
A Fully Concurrent Adaptive Snapshot Object for
RMWable Shared-Memory
Benyamin Bashari #

University of Calgary, Canada

David Yu Cheng Chan #

University of Calgary, Canada

Philipp Woelfel #

University of Calgary, Canada

Abstract
An adaptive RMWable snapshot object maintains an array A[0..m−1] of m readable shared memory
objects that support an arbitrary set of read-modify-write (RMW) operations, in addition to Read().
Each array entry A[i] can be accessed by any process using an operation Invoke(i, op), which simply
applies a supported RMW operation op to A[i] and returns the response of op. In addition, processes
can record the state of the array by calling Click(). While Click() does not return anything, a
process p can call Observe(i) to determine the value of A[i] at the point of p’s latest Click().

Recently, Jayanti, Jayanti, and Jayanti [10] presented an RMWable adaptive snapshot object,
where all operations have constant step complexity. Their algorithm is single-scanner, meaning
that Click() operations cannot be executed concurrently. We present the first fully concurrent
RMWable adaptive snapshot object, where all operations can be executed concurrently, assuming the
the system provides atomic Fetch-And-Increment and Compare-And-Swap operations. Click() and
Invoke() operations have constant step complexity, and Observe() has step complexity O(log n).
The total number of base objects needed is O(mn log n).

2012 ACM Subject Classification Theory of computation → Shared memory algorithms

Keywords and phrases Shared memory, snapshot, camera object, RMW, distributed computing

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.7

Funding We acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC),under Discovery Grant RGPIN/2019-04852, and the Canada Research Chairs
program.

1 Introduction

Linearizable snapshot objects are a fundamental building block for shared memory algorithms.
A snapshot object maintains an array of m registers, A[0 . . . m − 1]. The standard definition
allows a process to write to an array entry, and to perform a Scan(), which returns the
vector (A[0], . . . , A[m − 1]). Most research considers single-writer snapshots, where m is
equal to the number of processes, n, and process i can only write to A[i].

Implementing deterministic linearizable single-writer snapshot objects from atomic regis-
ters (which support read and write operations) has been studied intensively (e.g., [6, 1, 2, 8]).
Inoue and Chen [8] devised a linearizable snapshot, where each operation has at most
linear step complexity, which is optimal at least for Scan() operations [12]. In order to
circumvent this lower bound, researchers limited the number of operations [3] or employed
randomization [4, 13].

Many snapshot algorithms assume that the size of a memory word is large enough to
store the entire state of array A. This is an unrealistic assumption, unless large registers are
simulated by smaller ones, which is inherently inefficient. Employing stronger primitives,
such as compare-and-swap (CAS) and fetch-and-increment (FAI) objects, one can obtain

© Benyamin Bashari, David Yu Cheng Chan, and Philipp Woelfel;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 7; pp. 7:1–7:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benyaminbashari@gmail.com
https://orcid.org/0000-0002-6984-9032
mailto:david.chan1@ucalgary.ca
mailto:woelfel@ucalgary.ca
https://orcid.org/0000-0002-7847-4631
https://doi.org/10.4230/LIPIcs.DISC.2024.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

snapshot objects, where it is sufficient for a memory location to store a single array entry [15].
However, then the complexity of a Scan() is inherently lower bounded by the size of the
array.

To deal with this inherent inefficiency, some researchers studied snapshot types that
allowed certain operations to return limited information about array A more efficiently. For
example, Jayanti [9] proposed the f-array object, where a Read() operation returns the
value of a function f applied to all components of array A. This function can be computed
in a constant number of steps, but updating array A is more expensive: In Jayanti’s original
algorithm (which allows read-modify-write (RMW) operation to be applied to individual
components of A) updating a single component of A has step complexity Θ(m), where m is
the size of the array. Obryk [14] provided a version of this object, where components can
only be updated with write operations, but in O(log3 m) steps.

Attiya, Guerraoui, and Ruppert [5] followed a different approach: Their partial snapshot
object allows processes to obtain a view of only some of the entries of A. The step complexity
of such a partial scan is quadratic in the number of array entries the view contains, and the
amortized step complexity of updates is bounded by the maximum interval contention, as
well as the maximum number of components accessed by partial scan operations. Bashari and
Woelfel [7] devised an adaptive single-writer snapshot object, where a snapshot is taken by a
Click()1 operation that does not return anything. Instead, a process can later determine
the value of any array entry A[i] at the point of its latest preceding Click(), by performing
an Observe(i) operation. Contrary to the partial snapshots of Attiya, Guerraoui, and
Ruppert [5], this semantics allows observed array entries to be chosen adaptively, based on
previously observed values. The algorithm uses polynomially many single-word registers and
CAS objects, as well as an unbounded FAI object. Click() has constant step-complexity,
whereas updating or observing an array entry takes O(log n) steps.

Another shortcoming of many snapshot algorithms is that the entries of array A can only
be updated with write operations. But modern shared memory systems critically support
many types of read-modify-write (RMW) operations, which are much more powerful than
reads and writes, and most non-trivial data structures rely on such RMW operations. Thus,
conventional snapshot algorithms (where write is the only allowed update operation) cannot
be used to obtain snapshots of most data structures. Jayanti’s f -array object [9] addresses
this issue, by allowing the components of array A to be of arbitrary types. But, as mentioned
earlier, updates have step complexity of Ω(m).

Wei, Ben-David, Blelloch, Fatourou, Ruppert and Sun [16] also presented a snapshot
object, where the array entries can be modified with CAS() operations. The algorithm
supports a snapshot operation that returns a handle. The value of individual array entries at
the point of when the handle was obtained, can then be inspected adaptively. The algorithm
uses CAS objects, and the step complexity of observing the value of a single array entry
grows linearly with the number of updates that may have occurred on that location, since
the corresponding snapshot was taken. The authors also showed that their interface can be
used to easily add snapshot operations to concurrent data structures (that are implemented
from CAS objects), and presented experimental results, indicating a low overhead of this
approach.

Very recently, Jayanti, Jayanti, and Jayanti [10] presented an RMWable adaptive snapshot
object. Their algorithm generalizes the semantics of Bashari and Woelfel’s adaptive snapshot
object, by allowing array entries to be updated with any RMW operations [10] that are

1 This operation was also called Scan() in [7]. Jayanti, Jayanti, and Jayanti [10] used the term Click(),
which more clearly indicates that the semantics is different from a standard Scan().



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:3

supported by the system. Their algorithm has optimal constant step complexity for Click(),
but multiple Click() operations cannot be executed concurrently. We present a (completely
different and independently devised) algorithm for the same sequential specification. Our
algorithm achieves full concurrency (i.e., it allows concurrent Click() operations) for the
price of Observe() operations having a step complexity O(log n) instead of constant.

Consider a set O of wait-free linarizable objects available to the system, such that each
object supports a read operation (among others). Our adaptive RMWable snapshot object
maintains an array A of m objects from O, where m is an arbitrary positive integer. (The
assumption that all array components are of the same type is made for ease of description
only; in fact, each array entry can be of a different readable type.)

Each process p can execute Invoke(i, op) to apply any operation op (supported by the
object represented by A[i]) to A[i] and obtain the response of that operation. A process can
take a snapshot of the array using a Click() operation, which returns nothing. Finally, p

can at any point call Observe(i), which returns the value of A[i] at the point of p’s latest
Click() operation.

We assume that the system provides atomic FAI and CAS operations. In a system with n

processes, Click() and Invoke() operations have constant step complexity, and Observe()
has step complexity O(log n). The total number of base objects needed is O(mn log n).

The FAI object needs to perform approximately one increment per implemented operation,
and the resulting values need to be stored in other objects. Thus, strictly speaking, our
algorithm can only perform a bounded number of operations. However, in practice this
bound will never be reached on 64-bit architectures.

In the following section we describe the system model and specify the object we are
implementing. Then, in Section 3 we present the algorithm and its properties. Finally, in
Section 4, we will proof correctness. The analysis of time and space complexity is omitted
due to space restrictions.

2 Preliminaries

We consider the standard asynchronous shared memory model with n processes with IDs
0, . . . , n − 1, which communicate using atomic (or linearizable) shared memory operations on
base objects.

A register supports the standard Read() and Write() operations. An LL/SC object
provides operations, LL() and SC(v), where LL() returns the object’s value, and SC(v) called
by process p updates the value to v, if p has previously called LL() and no successful SC()
operation has occurred since then. An SC() operation returns a Boolean value indicating if
it successfully stored its parameter. A FAI object stores an integer, initially 1, and provides
an operation FAI(), which increments the object’s value by 1 and returns the value before
the increment.

While FAI() is available on standard hardware, LL/SC is not. However, there are efficient
implementations of LL/SC from registers and CAS objects, which are usually available. For
example, by using unbounded sequence numbers, one can implement an LL/SC object from a
single CAS object with constant step complexity. An algorithm by Jayanti and Petrovic [11]
avoids unbounded sequence numbers, but needs O(n) CAS objects to implement an LL/SC
object with constant step complexity.

DISC 2024



7:4 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

The Adaptive RMWable Snapshot Object
Let O denote a set of wait-free linearizable objects that are available in the system. Each
object in that set must be readable, i.e., support an operation that returns the state of the
object without changing it. For the ease of description, we assume that each operation on
such an object takes at most a constant number of steps.

The adaptive RMWable snapshot object maintains an array of m components, each
corresponding to an object in O in its initial state. For convenience, we assume w.l.o.g. that
the initial state of each component is 0.

An adaptive RMWable snapshot object allows each process p to perform the following
operations:

Invoke(i, op) performs operation op (which must be one of the operations supported by
O) on the i-th component , and returns the corresponding response.
Click() simply returns done (this is convenient for our proofs, but equivalently, one
may assume that it returns nothing).
Observe(i) returns the value of component i at the time of p’s last Scan(); or the initial
state 0 of component i if no such Scan() exists.

3 The Algorithm

Let n and m be positive integers, κ be a sufficiently large constant, ∆′ = O(log n), and
∆ = κn log n/∆′. In this section, we present an implementation of the adaptive RMWable
snapshot object for n processes and m components such that:

The space complexity of the implementation is O(m∆).
The time complexity of Click() operations is O(1).
The time complexity of Invoke() operations is O(∆′).
The time complexity of Observe() operations is O(log ∆).

Thus if we select ∆′ = 1, we have ∆ = O(n log n) and thus obtain:
The space complexity of the implementation is O(mn log n).
The time complexity of Click() operations is O(1).
The time complexity of Invoke() operations is O(1).
The time complexity of Observe() operations is O(log n).

3.1 Bashari and Woelfel’s Single-Writer Snapshot
The fundamental idea of our algorithm is based on Bashari and Woelfel’s adaptive partial
snapshot algorithm [7]. Their algorithm implements an adaptive snapshot object for n

processes and m = n components that each correspond to a single writer register. Hence,
instead of Invoke(i, −), it supports Write(i, val), which only process i can execute in order
to write some value val to the i-th component. Their algorithm employs a FAI object clk,
and m single-writer multi-reader red-black trees. The i-th red-black tree can only be updated
by process i, who uses it to record the past states of component i. On a high level, the
algorithm works as follows:

Each Click() operation takes a timestamp from the FAI object clk.
Each Write()i, val operation takes a timestamp from the FAI object clk. Then it simply
stores val along with its timestamp into the i-th red-black tree.
Each Observe(i) operation by a process p searches the i-th red-black tree for the state
with the largest timestamp that is smaller than the timestamp of the latest Click()
operation by process p.
The red-black trees are periodically pruned of recorded states that are no longer necessary,
and thus inserts and searches take only O(log n) steps.



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:5

The i-th red-black tree serves as a predecessor data structure that can be queried by all
processes but only updated by process i. As our algorithm allows updates on component
i to be performed by any process, we need to replace each red-black tree with a multi-
writer predecessor data structure. Moreover, adding the correct elements to the predecessor
data structure is substantially more challenging, because multiple processes may perform
Invoke(i, −)2 concurrently.

3.2 Outline of our Algorithm
Algorithm 1 depicts our adaptive RMWable snapshot implementation. Similar to Bashari
and Woelfel we use an FAI object clk to record timestamps. Consider some i ∈ {0, . . . , m−1}.
We use an object O[i] with the same sequential specification as the i-th component object.
To perform Invoke(i, opi), a process p performs operation opi on O[i] and records the
return value, which it will later use as its response. Before p’s Invoke(i, opi) can linearize,
the resulting state of component i needs to be “recorded” in a predecessor data structure,
together with a timestamp obtained from clk.

The predecessor data structure for the i-th component is implemented using a circularly
sorted array R[0 . . . ∆ − 1][i]. For now assume that at most ∆ Invoke(i, −) operations can
be performed; this will ensure that R[0 . . . ∆ − 1][i] remains completely sorted.

First consider the simplified single-updater case, in which only one process p is allowed to
call Invoke(i, opi). In its j-th Invoke(i, opi) operation, after performing opi on O[i], p can
obtain a new timestamp k using a FAI() operation on clk, and then write k and the new
value of O[i] into R[j][i]. This way, R[0 . . . ∆ − 1][i] remains sorted (by timestamp values).
A process q that performs a Click() also obtains a timestamp k′ from clk. To observe
component i, q can then simply return the value of O[i] that was recorded in the array entry
R[j][i], j ∈ {0, . . . , ∆ − 1}, with the largest timestamp k ≤ k′. That array entry can be found
in O(log ∆) steps using a binary search.

In order to support multiple concurrent Invoke(i, −) operations, processes with pending
such operations will agree on some state of O[i], and add that agreed upon value to an
appropriate array entry of R[0 . . . ∆ − 1][i], together with an appropriate timestamp k. This
is done in a HelpUpdate() method, as follows: We use an LL/SC object lastUpdate[i], which
stores a triple (j, k, val) where j is a sequence number, k is either a timestamp or ⊥, and
val is either a state of O[i] or ⊥. Initially, lastUpdate[i] = (0, ⊥, ⊥). In HelpUpdate(), a
process q repeats the following several times: If lastUpdate[i] = (j, ⊥, ⊥) then it reads the
current value val from O[i] and tries to change lastUpdate[i] to (j + 1, ⊥, val) using an SC()
operation. If lastUpdate[i] = (j, ⊥, val) for val ̸= ⊥, then q obtains a timestamp k from clk

and tries to change lastUpdate[i] to (j, k, val). Once lastUpdate[i] = (j, k, val) for k, val ̸= ⊥,
the pair (k, val) is the agreed upon pair that will be added to the predecessor object. Since
(k, val) is the j-th agreement pair, it can simply be written to R[j][i]. Nothing changes for
Click() and Observe() operations.

To see that this is linearizable, consider the following linearization points: A Click()
linearizes when the calling process obtains a timestamp from clk, and an Observe() can
linearize at any point during its execution interval. Now consider an Invoke(i, opi) operation
during which process p performs opi on O[i] at some point t. Let t′ be the first point after t,
at which the value of O[i] is copied to lastUpdate[i]. Then p’s Invoke(i, opi) linearizes at

2 Throughout this text we use a dash (“−”) as the argument of a method call, to indicate that the
statement applies to all arguments.

DISC 2024



7:6 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

Algorithm 1 Adaptive RMWable Snapshot Implementation.
Shared:

FAI clk, initially 1
LL/SC lastScan[0 . . . n − 1 ][0 . . . m], each initially (0, 0, 0, 0, 0)
LL/SC/Read lastUpdate[0 . . . m − 1 ], each initially (0, 0,⊥)
Object O[0 . . . m− 1], each initially fresh.
LL/SC R[0 . . . ∆− 1][0 . . . m− 1], initially (0, 0, 0)

Code for each process p:
1 Function Click()
2 (k,−,−,−, v)← lastScan[p][m].LL()
3 if v = 0 then lastScan[p][m].SC(k, 0 , 0 , 0 , 1)
4 HelpScan(p)
5 return done
6 Function HelpScan(q)
7 (−,−,−,−, v)← lastScan[q][m].LL()
8 if v = 1 then
9 k ← clk.FAI()

10 lastScan[q][m].SC(k, 0 , 0 , 0 , 0)
11 Function Observe(i)
12 HelpUpdate(i)
13 repeat v ← HelpObserve(p, i) until v ̸= ⊥
14 return v
15 Function HelpObserve(q, i)
16 (ki, maxKey, jleft, jright, v)← lastScan[q][i].LL()
17 (km,−,−,−,−)← lastScan[q][m].LL()
18 if km > ki then
19 (ju, ku, vu)← lastUpdate[i].Read()
20 if (ku, vu) ̸= (0,⊥) then jright ← ju + ∆− 1 mod ∆
21 else jright ← ju mod ∆
22 jleft ← jright + 1 mod ∆
23 (−, maxKey,−)← R[jright][i].LL()
24 (ki, v)← (km,⊥)
25 if maxKey < ki then return ⊥
26 else
27 if v ̸= ⊥ then return v
28 if jleft > jright then j ← ⌈(jleft + jright + ∆)/2⌉ mod ∆
29 else j ← ⌈(jleft + jright)/2⌉
30 (−, kr,−)← R[j][i].LL()
31 if kr ≥ ki and kr ≤ maxKey then jright ← j + ∆− 1 mod ∆
32 else jleft ← j
33 if jleft = jright then (−,−, v)← R[jleft][i].LL()
34 lastScan[q][i].SC(ki , maxKey, jleft, jright, v)
35 return ⊥
36 Function Invoke(i, opi)
37 vres ← O[i].opi()
38 HelpUpdate(i)
39 return vres
40 Function HelpUpdate(i)
41 for a ∈ {0, . . . , 5} do
42 (ju, ku, vu)← lastUpdate[i].LL()
43 if vu = ⊥ then
44 v ← O[i].Read()
45 lastUpdate[i].SC(ju + 1 ,⊥, v)
46 else
47 if ku = ⊥ then
48 k ← clk.FAI()
49 lastUpdate[i].SC(ju , k, vu)
50 else
51 (j,−,−)← R[ju mod ∆][i].LL()
52 if j < ju then R[ju mod ∆][i].SC(ju , ku , vu)
53 for a′ ∈ {0 . . . ∆′} do
54 HelpScan(ju mod n)
55 HelpObserve(ju mod n, i)
56 lastUpdate[i].SC(ju , 0 ,⊥)



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:7

the first point when some process obtains a sequence number k from clk, such that the pair
(k, val) gets stored in lastUpdate[i]. In other words, if (j, kj , valj) is the j-th triple stored
in lastUpdate[i] satisfying valj , kj ̸= ⊥, then all Invoke(i, −) operations whose operation
on O[i] is reflected in valj but not valj−1 linearize at the point timestamp kj is obtained.
The essential steps of HelpUpdate() are repeated sufficiently many times to ensure that this
happens before any of the linearized Invoke(i, −) methods respond.

In the above approach, HelpUpdate() allows processes to repeatedly agree on a value
O[i] and an associated timestamp. If (kj , valj) is the j-th agreed timestamp-value pair, then
the triple (j, kj , valj) will be written to R[j][i]. As R[0 . . . ∆ − 1][i] has size ∆, this only
works if the number of Invoke(i, −) operations is bounded by ∆. To support an unbounded
number of Invoke(i, −) operations, the triple (j, kj , valj) will be written to R[j mod ∆][i],
instead. While the array remains circularly sorted, and binary search is still possible, we
now face the problem that old values in R[0 . . . ∆][i] will eventually get overwritten.

We deal with that as follows: Following a Click() call by process p, for each i ∈
{0, . . . , m − 1}, the relevant value stored in R[0 . . . ∆][i] (i.e., the one which p would have
to return in a subsequent Observe(i) operation), will be copied to another LL/SC object,
lastScan[p][i]. When some process q performs HelpUpdate(i), it contributes O(∆′) of work
to that, guaranteeing that all relevant array entries of R[0 . . . ∆][i] are copied to lastScan[p][i],
before they get overwritten. It does so by calling HelpObserve(p, i). In that method call, it
contributes a constant number of steps to a binary search on R[0 . . . ∆][i] for the relevant
array entry. To facilitate multiple processes participating in this binary search, lastScan[p][i]
stores a 5-tuple (ki, maxKey, jleft, jright, v), where ki is the timestamp that p obtained
during its Click(), maxKey is essentially the largest key found in lastUpdate[i], when the
first process started the binary search, jleft and jright are the current left and right borders
found during the binary search, and v will eventually be set to the correct value (representing
the state of O[i]) found in the binary search. Each process q contributes to the binary search
by loading the value of lastScan[p][i], computing the next value that needs to be written to
lastScan[p][i], and then attempting to write that value using an SC() operation. If some
other process has already performed that next step of the binary search, then q’s SC() will
simply fail. The exact details of the binary search are described in Section 3.3.

We still need to deal with one other problem: Suppose process p obtains a timestamp
k from clk in its Click() method, and immediately after that falls asleep, before it can
write k anywhere. Then the relevant value of R[0 . . . ∆][i] may get overwritten before any
other process even learns about k. I.e., no process can help copying relevant values from
R[0 . . . ∆][i] to lastScan[p][i], before it’s too late. To deal with that, at the beginning of its
Click(), process p announces that it has started a Click() operation by setting a bit in the
last component of lastScan[p][m]. (Note the index m, which means the array entry is not
used for values copied from R.) That bit indicates that other processes should help p with
its Click() operation, specifically with obtaining and publishing a timestamp. They do so
by calling a method HelpScan(p) before each HelpObserve(p) call during HelpUpdate()
(the helped process, p is chosen in a round-robin fashion, based on the sequence number
found in lastUpdate[i]). In such a HelpScan(p) call, process q checks if p wants help (as
indicated by the last component of lastScan[p][m]), and if yes, q obtains a timestamp k from
clk. Then, using an SC() operation, it tries to store that timestamp into the first component
of lastScan[p][m] while also resetting the last component to 0. The timestamp associated
with p’s Click() operation is then the first timestamp that gets written to lastScan[p][m],
and the Click() linearizes when that timestamp is obtained from clk.

DISC 2024



7:8 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

3.3 Low Level Description

Our algorithm uses the following shared objects:
clk: A FAI object that stores timestamps.
lastScan[0 . . . n − 1 ][0 . . . m]: An array of LL/SC objects that record the timestamps of
the last Click() operation by each process and the states of each component object at
the time when the timestamp was received from clk.
For every process p ∈ {0, 1, . . . , n − 1}, lastScan[p][m] stores a tuple (k, 0, 0, 0, v), where k

is the timestamp of the last Click() operation by process p, and v = 1 if p needs another
timestamp for pending Click() operation; otherwise v = 0.
For every process p ∈ {0, 1, . . . , n−1} and every integer i ∈ {0, 1, . . . , m−1}, lastScan[p][i]
stores a tuple (k, maxKey, jleft, jright, v), where k is the last detected timestamp of the
last Click() operation by process p, v is either the state of the i-th component object at
the time when k was received from clk or ⊥ if that is yet to be deduced, and maxKey,
jleft, and jright are integers that are used to help deduce that state.
O[0 . . . m − 1]: For every integer i ∈ {0, 1, . . . , m − 1}, O[i] is a wait-free linearizable
readable base object with the same sequential specification as the i-th component object,
and is used to determine the state of this i-th component object at various timestamps.
Note that at any time, the state of the i-th component object is not necessarily the same
as the state of O[i].
lastUpdate[0 . . . m − 1 ]: For every integer i ∈ {0, 1, . . . , m−1}, lastUpdate[i] is an LL/SC
object that is intuitively used to repeatedly pair a timestamp k received from clk with
a state v read from the base object O[i], and thus intuitively set the state of the i-th
component object to v at the time when timestamp k was received from clk.
R[0 . . . ∆ − 1][0 . . . m − 1]: For every integer i ∈ {0, 1, . . . , m − 1}, R[0 . . . ∆ − 1][i] is a
circularly sorted array of LL/SC objects that records the previous states for the i-th
component object (replacing the red-black trees of [7]).
For every integer i ∈ {0, 1, . . . , m − 1} and j ∈ {0, 1, . . . , ∆ − 1}, R[j][i] stores a tuple
(jr, kr, vr), where roughly speaking, kr is a timestamp, vr was the state of the i-th
component at the time when kr was received from clk, and (jr, kr, vr) was the value in
lastUpdate[i] at the time when R[j][i] was last modified.

To achieve the desired time and space complexities, our algorithm heavily relies
on various helping mechanisms, which we have divided into the auxiliary functions
HelpScan(q), HelpObserve(q, i), and HelpUpdate(i) that intuitively help to complete
Click(), Observe(), and Invoke() operations respectively.

In the following we describe which steps a process p performs during each of the indicated
operations.

3.3.1 HelpScan()

During each HelpScan(q) operation, a process p performs the following steps:
1. It performs an LL() operation on lastScan[q][m] to check whether process q needs a

timestamp for a pending Click() operation (line 7).
2. If so, it takes a timestamp k from the FAI object clk (line 9), and attempts to give this

timestamp to q’s pending Click() operation by performing an SC(k, 0 , 0 , 0 , 0) operation
on lastScan[q][m] (line 10).



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:9

3.3.2 HelpObserve()

During each HelpObserve(q, i) operation, a process p performs the following steps:
1. It performs an LL() operation on lastScan[q][i] to get a tuple (ki, maxKey, jleft, jright, v),

which indicates the prior progress (if any) that has been made in helping a potential
Observe(i) operation by process q after its last Click() operation (line 16).

2. It performs an LL() operation on lastScan[q][m] to read the timestamp km of the last
Click() operation by process q (line 17).

3. If the timestamp in lastScan[q][i] is older than the timestamp km in lastScan[q][m], then
that indicates that no progress has been made in helping a potential Observe(i) operation
by process q after its last Click() operation (line 18).
In this case, the tuple (ki, maxKey, jleft, jright, v) that was received from lastScan[q][i] is
outdated and p has to compute replacement values for them. So p performs the following
steps:
a. It reads lastUpdate[i] (line 19) to determine the integer jright that corresponds to the

(first or second) most recent entry of R[0 . . . ∆ − 1][i] to be modified (lines 20 to 21),
and the integer jleft that is for the next entry after jright.

b. It then reads the timestamp maxKey from the entry corresponding to jright (line 23).
c. It then sets ki to km and v to ⊥ (line 24).
d. If the timestamp maxKey is older than the timestamp ki = km that was received from

lastScan[q][m], then it is not safe to help any potential Observe(i) operation by q

yet. Intuitively, this is because there could still be pending Invoke(i, −) operations
that could potentially be linearized before the last Click() operation by process q.
So in this case, p simply returns ⊥ on line 25, indicating that future help may still be
needed.

e. Otherwise, p attempts to set lastScan[q][i] to (km, maxKey, jleft, jright, ⊥) (line 34),
and returns ⊥ on line 35, indicating that future help may still be needed.

Otherwise, p performs the following steps:
a. It checks whether v is a non-⊥ value. If so, then this non-⊥ value v is already the

appropriate value for any potential Observe(i) operation by process q to return, and
so there is no more need to help. Thus p simply returns this non-⊥ value v on line 27.

b. It performs a single iteration of a binary search on the circularly sorted array R[0 . . . ∆−
1][i], checking the entry that is intuitively the mid-point of jleft and jright to compare
its timestamp to ki, and then appropriately setting either jleft or jright to the mid-point
(lines 28 to 32).

c. If jleft = jright, then that indicates that the binary search has completed, and intuitively
R[jleft][i] should contain (−, kr, vr) such that the timestamp kr is just before the
timestamp ki, and vr is the state of the i-th component object at the time that the
timestamp kr was received from clk. So in this case, p simply reads (−, −, v) from
R[jleft][i] (line 33).

d. Finally, p attempts to set lastScan[q][i] to (ki, maxKey, jleft, jright, v) (line 34), and
returns ⊥ on line 35, indicating that future help may still be needed.

3.3.3 HelpUpdate()

During each HelpUpdate(i) operation, a process p performs the following steps:
1. It performs an LL() operation on lastUpdate[i] to receive a tuple (ju, ku, vu) on line 42.

If vu = ⊥, then lastUpdate[i] currently contains neither a timestamp from clk nor a state
from O[i] (line 43). So p performs the following steps:

DISC 2024



7:10 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

a. It reads a state v from O[i] (line 44).
b. It performs an SC(ju + 1 , ⊥, v) operation to store this state v into lastUpdate[i]

(line 45).
Otherwise, if ku = ⊥, then lastUpdate[i] currently does not contain a timestamp from clk
(line 47). So p performs the following steps:
a. It takes a timestamp k from clk via a FAI operation (line 48).
b. It performs an SC(ju, k, vu) operation to store this timestamp k into lastUpdate[i]

(line 49).
Otherwise, lastUpdate[i] currently contains both a timestamp ku from clk and a state vu

from O[i], indicating that the state of the i-th component object was vu at the time when
the timestamp ku was received from clk. So p performs the following steps:
a. It performs an LL() operation on R[ju mod ∆][i] (line 51), which intuitively should be

the least recent entry of R[0 . . . ∆ − 1][i] to be modified, which makes it the safest to
overwrite.

b. If this entry has not yet been modified by a concurrent HelpUpdate(i) operation by any
other process, then process p performs an SC(ju, ku, vu) operation on R[ju mod ∆][i]
(line 52) to now record that the state of the i-th component object was vu at the time
when the timestamp ku was received from clk.

c. It performs ∆′ + 1 alternating HelpScan(ju mod n) and HelpObserve(ju mod n, i)
operations (lines 53 to 55). Intuitively, this ensures that enough help is given to Click()
and Observe() operations such that the next least recent entries of R[0 . . . ∆ − 1][i]
are no longer needed and can be safely overwritten.

d. It performs an SC(ju, 0 , ⊥) operation on lastUpdate[i] to indicate that it is now ready
for a new timestamp and state pair (line 56).

2. It repeats from the start another 5 times, which intuitively ensures that enough help is
given to Invoke() operations such that the resulting state of the i-th component object
and a corresponding timestamp is now recorded.

3.3.4 Click()

Each process p performs the following steps to perform a Click() operation:
1. It changes the last field of lastScan[p][m] to 1 (line 2), to indicate to all other processes

that process p needs a timestamp for this pending Click() operation.
2. It calls HelpScan(p) (line 4) to help itself complete this Click() operation, then returns

done (line 5).

3.3.5 Observe()

Each process p performs the following steps to perform an Observe(i) operation:
1. It calls HelpUpdate(i) (line 12) to help complete any pending Invoke(i, −) operations

that could interfere with this Observe(i) operation.
2. It repeatedly calls HelpObserve(p, i) to help this Observe(i) operation until it receives

a non-⊥ value v (line 12), which it then returns (line 14).

3.3.6 Invoke()

Each process p performs the following steps to perform an Invoke(i, opi) operation:
1. It performs the operation opi on O[i] (line 37), changing the state of O[i] and receiving

an appropriate response value vres for this Invoke(i, opi) operation.
2. It calls HelpUpdate(i) (line 38) to help to record down a state of the i-th component

and a timestamp into R[0 . . . ∆ − 1][i], then returns vres (line 39).



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:11

4 Proof of Correctness

In this section we prove that our algorithm is linearizable. Let H be any history of the
adaptive RMWable snapshot object.

▶ Observation 1. From the algorithm, it is clear that for every integer i ∈ [0 . . . m − 1]:
Whenever lastUpdate[i] = (−, k, ⊥), k = 0.
Every successful SC operation on lastUpdate[i] on line 45 changes lastUpdate[i] from
(j, 0, ⊥) to (j + 1, ⊥, v) for some integer j and some non-⊥ value v such that between the
matching LL operation on lastUpdate[i] on line 42 and this successful SC operation on
lastUpdate[i], v is received from a Read() operation on O[i] on line 44.
Every successful SC operation on lastUpdate[i] on line 49 changes lastUpdate[i] from
(j, ⊥, v) to (j, k, v) for some integer j, some positive integer k, and some non-⊥ value
v such that between the matching LL operation on lastUpdate[i] on line 42 and this
successful SC operation on lastUpdate[i], k is received from a FAI() operation on clk on
line 48.
Every successful SC operation on lastUpdate[i] on line 49 sets lastUpdate[i] to (−, k, −)
for some positive integer k that is greater than any previous successful SC operation on
lastUpdate[i] on line 49.
Every successful SC operation on lastUpdate[i] on line 56 changes lastUpdate[i] from
(j, k, v) to (j, 0, ⊥) for some integer j, some positive integer k, and some non-⊥ value v.

We now assign every operation on O[0 . . . m − 1] a timestamp that roughly approximates
the order in which they occur:

▶ Definition 2. For every integer i ∈ [0 . . . m − 1], we assign every operation on O[i] a
timestamp as follows:

For each Read() operation opi on O[i], let p be the process that performs opi and v be
the return value of opi. If (i) opi is performed when p executes line 44, (ii) p successfully
performs an SC(−, ⊥, v) operation on lastUpdate[i] when it next executes line 45, and
(iii) the next successful SC operation on lastUpdate[i] changes it to (−, k, v) for some
positive integer k, then the timestamp of opi is this positive integer k.
For each remaining operation opi on O[i], let op′

i be the earliest operation such that op′
i

has a timestamp and opi precedes op′
i. If op′

i exists, then the timestamp of opi is the
timestamp of op′

i; otherwise the timestamp of opi is ∞.

Thus by Observation 1 and Definition 2:

▶ Observation 3. For every operation opi on O[i]:
If opi precedes another operation op′

i on O[i], then the timestamp of opi cannot be greater
than the timestamp of op′

i.
If the timestamp of opi is a positive integer k, then k is received from a FAI() operation
on clk after opi is performed on O[i].

We now define a completion H ′ of H, for which we will find a linearization.

▶ Definition 4. Let H ′ be a completion of H such that:
For each incomplete Invoke(i, opi) operation op that has performed opi on O[i] on line 37
such that the timestamp of opi is a positive integer (not ∞), op is completed with the
same return value as opi.
All other incomplete operations are removed.

DISC 2024



7:12 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

The following lemma will help us prove that each Invoke(i, opi) operation can be
linearized between its invocation and response, because the timestamp of opi is received
during that interval. We will need it later in Definition 8, where we associate that timestamp
with the Invoke(i, opi) operation.

▶ Lemma 5. For each Invoke(i, opi) operation op in H ′, op has performed opi on O[i] and
the timestamp of opi is a positive integer k that is received from a FAI() operation on clk
between (inv(op), rsp(op)) (or simply after inv(op) if op is incomplete in H).

Observation 6 below describes some important structural properties of the timestamps
and the last bit stored in lastScan[p][m].

▶ Observation 6. From the algorithm, it is clear that for every process p ∈ [0 . . . n − 1]:
At any time t, there is a non-negative integer k and a value v ∈ {0, 1} such that
lastScan[p][m] = (k, 0, 0, 0, v).
Every successful SC operation on lastScan[p][m] on line 3 changes lastScan[p][m] from
(k, 0, 0, 0, 0) to (k, 0, 0, 0, 1), for some non-negative integer k.
Every successful SC operation on lastScan[p][m] on line 10 changes lastScan[p][m] from
(k, 0, 0, 0, 1) to (k′, 0, 0, 0, 0) for some positive integer k′ > k such that k′ was previously
received from a FAI() operation on clk on line 9.
Only process p can set lastScan[p][m] to (−, 0, 0, 0, 1), and only on line 3.

The following lemma will help us associate each Click() operation with a timestamp
(see also Definition 8 below), which will then help us determine the linearization order.

▶ Lemma 7. For every process p ∈ [0 . . . n − 1]:
1. For every complete HelpScan(p) operation hs, there is a time t between (inv(hs), rsp(hs))

such that lastScan[p][m] contains (−, 0, 0, 0, 0) at time t.
2. For each Click() operation op in H ′ invoked by process p, there is a non-negative integer

k such that op finds that lastScan[p][m] = (k, 0, 0, 0, 0) on line 2 and then successfully
changes lastScan[p][m] to (k, 0, 0, 0, 1) on line 3.

3. For each Click() operation op in H ′ invoked by process p, there is a positive integer
kop such that lastScan[p][m] = (kop, 0, 0, 0, 0) at time rsp(op) and at some time t ∈
(inv(op), rsp(op)), some process performs a FAI() operation on clk on line 9 that returns
kop.

We now assign every operation in H ′ an integer called its timestamp. These timestamps
roughly approximate the order in which the operations occur, and so they are useful for
constructing a linearization of H ′.

▶ Definition 8. We assign every operation in H ′ an integer timestamp as follows:
For each Invoke(i, opi) operation op in H ′, the timestamp of op in H ′ is the timestamp
of opi on O[i]. Note that by Lemma 5, this timestamp is a positive integer k such that
k is received from a FAI() operation on clk between (inv(op), rsp(op)) (or simply after
inv(op) if op is incomplete in H).
If op is a Click() operation by a process p, then by Lemma 7, there is a positive integer
kop such that at time rsp(op), lastScan[p][m] = (kop, 0, 0, 0, 0). The timestamp of op is
this positive integer kop.
If op is an Observe(i) operation by a process p, then the timestamp of op is the same as
the timestamp of the last Click() operation by process p that precedes op; or 0 if no such
Click() operation exists.



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:13

Next, we define a linearization L of H ′.

▶ Definition 9. Let L be a linearization of H ′ such that:
Each Invoke(i, opi) operation with timestamp k is linearized ϵ infinitesimals before the
time when a FAI() operation that returns k is applied on clk, where ϵ is the number of
operations on O[i] between opi and the last operation on O[i] with timestamp k.
Each Click() operation with timestamp k is linearized at the time when a FAI() operation
that returns k is applied on clk.
Each Observe(i) operation is linearized at the end of its interval.

▶ Lemma 10. Each operation in H ′ has a unique, well-defined linearization point in L that
is within its execution interval.

The next lemma shows that the order of Invoke(i, opi) operations in the linearization,
L, is consistent with the order of opi operations on O[i].

▶ Lemma 11. Let op be an Invoke(i, opi) operation in H ′, and op′ be an Invoke(i, op′
i)

operation in H ′. Then op precedes op′ in L if and only if opi precedes op′
i on O[i].

▶ Observation 12. For every integer i ∈ [0 . . . m − 1] and every integer j ∈ [0 . . . ∆ − 1], if
some process p changes R[j][i] from some value (j′, −, −) to some value (j′′, k, v) at some
time t, then:

p does so on line 52.
p found that lastUpdate[i] = (j′′, k, v) when it last executed line 42.
j′ < j′′ and j′′ mod ∆ = j.
j′′ is a positive integer, k is a positive integer and v is a non-⊥ value.

The following two lemmas describe some structural properties of arrays R and lastUpdate,
which will be useful for the linearization proof.

▶ Lemma 13. For every integer i ∈ [0 . . . m − 1], every positive integer j, every positive
integer k, and every non-⊥ value v, if lastUpdate[i] is set to (j, k, v) at some time t, let t′

be the earliest time when a process executes line 52 after finding that lastUpdate[i] contains
(j, k, v) on line 42. Then at any time tR, R[j mod ∆][i] is changed to (j, k, v) if and only if
t′ exists and t′ = tR.

▶ Lemma 14. For every integer i ∈ [0 . . . m − 1], every positive integer kr, every integer
j ∈ [0 . . . ∆ − 1], every value jr, and every value vr, if R[j][i] is set to (jr, kr, vr) at some
time t then jr is a positive integer, jr mod ∆ = j, vr ̸= ⊥, and lastUpdate[i] = (jr, kr, vr) at
time t.

The next observation will describe how array lastScan[0 . . . n − 1 ] can change.

▶ Observation 15. From the algorithm, it is clear that for every process p ∈ [0 . . . n − 1] and
every integer i ∈ [0 . . . m − 1]:
1. lastScan[p][i] can only be modified on line 34.
2. Let k be a positive integer, and t be the earliest time when lastScan[p][i] contains

(k, −, −, −, −). Then at time t, lastScan[p][i] contains (k, maxKey, jleft, jright, ⊥) such
that maxKey ≥ k and dist(jleft, jright) = ∆ − 1. Furthermore, before time t, (i) there is a
time when lastScan[p][m] is set to (k, 0, 0, 0, −), (ii) there is a time when R[jright][i] is set
to (−, maxKey, −), and (iii) there is no time when lastScan[p][i] contains (k′, −, −, −, −)
such that k′ ≥ k.

DISC 2024



7:14 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

3. Let k be a non-negative integer and v be a non-⊥ value. Then lastScan[p][i] cannot be
changed from (k, −, −, −, v) to (k′, −, −, −, −) for any non-negative integer k′ ≤ k.

4. At any time t, if lastScan[p][i] is changed from (k, maxKey, jleft, jright, ⊥) to
(k, maxKey′, j′

left, j′
right, v′), then (i) maxKey′ = maxKey, (ii) dist(j′

left, j′
right) =

⌈(dist(jleft, jright) + 1)/2⌉ − 1, and (iii) v′ = ⊥ if and only if dist(j′
left, j′

right) ̸= 0.

We will now define successful HelpObserve() operations, which manage to update
lastScan[0 . . . n − 1 ].

▶ Definition 16. For each HelpObserve(q, i) operation ho, we say that ho is successful if
and only if ho performs a successful SC operation on lastScan[q][i] on line 34.

The next lemma shows that each successful HelpObserve() operation corresponds to a
Click() operation after which the helped Observe() operation can linearize.

▶ Lemma 17. For every process p ∈ [0 . . . n − 1] and every integer i ∈ [0 . . . m − 1], if there
is a successful HelpObserve(p, i) operation ho, then p invokes a Click() operation op in H

such that ho executes line 34 after inv(op).

▶ Corollary 18. For every process p ∈ [0 . . . n − 1] and every integer i ∈ [0 . . . m − 1],
lastScan[p][i] can only be changed from its initial value (0, 0, 0, 0, 0) after the invocation of a
Click() operation by p.

▶ Lemma 19. For every process p ∈ [0 . . . n − 1], every integer i ∈ [0 . . . m − 1], every non-
negative integer k, every non-⊥ value v, every non-negative integer jleft and every non-negative
integer jright, if lastScan[p][m] = (k, 0, 0, 0, −) and lastScan[p][i] is set to (k, −, jleft, jright, v)
at some time t, then R[jleft][i] = (−, k∗, v) at some time t∗ ≤ t, where k∗ is the largest integer
such that k∗ ≤ k and there is a time when some entry of R[0 . . . ∆ − 1][i] contains (−, k∗, −).

The following technical lemma is critical for the linearizability proof; it helps us determine
that Observe() operations follow the corresponding Click() operation.

▶ Lemma 20. For every process p ∈ [0 . . . n−1] and every integer i ∈ [0 . . . m−1], if op is an
Observe(i) operation with response v by p in H ′ and a positive integer k is the timestamp of
op, then (i) lastScan[p][i] = (k, −, −, −, v) at some time before rsp(op), and (ii) some entry
of R[0 . . . ∆ − 1][i] contains (−, k′, −) for some integer k′ ≥ k at some time before rsp(op).

▶ Lemma 21. Linearization L of H ′ respects the specification of the adaptive RMWable
snapshot object.

Proof. Suppose, for contradiction, that the linearization L of H ′ does not respect the
specification of the adaptive RMWable snapshot object. Let op be the operation with the
earliest linearization in L such that op violates the specification of the adaptive RMWable
snapshot object, i.e., the return value of op differs from what op would have returned in a
sequential history corresponding to L.

First assume that op is an Invoke(i, opi) operation. From the algorithm, for each
operation op′

i performed on O[i], either op′
i is a Read() operation, or op′

i is performed on
O[i] by an Invoke(i, op′

i) operation in H on line 37. By Definition 2 and Definition 4,
every Invoke(i, −) operation that is in H but not in H ′ does not perform any operation
on O[i] that precedes opi. Furthermore, by Lemma 11, for each Invoke(i, op′

i) operation
op′ in H ′, op′ precedes op in L if and only if op′

i precedes opi on O[i]. Consequently, since
Read() operations cannot change the state of O[i], the return value of op cannot violate the
specification of the adaptive RMWable snapshot object. This is a contradiction.



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:15

Now assume that op is an Observe(i) operation invoked by some process p. Let kop be
the timestamp of op.

First, consider the case where kop = 0. Then by Definition 8, p does not invoke any
Click() operation before op. Then according to the specification of the adaptive RMWable
snapshot object, the Observe(i) operation op by p should return 0, the initial state of
component i. Furthermore, by Corollary 18, lastScan[p][i] always contains its initial value
(0, 0, 0, 0, 0) before rsp(op).

So consider the first HelpObserve(p, i) operation ho called by op on line 13. Since
lastScan[p][i] always contains its initial value (0, 0, 0, 0, 0) before rsp(op), ho finds that
lastScan[p][i] = (0, 0, 0, 0, 0) on line 16. Then since there is no Click() operation by p before
rsp(op), by Observation 6 ho finds that lastScan[p][m] = (0, 0, 0, 0, 0). So ho evaluates the
conditional on line 18 as false, then evaluates the conditional on line 27 as true. Thus ho
returns v = 0 ̸= ⊥ to op, and so op returns 0 on line 14 – contradicting that op violates the
specification of the adaptive RMWable snapshot object.

So it remains to consider the case where kop > 0. Then by Definition 8, p invokes Click()
operation(s) before op, and the last Click() operation op′ by p before op also has timestamp
kop. Thus by the definition of L, op′ is linearized at the time that the FAI() operation that
returns kop is applied on clk.

Let vop be the response value of op. Then by Lemma 20, (i) lastScan[p][i] =
(kop, −, jleft, jright, vop) at some time before rsp(op), for some values jleft and jright, and (ii)
some entry of R[0 . . . ∆−1][i] contains (−, k′, −) for some integer k′ ≥ kop at some time before
rsp(op). Let t < rsp(op) be the time when lastScan[p][i] is set to (kop, −, jleft, jright, vop).
Then by Observation 15(2), lastScan[p][m] is set to (kop, 0, 0, 0, −) at some time tm < t.

By Definition 8, since kop is the timestamp of the Click() operation op′ by p,
lastScan[p][m] = (kop, 0, 0, 0, 0) at time rsp(op′). So by Observation 6, since op′ is
the last Click() operation by p before the Observe(i) operation op, lastScan[p][m] =
(kop, 0, 0, 0, 0) between (rsp(op′), rsp(op)). Thus tm < rsp(op′), and by Observation 6,
lastScan[p][m] = (kop, 0, 0, 0, 0) between (tm, rsp(op)). So since tm < t < rsp(op),
lastScan[p][m] = (kop, 0, 0, 0, 0) at time t. Thus by Lemma 19 R[jleft][i] = (−, k∗, vop)
at some time t∗ ≤ t, where k∗ is the largest integer such that k∗ ≤ kop and there is a time
when some entry of R[0 . . . ∆ − 1][i] contains (−, k∗, −).

Therefore, there is no integer k̂ such that k∗ < k̂ ≤ kop and there is a time when some entry
of R[0 . . . ∆ − 1][i] contains (−, k̂, −). Now recall that some entry of R[0 . . . ∆ − 1][i] contains
(−, k′, −) for some integer k′ ≥ kop at some time before rsp(op). So by Observation 1 and
Lemma 13, from the algorithm it is clear that there is no integer k̂ such that k∗ < k̂ ≤ kop and
there is a time when lastUpdate[i] contains (−, k̂, −). Thus by Definition 2 and Definition 8,
there is no integer k̂ such that k∗ < k̂ ≤ kop and some Invoke(i, −) operation in H ′ has
timestamp k̂. Now there are two cases: either k∗ = 0, or k∗ > 0.

First, consider the case where k∗ = 0. Then, by the definition of L there are no
Invoke(i, −) operations in H ′ linearized before the Click() operation op′ by p. Thus
according to the specification of the adaptive RMWable snapshot object, the Observe(i)
operation op by p should return 0, the initial state of component i. Furthermore, since k∗ = 0,
by Observation 12 R[jleft][i] still contains its initial value (0, 0, 0) at time t∗, and so the
Observe(i) operation op returns vop = 0 – contradicting that op violates the specification of
the adaptive RMWable snapshot object.

Now it remains to consider the case where k∗ > 0. Let t̂∗ ≤ t∗ be the time when
R[jleft][i] is set to (−, k∗, vop). Then let j∗ be an integer such that at time t̂∗, R[jleft][i]
is set to (j∗, k∗, vop). Then by Lemma 14, lastUpdate[i] = (j∗, k∗, vop) at time t̂∗. Thus

DISC 2024



7:16 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

by Observation 1, there is a process q such that (i) q performs a Read() operation opi on
O[i] that returns vop on line 44, (ii) q successfully performs an SC(j∗, ⊥, vop) operation on
lastUpdate[i] when it next executes line 45, and (iii) the next successful SC operation on
lastUpdate[i] changes it to (j∗, k∗, vop). So by Definition 2, this Read() operation opi on O[i]
has timestamp k∗.

Now recall that there is no integer k̂ such that k∗ < k̂ ≤ kop and some Invoke(i, −)
operation in H ′ has timestamp k̂. So by the definition of L, every Invoke(i, −) operation in
H ′ is linearized before the Observe(i) operation op if and only if its timestamp is at most k∗.
Thus by Definition 2 and Definition 8, every Invoke(i, −) operation in H ′ that is linearized
before op executes line 37 before the Read() operation opi on O[i] with timestamp k∗.

By Definition 2 and Definition 4, every Invoke(i, −) operation that is in H but not in
H ′ does not perform any operation on O[i] that precedes opi. Furthermore, by Lemma 11,
all Invoke(i, −) operations in H ′ are linearized by the order in which they execute line 37.
Consequently, according to the specification of the adaptive RMWable snapshot object, the
Observe(i) operation op by p should have the same response value as the Read() operation
opi on O[i]. Finally, recall that the response value of the Read() operation opi on O[i] is vop,
the response value of op – contradicting that op violates the specification of the adaptive
RMWable snapshot object. Thus, we have shown that op is not an Observe() operation.

Since op is neither an Invoke() nor an Observe() operation, it must be a Click()
operation. Thus the Click() operation op returns done on line 5 – contradicting that op
violates the specification of the adaptive RMWable snapshot object. ◀

Consequently, this algorithm implements a linearizable adaptive RMWable snapshot
object.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. J. of the ACM, 40(4):873–890, 1993. doi:10.1145/153724.
153741.

2 Thomas Anderson. The performance of spin lock alternatives for shared-memory multiproces-
sors. IEEE Trans. Parallel Distrib. Syst., 1:6–16, 1990. doi:10.1109/71.80120.

3 James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith Ellen. Limited-use atomic
snapshots with polylogarithmic step complexity. J. of the ACM, 62(1):1–22, 2015. doi:
10.1145/2732263.

4 James Aspnes and Keren Censor-Hillel. Atomic snapshots in O(log3 n) steps using randomized
helping. In Proc. of 27th DISC, pages 254–268, 2013. doi:10.1007/978-3-642-41527-2_18.

5 Hagit Attiya, Rachid Guerraoui, and Eric Ruppert. Partial snapshot objects. In Fried-
helm Meyer auf der Heide and Nir Shavit, editors, Proc. of 20th SPAA, pages 336–343, 2008.
doi:10.1145/1378533.1378591.

6 Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Efficient atomic snapshots using lattice
agreement. In Proc. of 6th WDAG, pages 35–53, 1992.

7 Benyamin Bashari and Philipp Woelfel. An efficient adaptive partial snapshot implementation.
In Proc. of the 2021 ACM PODC, pages 545–555, 2021. doi:10.1145/3465084.3467939.

8 Michiko Inoue and Wei Chen. Linear-time snapshot using multi-writer multi-reader registers.
In Proc. of the 8th WDAG, pages 130–140, 1994. doi:10.1007/BFb0020429.

9 Prasad Jayanti. f -arrays: Implementation and applications. In Proc. of 21st PODC, pages
270–279, 2002. doi:10.1145/571825.571875.

10 Prasad Jayanti, Siddhartha Jayanti, and Sucharita Jayanti. MemSnap: A fast adaptive
snapshot algorithm for RMWable shared-memory. In Proc. of 43rd PODC, pages 25–35, 2024.
doi:10.1145/3662158.3662820.

https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/153724.153741
https://doi.org/10.1109/71.80120
https://doi.org/10.1145/2732263
https://doi.org/10.1145/2732263
https://doi.org/10.1007/978-3-642-41527-2_18
https://doi.org/10.1145/1378533.1378591
https://doi.org/10.1145/3465084.3467939
https://doi.org/10.1007/BFb0020429
https://doi.org/10.1145/571825.571875
https://doi.org/10.1145/3662158.3662820


B. Bashari, D. Y. C. Chan, and P. Woelfel 7:17

11 Prasad Jayanti and Srdjan Petrovic. Efficient and practical constructions of ll/sc variables. In
Proc. of 22nd PODC, pages 285–294, 2003. doi:10.1145/872035.872078.

12 Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower bounds for nonblocking
implementations. SIAM J. on Comp., 30(2):438–456, 2000. doi:10.1137/S0097539797317299.

13 MirzaBaig, Danny Hendler, Alessia Milani, and Corentin Travers. Long-lived snapshots with
polylogarithmic amortized step complexity. In Proc. of the 2020 ACM PODC, pages 31–40,
2020. doi:10.1145/3382734.3406005.

14 Robert Obryk. Write-and-f-array: implementation and an application. Master’s thesis,
Jagiellonian University, 2013.

15 Yaron Riany, Nir Shavit, and Dan Touitou. Towards a practical snapshot algorithm. Theor.
Comp. Sci., 269(1-2):163–201, 2001. doi:10.1016/S0304-3975(00)00412-6.

16 Yuanhao Wei, Naama Ben-David, Guy Blelloch, Panagiota Fatourou, Eric Ruppert, and Yihan
Sun. Constant-time snapshots with applications to concurrent data structures. In Proc. of
26th PPOPP, pages 31–46, 2021. doi:10.1145/3437801.3441602.

A Additional Proofs

This appendix contains some of the proofs omitted from Section 4.
In order to prove Lemma 5, we use the following statement, which describes how

lastUpdate[i] is affected by a complete HelpUpdate(i) operation.

▶ Lemma 22. For each complete HelpUpdate(i) operation hu, there is a positive integer j

such that:
There are at least 6 successful SC operations on lastUpdate[i] that occur between
(inv(hu), rsp(hu)).
Some process reads a non-⊥ value v from O[i] on line 44 at some time t0 ∈
(inv(hu), rsp(hu)), then successfully performs an SC(j, ⊥, v) operation on lastUpdate[i]
when it next executes line 45 at some time t1 ∈ (t0, rsp(hu)).
Some process (not necessarily distinct from the first) receives a positive integer k from
a FAI() operation on clk on line 48 at some time t2 ∈ (t1, rsp(hu)), then performs the
next successful SC operation on lastUpdate[i] when it next executes line 49 at some time
t3 ∈ (t2, rsp(hu)), which changes lastUpdate[i] from (j, ⊥, v) to (j, k, v).
Some process (not necessarily distinct from the first two) performs the next successful
SC operation on lastUpdate[i] on line 56 at some time t4 ∈ (t3, rsp(hu)), which changes
lastUpdate[i] from (j, k, v) to (j, 0, ⊥).

Proof. From the algorithm, it is clear that in every outermost loop iteration of hu, hu
performs an LL operation on lastUpdate[i] on line 42, then performs an SC operation on
lastUpdate[i] (line 45, 49, or 56). So a successful SC operation on lastUpdate[i] occurs within
each loop iteration. Thus there are at least 6 successful SC operations on lastUpdate[i] that
occur between (inv(hu), rsp(hu)). Consequently, by Observation 1:

There is a positive integer j and non-⊥ value v such that the second, third, or fourth
successful SC operation on lastUpdate[i] within (inv(hu), rsp(hu)) changes lastUpdate[i]
from (j − 1, 0, ⊥) to (j, ⊥, v) at some time t1 ∈ (inv(hu), rsp(hu)).
The process that does this successful SC operation on lastUpdate[i] at time t1 reads v

from O[i] on line 44 at some time t0 ∈ (inv(hu), t1).
There is a positive integer k such that the next successful SC operation on lastUpdate[i]
within (inv(hu), rsp(hu)) changes lastUpdate[i] from (j, ⊥, v) to (j, k, v) at some time
t3 ∈ (t1, rsp(hu)).

DISC 2024

https://doi.org/10.1145/872035.872078
https://doi.org/10.1137/S0097539797317299
https://doi.org/10.1145/3382734.3406005
https://doi.org/10.1016/S0304-3975(00)00412-6
https://doi.org/10.1145/3437801.3441602


7:18 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

The process that does this successful SC operation on lastUpdate[i] at time t3 receives
this positive integer k from a FAI() operation on clk on line 48 at some time t2 ∈ (t1, t3).
The next successful SC operation on lastUpdate[i] within (inv(hu), rsp(hu)) changes
lastUpdate[i] from (j, k, v) to (j, 0, ⊥) at some time t4 ∈ (t3, rsp(hu)).

Thus, since inv(hu) < t0 < t1 < t2 < t3 < t4 < rsp(hu), the lemma holds. ◀

Proof of Lemma 5. First, consider the case where op is incomplete in H. Then by Defini-
tion 4, op has performed opi on O[i] and the timestamp of opi is a positive integer k. So
by Definition 2, there exists a Read() operation op′

i on O[i], a process p that performs op′
i,

and a value v returned by op′
i such that (i) op′

i is performed when p executes line 44, (ii) p

successfully performs an SC(−, ⊥, v) operation on lastUpdate[i] when it next executes line 45,
(iii) the next successful SC() operation on lastUpdate[i] changes it to (−, k, v), and (iv) opi

precedes op′
i on O[i]. Thus by Observation 1, this positive integer k is received from a FAI()

operation on clk after op performs opi on O[i], which is clearly after inv(op).
It now remains to the consider the case where op is complete in H. Thus op performs

opi on O[i] on line 37, then calls HelpUpdate(i) on line 38. Since op is complete in H,
this HelpUpdate(i) call completes before rsp(op). So by Lemma 22, during this complete
HelpUpdate(i) call:

There are at least 6 successful SC operations on lastUpdate[i]
Some process q receives non-⊥ value v from a Read() operation op′

i on O[i] on line 44,
then performs the second, third, or fourth successful SC operation on lastUpdate[i] when
it next executes line 45, changing it to (−, ⊥, v).
The next successful SC operation on lastUpdate[i] changes it to (−, k′, v) for some positive
integer k′ that was received from a FAI() operation on clk after the successful SC(−, ⊥, v)
operation on lastUpdate[i] by q.

Thus by Definition 2, the timestamp of op′
i is this positive integer k′. As opi precedes op′

i,
by Definition 2 and Observation 3, the timestamp of opi is a positive integer k ≤ k′, which is
returned from a FAI() operation on clk after op performs opi on O[i] on line 37. Hence, as
k′ ≥ k is received from a FAI() operation on clk during the complete HelpUpdate(i) call of
op, k is received from a FAI() operation on clk during (inv(op), rsp(op)). ◀

Proof of Lemma 7. (1): Let hs be a complete HelpScan(p) operation. By Observation 6,
there is a value v ∈ {0, 1} such that hs finds that lastScan[p][m] contains (−, 0, 0, 0, v) on
line 7. If v = 0, we are done. So suppose v = 1. Then hs evaluates the conditional on line 8
as true, gets a positive integer k from a FAI() operation on clk on line 9, and then performs
an SC(k, 0 , 0 , 0 , 0) operation on lastScan[p][m] on line 10.

Let t0 and t1 be the times when hs executes lines 7 and 10 respectively. Note that inv(hs) <

t0 < t1 < rsp(hs). Then, since hs performs an LL operation on lastScan[p][m] at time
t0 > inv(hs), and an SC operation on lastScan[p][m] at time t1 < rsp(hs), there must exist a
successful SC operation on lastScan[p][m] between (inv(hs), rsp(hs)). By Observation 6, every
successful SC operation on lastScan[p][m] changes it either from (−, 0, 0, 0, 0) to (−, 0, 0, 0, 1)
or from (−, 0, 0, 0, 1) to (−, 0, 0, 0, 0). So there is a time t between (inv(hs), rsp(hs)) such
that lastScan[p] contains (−, 0, 0, 0, 0) at time t. Thus we have proven (1).

(2): Initially, lastScan[p][m] = (0, 0, 0, 0, 0). By Observation 6:
Only process p can set lastScan[p][m] to (−, 0, 0, 0, 1), and only on line 3.
Every successful SC operation on lastScan[p][m] changes it either from (−, 0, 0, 0, 0) to
(−, 0, 0, 0, 1) or from (−, 0, 0, 0, 1) to (−, 0, 0, 0, 0).

Thus only a Click() operation by process p can change lastScan[p][m] from (−, 0, 0, 0, 0),
and only on line 3. Consequently, every complete Click() operation by process p in H:



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:19

Finds that lastScan[p][m] contains (k, 0, 0, 0, 0) on line 2 for some non-negative integer k

(Observation 6).
Successfully changes lastScan[p][m] to (k, 0, 0, 0, 1) on line 3.
Finishes with a HelpScan(p) call on line 4, which, since we have already proven (1),
ensures that lastScan[p][m] is changed to (−, 0, 0, 0, 0) for the next Click() operation by
p.

Finally, by Definition 4, every Click() operation in H ′ is complete in H. Thus we have
proven (2).

(3): Let op be a Click() operation in H ′ that is invoked by process p. By Definition 4,
every Click() operation in H ′ is complete in H, so op is complete in H. Since we have
already proven (2), p successfully changes lastScan[p][m] to (−, 0, 0, 0, 1) on line 3 at some
time t1 > inv(op). Then p calls HelpScan(p) on line 4, which, since we have already proven
(1), ensures that some process q (not necessarily distinct from p) sets lastScan[p][m] to
(kop, 0, 0, 0, 0) for some value kop at some time t′ < rsp(op).

By Observation 6, kop is a positive integer, and at time t′, q performs a successful
SC(kop, 0 , 0 , 0 , 0) operation on lastScan[p][m] on line 10 within a HelpScan() operation.
Furthermore, since q performs a successful SC operation on lastScan[p][m] on line 10, q must
have performed the matching LL operation on lastScan[p][m] on line 7 after the successful
SC(−, 0 , 0 , 0 , 1) on lastScan[p][m] by process p at time t1. Thus q received kop from a FAI()
operation on clk on line 9 at some time t ∈ (t1, t′). Then, since t1 > inv(op) and t′ < rsp(op),
t ∈ (inv(op), rsp(op)).

Finally, from the algorithm it is clear that p does not execute line 3 after calling
HelpScan(p) on line 4. So by Observation 6, lastScan[p][m] cannot be changed again
before rsp(op), so lastScan[p][m] still contains (kop, 0, 0, 0, 0) at time rsp(op). Thus we have
proven (3). ◀

Proof of Lemma 10. This is clearly true for all Observe(i) operations in H ′.
By Lemma 7, for each Click() operation op in H ′ invoked by a process p ∈ [0 . . . n − 1],

there is a positive integer kop such that lastScan[p][m] = (kop, 0, 0, 0, 0) at time rsp(op) and
at some time t ∈ (inv(op), rsp(op)), some process performs a FAI() operation on clk on line 9
that returns kop. So by Definition 8, this positive integer kop is the timestamp of op. Thus by
Definition 9, op is linearized at the time t ∈ (inv(op), rsp(op)) when some process performs
a FAI() operation on clk on line 9 that returns kop. Consequently, every Click() operation
in H ′ has a unique, well-defined linearization point in L that is within its execution interval.

Thus it remains to consider the Invoke() operations in H ′. Let op be an Invoke(i, opi)
operation in H ′, and k be the timestamp of op in H ′. Then by Definition 8, k is also the
timestamp of opi on O[i]. Then by Lemma 5, k is received from a FAI() operation on clk
between (inv(op), rsp(op)). Then by Definition 9, there is a finite integer ϵ such that op is
linearized ϵ infinitesimals before this FAI() operation on clk. Consequently, every Invoke()
operation in H ′ has a unique, well-defined linearization point in L that is within its execution
interval. ◀

Proof of Lemma 11. Suppose opi precedes op′
i on O[i]. Then by Observation 3, the times-

tamp of opi on O[i] cannot be greater than the timestamp of op′
i on O[i]. So by Definition 9,

the Invoke(i, opi) operation op precedes the Invoke(i, op′
i) operation op′ in L.

Thus if opi precedes op′
i on O[i], then op precedes op′ in L. By symmetric arguments, if

op′
i precedes opi on O[i], then op′ precedes op in L. Consequently, op precedes op′ in L if

and only if opi precedes op′
i on O[i]. ◀

DISC 2024



7:20 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

Proof of Lemma 13. Suppose, for contradiction, that the lemma does not hold. Then let j

be the smallest positive integer for which the lemma does not hold.
First, consider the case where t′ does not exist, i.e., no process executes line 52 after

finding that lastUpdate[i] contains (j, k, v) on line 42. Then by Observation 12, no process
ever sets R[j mod ∆][i] to (j, k, v) – contradicting that the lemma does not hold for j.

So it remains to consider the case where t′ exists. Then t′ is the earliest time when a
process p executes line 52 after finding that lastUpdate[i] contains (j, k, v) on line 42. By
Observation 1:

lastUpdate[i] is never set to (j, k′, v′) for some non-⊥ values k′ and v′ such that (k′, v′) ̸=
(k, v).
lastUpdate[i] is only set to (j, k, v) at time t (and so t < t′).
Before lastUpdate[i] is set to (j, k, v) at time t, lastUpdate[i] never contains (j′, −, −) such
that j′ > j.

Thus by Observation 12, before time t′, no process ever sets R[j mod ∆][i] to (j′, −, −) such
that j′ ≥ j. So p finds that R[j mod ∆][i] contains (jLL, −, −) for some integer jLL < j on
line 51. Thus at time t′, p evaluates the conditional on line 52 as true, and performs an
SC(j, k, v) operation on R[j mod ∆][i].

Since the lemma does not hold, this p must fail this SC(j, k, v) operation on R[j mod ∆][i]
at time t′. Thus for some integer ĵ, at some time t̂ that is between the time when p performs
the matching LL operation on R[j mod ∆][i] on line 51 and time t′, there is a successful
SC(̂j, −, −) operation on R[j mod ∆][i]. So by Observation 12, ĵ is a positive integer.
Furthermore, recall that before time t′, no process ever sets R[j mod ∆][i] to (j′, −, −) such
that j′ ≥ j. Thus ĵ < j.

Now recall that j is the smallest positive integer for which the lemma does not hold.
Thus the lemma holds for the positive integer ĵ < j. So t̂ is the earliest time when a process
executes line 52 after finding that lastUpdate[i] contains (ĵ, k̂, v̂) on line 42 for some positive
integer k̂ and some non-⊥ value v̂.

By Observation 1, lastUpdate[i] can only be changed from (ĵ, k̂, v̂) on line 56. Thus from
the algorithm, it is clear that at time t̂, lastUpdate[i] still contains (ĵ, k̂, v̂). Consequently,
lastUpdate[i] contains (j, −, −) at time t and (ĵ, −, −) at time t̂ such that t < t̂ and j > ĵ –
contradicting Observation 1. ◀

Proof of Lemma 14. Let q be the process that sets R[j][i] to (jr, kr, vr) at time t. By
Observation 12, jr is a positive integer, jr mod ∆ = j, vr ̸= ⊥, and q does so on line 52,
after finding that lastUpdate[i] contains (jr, kr, vr) on line 42. Then, by Lemma 13, t is
the earliest time when a process (namely q) executes line 52 after finding that lastUpdate[i]
contains (jr, kr, vr) on line 42.

By Observation 1, lastUpdate[i] can only be changed from (jr, kr, vr) on line 56. Thus
from the algorithm, it is clear that at time t, lastUpdate[i] still contains (jr, kr, vr). ◀

Proof of Lemma 17. Let ho be the successful HelpObserve(p, i) operation that executes
line 34 earliest. Then let t be the time when ho executes line 34. By Observation 15(1) and Def-
inition 16, lastScan[p][i] can only be changed on line 34, within a successful HelpObserve(p, i)
operation. So at time t, lastScan[p][i] is changed from its initial value (0, 0, 0, 0, 0). Thus
by Observation 15(3), there is a positive integer k > 0 such that at time t, lastScan[p][i] is
changed to (k, −, −, −, −). So by Observation 15(2), before time t, there is a time when
lastScan[p][m] is set to (k, 0, 0, 0, −). By Observation 6, lastScan[p][m] can only be changed
from its initial value (0, 0, 0, 0, 0) on line 3, within a Click() operation by process p. Thus p

invokes a Click() operation op in H such that ho executes line 34 after inv(op). ◀



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:21

▶ Lemma 23. For every process p ∈ [0 . . . n − 1], every integer i ∈ [0 . . . m − 1], and every
positive integer k, if lastScan[p][i] is first set to (k, −, −, −, −) at some time ti, then clk
returns k to a FAI() operation at some time t < ti and between (t, ti), R[0 . . . ∆ − 1][i] is
modified at most n + 2 times.

The proof is omitted due to space restrictions.
Given any two integers j and j′ in [0 . . . ∆ − 1], we define dist(j, j′) to be j′ − j, if j′ ≥ j,

and j′ − j + ∆, otherwise. Note that if j ̸= j′, then dist(j, j′) = ∆ − dist(j′, j).

Proof of Lemma 19. First, consider the case where k = 0. Then by Observation 15(3),
lastScan[p][i] still contains its initial value (0, 0, 0, 0, 0). Then, since R[0][i] initially contains
(0, 0, 0), it is clear that the lemma holds.

So it remains to consider the case where k is a positive integer. Let ti be the ear-
liest time when when lastScan[p][i] = (k, −, −, −, −). Since lastScan[p][i] initially con-
tains (0, 0, 0, 0, 0), ti exists and ti < t. By Observation 15(2), at time ti, lastScan[p][i] =
(k, maxKey, j′

left, j′
right, ⊥), such that maxKey ≥ k, dist(j′

left, j′
right) = ∆ − 1, and be-

fore time ti, there is a time when lastScan[p][m] = (k, 0, 0, 0, −) and a time when
R[j′

right][i] = (−, maxKey, −).

▶ Subclaim 23.1. For each complete HelpObserve(p, i) operation ho such that ti <

inv(ho) < rsp(ho) < t, there is a successful HelpObserve(p, i) operation (not necessar-
ily distinct from ho) that executes line 34 between (inv(ho), rsp(ho)).

Proof. Consider ho:
Since ti < inv(ho) < rsp(ho) < t, by Observation 15 ho finds that lastScan[p][i] =
(k, −, −, −, ⊥) on line 16.
Since lastScan[p][m] = (k, 0, 0, 0, −) at some time before time ti and lastScan[p][m] =
(k, 0, 0, 0, −) at time t > ti, by Observation 6, lastScan[p][m] always contains (k, 0, 0, 0, −)
between (ti, t). Thus since ti < inv(ho) < rsp(ho) < t, ho finds that lastScan[p][m] =
(k, 0, 0, 0, −) on line 17.
So ho evaluates the conditionals on lines 18 and 27 as false.
Thus ho performs an SC operation on lastScan[p][i] on line 34.

Consequently, by Definition 16 there exists a successful HelpObserve(p, i) operation (not
necessarily distinct from ho) that executes line 34 between (inv(ho), rsp(ho)). ◀

Let tk be the time when a FAI() operation on clk returns k. By Lemma 23, tk exists
and tk < ti < t.

The proofs of the following twwo claims are omitted due to space restrictions.

▶ Subclaim 23.2. R[0 . . . ∆ − 1][i] is modified O(n log ∆/∆′) times between (tk, t).

▶ Subclaim 23.3. There is an integer j∗ ∈ [0 . . . ∆ − 1] such that:
1. R[j′

right][i] always contains (−, maxKey, −) between (ti, t).
2. R[j∗][i] always contains (−, k∗, −) between (ti, t).
3. For every integer j ∈ [0 . . . ∆ − 1] such that dist(j′

left, j) ≤ dist(j′
left, j∗), at any time t̂

such that ti ≤ t̂ ≤ t, R[j][i] = (−, k̂, −) for some integer k̂ such that either k̂ < k or
k̂ > maxKey.

4. For every integer j ∈ [0 . . . ∆−1] such that dist(j′
left, j) > dist(j′

left, j∗), at any time t̂ such
that ti ≤ t̂ ≤ t, R[j][i] = (−, k̂, −) for some integer k̂ such that k̂ > k and k̂ ≤ maxKey.

Now consider each successful HelpObserve(p, i) operation ho′ that sets lastScan[p][i] to
(k, −, −, −, −) on line 34 after time ti. Recall that ti is the earliest time when lastScan[p][i]
contains (k, −, −, −, −), t is the time when lastScan[p][i] is set to (k, −, jleft, jright, v), and
v is a non-⊥ value. So by Observation 15, from the algorithm it is clear that ho′ executes

DISC 2024



7:22 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

line 16 after time ti, and executes line 34 before or at time t. Furthermore, by Observation 15,
there are integers j1, j2, j3, and j4 such that ho′ changes lastScan[p][i] from (k, −, j1, j2, −)
to (k, −, j3, j4, −) on line 34. Thus from the algorithm it is clear that ho′ evaluates the
conditionals on lines 18 and 27 as false. Therefore ho′:

Finds that lastScan[p][i] = (k, −, j1, j2, −) on line 16.
Evaluates the conditional on line 18 as false.
Finds that R[j][i] = (−, kr, −) on line 30, where j is an integer such that dist(j1, j) ≤
dist(j1, j2).
By Subclaim 23.3, evaluates the conditional on line 31 as true if and only if dist(j′

left, j) >

dist(j′
left, j∗).

Consequently dist(j′
left, j1) ≤ dist(j′

left, j3) ≤ dist(j′
left, j∗) ≤ dist(j′

left, j4) ≤ dist(j′
left, j2) ≤

dist(j′
left, j′

right).
Finally, by Observation 15(1) and Definition 16, some successful HelpObserve(p, i)

operation hot sets lastScan[p][i] to (k, −, jleft, jright, v) on line 34 at time t > ti. So, since
v ≠ ⊥, by Observation 15(4), jleft = jright = j∗. Thus hot finds that R[j∗][i] = (−, −, v) on
line 33 at some time between (ti, t). Therefore by Subclaim 23.3, R[jleft][i] = (−, k∗, v) at
some time t∗ ≤ t, where k∗ is the largest integer such that k∗ ≤ k and there is a time when
some entry of R[0 . . . ∆ − 1][i] contains (−, k∗, −). ◀

Proof of Lemma 20. By Definition 8, k is also the timestamp of the last Click() operation
op′ by p that precedes op in H ′, and at rsp(op′), lastScan[p][m] = (k, −, −, −, −). Note that
by Observation 6, lastScan[p][m] always contains (k, −, −, −, −) between (rsp(op′), rsp(op)).
Since the Observe(i) operation op returns v, op calls a HelpObserve(p, i) operation ho that
returns v on line 13, and v ̸= ⊥.

Consider this HelpObserve(p, i) operation ho. On line 16, ho finds that
lastScan[p][i] = (ki, −, −, −, v′). Since lastScan[p][m] always contains (k, −, −, −, −) between
(rsp(op′), rsp(op)), ho finds that lastScan[p][m] = (k, −, −, −, −) on line 17. Then since ho
returns v ̸= ⊥, from the algorithm it is clear that ho evaluates the conditional on line 18 as
false, and so k ≤ ki. So by Observation 15(2), k = ki. Finally, since ho does not return ⊥,
ho returns v′ on line 27. Thus v′ = v, and so ho found that lastScan[p][i] = (k, −, −, −, v) on
line 16.

Next, let k′ be a value such that ho found that lastScan[p][i] = (k, k′, −, −, v) on line 16.
Furthermore, let t be the earliest time when lastScan[p][i] contains (k, −, −, −, −). Then
by Observation 15(4), lastScan[p][i] contains (k, k′, −, −, −) at time t. Consequently, by
Observation 15(2), k′ ≥ k and before time t, there is a time when some entry of R[0 . . . ∆−1][i]
is set to (−, k′, −). ◀


	1 Introduction
	2 Preliminaries
	3 The Algorithm
	3.1 Bashari and Woelfel's Single-Writer Snapshot
	3.2 Outline of our Algorithm
	3.3 Low Level Description
	3.3.1 HelpScan()
	3.3.2 HelpObserve()
	3.3.3 HelpUpdate()
	3.3.4 Click()
	3.3.5 Observe()
	3.3.6 Invoke()


	4 Proof of Correctness
	A Additional Proofs

