition probability as
P ′

v,u = δ
−1/2
u /

∑
w∈N(v) δ

−1/2
w for any u ∈ N(v). They proved that the cover time of this biased

random walk is O(n2 log n) steps in expectation. However, we cannot use this result directly
in our setting because the agent must know the degrees of all neighbors of the current node to
compute the next destination. We can implement this random walk, for example, as follows:
every time the agent visits node v, it first obtains (δu)u∈N(v) by visiting all v’s neighbors
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in 2δv steps, and then decides the next destination according to probability (P ′
v,u)u∈N(v),

which is now computable with (δu)u∈N(v). However, this implementation increases the cover
time by a factor of at least δmin and at most δmax. Whereas n2δmax log n > mn always holds,
n2δmin log n < min(mn, mD log n) may also hold. Thus, we cannot determine which random
walk has smaller cover time without detailed analysis. To bound the space complexity, we
must know an upper bound ∆ on δmax to implement this random walk. If the agent stores
(δu)u∈N(v) on v’s whiteboard, it uses O(log ∆) bits in the agent-memory and O(δv log ∆) bits
in the whiteboard of each node v. If the agent stores (δu)u∈N(v) only on the agent-memory,
it uses O(∆ log ∆) bits in the agent-memory.

The algorithm given by Priezzhev, Dhar, Dhar, and Krishnamurthy [13], which is nowadays
well known as the rotor-router, solves the self-stabilizing exploration deterministically. The
agent is oblivious, but it uses only O(log δv) bits in the whiteboard of each node v ∈ V . The
edges ({v, u})u∈N(v) are assumed to be locally labeled by 0, 1, . . . , δv − 1 in a node v. The
whiteboard of each node v has one variable v.last ∈ {0, 1, . . . , δv − 1}. Every time the agent
visits a node v, it increases v.last by one modulo δv and moves to the next node via the
edge labeled by the updated value of v.last. This simple algorithm guarantees that starting
from any configuration, the agent visits all nodes within O(mD) steps [18]. Masuzawa and
Tixeuil [8] also gave a deterministic self-stabilizing exploration algorithm. This algorithm
itself is designed to solve the gossiping problem where two or more agents have to share their
given information with each other. However, this algorithm has a mechanism to visit all the
nodes starting from any configuration, which can be seen as a self-stabilizing exploration
algorithm. The cover time and the space complexity for the whiteboards of this algorithm
are asymptotically the same as those of the rotor-router, while it uses a constant space of
the agent-memory, unlike oblivious algorithms such as the rotor-router.

In his seminal paper, Reingold [14] proved that given positive integer N , a Universal
Exploration Sequence (UXS) with length poly(N) for (possibly non-simple) connected d-
regular graphs with a size of at most N can be explicitly constructed in log-space and, hence,
in polynomial time. Although we omit the definition of UXS here, from this result, we
can immediately derive a self-stabilizing exploration algorithm for arbitrary graphs whose
size is at most N , whose cover time is polynomial in N , with memory requirements of
O(log N) bits for the agent and zero for the whiteboards. One might think that Reingold’s
UXS was designed for regular graphs, thus questioning its applicability to arbitrary graphs.
However, this difference is not significant because we can virtually transform any arbitrary
graph into a regular graph by adding self-loops (see [17] for details). Later, Ta-shma and
Zwick [17] introduced the concept of a Strongly Universal Exploration Sequence (SUXS) and
obtained results similar to those of Reingold, which allow us to improve the cover time of
the above-mentioned self-stabilizing exploration algorithm from poly(N) to poly(n). Thus,
the cover time no longer depends on a given upper bound N but only on the actual size n.

A few self-stabilizing algorithms were given for mobile agents to solve problems other than
exploration. Blin, Potop-Butucaru, and Tixeuil [2] studied the self-stabilizing naming and
leader election problem. Masuzawa and Tixeuil [8] gave a self-stabilizing gossiping algorithm.
Ooshita, Datta, and Masuzawa [10] gave self-stabilizing rendezvous algorithms.

If we assume a specific initial configuration, that is, if we do not require a self-stabilizing
solution, the agent can easily visit all nodes within 2m steps with a simple depth first
traversal (DFT). Panaite and Pelc [11] gave a faster algorithm, whose cover time is m + 3n

steps. They assume that the nodes are labeled by the unique identifiers. Their algorithm
uses O(m log n) bits in the agent-memory, while it does not use whiteboards. Sudo, Baba,
Nakamura, Ooshita, Kakugawa, and Masuzawa [15] gave another implementation of this
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Table 1 Randomized self-stabilizing graph exploration algorithms for a single agent.

Expected Cover Time Agent
Memory

Memory on
node v

Simple Random Walk O(min(mn, mD log n)) 0 0
Biased Random Walk [7]

(require ∆ ≥ δmax ) O(n2δmax log n) O(log ∆) O(δv log ∆)
O(∆ log ∆) 0

Rc (require c ≥ 2) O
(
m · min

(
D, n

c
+ 1, D

c
+ log n

))
O(log c) O(log(δv + c))

Table 2 Deterministic self-stabilizing graph exploration algorithms for a single agent.

Cover Time Agent Memory Memory on node v

Rotor-router [13] O(mD) 0 O(log δv)
UXSN [14] (require N ≥ n) polynomial in N O(log N) 0
SUXSN [17] (require N ≥ n) polynomial in n O(log N) 0

2-color DFT [8] O(mD) O(1) O(log δv)
Dk (require k ≥ max(D, δmax)) O(m + nD) O(log k) O(log k)

algorithm: they removed the assumption of the unique identifiers and reduced the space
complexity on the agent-memory from O(m log n) bits to O(n) bits by using O(n) bits in
each whiteboard. It is worthwhile to mention that these algorithms [11, 15] guarantee the
termination of the agent after exploration is completed, whereas designing a self-stabilizing
exploration algorithm with termination is impossible. Self-stabilization and termination
contradict each other by definition: if an agent-state that yields termination exists, the agent
never completes exploration when starting exploration with this state. If such state does not
exist, the agent never terminates the exploration.

In the classical or standard distributed computing model (excluding mobile agents),
the self-stabilizing token circulation problem, particularly self-stabilizing depth-first token
circulation (DFTC), has been extensively studied [6, 3, 12]. Introduced by Huang and
Chen [6], this problem was addressed with a self-stabilizing DFTC algorithm using O(log n)
bits per process, which was later reduced to O(log δmax) bits by Datta, Johnen, Petit,
and Villain[3]. Petit [12] developed a time-optimal (i.e., O(n)-time) self-stabilizing DFTC
algorithm that also requires O(log n) bits per process. However, these algorithms are not
directly applicable to self-stabilizing exploration by a single agent because the network
models are fundamentally different. In the standard model, n computational processes can
communicate with each other via communication links in parallel, whereas in our model,
only a single agent computes and updates the states of nodes in the network, potentially
requiring more time to solve problems. On the other hand, one of the main challenges for
self-stabilizing token circulation in the standard model is maintaining exactly one token
starting from any configuration where there maybe no tokens or where two or more tokens
may exist. As mentioned above, this challenge does not apply to our model, where there is
always a single agent in any configuration. Yet, many techniques from standard distributed
computing might be adaptable for mobile agent algorithms. For example, our self-stabilizing
exploration algorithms employ the technique of repeatedly recoloring graph nodes to resolve
variable inconsistencies, a common approach in the design of self-stabilizing algorithms (see
Dolev, Israeli, and Moran [5]).
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1.2 Our Contribution
In this paper, we investigate how short a cover time we can achieve in a self-stabilizing
setting. One can easily observe that the cover time is lower bounded by Ω(m): any
deterministic algorithm requires Ω(m) steps and any randomized algorithm requires Ω(m)
steps in expectation before the agent visits all nodes. (For completeness, we will prove this
lower bound as Theorem 3) Our goal is to give an algorithm whose cover time is close to this
lower bound with as small complexity of agent-memory and whiteboards as possible.

We give two self-stabilizing exploration algorithms Rc and Dk, where c and k are the
design parameters. The cover times and the space complexities of the proposed algorithms
and the existing algorithms are summarized in Tables 1 and 2.

Algorithm Rc is a randomized algorithm, where the agent visits all nodes within
O

(
m · min

(
D, n

c + 1, D
c + log n

))
steps in expectation and uses O(log c) bits in the agent-

memory and O(log δ +log c) bits of the whiteboard of each node with degree δ. Thus, we have
trade-off between the cover time and the space complexity. The larger c we use, the smaller
cover time we obtain. In particular, the expected cover time is O(m log n) steps if we set
c = Ω(D/ log n), and it becomes optimal (i.e., O(m) steps) if we set c = Ω(n). This means
that we require the knowledge of Ω(n) value to make Rc time-optimal. Fortunately, this
assumption can be ignored from a practical point of view: even if c is extremely larger than n,
the overhead will be just an additive factor of log c in the space complexity. Thus, any large
c ∈ poly(n) ∩ Ω(n) is enough to obtain the optimal cover time and the space complexity of
O(log n) bits both in the agent memory and whiteboards. Moreover, irrespective of parameter
c ≥ 2, the cover time is O(mD) steps with probability 1.

Algorithm Dk is a deterministic algorithm. The cover time of Dk is O(m + nD) steps,
which does not depend on parameter k, while the agent uses O(log k) bits both for the
agent-memory and the whiteboard of each node. Thus, we do not have trade-off between the
cover time and the space complexity. However, unlike Rc, we require an upper bound on the
diameter and the maximum degree of the graph, that is, Dk requires k ≥ max(D, δmax) to
solve a self-stabilizing exploration. If k < max(D, δmax), the correctness of Dk is no longer
guaranteed. However, the knowledge of an upper bound on max(D, δmax) is not a strong
assumption because the space complexity increases only logarithmically in k: we can assign
any large poly(n) value for k to satisfy k ≥ max(D, δmax) while keeping the space complexity
of the agent-memory and v’s whiteboard bounded by O(log n) bits. For example, consider
the case that we set k = 2500. Then, Dk can fail only if D ≥ 2500, which is too large to
consider in practice. This extremely large value for k results in the increase of the memory
usage only by 500 bits in the agent and whiteboards.

It remains open if there is a deterministic self-stabilizing exploration algorithm with
optimal cover time, i.e., O(m) steps.

2 Preliminaries

Let G = (V, E, p) be a simple, undirected, and connected graph where V is the set of nodes
and E is the set of edges. The edges are locally labeled at each node: we have a family of
functions p = (pv)v∈V such that each pv : {{v, u} | u ∈ N(v)} → {0, 1, . . . , δv − 1} uniquely
assigns a port number to every edge incident to node v. Two port numbers pu(e) and pv(e)
are independent of each other for edge e = {u, v} ∈ E.

An algorithm is defined as a 3-tuple P = (ϕ, M, W), where M is the set of states for the
agent, W = (Wk)k∈N is the family such that Wk is the set of states for each node with degree
k, and ϕ is a function that determines how the agent updates its state (i.e., agent memory)

DISC 2024
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and the state of the current node (i.e., whiteboard). At each time step, the agent is located
at exactly one node v ∈ V , and moves through an edge incident to v. Every node v ∈ V has
a whiteboard w(v) ∈ Wδv

, which the agent can access freely when it visits v. The function ϕ

is invoked every time the agent visits a node or when the exploration begins. Suppose that
the agent with state s ∈ M has moved to node v with state w(v) = x ∈ Wδv

from u ∈ N(v).
Let pin = pv({u, v}). The function ϕ takes 4-tuple (δv, pin, s, x) as the input and returns
3-tuple (pout, s′, x′) as the output. Then, the agent updates its state to s′ and w(v) to x′,
after which it moves via port pout, that is, it moves to v′ such that pout = pv({v, v′}). At
the beginning of an execution, we let pin be an arbitrary integer in {0, 1, . . . , δv − 1} where v

is the node that the agent exists on. Note that if algorithm P is randomized one, function ϕ

returns the probabilistic distributions for (pout, s′, x′).
Given a graph G = (V, E), a configuration (or a global state) consists of the location

of the agent, the state of the agent (including pin), and the states of all the nodes in V .
Algorithm P is a self-stabilizing exploration algorithm for a class G of graphs if for any graph
G = (V, E, p) ∈ G, the agent running P on G eventually visits all the nodes in V at least
once starting from any configuration. Note that, by the above definition, any self-stabilizing
exploration algorithm ensures that the single agent visits every node infinitely often.

We measure the efficiency of algorithm P by three metrics: the cover time, the agent
memory space, and the whiteboard memory space. All the above metrics are evaluated in the
worst-case manner with respect to graph G and an initial configuration. The cover time is
defined as the number of moves that the agent makes before it visits all nodes. If algorithm
P is a randomized one, the cover time is evaluated in expectation. The memory spaces of the
agent and the whiteboard on node v are just defined as log2 |M| and log2 |Wδv

|, respectively.

3 Main Theorems

The main theorems of this paper are listed below. Due to page limitations, we omit the
descriptions of algorithms Rc and Dk, as well as the proofs for these theorems. Please see
the arXiv version [16] for the detailed algorithms and proofs.

▶ Theorem 1. Algorithm Rc is a randomized self-stabilizing exploration algorithm for all
simple, undirected, and connected graphs. Irrespective of c, the cover time is O(mD) steps
with probability 1. The expected cover time is O

(
m · min

(
D, n

c + 1, D
c + log n

))
steps. The

agent memory space is O(log c) and the memory space of each node v is O(log c + log δv).

▶ Theorem 2. Algorithm Dk is a deterministic self-stabilizing exploration algorithm for all
simple, undirected, and connected graphs with a diameter and maximum degree of at most k.
The cover time is O(m + nD) steps, regardless of the value of k. The memory requirement is
O(log k) for both the agent and each node.

▶ Theorem 3. Let P be any exploration algorithm. For any positive integers n, m such that
n ≥ 3 and n − 1 ≤ m ≤ n(n + 1)/2, there exits a simple, undirected, and connected graph
G = (V, E) with |V | = n and |E| = m such that the agent running P on G starting from
some node in V requires at least (m − 1)/4 steps to visit all nodes in V in expectation.
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