
38th International Symposium on
Distributed Computing

DISC 2024, October 28–November 1, 2024, Madrid, Spain

Edited by

Dan Alistarh

LIPIcs – Vo l . 319 – DISC 2024 www.dagstuh l .de/ l ip i c s



Editors

Dan Alistarh
Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
dan.alistarh@ist.ac.at

ACM Classification 2012
Software and its engineering → Distributed systems organizing principles; Computing methodologies →
Distributed computing methodologies; Computing methodologies → Concurrent computing methodologies;
Hardware → Fault tolerance; Information systems → Data structures; Networks; Theory of computation;
Theory of computation → Models of computation; Theory of computation → Design and analysis of
algorithms

ISBN 978-3-95977-352-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-352-2.

Publication date
October, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.DISC.2024.0

ISBN 978-3-95977-352-2 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-3650-940X
mailto:dan.alistarh@ist.ac.at
https://www.dagstuhl.de/dagpub/978-3-95977-352-2
https://www.dagstuhl.de/dagpub/978-3-95977-352-2
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.DISC.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-352-2
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics


0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université Paris Cité, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

DISC 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics




Contents

Preface
Dan Alistarh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:ix–0:x

Organization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xi–0:xiii

Distinguished Paper Awards
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xv

2024 Principles of Distributed Computing Doctoral Dissertation Awards
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xvii–0:xviii

2024 Edsger W. Dijkstra Prize in Distributed Computing
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xix

Regular Papers

Fully Local Succinct Distributed Arguments
Eden Aldema Tshuva and Rotem Oshman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:1–1:24

A Knowledge-Based Analysis of Intersection Protocols
Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden . . . . . . . . . . . . . . . . . . . . . 2:1–2:17

Byzantine Resilient Distributed Computing on External Data
John Augustine, Jeffin Biju, Shachar Meir, David Peleg, Srikkanth Ramachandran,
and Aishwarya Thiruvengadam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3:1–3:23

Almost Optimal Algorithms for Token Collision in Anonymous Networks
Sirui Bai, Xinyu Fu, Xudong Wu, Penghui Yao, and Chaodong Zheng . . . . . . . . . . . . 4:1–4:20

Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs
Alkida Balliu, Pierre Fraigniaud, Patrick Lambein-Monette, Dennis Olivetti, and
Mikaël Rabie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:1–5:20

Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model
Leonid Barenboim and Uri Goldenberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6:1–6:23

A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory
Benyamin Bashari, David Yu Cheng Chan, and Philipp Woelfel . . . . . . . . . . . . . . . . . . 7:1–7:22

Hyperproperty-Preserving Register Specifications
Yoav Ben Shimon, Ori Lahav, and Sharon Shoham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8:1–8:19

Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity
Nicolas Bonichon, Arnaud Casteigts, Cyril Gavoille, and Nicolas Hanusse . . . . . . . . 9:1–9:16

Vertical Atomic Broadcast and Passive Replication
Manuel Bravo, Gregory Chockler, Alexey Gotsman, Alejandro Naser-Pastoriza, and
Christian Roldán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10:1–10:19

What Cannot Be Implemented on Weak Memory?
Armando Castañeda, Gregory Chockler, Brijesh Dongol, and Ori Lahav . . . . . . . . . . 11:1–11:22

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:vi Contents

Faster Cycle Detection in the Congested Clique
Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams . . . . . . . . . . . . 12:1–12:18

Deterministic Self-Stabilising Leader Election for Programmable Matter with
Constant Memory

Jérémie Chalopin, Shantanu Das, and Maria Kokkou . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13:1–13:17

Efficient Signature-Free Validated Agreement
Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui,
Jovan Komatovic, Manuel Vidigueira, and Igor Zablotchi . . . . . . . . . . . . . . . . . . . . . . . . 14:1–14:23

Convex Consensus with Asynchronous Fallback
Andrei Constantinescu, Diana Ghinea, Roger Wattenhofer, and Floris Westermann 15:1–15:23

A Simple Computability Theorem for Colorless Tasks in Submodels of the
Iterated Immediate Snapshot

Yannis Coutouly and Emmanuel Godard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16:1–16:22

Breaking Through the Ω(n)-Space Barrier: Population Protocols Decide
Double-Exponential Thresholds

Philipp Czerner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17:1–17:18

On the Limits of Information Spread by Memory-Less Agents
Niccolò D’Archivio and Robin Vacus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18:1–18:21

Parallel Set Cover and Hypergraph Matching via Uniform Random Sampling
Laxman Dhulipala, Michael Dinitz, Jakub Łącki, and Slobodan Mitrović . . . . . . . . . . 19:1–19:23

The Computational Power of Discrete Chemical Reaction Networks with
Bounded Executions

David Doty and Ben Heckmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20:1–20:15

Broadcast and Consensus in Stochastic Dynamic Networks with Byzantine
Nodes and Adversarial Edges

Antoine El-Hayek, Monika Henzinger, and Stefan Schmid . . . . . . . . . . . . . . . . . . . . . . . . 21:1–21:15

On the Power of Graphical Reconfigurable Circuits
Yuval Emek, Yuval Gil, and Noga Harlev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22:1–22:16

Lock-Free Augmented Trees
Panagiota Fatourou and Eric Ruppert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23:1–23:24

Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs
Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin . . . . . . . . . . . . . . . . . . . . . 24:1–24:22

Distributed Model Checking on Graphs of Bounded Treedepth
Fedor V. Fomin, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and
Ioan Todinca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25:1–25:20

Content-Oblivious Leader Election on Rings
Fabian Frei, Ran Gelles, Ahmed Ghazy, and Alexandre Nolin . . . . . . . . . . . . . . . . . . . . 26:1–26:20

Sorting in One and Two Rounds Using t-Comparators
Ran Gelles, Zvi Lotker, and Frederik Mallmann-Trenn . . . . . . . . . . . . . . . . . . . . . . . . . . . 27:1–27:20

Self-Stabilizing MIS Computation in the Beeping Model
George Giakkoupis, Volker Turau, and Isabella Ziccardi . . . . . . . . . . . . . . . . . . . . . . . . . . 28:1–28:21



Contents 0:vii

Massively Parallel Ruling Set Made Deterministic
Jeff Giliberti and Zahra Parsaeian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29:1–29:21

Granular Synchrony
Neil Giridharan, Ittai Abraham, Natacha Crooks, Kartik Nayak, and Ling Ren . . . 30:1–30:22

Distributed Delta-Coloring Under Bandwidth Limitations
Magnús M. Halldórsson and Yannic Maus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31:1–31:22

Quantum Byzantine Agreement Against Full-Information Adversary
Longcheng Li, Xiaoming Sun, and Jiadong Zhu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32:1–32:22

Communication Requirements for Linearizable Registers
Raïssa Nataf and Yoram Moses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33:1–33:17

Single Bridge Formation in Self-Organizing Particle Systems
Shunhao Oh, Joseph L. Briones, Jacob Calvert, Noah Egan, Dana Randall, and
Andréa W. Richa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34:1–34:22

Memory Lower Bounds and Impossibility Results for Anonymous Dynamic
Broadcast

Garrett Parzych and Joshua J. Daymude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35:1–35:18

Connectivity Labeling in Faulty Colored Graphs
Asaf Petruschka, Shay Spair, and Elad Tzalik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36:1–36:22

Sing a Song of Simplex
Victor Shoup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37:1–37:22

Near-Linear Time Dispersion of Mobile Agents
Yuichi Sudo, Masahiro Shibata, Junya Nakamura, Yonghwan Kim, and
Toshimitsu Masuzawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38:1–38:22

The Power of Abstract MAC Layer: A Fault-Tolerance Perspective
Qinzi Zhang and Lewis Tseng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39:1–39:22

Brief Announcements

Brief Announcement: Distributed Maximum Flow in Planar Graphs
Yaseen Abd-Elhaleem, Michal Dory, Merav Parter, and Oren Weimann . . . . . . . . . . . 40:1–40:8

Brief Announcement: Towards Optimal Communication Byzantine Reliable
Broadcast Under a Message Adversary

Timothé Albouy, Davide Frey, Ran Gelles, Carmit Hazay, Michel Raynal,
Elad Michael Schiller, François Taïani, and Vassilis Zikas . . . . . . . . . . . . . . . . . . . . . . . 41:1–41:7

Brief Announcement: Solvability of Three-Process General Tasks
Hagit Attiya, Pierre Fraigniaud, Ami Paz, and Sergio Rajsbaum . . . . . . . . . . . . . . . . . . 42:1–42:7

Brief Announcement: Unifying Partial Synchrony
Andrei Constantinescu, Diana Ghinea, Jakub Sliwinski, and Roger Wattenhofer . . 43:1–43:7

Brief Announcement: The Expressive Power of Uniform Population Protocols
with Logarithmic Space

Philipp Czerner, Vincent Fischer, and Roland Guttenberg . . . . . . . . . . . . . . . . . . . . . . . . 44:1–44:7

DISC 2024



0:viii Contents

Brief Announcement: Best-Possible Unpredictable Proof-Of-Stake
Lei Fan, Jonathan Katz, Zhenghao Lu, Phuc Thai, and Hong-Sheng Zhou . . . . . . . . 45:1–45:7

Brief Announcement: Optimal Uniform Circle Formation by Asynchronous
Luminous Robots

Caterina Feletti, Debasish Pattanayak, and Gokarna Sharma . . . . . . . . . . . . . . . . . . . . . 46:1–46:7

Brief Announcement: Agreement Tasks in Fault-Prone Synchronous Networks of
Arbitrary Structures

Pierre Fraigniaud, Minh Hang Nguyen, and Ami Paz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47:1–47:5

Brief Announcement: Distinct Gathering Under Round Robin
Fabian Frei and Koichi Wada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48:1–48:8

Brief Announcement: Decreasing Verification Radius in Local Certification
Jan Matyáš Křišťan and Josef Erik Sedláček . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49:1–49:6

Brief Announcement: Agent-Based Leader Election, MST, and Beyond
Ajay D. Kshemkalyani, Manish Kumar, Anisur Rahaman Molla, and
Gokarna Sharma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50:1–50:7

Brief Announcement: Clock Distribution with Gradient TRIX
Christoph Lenzen and Shreyas Srinivas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51:1–51:7

Brief Announcement: Reconfigurable Heterogeneous Quorum Systems
Xiao Li and Mohsen Lesani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52:1–52:8

Brief Announcement: Concurrent Aggregate Queries
Gal Sela and Erez Petrank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53:1–53:7

Brief Announcement: Colorless Tasks and Extension-Based Proofs
Yusong Shi and Weidong Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54:1–54:6

Brief Announcement: Self-Stabilizing Graph Exploration by a Single Agent
Yuichi Sudo, Fukuhito Ooshita, and Sayaka Kamei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55:1–55:7



Preface

DISC 2024, the 38th International Symposium on Distributed Computing, was held between
October 28th and November 1st, 2024, in Madrid, Spain. DISC is an international forum
on the theory, design, analysis, and implementation of distributed systems and networks,
focusing on distributed computing. DISC is organized in cooperation with the European
Association for Theoretical Computer Science (EATCS).

Statistics

DISC 2024 received 170 submissions in the “regular paper” category, and 9 submissions in the
“brief announcement” category. The program was selected by a program committee consisting
of 37 full members and 2 half-load members. The program committee was assisted by 111
external reviewers. As usual for DISC, the committee used a relaxed form of double-blind
reviewing, where the submissions themselves were anonymous, but authors were permitted to
disseminate their work by uploading it to online repositories or by giving talks about it. Each
submission was evaluated by at least three reviewers, and final decisions were made during a
2-day virtual PC meeting, during which approximately 30 submissions were discussed.

The final statistics are as follows:
39 submissions were accepted as regular papers, for an acceptance rate of ∼ 23%;
16 brief announcements were accepted, of which two were submitted in this form, and 14
are short versions of full paper submissions.

The keynote talks at DISC 2024 were given by Stephanie Gil (Harvard University), Stefan
Schmid (TU Berlin), and by Gauri Joshi (Carnegie Mellon University).

Awards

The following two awards are jointly sponsored by DISC and the ACM Symposium on
Principles of Distributed Computing (PODC):

The 2024 Edsger W. Dijkstra Prize in Distributed Computing was awarded
to Nicola Santoro and Peter Widmayer for their paper: “Time is Not a Healer” which
originally appeared in the Proceedings of the 6th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pages 304–313, 1989. The paper introduced the
fundamental notion of dynamic transmission faults, with the goal of modeling message
losses on a communication channel, in an otherwise synchronous system. As such, it
was the first to investigate the impact of a changing communication topology during the
execution of the algorithm on the solvability of distributed agreement tasks, enriching
our understanding of this area, and leading to significant follow-up work. The prize was
awarded to the authors at PODC 2024 in Nantes.
The 2024 Principles of Distributed Computing Doctoral Dissertation Award
was presented at DISC 2024. The committee decided to share the award between two
recipients: Dr. Robin Vacus for his dissertation “Algorithmic Perspectives to Collective
Natural Phenomena,” and Dr. Yaunhao Wei for his dissertation “General Techniques for
Efficient Concurrent Data Structures.”

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:x Preface

This volume also includes the citations the best paper and best student paper awards at
DISC 2024, as well as the citations for the 2024 Edsger W. Dijkstra Prize in Distributed
Computing, which was presented at PODC 2024, and for the Best Dissertation Awards,
which were presented at DISC 2024.

Acknowledgments

I would like to end by wholeheartedly thanking everyone who contributed to this edition
of DISC: the authors who submitted their work to DISC, the PC members and external
reviewers who helped formed the DISC 2024 program, the keynote speakers, the organizing
committee, and in particular the local chair Alexey Gotsman, the workshop chairs, and the
members of the award committees. Further, I would like to thank Joel Rybicki for help
with the proceedings, John Lazarsfeld for help running the program committee meeting, and
William Moses, Jr. for handling DISC 2024 publicity.

I am also extremely grateful to all the members of the steering committee, who supported
me significantly throughout the process, and to former chairs of DISC, in particular Rotem
Oshman, who provided extremely useful practical information and advice. Finally, I would
like to thank EATCS for their support, and the staff Schloss Dagstuhl – Leibniz-Zentrum für
Informatik for their help in preparing these proceedings.

November 2024 Dan Alistarh
DISC 2024 Program Chair



Organization

The International Symposium on Distributed Computing (DISC), is an annual forum for the
presentation of research on all aspects of distributed computing. It is organized in cooperation
with the European Association for Theoretical Computer Science (EATCS). The symposium
was established in 1985 as a biannual International Workshop on Distributed Algorithms on
Graphs (WDAG). The scope was soon extended to cover all aspects of distributed algorithms
and WDAG came to stand for International Workshop on Distributed AlGorithms, becoming
an annual symposium in 1989. To reflect the expansion of its area of interest, the name was
changed to DISC (International Symposium on DIStributed Computing) in 1998, opening
the symposium to all aspects of distributed computing. The aim of DISC is to reflect the
exciting and rapid developments in this field.

Program Chair

Dan Alistarh Institute of Science and Technology (ISTA), Austria

Program Committee

Ittai Abraham Intel (Israel)
Vitaly Aksenov City University of London (United Kingdom)
Dan Alistarh ISTA (Austria), Chair
Hagit Attiya Technion (Israel)
Georgia Avarikioti TU Vienna (Austria)
Naama Ben-David Technion (Israel)
Janna Burman Paris-Saclay University, LISN (France)
Armando Castañeda Universidad Nacional Autónoma de México (UNAM) (Mexico)
Yi-Jun Chang National University of Singapore (Singapore)
Bogdan Chlebus Augusta University (USA)
Shir Cohen Cornell (USA)
Varsha Dani Rochester Institute of Technology (USA)
Peter Davies-Peck Durham University (United Kingdom)
Laxman Dhulipala University of Maryland and Google (USA)
Michal Dory University of Haifa (Israel)
Faith Ellen University of Toronto (Canada)
Manuela Fischer ETH Zurich (Switzerland)
George Giakkoupis INRIA Rennes (France)
Seth Gilbert National University of Singapore (Singapore)
Alexey Gotsman IMDEA (Spain)
Siddhartha Visveswara Jayanti Google Research (USA)
Mohsen Lesani University of California, Santa Cruz (USA)
Julian Loss CISPA Helmholtz Center for Information Security (Germany)
Yannic Maus TU Graz (Austria)
Darya Melnyk TU Berlin (Germany)
Alessia Milani Aix-Marseille University LIS (France)
Giorgi Nadiradze Aptos (USA)

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:xii Organization

Dennis Olivetti Gran Sasso Science Institute (Italy)
Rotem Oshman Tel-Aviv University and Princeton University (Israel/USA)
Peter Robinson Augusta University (USA)
Joel Rybicki HU Berlin (Germany)
Jared Saia University of New Mexico (USA)
Thomas Sauerwald Cambridge University (United Kingdom)
Christian Scheideler Paderborn University (Germany)
Stefan Schmid TU Berlin (Germany)
Lili Su Northeastern University (USA)
Jukka Suomela Aalto University (Finland)
Marko Vukolic Protocol Labs (Switzerland)
Leqi Zhu ISTA (Austria)

Organizing Committee

Alexey Gotsman IMDEA Software Institute (Spain)
Antonio Fernández Anta IMDEA Networks Institute (Spain)
Yannic Maus TU Graz (Austria), Workshops Chair
William K. Moses Jr. Durham University (United Kingdom), Publicity Chair
Joel Rybicki HU Berlin (Germany), Proceedings Chair

Steering Committee

Jukka Suomela Aalto University (Finland), Chair
Hagit Attiya Technion (Israel), Vice-Chair
Christian Scheideler University of Paderborn (Germany)
Rotem Oshman Tel Aviv University (Israel)
Seth Gilbert NUS (Singapore)
Yannic Maus TU Graz (Austria)

External Reviewers

Sharareh Alipour James Aspnes John Augustine
Lukas Aumayer Alkida Balliu Joffroy Beauquier
Trevor Brown Costas Busch Christian Cachin
Benjamin Chan Chaodong Cheng Arka Rai Choudhuri
Daniel Collins Emilio Cruciani Poulami Das
Shantanu Das Quinten De Man Dipan Dey
Fabien Dufoulon Antoine El-Hayek Robert Elsässer
Yuval Emek Constantin Enea Ali Farahbakhsh
Alexander Fedorov Nick Fischer Orr Fischer
Maxime Flin Pierre Fraigniaud Matthias Függer
Hugo Rincon Galeana Rati Gelashvili Anna Geisler
Yuval Gil Jeff Giliberto Wojciech Golab
Themis Gouleakis Magnus M. Halldorsson Thomas P. Hayes
Juho Hirvonen Gary Hoppenworth Xing Hu



Organization 0:xiii

Shang-En Huang David Ilcinkas Sucharita Jayanty
Valerie King Lucianna Kiffer Peter Kling
Ajay Kshemkalyani Ralf Kuestera Petr Kuznetsov
Arnaud Labourel Rustam Latypov John Lazarsfeld
John Lazarsfeld sysadmin François Le Gall Christoph Lenzen
Peter Li Dimitrios Los Giuliano Losa
Akaki Mamageiashvili Elad Michael Schiller Gopinath Mishrai
Slobodan Mitrović Masayuki Miyamoto Kaushik Mondal
William K. Moses Jr. Yoram Moses Raïssa Nataf
Yasamin Nazari Ray Neiheiser Calvin Newport
Thomas Nowak Tsutomu Okano Charlotte Out
Shreyas Pai Sergei Pankratov Ami Paz
Sriram V. Pemmaraju Matthieu Perrin Seth Pettie
Rafael Pinot Nuno Preguica Mikaël Rabie
Sergio Rajsbaum Michel Raynal Wen Richard
Nicolas Rivera Atri Rudra Mher Safaryan
Giulia Scafino Noa Schiller Gal Sela
Gokarna Sharma Kecheng Shi Gilad Stern
Hsin-Hao Su Yuichi Sudo Pierre Sutra
John Sylvester Gadi Taubenfeld Amitabh Trehan
Jara Uitto Manuel Vidigueira Hoa Vu
Koichi Wada Haochen Wang Yuanhao Wei
Jennifer Welch Julian Werthmann Luca Zanetti

Acknowledgements

DISC 2024 was organized by the IMDEA Software Institute. The travel of the invited
speakers to DISC was supported by grant CNS2023-144164, funded by
MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR.

DISC 2024 acknowledges the use of HotCRP for handling submissions and managing the
review process and LIPIcs for producing and publishing the proceedings.

DISC is organized in cooperation with the
European Association for Theoretical Computer
Science (EATCS).

DISC 2024





Distinguished Paper Awards

Best Papers

The DISC Program Committee has selected the following two papers to share the DISC 2024
best paper award:

Hyperproperty-Preserving Register Specifications
by Yoav Ben Shimon, Ori Lahav, and Sharon Shoham.

Reasoning about hyperproperties of concurrent implementations, such as the guarantees
these implementations provide to “client” programs, has been a central area in distributed
computing. This paper makes significant contributions to this area by introducing novel
concepts such as “complete” implementations and “decisive linearizability.” The authors
provide a comprehensive framework for understanding and analyzing the preservation of
hyperproperties in shared object implementations, extending beyond traditional linearizability.
This research opens up new avenues for simplifying reasoning about concurrent systems and
their complex behaviors. The paper’s clear presentation, technical depth, and potential for
far-reaching impact in both theory and practice make it a standout contribution to this
year’s program. This work also receives this year’s Best Student Paper award.

Lock-Free Augmented Trees
by Panagiota Fatourou and Eric Ruppert.

The paper introduces an elegant and efficient method for maintaining aggregate informa-
tion in concurrent tree data structures, addressing a critical challenge in parallel computing.
The authors’ ingenious propagation technique enables the augmentation of both static and
dynamic tree structures with powerful query capabilities while preserving lock-free concur-
rency and linearizability. The work demonstrates the technique’s applicability to tries and
binary search trees, rigorously proving its correctness and efficiency. The work could have
significant impact on both theoretical and practical aspects of concurrent programming.

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




2024 Principles of Distributed Computing
Doctoral Dissertation Awards

The committee for the 2024 Principles of Distributed Computing Doctoral Dissertation
Award decided to share the award between two recipients:

Dr. Robin Vacus for his dissertation “Algorithmic Perspectives to Collective Natural
Phenomena.”
Dr. Yaunhao Wei for his dissertation “General Techniques for Efficient Concurrent Data
Structures.”

Dr. Vacus’s Dissertation

Dr. Vacus completed bis PhD under the supervision of Amos Korman and Pierre Fraigniaud,
at the Université Paris Cité. His thesis applies a distributed systems approach to problems
and models inspired by biology and sociology. The first part of the thesis considers solutions
to two agreement-related problems in a setting in which agents have very limited resources,
as one would expect in an algorithm that may be executed by animals or even biological cells.
It starts by studying a “bit dissemination” problem in which the agents need to decide among
two alternatives. Each starts with an opinion but only one of the agents knows the correct
choice and will insist on it. Agents exchange opinions with a small sample of peers. The
analysis shows an exponential gap beween convergence times in the case in which agents move
simultaneously vs. moving sequentially, and a similar gap between memoryless solutions and
ones that employ strong separation between the simultaneous and the sequential activation
models, and between memory-less solutions and ones in which agents use a small amount of
memory. The next problem tacked in this part involves a continuous setting, in which agents
try to come as close to their center of mass as possible, while they suffer from Gaussian
drift over time and from noisy distance measurements. Somewhat unexpectedly, it is shown
that an algorithm using all-to-all communication is not significantly better than one that
employs no communication whatsoever. The second part of the thesis considers the role
and impact of altruism vs free riding on cooperation in a game-theoretic setting. In one
game, it is shown that players’ motivation to work to increase their payoffs can sometimes be
positively be affected by the amount of easily accessible resources (“low hanging fruit”), while
in other cases it may be negatively correlated to that amount. The final question studied
in the thesis is a variant of the “tragedy-of-the-commons” in which besides cooperating or
defecting players may opt to behave hypocritically, meaning that they perform the least
amount of work needed in order to appear to be cooperating. An original mechanism that
uses moderate social pressure on non-cooperators is shown to cause defectors to be more
cooperative. Dr. Vacus’ thesis provides an inspiring overview of the questions studied, and
employs a wide range of tools and techniques, involving probabilistic analysis, control theory,
statistics and game theory, and computer simulations.

Dr. Wei’s Dissertation

Dr. Wei completed his PhD under the supervision of Prof. Guy E. Blelloch, at CMU. In his
thesis, Dr. Wei proposes general techniques for improving existing concurrent data structures
by simplifying their design and enhancing their performance. The goal of the thesis is to
offer techniques that are easy to use to non-experts, even though their implementation
38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:xviii 2024 Principles of Distributed Computing Doctoral Dissertation Awards

behind-the-scenes is complicated and subtle. The techniques presented in the thesis are:
(a) Lock-free locks, an automated and general method for converting lock-based concurrent
code into lock-free code, requiring no involvement from the programmer; (b) Consistent
snapshots: a method for enriching any data structure with a linearizable snapshot operation,
which provides a global copy of the state of the object as it existed at some point during the
snapshot operation; and (c) Safe memory reclamation: a combination of manual safe-memory
reclamation and automated reference counting, which is simpler than existing techniques,
and is shown to be competitive in its performance. The thesis also includes implementations
and a rigorous empirical evaluation of the techniques it contributes, including applications to
a variety of concurrent data structures. The implementations are offered as libraries which
are freely available to the public. Given the growing importance of concurrency, and the
well-known difficulty of writing correct and efficient concurrent code, the thesis is well-poised
to find practical impact in the programming world.

The 2024 Principles of Distributed Computing Doctoral Dissertation Award Committee:
Magnús M. Halldórsson, Reykjavik University
Yoram Moses (chair), Technion
Rotem Oshman, Tel-Aviv University
Paul Spirakis, University of Liverpool and University of Patras



2024 Edsger W. Dijkstra Prize in Distributed
Computing

The Edsger W. Dijkstra Prize in Distributed Computing is awarded for outstanding papers
on the principles of distributed computing, whose significance and impact on the theory or
practice of distributed computing have been evident for at least a decade. It is sponsored
jointly by the ACM Symposium on Principles of Distributed Computing (PODC) and the
EATCS Symposium on Distributed Computing (DISC). The prize is presented annually, with
the presentation taking place alternately at PODC and DISC.

The committee decided to award the 2024 Edsger W. Dijkstra Prize in Distributed
Computing to Nicola Santoro and Peter Widmayer for their paper:

“Time is Not a Healer”
appearing in

Proceedings of the 6th Annual Symposium on Theoretical Aspects of Computer Science,
pages 304–313, 1989.

The paper introduced the fundamental notion of dynamic transmission faults, with the
goal of modeling message losses on a communication channel, in an otherwise synchronous
system. As such, it was the first to investigate the impact of a changing communication
topology during the execution of the algorithm on the solvability of distributed agreement
tasks, complementing the classic processor crash fault model.

Beyond this modeling contribution, the paper also showed, via an elegant proof, the
surprising technical fact that, in a system with sufficiently many dynamic transmission faults,
a weak version of the Consensus problem is “either trivial or impossible.” More precisely,
Consensus is unsolvable in a synchronous system if an adversary is able to cause up to n − 1
messages to be lost in every communication round. This illustrated, for the first time, that
the impossibility of Consensus can be also caused by insufficient communication, rather than
just the lack of synchrony.

These insights have been very impactful over time, highlighting the connection between
the communication topology and the computational power of a distributed system. In turn,
the paper has had broad influence across diverse areas such as fault-tolerance, agreement prob-
lems, dynamic communication networks, and even topological understanding of distributed
computing. The paper has also become a classic text thanks to its excellent exposition.

In summary, the seminal paper by Santoro and Widmayer combines original conceptual
contributions with deep theoretical insights, and stands out as a significant stepping stone in
our theoretical understanding of distributed computing.

The 2024 Award Committee:

Dan Alistarh (chair), ISTA
Shlomi Dolev, Ben-Gurion University of the Negev
Faith Ellen, University of Toronto
Fabian Kuhn, University of Freiburg
Petr Kuznetsov, Telecom Paris & Institut Polytechnique Paris
Jukka Suomela, Aalto University

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




Fully Local Succinct Distributed Arguments
Eden Aldema Tshuva #

Tel Aviv University, Israel

Rotem Oshman #

Tel Aviv University, Israel

Abstract
Distributed certification is a proof system for detecting illegal network states or improper execution
of distributed algorithms. A certification scheme consists of a proving algorithm, which assigns a
certificate to each node, and a verification algorithm where nodes use these certificates to decide
whether to accept or reject. The system must ensure that all nodes accept if and only if the network
is in a legal state, adhering to the principles of completeness and soundness. The main goal is to
design a scheme where the verification process is local and the certificates are succinct, while using
as efficient as possible proving algorithm.

In cryptographic proof systems, the soundness requirement is often relaxed to computational
soundness, where soundness is guaranteed only against computationally bounded adversaries. Com-
putationally sound proof systems are called arguments. Recently, Aldema Tshuva, Boyle, Cohen,
Moran, and Oshman (TCC 2023) showed that succinct distributed arguments can be used to
enable any polynomially bounded distributed algorithm to certify its execution with polylogarithmic-
length certificates. However, their approach required a global communication phase, adding O(D)
communication rounds in networks of diameter D, which limits its applicability to local algorithms.

In this work, we give the first construction of a fully local succinct distributed argument system,
where the prover and the verifier are both local. We show that a distributed algorithm that runs
in R rounds, has polynomial local computation, and messages of B bits each can be compiled
into a self-certifying algorithm that runs in R + polylog(n) rounds and sends messages of size
B + polylog(n), with certificates of length polylog(n). This construction has several applications,
including self-certification for local algorithms, ongoing certification of long-lived algorithms, and
efficient local mending of the certificates when the network changes.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols

Keywords and phrases distributed certification, proof labeling schemes, SNARG

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.1

Funding Eden Aldema Tshuva: Supported in part by AFOSR Award FA9550-23-1-0312, and an
Algorand Foundation grant.
Rotem Oshman: Research funded by the Israel Science Foundation, Grant No. 2801/20, and also
supported by Len Blavatnik and the Blavatnik Family Foundation.

1 Introduction

In this work we study distributed certification, a mechanism that is useful for ensuring
correctness and fault-tolerance in distributed algorithms: the goal is to efficiently check, on
demand, whether the system is in a legal state or not. To that end, the network computes in
advance auxiliary information in the form of certificates stored at the nodes of the network,
and we design an efficient verification procedure that allows the nodes to interact with one
another and use their certificates to verify that the system is in a legal state. Since we do
not trust that the system is in a legal state at verification time, we think of the certificates
as being provided by an untrusted prover, whose goal is to convince us that the system is
in a legal state even when it is not. One can therefore view distributed certification as a
distributed analog of NP.

© Eden Aldema Tshuva and Rotem Oshman;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 1; pp. 1:1–1:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aldematshuva@tau.ac.il
https://orcid.org/0009-0003-0701-6603
mailto:roshman@tau.ac.il
https://orcid.org/0009-0007-5065-5557
https://doi.org/10.4230/LIPIcs.DISC.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 Fully Local Succinct Distributed Arguments

Distributed certification was implicit in early work on fault detection and self-stabilization
(e.g., [4]), as a mechanism for detecting that the network has changed (for instance, due to
the failure of a communication link) and action must be taken to address the change. It was
formalized as an object of independent interest in [34], and has since received significant
attention in distributed computing literature (e.g., [32, 33, 12, 20, 25, 22, 17, 42, 40, 23, 22,
30, 41, 9]). Almost all work in the area is solely concerned with optimizing the length of
the certificates, which is viewed as a proxy for the efficiency of the verification algorithm:
in [34] and most of the follow-up work, the verification algorithm consists of a single round
of communication, where nodes send their certificates to their neighbors, and then output a
local decision whether to accept or reject. Our work departs from most of the literature on
distributed certification in two important ways: first, in addition to the certificate length, we
are also concerned with the efficiency of the prover algorithm, that is, the algorithm that
computes the certificates; and second, following [2], we relax the correctness requirement
from perfect soundness to computational soundness. Next we discuss these two aspects of our
work and lay out our motivation for departing from the approach taken by most prior work.

Proving as fast as computing. In the field of delegation of computation (the sequential
notion analogous to distributed certification), a great amount of effort has been devoted to
constructing provers that add minimal overhead on top of the algorithm whose correctness
they aim to certify [44, 3, 26, 24, 10, 49, 50, 11, 35]. This is referred to as “proving as fast
as computing”. Efficient provers are needed for any practical deployment of a delegation
scheme, and therefore designing proof systems where the prover is efficient is a key element
in applications such as proofs on the blockchain; for instance, [8, 7] have made great progress
in the efficiency of the prover and are used in practice. See [47] for a survey of the subject.

In the distributed setting the need for efficient provers is much the same: in order for
distributed certification to serve as a practical mechanism for fault tolerance, we must be
able to compute the certificates efficiently. Thus, the goal of our work is proving as fast as
distributed computing:

Given a distributed algorithm D that runs in polynomial communication rounds and
local computation steps, construct a prover that runs alongside D, adding at most a
polylogarithmic overhead to the rounds and local computation steps.

In other words, our goal is to obtain distributed certification schemes where both the verifier
and the prover are local (in terms of the overhead they add to the system), in contrast to
traditional distributed certification, where only the verifier is a local distributed algorithm,
and the prover is all-powerful.

Computational soundness. Most of the work on distributed certification is set in the
information theoretic world, where the prover and the network nodes are computationally
unbounded. The two requirements from a certification scheme for a network property L are:

Completeness: if the property L holds, then there exists a certificate assignment that
convinces all nodes to accept; and
Soundness: if the property L does not hold, then no certificate assignment convinces all
nodes to accept.

Unfortunately, the information-theoretic setting inherits some powerful lower bounds from
nondeterministic two-party communication complexity: for example, it is known that some
network properties require Ω(n2)-bit certificates [25], and some simple and natural properties
such as proving that the network has a given diameter require Ω(n)-bit certificates, even
when the verifier is randomized [22].



E. Aldema Tshuva and R. Oshman 1:3

This motivates us to consider the following relaxation of the soundness requirement,
known as computational soundness ([39]):

Computational soundness: if the property L does not hold, then no poly-size prover1 can
construct a certificate assignment that convinces all nodes to accept.

A proof system that has computational soundness is called an argument, and in the distributed
setting we call it a distributed argument.

One might ask whether computational soundness indeed captures the type of faults from
which the network wishes to protect itself. We argue that the answer is yes, in most if not all
practical scenarios, if one is willing to assume standard cryptographic assumptions hold. The
key here is that any fault that could be simulated by an efficient algorithm, cannot break
computational soundness, since if it could, that would mean that an efficient algorithm can
solve believed-to-be hard problems, such as the discrete logarithm. For example, if we wish
to protect against hardware or software faults, then we should demand soundness against all
certificates generated generated for an illegal state due to a buggy execution of a distributed
algorithm in the network, or against those generated by a buggy version of the honest prover
algorithm. But even a buggy prover is still an efficient algorithm. Similarly, faults caused by
topology changes can also be simulated by an efficient algorithm, which again means that
such faults cannot break a computationally sound certification scheme.

We remark that although in this work we weaken the soundness requirement, and construct
a local distributed proving algorithm, we still require soundness against global provers: the
argument that we construct is sound against any polynomial-size “cheating prover” that sees
the entire network and tries to produce certificates that fool the network into accepting even
though the network is not in a legal state.

Distributed SNARGs. In delegation of computation (the sequential notion analogous to
distributed certification), the gold standard is to construct a succinct non-interactive argument
(SNARG) whose security relies on standard cryptographic hardness assumptions, such as
learning with errors [16] or, bilinear maps [48], and decisional Diffie-Hellman [14].2 A SNARG
is a computationally sound proof system in which a polynomial-size prover P certifies a
statement of the form “x ∈ L,” where x is an input of size n and L is a language, by providing
a computationally weak verifier V with a proof π, of length |π| = polylog(n). The verifier
then examines the input x and the proof π, and decides in linear time in n whether to accept
or reject.3 It is guaranteed that the honest prover P can convince the verifier V to accept
any true statement with probability 1 (perfect completeness), and at the same time, no
poly-size cheating prover can convince the verifier to accept with non-negligible probability
(computational soundness). The requirement that the proof π be of polylogarithmic length is
called succinctness.

In recent years, the fruitful line of work on delegation of computation has culminated
in the construction of SNARGs for all properties in P [16, 48, 27, 14, 28]. In [2], this was
extended to distributed network algorithms. A distributed SNARG [2] for a property L is a
computationally sound proof system (P,V), consisting of

1 Computational soundness, like other computational hardness notions, models the adversary as a
non-uniform machine of polynomial size, as it is at least as strong as randomized.

2 Throughout this work, we refer to SNARGs for deterministic computations, which prove that some
polynomial-time computation was executed correctly, and not SNARGs for NP, which are a much
stronger cryptographic primitive that is not known to exist under standard cryptographic assumptions.

3 Technically, the prover and the verifier take as input a security parameter λ, and their running time is
polynomial in λ. We defer the discussion of the security parameter to Section 2.

DISC 2024



1:4 Fully Local Succinct Distributed Arguments

A prover P, which may or may not be a distributed algorithm (both options were
considered in [2]). Given a network graph G = (V, E) and an input assignment x : V → X
specifying the input x(v) to each node v ∈ V , the prover constructs a proof in the form
of a certificate assignment π : V → {0, 1}∗, with each node v receiving a certificate π(v)
of length polylog(n) (where n = |V |).
A verification procedure V , which is a one-round distributed algorithm where every node
v ∈ V initially knows its UID, its input x(v), its neighbors in G, and its certificate π(v).
Each node sends a (possibly different) message on each one of its edges, receives the
messages sent by its neighbors, carries out some local computation, and then outputs
accept or reject. The proof is considered accepted if and only if all nodes accept.

It was recently shown in [2] that any network property in P admits a distributed SNARG.
Moreover, [2] constructed a distributed prover, which allows a polynomial-time distributed
algorithm to certify the correctness of its output using certificates of size polylog(n). However,
the prover constructed in [2] is global: although it is a distributed algorithm, it collects
information from all the nodes of the network, which requires Ω(D) rounds in networks of
diameter D (using messages of polylogarithmic size). This means that in some cases the
prover’s overhead may eclipse the running time of the distributed algorithm whose correctness
it certifies, e.g., if the original algorithm is a local algorithm.

1.1 Our Contribution
In this work, we construct a fully local distributed argument that certifies the correctness of
any polynomial distributed algorithm. That is, for a polynomial distributed algorithm D, it
certifies the following property:

LD =
{

(G, x, y) : D produces output y : V → Y when executed in
the network G = (V, E) with input assignment x : V → X

}
.

Our construction uses two cryptographic primitives: collision-resistant hash functions
and batch arguments for NP. These are known to exist under several standard cryptographic
assumptions: subexponential hardness of Diffie-Hellman [18, 14]; polynomial hardness of
learning with errors [1, 15]; and polynomial hardness of bilinear maps [48].

▶ Theorem 1. Assume collision-resistant hash functions and batch arguments for NP exist.
Then for any distributed algorithm D that runs in poly(n) rounds local computation time,
there is a distributed argument (P,V) certifying the property LD, where the prover P is a
distributed algorithm that adds an overhead of polylog(n) rounds to the execution of D, sends
polylog(n)-bit messages, and produces certificates of length polylog(n), and the verifier V
runs in one round and sends polylog(n)-bit messages.

Our construction relies on low-diameter network decompositions, and represents a novel
connection between this highly useful primitive and distributed certification.

Applications of our construction. Fully local distributed arguments have several applica-
tions. First, they enable efficient certification of local algorithms, where previous constructions
either had an overhead of Θ(D) rounds or produced very long certificates (or both). That is, a
distributed algorithm that runs in a small number of rounds but still has high communication
complexity (i.e., it uses long messages), could now be certified in a few more rounds, using
low communication complexity, and be verified in one round, with one message on each
edge. Second, a local prover can be used to efficiently mend a proof of correctness, instead



E. Aldema Tshuva and R. Oshman 1:5

Table 1 Generic distributed certification schemes, and the costs they incur when certifying an
algorithm that runs for R rounds and sends B-bit messages in networks with n nodes, maximum
degree ∆ and diameter D.

Soundness Certificate Verifier Message Prover Overhead
PLS [34] Perfect R · B · ∆ R · B · ∆ No overhead

LCP [25]4 Perfect Θ(n2) Θ(n2) Not distributed
RPLS [23] Statistical R · B · ∆2 O(log n) 1 round

LVD-SNARGs [2]5 Computational poly(λ, log n) poly(λ, log n) Not distributed
LVD-SNARGs [2] Computational poly(λ, log n) poly(λ, log n) O(D)

This Work Computational poly(λ, log n) poly(λ, log n) polylog n

of re-computing it from scratch when a change occurs in the network. Many distributed
algorithms support local correction (also called fixing, mending or healing) of their output,
that is, if a change in the network causes the output of the algorithm to become incorrect,
there is a local procedure that executes only in the area of the network where the change
occurred and “fixes” the output of the algorithm (see, e.g., [5, 19, 36, 6, 31] and the references
therein). Following the execution of the local correction procedure, our fully local prover can
also mend the correctness certificate, by executing the prover to re-certify correctness in the
area of the network that was modified by the correction procedure. This application of our
work creates a new tie between local correction and distributed certification, areas that both
arose originally from fault tolerance and self-stabilization but have drifted apart over time.

Finally, fully local distributed arguments are an important step towards incrementally
verifiable distributed computation. In sequential computing, incrementally verifiable compu-
tation (IVC, [46, 43]) allows for the incremental construction of a certificate of correctness,
which is updated after each step taken by the sequential algorithm, and does not require
storing the entire trace of the computation in memory. Incrementally verifiable computation
is especially relevant in distributed systems, which are often long-lived and reactive. As a
first step towards incrementally verifiable distributed computation, it is necessary to have a
low-overhead prover that can be called many times during the computation without blocking
for a long time, and our construction takes the first step in this direction.

1.2 Related Work
There are several known approaches to obtain generic schemes for certifying the correctness
of any given distributed algorithm, although as we mentioned above, most of the focus
in prior work has been on the efficiency of the verifier, not the prover. In Table 1 we
summarize the tradeoffs that each approach achieves between the length of the certificates,
the communication of the verifier, and the complexity of the prover. The table covers
only schemes where the verifier runs for one round; it is sometimes possible to trade off
certificate size against verifier rounds (see, e.g. [21, 42]), but the total communication over
all verification rounds in the information-theoretic setting remains, in general, high. Next,
we give a brief overview of each approach.

4 In [25], the certificate and message size also depend on the size of the input to each node. That is,
Θ(n2) refers to the case where there is no input to the nodes or the input is of constant size.

5 In [2], the property is assumed to be in P, and R and B are assumed to be at most polynomial in n.

DISC 2024



1:6 Fully Local Succinct Distributed Arguments

In the first work to introduce proof labeling schemes [34] it is pointed out that any
distributed algorithm can be certified by storing the entire transcript of the algorithm at
each node. This can result in long certificates. In [23] it is shown that randomization can
be used to exponentially decrease the communication of the verifier, but this comes at the
cost of even longer certificates (as well as weakening soundness from perfect soundness to
statistical soundness, where the verifier has some small probability of accepting an invalid
proof). Another generic approach is to store a description of the entire network as the
certificate at each node [25]. In addition to long certificates, this approach requires the
prover to know the entire network, which rules out an efficient distributed implementation.
However, it has the advantage of not being dependent on the communication complexity of
the distributed algorithm to be certified, which could be useful for the certification of highly
expensive algorithms.

The first work to introduce computationally sound distributed certification is [2], which
showed that any network property in P can be certified using certificates of polylogarithmic
length in this setting, assuming the prover knows the entire network. In addition, [2]
constructs a generic scheme with a distributed prover that can certify the correctness of any
given distributed algorithm that runs in polynomial rounds and local computation time.
However, the prover in this case requires O(D) rounds in networks of diameter D.

2 Preliminaries

In this section, we describe our network model (which is fairly standard) and the common
reference string model, and then go over the two cryptographic primitives used in our
construction; hash families with local openings and batch arguments for NP. The description
of a batch argument is brief and the full syntax and definition can be found in Appendix A.2.
Distributed Merkle trees, which are another existing construct we use, are discussed in
Section 3.1, and defined formally in Appendix A.1. Moreover, for lack of space, we defer the
full definition of our fully local distributed SNARG (fl-DSNARG) to Appendix A.4.

Network model. A synchronous distributed network is modeled as an undirected, connected
graph G = (V, E), where the nodes V are the processors participating in the computation,
and the edges E represent bidirectional communication links between them. Each network
node has a unique identifier v from some UID domain [ñ], and we assume that the size of the
UID domain is polynomial in the network size n, so that a UID can be encoded in O(log n)
bits. We often conflate the UID of a node with the vertex representing it in the network
graph. In each communication round, each node sends a message to each of its neighbors;
the nodes then receive the messages sent to them, carry out some internal computation, and
then the next round begins. The input to the computation is represented by an assignment
x : V → X , and the output by an assignment y : V → Y, where X ,Y are some input and
output domains (respectively). Initially, each network node v ∈ V knows its UID, its input
x(v), its neighborhood N(v) in G, and the size n of the network (or a polynomial upper
bound on the size, such as ñ). Each node v eventually produces the output y(v). We restrict
attention to algorithms where the round complexity, the message length and the internal
computation are polynomial in the size of the network.

The common reference string model and computational hardness. Our work is set in
the common reference string (CRS) model, which is also the model in which the SNARG
constructions of [16, 48, 27, 14] are set. In this model, all parties – in our case, the prover and



E. Aldema Tshuva and R. Oshman 1:7

all the network nodes – have access to a string that is sampled randomly by a trusted setup
process, denoted by Gen, which takes a security parameter λ in unary representation. (This
can be viewed as public randomness.) The security parameter governs the computational
resources that must be invested to break the security or soundness of the protocol: we say
that a task that involves the CRS is hard (or computationally hard) if given a CRS sampled
using Gen(1λ), no poly-size (in λ) adversary can succeed in the task, except with negligible
probability – that is, probability smaller than 1/λc for any constant c. Batch arguments,
described below, are defined in the CRS model and their soundness properties hold with
respect to such a security parameter.

Collision resistance and hash families with local openings. A hash family with local
openings, also sometimes known as a hash tree, allows a party that holds a vector (x1, . . . , xn)
to compute a short hash of the vector, and later to locally open specific locations i ∈ [n],
producing a certificate that convinces another party that the value hashed in location i is xi.
The interface is as follows:

Gen(1λ)→ hk: a trusted, randomized setup procedure that takes a security parameter λ

and outputs a hash key hk. The hash key can be thought of as a descriptor for a hash
function chosen at random from a collision-resistant hash family,6 which will be used in
the computation of the hash value and its local openings.
Hash(hk, x)→ val: takes a hash key hk and a bit vector x ∈ {0, 1}∗, and returns a hash
value val.
Open(hk, x, i)→ (b, ρ): takes a hash key hk, a bit vector x ∈ {0, 1}∗ and an index i ∈ [|x|],
and produces a bit b and an opening ρ, which is meant to serve as a certificate that
xi = b.
Verify(hk, val, i, b, ρ) ∈ {0, 1}: takes a hash key hk, a hash value val, an index i, a bit
b, and an opening ρ, and outputs an acceptance bit b. This procedure is meant to be
executed by the other party, which does not know the value hashed, and wishes to verify
that it has b in location i.

Our requirements of a hash family with local openings are as follows:
Efficiency and succinctness: the procedures above run in time polynomial in their input,
and output values of length at most poly(λ, log |x|).
Completeness: for every hk generated by Gen, every input x and every index i ∈ [|x|], if
val = Hash(hk, x) and (b, ρ) = Open(hk, x, i), then Verify(hk, val, i, b, ρ) = 1.
Collision-resistance with respect to openings: it is computationally hard, given a hash
key hk generated by Gen, to find a hash value val, an index i, and two openings ρ0, ρ1,
such that both Verify(hk, val, i, 0, ρ0) = 1 and Verify(hk, val, i, 1, ρ1) = 1.

We often describe the existence of an opening ρ such that Verify(hk, val, i, b, ρ0) = 1 by saying
that the hash value val opens to b in location/index i.

Merkle tree [38] is a tree-based hash family with local openings that can be constructed
from any collision-resistant hash family. Since collision-resistant hash families are known to
exist under the assumption of either the hardness of the discrete logarithm problem [18] or
the learning with errors problem [1], Merkle trees – and hash families with local openings
in general – are also guaranteed to exist under the same assumptions. A Merkle tree over
values (x1, . . . , xn) is a binary tree, where the leaves are x1, . . . , xn, and each inner node is

6 A collision-resistant hash family is a family of functions H, such that it is computationally hard, given
a random function from the family h ∈ H, to find colliding inputs: x, y such that h(x) = h(y).

DISC 2024



1:8 Fully Local Succinct Distributed Arguments

the hash of the concatenation of its two children.7 Merkle trees form the foundation for
the distributed Merkle tree construction of [2], which is utilized in our construction of an
fl-DSNARG (see Section 3.1).

Batch arguments for NP (BARGs) and their use in SNARG constructions. In the SNARG
constructions of [16, 48, 27, 14], to prove that x ∈ L for a language L that is decided by
a Turing machine M , the prover essentially proves the following statement:“there exist
configurations cf0, . . . , cfT such that cf0 is the initial configuration of M on input x, cfT is
an accepting configuration, and for each i = 0, . . . , T − 1, the machine M transitions from
cfi to cfi+1”. This highly-structured statement is a special case of T instances of an index
language: an NP-language of the form L = {(C, i) : ∃w. C(i, w) = 1}, where C is a circuit (in
this case, verifying the transitions of the Turing machine), and i is an index. To prove such
statements, [16, 48, 27, 14] use batch arguments for NP (BARGs), which we describe next, as
they also serve as the basis for our construction in the current paper.

A batch argument for an index language L allows a prover to convince a verifier of a
conjunction of the form φ(C) =

∧k
i=1 ∃wi. C(i, wi) = 1, where the circuit C is known to

both the prover and the verifier, but only the prover knows the witnesses w1, . . . , wk. To
prove this statement, the prover produces a short proof π, which the verifier is able to check.
Crucially, the length of the proof π is linear in the length of a single witness |wi|, but only
polylogarithmic in the number of statements k.8

The BARGs we use in this work, like the BARGs used to construct SNARGs for P, are
of a special type, called a somewhere-extractable BARG (seBARG). We give here a brief
description of a seBARG. See Appendix A.2 for the full syntax and definition. A seBARG
allows for the extraction of one witness from a convincing proof π, as follows:

The procedure Gen that generates the CRS for the BARG can be called either in regular
mode or in trapdoor mode. In trapdoor mode, Gen takes in addition to the security
parameter λ an index i ∈ [k], called the binding index. It outputs a pair (crs, td), where
td is a trapdoor that can later be used to recover the i-th witness.
In trapdoor mode, the Gen procedure has a property called index hiding: it is computa-
tionally hard to find the binding index i, given crs. This means that the prover, which is
given only crs and not the trapdoor td, “cannot tell” which index we are interested in. In
fact, it is hard to even tell whether Gen was called in regular mode or in trapdoor mode,
as the distributions of the resulting string crs are computationally indistinguishable.
The seBARG has an auxiliary extraction procedure, E(td, C, π), which takes a trapdoor
td, a circuit C and a proof π, and extracts one witness w.
The seBARG has the somewhere argument of knowledge property: suppose we call Gen
in trapdoor mode with a binding index i, and obtain (crs, td). Given only crs, it is
computationally hard to find a proof π that is accepted by the verifier, such that when we
extract a witness wi using E(td, C, π), we have C(i, w) ̸= 1. In other words, it is hard for
a poly-size adversary to fool the verifier into accepting a proof π if when we extract the
i-th witness we find an inconsistency: the witness is not an NP-witness matching index i.

7 More accurately, the leafs of a Merkle tree over (x1, . . . , xn) are hash values of x1, . . . , xn, taken by a
hash function collision-resistant hash family.

8 Batch arguments for general NP languages allow proving a conjunction of NP statements. A batch
argument for an index language allows for a highly efficient verification, as the verifier does not have to
read k instances.



E. Aldema Tshuva and R. Oshman 1:9

3 Technical Overview

In this section, we give a high-level overview of our construction of a fully local distributed
SNARG (fl-DSNARG). This overview is somewhat informal, and some technical details are
glossed over or omitted. The full construction and analysis are deferred to the full version of
this paper.

Given a distributed algorithm D, an input assignment x and an output assignment y,
we wish to construct an argument that certifies the execution of each node, to prove that
each node v indeed outputs y(v) when D is executed with input x. We must take into
consideration both the local computation of the node and the messages it sends and receives.
A naïve approach would be to have each individual node construct a SNARG proof attesting
to the internal computation steps that it takes while executing D, but this is not enough: the
challenge is that from the perspective of each node, the messages it receives from other nodes
are essentially inputs to its computation, and the messages it sends are outputs. We must
verify the consistency of these messages across each edge: messages that node u “attests to
sending” to v should indeed be received at node v (i.e., they should be reflected correctly in
the proof attesting to v’s internal computation).

Unfortunately, while the real input x and output y of the distributed algorithm we are
trying to certify are available at verification time, the messages sent by the algorithm are
not: we cannot afford to store all messages sent and received as part of the certificate, as
this would require far too much space. The solution is to carefully construct a hash of the
messages, and use it to have nodes verify that the messages are consistent with the rest of
their internal computation.

Recall from Section 2 that current centralized SNARG constructions consist of a batch
argument for NP (a BARG) asserting the conjunction of T statements S1, . . . , ST , each
describing a single transition of a Turing machine. The configurations of the Turing machine
are not available explicitly at verification – they are not part of the SNARG proof; instead,
only a hash of the configurations is included in the proof. The proof consists (informally) of a
batch argument proving that for each step i, the configuration hash opens in the appropriate
locations to two configurations cfi, cfi+1, such that the Turing machine indeed transitions
from cfi to cfi+1.9 (The openings are part of the witness encoded inside the batch argument.)

We use a similar idea to handle the messages of the distributed algorithm: we construct
multiple local distributed Merkle trees, which together are analogous to a hash tree of the
messages, in such a way that each node v can compute openings to all the messages it sent
or received. Intuitively, the message-hash has a “slot” (an index) for each directed edge
u→ v and round r, which is meant to record the message mu→v

r that is sent from node u

to node v in round r. We use the message-hash and the openings to construct two batch
arguments: one attesting to the correctness of the internal computation steps at node i, and
the second attesting to the consistency between the messages recorded “inside” the internal
computation of node v, and the message-hash.

Consistency is verified at both endpoints of every directed edge u→ v: node u verifies
that the message that it sent to node v in round r is indeed recorded in the message-hash in
the slot for message mu→v

r , and node v verifies that the message that it received from node v

in round r is recorded in the message-hash in the slot for message mu→v
r . This ties together

the messages sent and received, and ensures that our proof captures the true execution of
the distributed algorithm.

9 Technically, we work with a hash of a hash of the configurations (two levels of hashing), so this description
is not quite accurate. We give a more detailed one in Section 3.2.

DISC 2024



1:10 Fully Local Succinct Distributed Arguments

Next we describe distributed Merkle trees, as introduced in [2], and our way of constructing
multiply such trees where each one is local, using a new notion of low-diameter edge cover.

3.1 Local Distributed Merkle Trees
Distributed Merkle trees. As mentioned above, the idea of hashing together all the messages
and using this hash to construct succinct arguments for distributed algorithms was introduced
in [2], and implemented in the form of a distributed Merkle tree (DMT). We introduce DMTs
here in a concise manner, see Appendix A.1 for the full syntax and definition.

A DMT is a hash with local openings for a collection of values {xv→u}{v,u}∈E , one value
for every directed edge v → u such that {v, u} ∈ E. The values are initially unordered, but
an order will be imposed on them when the DMT is constructed. Initially, each node v knows
all values xu→w such that u = v or w = v, that is, all values corresponding to edges that
touch v. The DMT is essentially a hash of hashes:

First, each node v computes a hash rt(v) (specifically, a Merkle tree) of its own “outgoing”
values, {xv→w}w∈N(v); we call rt(v) the local root of node v.
Then, the nodes compute together a global hash, rt, of the individual hashes {rt(v) : v ∈ V }.
We call rt the global root of the DMT.

Recall that the values {xv→u}{u,v}∈E are initially unordered. As the network constructs
the DMT, it imposes an order over the nodes, and each node learns the index I(v) where
its own local root is hashed inside the DMT. Since node v constructed its own local root
rt(v), it already knows the index Iv→w where it hashed each value xv→w. We think of the
concatenation of these indices, I(v) ∥ Iv→w, as the index of xv→w in the DMT.

A DMT acts much like a regular Merkle tree over the values {xv→u}{v,u}∈E . With the
information that node v obtains during the construction of the DMT, it can produce an
opening from the global root rt to any value xv→u or xu→v where u ∈ N(v). The DMT serves
in [2] as a hash of all the messages sent in the network: each value xv→u is itself a hash of
all the messages that node v sent to node u during the execution of the algorithm.

In [2] it is shown that a DMT can be constructed in O(D) rounds in networks of diameter
D, using messages of polylogarithmic length. In other words, the DMT construction algorithm
of [2] is global in nature: it first constructs a spanning tree of the entire network, and then
computes the DMT by aggregating hash values up the tree and propagating openings down
the tree.10 This seems unavoidable, as the DMT is a hash of a collection of values that are
initially spread across the entire network. However, one of our main technical contributions
is to show that succinct distributed SNARGs do not require a global DMT; rather, we can
get away with using a collection of local DMTs, each applied to a low-diameter subgraph
of the original network graph, and thereby reduce the overhead of the prover from O(D)
rounds to polylog(n).

Using local DMTs. The key observation that enables us to construct a local prover is that
both during the proving stage and at verification, each node requires access only to its own
messages (sent or received).11 Thus, there is no need to have a single DMT covering the
entire network graph and providing all nodes with a single hash of all the messages; instead,

10 However, the algorithm in [2] is still more communication-efficient than simply gathering the entire
network’s transcript in one location to compute the hash tree, as it uses polylogarithmic messages.

11 The nodes do not actually require access to the messages themselves, but need to be able to verify
consistency of them against some hash value.



E. Aldema Tshuva and R. Oshman 1:11

we can compute many “small” DMTs, each covering a small neighborhood and providing the
nodes of that neighborhood with one hash that they can use to access the messages they
sent or received within that neighborhood. Moreover, we do not even need all edges of a
given node to be covered by the same DMT: the crucial property we require is that every
edge must be covered by at least one DMT, so that the messages that flow across the edge
can be incorporated into the certificates of the two nodes at the endpoints of the edge.

With this observation in mind, our goal is to cover all edges of the network by a collection
of subgraphs H1, . . . , Hk, with each subgraph Hi maintaining its own DMT. The trade-off
that governs our construction is a familiar one for distributed graph algorithms:

On the one hand, we would like each subgraph Hi to have a small diameter, so that we
can compute the DMT for the subgraph in a small number of rounds.
On the other hand, each node should belong to only a small number of subgraphs, as each
subgraph corresponds to a separate DMT and increases both the length of the certificate
that the node eventually computes and the number (or alternatively, the size) of messages
that the node must route during the proving stage, when the DMTs are constructed.

We call the cover H1, . . . , Hk a low-diameter edge cover (defined formally in Appendix A.3),
and show below that it can easily be constructed from a low-diameter decomposition of
G2, the power-2 graph induced by our network graph G. (In G2, two nodes u, v ∈ V are
neighbors if and only if their distance in G is at most 2.) We discuss how existing low-diameter
decomposition constructions [45, 13] can be extended to handle G2 while remaining in the
CONGEST model in Appendix B.

In each cluster Hi, we compute a DMT over all messages sent over edges of Hi. Each
such “local” DMT has a similar structure to the global DMT from [2]. The local DMT for
cluster Hi requires O(diam(Hi)) rounds to construct, and this is why we require a small
diameter for each cluster.

Constructing a low-diameter edge cover. Suppose we are given an (ℓ, m)-low diameter
decomposition of G2 = (V, E′): a partition of the nodes V into clusters U1, . . . , Uℓ ⊆ V , and
a coloring c : {1, . . . , ℓ} → {1, . . . , m} of the clusters, such that:
1. The subgraph G2[Ui] induced by each Ui has diameter at most d, and
2. The coloring c is a proper coloring of the cluster graph: for any i ≠ j such that for nodes

u ∈ Ui and v ∈ Uj there is an edge {u, v} ∈ E′ we have c(i) ̸= c(j).
Then we can obtain a low-diameter edge cover by defining subgraphs H1 = G[S1], . . . , Hℓ =
G[Sℓ] that each includes one cluster and all the nodes that are adjacent to it in G:

Si = Ui ∪ {v ∈ V : ∃u ∈ Ui. {v, u} ∈ E} .

For each node v, denote by C(v) ⊆ {S1, . . . , Sℓ} the set of clusters to which v belongs.
We have the following properties:

The diameter of each subgraph Hi is at most 2d + 2: the original cluster G2[Ui] has
diameter at most d with respect to G2, which translates to diameter at most 2d with
respect to G. Adding nodes adjacent to Ui in G increases the diameter to at most 2d + 2.
Every edge {u, v} ∈ E is covered by some cluster Hi = G[Si]: since U1, . . . , Uℓ is a
partition of V , there is some i ∈ [ℓ] such that u ∈ Ui ⊆ Si, and consequently v ∈ Si.
Thus, {u, v} is covered by Si.
Each node belongs to at most m clusters of the edge cover: if v belongs two clusters Si

and Sj where i ̸= j, then there exist nodes ui ∈ Si, uj ∈ Sj that are both at distance
at most 1 from v in G. But this means that ui and uj are neighbors in G2, and hence
clusters Ui, Uj are adjacent in G2, and must have a different color (c(i) ̸= c(j)). This
implies that |C(v)| ≤ m.

DISC 2024



1:12 Fully Local Succinct Distributed Arguments

3.2 Constructing the Distributed Argument
To construct our fully local distributed SNARG, we first need to fix a concrete model for
the internal computation carried out by the network nodes, as the argument will need to
refer to these computation steps. We begin by presenting such a model, and then outline the
construction of the fl-DSNARG.

Modeling polynomial-time distributed algorithms. Consider a distributed algorithm D
that runs in R rounds, with each node taking T local computation steps in each round
(including steps required to read or produce messages). For the sake of concreteness, we
model D as a Turing machine12 MD, which has three tapes:

The first tape of MD at node v contains the information available to node v throughout
the computation: its UID, its neighbors, and its input x(v).
On the second tape, MD writes and receives messages. At the beginning of each round r,
the messages that were sent to node v in round r − 1 appear on this tape; during the
round, MD erases these messages and instead writes the messages that node v sends in
round r. For simplicity, we assume in this overview that each message consists of a single
bit. (In the full version of this paper, we allow messages to be of polynomial size.)
The third tape is a work tape, and stores the current internal state of node v.

We denote by cfr,t(v) the configuration of MD at node v in the t-th computation step
of round r. For each t < T , the configuration cfr,t+1(v) is obtained from cfr,t(v) by a
computation step of MD, representing an internal computation step of node v. However,
configuration cfr+1,1(v) is obtained from cfr,T (v) by writing on the first tape the messages
that v’s neighbors sent to node v in round r, as recorded in the third tape of their final
round-r configurations, {cfr,T (u) : u ∈ N(v)}. This represents the receipt of these messages
by node v at the end of round r.

We refer to the sequence cf0,0(v), . . . , cfR,T (v) as the trace of the computation at node v,
and denote it by Trace(v).

Constructing the distributed argument. Fix a distributed algorithm D where each node
executes a Turing machine MD, a network graph G = (V, E), an input assignment x : V → X
and an output assignment y : V → Y. Let R, T be the number of rounds and the local
computation time of D, respectively. As it runs alongside the original algorithm D, the prover
records the execution of D at each node v: it stores the trace Trace(v) = cf0,0(v), . . . , cfR,T (v)
of the Turing machine MD executed at node v, and the messages {mv→u

r , mu→v
r }u∈N(v),r∈[R]

sent and received by v (respectively) on each edge {v, u} ∈ E in each round r.13

After D terminates, the prover begins constructing the certificates. The first step is to
compute a low-diameter edge cover of the network graph G, as described in Section 3.1. Let
S1, . . . , Sℓ ⊆ V be the resulting clusters, and for each node v, let S(v) ⊆ {1, . . . , ℓ} be the
indices of clusters to which node v belongs. In each cluster Si, we compute a DMT of all
messages sent over edges belonging to G[Si], as described above. In the sequel, we use the
notation (·)i(v) for the DMT associated with cluster i at node v; for example, rti(v) is the
local root of node v in the DMT for cluster i.

12 For simplicity, we assume that all nodes execute the same Turing machine, which takes the UID of the
node as input. However, this is not essential; we could have each node v execute a different machine Mv .

13 We believe that the space requirement of our prover can be reduced to have polylogarithmic overhead
on top of the original algorithm D, but this is technically non-trivial, and we defer it to future work.



E. Aldema Tshuva and R. Oshman 1:13

The remainder of the prover’s computation is local: each node uses the information it
stored while D was running, and the DMTs that we constructed, to compute a certificate
π(v), consists of the following (see Figure 1 for an illustration).

A hash with local openings hTrace(v) of the vector (hCf0,0(v), . . . , hCfR,T (v)), where each
hCfr,t(v) is itself a hash with local openings of the configuration cfr,t(v).
The set S(v) of clusters to which node v belongs.
For each cluster i ∈ S(v), the root rti of the DMT for cluster Si, as well as the index and
the opening from the root rti down to the local root rti(v), which hashes all messages
sent by node v over edges belonging to cluster i.
A BARG proof β int(v) asserting that the internal computation of node v is correct,
namely, that each configuration cfr,t+1(v) in the trace of v is obtained from the preceding
configuration cfr,t(v) by a transition of MD.14 This is a conjunction of R · (T − 1)
statements, with the (r, i)-th statement asserting (roughly) that there exist two hashed
configurations hCf, hCf ′ such that:

hTrace(v) opens to hCf in the index corresponding to step (r, t) of the computation,
and to hCf ′ in the index corresponding to step (r, t + 1).
The configuration hashes hCf and hCf ′ are of successive configurations cf, cf ′ (respec-
tively), such that cf ′ is obtained from cf by one step of MD. This statement is delicate
to prove, since it concerns the configurations “under the hash” and not the hashes
hCf, hCf ′ themselves (at least not directly), but it can be done using a technique
from [29]. In short, it involves proving that the hashes hCf, hCf ′ are of configurations
that are only different in one location, and this could be done for a locally-openable
hash.

A BARG proof βcons(v) asserting the consistency of the messages written in v’s trace with
the messages recorded in the DMTs to which v belongs. This is a conjunction of R · ñ2

statements, where ñ is the size of the UID space: statement (r, u, w) ∈ [R] × [ñ] × [ñ]
asserts that if the edge (u, w) exists in the network, then for each of its ends v ∈ {u, w},
the same message is recorded in the appropriate index (corresponding to round r and
edge (u, w)) of the DMT and trace of node v (which again is u or w).
In more detail, we require that if the edge (u, w) exists and v ∈ {u, w} is one of its ends,
then there exist a message m ∈ {0, 1} and a configuration hash hCf such that:

The DMT for the cluster covering edge {u, w} opens to m in the location corresponding
to round r and directed edge (u, w),
hTrace opens to the configuration hash hCf in location (r, T ) if v is the sender (i.e.,
u = v), or in location (r + 1, 1) if v is the receiver (i.e., w = v), and
hCf opens to m in the location where the message sent/received on edge (u, v) is
recorded.

If the edge (u, w) does not exist, or is not adjacent to node v, then the statement (r, u, w)
is simply true (i.e., it imposes no requirements). The mechanism for checking inside the
BARG whether or not the edge (u, w) exists and touches node v is somewhat subtle, and
we defer the details to the full version of this paper.

14 Recall that the transition from step (r, T ) to step (r + 1, 1) involves receiving messages; it is not a local
computation step. It must still be attested to, for example to ensure that the internal state of the
machine does not change between these two steps, but we omit the details here.

DISC 2024



1:14 Fully Local Succinct Distributed Arguments

We note that despite the fact that our construction uses multiple local DMTs, the
argument presented above is simpler than the argument constructed using the global DMT
in [2]: separating the requirements into internal correctness and message consistency, and
creating a separate BARG for each, simplifies both the structure of the argument and the
proof of its soundness.

For technical reasons related to the proof of soundness, we actually need two copies of
each BARG: β int(v)j and βcons(v)j , for j ∈ {1, 2}. Each of the four BARGs uses its own crs,
and we will see that this helps us “catch a cheating prover in a lie”. This is discussed in
Section 3.3 below.

Verifying the certificates. At verification time, each node v informs its neighbors of the
clusters S(v) to which it belongs, and also sends a collection {(ρc(v), Ic(v)) : c ∈ S(v)}
consisting of v’s local root and index inside the local DMT for each cluster to which v belongs.
This allows each neighbor u ∈ N(v) to compute the location in the DMT of each message
sent on the edge (v, u).

Next, each node v verifies the four BARGs, β int(v)j and βcons(v)j for j = 1, 2, stored in
its certificate π(v). At this point it has all the information needed to do so. If the BARG
verification succeeds, node v outputs accept, and otherwise it outputs reject.

𝒖𝒖

𝒗𝒗

𝑟𝑟𝑡𝑡𝑖𝑖

𝑟𝑟𝑡𝑡𝑖𝑖 𝑢𝑢

𝑚𝑚𝑟𝑟
𝑢𝑢→𝑣𝑣𝑚𝑚𝑟𝑟−1

𝑢𝑢→𝑣𝑣 𝑚𝑚𝑟𝑟+1
𝑢𝑢→𝑣𝑣… …

𝑟𝑟𝑡𝑡𝑖𝑖 𝑣𝑣

𝑚𝑚𝑟𝑟
𝑣𝑣→𝑢𝑢𝑚𝑚𝑟𝑟−1

𝑣𝑣→𝑢𝑢 𝑚𝑚𝑟𝑟+1
𝑣𝑣→𝑢𝑢… …

𝑥𝑥𝑟𝑟+1,1 𝑥𝑥𝑟𝑟,𝑇𝑇  𝑥𝑥𝑟𝑟+1,2… …

Trace at node 𝑣𝑣 

DMT for cluster 𝑖𝑖

Local DMT 
root at 𝑢𝑢

Local DMT 
root at 𝑣𝑣

𝑥𝑥𝑟𝑟+1,1 𝑥𝑥𝑟𝑟,𝑇𝑇  𝑥𝑥𝑟𝑟+1,2… …

Trace at node 𝑢𝑢 

Individual 
messages

Consistency at 𝒗𝒗
Consistency at 𝒖𝒖

Internal 
correctness at 𝒗𝒗

Figure 1 The figure shows the DMT for the cluster i that covers edge {u, v}, and “under the hash”,
the messages sent from node u to node v and vice-versa, under the respective local roots rti(u), rti(v).
The figure also shows the trace at each node, “under the hash”. Inside each configuration, small
boxes indicate messages written on the second tape. In configuration cfr,T (v), these are the messages
sent by node v in round r; in configuration cfr+1,1(v), these are the messages received by node v in
round r (and similarly for node u). The internal correctness BARG at node v (in red) asserts that
each configuration cfr,t+1(v) is the successor to cfr,t(v) according to MD. The consistency BARGs
at node v and at node u (in blue) together assert that each message hashed inside the DMT matches
the corresponding messages in the traces of u and of v.



E. Aldema Tshuva and R. Oshman 1:15

3.3 The Soundness of Our Construction
In this section, we give the main ideas for our proof of computational soundness.

Fix a distributed algorithm D, and let LD be the language of all annotated graphs
(G, x, y) such that when D executes in the network G with input assignment x, the output it
produces is y. Let (Gen,P,V) be our fl-DSNARG for the language LD, as described above.

Recall that computational soundness requires that no poly-size adversary can fool the
verifier into accepting the proof of an incorrect statement, except with negligible probability
(in the security parameter and in the size of the graph). We capture this requirement in the
form of the following experiment, which we call ExpSound, where a poly-size adversary A
tries to break the soundness of the argument:

A crs is sampled by calling the trusted setup procedure Gen of the fl-DSNARG. In our
construction, several of the primitives that we use require a common reference string:
the DMT uses a CRS to select a hash function, and the BARGs use their own internal
hash functions as well. The Gen procedure of our fl-DSNARG instantiates these common
reference strings by calling the Gen procedures of the respective primitives, and returns
one value, crs, consisting of all of them together.
The adversary A is given crs, and outputs an annotated graph (G, x, y), and a certificate
assignment π to the nodes of G.

We say that A wins the experiment if it can produce a network G, an input x and output y

such that the algorithm D does not output y on (G, x), and a certificate assignment π that
convinces all nodes to accept, nonetheless. If there is a poly-size adversary that can win the
experiment with non-negligible probability, then soundness is broken.

To prove the soundness of our argument we assume towards contradiction that there is a
poly-size adversary A that can win experiment ExpSound. We use A to construct a poly-size
adversary A′ that breaks the soundness of one of our building blocks: the collision-resistance
with respect to openings property of the hash family, the index-hiding property of the BARG,
or the somewhere argument of knowledge property of the BARG. Since we assume that these
properties hold for the primitives we use, this is a contradiction.

We consider each computation step (r, t) ∈ [R]× [T ] of the distributed algorithm D, and
define an experiment ExpSoundr,t, which is the same as ExpSound, except that the crs for the
two BARGs β int(v)1 and βcons(v)1 is generated in trapdoor mode, binding the crs to index
(r, t), while the other two copies, β int(v)2 and βcons(v)2, are set up in regular mode (without
a trapdoor). By the index-hiding property of the BARG, no poly-size adversary can tell
whether the Gen procedure is called in regular mode or in trapdoor mode; therefore, our
cheating adversary A wins the new experiment ExpSoundr,t with almost the same probability
that it wins the original experiment, ExpSound, where all four BARGs were set up in regular
mode. (If the probability was noticeably different, then we could break the index-hiding
property by running A and checking whether it wins. The noticeable difference between the
winning probability for ExpSound and for ExpSoundr,t translates to a noticeable advantage
in guessing whether crs was generated in trapdoor mode or not.)

Next we use the somewhere argument of knowledge property of the BARG to claim that
whenever A wins the experiment ExpSoundr,t, we can use the trapdoor associated with the
binding index (r, t) to extract NP-witnesses wint

r,t(v), wcons
r,t (v) to the (r, t)-th statement of the

BARGs β int(v)1 and βcons(v)1, again with a very close probability to the original winning
probability of A. These witnesses are accepted by the circuit of the respective BARGs.

We would now like to argue that these witnesses reflect the true state of the distributed
algorithm after the t-th computation step of round r: that is, they match the witnesses that
would be generated by an honest prover P , and contain, e.g., the true hash values of internal

DISC 2024



1:16 Fully Local Succinct Distributed Arguments

configurations and messages that the algorithm D generates at this point in its computation.
We will then use the collision resistance to openings property of the hash family to reach
a contradiction. If we could claim this for every r ∈ [R] and t ∈ [T ], then in particular
it would be true for the final state of the network, in step (R, T ), where the output y is
produced. Since the output is encoded in the internal configuration of the network nodes,
whenever the adversary A wins ExpSoundR,T , we can use it to find a collision in the hash of
the internal configurations: if A wins, then for some node v ∈ V , the output y(v) produced
by A does not match the true output y′(v) of the algorithm D. The witness wint

R,T (v) contains
a hash hCfR,T (v) of the false final configuration cfR,T (v)′, which includes the false output
y(v). But we know that this witness matches what the honest prover would produce, that
is, the hash of the true final configuration cfR,T (v), including the true output y′(v). Thus,
the true configuration cfR,T (v) and the false configuration cfR,T (v)′ hash to the same value,
hCfR,T (v), and we found a collision.

To prove that the witnesses extracted from the certificates in each experiment ExpSoundr,t

are the true witnesses that would be generated by the honest prover, we define hybrid
experiments

{
ExpSound′

r,t

}
(r,t)∈[R]×[T ], where we use two trapdoors: the first two copies of

the BARGs are set up with a binding index of (r, t), while the second two copies are set up
with a binding index of (r, t + 1). The winning condition for experiment ExpSound′

r,t requires
the adversary to output certificates π(v) at each node v such that

All certificates are accepted.

For each node, upon extracting the witnesses for indices (r, t) and (r, t + 1) from the
respective BARGs, all four witnesses are accepted by the respective BARG circuits.15

For each node, the witnesses for index (r, t) are the true witnesses that would be generated
by the honest prover. And finally,

There exists a node where the witnesses for index (r, t + 1) are not the true witnesses
that would be generated by the honest prover.

Winning this experiment with non-negligible probability again breaks the index-hiding
property of the BARG, because it essentially means that the adversary can tell whether the
binding index is (r, t), in which case it produces true witnesses matching the honest prover
at all nodes, or (r, t + 1), in which case it produces a false witness at some node. Proving
this step also relies on the fact that the witnesses are accepted by the BARG circuit, which
asserts that the transition from step (r, t) to step (r, t + 1) is legal. This means that if the
witness for step (r, t) is the true witness, then either the witness for step (r, t + 1) is also the
true witness, or we have broken the somewhere proof of knowledge property of the BARG (it
accepts, despite the extraction of an inappropriate witness).

After proving that the adversary cannot win experiment ExpSound′
r,t except with negligible

probability, we chain together the entire sequence ExpSound′
1,1, . . . , ExpSound′

R,T and argue
that since the adversary does not win any of these experiments with non-negligible probability,
either it produces false witnesses for the initial state of the network, or it produces true
witnesses for all computation steps (in which case we are done, as we explained above).
However, the prover cannot lie about the initial state of the network without breaking
collision resistance, for reasons similar to those we outlined for the final configuration.

15 Recall that the BARG circuit is simply the circuit that verifies (i, wi), not to be confused with the BARG
verifier, which verifies the BARG proof.



E. Aldema Tshuva and R. Oshman 1:17

References
1 Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the twenty-eighth

annual ACM symposium on Theory of computing, pages 99–108, 1996.
2 Eden Aldema Tshuva, Elette Boyle, Ran Cohen, Tal Moran, and Rotem Oshman. Locally

verifiable distributed snargs. In Theory of Cryptography Conference, pages 65–90. Springer,
2023.

3 Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. In Proceedings of the 2017
acm sigsac conference on computer and communications security, pages 2087–2104, 2017.
doi:10.1145/3133956.3134104.

4 B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and
correction. In Proceedings 32nd Annual Symposium of Foundations of Computer Science, pages
268–277, 1991.

5 B. Awerbuch and M. Sipser. Dynamic networks are as fast as static networks. In [Proceedings
1988] 29th Annual Symposium on Foundations of Computer Science, pages 206–219, 1988.

6 Alkida Balliu, Juho Hirvonen, Darya Melnyk, Dennis Olivetti, Joel Rybicki, and Jukka
Suomela. Local mending. In Merav Parter, editor, Structural Information and Communication
Complexity, pages 1–20, 2022. doi:10.1007/978-3-031-09993-9_1.

7 Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive
oracle proofs of proximity. In 45th international colloquium on automata, languages, and
programming (icalp 2018). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

8 Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, 2018.

9 Aviv Bick, Gillat Kol, and Rotem Oshman. Distributed zero-knowledge proofs over networks.
In SODA, pages 2426–2458. SIAM, 2022. doi:10.1137/1.9781611977073.97.

10 Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and
Sune K Jakobsen. Linear-time zero-knowledge proofs for arithmetic circuit satisfiability.
In International Conference on the Theory and Application of Cryptology and Information
Security, pages 336–365. Springer, 2017. doi:10.1007/978-3-319-70700-6_12.

11 Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with sublinear
verification from tensor codes. In Theory of Cryptography: 18th International Conference,
TCC 2020, Durham, NC, USA, November 16–19, 2020, Proceedings, Part II 18, pages 19–46.
Springer, 2020. doi:10.1007/978-3-030-64378-2_2.

12 Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes. Theoretical
Computer Science, 811:112–124, 2020. doi:10.1016/J.TCS.2018.08.020.

13 Yi-Jun Chang and Mohsen Ghaffari. Strong-diameter network decomposition. In Proceedings
of the 2021 ACM Symposium on Principles of Distributed Computing, pages 273–281, 2021.
doi:10.1145/3465084.3467933.

14 Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang.
Correlation intractability and SNARGs from sub-exponential DDH. In Proceedings of the 43rd
Annual International Cryptology Conference, CRYPTO 2023, Part IV, volume 14084 of LNCS,
pages 635–668. Springer, 2023. doi:10.1007/978-3-031-38551-3_20.

15 Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments
for NP from standard assumptions. In Proceedings of the 41st Annual International Cryptology
Conference, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 394–423. Springer, 2021.
doi:10.1007/978-3-030-84259-8_14.

16 Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In 62nd
IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 68–79, 2021.

17 Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. Trade-offs in distributed interactive
proofs. In DISC, volume 146 of LIPIcs, pages 13:1–13:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPICS.DISC.2019.13.

DISC 2024

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-031-09993-9_1
https://doi.org/10.1137/1.9781611977073.97
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1016/J.TCS.2018.08.020
https://doi.org/10.1145/3465084.3467933
https://doi.org/10.1007/978-3-031-38551-3_20
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.4230/LIPICS.DISC.2019.13


1:18 Fully Local Succinct Distributed Arguments

18 Ivan Bjerre Damgård. Collision free hash functions and public key signature schemes. In
Workshop on the Theory and Application of of Cryptographic Techniques, pages 203–216.
Springer, 1987.

19 Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
20 Yuval Emek, Yuval Gil, and Shay Kutten. Locally Restricted Proof Labeling Schemes. In

36th International Symposium on Distributed Computing (DISC 2022), volume 246, pages
20:1–20:22, 2022. doi:10.4230/LIPICS.DISC.2022.20.

21 Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry. Redun-
dancy in distributed proofs. Distributed Comput., 34(2):113–132, 2021. doi:10.1007/
S00446-020-00386-Z.

22 Pierre Fraigniaud, Pedro Montealegre, Rotem Oshman, Ivan Rapaport, and Ioan Todinca. On
distributed Merlin-Arthur decision protocols. In SIROCCO, volume 11639 of LNCS, pages
230–245. Springer, 2019. doi:10.1007/978-3-030-24922-9_16.

23 Pierre Fraigniaud, Boaz Patt-Shamir, and Mor Perry. Randomized proof-labeling schemes.
Distributed Computing, 32:217–234, 2019. doi:10.1007/S00446-018-0340-8.

24 Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S Wahby. Brake-
down: Linear-time and field-agnostic snarks for r1cs. In Annual International Cryptology
Conference, pages 193–226. Springer, 2023. doi:10.1007/978-3-031-38545-2_7.

25 Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory
Comput., 12(1):1–33, 2016. doi:10.4086/TOC.2016.V012A019.

26 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant
computational overhead. In Proceedings of the fortieth annual ACM symposium on Theory of
computing, pages 433–442, 2008. doi:10.1145/1374376.1374438.

27 Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch
arguments and RAM delegation. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing (STOC), pages 1545–1552, 2023. doi:10.1145/3564246.3585200.

28 Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. Snargs and ppad hardness
from the decisional diffie-hellman assumption. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 470–498. Springer, 2023. doi:
10.1007/978-3-031-30617-4_16.

29 Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, pages 1115–1124. ACM, 2019. doi:10.1145/3313276.3316411.

30 Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. Interactive distributed proofs. In
Symposium on Principles of Distributed Computing (PODC), pages 255–264, 2018. URL:
https://dl.acm.org/citation.cfm?id=3212771.

31 Michael König and Roger Wattenhofer. On local fixing. In Principles of Distributed Systems,
pages 191–205. Springer International Publishing, 2013. doi:10.1007/978-3-319-03850-6_
14.

32 Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. In
Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing,
pages 26–34, 2006. doi:10.1145/1146381.1146389.

33 Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. In
Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing,
pages 26–34, 2006. doi:10.1145/1146381.1146389.

34 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. In Proceedings of
the twenty-fourth annual ACM symposium on Principles of distributed computing, pages 9–18,
2005. doi:10.1145/1073814.1073817.

35 Jonathan Lee, Srinath Setty, Justin Thaler, and Riad Wahby. Linear-time and post-quantum
zero-knowledge snarks for r1cs. Cryptology ePrint Archive, 2021.

https://doi.org/10.4230/LIPICS.DISC.2022.20
https://doi.org/10.1007/S00446-020-00386-Z
https://doi.org/10.1007/S00446-020-00386-Z
https://doi.org/10.1007/978-3-030-24922-9_16
https://doi.org/10.1007/S00446-018-0340-8
https://doi.org/10.1007/978-3-031-38545-2_7
https://doi.org/10.4086/TOC.2016.V012A019
https://doi.org/10.1145/1374376.1374438
https://doi.org/10.1145/3564246.3585200
https://doi.org/10.1007/978-3-031-30617-4_16
https://doi.org/10.1007/978-3-031-30617-4_16
https://doi.org/10.1145/3313276.3316411
https://dl.acm.org/citation.cfm?id=3212771
https://doi.org/10.1007/978-3-319-03850-6_14
https://doi.org/10.1007/978-3-319-03850-6_14
https://doi.org/10.1145/1146381.1146389
https://doi.org/10.1145/1146381.1146389
https://doi.org/10.1145/1073814.1073817


E. Aldema Tshuva and R. Oshman 1:19

36 Christoph Lenzen, Jukka Suomela, and Roger Wattenhofer. Local algorithms: Self-stabilization
on speed. In Stabilization, Safety, and Security of Distributed Systems, pages 17–34, 2009.
doi:10.1007/978-3-642-05118-0_2.

37 Nathan Linial and Michael Saks. Low diameter graph decompositions. Combinatorica,
13(4):441–454, 1993. doi:10.1007/BF01303516.

38 Ralph C. Merkle. A certified digital signature. In Proceedings of the 9th Annual International
Cryptology Conference, CRYPTO ’89, volume 435 of LNCS, pages 218–238. Springer, 1989.
doi:10.1007/0-387-34805-0_21.

39 Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298,
2000. doi:10.1137/S0097539795284959.

40 Pedro Montealegre, Diego Ramírez-Romero, and Ivan Rapaport. Shared vs private randomness
in distributed interactive proofs. arXiv preprint arXiv:2006.16191, 2020. arXiv:2006.16191.

41 Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in interactive
proofs. In Shuchi Chawla, editor, Symposium on Discrete Algorithms (SODA), pages 1096–115,
2020. doi:10.1137/1.9781611975994.67.

42 Rafail Ostrovsky, Mor Perry, and Will Rosenbaum. Space-time tradeoffs for distributed
verification. In International Colloquium on Structural Information and Communication
Complexity, pages 53–70. Springer, 2017. doi:10.1007/978-3-319-72050-0_4.

43 Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch arguments.
In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages
1045–1056. IEEE, 2022. doi:10.1109/FOCS54457.2022.00102.

44 Noga Ron-Zewi and Ron D Rothblum. Proving as fast as computing: succinct arguments with
constant prover overhead. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1353–1363, 2022. doi:10.1145/3519935.3519956.

45 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decompo-
sition and distributed derandomization. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 350–363, 2020.

46 Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Theory of Cryptography Conference, pages 1–18. Springer, 2008. doi:10.1007/
978-3-540-78524-8_1.

47 Michael Walfish and Andrew J Blumberg. Verifying computations without reexecuting them.
Communications of the ACM, 58(2):74–84, 2015. doi:10.1145/2641562.

48 Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear
group assumptions. In Proceedings of the 42nd Annual International Cryptology Conference,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 433–463. Springer, 2022. doi:10.1007/
978-3-031-15979-4_15.

49 Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song.
Libra: Succinct zero-knowledge proofs with optimal prover computation. In Advances in
Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18–22, 2019, Proceedings, Part III 39, pages 733–764. Springer, 2019.
doi:10.1007/978-3-030-26954-8_24.

50 Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and Yupeng
Zhang. Doubly efficient interactive proofs for general arithmetic circuits with linear prover
time. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 159–177, 2021. doi:10.1145/3460120.3484767.

A Full Syntax, Formal Definitions and Statements

A.1 Distributed Merkle Trees
We give here the full definition of a distributed Merkle tree, adopted from [2], with a minor
change we discuss bellow.

DISC 2024

https://doi.org/10.1007/978-3-642-05118-0_2
https://doi.org/10.1007/BF01303516
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1137/S0097539795284959
https://arxiv.org/abs/2006.16191
https://doi.org/10.1137/1.9781611975994.67
https://doi.org/10.1007/978-3-319-72050-0_4
https://doi.org/10.1109/FOCS54457.2022.00102
https://doi.org/10.1145/3519935.3519956
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1145/2641562
https://doi.org/10.1007/978-3-031-15979-4_15
https://doi.org/10.1007/978-3-031-15979-4_15
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1145/3460120.3484767


1:20 Fully Local Succinct Distributed Arguments

Syntax. An efficient distributed Merkle tree DMT is associated with a recursive hash family
with local openings

MT = (MT.Gen, MT.Hash, MT.Open, MT.Verify)

and consists of the following algorithms:

Gen(1λ)→ hk. A randomized algorithm that takes as input the security parameter λ and
outputs a hash key hk = MT.Gen(1λ).

DistMake(hk; G; x)→ {(valv, rtv, Iv, ρv, βv)}v∈V (G). A distributed algorithm that executes
in a distributed network G, with all nodes receiving the same hash key hk, and each
node v ∈ V (G) initially holding a collection of inputs x(v) = {xv→u}u∈N(v) (one input
xu→v for each neighbor u ∈ N(v)). The output at each node v consists of:
A hash value valv, which is the same at all nodes,
A local MT-root rtv,16

An index Iv ∈ {0, 1}∗,
An opening path ρv, and
A set βv of openings (ρv→u) of index and opening path for every neighbor u ∈ N(v).

▶ Definition 2 (DMT). A DMT is required to satisfy the following properties:

Well-formedness.
All nodes v ∈ V (G) output the same value valv,
All indices Iv are of length c · ⌈log n⌉, for some constant c,

MT-functionality. Fix a hash key hk, a network G of size n and input assignment to it
x : V (G) → {0, 1}∗, where for every v ∈ V (G), x(v) = {xv→u}u∈N(v), such that for
every edge {v, u} ∈ E(G), xv→u ∈ {0, 1}ℓ. Let{

(valv, rtv, Iv, ρv, pv, F̂v, βv)
}

v∈V (G)
= DistMake(hk, G, x),

where βv = {ρv→u}u∈N(v) . For each directed edge (v, u), let Index(v, u) = Iv ∥ id(u),
and Opening(v, u) = ρv ∥ ρv→u. We say that the DMT satisfies MT-functionality
if for every such output, there exists a constant c and a vector x⃗ of length at most
≤ 2c·⌈log n⌉+⌈log ñ⌉+⌈log ℓ⌉ (where ñ denotes the size of the UID domain) such that:
For every v ∈ V (G) and u ∈ N(v) we have x⃗Index(v,u) = xv→u,
For every v ∈ V (G), valv = MT.Hash(hk, x⃗),
For every v ∈ V (G) and u ∈ N(v) we have:
(x⃗v→u, Opening(v, u)) = MT.Open(hk, x⃗, Index(v, u)).

Efficiency. At each node, the local computation executed by DistMake runs in time
poly(λ, n, m).

16 Throughout this section and the sequel, we use both val and rt to denote MT-values, which are also
themselves MT-roots (the construction is recursive). We use val to denote a “final” value, the root
of the entire network, which is later exposed to the algorithm using the DMT; we typically use rt for
intermediate values handled inside the distributed Merkle.



E. Aldema Tshuva and R. Oshman 1:21

Low round complexity and low communication complexity. DistMake runs in O(D)
synchronized communication rounds on networks of diameter D, and uses messages of
length poly(λ, log n).

▶ Remark 3. In [2], the set βv returned from the algorithm DistMake also contain indices
{Iv ∥ Iv→u}u∈N(v), and the MT-functionality property is defined with respect to Index(v, u) =
Iv ∥ Iv→u, where Iv ∥ Iv→u is the port number of u as represented in the node v. In this
work, we simplify this by considering the UIDs instead of port numbers of the nodes. This
means that the hash value val now depends on the size of the UID domain ñ = |U|, where it
used to depend on the maximal degree, but this does not come with a meaningful cost as (1)
we assume ñ = poly(n) and (2) the dependency (of previously ∆ and now ñ) is logarithmic.

▶ Theorem 4 ([2]). For every recursive hash family with local openings, there exists a
respective distributed Merkle tree.

A.2 Somewhere Extractable Batch Arguments (seBARGs)
Syntax. A seBARG for index language consists of the following algorithms:

Gen(1λ, k, 1s, i)→ (crs, td). A randomized setup procedure that takes a security parameter
λ, the number of statements k, the size of the circuit 1s, and an optional index i, and
generates a common reference string crs and if provided an index i, a trapdoor td.

P(crs, C, w1, . . . , wk) → (b, π). A polynomial-time prover algorithm that takes the crs, a
circuit C and a list of witnesses w1, . . . , wk, and outputs a bit b and a proof π.

V(crs, C, π)→ b. A polynomial-time verification algorithm that takes the crs, a circuit C,
and a proof π and outputs an acceptance bit.

E(td, C, π)→ wi. A polynomial-time extraction algorithm that takes a trapdoor td, a circuit
C, and a proof π, and outputs a witness wi.

▶ Definition 5 (seBARG). A seBARG satisfies the following requirements.

Succinctness. The length of the crs and of the proof π is at most poly(s, λ, log k).

Verifier Efficiency. The verifier runs in time poly(s, λ, log k).

Completeness. For any λ ∈ N and s = s(λ) of size at most 2λ, for any circuit
C : [k]× {0, 1}m → {0, 1} of size at most s, any witnesses w1, . . . , wk ∈ {0, 1}m and
any index i∗ ∈ [k]

Pr
[
V(crs, C, π) = 1

∣∣∣∣ (crs, td)← Gen(1λ, k, 1s, i∗)
π ← P(crs, C, w1, . . . , wk)

]
= 1.

Index hiding. For any poly-size adversary A and polynomials k = k(λ) and s = s(λ),
there exists a negligible function negl(·) such that for every λ ∈ N

Pr

 i0, i1 ∈ [k]
A(crs) = b

∣∣∣∣∣∣
(i0, i1)← A(1λ)
b← {0, 1}
(crs, td)← Gen(1λ, k, 1s, ib)

 ≤ 1
2 + negl(λ).

DISC 2024



1:22 Fully Local Succinct Distributed Arguments

Somewhere argument of knowledge. For any poly-size adversary A, polynomials
k = k(λ) and s = s(λ), and index i∗ = i∗(λ) ∈ [k(λ)], there exists a negligible function
negl(·) such that for every λ ∈ N

Pr

 V(crs, C, π) = 1
∧ C(i∗, w) = 0

∣∣∣∣∣∣
(crs, td)← Gen(1λ, k, 1s, i∗)
(C, π)← A(crs)
w ← E(td, C, π)

 ≤ negl(λ).

▶ Theorem 6 ([15, 48, 27, 14]). seBARGs for NP, and in particular, for the index languages,
exist assuming either: (1) LWE, (2) DLIN, or (3) subexponential DDH.

A.3 Low-Diameter Edge Cover

For a graph G = (V, E) and a mapping S from V to subsets of U , denote by TS the image of
S (that is, the set {t ∈ U | ∃v ∈ V : t ∈ S(v)}), and for every t ∈ TS , denote by Vt the set
of nodes which have t in their image: V S

t = {v ∈ V | t ∈ S(v)}.

▶ Definition 7 ((D, s)-edge-cover). For a graph G, we say a mapping S : V → U is an edge
cover of G if for every edge {v, u} ∈ E, we have S(v) ∩ S(u) ̸= ∅.

We say S is diameter-D if for every t ∈ T , we have that the graph induced by V S
t , G[Vt]

is of strong-diameter at most D.
We say S is s-succinct if for every node v ∈ V , we have |S(v)| ≤ s.

▶ Remark 8. We remark that unlike the classical definition of graph decomposition, here
we think of the clusters from the point of view of the nodes; and for that reason define the
edge-cover to be a mapping from nodes to all of the sets it belongs to, rather than simply a
set of subsets of the graph nodes.

▶ Theorem 9. There exists a (polylog(n), polylog(n))-edge-cover algorithm in the CONGEST
model.

A.4 Fully Local Distributed SNARG

We give here the full definition of a fully local distributed SNARG (fl-DSNARG), which is
mostly adopted from [2], with the only difference being the improved efficiency requirement
from the prover.

Syntax. A locally verifiable distributed SNARG with a round-efficient distributed prover
for a distributed algorithm D and corresponding graph language LD consists of the following
algorithms.

Gen(1λ, n)→ crs. A randomized algorithm that takes as input a security parameter 1λ and
a graph size n, and outputs a common reference string crs.

P(crs; G; x)→ (y, π). A distributed algorithm that runs in the network G, where all of the
nodes have access to the common reference string crs obtained from Gen, and each node
v ∈ V (G) inputs x(v), and outputs (1) an assignment of outputs y : V (G)→ {0, 1}∗

of D when executed in G, and (2) an assignment of proofs π : V (G)→ {0, 1}∗.



E. Aldema Tshuva and R. Oshman 1:23

V(crs; G; x, π) → b. A distributed decision algorithm that takes as a common input to
the entire network a common reference string crs, executes in the network G, where
each node v ∈ V (G) is assigned with an input x(v) and a proof π(v), and outputs
acceptance bits b : V → {0, 1}∗.

▶ Definition 10 (fl-DSNARG). Let D be a distributed algorithm, and let LD be its cor-
responding graph language. An fl-DSNARG (Gen,P,V) for D must satisfy the following
properties:

Completeness. For any (G, x) ∈ LD,

Pr
[
V(crs; G; x, π) = 1

∣∣∣∣ crs← Gen(1λ, n)
π ← P(crs; G; x)

]
= 1.

Soundness. For any poly-size algorithm P∗ and polynomial n = n(λ), there exists a
negligible function negl(·) such that

Pr
[

(G, x) /∈ LD
∧ V(crs; G; x, π) = 1

∣∣∣∣ crs← Gen(1λ, n)
(G, x, π)← P∗(crs)

]
≤ negl(λ).

Succinctness. The crs and the proof π(v) at each node v are of length at most
poly(λ, log n).

Verifier efficiency. V runs in a single synchronized communication round, during which
each node sends a (possibly different) message of length poly(λ, log n) to each neighbor.
At each node v, the local computation executed by V runs in time
poly(λ, |π(v)|, |x(v)|, deg(v)) = poly(λ, n).

Prover efficiency. P adds an overhead of polylog(n) communication rounds to the
rounds of D, where in each of these rounds, each node sends a message of length
poly(λ, log n) to each neighbor. At each node, the local computation executed by P
runs in time poly(λ, n).

The following theorem states the existence of fl-DSNARG, assuming the existence of the
ingredients we used, to complement Theorem 1.

▶ Theorem 11. Assume the existence of a (D, c)-edge-cover algorithm in the CONGEST
model, a distributed Merkle tree, and a somewhere extractable argument of knowledge for NP.

Then, for every distributed algorithm D that runs in polynomial rounds and local compu-
tation time, there exists an fl-DSNARG.

B G2 Strong-Diameter Decomposition in the CONGEST Model

We require a (polylog(n), polylog(n))-decomposition algorithm that satisfies the following
properties:

It is a strong-diameter decomposition algorithm,
it is in the CONGEST model, and
it can be extended to graph powers while remaining in the CONGEST model.

DISC 2024



1:24 Fully Local Succinct Distributed Arguments

While the first two requirements are rather obvious, the last one may seem trivial given the
second requirement, but it is in fact more delicate. It is true that given an algorithm in the
LOCAL model, to simulate its execution on G2, is rather simple; each node could start by
collecting its distance-2 neighborhood and then simulate each step of the original algorithm
as if it was operating on G2, while suffering a factor of 2 in the number of rounds. However,
this does not generally work in the CONGEST model, as the distance-2 neighborhood of
each node might be much larger than the number of connections it can use to collect the
information.

In [45], a CONGEST algorithm for weak-diameter is constructed using the building block
of weak-diameter ball-carving algorithm. Their weak-diameter ball-carving is then extended
to be simulatable on Gk in the CONGEST model for any constant k, while preserving the
round complexity. It then uses a classical CONGEST reduction from ball-carving to graph
decomposition [37], where the ball-carving algorithm is executed log n times.

In [13], a strong-diameter decomposition is constructed using a transformation from
weak-diameter ball carving to strong-diameter ball carving in the CONGEST model, following
by the same classical reduction from ball-carving to decomposition. Their transformation
satisfies the property that if the original algorithm runs in polylog n rounds and produces
polylog n-diameter clusters, then the new algorithm also runs in polylog n rounds and
produces polylog n-diameter clusters (with different polynomial dependencies in log n). Then,
combining this transformation with the weak-diameter CONGEST ball-carving of [45], they
obtain a polylog n rounds polylog n strong-diameter ball-carving in the CONGEST model,
followed by a corresponding strong-diameter decomposition in the CONGEST model.

Since the weak-diameter ball carving of [45] could be simulated on G2 in the CONGEST
model, to see that the strong-diameter decomposition of [13] could be simulated on G2 in the
CONGEST model it remains to show that their weak-diameter to strong diameter ball-carving
transformation could be also simulated in G2 in the CONGEST model. We observe that the
transformation of [13] uses communication between the nodes in the following two ways,
which both could be simulated on G2 in the CONGEST model:

Counting the number of nodes in a cluster, by gathering information over Steiner trees.
This could be simulated for G2 since each node has to transfer only a number of nodes,
where this number is still bounded by n in G2, and so could be described in O(log n) bits.
Computing a radius around a node v such that the ratio between the number of nodes
in the cluster within that radius around v and the number of nodes beyond that radius
exceeds some parameter. This is done by growing a BFS tree around v and gathering the
number of nodes within each distance. Here as well, we have that nodes only transfer
numbers, which are bounded by n, and thus their description is of size O(log n).



A Knowledge-Based Analysis of Intersection
Protocols
Kaya Alpturer #

Princeton University, NJ, USA

Joseph Y. Halpern #

Cornell University, Ithaca, NY, USA

Ron van der Meyden #

UNSW Sydney, Australia

Abstract
The increasing wireless communication capabilities of vehicles creates opportunities for more efficient
intersection management strategies. One promising approach is the replacement of traffic lights with
a system wherein vehicles run protocols among themselves to determine right of way. In this paper,
we define the intersection problem to model this scenario abstractly, without any assumptions on
the specific structure of the intersection or a bound on the number of vehicles. Protocols solving
the intersection problem must guarantee safety (no collisions) and liveness (every vehicle eventually
goes through). In addition, we would like these protocols to satisfy various optimality criteria,
some of which turn out to be achievable only in a subset of the contexts. In particular, we show a
partial equivalence between eliminating unnecessary waiting, a criterion of interest in the distributed
mutual-exclusion literature, and a notion of optimality that we define called lexicographical optimality.
We then introduce a framework to design protocols for the intersection problem by converting an
intersection policy, which is based on a global view of the intersection, to a protocol that can be run
by the vehicles through the use of knowledge-based programs. Our protocols are shown to guarantee
safety and liveness while also being optimal under sufficient conditions on the context. Finally, we
investigate protocols in the presence of faulty vehicles that experience communication failures and
older vehicles with limited communication capabilities. We show that intersection protocols can be
made safe, live and optimal even in the presence of faulty behavior.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Computer sys-
tems organization → Dependable and fault-tolerant systems and networks; Computing methodologies
→ Reasoning about belief and knowledge

Keywords and phrases Intersection management, Autonomous vehicles, Distributed algorithms,
Epistemic logic, Fault tolerance

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.2

Related Version Full Version: https://arxiv.org/abs/2408.09499 [2]

Funding Kaya Alpturer : Research supported by AFOSR grant FA23862114029. Work done in part
while the author was studying at Cornell University.
Joseph Y. Halpern: Research supported in part by AFOSR grant FA23862114029, NSF grant FMitF
2319186, ARO grant W911NF-22-1-0061, and MURI grant W911NF-19-1-0217.
Ron van der Meyden: The Commonwealth of Australia (represented by the Defence Science and
Technology Group) supported this research through a Defence Science Partnerships agreement.

1 Introduction

Traffic lights can slow down traffic significantly, due to their lack of responsiveness to real-time
traffic. If vehicles can communicate with each other (which is already quite feasible with
today’s wireless technology), the door is open for improved protocols, where vehicles can
determine right of way among themselves, depending on traffic conditions, and thereby

© Kaya Alpturer, Joseph Y. Halpern, and Ron van der Meyden;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 2; pp. 2:1–2:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kalpturer@princeton.edu
https://orcid.org/0000-0003-4843-883X
mailto:halpern@cs.cornell.edu
https://orcid.org/0000-0002-9229-1663
mailto:R.VanderMeyden@unsw.edu.au
https://orcid.org/0000-0002-9243-0571
https://doi.org/10.4230/LIPIcs.DISC.2024.2
https://arxiv.org/abs/2408.09499
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 A Knowledge-Based Analysis of Intersection Protocols

significantly increase throughput at an intersection. In this paper, we formally define the
intersection problem: we assume that agents can communicate with each other via radio
broadcasts, and design protocols that take advantage of this communication to allow agents
to go through the intersection while satisfying safety (no collisions) and liveness (every
vehicle eventually goes through). In addition, we consider optimal protocols, which means,
roughly speaking, that the protocol allows as many vehicles as possible to go through the
intersection at any given time. Finally, we consider the extent to which we can tolerate
communication failures and (older) vehicles that are not equipped with wireless, so cannot
broadcast messages. (It turns out that these two possibilities can be dealt with essentially
the same way.)

While the inefficiencies of traffic-light-based intersection management have long been
recognized [7], prior approaches have mainly focused on specific intersection scenarios [15, 16]
or relied on executing leader-election protocols without considering communication failures
[9, 10]. Furthermore, the protocols have often been evaluated based on simulations of specific
intersections, rather than being proved correct [10, 15]. Given the implications of this
problem for traffic safety, as well as its potential for greatly improving energy efficiency and
productivity, there is a need for formal guarantees on both correctness and optimality.

To the best of our knowledge, prior work did not consider optimality, especially in the
presence of various faults. In designing these protocols, to the extent possible, we want them
to be robust to a variety of communication failures, such as contexts with crash failures,1
where an agent may fail by ceasing to participate in the protocol at a given time, and
omission failures, where arbitrary messages can fail to be broadcast.

Epistemic logic has been shown to provide a high-level abstraction that can be used to
design distributed protocols independent of particular assumptions on the communication
environment and type of failures [8]. Most analyses of distributed-computing problems that
use epistemic logic have used full-information protocols to derive time-optimal algorithms, at
the cost of large message size and memory requirements. Given the limitations of wireless
networks, it is also desirable to bound the amount of information that needs to be exchanged
between agents, while still ensuring that the formal guarantees are still met. To address
this, following [1], we separate the part of the protocol that determines what information
is exchanged between the agents, and the part that determines what action to take based
on the agent’s information. Thus, when we consider optimality, we do so with respect to
protocols that limit information exchange in the same way.

We model the intersection problem as the following scenario. There is a (possibly infinite)
set of agents Ag ⊆ N. The intersection has ℓ lanes, represented by L = {0, . . . , ℓ − 1}. The
set of lanes is partitioned into a set of lanes Lin = {0, . . . , k − 1}, where 1 < k < ℓ by which
vehicles approach the intersection, and a set of lanes Lout by which they depart from the
intersection. Each lane in Lin has a queue of agents waiting to go through the intersection;
at each point in time at most one agent arrives at each of these queues. A move through the
intersection is represented by a pair (ls, lt) ∈ Lin × Lout . Intuitively, executing (ls, lt) means
that the agent arrives through lane ls and departs through lane lt. The symmetric relation
O ⊆ (Lin × Lout)2 describes which moves of the agents are compatible; ((ls, lt), (l′

s, l′
t)) ∈ O

means that both (ls, lt) and (l′
s, l′

t) can be executed in the same round. Broadcasts have a
limited range, given by ρ > 0. We assume that, provided there are no failures, all broadcasts
sent by an agent i will be received by all agents that are within a distance ρ of i. The

1 We follow the distributed-algorithms literature’s interpretation of “crash failure” here: it is not meant
to imply a physical collision.



K. Alpturer, J. Y. Halpern, and R. van der Meyden 2:3

Figure 1 An intersection with L = {1, . . . , 8} where Lin = {1, . . . , 4} and Lout = {5, . . . , 8}.
There are currently 4 agents that have arrived in incoming lanes 2 and 3.

problem is then to maximize the rate at which cars move through the intersection while
guaranteeing safety (it is never the case that agents with incompatible moves go through the
intersection simultaneously) and liveness (all agents that arrive at the intersection eventually
move through it). The problem can be thought of as a generalization of distributed mutual
exclusion, where the intersection is the critical section.

The rest of the paper is organized as follows: In Section 2, we briefly review the knowledge-
based framework of [8]. In Section 3, we modify the information-exchange model of [1] and
introduce the sensor model. Section 4 defines models for the adversary which determine the
arrival schedule of vehicles and communication failures. Section 5 combines the information-
exchange and the adversary model, fully specializing the general model of Section 2 to
intersections. Section 6 introduces the various notions of optimality we care about such as
eliminating unnecessary waiting and lexicographical optimality. In Section 7, intersection
policies are introduced as a global view of the intersection. Section 8 proves a construction that
results in an optimal policy even with failures, and explores applications of the construction
in two limited-information contexts. Section 9 concludes with a discussion on connections to
distributed mutual exclusion. We defer most proofs to the full paper.

2 Reasoning about knowledge

In order to reason about the knowledge of the vehicles in the intersection problem, we use
the standard runs-and-systems model [8]. An interpreted system I = (R, π) consists of a
system R, which is a set of runs, and an interpretation π : R × N → P(Prop). Each run
r : N → Le × Πi∈AgLi describes a particular infinite execution of the system where r(m) is
the global state of the system in run r at time m. The global states consist of an environment
state drawn from Le and local states for each agent i drawn from each Li. The local state of
agent i at point (r, m) is denoted ri(m). We call a run and time pair (r, m) a point. The
interpretation π describes which atomic propositions hold at each point in a system R.

We write I, (r, m) |= ϕ if the formula ϕ holds (is satisfied) at point (r, m) in interpreted
system I. A formula ϕ is valid in an interpreted system I, denoted I |= ϕ, if ϕ holds at all
points in I; the formula ϕ is valid if it is valid in all interpreted systems. Satisfaction of
formulas is inductively defined as follows:

I, (r, m) |= p iff p ∈ π(r, m).
I, (r, m) |= ϕ ∧ ϕ′ iff I, (r, m) |= ϕ and I, (r, m) |= ϕ′.
I, (r, m) |= ¬ϕ iff I, (r, m) ̸|= ϕ.

DISC 2024



2:4 A Knowledge-Based Analysis of Intersection Protocols

I, (r, m) |= Kiϕ iff I, (r′, m′) |= ϕ for all points (r′, m′) such that ri(m) = r′
i(m′).

I, (r, m) |= ♢ϕ iff for some m′ ≥ m, I, (r, m′) |= ϕ.
I, (r, m) |= ⃝ϕ iff I, (r, m + 1) |= ϕ.

Agent i knows a formula ϕ at (r, m) if I, (r, m) |= Kiϕ. Intuitively, agent i knows ϕ if ϕ

holds at all points where agent i has the same local state. We say that agent i considers
the point (r′, m′) possible at point (r, m) if ri(m) = r′

i(m′). The relation ∼i is defined as
(r, m) ∼i (r′, m′) iff ri(m) = r′

i(m′). The formula ⃝ϕ means that ϕ holds at the next time,
and ♢ϕ means that ϕ holds eventually. In later sections, we formalize how interpreted systems
for the intersection problem are specified.

3 Information-exchange protocols

Our framework for modeling limited information exchange is similar to that used by Alpturer
et al. [1] to analyze consensus protocols, but we make a number of changes due to the
differences in our setting. Here, global states represent not just the result of messages sent
between the agents, but also facts about a changing external world, from which the agents
obtain sensor readings (e.g., information about their own position and that of nearby vehicles,
from GPS, visual, lidar, or radar sensors). We modify the definition of information-exchange
protocols from [1] to accommodate these sensor readings. Specifically, assume that we are
given a set Le of environment states. Define a sensor model for Le to be a collection of
mappings S = {Si}i∈Ag, where Si : Le → Σi maps states of the environment to a set Σi of
possible sensor readings for agent i.

An information-exchange protocol E for agents Ag and sensor model S is given by the
collection {Ei}i∈Ag consisting of a local information-exchange protocol Ei for each agent i.
Each local information-exchange protocol Ei is a tuple ⟨Li, Meminit

i , Ai, Mi, µi, δi⟩, where
Li = Memi × Σi is a set of local states, where each local state consists of a memory state
from a set Memi and a sensor reading from Σi;
Meminit

i ⊆ Memi is a set of initial memory states. (Typically, there might be a single
initial memory state, containing information such as the agent’s identity.)
Mi is the set of messages that can be sent by agent i;
µi : Li × Ai × Σi → Mi ∪ {⊥} is a function mapping a local state s, an action a, and
a sensor reading o to the message to be broadcast (intuitively, µi(s, a, o) = m means
that when agent i performs action a in state s and obtains new sensor reading o, the
information-exchange protocol broadcasts the message m to the other agents; if m = ⊥,
then no message is sent by i);
δi : Li × Ai × P(∪j∈AgMj) → Memi is a function that updates the local memory as a
function of the previous local state (comprised of the previous memory state and the
previous sensor reading), an action, and a set of messages received.

An action protocol P for an information-exchange protocol E , is a tuple {Pi}i∈Ag contain-
ing, for each agent i, Pi : Li → Ai mapping the local states Li for agent i in Ei to actions in
Ai.

4 Adversary model

Intersection protocols need to operate in an environment with several forms of nondeterminism:
how messages are broadcast through the environment, failures of transmitters and receivers,
and the arrival pattern of vehicles. We model these aspects of the environment in terms of
an adversary.



K. Alpturer, J. Y. Halpern, and R. van der Meyden 2:5

The precise physics of the intersection may affect how broadcasts are transmitted through
the environment. Rather than attempt to model Euclidean distances and obstacles, we
abstract the effects of these factors on transmission. A transmission environment is a
relation T ⊆ (Lin × N)2. Intuitively, ((ℓ, p), (ℓ′, p′)) ∈ T represents that, provided the agents’
transmitters and receivers do not fail, a message broadcast by an agent at position p in lane
ℓ, will be received by an agent at position p′ in lane ℓ′. Transmission environments encode
our assumption that the communication range is ρ. We make one assumption about this
relation: that for all ℓ, ℓ′ ∈ Lin, we have ((ℓ, 0), (ℓ′, 0)) ∈ T . That is, messages broadcast by
an agent at the front of some lanes are received (barring failure) by all agents that are at the
front of any lane.

An adversary model F is a set of adversaries; formally, an adversary is a tuple α =
(τ, T, Ft, Fr), where τ : Ag → N×Lin ×Lout , T is a transmission environment, Ft : N×Ag →
{0, 1}, and Fr : N × Ag → {0, 1}. Intuitively, τ is an arrival schedule, which describes when
each agent arrives in the system (i.e., enters a queue), its lane of arrival, and its intended
departure lane. The function Ft represents failures of agents’ transmitters and the function
Fr represents failures of agents’ receivers. Ft(k, i) = 1 means that if i tries to broadcast in
round k + 1 (i.e., between time k and time k + 1), then the broadcast will be sent to all
agents within range (i.e., within ρ of i), and perhaps others; similarly, Fr(k, j) = 1 means
that j receives all broadcasts sent in round k + 1 by agents within range (but again, it may
receive other broadcasts as well). Thus, a broadcast by agent i in round k + 1 is received
by a j within range of i in round k + 1 iff Ft(k, i) = Fr(k, j) = 1. The function τ describes
when agents arrive in the system (which we assume is under the control of the adversary).
In more detail, if τ(j) = (k, (l1, l2)), then at time k, agent j arrives in the system on lane
l1 with the intention of departing on lane l2. We assume that τ is conflict-free in the sense
that, for all agents i ̸= j, if τ(i) = (k, (l1, l2)) and τ(j) = (k, (l′

1, l′
2)), then l1 ̸= l′

1. This
ensures that we do not have a conflict of two agents wanting to enter the same queue for lane
l1 simultaneously. (Exactly how this mutual exclusion of queue entry is assured is outside
the scope of the model. One way that it may come about is that vehicles approaching the
intersection are already ordered along an approaching lane.)

We consider adversary models that involve the following types of failures:
No failures (NF): the set of all adversaries (τ, T, Ft, Fr) where Fr(k, i) = Ft(k, i) = 1 for
all i ∈ Ag and k ∈ N.
Crash failures (CR): the set of all adversaries (τ, T, Ft, Fr) where for all i ∈ Ag and k ∈ N,
(1) Ft(k, i) = 0 implies Ft(k′, i) = 0 for all k′ > k, and (2) Fr(k, i) = 1 for all k and i.
Sending omissions (SO): the set of all adversaries (τ, T, Ft, Fr) where for all i ∈ Ag and
k ∈ N, Fr(k, i) = 1.

An adversary model F has a fixed transmission environment if all adversaries in F include
the same transmission environment T . We believe that our techniques can be applied without
change to the general omissions case.

5 Intersection Contexts

A context is a triple (E , F , π) consisting of an information-exchange protocol E , an adversary
model F , and an interpretation π. To deal with intersections, we restrict information-
exchange protocols and interpretations so that they satisfy certain conditions. (E , F , π) is an
intersection context if it satisfies the following conditions:

DISC 2024



2:6 A Knowledge-Based Analysis of Intersection Protocols

The set of environment states Le consists of states of the form se =
(α, t, q1, . . . , q|Lin |, done) where α ∈ F is an adversary, t ∈ N is a time, for each ap-
proach lane l ∈ Lin, ql is a queue (list) of agents, intuitively the ones who have lane i

and not yet departed, and a set done ⊆ Ag, representing the agents that have already
passed through the intersection.
The sensor model, in principle, could be defined to include information from a large
variety of sensors and information sources, such as GPS, in-road or road-side beacons,
lidar, radar, or vision systems. We start with a minimal location-based sensor model,
and leave it open for other fields to be added. Our minimal sensor model S = {Si}i∈Ag
is defined so that the sensor function Si maps environment states to tuples of the form
⟨fronti, lanei, intenti⟩, where fronti ∈ {0, 1}, lanei ∈ Lin ∪ {⊥, ⊤}, and intenti ∈ Lout .
For se = (α, t, q0, q1, . . . , q|Lin |, done), we have Si(se) = ⟨fronti, lanei, intenti⟩, where if τ

is the arrival schedule in the adversary α,
posi maps from global states to N ∪ {⊥, ⊤}; posi(se) = ⊤ if i ∈ done, posi(se) = k if
there exists a queue ℓ such that i is the kth position in queue qℓ (with the front of the
queue counted as position 0), and posi(se) = ⊥ otherwise. (It follows from the state
dynamics given below that i is in at most one queue, so posi is well-defined.)
fronti = 1 iff posi(se) = 0,
if i is in the queue qℓ for lane ℓ, then lanei = ℓ; if i ∈ done then lanei = ⊤; and if
i ̸∈ done then lanei = ⊥.
if τ(i) = (k, (l, l′)) then intenti = l′.

We have modelled an agent’s intended departure lane intenti as being received from the
environment since, from the point of view of protocol design, this is part of the adversary.
The set of possible actions of agent i in Ei is Ai = {go, noop}. Intuitively, go represents
that action of the agent making its planned move through the intersection. This action
can be performed by agent i only if i is at the front of its queue. The action noop
represents that the agent does not move, unless it is either scheduled for arrival in some
queue, or in some position in a queue but not at the front, and the position before it is
being vacated, in which case it advances in the queue.
A global state is a tuple of the form (se, {si}i∈Ag), where se ∈ Le and si ∈ Li for each
agent i ∈ Ag. An initial global state has

se = (α, t, q1, . . . , q|Lin |, done), where t = 0, each queue ql is empty, and done is the
empty set, and
for each agent i ∈ Ag, the local state si = (mi, Si(se)) where mi ∈ Meminit

i is an
initial memory state.

π interprets the following atomic propositions based on the global state in the obvious
way: fronti, lanei = l for l ∈ Lin, intenti = l for l ∈ Lout , posi = k for k ∈ N ∪ {⊥, ⊤}.

Given an intersection context γ = (E , F , π) and a protocol P , we construct an interpreted
system Iγ,P = (RE,F,P , π) representing all the possible behaviours of the protocol P in
context γ. The set RE,F,P of runs consists of all runs r that satisfy the following properties:

The initial state r(0) of r is an initial global state.
For each k ∈ N, the global state r(k + 1) = (s′

e, {s′
i}i∈Ag) is determined from r(k) =

(se, {si}i∈Ag) by a procedure in which the order of events is as follows. First, the agents
decide their actions (to go through the intersection or not). They then perform these
actions, causing the queues to be updated; any newly arriving agents are also added to
the queues in this step. The agents then take a sensor reading, from which they obtain
new information about their position. This new information may be included in the
message that an agent broadcasts. Finally, each agent updates its memory state, based



K. Alpturer, J. Y. Halpern, and R. van der Meyden 2:7

on their previous local state, the action performed, and the messages that were broadcast
in the current round and received by the agent. We then proceed to the next round.
Formally, state transitions are determined by the following procedure:

First, each agent i determines its action Pi(si) according to the protocol P .
If se = (α, m, q1, . . . , q|Lin |, done), then we take s′

e = (α, m + 1, q′
1, . . . , q′

|Lin |, done′),
defined as follows. Note that the adversary α is the same in s′

e, and the time m is
incremented. Each queue q′

ℓ is obtained from qℓ by the following operations:
∗ If qℓ(0) = i and Pi(si) = go, then let q′′

ℓ be the result of dequeueing agent i from qℓ.
Otherwise q′′

ℓ = qℓ.
∗ If τ(i) = (m+1, (l1, l2)) for any agent i, then we define q′

ℓ = enqueue(i, q′′
ℓ ), otherwise

q′
ℓ = q′′

ℓ . (Recall that such an i is unique, by assumption on τ .)
Finally, we take done′ to be the result of adding to the set done all agents i who were
at the front of any queue in se such that Pi(si) = go.

Next, for each agent i, we obtain a new sensor reading Si(s′
e) of the updated state s′

e

of the environment. Using this sensor readings, each agent i constructs the message
mi = µi(si, Pi(si), Si(s′

e)), which it broadcasts.
For each agent i, we determine the set of messages Bm

i that the agent receives in round
m + 1. If agent i is not in any queue in state s′

e, or Fr(m, i) = 0 (agent i’s receiver fails in
round m + 1) then Bm

i = ∅. Otherwise, for each agent i that is in a lane queue, let ℓi be
the lane it is in and pi its position in the queue. We define Bm

i to be the set of messages
mj for which both ((pj , ℓj), (pi, ℓi)) ∈ T (j’s transmission can be heard by agent j, given
their positions) and Ft(m, j) = 1 (j’s transmitter does not fail in this round.)
Finally, if si = (ui, Si(se)), then s′

i = (u′
i, Si(s′

e)), where u′
i = δi(si, Pi(si), Bm

i ). (Note
that we use the old sensor reading Si(se) to determine the new memory state, but not
the new sensor reading Si(s′

e), since the latter will be visible to the agent in its new local
state s′

i.)

P is an intersection protocol for context γ = (E , F , π) if the following are valid in Iγ,P

for all i, j ∈ Ag where i ̸= j, where goingi is an abbreviation for fronti ∧ ⃝¬fronti.
Validity: goingi ⇒ fronti.
Safety: (goingi ∧ goingj) ⇒ ((lanei, intenti), (lanej , intentj)) ∈ O.
Liveness: fronti ⇒ ♢goingi.

Intuitively, Validity states that an agent does not move through the intersection unless
it is at the front of the queue in its lane. Safety states that if two agents go through the
intersection at the same time, their moves are compatible and do not cause a collision. (Note
that the semantics of the action go has been defined so as to ensure that an agent makes its
planned move, and not any other.) Liveness states that an agent eventually gets to make
its move through the intersection. (The model implicitly assumes that vehicles do not have
mechanical failures and block other vehicles in their lane.)

6 Unnecessary waiting and optimality

One desirable property of an intersection protocol is that it never makes agents wait unne-
cessarily. Eliminating unnecessary waiting is also a criterion that has been considered in the
distributed mutual-exclusion literature [14]. Intuitively, unnecessary waiting occurs if, given
what happens in a certain run r, there is a point where if an agent had gone through the
intersection instead of waiting, safety would not be violated. In this section, we define a
notion of optimality that captures eliminating unnecessary waiting.

DISC 2024



2:8 A Knowledge-Based Analysis of Intersection Protocols

We first give some definitions to define unnecessary waiting and a domination-based
notion of optimality. For an intersection context γ and protocol P ,

GO(r, m) is the set of agents that go through the intersection in round m + 1, that is,
the agents i with Iγ,P , (r, m) |= goingi.
Iγ,P , (r, m) |= safe-to-goi if Iγ,P , (r, m) |= posi = 0 and for all agents j, k ∈ GO(r, m)∪{i}
where j ̸= k, (lanej(r, m), intentj(r, m)) and (lanek(r, m), intentk(r, m)) are compatible
moves according to O.
For a run r of a protocol P in context γ, define gotime(r, i) to be the time m ∈ N such
that Iγ,P , (r, m) |= goingi, and ∞ if there is no such time.
front(r, m) is the set of agents that are in front of each queue, that is, the agents i with
fronti(r, m) = 1.

▶ Definition 1 (unnecessary waiting). An intersection protocol P has unnecessary waiting
with respect to an intersection context γ if there exists i ∈ Ag and point (r, m) such that
Iγ,P , (r, m) |= safe-to-goi and i ̸∈ GO(r, m).

▶ Definition 2 (corresponding runs). Given action protocols P, P ′ and context γ, two runs
r ∈ Iγ,P and r′ ∈ Iγ,P ′ correspond if r(0) = r′(0).

Intuitively, corresponding runs have the same adversary, so agents arrive at the intersection
in the same sequence and at the same times in the two runs. We use this notion to define
the following notion of one protocol being better than another if it always ensures a faster
flow of traffic.

▶ Definition 3 (domination). An action protocol P dominates action protocol P ′ with respect
to a context γ if for all pairs of corresponding runs r ∈ Iγ,P and r′ ∈ Iγ,P ′ , all i ∈ Ag, we
have gotime(r, i) ≤ gotime(r′, i). If P dominates P ′ but P ′ does not dominate P , then P

strictly dominates P ′.

▶ Definition 4 (optimality). An intersection protocol P is optimal with respect to an inter-
section context γ if there is no intersection protocol P ′ that strictly dominates P with respect
to γ.

Our goal is to connect the notions of unnecessary waiting and optimality. The following
result shows that the absence of unnecessary waiting is sufficient for optimality.

▶ Proposition 4. If an intersection protocol P has no unnecessary waiting with respect to an
intersection context γ then P is optimal with respect to γ.

From here on, we consider contexts that require some conditions on broadcasting. This
is because if not enough information is exchanged or adversaries are too powerful, we cannot
have a protocol that avoids unnecessary waiting. To see why, consider a setting where the
intersection has two incoming lanes and one outgoing lane, each agent has access to a global
clock, and the information-exchange protocol does not send any messages. While a correct
protocol exists that uses the global clock to determine when an agent at the front of a queue
can proceed to the intersection (essentially, we use the global clock to simulate a traffic light,
and have the agents proceed in turns), unnecessary waiting cannot be eliminated, simply
because the agents do not exchange enough information to rule out safety violations.

However, even with full information exchange where each agent broadcasts its entire local
state in each round and records every broadcast it receives, the converse of Proposition 4
still does not hold. A protocol may have unnecessary waiting and still be optimal even with
full information exchange.



K. Alpturer, J. Y. Halpern, and R. van der Meyden 2:9

▶ Proposition 4. There exists an intersection context γ with full information exchange and
no failures and an intersection protocol P such that P has unnecessary waiting and is optimal
with respect to γ.

Proposition 4 suggests that the definition of optimality doesn’t exactly capture the lack of
unnecessary waiting. We thus consider another definition that we call lexicographic optimality.

▶ Definition 5 (lexicographical domination). An action protocol P lexicographically dominates
action protocol P ′ with respect to a context γ if for all corresponding runs r ∈ Iγ,P and
r′ ∈ Iγ,P ′ , either GO(r, m) = GO(r′, m) for all times m or, at the first time m when
GO(r, m) ̸= GO(r′, m), we have GO(r′, m) ⊊ GO(r, m). If P lexicographically dominates P ′

but P ′ does not lexicographically dominate P , then P strictly lexicographically dominates P ′.

▶ Definition 6 (lexicographic optimality). An intersection protocol P is lexicographically
optimal with respect to an intersection context γ if there is no intersection protocol P ′ that
strictly lexicographically dominates P with respect to γ.

▶ Proposition 6. If an intersection protocol P has no unnecessary waiting with respect to an
intersection context γ, then P is lexicographically optimal with respect to γ.

The following result provides a partial converse to Proposition 6.

▶ Proposition 6. If an intersection protocol P is lexicographically optimal with respect to
an information context γ with full information exchange and no failures, then P has no
unnecessary waiting with respect to γ.

While considering a full-information context shows that lexicographic optimality captures
the condition on unnecessary waiting better, it is also possible to get a similar result in a
context with much less information exchange, even without a global clock.

We say that an intersection context γ = (E , F , π) is sufficiently rich if E satisfies the
following conditions:

In round m, if agent i is going to be at the front of some lane at time m, then i broadcasts
a message encoding lanei, intenti. (Note that we are here using the fact that in agent’s
message in round m can incorporate the effect of its round m action. Thus, if an agent i

moves to the front of the queue for some lane in round m, then i will sense that it is at
the front of the queue, and i can send a message in round m saying that it is about to be
at the head of the queue for its lane.)
Each agent records the (lane, intent) pair for each agent in the front of a queue, and
either no agents in the queue other than those at the front broadcast, or agents at the
front of a queue tag their messages to indicate that they are at the front of their queue.

Intuitively, if an intersection context is sufficiently rich, in the round m that an agent i

reaches the front of the queue for some lane, it knows about all other agents that are in the
front of their queues at time m, and knows their intentions (if there are no failures).

▶ Lemma 6. If γ is a sufficiently rich intersection context with no failures, P is an intersection
protocol, and fronti(r, m) = 1, then

Iγ,P |= ∀l ∈ Lin(Ki(∃j ∈ Ag ∃l′ ∈ L (frontj ∧ lanej = l ∧ intentj = l′) ∨
Ki(∀j ∈ Ag (lanej ̸= l)))).

Given a sufficiently rich intersection context γ, all protocols that we care about will
depend only on what the agents hear from agents at the front of each queue. We say that an
intersection protocol P depends only on agents in the front of their queues in intersection

DISC 2024



2:10 A Knowledge-Based Analysis of Intersection Protocols

context γ = (E , NF , π) if, for all i ∈ Ag, the following condition holds: for all pairs si, s′
i

of possible local states of agent i drawn from Li in E , if front(r, m) = front(r, m′), then
Pi(ri(m)) = Pi(r′

i(m′)). Note that this condition makes sense only in a sufficiently rich
intersection context in the no-failures setting, since otherwise an agent may not know which
agents are at the front of their queues, so its protocol cannot depend on this fact.

▶ Proposition 6. Let γ be a sufficiently rich intersection context with no failures. If an
intersection protocol P is lexicographically optimal with respect to γ and P depends only on
agents in the front of their queues, then P has no unnecessary waiting with respect to γ.

7 Intersection policies

Intuitively, an intersection policy describes which moves are permitted, as a function of a
history describing what happened in the run until that point in time (in particular, the
nondeterministic choices that have been made by the adversary up to that moment of time),
but excluding details of the agent’s local states and protocol.

We will use intersection policies as a tool to design standard protocols that solve the
intersection problem. Roughly, the methodology is the following. Initially, we will design an
intersection policy σ that guarantees safety and liveness for agents complying with σ. We
will then find standard intersection protocols that implement a knowledge-based program
using σ. Finally, we will show that every intersection protocol can be obtained in this way.

A history captures the nondeterministic choices made by the adversary up to some
moment of time. Given an adversary α = (τ, T, Ft, Fr) for a context γ and natural number
m ∈ N, define the choices of α in round m + 1 to be the tuple αm = (τm, T, F m

r , F m
t ), where

τm = {(i, ℓ, ℓ′) ∈ Ag ×Lin ×Lout | τ(i) = (m+1, ℓ, ℓ′)}, and for a = r and a = t, the function
F m

a : Ag → {0, 1} is defined by F m
a (i) = Fa(m, i). (Recall that the transmission environment

T is fixed for the run, so the same T applies in each round.) An adversary history is a finite
sequence of such tuples; for an adversary α and time m, define H(α, m) = ⟨α0, . . . , αm−1⟩.
(If m = 0, H(α, m) is the empty sequence.) Given a context γ, Hγ is the set of all adversary
histories H(α, m) such that α is an adversary for γ and m ≥ 0. If r is a run of context γ

with adversary α, we also write H(r, m) for H(α, m).

▶ Definition 7 (intersection policy). An intersection policy for a context γ is a mapping
σ : Hγ → P(Lin × Lout).

Intuitively, an intersection policy says which moves are permitted in the given round. An
agent at the front of a queue for lane ℓ may go if its intent is to make move to lane ℓ′ and
the move (ℓ, ℓ′) is permitted. (However, in contexts with failures, the agent may fail to go
because it does not know that its move is permitted.)

An infinite sequence h0, h1, . . . is feasible in a context γ if there exists an adversary α of
γ such that hm = H(α, m) for all m ≥ 0. An intersection policy σ for a context γ is correct
for a context γ if it satisfies the following specification:

Conflict-free: For all histories h ∈ Hγ , and agents i ̸= j, if (li, l′
i), (lj , l′

j) ∈ σ(h) then
(li, l′

i, lj , l′
j) ∈ O.

Fairness: For all feasible infinite sequences of histories h0, h1, h2 . . ., all moves (ℓ, ℓ′) ∈
Lin × Lout , and all m ≥ 0, there exists m′ ≥ m such that (ℓ, ℓ′) ∈ σ(hm′).

Intuitively, an intersection policy σ is conflict-free if σ never permits a conflicting set of
moves to occur simultaneously. An intersection policy σ is fair if, in every feasible infinite
sequence of histories, σ permits every possible move infinitely often. A context γ is σ-aware
for an intersection policy σ if, for all protocols P for γ, agents i, lanes ℓ ∈ Lin and ℓ′ ∈ Lout ,
we have Iγ,P |= ((ℓ, ℓ′) ∈ σ ∧ lanei = ℓ) ⇒ Ki((ℓ, ℓ′) ∈ σ).



K. Alpturer, J. Y. Halpern, and R. van der Meyden 2:11

▶ Example 8. A simple correct intersection policy is a cyclic traffic light. Suppose that
the set of all moves Lin × Lout is partitioned into a collection S0, . . . , SK−1, such that each
set Sk is a compatible set of moves. Then the intersection policy defined on histories h

by σ(h) = S|h| mod K is easily seen to be correct (whatever the context γ). Clearly, every
synchronous context is σ-aware for this policy.

▶ Example 9. A more complicated intersection policy is one that prioritizes certain lanes
if they contain specific agents (e.g., an ambulance). Suppose that A ⊆ Ag is a finite set
of higher-priority agents. Consider the intersection policy that allows moves given by a
cyclic traffic-light policy unless there is an agent in A that has arrived and is yet to make
a move. In that case, the policy runs the traffic-light policy restricted to lanes containing
higher-priority agents. This requires considering past moves permitted by the policy and
the adversary history to determine the state of the queues. In a context with no failures,
synchrony, and a transmission environment such that the presence of a higher-priority agent
is known by agents in the front, we get σ-awareness.

Given an intersection policy σ, consider the following knowledge-based program Pσ:
Program Pσ

i .

if Ki(fronti ∧ (lanei, intenti) ∈ σ) then go
else noop

Here the formula (lanei, intenti) ∈ σ is satisfied at a point (r, m) if we have (lanei(r, m),
intenti(r, m)) ∈ σ(H(r, m)).

An action protocol P implements a knowledge-based program of the form “if Kiϕ then
go else noop” in a context γ if, for all points (r, m) of Iγ,P , we have Pi(ri(m)) = go iff
Iγ,P (r, m) |= Kiϕ. (See [8] for the definition for more general program structures.)

We immediately get the following.

▶ Proposition 9. For every synchronous context γ and intersection policy σ for γ, there
exists a behaviorally unique2 P implementing the knowledge-based program Pσ with respect
to γ. If σ is a correct intersection policy with respect to γ, then every implementation P of
the knowledge-based program Pσ with respect to γ satisfies safety and validity.

Proposition 9 provides a way of deriving an intersection protocol from an intersection
policy. We can also show that every intersection protocol can be derived from some intersection
policy in this way.

▶ Proposition 9. If P is a protocol satisfying validity and safety then there exists a conflict-
free intersection policy σ for γ such that P implements Pσ with respect to γ.

▶ Definition 10 (efficient intersection policies). An intersection policy σ for a context γ is
efficient if for all points h ∈ Hγ , we have that σ(h) is a maximal conflict-free set of moves.

8 A Knowledge-Based Program with Lexicographically Optimal
Implementations

We would like to have a way to derive lexicographically optimal protocols under a range of
failure assumptions. Moreover, we want these protocols to be fair to all agents, even if there
are agents present that are not. To satisfy these goals, we start with an intersection policy σ

2 “Behavioral uniqueness” here means that any two implementations take the same actions at all reachable
states, and can differ only on unreachable states.

DISC 2024



2:12 A Knowledge-Based Analysis of Intersection Protocols

that can be run by all vehicles, including those without V2V communications equipment.
One example of such σ is the traffic light policy σT L. In all cases, moves permitted by this
policy will have priority, but we allow vehicles to violate the policy provided that they know
that they can do so safely. To avoid clashes, we establish a priority order on the violations.
Let next be a function from histories such that next(h) ∈ Lin for each history h. Intuitively,
the agent at the front of the queue for lane next(h) will get precedence in going through the
intersection at the point (r, m). The context γ is next-aware if, for all protocols P for γ

and agents i and ℓ ∈ Lin, we have that Iγ,P |= next = ℓ ⇒ Ki(next = ℓ).
Consider the following knowledge-based program P, where Vi is the proposition

(lanei, intenti) ̸∈ σ and the move (lanei, intenti) is compatible with (a) all moves
(lanej , intentj) ∈ σ where j is an agent who is about to enter the intersection (i.e.,
goingj holds) (b) all moves (lanej , intentj) ̸∈ σ where j ̸= i is an agent for which
goingj holds and lanej ∈ [next, lanei). (Here [next, lanei) is the set of lanes from
next(r, m) to lanei (mod |Lin|).)

Program Pi.

if Ki(fronti ∧ ((lanei, intenti) ∈ σ ∨ Vi)) then go
else noop

Intuitively, this knowledge-based program allows all agents permitted by σ to go to do so,
as well as allowing agents not permitted by σ to go, provided they do so in a cyclic priority
order, and each agent that goes knows that its move is compatible with the moves of all
agents of higher priority (including agents permitted to go by σ).

▶ Proposition 10. Let σ be a conflict-free intersection policy. If context γ is synchronous,
next-aware, and σ-aware, then there exists a unique implementation P of P that satisfies
safety and validity, is lexicographically optimal with respect to γ, and lexicographically
dominates the unique implementation of Pσ. Moreover, if σ is fair then P satisfies liveness.

We can also obtain liveness of the implementations of P under some other conditions.
Define the function next to be fair if, for all feasible sequences of histories h0, h1, . . ., all
m ≥ 0 and all lanes ℓ ∈ Lin , there exists m′ ≥ m such that next(hm′) = ℓ. Intuitively, fairness
of next will ensure that next fairly selects the first agent that can violate the intersection
policy according to P when this can be done safely.

We also need to ensure that it is not the case that σ always gives priority to other
lanes whenever the lane ℓ is selected by next. For this, define a pair (σ, next), consisting
of an intersection policy σ and a function next, to be fair if for all feasible sequences of
histories h0, h1, . . ., all m ≥ 0 and all moves (ℓ, ℓ′) ∈ Lin, there exists m′ ≥ m such that
either (ℓ, ℓ′) ∈ σ(hm′), or next(hm′) = ℓ and (ℓ, ℓ′) is compatible with all the moves in σ(hm′)

▶ Proposition 10. Let P be an implementation of P with respect to a synchronous, next-aware
and σ-aware context. If the pair (σ, next) is fair, then P satisfies liveness.

Note that if next is fair, and the σ∅ is the (unfair) intersection policy defined by σ∅(h) = ∅
for all histories h, then the pair (σ∅, next) is fair. For examples in which σ is not trivial,
consider the following properties of σ. Say that σ is cyclic (with cycle length k) if for all
histories h and h′ with |h| ≡ |h′| mod k, we have σ(h) = σ(h′). Say that σ is non-excluding
if for all moves (ℓ, ℓ′), there exists a history h such that (ℓ, ℓ′) is compatible with all moves in
σ(h). Given a non-excluding σ with cycle length k, let next be defined by next(h) = ⌊h/k⌋
mod k. Then (σ, next) is fair. This is because the value of next cycles through all values in



K. Alpturer, J. Y. Halpern, and R. van der Meyden 2:13

Lin, but is held constant through each cycle of σ. Thus, for each move (ℓ, ℓ′), eventually a
point in these combined cycles will be reached for which the value of next is ℓ and (ℓ, ℓ′) is
compatible with all moves permitted by σ.

8.1 Implementing P when there is no communication
We now consider standard implementations of P in two particular contexts of interest. Since
we would like the implementations to be correct and lexicographically optimal, we use next
and σ defined as next(h) = m mod |Lin| and σ(h) = ∅ for all histories h of length m. Using
this choice of next and σ in the construction of P ensures that in any synchronous intersection
context, both next-awareness and σ-awareness hold; moreover, the pair (next, σ) is fair.
Therefore, implementations P of P in such contexts are correct and lexicographically optimal,
by Propositions 10 and 10.

We have taken σ to be empty for ease of exposition. For practical implementations, the
construction given by the proof of Proposition 10 can be used to get other implementations
that prioritize moves permitted by σ. (For example, in an intersection where certain lanes
are often busier, moves originating from those lanes can be prioritized.) Note that for empty
σ, the condition Ki(fronti ∧ ((lanei, intenti) ∈ σ ∨ Vi)) reduces to Ki(fronti ∧ V ′

i ), where V ′
i

is the proposition

“the move (lanei, intenti) is compatible with all moves (lanej , intentj) of agents j ≠ i

with lanej ∈ [next, lanei) such that goingj”,

since σ is empty. Consider the following context with no communication. Let γ∅ be a
synchronous intersection context where agents do not broadcast messages. Formally, for a
failure model F , we define γ∅(F) = (E∅, F , π∅), where

(E∅)i is an information-exchange protocol where the following hold:
The set of memory states is a singleton so, effectively, local states consist only of the
sensor reading Li = Σi.
No messages are sent, so Mi = ∅, µi is the constant function with value ⊥, and δi is
omitted.
The sensor model is defined as in the definition of intersection contexts. The only
modification is that the sensor model now maps environment states to tuples of the
form ⟨fronti, lanei, intenti, timei⟩, where timei is determined by the time encoded in
the environment state.

π∅ interprets the propositions defined for intersection contexts in the obvious way.

We now define a procedure to compute a set Posi of moves that agent i believes may be
performed as a function of next and the structure of the intersection represented by O. We
capture stages of the construction of this set as sets of moves Posl

I for l ∈ [next − 1, lanei).
(By next-awareness, next is computable from the agent’s local state. For brevity, we interpret
next − 1 as next − 1( mod |Lin|).)
1. Start with Posi = Posnext−1

i = ∅
2. For l ∈ [next, lanei) do

a. Let L be the set of moves (l, l′) where l′ ∈ Lout such that (l, l′) is compatible with
Posi, and let Posl

i := Posi ∪ L and Posi := Posl
i.

3. Output Posi.

Let P ∅ be the standard protocol given by the following program, where move (l, l′) is
compatible with a set of moves S if it is compatible with all moves in S according to O.

DISC 2024



2:14 A Knowledge-Based Analysis of Intersection Protocols

Program P ∅
i .

if fronti ∧ (lanei, intenti) is compatible with Posi then go
else noop

▶ Proposition 10. P ∅ implements P with respect to γ∅(F) for F ∈ {NF , CR, SO}.

Proposition 10 shows that, without communication, a protocol that essentially implements
traffic lights is lexicographically optimal.

8.2 Implementing P in a context with limited communication
If we allow messages regarding the current lane and agents’ intentions by agents that reach the
front, this changes how implementations of P behave. Roughly speaking, in runs where the
intersection gets crowded, a much larger set of agents can proceed through the intersection.
Let γintent be a synchronous context with communication failures such that if an agent is in
the front of some lane, it broadcasts (lane, intent). (This information exchange broadcasts a
lot less information than a full-information exchange.) More formally,3 for a failure model F ,
we define γintent(F) = (Eintent , F , πintent), where

(Eintent)i is defined as an information-exchange protocol where the following hold:
The local states maintain a set of moves M in the memory component in addition to
the sensor readings. Intuitively, this set represents the set of moves from broadcasts
that were received by i in the current round. Note that Mi may not contain i’s move
since i’s broadcast may fail.
The set of messages is Mi = Lin × Lout , and µi broadcasts the message (lanei, intenti)
by reading lanei and intenti from the sensor reading, if fronti, and broadcasts no
message otherwise. Note that these variable references are from S (s′

e) where s′
e is the

new environment state that the system moves to in the course of the round.
The sensor model is defined as in the definition of intersection contexts (while including
time as a sensor reading as in E∅).
δi maps the set of received messages directly into the memory with i’s own move; that
is, δi(si, a, Mes) = Mes. Note that an agent can determine from this set whether its
own broadcast was successful.

πintent interprets the propositions defined for interpretation contexts in the obvious way.

We now proceed as in Subsection 8.1 and define a procedure to compute from an agent
i’s local state si = (Mi, (lanei, intenti, timei)) a set Posi of moves that agent i believes may
be performed by higher-priority agents in the next round. We again capture stages of the
construction of this set as sets of moves Posl

I for l ∈ [next − 1, lanei).
1. Start with Posi = Posnext−1

i = ∅
2. For l ∈ [next, lanei) do

a. If for some l′ ∈ Lout , the move (l, l′) is in Mi then
if (l, l′) is compatible with Posi

then Posl
i := Posi ∪ {(l, l′)} and Posi := Posl

i

else Posl
i := Posi.

3 This context satisfies the sufficiently rich condition of Section 6.



K. Alpturer, J. Y. Halpern, and R. van der Meyden 2:15

b. Otherwise, let L be the set of moves (l, l′) where l′ ∈ Lout such that (l, l′) is compatible
with Posi, and let Posl

i := Posi ∪ L and Posi := Posl
i.4

3. Output Posi.

Let the output of running this procedure on a local state with memory state Mi be denoted
by Posi, and let P intent be the standard protocol defined using the following program:

Program P intent
i .

if fronti ∧ (lanei, intenti) is compatible with Posi then go
else noop

▶ Proposition 10. P intent implements P with respect to γintent(F) for F ∈ {CR, SO}.

Again, by Proposition 10, it follows that the intersection protocol P intent is lexicograph-
ically optimal with respect to the contexts γintent(F) for for F ∈ {CR, SO}.

9 Discussion

We introduced the intersection problem, identified the appropriate notion of optimality called
lexicographical optimality, and designed protocols that are optimal in a variety of contexts.
A knowledge-based analysis and the use of intersection policies were crucial in this process.

Previous work has considered many models ranging from computing individual trajectories
of vehicles to relying on centralized schedulers [6]. In [16, 15], a four-way intersection is
considered in a context with failures. [10, 17] consider virtual traffic lights; the approach is
evaluated using a large-scale simulation. [9] solves the same problem probabilistically, in
contexts with failures. Work in the control theory literature has focused on vehicle dynamics
when going through an intersection [11] to avoid collision. Efforts have also been made to
build distributed intersection management systems through V2V communication [5].

While there has been considerable effort in designing protocols for specific intersections
or designing architectures for intersection management systems, we aim to develop a context-
and architecture-independent approach. Our goal in this paper is to lay the theoretical
foundations of optimal intersection protocol design in a variety of contexts, including contexts
with failures. We do so abstractly by defining the model to capture any intersection topology
with minimal requirements on V2V communication range. While the protocols we design
do not require sensors such as lidar and radar, the use of a knowledge-based program P
provides a direct method to develop optimal implementations in contexts with extra sensors.

The problem we study in this paper can be viewed as a generalization of the classical
problem of mutual exclusion, which requires that two distinct agents are not simultaneously
in a critical section of their code. Indeed, a variant of mutual exclusion called group mutual
exclusion [12] is strictly weaker than the intersection problem. In group mutual exclusion,
each process is assigned a session when entering the critical section and processes are allowed
to enter the critical section simultaneously provided that they share the same session. If
agents form an equivalence relation based on their move compatibility according to O, we
can identify each equivalence class to be in the same session and think of the intersection as
the critical section. However, our setting differs in some critical ways:

4 Intuitively, since M is the set of moves that i hears about from agents in the front of some lane, in
this case i did not hear from anyone in lane l. However, in settings with sending omissions, there may
nevertheless be an agent at the front of lane l′′. Such an agent will move only if it can do so safely.

DISC 2024



2:16 A Knowledge-Based Analysis of Intersection Protocols

Intersections often have an O relation that is not an equivalence relation. For instance,
the fact that agents’ moves conflict in lanes A-B and in lanes B-C does not imply that
their moves in lanes A and C conflict (e.g., if agents want to move straight in a four-way
intersection with two lanes in each direction).
We take the set Ag of agents to be unbounded, while group mutual exclusion (and
equivalent problems such as room synchronization [3]) consider a bounded number of
agents.
Our agents arrive according to a (possibly infinite) schedule determined by the adversary.
To the best of our knowledge, fault-tolerance has not been considered in the group
mutual-exclusion setting.

The mutual-exclusion problem is generally studied with respect to an interleaving model of
asynchronous computation, but as Lamport [13] noted, this model is not physically realistic,
and already builds in a notion of mutual exclusion between the actions of distinct agents. The
Bakery mutual-exclusion protocol [13] is correct with respect to models allowing simultaneous
read and write operations. Moses and Patkin [14] develop an improvement of Lamport’s
Bakery algorithm for the mutual-exclusion problem using a knowledge-based analysis, noting
that there are situations in which Lamport’s protocol could enter the critical section, but
fails to do so. A weaker knowledge-based condition for mutual exclusion is used by Bonollo
et al. [4]; it states that an agent i may enter its critical section when it knows that no other
agent will enter its critical section until agent i has exited from its critical section. Clearly
these knowledge-based approaches are similar in spirit to ours. We hope to study the exact
relationship between these problems in the near future.

There are several directions that we hope to explore in the future. One involves extending
the current results to contexts with stronger adversaries and evaluating implementations
of P in other contexts. Another is considering strategic agents, who may deviate from a
protocol to cross the intersection earlier.

References
1 K. Alpturer, J. Y. Halpern, and R. van der Meyden. Optimal eventual Byzantine agreement

protocols with omission failures. In Proc. 42nd ACM Symposium on Principles of Distributed
Computing, pages 244–252, 2023.

2 K. Alpturer, J. Y. Halpern, and R. van der Meyden. A knowledge-based analysis of intersection
protocols, 2024. arXiv:2408.09499.

3 Guy E. Blelloch, Perry Cheng, and Phillip B. Gibbons. Room synchronizations. In Proceedings
of the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
2001, Heraklion, Crete Island, Greece, July 4-6, 2001, SPAA ’01, pages 122–133, New York,
NY, USA, 2001. Association for Computing Machinery. doi:10.1145/378580.378605.

4 U. Bonollo, R. van der Meyden, and E.A. Sonenberg. Knowledge-based specification: Investig-
ating distributed mutual exclusion. In Bar Ilan Symposium on Foundations of AI, 2001. URL:
https://www.cse.unsw.edu.au/~meyden/research/bisfai.pdf.

5 António Casimiro, Jörg Kaiser, Elad M. Schiller, Pedro Costa, José Parizi, Rolf Johansson,
and Renato Librino. The karyon project: Predictable and safe coordination in cooperative
vehicular systems. In 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems and
Networks Workshop (DSN-W), pages 1–12, 2013. doi:10.1109/DSNW.2013.6615530.

6 Lei Chen and Cristofer Englund. Cooperative intersection management: A survey. Trans.
Intell. Transport. Syst., 17(2):570–586, January 2016. doi:10.1109/TITS.2015.2471812.

7 K. Dresner and P. Stone. A multiagent approach to autonomous intersection management.
Journal of A.I. Research, 31:591–656, 2008. doi:10.1613/JAIR.2502.

https://arxiv.org/abs/2408.09499
https://doi.org/10.1145/378580.378605
https://www.cse.unsw.edu.au/~meyden/research/bisfai.pdf
https://doi.org/10.1109/DSNW.2013.6615530
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1613/JAIR.2502


K. Alpturer, J. Y. Halpern, and R. van der Meyden 2:17

8 R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. MIT Press,
Cambridge, MA, 1995. A slightly revised paperback version was published in 2003.

9 N. Fathollahnejad, E. Villani, R. Pathan, R. Barbosa, and J. Karlsson. On reliability analysis of
leader election protocols for virtual traffic lights. In 2013 43rd Annual IEEE/IFIP Conference
on Dependable Systems and Networks Workshop (DSN-W), pages 1–12, 2013.

10 M. Ferreira, R. Fernandes, H. Conceição, W. Viriyasitavat, and O. K. Tonguz. Self-organized
traffic control. In Proceedings of the Seventh ACM International Workshop on VehiculAr
InterNETworking, pages 85–90, 2010.

11 Michael R. Hafner, Drew Cunningham, Lorenzo Caminiti, and Domitilla Del Vecchio. Cooper-
ative collision avoidance at intersections: Algorithms and experiments. IEEE Transactions on
Intelligent Transportation Systems, 14(3):1162–1175, 2013. doi:10.1109/TITS.2013.2252901.

12 Yuh-Jzer Joung. Asynchronous group mutual exclusion. Distributed Computing, 13(4):189–206,
November 2000. doi:10.1007/PL00008918.

13 Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem. Commun.
ACM, 17(8):453–455, 1974. doi:10.1145/361082.361093.

14 Yoram Moses and Katia Patkin. Mutual exclusion as a matter of priority. Theor. Comput.
Sci., 751:46–60, 2018. doi:10.1016/j.tcs.2016.12.015.

15 E. Regnath, M. Birkner, and S. Steinhorst. CISCAV: consensus-based intersection scheduling
for connected autonomous vehicles. In 2021 IEEE International Conference on Omni-Layer
Intelligent Systems (COINS), pages 1–7, 2021.

16 V. Savic, E. M. Schiller, and M. Papatriantafilou. Distributed algorithm for collision avoidance
at road intersections in the presence of communication failures. In 2017 IEEE Intelligent
Vehicles Symposium (IV), pages 1005–1012, 2017.

17 Rusheng Zhang, Frank Schmutz, Kyle Gerard, Aurélicn Pomini, Louis Basseto, Sami Ben
Hassen, Akihiro Ishikawa, Inci Ozgunes, and Ozan Tonguz. Virtual traffic lights: System
design and implementation. In 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall),
pages 1–5, 2018. doi:10.1109/VTCFall.2018.8690709.

DISC 2024

https://doi.org/10.1109/TITS.2013.2252901
https://doi.org/10.1007/PL00008918
https://doi.org/10.1145/361082.361093
https://doi.org/10.1016/j.tcs.2016.12.015
https://doi.org/10.1109/VTCFall.2018.8690709




Byzantine Resilient Distributed Computing on
External Data
John Augustine # Ñ

Indian Institute of Technology Madras, Chennai, India

Jeffin Biju #

Indian Institute of Technology Madras, Chennai, India

Shachar Meir #

Weizmann Institute of Science, Rehovot, Israel

David Peleg # Ñ

Weizmann Institute of Science, Rehovot, Israel

Srikkanth Ramachandran #

Indian Institute of Technology Madras, Chennai, India

Aishwarya Thiruvengadam # Ñ

Indian Institute of Technology Madras, Chennai, India

Abstract

We study a class of problems we call retrieval problems in which a distributed network has read-only
access to a trusted external data source through queries, and each peer is required to output some
computable function of the data. To formalize this, we propose the Data Retrieval Model comprising
two parts: (1) a congested clique network with k peers, up to βk of which can be Byzantine in every
execution (for suitable values of β ∈ [0, 1)); (2) a trusted source of data with no computational
abilities, called the External Data Source (or just source for short). This source stores an array X of
n bits (n≫ k), providing every peer in the congested clique read-only access to X through queries.
It is assumed that a query to the source is significantly more expensive than a message between two
peers in the network. Hence, we prioritize minimizing the number of queries a peer performs over
the number of messages it sends. Retrieval problems are easily solved by having each peer query all
of X , so we focus on designing non-trivial query-efficient protocols for retrieval problems in the DR
network that achieve low query performance per peer. Specifically, to initiate this study, we present
deterministic and randomized upper and lower bounds for two fundamental problems. The first is
the Download problem that requires every peer to output an array of n bits identical to X . The
second problem of focus, Disjunction, requires nodes to learn if some bit in X is set to 1.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms

Keywords and phrases Byzantine Fault Tolerance, Blockchain Oracle, Congested Clique, Data
Retrieval Model

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.3

Related Version Full Version: https://arxiv.org/abs/2309.16359

Funding John Augustine: Supported by the Cybersecurity Centre, IIT Madras.
David Peleg: Venky Harinarayanan and Anand Rajaraman Visiting Chair Professor. The funds from
this professorship enabled exchange visits between IIT Madras, India, and the Weizmann Institute
of Science, Israel.

Acknowledgements We would like to thank Atharva Chougule for useful ideas.

© John Augustine, Jeffin Biju, Shachar Meir, David Peleg, Srikkanth Ramachandran, and Aishwarya
Thiruvengadam;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 3; pp. 3:1–3:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:augustine@cse.iitm.ac.in
https://cse.iitm.ac.in/~augustine/
https://orcid.org/0000-0003-0948-3961
mailto:augustine@cse.iitm.ac.in
mailto:shachar.meir@weizmann.ac.il
https://orcid.org/0009-0003-5007-047X
mailto:david.peleg@weizmann.ac.il
https://www.weizmann.ac.il/math/peleg/
https://orcid.org/0000-0003-1590-0506
mailto:sramach@ucdavis.edu
https://orcid.org/0000-0003-2392-1999
mailto:aishwarya@cse.iitm.ac.in
https://sites.google.com/view/aishwaryat
https://doi.org/10.4230/LIPIcs.DISC.2024.3
https://arxiv.org/abs/2309.16359
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 Byzantine Resilient Distributed Computing on External Data

1 Introduction

Background and Motivation

We study distributed systems in which a peer-to-peer (P2P) network retrieves data (or
some boolean function of it) from a trusted source of data that is external to the network.
To formalize this study, we propose a new model called the Data Retrieval (DR) Model
comprising a congested clique network and an External Data Source (or source for short)
with no computational capabilities. The DR model consists of a congested clique network
with k peers, up to βk of which can be Byzantine in every execution (for suitable values of
β ∈ [0, 1)). The source comprises an array X of n bits (n≫ k), providing every peer in the
congested clique read-only access to X through queries. We prioritize minimizing the number
of queries a peer performs over the number of messages it sends as we assume that a query to
the source is significantly more expensive than a message between two peers in the network.

Our DR model is inspired by distributed Blockchain oracles [7, 12]. In such oracle systems,
a decentralized P2P network with some Byzantine corruptions (modeled by our congested
clique network) is tasked with retrieving information from trusted external data sources
(e.g., stock prices, inflation indices, IoT sensors, etc.) through well defined Application
Programming Interface (API) calls. Currently, nodes in state-of-the-art blockchain oracles
do not cooperate, resulting in each node having to read all the information directly from the
data source. These API calls can be expensive with cost scaling directly with their usage.
The DR model provides a framework for designing Byzantine resilient mechanisms for nodes
in such P2P networks to share the workload of queries, thus reducing the cost for each node.

Difference in approach from traditional BFT problems. The theory of Byzantine fault
tolerance has been a fundamental part of distributed computing ever since its introduction
by Pease, Shostak, and Lamport [33, 36] in the early 80’s, and has had a profound influence
on cryptocurrencies, blockchains, distributed ledgers, and other decentralized peer-to-peer
systems. It largely focused on a canonical set of problems like Broadcast [18], Agreement [11,
33, 36, 37], k-set Agreement [14], Common Coin [34], and State Machine Replication [13].
Some studies have injected Byzantine fault tolerance into other related areas (cf. [5, 6, 9, 16,
17]). In most of these studies, the main parameter of interest is the maximum fraction β of
the peers that can be corrupted by the adversary in an execution.



J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:3

Consider the Byzantine Agreement problem that requires n peers, each with an input bit,
to agree on a common output bit that is valid, in the sense that at least one honest (non-
Byzantine) peer held it as input. In the synchronous setting, even without cryptographic
assumptions, there are agreement algorithms that can tolerate any fraction β < 1/3 of
Byzantine peers [33] (and this extends to asynchronous settings as well [11]). When β ≥ 1/3,
agreement becomes impossible in these settings [33]. However, the bound improves to β < 1/2
with message authentication by cryptographic digital signatures [38]. By the well-known
network partitioning argument (discussed shortly), β < 1/2 is required for any form of
Byzantine agreement. For most of the Byzantine fault tolerance literature, β hovers around
either 1/3 or 1/2, with some notable exceptions like authenticated broadcast [18] that can
tolerate any β < 1.

The main reason for this limitation stems from the inherent coupling of data and
computing. Consider, for instance, any Byzantine Agreement variation with β ≥ 1/2. When
all honest peers have the same input bit (say, 1), the Byzantine peers hold at least half the
input bits and can unanimously claim 0 as their input bits. This ability of Byzantine peers
to spoof input bits makes it fundamentally impossible for honest peers to reach a correct
agreement with the validity requirement intact. At the heart of this impossibility is the
adversary’s power to control information crucial to solving the problem. In fact, this issue
leads to many impossibilities and inability to solve problems exactly (see e.g, [4]).

In contrast, having a reliable source that provides the data in read-only fashion yields
a distributed computing context where access to data cannot be controlled by Byzantine
peers. Taken to the extreme, any honest peer can individually solve all problems by directly
querying the source for all required data. However, queries are charged for, and can be
quite expensive. So the challenge is to design effective and secure collaborative techniques
to solve the problem at hand while minimizing the number of queries made by each honest
peer1. Hence, despite the source being passive (read-only with no computational power), its
reliability makes the model stronger than the common Byzantine model.

The Model

A Data Retrieval model consists of (i) k peers that form a congested clique and (ii) a source
of data that is external to the congested clique called the source that stores the input array
comprising n bits and provides read-only access to its content through queries.

Congested Clique. The k peers are identified by unique ID’s assumed to be from the range
[1, k]. The peers are connected via a complete network. In each round, every peer can send
at most one O(log n) bit message to each of the other peers. This communication mechanism
is referred to as peer-peer communication.

The source. The n-bit input array X = {x1, . . . , xn} (with n≫ k) is stored in the source.
It allows peers to retrieve that data through queries of the form Query(i), for 1 ≤ i ≤ n. The
answer returned by the source would then be xi, the ith element in the array. This type of
communication is referred to as source-peer communication.

1 Note that appointing some individual peers to query each input bit and applying a Byzantine Reliable
Broadcast (BRB) protocol [2, 11, 18] for disseminating the bits to all peers will not do, since the
appointed peers might be Byzantine, in which case the BRB protocol can only guarantee agreement on
some value, but not necessarily the true one. Moreover, Byzantine Reliable Broadcast (BRB) cannot be
solved when β ≥ 1/3 with no authenticated messages.

DISC 2024



3:4 Byzantine Resilient Distributed Computing on External Data

Synchrony and rounds. We consider a synchronous round setting where peers share a
global clock, and the network delay is bounded by ∆. Each round has a total length of 3∆
and consists of two sub-rounds:
1. The query sub-round of length 2∆ of source-peer communication, comprising sending

queries of the form Query(·) from a peer to the source and receiving the responses from
the source. Every peer can send up to n queries per round to the source. (This is merely
an upper limit; our protocols typically send significantly fewer queries).

2. The message-passing sub-round of length ∆ of peer-peer communication, consisting of
messages exchanged between peers. Every message is of size O(log n)

We assume local computation takes 0 time and is performed at the beginning of a round.
We assume that a peer M can choose to ignore (not process) messages received from another
peer during the execution. Such messages incur no communication cost2 for M .

The adversarial settings. The behavior of the environment in which our protocols operate
is modeled via an adversary Adv that is in charge of selecting the input data and fixing
the peers’ failure pattern. In executing a protocol, a peer is considered honest if it obeys
the protocol throughout the execution. A Byzantine peer can deviate from the protocol
arbitrarily (controlled by Adv). The adversary Adv can corrupt at most βk peers for some
given3 β ∈ [0, 1). This implies that Adv cannot corrupt all of the peers; our results are stated
under this assumption. Letting γ = 1− β, there is (at least) a γ fraction of honest peers. We
denote the set of Byzantine (respectively, honest) peers in the execution by B. (resp., H).

We design both deterministic and randomized protocols. When the protocol is deter-
ministic, the adversary can be thought of as all-knowing. Thus, Adv knows exactly how the
complete execution will proceed and can select Byzantine nodes from the beginning based
on this knowledge. When the protocol is randomized, the peers may generate random bits
locally. At the beginning of each round i, Adv has knowledge of X , all the local random bits
generated up to round i− 1, and all peer-peer and source-peer communications up to round
i− 1. At the start of round i, it can corrupt as many peers as it desires, provided the total
number of peers corrupted since the beginning of the execution does not exceed βk. Such an
adversary is said to be adaptive.

Complexity measures. The following complexity measures are used to analyze our protocols:
(i) Query Complexity (Q): the maximum number of queries made by an honest peer during
the execution of the protocol, (ii) Message Complexity (M): the total number of messages
sent by honest peers during the execution of the protocol, and (iii) Round Complexity (T ):
the number of rounds (or time) it takes for the protocol to terminate.

As queries to the source are expected to be the more expensive component in the
foreseeable future, we primarily focus on optimizing the query complexity Q, only trying to
optimize T andM when Q is optimal (within log(n) factors). Our definition of Q (measuring
the maximum cost per peer rather than the total cost) favors a fair and balanced load of
queries across honest peers.

2 Specifically, an honest peer M can ignore the messages of a known Byzantine peer M ′ and thus thwart
any “denial of service” attack that M ′ attempts on M . Such messages sent by the Byzantine peer M ′

to M will not be counted towards the message complexity.
3 We do not assume β to be a fixed constant (unless mentioned otherwise).



J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:5

Problems Studied and Their Complexity in the Failure Free Model

We introduce the two main problems we focus on in this paper. To establish a baseline for
our various results, we first outline the best possible complexity measures when there are no
Byzantine failures. For Q, the best bound is the total number of queries required divided by
k, since this work of querying can be distributed evenly.

Download. We begin with the fundamental Download problem, where each of the k peers
needs to obtain a copy of all n input bits from the cloud. This problem is the most fundamental
retrieval problem since every computable function f of the input can be computed by the
peers by first running a download protocol and then computing f(X ) locally at no additional
costs. Hence, its query cost serves as a baseline against which to compare the costs of other
specialized algorithms for specific problems. Observe that a Q lower bound for computing
any Boolean function on X serves as a lower bound for Download as well.

To solve this problem in the absence of failures, all n bits need to be queried, and this
workload can be shared evenly among k peers, giving Q = Θ(n/k). The message complexity
is M = Õ(nk) and round complexity is T = Õ(n/k) since Ω(n/k) bits need to be sent along
each communication link when the workload is shared.

Disjunction. In the Disjunction problem, the honest peers must learn whether at least one
of the input bits in X is a 1. We also consider an Explicit Disjunction version where each
peer must learn an index i such that X [i] = 1 (or output 0 if there are no 1’s).

The Disjunction problem is a retrieval problem that illustrates the possibility of achieving
better results than trivially using Download as a subroutine. The complexity of the problem
is closely tied to the density δ (i.e., the fraction of ones) in the input. In fact, the relevant
parameter is often 1/δ where δ = max(1/n, δ) to handle the exceptional case when δ = 0.

Let us consider the Explicit Disjunction problem. In the deterministic setting, at least
n−δn+1 queries are required in total. Consequently, the best deterministic query complexity
is Q = O(n(1 − δ)/k). The round complexity is T = O(1), and message complexity is
M = O(k). Peers that find a 1-bit can send the index to a “leader” peer to broadcast the
answer.

Randomization helps when δ is large. Querying
(
δ−1 · lnn

)
bits uniformly at random in

search for a 1 bit has failure probability of (1− δ)ln n/δ ≤ 1/n. Thus O
(
δ−1 · lnn

)
queries

are sufficient to find a 1 w.h.p. Even without knowledge of δ, one can simply try density
values in decreasing powers of 2, starting with 1/2 and eventually land at a 1 having made
at most O

(
δ−1 · lnn

)
queries. We can distribute the work equally amongst k peers, and

thus Q = O(1 + δ−1 · 1
k · lnn). The time and message analysis is similar to the deterministic

case, i.e, T = O(1), M = O(k). Note that Q = Ω( 1
k · δ

−1), for any algorithm that solves the
Disjunction problem with constant probability.

Our Contributions

We initiate the study of the Data Retrieval Model and retrieval problems. We present several
deterministic and randomized protocols and some lower bounds for Download and Disjunction.
Here, we state only simplified bounds, in which the Õ(·) notation hides factors dependent
on β and poly log factors in n. The main results are summarized in Table 1 for convenience.

Download. For the deterministic model, the Download problem turns out to be expensive,
requiring Ω(βn) queries in the worst case. Every peer essentially has to query the entire input
array for itself. In the randomized model, we give an algorithm that solves the Download

DISC 2024



3:6 Byzantine Resilient Distributed Computing on External Data

problem (and consequently any function of the input) for an arbitrary fraction β < 1 of
Byzantine faults while requiring at most Õ(n/k +

√
n) queries per peer. The result is nearly

as efficient as the failure-free model whenever k <
√
n. The time and message costs are

T = O(n) and M = Õ(kn+ k2√n). A natural question then, is whether the additive
√
n

term is necessary for k >
√
n. While we are not able to fully address this question, we show

that for restricted β (< 1/3), we can be fully efficient for all k ∈ [1, n], getting Q = Õ
(

n
k

)
,

T = Õ(n), and M = Õ(nk2).

Disjunction. To show that for specific problems one can be more efficient, we consider
Disjunction when the input bits have density δ. Naturally, the problem becomes easier as δ
gets larger. We first show that any deterministic algorithm requires Ω(n/k + δ−1) queries in
the worst case. Next, we show that for any β < 1, there exists a deterministic algorithm that
makes Õ(n/k + δ−1 + k) queries. This algorithm is nearly optimal whenever k <

√
n. Our

second deterministic algorithm achieves near optimal complexity provided β < 1/2. Both
algorithms require T = Õ(1) and M = Õ(k2).

We then consider the randomized model. It is easy to see that any algorithm requires
Ω(1/k · δ−1) queries per peer. We show that this is nearly tight by presenting an algorithm
that w.h.p. solves the Disjunction problem with Q = Õ

( 1
k · δ

−1), T = Õ (1), M = Õ(k2).

Table 1 Our Main Results (with β treated as constant).

Problem & Model Query Lower Bound Round Message Theorem
Download
Randomized β < 1 Õ(n/k +

√
n) Ω(n/k) O(n) Õ(nk + k2√n) Thm 4

Randomized β < 1/3 Õ(n/k) Ω(n/k) O(n) Õ(nk2) Thm 12
Disjunction
Deterministic β < 1 Õ(n/k + δ−1 + k) Ω

(
δ−1 + (1−δ)n

γk

)
Õ(1) Õ(k2) Thm 17

Deterministic β < 1/2 Õ(n/k + δ−1) Ω
(
δ−1 + (1−δ)n

γk

)
Õ(1) Õ(k2) Thm 18

Randomized β < 1 Õ(1/k · δ−1) Ω( 1
γk
· δ−1) Õ(1) Õ(k2) Thm 19

2 Methods

Private ρ-Representative Committees. Several of our protocols organize the peers in
committees, assigned to perform a common task. In a private ρ-representative committee,
every peer knows only whether it belongs to the committee and the committee is guaranteed
to have at least ρ honest members, where ρ is known.

We present a probabilistic construction for a ρ-representative committee, where the
guarantee of at least ρ honest members holds w.h.p. To construct such a committee, each
peer adds itself to the committee with probability p. See Algorithm 1. By choosing an
appropriate value of p, we can obtain high probability guarantees on the number of (honest)
peers in a committee using standard Chernoff tail bounds. This yields the following result

▶ Lemma 1. Consider k i.i.d Bernoulli random variables with bias p = min(1, 9 ln n+4ρ
γk ),

β ∈ [0, 1), n > 1 and ρ ≤ γk, we have with probability at least 1− 2n−3,
for any subset of γk variables, at least ρ of them are 1.
At most (18 lnn+ 8ρ)/γ variables are 1.

Lemma 1 implies that w.h.p a committee C constructed by Algorithm 1 is indeed a private
ρ-representative committee and it will have at most (18 lnn+ 8ρ)/γ honest members.



J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:7

Algorithm 1 Procedure Elect_Private.

1: Every peer tosses a biased coin with a probability of heads p = min
{

6 ln n+4ρ
γk , 1

}
2: return C = set of peers that tossed heads.

Commit Verification. Before a peer M commits b as xi, it verifies that xi = b by one of
several ways:

Direct-verification: M directly queries the source and receives a reply that xi = b.
Comm-verification: M collects votes from a private ρ-representative committee Ci. M
learns that xi = b if it receives a message saying that xi = b from at least ρ members of
Ci, and a message saying that xi = 1− b from fewer than ρ members of Ci.
Gossip-verification: M receives messages from βk + 1 or more peers, each testifying that
it verified xi = b. This suffices since necessarily at least one of these senders must have
been an honest peer.

Blacklisting. During an execution, honest peers can blacklist Byzantine ones, after identify-
ing a deviation from the behavior expected of an honest peer, and subsequently ignore their
messages. A Byzantine peer M ′ can be blacklisted for several reasons. The most common
reason to blacklist is when M ′ is directly “caught” in a lie about the value of some bit. The
two other reasons for blacklisting are as follows.

Blacklisting for requesting unnecessary work: Some of our protocols maintain a
known-to-all list of bits. If M ′ claims that a certain bit xi is unknown to it and requests
to learn it, M can check if xi is listed at M as known to all. If so, M knows that M ′

must be Byzantine.
Blacklisting for over-activity: Lemma 1 implies that the number of honest peers in
our construction of a private ρ-representative committee is bounded from above w.h.p.
M ′ can be blacklisted as Byzantine for being over-active, namely, claiming to have been
randomly selected to many more committees than expected.

3 Results on the Download Problem

3.1 Deterministic Setting
We first note that Download can be solved trivially by having each peer query all n bits
directly from the source. This protocol incurs Q = n, T = 1 andM = 0 and works for β < 1.
However, we can improve the query complexity for β < 1/2. (Some proofs are deferred to
Appendix A.)

▶ Theorem 2. When β < 1/2, there is a deterministic protocol for Download with Q = O(βn),
T = Õ(βn) and M = Õ(βnk2)

The following theorem establishes that one cannot hope to improve the query complexity.

▶ Theorem 3. Any deterministic protocol for the Download problem has Q = Ω(βn).

3.2 Randomized setting
Near Query-Optimal Randomized Protocol for β < 1
We start with a simple randomized algorithm that works for any β < 1. The problem posed
by the randomized model is that the adversary can fail peers online in the randomized setting
based on the protocol’s progress. This implies that if the protocol appoints some random

DISC 2024



3:8 Byzantine Resilient Distributed Computing on External Data

peer M to query a bit xi on some round t of the execution but communicate the bit to other
peers at a later round t′, then we cannot rely on the hope that the randomly selected M

will be honest, say, with probability 1− β = ε, since the adversary gets an opportunity to
learn the identity of the chosen M on round t and subsequently corrupt it before round t′.
Hence in order for us to benefit from the fact that some peer M is randomly chosen for some
sub-task on round t, it is imperative that M completes that sub-task on the same round.

The idea used to overcome this difficulty is as follows. Sequentially, for n rounds, do the
following. At round i we query bit xi from the source to a private ρ-representative committee
(see Algorithm 1) Ci, i.e., xi is queried by each (honest) peer in Ci. Then (still on the same
round), each peer in Ci sends the value of xi to every other peer. Peers not in Ci might
receive incorrect values from the Byzantine peers in Ci. However, if strictly fewer than ρ

incorrect values are received, each peer can be confident of the majority as the right answer
(w.h.p). In case at least ρ peers sent an incorrect value, or more precisely, in case an honest
peer receives at least ρ zeros and at least ρ ones, then peers resort to querying the source
for the answer, forcing at least ρ Byzantine peers to reveal themselves as being Byzantine.
Choosing ρ optimally results in a query complexity of O( n log n

γk +
√
n). See Algorithm 2 for

the pseudocode.

Algorithm 2 Algorithm Blacklist_Download model, Code for peer M .

Output: Array res such that res[i] = xi for i = 1, 2, ...n
1: B ← ∅ ▷ Peers known to be faulty
2: for i = 1, 2, . . . n (in separate rounds) do
3: Form a private ρ-representative committee Ci. ▷ Parameter ρ is fixed later
4: if M ∈ Ci then
5: res[i]← Query(i), send (vote, res[i]) to all peers.
6: Sj ← set of peers not in B that voted j for j ∈ {0, 1}
7: if min(|S0|, |S1|) > ρ then
8: res[i]← Query(i).
9: B ← B ∪ S1−res[i]

10: else res[i]← arg max
j=0,1

|Sj |.

11: return res

▶ Theorem 4. When β < 1, Protocol Blacklist_Download solves the Download problem
w.h.p. with Q = O

(
n log n

γk +
√
n
)

, T = O(n) and M = O(kn log n+ k2√γn).

Proof. The correctness follows from the observation that for each bit xi, each honest peer
either (i) heard fewer than ρ votes for one value in {0, 1} or (ii) queried xi. Since Ci is
ρ-representative (w.h.p), the correct bit value would have been reported by at least ρ peers,
and we can conclude that an honest peer can verify the correct value of xi in both cases.
Next, We analyze the query complexity of Algorithm 2 and choose ρ optimally.

Queries are made in lines 5 and 8 of Algorithm 2. For peer M , the expected number
of queries in line 5 is np where p is the probability of joining a committee. As n > γk, we
have np ≥ 9 lnn. By Chernoff bounds, w.h.p there are no more than 2np queries, similar to
the proof of Lemma 1. Every time a peer reaches Line 8 and queries the source, the size
of its local set B increases by ρ. Therefore, these queries are performed at most βk

ρ times.
Therefore, the total number of queries for peer M (w.h.p.) is at most Q = 18n ln n

γk + 8nρ
γk + βk

ρ ,

and choosing ρ = max
{

1, k
√

γβ
8n

}
, we get Q = O

(
n log n

γk +
√

β
γ · n

)
.



J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:9

By the description of the protocol. the time complexity T is clearly O(n), the number of
iterations. The message complexity M is calculated as the product of the number of honest
peers that join each Ci (which is O(log n+ k/

√
n)) times O(k) (the number of messages sent

by each honest peer in Ci) time n (the number of iterations). ◀

Observe that there is a trivial Ω( n
γk ) lower bound on Q (in the case where Byzantine

peers crash and do not participate in the execution).
The additional

√
n term can be neglected whenever k <

√
n since it is smaller than

the lower bound in these cases. Thus, in a wide range of cases, the above protocol is
“near-optimal”. It is also tolerant against the strongest form of Byzantine adversary, one that
even has knowledge of random bits sampled up until the previous round.

Query-Optimal Randomized Protocol for β < 1/3
The Download protocol of the previous section works when β < 1 but falls short of yielding
optimal query complexity. This section presents a query-optimal protocol for Download when
β < 1/3. For a complete analysis see Appendix A.

The Protocol

Let us first give an overview of the approach. The protocol proceeds in J0 =
⌈
log1/α

k
c log n

⌉
phases, whose goal is to reduce the number of unknown bits by a shrinkage factor α < 1. The
protocol maintains a number of set variables, updated in each phase, including the following.
KM (respectively, UM ) is the set of indices i whose value res[i] is already known (resp., still
unknown) to M . At any time during the execution, KM ∪ UM = {1, . . . , n}. res[i] = xi is
the Boolean value of xi for every i ∈ KM . (Slightly abusing notation for convenience, we
sometimes treat KM as a set of pairs (i, res[i]), i.e., we write KM where we actually mean
KM ◦ resM .) Each peer also identifies a set KTAM of known-to-all bits and IM of unknown
indices for at least one peer. Each phase contains four subroutines, each with a specific goal
in mind. First, the Committee_Work subroutine forms private committees where each peer
M joins committee i if i ∈ IM with some probability. Each member of committee i then
reports xi, and each peer decides whether to accept some or no value (updating KM and
UM accordingly). There is also a blacklisting component in which if a peer belongs to too
many committees, it is deemed Byzantine and ignored for the rest of the execution. Second,
the Gossip subroutine has every peer M report its KM to all other peers. If a peer receives
at least βk + 1 reports of the same value for xi, it accepts it. Third, the second invocation
of Gossip repeats the reporting of KM for every peer M , but this time, in addition to the
update of KM , if a value is reported 2βk + 1 times, it adds it to KTAM . The motivation
behind this second invocation is that if a value is reported 2βk+ 1 times, then at least βk+ 1
of those reports are from non-faulty peers. Thus, all peers will accept that value (and add it
to KM ). Last, the Collect_Requests subroutine is meant to update IM , i.e., to know which
indices are unknown to at least one peer. This subroutine also has a blacklisting component
in which if a peer sends a request for index i but i ∈ KTAM , M blacklists the requesting
peer.

▶ Remark 5. The communication performed in the various steps of the protocol takes more
than one time unit in the CONGEST model. Hence, the protocol must also ensure that the
different steps are synchronized and that all peers start each step only after the previous step
is completed. Relying solely on reports from each peer concerning its progress might lead to

DISC 2024



3:10 Byzantine Resilient Distributed Computing on External Data

deadlocks caused by the Byzantine peers. Hence, the scheduling must be based on the fact
that the duration of each step is upper-bounded by the maximum amount of communication
the step involves. We omit this aspect from the description of the algorithm.

We next detail the code of the main algorithm and its procedures. (Hereafter, we omit the
superscript J when clear from the context.) We denote by update(i, b) the function that sets
res[i] = b, removes i from Um and adds it to KM . We denote by BlacklistOverWork(wmax,
M) the function that checks the number x of committees M reported to belong to and adds
M to B if x > wmax. We refer to the first and second invocations of Procedure Gossip as
Gossip(1) and Gossip(2) respectively.

Algorithm 3 Algorithm Gossip_Download, β < 1/3, code for peer M .

1: KM ← ∅ ▷ Indices of bits known to M
2: KTAM ← ∅ ▷ Indices of bits that are known-to-all
3: UM ← {1, . . . , n} ▷ Indices of bits not known to M
4: IM ← UM ▷ Indices of bits not known to some non-blacklisted peers
5: res← ∅ ▷ Values of bits known to M
6: B ← ∅ ▷ Peers blacklisted by M as Byzantine
7: c← Z/γ ▷ The parameter Z will be fixed later.
8: α← (1+ϵ)β

(1−ϵ)(1−2β) ▷ shrinkage factor, α < 1. The parameter ϵ will be fixed later.
9: J0 ← ⌈log1/α

k
c log n⌉ ▷ Number of phases

10: for J = 0, 1, 2, . . . , J0 − 1 (sequentially) do
11: Invoke Committee_Work
12: Invoke Gossip(1)
13: Invoke Gossip(2)
14: Invoke Collect_Requests.
15: for every i ∈ UM do res[i]← Query(i) ▷ Querying the remaining unknown bits
16: return res

Partial Analysis

Sanity checks. Let us start with the two sanity checks needed to ensure the validity of the
random selection step and the convergence of the protocol.

▶ Observation 6. For β and ϵ satisfying

β <
1− ϵ
3− ϵ (1)

(a) the chosen shrinkage factor satisfies α < 1, and
(b) the chosen probability satisfies p < 1 for every 0 ≤ J ≤ J0 − 1.

Progress tracking variables. Next, we define the notation for the values of the main
variables of the protocol during the different phases.

Denote by KJ
M (respectively, UJ

M ) the value of the set KM (resp., UM ) at the beginning
of phase J . (Note that it is also the value of KM at the end of phase J − 1)
Denote by KJ,mid

M (resp., UJ,mid
M ) the value of the set KM (resp., UM ) at the end of the

Gossip(1) step of phase J .
Denote by IJ

M the value of the set IM at the beginning of phase J .
Denote by KTAJ

M the value of the set KTAM at the end of the Gossip(2) step of phase J .



J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:11

Algorithm 4 Sub routines, code for peer M .

1: procedure Committee_Work
2: ÎM ← ∅ ▷ Set of indices whose committees M joins
3: ρ← (1− ϵ)Z log n/αJ ▷ Also ρ = (1− ϵ)pγk
4: Wmax ← (1 + ϵ)c log n · n

k
▷ Blacklisting “over-active” Byzantine peers

5: for every i = 1, . . . , n sequentially do ▷ Setting up committees
6: if i ∈ IM then
7: Join the private committee Ci at random with probability p = c log n

αJk
.

8: if M was selected to Ci then
9: ÎM ← ÎM ∪ {i}.

10: if i ∈ UM then
11: update(i, Query(i)) ▷ Direct-verification
12: Send the message (vote ,i,res[i]) to every other peer.
13: Collect votes sent by members of Ci. ▷ Ignore messages on bits i ̸∈ IM .
14: for every other peer M ′ do
15: BlacklistOverWork(Wmax, M ′)
16: for every i ∈ IM do
17: Let CM

i be the remaining reduced committee. ▷ Possibly CM
i ̸= CM′

i for M ̸= M ′.
18: for every i ∈ UM do ▷ comm-verification
19: for b ∈ {0, 1} do
20: ψb(i)← number of votes from CM

i members for xi = b.
21: if ψ0(i) ≥ ρ and ψ1(i) < ρ then
22: update(i, 0)
23: if ψ1(i) ≥ ρ and ψ0(i) < ρ then
24: update(i, 1) ▷ If both ψ0(i) ≥ ρ and ψ1(i) ≥ ρ, theni remains unknown
25:
26: procedure Gossip(GossipNum)
27: for every i ∈ KM do
28: send the message (i, res[i]) to all other peers.
29: Receive a list KM′ from every other peer M ′.
30: for every i ∈ UM do
31: φ0(i)← |{M ′ | (i, 0) ∈ KM′}|.
32: if φ0(i) ≥ βk + 1 then
33: update(i, 0)
34: φ1(i)← |{M ′ | (i, 1) ∈ KM′}|.
35: if φ1(i) ≥ βk + 1 then
36: update(i, 1)
37: if GossipNum=2 and (φ0(i) ≥ 2βk + 1 or φ1(i) ≥ 2βk + 1) then
38: KTAM ← KTAM ∪ {i}
39:
40: procedure Collect_Requests
41: Set IM ← UM

42: Send UM to all other peers.
43: Collect lists UM′ from all other peers M ′.
44: for every i = 1, . . . , n do
45: RU (i)← {M ′ | i ∈ UM′}.
46: if i ∈ KTAM then B ← B ∪RU (i) ▷ Blacklisting for requesting known-to-all bits
47: IM ← IM ∪

⋃
M′ ̸∈B UM′ ▷ Indices to be learned, including UM of M itself

DISC 2024



3:12 Byzantine Resilient Distributed Computing on External Data

Note that a bit xi can be unknown for M and known for M ′ for two honest peers M and
M ′. We say that xi is unknown in phase J , and the committee Ci is necessary, if i ∈ UJ

M for
some honest peer M , or equivalently, if i ∈ UJ , where

UJ =
⋃

M∈H
UJ

M

is the set of indices i for which some honest peers request setting up a committee Ci and
querying in the current phase. A bit xi is known once i ∈ KM for every honest peer M . Also
let

UJ,mid =
⋃

M∈H
UJ,mid

M and NKTAJ
M = {1, . . . , n} \KTAJ

M .

Bad events. In an execution ξ of the protocol, there are two types of bad events, whose
occurrence might fail the protocol. Our analysis is based on bounding the probability of bad
events, showing that with high probability, no bad events will occur in the execution, and
then proving that in a clean execution, where none of the bad events occurred, the protocol
succeeds with certainty. The bad events are as follows.

Bad event EV1(J, i): In phase J , the committee Ci selected for an unknown bit xi is not

ρ-representative, for ρ = (1− ϵ)Z log n
αJ

, where Z is a parameter of the algorithm that
must satisfy some constraints described in Lemmas 7 and 8. (If xi is already known, then
this bad event does not affect the correctness or query complexity of the honest peers,
although it might increase the time and message complexity.)

Bad event EV2(J, M): In phase J , an honest peer M has |ÎJ
M | > Wmax, namely, M joins

more than Wmax = (1 + ϵ)c · n log n
k

committees, and subsequently gets blacklisted.

For an integer J ≥ 0, call the execution ξ J-clean if none of the bad events EV1(j, i) or
EV2(j,M) occurred in it for 0 ≤ j ≤ J .

High probability of clean executions. We now argue that with the right choice of parameters
ϵ and Z, the probability for the occurrence of any of the bad events is low.

▶ Lemma 7. For any J ≥ 0, if the execution ξ is (J − 1)-clean, and the parameters ϵ and Z
satisfy

ϵ2Z/2 ≥ 2 + λ (2)

for some constant λ > 0, then the probability that any of the bad events EV1(J, i) occurred in
ξ is at most O( 1

n1+λ ).

▶ Lemma 8. For any J ≥ 0, if the execution ξ is (J − 1)-clean, and the parameters ϵ and Z
satisfy

ϵ2

2 + ϵ
· Z ≥ 2 + λ (3)

for some constant λ > 0, then the probability that any of the bad events EV2(J,M) occurred
in ξ is at most O( 1

n1+λ ).

The above two lemmas yield the following:

▶ Corollary 9. Consider an execution ξ. If the parameters ϵ and Z satisfy

Z ·min{ϵ2/2 , ϵ2/(2 + ϵ)} ≥ 2 + λ (4)

for some constant λ > 0, then the probability that ξ is clean is at least 1−O( log n
n1+λ ).



J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:13

Convergence invariants.

▶ Lemma 10. In a J-clean execution, assuming β < 1/3, for every honest M ,

IJ+1
M ⊆ NKTAJ

M ⊆ UJ,mid ⊆ UJ ⊆ IJ
M .

We remark that if xi is known, hence Ci is not necessary, then the inviting peer is Byzantine,
so it may invite only a few honest peers (or none) hence the constructed Ci is not guaranteed
to be ρ-representative, but this will not hurt any honest peer, since, in this case, the honest
peers already know xi and will not listen to the committee.

▶ Lemma 11. In a J-clean execution, for every J ≥ 0 and every honest M ,
(1) |UJ,mid| ≤ αJ+1n, (2) |IJ

M | ≤ αJn, (3) |UJ | ≤ αJn, (4) |UJ
M | ≤ αJn.

Using these convergence invariants, we get the following theorem.

▶ Theorem 12. When β < 1/3, Protocol Gossip_Download solves the Download problem
w.h.p. with4 Q = O

(
n log2 n

γk

)
, T = O

(
n log 1

β

(
γk

log n

))
and M = O

(
nk2 log 1

β

(
γk

log n

))
.

4 Results on the Disjunction Problem

In this section, we consider the problem of computing the Disjunction of the input bits. We
first state some basic lower bounds and then present some upper bound results, along with
an overview of the building blocks used to design protocols that match the upper bounds.
For a complete formal presentation see the full version of the paper.

▶ Theorem 13. When β < 1, any deterministic protocol for the Disjunction(δ) and the
Explicit Disjunction(δ) problems has Q = Ω

(
β · δ−1 + (1−δ)n

γk

)
.

▶ Theorem 14. Any randomized protocol for Disjunction(δ) that succeeds with constant
probability has Q = Ω( 1

γk · δ
−1) in expectation.

The remainder of this section deals with efficient deterministic protocols for Disjunction
and Explicit Disjunction under different settings. A key observation that we rely on is that
single round algorithms exhibit similar properties to bipartite expanders. The connection
is as follows. One can represent the access pattern of the peers to the input array X as a
bipartite graph G(L,R,E), where L represents the n input bits, R represents the k peers,
and an edge (i, j) ∈ E indicates that Mj queries X [i]. We would like to ensure that if the
number of bits set to 1 in X exceeds some value s, then no matter which set S of indices
corresponds to these s 1s, the set Γ(S) of neighbors of S in G will contain at least βk + 1
peers, guaranteeing that at least one honest peer will query at least one of the set bits of S.
This can be ensured by taking G to be a Large Set Expander (LSE), an expander variant
defined formally later on. Not knowing the density δ in advance, we can search for it, starting
with the hypothesis that δ is close to 1 (and hence using a sparse LSE and spending a small
number of queries), and gradually trying denser LSE’s (and spending more queries), until we
reach the correct density level allowing some honest peer to discover and expose a set bit.
Once the set bit is exposed, we have all the honest peers send the new bit to every other

4 We remark that our focus was on optimizing query complexity. The T and M complexities can be
improved further. For example, the current protocol requires the peers to send the entire set of known
bits in each iteration, but clearly, it suffices to send the updates.

DISC 2024



3:14 Byzantine Resilient Distributed Computing on External Data

peer. The peers then query all the bits they received (one per peer) to confirm the answer.
The total query complexity per peer is Õ(n/k + δ−1 + k). Observe that it is near-optimal
when k <

√
n. See Theorem 17. For β < 1/2, we obtain near-optimal query complexity

Õ(n/k + δ−1). The observation leading to this is that one can use expanders as before, and
assign vertices to input bits such that for every possible input and every possible set of
corrupt peers, strictly more than k/2 honest peers query a set bit. Subsequently, whenever
more than 1/2 of the peers found a 1, the remaining honest peers can conclude that the
answer is 1, and because of the stronger guarantee, we no longer have to verify all the bits
sent by the agents. This algorithm, however, only obtains the Disjunction of the input bits,
not the actual index of a set bit. See Theorem 18.

Our definition of LSE ensures that for every possible input configuration of Disjunction
with input density δ and every possible set of peers that can be corrupted by Byzantine
agents, at least one honest peer reads a set bit. To the best of our knowledge, this exact
definition of LSE has not been used in the literature. The definition of samplers [29] to
construct asynchronous Byzantine agreement and leader election protocols is the closest to
LSE. Roughly speaking, samplers ensure there are at most δ fraction of the input bits x
such that their neighborhood has β fraction of Byzantine nodes, for every possible choice of
corruptions that the adversary can make. Even though our definitions are different, we use
similar techniques (the probabilistic method) to show their existence.
▶ Definition 15 (Large Set Expander (LSE)). A bipartite graph G(L,R) is an (n, k, β, δ)-
Large Set Expander (or (n, k, β, δ)-LSE) if n = |L|, k = |R| and |Γ(S)| > βk for all S ⊆ L

with |S| ≥ nδ.
Informally, a large set expander is such that for every large enough subset S, i.e., S ⊆ L

and |S| ≥ δn, its neighborhood cannot be covered fully by any subset of βk vertices, i.e.,
|Γ(S)| > βk. The definition of an LSE is similar to that of expander graphs and we use a
similar probabilistic analysis to prove their existence. We formalize this in the lemma below.
▶ Lemma 16. There exists a bipartite graph G(L,R) that is a (n, k, β, δ) Large Set Expander
such that, (1) Every vertex in L has degree at most d, and (2) Every vertex in R has degree

at most 2nd
k , for all d satisfying d > max

{
1 + log(e · δ−1)

log 1
β

+ βk

δn
·

log e
β

log 1
β

,
3k ln 2k

n

}
.

We use the existence of large set expanders to design algorithms that achieves the results
stated in Theorems 17 and 18.
▶ Theorem 17. When β < 1, There exists a protocol that solves Disjunction with Q =
O
(

n
k ·
(

log 1
β

(e2δ−1) + log k
)
· log δ−1 + δ−1 · (β log 1

β

e
β ) + k

)
, T = O(log n) and

M = O(βk2 log n).
Ignoring log factors and constants dependent on β, the resulting query complexity is

Q = Õ(n/k + δ−1 + k), essentially matching the lower bound (except for the additive k
term). The constant factors increase as β gets closer to 1 and reduce to the naive algorithm
when β = 1 − 1/k. We improve on that in the following result, albeit with the cost of β
being at most 1/2.
▶ Theorem 18. When β < 1/2, There exists a protocol that solves Disjunction with Q =
O
(

n log n
k log(2/(2β+1)) + 1

log(2/(2β+1)) · δ
−1 + log2 n

)
, T = O(log n) and M = O(βk2 log n).

Allowing randomization in the protocol design, we achieve the following result.
▶ Theorem 19. When β < 1, There exists a protocol that w.h.p. solves Disjunction with Q =
O
(

log n
γk · δ

−1 + log k log n log(1/δ)
γ

)
, T = O

(
log k · log δ−1) and M = O(k2 log k · log δ−1).



J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:15

5 Related Work

To the best of our knowledge, we are the first to study retrieval problems in the DR model,
as defined above. We now provide a description of related studies.

As discussed earlier, Byzantine resilience research was largely limited to a few problems
like Byzantine Agreement, Byzantine Broadcast, State Machine Replication, etc. More
recently, we have seen many investigations of Byzantine resilience in other problems and
models. Quite naturally, it has been explored in P2P settings to ensure robust membership
sampling [9] and resilient P2P overlay design [21, 3]. Apart from that, Byzantine resilience
was explored in the context of mobile agents [17, 10, 15] and graph algorithms [5]. In the
last decade, there was quite a bit of interest in Byzantine resilient learning, starting with
multi-armed bandit problems [6]. Finally, there was a recent flurry of works inspired by
the popularity of Byzantine resilient optimization algorithms in federated and distributed
learning [41, 8, 25, 19, 42, 20].

Byzantine Reliable Broadcast (BRB) was first introduced by Bracha [11]. In BRB, a
designated sender holds a message M , and the goal is for every honest peer to output the
same M ′ that must uphold M ′ = M if the sender is honest. The Download problem can be
viewed as a variant of BRB, where the sender is always honest but has no computational
powers and is passive (read-only), and peers are always required to output the correct message
M . These differences make solving Download different than solving BRB. One easy-to-see
difference in results is that Download can be solved trivially even when 1/3 ≤ β < 1 and there
are no authenticated messages, whereas BRB can not be solved under the same conditions
[18]. Another difference is that state-of-the-art BRB protocols like [2] where the sender
uses error-correcting codes and collision-resistant hash functions are inapplicable (when
considering the source to be the sender). In optimal balanced BRB protocols like in [2], the
sender sends O( n

k ) bits to each peer whereas Theorem 3 shows that Download requires Ω(βn)
queries (the difference stems from the inability of the source to perform computations).

Most works on Byzantine resilience have focused on models and problems where the data
is integrated into the network, making it difficult to get Byzantine resilience past β < 1/3 or
β < 1/2. However, there have been some exceptions that were observed quite early in the
Byzantine resilience literature, like authenticated broadcast [18] that can be achieved for any
β < 1. More recently, the power of decoupling data and computing came into play in the
context of mobile agents. The gathering problem [17], where mobile agents must gather at
one location, can be solved for all fixed β < 1. Crucially, the honest agents can explore every
part of the graph. The Byzantine agents do not control any portion of the graph.

Our work can be viewed as a step towards understanding the power of oracles with the
data source playing that role. The use of oracles (also called probes, queries, etc.) has been
widespread in classical computing with references dating back to the early seventies [40, 39,
32, 31, 26]. See [28] for an excellent treatment of the various structural complexity theory
results that have been obtained through oracles. The power of oracles has been explored in
distributed computing as well in the context of overcoming challenges posed by failures in
asynchronous settings [35]. On the broader algorithmic front, the property testing model [24]
can be viewed as using oracles to access data that is only available through expensive queries.

In essence, we have proposed a hybrid combination of two communication technologies –
querying the source and P2P message passing. Such hybrid combinations leading to overall
improvements is not new [27]. Friedman et al. [23] studied distributed computing aided by
an external entity that they called cloud. They studied asynchronous consensus with the
cloud providing a common compare-and-swap (CAS) register access. More recently, Afek et

DISC 2024



3:16 Byzantine Resilient Distributed Computing on External Data

al. [1] introduced the computing with cloud (CWC) model wherein traditional distributed
computing models were augmented with one or more cloud nodes that are typically connected
to several regular nodes.

The notion of an External Data Source that multiple peers can access is reminiscent of
the PRAM model [22, 30] where all processors could access a shared memory. Unfortunately,
there has been no work on Byzantine resilience in the PRAM setting. This is not surprising
because the PRAM setting allows writing over the shared memory, and Byzantine processors
can easily overwrite portions of the input, thereby making it impossible to solve problems in
the exact sense.

6 Directions for future work

Our framework adds Byzantine resilience to standard distributed computing with the help of
an External Data Source, an entity external to the network. We initiated this study through
deterministic and randomized models, focusing on the Download and Disjunction problems,
and developing several algorithms, tools, and techniques. Our emphasis was on optimizing
the query complexity but also considered time and message complexities. Extending our
work to other model variations and/or broader classes of problems like graph and geometric
problems, data analytics and peer learning problems are natural next steps.

Our work has shown that this framework is well-suited for Byzantine resilience owing to
decoupling of data and computation that lends well to “trust, but verify” techniques in an
algorithmically rigorous manner. It will be interesting to see the limits to which Byzantine
resilience can be pushed in this framework.

This framework can be interpreted in multiple ways and applied to a wide variety of
contexts. Ideas from oracle based computation such as property testing [24] can be easily
adapted to our context. One can also envision variants in which the External Data Source
offers a richer set of services that may include computation or data re-organization at its end
that the peers may need to pay for. Such dynamics can potentially uncover many algorithmic
and game theoretic issues like pricing mechanisms and coalition formation. Our approach
is thus relevant in contexts like blockchain oracles [7, 12] where a distributed set of peers
wish to perform computation on multiple public data sources at different locations (like news
outlets, government portals, think-tank reports, etc.) with disparate access costs, access
controls and varying levels of trustworthiness. We therefore believe that our work will lead
to several other follow-up work exploring all these variations.

In this paper we studied a strong adversarial model. If the source is allowed to provide
also a source of global randomness, then our results may be improved further. Specifically,
with such service, one can deploy committees guaranteed to have an honest majority w.h.p.,
which may lead to efficient algorithms for additional problems.

References
1 Yehuda Afek, Gal Giladi, and Boaz Patt-Shamir. Distributed computing with the cloud. In

23rd Int. Symp. on Stabilization, Safety, and Security of Distributed Systems (SSS). Springer,
2021. doi:10.1007/978-3-030-91081-5_1.

2 Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and
Haibin Zhang. Balanced byzantine reliable broadcast with near-optimal communication
and improved computation. In Proceedings of the 2022 ACM Symposium on Principles of
Distributed Computing, PODC’22, pages 399–417, New York, NY, USA, 2022. Association for
Computing Machinery. doi:10.1145/3519270.3538475.

https://doi.org/10.1007/978-3-030-91081-5_1
https://doi.org/10.1145/3519270.3538475


J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:17

3 John Augustine, Soumyottam Chatterjee, and Gopal Pandurangan. A fully-distributed scalable
peer-to-peer protocol for byzantine-resilient distributed hash tables. In 34th ACM SPAA,
pages 87–98, 2022. doi:10.1145/3490148.3538588.

4 John Augustine, Anisur Rahaman Molla, and Gopal Pandurangan. Byzantine agreement
and leader election: From classical to the modern. In ACM PODC, pages 569–571, 2021.
doi:10.1145/3465084.3467484.

5 John Augustine, Anisur Rahaman Molla, Gopal Pandurangan, and Yadu Vasudev. Byzantine
Connectivity Testing in the Congested Clique. In 36th DISC, pages 7:1–7:21, 2022. doi:
10.4230/LIPICS.DISC.2022.7.

6 Baruch Awerbuch and Robert Kleinberg. Competitive collaborative learning. JCSS, 74(8):1271–
1288, 2008. doi:10.1016/J.JCSS.2007.08.004.

7 Abdeljalil Beniiche. A study of blockchain oracles, 2020. arXiv:2004.07140.
8 Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Ma-

chine learning with adversaries: Byzantine tolerant gradient descent. In NeurIPS,
pages 119–129, 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/
f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html.

9 Edward Bortnikov, Maxim Gurevich, Idit Keidar, Gabriel Kliot, and Alexander Shraer. Brahms:
Byzantine resilient random membership sampling. Computer Networks, 53(13):2340–2359,
2009. doi:10.1016/J.COMNET.2009.03.008.

10 Sébastien Bouchard, Yoann Dieudonné, and Anissa Lamani. Byzantine gathering in polynomial
time. Distributed Comput., 35(3):235–263, 2022. doi:10.1007/S00446-022-00419-9.

11 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information & Computation,
75:130–143, 1987. doi:10.1016/0890-5401(87)90054-X.

12 Giulio Caldarelli. Overview of blockchain oracle research. Future Internet, 14:175, June 2022.
doi:10.3390/fi14060175.

13 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In 3rd Symp. on
Operating Systems Design and Implementation, OSDI, pages 173–186. USENIX Assoc., 1999.
URL: https://dl.acm.org/citation.cfm?id=296824.

14 Soma Chaudhuri, Maurice Erlihy, Nancy A Lynch, and Mark R Tuttle. Tight bounds for k-set
agreement. J. ACM, 47(5):912–943, 2000. doi:10.1145/355483.355489.

15 Arnhav Datar, Nischith Shadagopan M. N, and John Augustine. Gathering of anonymous
agents. In AAMAS, pages 1457–1465, 2023. doi:10.5555/3545946.3598798.

16 Arnhav Datar, Arun Rajkumar, and John Augustine. Byzantine spectral ranking. In NeurIPS,
volume 35, pages 27745–27756, 2022.

17 Yoann Dieudonné, Andrzej Pelc, and David Peleg. Gathering despite mischief. ACM Trans.
Algorithms, 11(1), August 2014. doi:10.1145/2629656.

18 D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM J.
Computing, 12(4):656–666, 1983. doi:10.1137/0212045.

19 El-Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis, Lê-
Nguyên Hoang, and Sébastien Rouault. Collaborative learning in the jungle (decen-
tralized, byzantine, heterogeneous, asynchronous and nonconvex learning). In NeurIPS,
pages 25044–25057, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/
d2cd33e9c0236a8c2d8bd3fa91ad3acf-Abstract.html.

20 Sadegh Farhadkhani, Rachid Guerraoui, Lê Nguyên Hoang, and Oscar Villemaud. An
equivalence between data poisoning and byzantine gradient attacks. In ICML, pages 6284–
6323. PMLR, 2022. URL: https://proceedings.mlr.press/v162/farhadkhani22b.html.

21 Amos Fiat, Jared Saia, and Maxwell Young. Making chord robust to byzantine attacks. In
13th ESA, pages 803–814. Springer, 2005. doi:10.1007/11561071_71.

22 Steven Fortune and James Wyllie. Parallelism in random access machines. In Proc. Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pages 114–118, 1978. doi:
10.1145/800133.804339.

DISC 2024

https://doi.org/10.1145/3490148.3538588
https://doi.org/10.1145/3465084.3467484
https://doi.org/10.4230/LIPICS.DISC.2022.7
https://doi.org/10.4230/LIPICS.DISC.2022.7
https://doi.org/10.1016/J.JCSS.2007.08.004
https://arxiv.org/abs/2004.07140
https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
https://doi.org/10.1016/J.COMNET.2009.03.008
https://doi.org/10.1007/S00446-022-00419-9
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.3390/fi14060175
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1145/355483.355489
https://doi.org/10.5555/3545946.3598798
https://doi.org/10.1145/2629656
https://doi.org/10.1137/0212045
https://proceedings.neurips.cc/paper/2021/hash/d2cd33e9c0236a8c2d8bd3fa91ad3acf-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d2cd33e9c0236a8c2d8bd3fa91ad3acf-Abstract.html
https://proceedings.mlr.press/v162/farhadkhani22b.html
https://doi.org/10.1007/11561071_71
https://doi.org/10.1145/800133.804339
https://doi.org/10.1145/800133.804339


3:18 Byzantine Resilient Distributed Computing on External Data

23 Roy Friedman, Gabriel Kliot, and Alex Kogan. Hybrid distributed consensus. In Proc. 17th
Int. Conference on Principles of Distributed Systems, OPODIS 2013., pages 145–159, 2013.
doi:10.1007/978-3-319-03850-6_11.

24 Oded Goldreich. Introduction to Property Testing. Cambridge Univ. Press, 2017.
25 Nirupam Gupta and Nitin H. Vaidya. Fault-tolerance in distributed optimization: The case of

redundancy. In ACM PODC, pages 365–374, 2020. doi:10.1145/3382734.3405748.
26 Péter Hajnal. An ω (n 4/3) lower bound on the randomized complexity of graph properties.

Combinatorica, 11:131–143, 1991.
27 Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David Wetherall.

Augmenting data center networks with multi-gigabit wireless links. SIGCOMM Comput.
Commun. Rev., 41(4):38–49, August 2011. doi:10.1145/2018436.2018442.

28 Lane A Hemaspaandra and Mitsunori Ogihara. The complexity theory companion. Acm
Sigact News, 32(4):66–68, 2001. doi:10.1145/568425.568436.

29 Bruce M. Kapron, David Kempe, Valerie King, Jared Saia, and Vishal Sanwalani. Fast
asynchronous byzantine agreement and leader election with full information. In Proc. 19th
ACM-SIAM Symp. on Discrete Algorithms, SODA 2008, pages 1038–1047, 2008. URL:
http://dl.acm.org/citation.cfm?id=1347082.1347196.

30 Richard M Karp. A survey of parallel algorithms for shared-memory machines. University of
California at Berkeley, 1988.

31 Valerie King. Lower bounds on the complexity of graph properties. In Proc. 20th ACM
Symposium on Theory of Computing, STOC ’88, pages 468–476, 1988. doi:10.1145/62212.
62258.

32 Daniel J Kleitman and David Joseph Kwiatkowski. Further results on the aanderaa-rosenberg
conjecture. Journal of Combinatorial Theory, Series B, 28(1):85–95, 1980. doi:10.1016/
0095-8956(80)90057-X.

33 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982. doi:10.1145/357172.357176.

34 Silvio Micali and Tal Rabin. Collective coin tossing without assumptions nor broadcasting. In
CRYPTO, pages 253–266, Berlin, Heidelberg, 1991. Springer. doi:10.1007/3-540-38424-3_
18.

35 Achour Mostefaoui, Eric Mourgaya, and Michel Raynal. An introduction to oracles for
asynchronous distributed systems. Future Generation Computer Systems, 18(6):757–767, 2002.
doi:10.1016/S0167-739X(02)00048-1.

36 M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, April 1980. doi:10.1145/322186.322188.

37 Michael O. Rabin. Randomized byzantine generals. In 24th FOCS, pages 403–409, 1983.
doi:10.1109/SFCS.1983.48.

38 R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–126, February 1978. doi:10.1145/
359340.359342.

39 Ronald L. Rivest and Jean Vuillemin. On recognizing graph properties from adjacency matrices.
Theoretical Computer Science, 3(3):371–384, 1976. doi:10.1016/0304-3975(76)90053-0.

40 Arnold L. Rosenberg. On the time required to recognize properties of graphs: a problem.
SIGACT News, 5(4):15–16, October 1973. doi:10.1145/1008299.1008302.

41 Lili Su and Nitin H. Vaidya. Multi-agent optimization in the presence of byzantine adversaries:
Fundamental limits. In American Control Conf, ACC, pages 7183–7188. IEEE, 2016. doi:
10.1109/ACC.2016.7526806.

42 Lili Su and Nitin H. Vaidya. Byzantine-resilient multiagent optimization. IEEE Trans. Autom.
Control., 66(5):2227–2233, 2021. doi:10.1109/TAC.2020.3008139.

https://doi.org/10.1007/978-3-319-03850-6_11
https://doi.org/10.1145/3382734.3405748
https://doi.org/10.1145/2018436.2018442
https://doi.org/10.1145/568425.568436
http://dl.acm.org/citation.cfm?id=1347082.1347196
https://doi.org/10.1145/62212.62258
https://doi.org/10.1145/62212.62258
https://doi.org/10.1016/0095-8956(80)90057-X
https://doi.org/10.1016/0095-8956(80)90057-X
https://doi.org/10.1145/357172.357176
https://doi.org/10.1007/3-540-38424-3_18
https://doi.org/10.1007/3-540-38424-3_18
https://doi.org/10.1016/S0167-739X(02)00048-1
https://doi.org/10.1145/322186.322188
https://doi.org/10.1109/SFCS.1983.48
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1016/0304-3975(76)90053-0
https://doi.org/10.1145/1008299.1008302
https://doi.org/10.1109/ACC.2016.7526806
https://doi.org/10.1109/ACC.2016.7526806
https://doi.org/10.1109/TAC.2020.3008139


J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:19

A Some missing proofs

Proof of Theorem 2

Proof. To perform Download deterministically, we use public majority committees. In this
type of committee, public means that every peer knows the committee members, and majority
that the committee is guaranteed to have a strict majority of honest members. The algorithm
creates n public majority committees (one per input bit). The committee Ci is constructed by
assigning it 2βk+ 1 for 1 ≤ i ≤ n in a round robin fashion with wrap-around. See Algorithm
5. This ensures that
1. each committee gets 2βk + 1 members, thereby establishing majority, and
2. each peer appears in at most O(βn+ n/k)= O(βn) committees (since β ≥ 1/k).

Algorithm 5 Elect Public Majority Committee Ci.

1: for 0 ≤ j < 2βk + 1 do
2: Assign peer (i− 1)(2βk + 1) + j (mod k) + 1, to Ci.

The key observation is that it suffices if each bit i is queried by a public majority committee
Ci since when such a committee sends votes on the value bit to every other peer, each other
(honest) peer can trust the majority vote of the committee. Constructing public majority
committees is done as described in Algorithm 5, and complexity measures follow from the
properties of the construction (see Sect. 2). ◀

Proof of Theorem 3

Proof. To establish this, we prove a slightly stronger claim. Consider a deterministic protocol
P for the Download problem. For an n-bit input X , let E(X ) denote the (unique) execution
of P on X in which none of the peers has failed. Then, the following holds.

▶ Lemma 20. For every X , every bit xi (1 ≤ i ≤ n) is queried by at least βk + 1 peers
during the execution E(X ).

Proof. Towards contradiction, suppose there exists an input X = {x1, . . . , xn} and an index
1 ≤ i ≤ n such that in the execution E = E(X ), the set M̂ of peers that queried the bit xi is
of size |M̂ | ≤ βk. Without loss of generality, let xi = 0.

The adversary can now apply the following strategy. It first simulates the protocol P
on X and identifies the set M̂ . It now generates an execution E ′ similar to E except for
the following changes: (a) The input X ′ = {x′

1, . . . , x
′
n} in E ′ is the same as X except that

x′
i = 1. (b) The peers of M̂ are Byzantine; all other peers are honest. (c) Each Byzantine

peer M ∈ M̂ behaves according to P except that it pretends that x′
i = 0, or in other words,

it behaves as if the input is X (and the execution is E).
One can verify (e.g., by induction on the rounds) that the honest peers cannot distinguish

between the executions E and E ′. Therefore, they end up with the same output in both
executions. This contradicts the fact that their output in E must be X , and their output in
E ′ must be X ′. ◀

The lemma implies that for every input X , the total query complexity of the protocol is
greater than βkn. Theorem 3 follows. ◀

DISC 2024



3:20 Byzantine Resilient Distributed Computing on External Data

In the remainder of this section we present the analysis of the main body of Theorem 12.
When M joins (in Procedure Committee_Work) the committee Ci for some i ∈ UJ

M , M is
required to actively query the source for the value of xi. We then say that Ci is an active
committee for M . (In contrast, when M joins a committee Ci for i ∈ KJ

M , it costs it nothing
since it already has the value of xi stored in res[i], so it does not need to spend another
query.) We define the following size variables.

Let ñJ
M denote the number of active committees for M in phase J .

Let n̂J
M = |ÎJ

M | denote the total number of committees that M joins by Procedure
Committee_Work in phase J . (Note that ñJ

M ≤ n̂J
M )

Let nJ
M = |IJ

M | denote the total number of requests received by M by Procedure
Collect_Requests in phase J .

▶ Lemma 21. If some honest M adds i to its set KTAJ
M of known-to-all bits at the end of

the Gossip(2) step of phase J , then i ∈ KJ+1
M ′ for every honest M ′.

▶ Note 22. the sets KTAM might not be all equal. Namely, every honest peer might be aware
of a different subset of the known-to-all bits. Note, however, that as shown later in Lemma
27, the sets KTAM of all honest peers contain the set CORE discussed in the high-level
overview, and the fast growth of CORE is essentially the cause for the fast shrinkage of the
set of unknown bits.

Proof. Suppose i ∈ KTAJ
M for some honest M . Then in Gossip(2) of phase J , M counted

at least 2βk + 1 messages containing (i, b) (for b ∈ {0, 1}). At least βk + 1 of these messages
were sent by honest peers, and therefore, in the Gossip(2) step of phase J , all honest peers
will count at least βk + 1 messages containing (i, b). Consequently, every honest peer M ′

will move i to KM ′ at that step, so i ∈ KJ+1
M ′ . ◀

Properties of clean executions.

▶ Observation 23. In a J-clean execution, if i ∈ UJ (i.e., xi is still unknown in phase J),
then for every honest peer M , the reduced committee CM

i is ρ-representative.

▶ Remark 24. Note that once a committee is selected, the adversary can corrupt all of
its members in the very next round. By then, however, the committee had completed its
querying and communication actions, so the fact that it is no longer representative does
not harm the execution. Note also that the need to complete all committee actions in a
single round is the reason why it is required to perform the querying sequentially, spending
a round for each bit xi. The querying operations of all committees could, in principle, be
parallelized, but the subsequent communication step might require more than a single round
in the CONGEST model, giving the adversary an opportunity to intervene and corrupt an
entire committee before it has completed sending its messages.

Note that those bits that were not moved from UM to KM during the main phases J of
the protocol were directly-verified in the final step of the protocol. This implies the following.

▶ Observation 25. By the end of the execution, every honest peer has the value res[i] for
every bit xi.

It remains to show that for every xi, the res[i] value obtained by each honest peer is correct.

▶ Lemma 26. In a J-clean execution, whenever an honest peer learns an input bit xi in
phases 0 to J , the learned value res[i] is correct.



J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:21

Proof. Consider an input bit xi. Order the honest peers that learned xi during phases 0 to
J according to the time by which they acquired xi. the proof is by induction on this order.

For the induction basis, note that the first peer to acquire xi must have directly verified
it, so the value it has obtained is clearly correct.

Now consider the t-th peer M in this order, and suppose M knows that xi = b. there are
several cases to consider.

Case 1. M directly-verified xi, either on the last step of the protocol or in Procedure
Committee_Work during some phase J . Then again, res[i] is clearly correct.

Case 2. M comm-verifies xi, in Procedure Committee_Work. Then M found ψb(i) ≥ ρ and
ψ1−b(i) < ρ. Since the execution is J-clean, CM

i is ρ-representative by Lemma 23. This
implies that if xi = 1− b then all the honest peers in CM

i would return 1− b, and M would
find ψ1−b(i) ≥ ρ, which did not happen. Hence, xi = b.

Case 3. M gossip-verifies xi, in the Gossip(1) or Gossip(2) step. Then M has received
messages from βk+ 1 or more peers stating that they already know that xi = b. At least one
of those peers, M ′, is honest, and it acquired xi prior to M . Hence the inductive hypothesis
applies to it, yielding that indeed xi = b. ◀

Proofs of Convergence invariants

Proof of Lemma 10.

Proof. Consider a bit index i /∈ NKTAJ
M . Then xi is marked known-to-all by M in the

Gossip(2) step. Consequently, M ignores xi in phase J even if it receives it in some request
message in Procedure Collect_Requests. Hence i /∈ IJ+1

M . The first containment follows
Consider a bit index i ∈ NKTAJ

M . Then xi is not listed as known-to-all in M , i.e.,
i /∈ KTAM , so M had φ0(i) ≤ 2βk and φ1(i) ≤ 2βk.

Let b = xi, i.e., the correct value of xi, and let 0 ≤ δ ≤ 1 be the fraction of faulty
peers that reported knowing i. Since the execution is J-clean, by Lemma 26, we know
that φ1−b(i) ≤ δβk. Therefore φ0(i) + φ1(i) ≤ (2 + δ)βk. Hence, the number of peers that
informed M that they do not know xi satisfies k−(φ0(i)+φ1(i)) ≥ (1−(2+δ)β)k > (1−δ)βk,
where the second inequality follows since β < 1/3.

Hence, there is at least one honest peer M ′ that did not send xi as part of its KJ,mid
M ′ , so

i ∈ UJ,mid
M ′ , and hence i ∈ UJ,mid. The second containment follows.

The next containment follows from the fact that for an honest peer M , UM is monotone,
decreasing in time.

Consider an index i ∈ UJ . Then some honest M ′ ∈ H has i ∈ UJ
M ′ . This has two implica-

tions when J ≥ 1. First, M ′ will send a request to learn i in Procedure Collect_Requests
of phase J−1. Second, by Lemma 21 i /∈ KTAJ−1

M (otherwise i ∈ KJ
M ′). Hence M will respect

the request by M ′ and add i to IJ
M . When J = 0, UJ = {1, . . . , n} = UJ

M = IJ
M . The fourth

containment follows. ◀

Define the core of 2-common-knowledge after phase J as follows. For every index i, let
numJ

V (i) denote the number of honest peers M that comm-verified i and updated it in
Procedure Committee_Work of phase J . Then

COREJ = {i | numJ
V (i) ≥ βk + 1}.

The name is justified by the following lemma.

DISC 2024



3:22 Byzantine Resilient Distributed Computing on External Data

▶ Lemma 27. If i ∈ COREJ then, i ∈ KJ,mid
M and i ∈ KTAJ

M , for every honest peer M

Proof. Consider an index i ∈ COREJ . By definition, xi was comm-verified by at least βk+ 1
honest peers during Procedure Committee_Work of phase J . Each of these peers will send i

(along with its value) to every other peer during the Gossip(1) step. Subsequently, at the
end of this round, i ∈ KJ,mid

M for every honest M . Consequently, in Gossip(2) of phase J ,
all honest peers will report knowing xi , so every honest peer M will add it to KTAJ

M ◀

Proof of Lemma 11.

Proof. We first prove part (1), by considering iteration J ≥ 0 and bounding |UJ,end| at its
end.

The purpose of blacklisting Byzantine peers that claim to participate in too many
committees, via defining reduced committees, is to curb the influence of the Byzantine peers
on votes, by bounding the extent of Byzantine infiltration into committees. For every honest
peer M and Byzantine peer M ′, denote by BIM (M ′) the number of reduced committees
CM

i that M ′ claimed to belong to. (Note that for peers M ′ that were not blacklisted, this
value is the same as Work(M ′).) Denote the total number of Byzantine infiltrations into
reduced committees of M by BIM =

∑
M ′∈B BIM (M ′). Denote the total number of Byzantine

infiltrations into reduced committees of honest peers by BI =
∑

M∈H BIM . By the way M
constructs the reduced committees in Procedure Committee_Work, every peer appears in at
most Wmax reduced committees of M , hence BIM ≤ βk ·Wmax, and therefore

BI ≤ γk · BIM ≤ γk · βk ·Wmax = (1 + ϵ)cβγ · kn log n.

Consider a bit xi ∈ UJ . By the fourth containment of Lemma 10, xi ∈ IJ
M for every honest

peer M . Hence every honest M will set up a committee Ci, which will be ρ-representative
since the execution is J-clean.

A necessary condition for xi to remain in UJ,mid is that at most βk honest peers directly
verify it in Procedure Committee_Work of phase J . This is because otherwise,i ∈ COREJ

and by lemma 27, it will belong to KJ,mid
M for every honest M .

Hence, in order to keep i in UJ,mid, the adversary must prevent at least (1− 2β)k honest
peers from directly- or comm-verifying xi. To achieve that, at least ρ Byzantine peers must
infiltrate the reduced committee CM

i for at least (1− 2β)k honest peers. This incurs at least
(1− 2β)kρ work. Hence, the number of bits xi for which this can happen is at most

|UJ,mid| ≤ BI
(1− 2β)kρ ≤

(1 + ϵ)cβγ · kn log n
(1− 2β)k · (1− ϵ)Z log n/αJ

= (1 + ϵ)βZ · αJn

(1− 2β)(1− ϵ)Z = α·αJn ,

where the last equality is by the definition of α. This yields Part (1).
By Lemma 10, Part (2) follows from part (1) upon noting that nJ

M = |IJ
M | ≤ |UJ−1,mid|,

and Part (3) follows from part (2). Part (4) follows from part (3), noting that UJ
M ⊆ UJ . ◀

Proofs of high probability of clean executions

Proof of Lemma 7.

Proof. We first show that for every bit xi, IP[EV1(J, i)] ≤ 1/n2+λ.
Consider an index i ∈ UJ . By Lemma 10, UJ ⊆ IJ

M , and hence i ∈ IJ
M ,

Therefore, all honest peers join the committee Ci with probability p. Hence, denoting the
number of honest peers in Ci by X,

IE[X] = p|H| ≥ p · γk = γc log n
αJ

= Z log n
αJ

.



J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:23

IP[EV1(J, i)] = IP[X < ρ] = IP[X ≤ (1− ϵ) · Z log n/αJ ] ≤ IP[X ≤ (1− ϵ)IE[X]] (5)

By Chernoff’s bound,

IP[X ≤ (1− ϵ)IE[X]] ≤ exp
(
−ϵ

2IE[X]
2

)
≤ exp

(
−ϵ

2

2 ·
Z log n
αJ

)
, (6)

and by Eq. (2) it follows that

IP[EV1(J, i)] ≤ exp
(
−(2 + λ) · log n

αJ

)
≤ n−2−λ.

By the union bound, the probability that any bad event of type EV1 occurred in the execution
is at most O( 1

n1+λ ). ◀

Proof of Lemma 8.

Proof. We first show that for every honest peer M , IP[EV2(J,M)] ≤ 1/n8/3. The bad
event EV2(J,M) occurs if n̂J

M > Wmax in phase J . In Procedure Committee_Work, M tries
(randomly) to join the committee Ci for every xi ∈ IJ

M , hence IE[n̂J
M ] = pnJ

M . Applying
Lemma 11(2), we get that

IE[n̂J
M ] ≤ pαJn

We introduce a variable X ∈ (0, 1] such that

IE[n̂J
M ] = X · pαJn = X · c log n · n

k
= X ·Wmax

1 + ϵ
.

We can see now that

IP[EV2(J,M)] = IP[n̂J
M > Wmax] ≤ IP

[
n̂J

M >
1 + ϵ

X
· IE[n̂J

M ]
]

Using the variation of Chernoff’s bound that says that, for δ > 0,

IP [A > (1 + δ)IE[A]] ≤ exp
(
− δ2

2 + δ
· IE[A]

)
and setting δ = 1+ϵ

X − 1, we get

IP[EV2(J,M)] ≤ exp
(
−

( 1+ϵ−X
X )2

2 + 1+ϵ
X − 1

· IE[n̂J
M ]
)

= exp
(
− (1 + ϵ−X)2

X2( 1+ϵ
X + 1)

·Xc log n · n
k

)
= exp

(
− (1 + ϵ−X)2

X + 1 + ϵ
· c log n · n

k

)
= exp

(
−f(X) · c log n · n

k

)
,

where f(x) = (1+ϵ−x)2

x+1+ϵ . It is easily verifiable that f(x) is monotone decreasing in the range
[0, 1], attaining a minimum value of ϵ2

2+ϵ , i.e, f(x) ≥ ϵ2/2 + ϵ for every x ∈ [0, 1]. Therefore,
we get

IP
[
n̂J

M >
1 + ϵ

X
· IE[n̂J

M ]
]

≤ exp
(
− ϵ2

2 + ϵ
· c log n · n

k

)
≤ n−cϵ2/(2+ϵ)

≤ n−Zϵ2/(2+ϵ) ≤ 1
n2+λ

,

where the last inequality follows by Eq. (3). The lemma now follows by the union bound. ◀

DISC 2024





Almost Optimal Algorithms for Token Collision
in Anonymous Networks
Sirui Bai #

State Key Laboratory for Novel Software Technology, Nanjing University, China

Xinyu Fu #

State Key Laboratory for Novel Software Technology, Nanjing University, China

Xudong Wu #

State Key Laboratory for Novel Software Technology, Nanjing University, China

Penghui Yao #

State Key Laboratory for Novel Software Technology, Nanjing University, China
Hefei National Laboratory, China

Chaodong Zheng #

State Key Laboratory for Novel Software Technology, Nanjing University, China

Abstract
In distributed systems, situations often arise where some nodes each holds a collection of tokens,
and all nodes collectively need to determine whether all tokens are distinct. For example, if each
token represents a logged-in user, the problem corresponds to checking whether there are duplicate
logins. Similarly, if each token represents a data object or a timestamp, the problem corresponds to
checking whether there are conflicting operations in distributed databases. In distributed computing
theory, unique identifiers generation is also related to this problem: each node generates one token,
which is its identifier, then a verification phase is needed to ensure that all identifiers are unique.

In this paper, we formalize and initiate the study of token collision. In this problem, a collection
of k tokens, each represented by some length-L bit string, are distributed to n nodes of an anonymous
CONGEST network in an arbitrary manner. The nodes need to determine whether there are tokens
with an identical value. We present near optimal deterministic algorithms for the token collision
problem with Õ(D + k ·L/ log n) round complexity, where D denotes the network diameter. Besides
high efficiency, the prior knowledge required by our algorithms is also limited. For completeness, we
further present a near optimal randomized algorithm for token collision.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Token collision, anonymous networks, deterministic algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.4

Related Version Full Version: https://arxiv.org/abs/2408.10519

Funding This work is supported by the National Natural Science Foundation of China (Grant No.
62332009, 62172207, 12347104), the Department of Science and Technology of Jiangsu Province
of China (Grant No. BK20211148) and Innovation Program for Quantum Science and Technology
(Grant No. 2021ZD0302901).

1 Introduction

Imagine the following scenario: a group of servers is hosting an online-banking, online-gaming,
or online-exam service; for security reasons, users are not allowed to log into multiple servers
simultaneously. If we interpret each logged-in user as a token, the servers need to check
whether all active tokens are distinct. Similar problems could also arise in distributed
database systems. For example, in some distributed databases, optimistic concurrency
control schemes are employed to increase concurrency and performance [17]. Motivation for

© Sirui Bai, Xinyu Fu, Xudong Wu, Penghui Yao, and Chaodong Zheng;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 4; pp. 4:1–4:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:srbai@smail.nju.edu.cn
mailto:xyfu@smail.nju.edu.cn
https://orcid.org/0009-0002-1233-8546
mailto:xdwu@smail.nju.edu.cn
mailto:pyao@nju.edu.cn
https://orcid.org/0000-0002-4104-2069
mailto:chaodong@nju.edu.cn
https://orcid.org/0009-0006-2618-687X
https://doi.org/10.4230/LIPIcs.DISC.2024.4
https://arxiv.org/abs/2408.10519
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Almost Optimal Algorithms for Token Collision in Anonymous Networks

such schemes is the observation that system clients are unlikely to access the same object
concurrently. Nonetheless, before the system commit clients’ transactions, verification must
be performed to ensure that all read and write operations are disjoint or that no operations
occur at the same time, otherwise a rollback is necessary. In this setting, tokens represent
data objects or timestamps [19, 20].

Apart from above practical scenarios, detecting colliding tokens is also important from a
theoretical perspective as we can interpret identifiers as tokens. Specifically, it is well-known
that a number of fundamental distributed computing tasks, such as coloring, leader election,
bipartiteness testing, and planarity testing, are impossible to resolve deterministically in
anonymous networks [3, 15, 21]. Hence, unique identifiers generation becomes an important
primitive for anonymous networks, as it breaks the symmetry within the network, thus
making the aforementioned tasks possible. Moreover, the lengths of these identifiers could
affect the performance of corresponding algorithms; examples include renaming algorithms,
Linial’s classical n-to-∆2 coloring algorithm [21], recent deterministic network decomposition
algorithms by Ghaffari et al. [11], and recent MST algorithm focusing on energy complexity [5].
A plausible approach for generating unique identifiers in anonymous networks is to employ
randomness: for instance, each of the n nodes generates an identifier by sampling Θ(log n)
uniform random bits; by the birthday paradox, all identifiers are distinct with probability
at least 1 − 1/n. However, this is a Monte Carlo algorithm that is subject to error. If we
seek a Las Vegas (i.e., zero-error) algorithm for generating unique identifiers in anonymous
networks, a deterministic algorithm for detecting colliding identifiers (i.e., tokens) is necessary:
nodes repeatedly run a (Monte Carlo) randomized identifiers generation algorithm and use a
deterministic algorithm to check whether the generated identifiers are unique.

Despite the various applications for token collision, somewhat surprisingly, this problem
has not been explicitly studied in the context of distributed computing to the best of our
knowledge. In this paper, we initiate the study of this generic distributed computing task,
and we begin by giving a definition for it:

▶ Definition 1 (Token Collision). Assume that there are k tokens, each having a value
represented by a length-L binary string. Consider a distributed system consisting of n nodes.
The k tokens are divided into n collections, some of which may be empty. Each of the n

nodes is assigned one collection as input. In the token collision problem, the nodes need to
determine whether there are tokens with identical value.

We focus on understanding the time complexity of token collision in anonymous networks.
The reason for considering anonymous networks is two-fold. First, if nodes in a distributed
system already have unique identifiers, then token collision (or almost any distributed
computing task) could be resolved by first electing the node with the smallest identifier as the
leader, then aggregate necessary information to the leader, and finally let the leader locally
compute the result and disseminate the result to the rest of the network.1 Second, anonymous
networks also arise in real-world scenarios. For example, the nodes in a distributed system
(e.g., sensor networks) may be indistinguishable since they are fabricated in a large-scale
industrial process, in which equipping every node with a unique identifier is not economically
feasible (e.g., MAC addresses are not necessarily unique nowadays). In other cases nodes
may not wish to reveal their identities out of privacy or security concerns.

1 Nonetheless, our lower bounds for token collision hold even for named networks, and our algorithms
nearly match these lower bounds. Thus, anonymity does not make token collision harder.



S. Bai, X. Fu, X. Wu, P. Yao, and C. Zheng 4:3

We consider standard CONGEST model [21] in distributed computing. A CONGEST
network is described by a graph G = (V, E) with |V | = n nodes being processors with
unlimited computational power (we do not exploit this ability in this paper) and edges
being communication channels with bounded bandwidth. Specifically, we assume that any
message sent through a channel cannot exceed Θ(log n) bits. To simplify presentation, we
often use B = Θ(log n) to denote this bandwidth limitation. Processors exchange messages
synchronously, round-by-round along the channels. When proving impossibility results for
the token collision problem, we also consider an alternate model known as the LOCAL
model [18], where communication channels have unbounded bandwidth.

1.1 Results and contribution
Deterministic scenario. We first consider the case where the tokens are not too large –
particularly, every token can fit into one message. In this scenario, we offer a deterministic
algorithm that works so long as every node knows the exact value of n or k.

▶ Theorem 2 (Deterministic Upper Bound, Part 1). In an n-node anonymous CONGEST
network with diameter D, for any instance of the token collision problem in which k tokens
are encoded by length-L bit strings, if every node knows the exact value of n or k, then there
exists an O(D + k · L/ log n)-round deterministic algorithm when L = O(log n).

The above theorem implies when L = Θ(log n), token collision can be resolved within
O(D+k) rounds. As a result, one could easily derive a Las Vegas unique identifiers generation
algorithm with O(n) expected runtime. On the other hand, for problem instances where
tokens are small – L = o(log n) in particular, the runtime of the algorithm is O(D) + o(k).

At a high level, our algorithm tries to find the token(s) that have the global minimum
value and selects the node(s) that own(s) such token(s) as leader(s). Critically, our algorithm
may elect multiple nodes as leaders, so it does not solve the leader election problem. (In fact,
leader election cannot be solved deterministically in our setting.) Nevertheless, alongside this
election process, BFS-trees will be built with these leaders being the roots, thus the network
graph becomes a forest logically. Then, by convergecasting [4] tokens within each tree and
computing the size of each tree, root nodes can correctly determine the result. Similar ideas
have been used in the design of Las Vegas leader election algorithms, but the analysis of our
deterministic algorithm is more challenging, see Section 1.2 for more discussion.

We then extend our algorithm to the scenario where each token cannot fit into one
message, this could occur in applications like plagiarism checking in which each token is a
text segment. In this case, a simple solution is to divide each token into Θ(L/ log n) parts,
and use multiple rounds to simulate one round of our above algorithm. However, the resulting
algorithm would have a round complexity of O((D + k) · L/ log n), which is too large. Instead,
we devise a variant that uses pipelining techniques and extend the analysis accordingly. The
following theorem states the time complexity of this variant.

▶ Theorem 3 (Deterministic Upper Bound, Part 2). In an n-node anonymous CONGEST
network with diameter D, for any instance of the token collision problem in which k tokens
are encoded by length-L bit strings, if every node knows the exact value of n or k, then there
exists an O(D · max{(log(L/ log n))/ log n, 1} + k · L/ log n)-round deterministic algorithm
when L = ω(log n).

To complement the algorithmic results, we have also established a lower bound on the
round complexity of the token collision problem.

DISC 2024



4:4 Almost Optimal Algorithms for Token Collision in Anonymous Networks

▶ Theorem 4 (Deterministic Lower Bound). In an n-node anonymous CONGEST network
with diameter D, there are instances of the token collision problem in which k tokens are
encoded by length-L bit strings such that, any deterministic algorithm requires Ω(D + k · (L −
log k + 1)/ log n) rounds to solve it when 2L ≥ k.

It is easy to verify, if L ≥ (1 + δ) log k for some constant δ > 0, then the round complexity
of our algorithm is tight when L = O(log n), and near-optimal (within multiplicative
log(L/ log n)/ log n factor) when L = ω(log n). We also note that the assumption of 2L ≥ k

is without loss of generality, as otherwise collision must occur. To obtain the lower bound,
we reduce a variant of the set-disjointness problem in the study of two-party communication
complexity to the token collision problem.

Another advantage of our algorithm is that it requires little prior knowledge. Beside input
tokens, each node only needs to know the value of n or the value of k. In particular, nodes do
not need to know the network diameter D. In fact, we can prove via an indistinguishability
argument that without any global knowledge, deterministic token collision detection is
impossible. (Nonetheless, what is the minimal prior knowledge required remains to be an
interesting open question.)

▶ Theorem 5 (Impossibility Result). In the anonymous LOCAL model, if every node has
no knowledge regarding the network graph except being able to count and communicate over
adjacent links locally, and if every node also has no knowledge regarding the tokens except
the ones given as local input, then there is no deterministic algorithm that solves the token
collision problem.

Randomized scenario. We also investigate the randomized round complexity of token
collision. At the upper bound side, selecting a unique leader can be easily achieved with
desirable probability when randomness is allowed. Then a random hash function is employed
to reduce the bit-length of tokens if they are too large, without increasing the probability of
collision significantly in case tokens are distinct. Finally, with a convergecast process similar
to the deterministic algorithm, the unique leader can collect all tokens and determine whether
there are collisions. At the lower bound side, we again employ the strategy of reduction, and
utilize existing results on the hardness of randomized set-disjointness to obtain the desired
result. Our findings for the randomized scenario are summarized below; see Appendix B for
more details. Note that in contrast with the deterministic setting, the length of the token L

no longer appears in the lower bound, and L’s impact on the upper bound is also limited.

▶ Theorem 6 (Randomized Upper and Lower Bound). Consider an n-node anonymous
CONGEST network with diameter D. For any instance of the token collision problem with
k tokens, if every node knows the exact value of n or k, then there exists a randomized
algorithm that solves it in O(D · max{(log(log k/ log n))/ log n, 1} + k · log k/ log n + L/ log n)
rounds with probability at least 1 − 1/k. On the other hand, assuming 2L ≥ k, there are
instances of the token collision problem with k tokens such that any randomized algorithm
that succeeds with probability at least 2/3 requires Ω(D + k/ log n) rounds.

1.2 Related work and discussion
Though token collision has not been explicitly studied in distributed computing, similar
problems have been investigated elsewhere. For example, element distinctness, which decides
whether a given set of elements are distinct, has been extensively studied in the context
of query complexity. Specifically, linear lower bounds were proved for deterministic and



S. Bai, X. Fu, X. Wu, P. Yao, and C. Zheng 4:5

randomized algorithms [7, 12]. A sublinear quantum algorithm was proposed by Buhrman
et al. [9], which applies O(n3/4) quantum queries. The upper bound was later improved
to O(n2/3) by Ambainis using quantum walk [2], and matched the lower bound given by
Aaronson and Shi [1]. To the best of our knowledge, this paper is the first one that studies
token collision in classical distributed computing models, focusing on round complexity.

Token collision is also related to leader election, a classical and fundamental distributed
computing primitive, in several aspects.

On the one hand, the design of Las Vegas leader election algorithms [14, 23, 10] share
similar ideas with ours. In those algorithms, usually nodes first randomly generate identifiers,
then the node with the smallest identifier is elected as the leader if that identifier is owned by
a single node, otherwise the process restarts. As can be seen, the problem of checking whether
the smallest identifier is unique is a variant of the token collision problem. Indeed, the
routine developed by Tel in [23] for this checking procedure is very similar to our algorithm.
Nonetheless, the analysis in our setting is more involved: in the context of Las Vegas leader
election, restart when the smallest identifier is unique is fine (i.e., false negative is fine), yet
in our context this is unacceptable. In fact, proving such false negative will not occur is
highly non-trivial (see Lemma 12 in Section 4). Moreover, our algorithm can handle the
scenario that tokens are of arbitrary size, making it more generic.

On the other hand, as mentioned earlier, with a unique leader almost any distributed
computing problem can be solved. This observation raises the question that whether defining
and studying token collision is necessary. We believe the answer is positive. First, the leader
election approach is not necessarily better. Taking the unique identifiers generation problem
as an example, the approach of “first elect a leader and then let the leader aggregate and
check whether the generated identifiers are unique” share same round complexity with our
algorithm. Second, and more importantly, in situations where leader election is infeasible
(e.g., deterministic leader election in anonymous networks, randomized leader election that
always terminates in anonymous rings of unknown size) [24], our algorithm still works with
deterministic correctness and time complexity guarantees.

2 Preliminary

In this section, we briefly introduce some known results on the communication complexity of
the set-disjointness problem as it is used in our lower bound proof.

Communication complexity was introduced by Yao [25], which is nowadays a versatile
method to prove lower bounds in distributed computing. In the two-party communication
complexity model, two players Alice and Bob, respectively, receive x ∈ X and y ∈ Y as
input and need to compute f(x, y), where f : X × Y → Z is a two-argument function. The
communication complexity of f is the minimum number of bits Alice and Bob need to
exchange to compute f(x, y) for any input x and y.

The problem of set-disjointness (denoted as DISJ) is one of the most well-studied problems
in communication complexity [16, 22, 6], where Alice and Bob are given a set, respectively,
and they need to decide whether their sets are disjoint. In this paper, we are interested in a
variant of set-disjointness: DISJp

q :
([p]

q

)
×

([p]
q

)
→ {0, 1}. Alice is given a set S ⊆ [p] and Bob

is given a set T ⊆ [p], where |S| = |T | = q. They aim to determine whether the two sets are
disjoint, that is, DISJp

q(S, T ) = 1 iff S ∩ T = ∅. The communication complexity of DISJp
q is

established by Håstad and Widgerson [13].

▶ Fact 7 ([13]). For every q ≤ p/2, D(DISJp
q) = Ω(log

(
p
q

)
) and R1/3(DISJp

q) = Ω(q).
Here, D(DISJp

q) denotes the deterministic communication complexity of problem DISJp
q , and

R1/3(DISJp
q) denotes the randomized communication complexity of problem DISJp

q with the
probability of error being at most 1/3.

DISC 2024



4:6 Almost Optimal Algorithms for Token Collision in Anonymous Networks

3 The Deterministic Algorithm

In this section, we focus on the most common scenario where each token can be fitted into
one message (that is, L = O(log n)). We will extend our algorithm to other settings later.

Broadly speaking, our algorithm can be divided into two parts: the first part concerns
with building rooted BFS-trees, while the second part concerns with calculating the size
of the BFS-trees and aggregating tokens at the roots for decision-making. Although the
high-level idea of our algorithm is not complicated, implementing it correctly and efficiently
is non-trivial, especially in the setting where nodes only have limited global knowledge.

We now describe the algorithm in detail. (Complete pseudocode of the algorithm is
provided in Appendix A.)

Build BFS-tree(s). Initially, each node v sets its identifier to be the smallest token it
received as input, or a special symbol if v received no token. Then, it attempts to construct
a BFS-tree rooted at itself by broadcasting its identifier to its neighbors in each round.
Whenever v receives a smaller identifier from some neighbor u, it updates its identifier to
match that of neighbor u. Moreover, it designates u as its parent and sends a notification to
its parent in all subsequent rounds. As a result, whenever v changes its identifier to that of
some neighbor u’s, node v is appending the BFS-tree rooted at itself to the BFS-tree that
includes u. We note that each node v uses a variable ridv to store its identifier. Intuitively,
ridv stores the root’s identifier of the BFS-tree that v belongs to.2 We also note that each
node v uses an integer pv ∈ [∆v] to store its parent, where ∆v is the degree of v. That is,
each node v locally labels each incident edge with a unique integer in [∆v], and uses the edge
label as its local identity for the node at the other endpoint of the edge.

When node v discovers that all of its neighbors share the same identifier as itself, it
attempts to ascertain whether the BFS-tree rooted at itself is fully constructed. To this end,
note that the BFS-tree rooted at node v consists of node v and the BFS-trees rooted at its
children. Therefore, our algorithm’s criterion for node v to confirm that the BFS-tree rooted
at itself is fully constructed is: all v’s neighbors share v’s identifier and the BFS-trees rooted
at its children are fully constructed. To implement this idea, each node v stores a boolean
variable fv to indicate whether the BFS-tree construction process is completed, and fv is
sent to v’s parent in each round. Initially fv is false, and fv becomes true if: (1) all v’s
neighbors share identical identifier as v; and (2) each child u of v has fu = true or v has no
children (that is, v is a leaf node).

Lastly, if node v determines that the BFS-tree rooted at itself is fully constructed and it
does not have a parent, then it broadcasts a termination signal to its neighbors once and stops
the BFS-tree building procedure. The node v will then proceed to the second stage of the
algorithm. On the other hand, whenever a node receives a termination signal, it also stops its
BFS-tree building procedure, broadcasts this signal to all neighbors once, and then proceed
to the second stage of the algorithm. During algorithm execution, each node v uses a boolean
variable buildv to maintain this signal: buildv is initially true, and will be set to false

when v’s BFS-tree building procedure is done. Notice that if there are multiple BFS-trees
being constructed simultaneously, after the first one completes, the flooding mechanism of
the termination signal may stop the remaining ones from being completed. Nonetheless, such
disruption is fine: the existence of multiple BFS-trees implies there are token collisions, and
our algorithm can correctly detect this later.

2 This is merely an “intuition” and not always true during BFS-tree construction, as identifiers are
propagating gradually and tree shape may change frequently.



S. Bai, X. Fu, X. Wu, P. Yao, and C. Zheng 4:7

Detect token collision. The token-collision detection procedure has two main tasks: com-
pute BFS-tree’s size and aggregate tokens. A node only starts this procedure if itself and all
its neighbors have terminated the BFS-tree construction procedure.

To determine the size of the BFS-tree rooted at itself, node v first identifies its children.
It filters out the neighbors that have the same identifier as itself and have designated node
v as their parent. Node v uses chiv to store this set of children. If node v finds that all
of its children in chiv have already computed the size of their respective BFS-trees, then
node v can calculate the size of the BFS-tree rooted at itself. This is done by summing up
the sizes of the BFS-trees rooted at its children and adding one to account for node v itself.
During algorithm execution, each node v uses cntv to track the size of the BFS-tree rooted
at itself. Initially cntv is set to a special symbol ⊥. Later when v has finished counting,
cntv becomes an integer.

It remains to aggregate the tokens. In each round, after node v receives all messages
(which may include tokens from its children), if v has a parent u and the token list of v is
not empty, then v ejects one token from its token list and sends that token to u in the next
round. Node v also needs to tell its parent u whether all tokens in the BFS-tree rooted at
v has already been transferred to u. To this end, in each round, after v has received all
messages, if the token list of v is empty and every child of v indicates all tokens have already
been transferred to v, then v concludes that all tokens in the BFS-tree rooted at itself has
already been transferred to its parent. It will inform its parent u about this in the next
round. During algorithm execution, each node v uses xv to store its token list and uses elev

to denote the token that v intends to send to its parent. We note that elev is set to ⊥ when
v’s token list is empty (that is, |xv| = 0) and every child w of v indicates all tokens in the
subtree rooted at w has been transferred to v (that is, w tells v elew =⊥); and elev is set to
⊤ when v’s token list is empty but some child w of v indicates there still are tokens pending
to be transferred to v (that is, w tells v elew = ⊤).

If node v does not have a parent, it must be the root of some entire BFS-tree and is
responsible for deciding the result of token collision. To this end, once v has obtained the
size of the BFS-tree rooted at itself and all its children signal that the tokens have been
transferred to v, it determines the result of token collision as follows. In the case that all
nodes know the exact value of n, if the size of the BFS-tree rooted at v equals n and no
token collision is found in the token list of v, then v can confirm the non-existence of token
collision. Otherwise, a token collision must exist. In the case that all nodes know the exact
value of k, if the size of the token list of v equals k and no token collision is found, then
v can confirm the non-existence of token collision. Otherwise, a token collision must exist.
Node v uses a boolean variable resv to store the result. It will broadcast the result to all its
neighbors once in the next round and then halt. Upon receiving the result, every node also
broadcasts the result to its neighbors once in the next round and then halts.

4 Analysis of the Deterministic Algorithm

In this section, we show the correctness of our algorithm and analyze its running time.
Omitted proofs are provided in the full version of the paper.

4.1 Correctness

We begin with the correctness guarantees: if all nodes know n or k, then all nodes return an
identical and correct result on whether there are collisions among the k tokens.

DISC 2024



4:8 Almost Optimal Algorithms for Token Collision in Anonymous Networks

To prove the above claim, we first argue the correctness of our BFS-tree construction
procedure. Specifically, we intend to show that our algorithm always maintains a directed
forest G′ = (V, E′) where a directed edge (v, u) ∈ E′ if node v assigns node u as its parent.
To this end, we introduce the notion of identifier-induced graph.

▶ Definition 8 (Identifier-induced Graph). At the end of any round, define directed graph
G′ = (V, E′) as the identifier-induced graph in the following way: V is the node set of the
network graph, and a directed edge (v, u) ∈ E′ if v assigns u as its parent.

To show that the identifier-induced graph is a forest, we begin with the following
observation. Recall that each node v uses variable rid to store its identifier. Intuitively, this
lemma holds since node v only updates the value of ridv to the value of ridu and sets its
parent pointer to u when v receives ridu from some neighbor u with ridu < ridv.

▶ Lemma 9. At the end of any round, for any directed path in the identifier-induced graph,
the identifiers of the nodes along the directed path are non-increasing.

Then, we can show the identifier-induced graph is a directed forest containing one or
more rooted trees. To prove the lemma, the key is to show there are no directed cycles in
the identifier-induced graph, which can be done by induction on round number.

▶ Lemma 10. At the end of any round, the identifier-induced graph is a directed forest in
which every weakly connected component is a rooted tree. In particular, in each tree, the
unique node with no parent is the root of that tree.3

Next, we show an important property regarding the rooted trees in the identifier-induced
graph. Intuitively, it states that within each such tree, nodes may have different identifiers,
but for any subtree within the tree, the nodes that have identical identifiers with the root of
the subtree are connected and are at the “top” of the subtree.

▶ Lemma 11. At the end of any round, for any node r, within the subtree rooted at node r

in the identifier-induced graph, the subgraph induced by the nodes having identical identifier
with node r is also a tree rooted at node r.

The following key lemma shows that when there are no token collisions, the BFS-tree
building procedure constructs a single rooted tree containing all nodes. Though the claim
seems straightforward, proving it rigorously turns out to be highly non-trivial.

▶ Lemma 12. If there are no token collisions, then after all nodes quit the BFS-Tree-
Building procedure – that is, after each node v sets buildv = false, the identifier-induced
graph contains a single tree rooted at the node having the minimum token as input, and all
nodes in that tree have identical identifier.

Proof sketch. Throughout the proof, assume there are no token collisions. For each node
v, let idv denote the minimum token that v received as input. Let vmin denote the unique
node having the smallest input token. For any two nodes u, v ∈ V , let dist(u, v) denote
the distance between u and v in the network graph G. Define d = maxv∈V dist(v, vmin).
For any node v, let dv denote the distance between node v and the nearest node u with idu

smaller than v. That is, dv = minu∈V,idu<idv dist(u, v). We set dvmin = +∞.
We make the following three claims and prove their correctness via induction on rounds.

These claims highlight the key properties our BFS-tree building procedure can enforce.

3 A weakly connected component of a directed graph is a connected component of the graph when ignoring
edge directions.



S. Bai, X. Fu, X. Wu, P. Yao, and C. Zheng 4:9

1. No node quits the BFS-tree building procedure within d rounds. Formally, for any
0 ≤ i ≤ d, each node v has buildv = true by the end of round i.

2. For any node v, any 0 ≤ i ≤ d, let node û be the unique node that has minimum id
among all nodes u with dist(u, v) ≤ i. At the end of round i, we have ridv = idû.
Formally, at the end of round i, it holds that ridv = minu∈V,dist(u,v)≤i idu.

3. For any node v, any 0 ≤ i ≤ d, at the end of round i, one of the following cases holds.
Case I: dv > 2i. The nodes with distance at most i to v form a height-i tree rooted at v

in the identifier-induced graph. Moreover, for any node u with distance i to v, for any
node w on the directed path from u to v in the rooted tree, it holds that fw = false.
Case II: i < dv ≤ 2i. There is a tree rooted at v in the identifier-induced graph. Let
node w denote the unique node with distance dv to node v that has the smallest id.
There exists a node u with dist(u, v) = dv − i − 1 and dist(u, w) = i + 1 such that f
is false for all nodes along the length-(dv − i − 1) directed path from u to v in the
identifier-induced graph.
Case III: dv ≤ i. Node v has a parent in the identifier-induced graph.

The claims above easily lead to the lemma. By Item 1, no node will quite the BFS-
Tree-Building procedure within d rounds. By Item 2, at the end of round d, all nodes
have identical rid, which is idvmin

. By Case I of Item 3, at the end of round d, all nodes
form a single tree rooted at vmin in the identifier-induced graph. Moreover, no node will
ever change parent or rid later. ◀

We now proceed to argue the correctness of the token aggregation process, which will
lead to the correctness of our entire algorithm. Recalling Lemma 11, we begin by defining
identifier-induced subtree to facilitate presentation.

▶ Definition 13 (Identifier-induced Subtree). At the end of any round, for any node r,
within the subtree rooted at r in the identifier-induced graph, call the subtree induced by the
nodes that have identical identifier with r as the identifier-induced subtree rooted at r.

Our first lemma regarding the correctness of the token aggregation process states that,
informally, every root r in the identifier-induced graph correctly computes the size of the
identifier-induced subtree rooted at r if it outputs a decision for the token collision problem.

▶ Lemma 14. Assume that in some round i, node v runs procedure Token-Collision-
Detection and within that procedure updates resv for the first time (so that after the
update resv ̸=⊥), then by the end of round i, the value of cntv equals the size of the
identifier-induced subtree rooted at v.

Proof sketch. Notice that in our algorithm, only a root node in the identifier-induced graph
can update its res within procedure Token-Collision-Detection, so v must be a root
node in the identifier-induced graph by the end of round i. Let Tv,i be the identifier-induced
subtree rooted at v by the end of round i. We need to show that cntv equals the size of Tv,i

by the end of round i.
To prove the above result, we make the following claim and prove it via an induction

on round number: for any node u, if iu is the first round in which u updates cntu to some
non-⊥ value, then cntu equals the size of Tu,iu

by the end of round iu, where Tu,iu
is the

identifier-induced subtree rooted at u by the end of round iu. Moreover, by the end of any
round i′ > iu, cntu remains unchanged and Tu,i′ is identical to Tu,iu

.
With the above claim, the lemma is easy to obtain. Assume iv is the first round in which

v updates cntv to some non-⊥ value, then cntv equals the size of Tv,iv by the end of round
iv. Later, at the end of round i, when v updates res to some non-⊥ value in procedure
Token-Collision-Detection, cntv’s value remains unchanged and is |Tv,iv | = |Tv,i|. ◀

DISC 2024



4:10 Almost Optimal Algorithms for Token Collision in Anonymous Networks

Our second lemma regarding the correctness of the token aggregation process states that,
informally, every root r in the identifier-induced graph correctly collects the tokens within the
identifier-induced subtree rooted at r if it outputs a decision for the token collision problem.
The high-level strategy for proving this lemma is similar to the proof of Lemma 14, but the
details are more involved as the convergecast process is more complicated.

▶ Lemma 15. Assume that in some round i, node v runs procedure Token-Collision-
Detection and within that procedure updates resv for the first time (so that after the update
resv ̸=⊥), then by the end of round i, node v collects each token owned by the nodes within
the identifier-induced subtree rooted at v exactly once.

At this point, we are ready to show the correctness of our algorithm.

▶ Lemma 16. After all nodes halt (that is, res ̸=⊥), they return the correct result.

Proof. Notice that by algorithm description and Lemma 10, only root nodes in the identifier-
induced graph can generate res ̸=⊥, other nodes can only passively adopt res ̸=⊥ from
neighbors. So, let v be an arbitrary node that generates res ̸=⊥ and assume this happens in
round iv, then v must be a root in the identifier-induced graph by the end of round iv. Let
Tv,iv

denote the identifier-induced subtree rooted at v by the end of round iv.
First consider the case v sets res = true (that is, there are no token collisions). Then

by Lemma 14 and Lemma 15, v has correctly collected the tokens in Tv,iv
and correctly

counted the size of Tv,iv
by the end of round iv, implying that Tv,iv

contains all input tokens
and there are no collisions among input tokens; that is, the result v generated is correct.
Moreover, since Tv,iv

is of size n, it must be the only tree in the identifier-induced graph. As
a result, all nodes other than v will only passively adopt the result generated by v, implying
that all nodes return identical result.

Next, consider the case v sets res = false (that is, there are token collisions). Then,
again, by Lemma 14 and Lemma 15, v has correctly collected the tokens in Tv,iv

and correctly
counted the size of Tv,iv

by the end of round iv. Since v sets res to false, there are three
possible reasons:

All nodes know n but |Tv,iv
| ̸= n. Recall Lemma 12, which states that if there are no

token collisions, then there is only one tree in the identifier-induced graph that contains
all nodes and all tokens. Hence, if |Tv,iv

| ̸= n, then there are indeed token collisions.
Furthermore, for any other root node u in the identifier-induced graph that also generates
an res ̸=⊥ by the end of some round iu, node u must have also found |Tu,iu

| ̸= n and set
res = false. Therefore, in this case, all nodes output the correct result.
All nodes know k but the number of tokens v has collected is not k. By a similar argument
as in the first case, we can conclude that all nodes output the correct result.
Node v finds collisions among the tokens it has collected. In this case, v’s decision to
generate res = false is obviously correct. Moreover, for any other root node u in the
identifier-induced graph that also generates an res ≠⊥, that res must be false, as the
identifier-induced subtree rooted at u will not contain all n nodes or all k tokens.

This completes the proof of the lemma. ◀

4.2 Complexity
We now proceed to analyze the time complexity of the algorithm. The first lemma states
that any identifier-induced subtree rooted at some node that has a global minimum token
as input has limited height – particularly, O(D). Moreover, each such node is a root in
identifier-induced graph.



S. Bai, X. Fu, X. Wu, P. Yao, and C. Zheng 4:11

▶ Lemma 17. Let v be a node having a minimum token as input. Then at the end of any
round, v is a root in the identifier-induced graph, and the identifier-induced subtree rooted at
v has height O(D).

With Lemma 17, we argue that all nodes finish BFS-Tree-Building in O(D) rounds.

▶ Lemma 18. After O(D) rounds, every node v quits BFS-Tree-Building (that is,
buildv = false).

Proof. To prove the lemma, we only need to show that some node will quit BFS-Tree-
Building within O(D) rounds. This is because the flooding mechanism of a false-valued
build variable ensures, once a node v sets buildv = false, all other nodes will set build to
false within (at most) another D rounds.

If some node quits BFS-Tree-Building within D rounds then we are done, so assume
that this is not true. Then, by the end of round D, global minimum token’s value is known
by every node. Particularly, by the end of round D, each node has an rid with a value
equals to some global minimum token. In other words, by the end of round D, each node is
in some identifier-induced subtree rooted at some node that has a global minimum token as
input. Moreover, no node will change its rid or parent ever since. By Lemma 17, any tree
rooted at some node that has a global minimum token as input has O(D) height.

Now, by our algorithm, starting from round D + 1, nodes within any such tree will start
setting f to true from leaves to root. Since the height of any such tree is O(D), after O(D)
rounds, either some node already sets build to false and quits BFS-Tree-Building, or
some root of such tree sets build to false and quits BFS-Tree-Building. In both cases,
some node quits BFS-Tree-Building within O(D) rounds since the start of execution. ◀

The next lemma states the time complexity of our algorithm.

▶ Lemma 19. After O(D + k) rounds, every node v halts (that is, v returns res ̸=⊥).

Proof sketch. Recall that our algorithm guarantees that if one node generates an res ̸=⊥
and then halts, then this res is broadcast to all other nodes. Hence, all other nodes will halt
within another D rounds. As a result, to prove the lemma, we show that some node will
halt within O(D + k) rounds. To this end, we show that after all nodes quit BFS-Tree-
Building which happens within O(D) rounds (by Lemma 18), there exists a tree in the
identifier-induced graph of height O(D) (by Lemma 17), and the convergecast process inside
this tree take O(D + k) rounds. ◀

4.3 Proof of the main theorem
We now prove Theorem 2. When L = Θ(log n) – meaning that each message can fit at most
a constant number of tokens, by Lemma 16 and Lemma 19, the theorem is immediate.

When L = o(log n), to prove the theorem, we make a small modification to our algorithm:
in the convergecast process, whenever a node forwards tokens to its parent, it packs as many
tokens in a message as possible (particularly, Θ((log n)/L) tokens in a message). Intuitively,
this means that our algorithm is convergecasting Θ(kL/ log n) “packed tokens” each of size
Θ(log n), and each of these “packed tokens” contains Θ((log n)/L) real tokens. Hence, the
total runtime of our algorithm is still O(D + kL/ log n) rounds.

The above argument is valid if, for every node that has some token(s) as input, that node
receives at least Θ((log n)/L) tokens. If some node only receives o((log n)/L) tokens as input
(e.g., only one token), then a more careful analysis is required. Specifically, assume that

DISC 2024



4:12 Almost Optimal Algorithms for Token Collision in Anonymous Networks

there are x nodes that each receives o((log n)/L) tokens as input, call these nodes Vx, and
the nodes in Vx in total have kx tokens. So, there are n − x nodes that each receives at least
Θ((log n)/L) tokens as input, call these nodes Vx, and the nodes in Vx in total have k − kx

tokens. Imagine a process in which we first aggregate the tokens owned by Vx, and then
aggregate the tokens owned by Vx. By the above analysis, aggregating the tokens owned by
Vx takes O(D + (k − kx)L/ log n) rounds. On the other hand, for each token owned by some
node in Vx, within O(D) rounds, it either reaches the root, or arrives at a node that has at
least Θ((log n)/L) tokens pending to be sent. Effectively, this means that starting from the
round we process the tokens owned by Vx, in O(D) rounds, we again arrive at a scenario in
which each node that has pending tokens to send has at least Θ((log n)/L) tokens in its token
list. As a result, these kx tokens owned by Vx will all reach the root within O(D +kxL/ log n)
rounds. Note that our modified algorithm cannot be slower than the imagined process, so
the runtime of our modified algorithm when L = o(log n) is O(D + kL/ log n).

5 Generalizing the Deterministic Algorithm when Tokens are Large

When tokens are large, L = ω(log n) in particular, the time complexity of the BFS-tree
building process and the token aggregation process are both affected. As mentioned in
Section 1, we can apply the simple strategy of using L/ log n rounds to simulate one round of
our algorithm (as a token can be transferred in L/ log n rounds), but the resulting algorithm
would be too slow. Instead, in this section, we introduce and analyze a variant of our
algorithm that costs only O(D · max{ log(L/ log n)

log n , 1} + k · L
log n ) rounds when L = ω(log n).

The high level framework of this variant is the same as the algorithm introduced in
Section 3: first build BFS-tree(s) and then detect token collisions within the tree(s). In this
section, we focus on introducing the process of building BFS-tree(s) as the latter component
is almost identical with the original algorithm. (Complete pseudocode of this variant is
provided in Appendix A.) For the ease of presentation, we use B = Θ(log n) to denote the
bandwidth of CONGEST networks throughout this section.

5.1 Algorithm description
We first explain the key idea that allows this variant to be faster than the simulation strategy.
Recall that in the original BFS-tree building process, each node v needs to record the
minimum token it has seen in ridv, and this is done by exchanging tokens in their entirety
with neighbors. However, a key observation is, the relative order of two binary strings can be
determined by a prefix of the strings that includes the most significant bit where they differ.
As a result, we can employ the strategy that identifiers are sent successively starting from
the most significant bit. Whenever a node v finds a prefix from some neighbor u is strictly
smaller than the prefix of its current identifier, v updates its identifier to match the prefix
and designates u as its parent. Moreover, when v sends its updated identifier, it does not
need to restart from the first bit; instead, v starts from the bit where the updated identifier
differs from the previous identifier. Effectively, we obtain an efficient “pipeline” approach on
identifier broadcasting that can speed up the BFS-tree building process.

Build BFS-tree(s). We now detail how to implement the above idea. Similar to the original
algorithm, each node v attempts to construct a BFS-tree rooted at itself by broadcasting its
identifier ridv. Due to bandwidth limitation, each identifier is divided into multiple pieces
so that one piece can fit into one message. Denote these pieces as ridv[1], · · · , ridv[⌈L/B⌉],
where ridv[1] contains the B most significant bits while ridv[⌈L/B⌉] contains the B least



S. Bai, X. Fu, X. Wu, P. Yao, and C. Zheng 4:13

significant bits. The BFS-tree building procedure contains multiple iterations, each of which
contains Θ( log (L/B)

B ) rounds. In each iteration, Θ( log (L/B)
B ) identifier pieces are sent, along

with the position of the first sent piece in ridv – we use sentv to denote this position.
(Notice that sending sentv may require log (L/B)

B rounds when L is large, this is why each
iteration may contain multiple rounds.) Each node v locally maintains an identifier prefix
for each neighbor based on received pieces. Whenever v finds a prefix of some neighbor u is
strictly smaller than the prefix of its current identifier, v updates its identifier to match the
prefix and designates u as its parent. At this point, v should send the updated identifier to
neighbors. Particularly, v starts with the first piece where the updated identifier differs from
v’s previous identifier. This implies v may send non-successive piece position, in which case
each neighbor of v should abandon the old prefix of v and record the new one.

Node v waits until all neighbors and itself have sent complete identifiers. Then, if v finds
that all neighbors share the same identifier as itself, it attempts to ascertain whether the
BFS-tree rooted at itself is fully constructed. Similar to the original algorithm, each node v

uses a boolean variable fv to indicate whether BFS-tree construction is completed. Initially
fv is false, and fv becomes true if: (1) v and all its neighbors have sent complete identifiers;
(2) v and all its neighbors have identical identifier; and (3) each child u of v has fu = true or
v has no children.

Lastly, if node v determines that the BFS-tree rooted at itself is fully constructed and it
does not have a parent, then it terminates the BFS-tree building procedure and broadcasts a
termination signal to all neighbors once. The node will then proceed to the second stage of
the algorithm. Any node receiving such a signal will also forward it to neighbors once, stop
the BFS-tree building procedure, and proceed to the second stage of the algorithm.

5.2 Analysis
The analysis for the above generalized algorithm is similar to the analysis for the original
algorithm. Most claims and lemmas can carry over with little or no modifications, so are
the proofs for these claims and lemmas. Others, however, require non-trivial extension or
adjustments. To avoid redundancy, we only state these claims and lemmas here and provide
proofs that require noticeable extension or adjustments in the full paper.

Correctness. The definition for identifier-induced graph remains unchanged in the general-
ized setting, except that such graph is defined at the end of each iteration.

▶ Definition 20 (Analogue of Definition 8). At the end of any iteration, define directed graph
G′ = (V, E′) as the identifier-induced graph in the following way: V is the node set of the
network graph, and a directed edge (v, u) ∈ E′ if v assigns u as its parent.

Following lemma is an analogue of Lemma 9, its proof is almost identical to that of
Lemma 9, with small adjustments to account for the fact that identifiers are sent in pieces.

▶ Lemma 21 (Analogue of Lemma 9). At the end of any iteration, for any directed path in the
identifier-induced graph, the identifiers of the nodes along the directed path are non-increasing.

With Lemma 21, analogues of Lemma 10 and Lemma 11 hold automatically.

▶ Lemma 22 (Analogue of Lemma 10). At the end of any iteration, the identifier-induced
graph is a directed forest in which every weakly connected component is a rooted tree. In
particular, in each tree, the unique node with no parent is the root of that tree.

DISC 2024



4:14 Almost Optimal Algorithms for Token Collision in Anonymous Networks

▶ Lemma 23 (Analogue of Lemma 11). At the end of any iteration, for any node r that has
sent its complete identifier to neighbors (that is, sentr = ⌈L/B⌉), within the subtree rooted
at node r in the identifier-induced graph, the subgraph induced by the nodes having identical
identifier with node r is also a tree rooted at node r.

Lemma 12 is critical for the original algorithm, which states that a single BFS tree
containing all nodes will be built when there are no token collisions. In the generalized
setting, this claim still holds, but the proof needs to be extended in a non-trivial fashion to
deal with the complication introduced by the pipeline approach for sending identifiers.

▶ Lemma 24 (Analogue of Lemma 12). If there are no token collisions, then after all nodes
quit the BFS-Tree-Building procedure, the identifier-induced graph contains a single tree
rooted at the node having the minimum token as input, and all nodes in that tree have
identical identifier.

Much like the case of Definition 20, the definition for identifier-induced subtree remains
largely unchanged in the generalized setting.

▶ Definition 25 (Analogue of Definition 13). At the end of any iteration, for any node r that
has sent its complete identifier to neighbors (that is, sentr = ⌈L/B⌉), within the subtree
rooted at r in the identifier-induced graph, call the subtree induced by the nodes having
identical identifier with r as the identifier-induced subtree rooted at r.

Lemma 14 and Lemma 15 (and their proofs) still hold in the generalized setting, as we
utilize the mechanism in the original algorithm for counting tree size and aggregating tokens.

▶ Lemma 26 (Analogue of Lemma 14). Assume that in some iteration i, node v runs procedure
Token-Collision-Detection and within that procedure updates resv for the first time (so
that after the update resv ̸=⊥), then by the end of iteration i, the value of cntv equals the
size of the identifier-induced subtree rooted at v.

▶ Lemma 27 (Analogue of Lemma 15). Assume that in some iteration i, node v runs procedure
Token-Collision-Detection and within that procedure updates resv for the first time
(so that after the update resv ̸=⊥), then by the end of iteration i, node v collects each token
owned by the nodes within the identifier-induced subtree rooted at v exactly once.

We conclude this part with the following lemma which shows the correctness of our
generalized algorithm, its proof is essentially identical to that of Lemma 16.

▶ Lemma 28 (Analogue of Lemma 16). After all nodes halt (that is, res ̸=⊥), they return
identical and correct result.

Complexity. We now analyze the round complexity of the generalized algorithm, focusing
on the BFS-tree construction process. Firstly, an analogue of Lemma 17 can be established.

▶ Lemma 29 (Analogue of Lemma 17). Let v be a node having a minimum token as
input. At the end of any iteration, if v has sent its complete identifier to neighbors (that is,
sentv = ⌈L/B⌉), then v is a root in the identifier-induced graph, and the identifier-induced
subtree rooted at v has height O(D).

The next lemma states the time consumption of the BFS-tree construction process, it
highlights the advantage of using the pipelining approach over the simulation approach.



S. Bai, X. Fu, X. Wu, P. Yao, and C. Zheng 4:15

▶ Lemma 30 (Analogue of Lemma 18). After O(D + L
log(L/ log n) ) iterations, every node v

quits BFS-Tree-Building (that is, buildv = false).

The last lemma shows the total time complexity of the generalized algorithm.

▶ Lemma 31 (Analogue of Lemma 19). After O(D · log(L/ log n)
log n + k · L

log n ) rounds, every node
v halts (that is, v returns res ̸=⊥).

Proof of the main theorem. Combine Lemma 28 and Lemma 31, Theorem 3 is immediate.

6 Impossibility Result and Lower Bound for Deterministic Algorithms

Impossibility result. Recall Theorem 5 which states that if each node has no knowledge
about the network graph except being able to count and communicate over adjacent links,
and if each node also has no knowledge regarding the tokens except the ones being given as
input, then the token collision problem has no deterministic solution.

To obtain the above impossibility, the key intuition is: to solve the problem, nodes need
to exchange their input tokens in some manner; but in the anonymous setting with no global
knowledge regarding network graph or input tokens, whenever a node receives a token from
some neighbor that collide with its own input, the node cannot reliably determine whether
this token originates from itself or some other node, yet the correctness of any algorithm
depends on being able to distinguish these two scenarios.

We now provide a complete proof. Note that our impossibility result is strong in that we
can construct counterexamples for any network size n ≥ 3.

Proof of Theorem 5. Assume that there is an algorithm A that solves the token collision
problem in the considered setting. For any n ≥ 3, we consider two problem instances. The
first instance – henceforth called Cn – is a ring consisting of n nodes, denoted as v1, v2, · · · , vn.
Each node in the network obtains one token as input. Particularly, for any i ∈ [n], node vi

has a token with value i. The second instance – henceforth called C2n – is a ring consisting
of 2n nodes. To construct C2n, we first build two paths. The first path contains n nodes,
denoted as v′1, v′2, · · · , v′n; the second path also contains n nodes, denoted as u1, u2, · · · , un.
Then, we connect v′n with u1, and connect un with v′1. At this point, we have a ring. Each
node in C2n obtains one token as input. Particularly, for any i ∈ [n], node v′i and node ui

each has a token with value i.
Clearly, token collisions exist in C2n but not in Cn, yet we will prove that A outputs

identical results in both instances, resulting in a contradiction. Specifically, call the execution
of A on Cn as α and the execution of A on C2n as β, we will prove by induction that by the
end of every round, for any i ∈ [n], the internal states of nodes vi, v′i and ui are identical.

The base case, which is immediately after initialization (i.e., round 0), trivially holds.
Assume that the claim holds for all rounds up to the end of round r ≥ 0, now consider

round r + 1. Fix an arbitrary i ∈ [n], by the induction hypothesis, nodes vi−1 and v′i−1 have
identical states by the end of round r. Hence, in round r + 1, the message (if any) vi−1 sends
to vi and the message (if any) v′i−1 sends to v′i will be identical. Similarly, in round r + 1, the
message (if any) vi+1 sends to vi and the message (if any) v′i+1 sends to v′i will be identical.
Also, notice that by the end of round r, by the induction hypothesis, vi and v′i have identical
states. Hence, during round r + 1, the local views of vi and v′i are identical. In other words,
for any v̂ ∈ {vi, v′i}, node v̂ cannot distinguish whether it is in α or β. Therefore, by the end

DISC 2024



4:16 Almost Optimal Algorithms for Token Collision in Anonymous Networks

of round r + 1, nodes vi and v′i have identical states. By a similar argument, we can show
that by the end of round r + 1, nodes vi and ui also have identical states. This completes
the proof of the inductive step, hence proving the claim.

Since A solves the token collision problem, α and β both terminate. Moreover, due to
the above claim, nodes in α and β output identical results, resulting in a contradiction. ◀

Deterministic lower bound. We reduce the set-disjointness problem to the token collision
problem and obtain the following theorem. Theorem 4 is an immediate corollary of it (by
setting mincut(G) = 1).

▶ Theorem 32. Recall the parameters n, k, L introduced in the definition of the token collision
problem (that is, Definition 1). Consider a size-n CONGEST network G = (V, E) with
diameter D. Assuming 2L ≥ k, any deterministic algorithm that solves the token collision
problem takes Ω(D + k(L−log k+1)

mincut(G)·log n ) rounds. Here, mincut(G) denotes the mincut of G. That
is, mincut(G) = minU⊂V |{(u, v) ∈ E | u ∈ U, v ∈ V \ U}|.

Proof. Let (U, V \ U) be a partition of V that attains mincut(G). Let u ∈ U and v ∈ V \ U

be a pair of farthest nodes between U and V \ U . Assume that u and v are assigned token
sets S and T respectively, each containing k/2 tokens.

Notice that Ω(D) is a lower bound for the token collision problem, as the distance between
u and v is Θ(D), and they need to communicate with each other to solve the problem.

On the other hand, recall the two-party communication model and the set-disjointness
problem introduced in Section 2. Since 2L ≥ k, by setting p = 2L and q = k/2, it holds
q ≤ p/2. Recall the bandwidth of the network is B = Θ(log n). We claim, if there exists
an r-round algorithm that deterministically solves token collision in the CONGEST model,
then Alice and Bob can compute DISJp

q(S, T ) by communicating at most 2rB · mincut(G)
bits. Specifically, they can run the r-round algorithm by having Alice and Bob simulate
nodes in U and V \ U respectively. Communication between Alice and Bob is necessary only
when messages (each of which is at most B bits) are exchanged between nodes in U and
V \ U in the simulation. Apply Fact 7, we have 2r · mincut(G) · B = Ω(log

(
p
q

)
), implying

r = Ω( k(L−log k+1)
mincut(G)·B ) = Ω( k(L−log k+1)

mincut(G)·log n ). ◀

References
1 Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element

distinctness problems. Journal of the ACM, 51(4):595–605, 2004. doi:10.1145/1008731.
1008735.

2 Andris Ambainis. Quantum Walk Algorithm for Element Distinctness. SIAM Journal on
Computing, 37(1):210–239, 2007. doi:10.1137/S0097539705447311.

3 Dana Angluin. Local and Global Properties in Networks of Processors (Extended Abstract).
In Proceedings of the 12th Annual ACM Symposium on Theory of Computing, STOC, pages
82–93. ACM, 1980. doi:10.1145/800141.804655.

4 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley, 2004.

5 John Augustine, William K. Moses, and Gopal Pandurangan. Brief Announcement: Distributed
MST Computation in the Sleeping Model: Awake-Optimal Algorithms and Lower Bounds.
In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC,
pages 51–53. ACM, 2022. doi:10.1145/3519270.3538459.

6 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004. doi:10.1016/J.JCSS.2003.11.006.

https://doi.org/10.1145/1008731.1008735
https://doi.org/10.1145/1008731.1008735
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1145/800141.804655
https://doi.org/10.1145/3519270.3538459
https://doi.org/10.1016/J.JCSS.2003.11.006


S. Bai, X. Fu, X. Wu, P. Yao, and C. Zheng 4:17

7 Michael Ben-Or. Lower Bounds for Algebraic Computation Trees. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, STOC, pages 80–86. ACM, 1983.

8 Joshua Brody, Amit Chakrabarti, Ranganath Kondapally, David P. Woodruff, and Grigory
Yaroslavtsev. Beyond set disjointness: the communication complexity of finding the intersection.
In ACM Symposium on Principles of Distributed Computing, PODC, pages 106–113. ACM,
2014. doi:10.1145/2611462.2611501.

9 Harry Buhrman, Christoph Dürr, Mark Heiligman, Peter Høyer, Frédéric Magniez, Miklos
Santha, and Ronald de Wolf. Quantum Algorithms for Element Distinctness. SIAM Journal
on Computing, 34(6):1324–1330, 2005. doi:10.1137/S0097539702402780.

10 Wan Fokkink and Jun Pang. Simplifying Itai-Rodeh Leader Election for Anonymous Rings.
Electronic Notes in Theoretical Computer Science, 128(6):53–68, 2005. doi:10.1016/J.ENTCS.
2005.04.004.

11 Mohsen Ghaffari, Christoph Grunau, and Václav Rozhoň. Improved deterministic network
decomposition. In Proceedings of the 32nd Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 2904–2923. SIAM, 2021. doi:10.1137/1.9781611976465.173.

12 Dima Grigoriev, Marek Karpinski, Friedhelm Meyer auf der Heide, and Roman Smolensky. A
Lower Bound for Randomized Algebraic Decision Trees. In Proceedings of the 28th Annual
ACM Symposium on the Theory of Computing, pages 612–619. ACM, 1996. doi:10.1145/
237814.238011.

13 Johan Håstad and Avi Wigderson. The Randomized Communication Complexity of Set
Disjointness. Theory of Computing, 3(1):211–219, 2007. doi:10.4086/TOC.2007.V003A011.

14 Alon Itai and Michael Rodeh. Symmetry breaking in distributed networks. Information and
Computation, 88(1):60–87, 1990. doi:10.1016/0890-5401(90)90004-2.

15 Ralph E. Johnson and Fred B. Schneider. Symmetry and Similarity in Distributed Systems.
In Proceedings of the 4th Annual ACM Symposium on Principles of Distributed Computing,
PODC, pages 13–22. ACM, 1985. doi:10.1145/323596.323598.

16 Bala Kalyanasundaram and Georg Schnitger. The Probabilistic Communication Complexity
of Set Intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992. doi:
10.1137/0405044.

17 Hsiang-Tsung Kung and John T. Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems, 6(2):213–226, 1981. doi:10.1145/319566.319567.

18 Nathan Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

19 Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. Fast serializable multi-version
concurrency control for main-memory database systems. In Proceedings of ACM SIGMOD
International Conference on Management of Data, SIGMOD, pages 677–689. ACM, 2015.
doi:10.1145/2723372.2749436.

20 M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems. Springer,
4 edition, 2020.

21 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
22 Alexander A. Razborov. On the Distributional Complexity of Disjointness. Theoretical

Computer Science, 106(2):385–390, 1992. doi:10.1016/0304-3975(92)90260-M.
23 Gerard Tel. Network orientation. International Journal of Foundations of Computer Science,

5(01):23–57, 1994. doi:10.1142/S0129054194000037.
24 Gerard Tel. Introduction to distributed algorithms. Cambridge university press, 2000.
25 Andrew Chi-Chih Yao. Some Complexity Questions Related to Distributive Computing

(Preliminary Report). In Proceedings of the 11th Annual ACM Symposium on Theory of
Computing, STOC, pages 209–213. ACM, 1979. doi:10.1145/800135.804414.

DISC 2024

https://doi.org/10.1145/2611462.2611501
https://doi.org/10.1137/S0097539702402780
https://doi.org/10.1016/J.ENTCS.2005.04.004
https://doi.org/10.1016/J.ENTCS.2005.04.004
https://doi.org/10.1137/1.9781611976465.173
https://doi.org/10.1145/237814.238011
https://doi.org/10.1145/237814.238011
https://doi.org/10.4086/TOC.2007.V003A011
https://doi.org/10.1016/0890-5401(90)90004-2
https://doi.org/10.1145/323596.323598
https://doi.org/10.1137/0405044
https://doi.org/10.1137/0405044
https://doi.org/10.1145/319566.319567
https://doi.org/10.1137/0221015
https://doi.org/10.1145/2723372.2749436
https://doi.org/10.1016/0304-3975(92)90260-M
https://doi.org/10.1142/S0129054194000037
https://doi.org/10.1145/800135.804414


4:18 Almost Optimal Algorithms for Token Collision in Anonymous Networks

Appendix

A Pseudocode of the Deterministic Algorithms

Main algorithm executed at each node v.
1: buildv ← true, xv ← v’s input tokens, ridv ← min{xv}, pv ←⊥, chiv ←⊥, fv ← false.
2: cntv ←⊥, elev ← ⊤, resv ←⊥. ▷ End of initialization.
3: for (each round) do
4: for (each incident edge with label i ∈ [∆v]) do
5: ischildi ← I[pv == i]. ▷ ischildi indicates whether edge i connects to the parent of v.
6: Send ⟨resv, buildv, ridv, ischildi, fv, cntv, elev⟩ through edge i.
7: if (resv ̸=⊥) then Return resv as final result. ▷ Termination.
8: For i ∈ [∆v ], let mi = ⟨resi, buildi, ridi, ischildi, fi, cnti, elei⟩ be the message received via edge i.
9: for (each edge i ∈ [∆v]) do

10: if (resi ̸=⊥) then resv ← resi.
11: buildv ← buildv ∧ buildi.
12: if (buildv == true) then Execute Procedure BFS-Tree-Building.
13: else Execute Procedure Token-Collision-Detection.

Procedure BFS-Tree-Building executed at node v.
1: IDv ← {ridi | i ∈ [∆v]}.
2: if (min{IDv} < ridv) then
3: Let j ∈ [∆v] be one edge label satisfying ridj == min{IDv}.
4: ridv ← ridj , pv ← j, fv ← false. ▷ Notice that fv is reset to false.
5: else if (max{IDv} == ridv) then
6: chiv ← {i | i ∈ [∆v] and ischildi == true}.
7: if ((∀i ∈ chiv, fi == true) or chiv == ∅) then fv ← true.
8: if (pv ==⊥ and fv == true) then buildv ← false.

Procedure Token-Collision-Detection executed at node v.
1: chiv ← {i | i ∈ [∆v] and buildi == false and ischildi == true and ridi == ridv}.
2: Append {elei | i ∈ chiv and elei ∈ {0, 1}L} to xv.
3: if (∀i ∈ [∆v], buildi == false) then
4: if ((∀i ∈ chiv, cnti ̸=⊥) or chiv == ∅) then cntv ← 1 +

∑
i∈chiv

cnti.

5: if (pv ̸=⊥) then
6: if (|xv| > 0) then Eject one token from xv and let that token be elev.
7: else if ((∀i ∈ chiv, elei ==⊥) or chiv == ∅) then elev ←⊥.
8: else elev ← ⊤.
9: else if (cntv ̸=⊥ and ((∀i ∈ chiv, elei ==⊥) or chiv == ∅)) then

10: if (know value of n and cntv == n and no token collision in xv) then resv ← true.
11: else if (know value of k and |xv| == k and no token collision in xv) then resv ← true.
12: else resv ← false.

Figure 1 Pseudocode of the deterministic token collision algorithm.

The complete pseudocode of the algorithm in Section 3 is given in Figure 1. Below are
the explanations of some key variables that are used in the pseudocode. For any node v,

buildv: a boolean variable indicating whether BFS-tree building is ongoing for v.
ridv: the identifier of v, intuitively it stores the root of the BFS-tree that v belongs to.
pv: the label of the edge connecting to the parent of v.
chiv: the set of edge labels representing the children of v.



S. Bai, X. Fu, X. Wu, P. Yao, and C. Zheng 4:19

fv: a boolean variable indicating whether the BFS-tree rooted at v is fully constructed.
cntv: the size of the BFS-tree rooted at v.
elev: if elev /∈ {⊥, ⊤}, then it is the token that v intends to send to its parent in the
next round; if elev = ⊤, it indicates that there may exist a token in the BFS-tree rooted
at v that has not been transferred to v’s parent; if elev =⊥, it indicates that all tokens
in the BFS-tree rooted at v have already been transferred to v’s parent.
resv: the result of the token collision problem, that is, the algorithm’s output at node v.

The pseudocode of the algorithm introduced in Section 5, which deals with the case that
tokens are large, are given in Figure 2.

B Token Collision for the Randomized Scenario

For the sake of completeness, in this section, we briefly discuss the round complexity of the
token collision problem when randomization is allowed.

Randomized upper bound. We first describe a randomized algorithm that solves token
collision with probability at least 1 − 1/k within O(D · log((log k)/ log n)

log n + k · log k
log n + L

log n )
rounds, hence proving the upper bound part of Theorem 6.

To begin with, we elect a leader among the nodes that have at least one token as input.
Notice that there are at most k such nodes. Hence, by letting each such node v uniformly
and independently sample idv ∈ {0, 1}c log k for some sufficiently large constant c, there is
a unique node v̂ that obtains the global minimum id with probability at least 1 − 1/kc−2.
If we let each node continuously broadcast the minimum id that it ever received, a size-n
BFS tree rooted at v̂ would be constructed with probability at least 1 − 1/kc−2. Moreover,
by using the pipelining approach we introduced in Section 5, this process takes at most
O(D · log((log k)/ log n)

log n + log k
log n ) rounds (see Lemma 30).

Once a size-n BFS tree is built, the root – which is also the leader – will collect all tokens
to determine whether collisions exist. Notice that with randomization, we do not have to
transfer each token in its entirety. In particular, we can leverage the following fact on the
collision probability of random hash function to reduce the length of each token.

▶ Fact 33 ([8]). For any set S ⊆ [2L] of size |S| = k and any β ≥ 0, there exists a random
hash function h : [2L] → [q] with q = O(k2+β) such that, with probability at least 1 − 1/kβ,
it holds that h(x) ̸= h(y) for all x, y ∈ S with x ̸= y. Moreover, h can be constructed using
O(L) random bits.

Therefore, after BFS-tree construction, the leader can generate O(L) random bits for
constructing the random hash function, and broadcast these bits to all nodes in O(D + L

log n )
rounds. Then, each node uses the random hash function to reduce the length of its tokens
to O(log k) bits. Finally, the k tokens each of length O(log k) is aggregated to the root in
O(D + k · log k

log n ) rounds.
Clearly, the total runtime of the algorithm is

O

(
D · log((log k)/ log n)

log n
+ k · log k

log n
+ L

log n

)
,

and it succeeds with probability at least 1 − 1/k.

Randomized lower bound. The lower bound part of Theorem 6 can be obtained in the same
manner as the proof of Theorem 32 by using the randomized lower bound of set-disjointness
mentioned in Fact 7. We omit its proof to avoid redundancy.

DISC 2024



4:20 Almost Optimal Algorithms for Token Collision in Anonymous Networks

Main algorithm executed at each node v for large tokens.
1: buildv ← true, xv ← v’s input tokens, ridv ← min{xv}, pv ←⊥, chiv ←⊥, fv ← false.
2: Initialize four vectors {ridi}i∈[∆v ], {senti}i∈[∆v ], {elei}i∈{0,··· ,∆v}, and {sentei}i∈{0,··· ,∆v}.
3: Set ele0 ← ⊤; for any i ∈ [∆v], set senti ← 0, ridi ← 2L − 1, sentei ← 0.
4: M ← ⌈L/B⌉, P ← ⌈(log ⌈L/B⌉)/B⌉. ▷ End of initialization.
5: for (each iteration containing Θ( log (L/B)

B
) rounds) do

6: l← sentv + 1, r ← min(sentv + P, M).
7: for (each incident edge with label i ∈ [∆v]) do
8: ischildi ← I[pv == i].
9: Send ⟨resv, buildv, ridv[l, · · · , r], sentv, ischildi, fv, cntv, elev⟩ through edge i.

10: sentv ← r.
11: if (resv ̸=⊥) then Return resv as final result. ▷ Termination.
12: Let mi = ⟨resi, buildi, rid′

i, sent′
i, ischildi, fi, cnti, ele′

i⟩ be the message received via edge i ∈ [∆v].
13: for (each edge i ∈ [∆v]) do
14: l← sent′

i + 1, r ← min(sent′
i + P, M), senti ← r, ridi[l, · · · , r]← rid′

i, fill ridi[r + 1, · · · , M ] with 1.
15: if (resi ̸=⊥) then resv ← resi.
16: buildv ← buildv ∧ buildi.
17: if (buildv == true) then Execute Procedure BFS-Tree-Building for large tokens.
18: else Execute Procedure Token-Collision-Detection for large tokens.

Procedure BFS-Tree-Building executed at node v for large tokens.
1: IDv ← {ridi | i ∈ [∆v]}.
2: if (min{IDv} < ridv) then
3: if (pv ̸=⊥ and ridpv

== min{IDv}) then j ← pv.
4: else Let j ∈ [∆v] be one edge label satisfying ridj == min{IDv}.
5: ridv ← ridj , sentv ← sent′

j , pv ← j, fv ← false. ▷ Notice that fv is reset to false.
6: else if (max{IDv} == ridv and sentv == M and (∀i ∈ [∆v], senti == M)) then
7: chiv ← {i | i ∈ [∆v] and ischildi == true}.
8: if ((∀i ∈ chiv, fi == true) or chiv == ∅) then fv ← true.
9: if (pv ==⊥ and fv == true) then buildv ← false.

Procedure Token-Collision-Detection executed at node v for large tokens.
1: chiv ← {i | i ∈ [∆v] and buildi == false and ischildi == true and senti ==

M and ridi == ridv}.
2: for (i ∈ chiv and ele′

i /∈ {⊤,⊥}) do
3: elei[sentei + 1, · · · , min(sentei + P, M)]← ele′

i, sentei ← min(sentei + P, M).
4: if (sentei == M) then Append elei to xv and set sentei ← 0.
5: if ((∀i ∈ [∆v], buildi == false) and sentv == M) then
6: if ((∀i ∈ chiv, cnti ̸=⊥) or chiv == ∅) then cntv ← 1 +

∑
i∈chiv

cnti.

7: if (pv ̸=⊥) then
8: if (sente0 ̸= 0) then
9: l← sente0 + 1, r ← min(sente0 + P, M), elev ← ele0[l, · · · , r], sente0 ← r mod M .

10: else if (|xv| > 0) then
11: Eject one token from xv and let that token be ele0.
12: elev ← ele0[1, · · · , P ], sente0 ← P .
13: else if ((∀i ∈ chiv, elei ==⊥) or chiv == ∅) then elev ←⊥.
14: else elev ← ⊤.
15: else if (cntv ̸=⊥ and ((∀i ∈ chiv, elei ==⊥) or chiv == ∅)) then
16: if (know value of n and cntv == n and no token collision in xv) then resv ← true.
17: else if (know value of k and |xv| == k and no token collision in xv) then resv ← true.
18: else resv ← false.

Figure 2 Pseudocode of the deterministic token collision algorithm for large tokens.



Asynchronous Fault-Tolerant Distributed Proper
Coloring of Graphs
Alkida Balliu #

Gran Sasso Science Institute, L’Aquila, Italy

Pierre Fraigniaud #

IRIF - CNRS & Univ. Paris Cité, France

Patrick Lambein-Monette #

Unaffiliated

Dennis Olivetti #

Gran Sasso Science Institute, L’Aquila, Italy

Mikaël Rabie #

IRIF - Université Paris Cité, France

Abstract

We revisit asynchronous computing in networks of crash-prone processes, under the asynchronous
variant of the standard LOCAL model, recently introduced by Fraigniaud et al. [DISC 2022]. We
focus on the vertex coloring problem, and our contributions concern both lower and upper bounds
for this problem.

On the upper bound side, we design an algorithm tolerating an arbitrarily large number of crash
failures that computes an O(∆2)-coloring of any n-node graph of maximum degree ∆, in O(log⋆ n)
rounds. This extends Linial’s seminal result from the (synchronous failure-free) LOCAL model to its
asynchronous crash-prone variant. Then, by allowing a dependency on ∆ on the runtime, we show
that we can reduce the colors to

(
1
2 (∆ + 1)(∆ + 2) − 1

)
. For cycles (i.e., for ∆ = 2), our algorithm

achieves a 5-coloring of any n-node cycle, in O(log⋆ n) rounds. This improves the known 6-coloring
algorithm by Fraigniaud et al., and fixes a bug in their algorithm, which was erroneously claimed to
produce a 5-coloring.

On the lower bound side, we show that, for k < 5, and for every prime integer n, no algorithm
can k-color the n-node cycle in the asynchronous crash-prone variant of LOCAL, independently from
the round-complexities of the algorithms. This lower bound is obtained by reduction from an original
extension of the impossibility of solving weak symmetry-breaking in the wait-free shared-memory
model. We show that this impossibility still holds even if the processes are provided with inputs
susceptible to help breaking symmetry.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases LOCAL model, Graph Coloring, Renaming, Weak Symmetry-Breaking,
Fault-Tolerance, Wait-Free Computing

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.5

Related Version Full Version: https://arxiv.org/abs/2408.10971

Funding Partially funded by MUR (Italy) Department of Excellence 2023 - 2027, the PNRR MIUR
research project GAMING “Graph Algorithms and MinINg for Green agents” (PE0000013, CUP
D13C24000430001), and by the French ANR projects DUCAT (ANR-20-CE48-0006) and QuDATA
(ANR-18-CE47-0010).

© Alkida Balliu, Pierre Fraigniaud, Patrick Lambein-Monette, Dennis Olivetti, and Mikaël Rabie;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 5; pp. 5:1–5:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alkida.balliu@gssi.it
https://orcid.org/0000-0001-5293-8365
mailto:pierre.fraigniaud@irif.fr
https://orcid.org/0000-0003-4534-4803
mailto:patrick@lambein.name
mailto:dennis.olivetti@gssi.it
https://orcid.org/0000-0002-6600-6443
mailto:mikael.rabie@irif.fr
https://orcid.org/0000-0001-6782-7625
https://doi.org/10.4230/LIPIcs.DISC.2024.5
https://arxiv.org/abs/2408.10971
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

1 Introduction

1.1 Asynchrony, Failures, and Networks
To what extent a global solution to a computational problem can be obtained from locally
available data? What can be computed locally? These are some of the questions that were
asked, and partially answered 30 years ago in two seminal papers [23, 25] in the field of
distributed network computing. Since then, tremendous progress has been made about these
questions, and even detailed books [22, 27] can only touch a small fraction of the content
of the current literature on this topic. Nevertheless, the vast majority of the achievements
on local computing have been obtained in synchronous failure-free models, among which the
most common ones are referred to as LOCAL [23] and CONGEST [27].

In both models, processing nodes occupy the vertices of a graph, and exchange messages
along the edges of that graph. They all start at the same time, and computing proceeds as a
sequence of synchronous rounds. At each round, every pair of adjacent nodes can exchange
messages (one in each direction), and every node can perform some individual computation.
CONGEST differs from LOCAL only as far as the message size is concerned: messages are
bounded to be of size at most B bits in CONGEST (it is common to set B = O(log n)). There
are at least two solid reasons why such elegant but simplistic models should be considered.
First, they ideally capture the notion of spatial locality, as algorithms performing in t rounds
produce an output at each node that is solely based on the t-neighborhood of the node.
Second, the existence of efficient synchronizers [3, 4, 19] enables to implement algorithms
designed for synchronous models on asynchronous networks, with only limited slowdown.

Yet, models such as LOCAL and CONGEST suffer from one notable limitation: they
ignore the potential presence of failures. Indeed, transient failures have been addressed in
the framework of self-stabilization, but crash or malign failures are mostly ignored in the
framework of local computing in networks. Instead, studying the interplay of asynchrony and
failures has been the main topic of interest of distributed computing in general [2, 24, 28], since
the seminal “FLP impossibility result” stating that consensus is impossible in asynchronous
systems with failures, even under the restriction that at most one crash failure may occur [15].
However, the design of algorithms dedicated to asynchronous crash-prone systems have
been mostly performed in shared-memory or message-passing models: the former assumes
that processes exchange information by writing and reading in a shared memory; the latter
assumes that any two processes can exchange messages directly along a private channel.
While these two models are excellent abstractions of very many types of distributed systems,
ranging from multi-core architectures to large-scale computing platforms, they do not enable
the study of spatial locality, as the structure of the physical network is abstracted away.

An attempt to resolve this tension between synchronous failure-free computing in networks,
and asynchronous computing in crash-prone systems has been recently proposed [16], by
considering asynchronous networks subject to crash failures.

1.2 The ASYNC LOCAL Model
The asynchronous crash-prone LOCAL model1 (ASYNC LOCAL in short), introduced in [16],
aims at capturing a setting that is a hybrid between shared memory and network computing.

1 One could also consider the variant ASYNC CONGEST of ASYNC LOCAL by limiting to O(log n) bits
the size of the registers in which nodes read and write, but we restrict ourselves to the LOCAL variant,
as standard wait-free computing does not generally restrict the size of the registers.



A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:3

This model can be described conceptually in two possible ways (see Section 2.1 for more
details):

The ASYNC LOCAL model can be viewed as the standard wait-free shared-memory
model [2, 21] in which the read-access to other process’s registers is restricted. It bears
similarities with the atomic state model in self-stabilization [9]. In an n-process system,
each process i ∈ [n] can solely read the registers of processes j ∈ NG(i), where NG(i)
denotes the set of neighbors of vertex i in a graph G. That is, the wait-free shared-memory
model is the ASYNC LOCAL model in which the graph G is fixed to be the complete
graph (or clique) Kn.
The ASYNC LOCAL model can alternatively be viewed as the standard LOCAL model [22,
27] in which each node writes in its local register(s) instead of sending messages, and
reads the registers of its neighbors instead of receiving messages from them. In addition,
ASYNC LOCAL allows asynchronous executions, that is, each process reads and writes at
its own pace, which may vary with time, and it may even crash (i.e., stop functioning,
and never recover). Note that, as for LOCAL, the graph G is unknown to the nodes
in ASYNC LOCAL, as it is typically the input to the problems of interest in network
computing.

In the framework of asynchronous computing, the computing elements are referred to as
processes, whereas they are referred to as nodes in the context of computing in networks, but
we use these two terms indistinctly. The terminology “wait-free” refers to the fact that (1) an
arbitrarily large number of processes can crash, and (2) a node cannot distinguish whether
a neighboring node has crashed or is simply slow, from which it follows that a node must
never “wait” for some action performed by another node, and must terminate independently
from which of the other nodes have crashed (unless itself has crashed).

It was shown in [16] that the computing power of ASYNC LOCAL is radically different
from the one of LOCAL. Indeed, the authors proved that constructing a maximal independent
set (MIS) is simply impossible in ASYNC LOCAL, even in the n-node cycles Cn, n ≥ 3, while,
on cycles, it just takes Θ(log⋆ n) rounds in LOCAL [12, 23]. However, the authors show
also that proper coloring Cn is possible in ASYNC LOCAL, to the expense of using a larger
palette of colors, i.e., 6 colors instead of just 3 as in LOCAL (a 5-coloring algorithm is also
claimed in [16], but, as we shall show later, there is a bug in that algorithm). Indeed, a
simple reduction to renaming (see [2] for the definition) shows that, under the ASYNC LOCAL
model, no algorithms can proper color all graphs of maximum degree ∆ using less than
2∆ + 1 colors whenever ∆ + 1 is a power of a prime. This is because ASYNC LOCAL and
standard shared-memory coincides when the graph is a clique of n = ∆ + 1 nodes. The
main result in [16] is a distributed asynchronous algorithm in the ASYNC LOCAL model that
achieves proper 6-coloring of any n-node cycle, n ≥ 3, in O(log⋆ n) rounds, which is optimal
thanks to [23]. In ASYNC LOCAL, the round-complexity of an algorithm is the maximum,
taken over all nodes, and all executions, of the number of times a node writes in its register,
and reads the registers of its neighbors.

1.3 Our results
In a nutshell, we show that there exists an algorithm for proper coloring graphs with maximum
degree ∆ in the ASYNC LOCAL model, using a palette of 1

2 (∆+1)(∆+2)−1 colors, resulting
into a 5-coloring algorithm for the cycles. This result was obtained by first showing how to
implement Linial’s coloring algorithm in the asynchronous setting, and then by developing
a new technique based on reallocating identifiers to nodes. Note that even implementing

DISC 2024



5:4 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

Linial’s coloring algorithm asynchronously is not straightforward, as it is not even clear
whether the trivial recoloring algorithm that proceeds iteratively over all color classes can
be implemented in the ASYNC LOCAL model. Moreover, we show that, for infinitely many
values of n, 5-coloring the n-node cycles is the best that can be achieved in ASYNC LOCAL.
This significantly improves the lower bound in [16] on the number of colors required for
proper coloring cycles under ASYNC LOCAL, which held for n = 3 only.

Obtaining our lower bound required to revisit entirely the known lower bound on weak
symmetry breaking2 in the standard asynchronous shared-memory model, by considering
the impact of a priori “knowledge” given to the processes. For instance, if the processes
know a priori that one process is given advice 0, and one process is given advice 1, then
weak symmetry breaking becomes trivially solvable. For which a priori knowledge weak
symmetry breaking becomes trivially solvable, and for which it remains unsolvable? We show
that answering this novel question for specific types of a priori knowledge results into new
impossibility results for the standard asynchronous shared-memory model, which translate
into lower bounds and impossibility results in the ASYNC LOCAL model.

We stress the fact that while all (Turing computable) tasks are solvable in the LOCAL
model, not all taks are solvable in ASYNC LOCAL, yet we also address complexity issues, by
showing that, for constant ∆, our

( 1
2 (∆ + 1)(∆ + 2) − 1

)
-coloring algorithm performs in

O(log⋆ n) rounds in ASYNC LOCAL, that is, as fast as the Ω(log⋆ n) lower bound [23] on the
number of rounds required for coloring cycles in the synchronous failure-free LOCAL model.
These results are detailed next.

1.3.1 Proper Coloring
We mostly focus on distributed proper coloring, arguably one of the most important and
thoroughly studied symmetry-breaking tasks in network computing – see, e.g., [17, 18, 20]
for recent results on the matter3. First, we show that Linial’s technique from [23] based on
cover-free families of set systems can be used asynchronously, for the design of an O(∆2)-
coloring of graphs of maximum degree ∆, running in O(log⋆ n) rounds in n-node graphs
under ASYNC LOCAL. Then we show that the approach from [16] for 6-coloring cycles can
be generalized to color arbitrary graphs. Specifically, we design an algorithm computing a
(∆+1)(∆+2)

2 -coloring in graphs of maximum degree ∆ running in O(log⋆ n) + f(∆) rounds
under ASYNC LOCAL, where the additional term f(∆) depends on ∆ only. This line of
results culminates in the design of an algorithm enabling to save one color, i.e., that computes
a

( (∆+1)(∆+2)
2 − 1

)
-coloring, still running in O(log⋆ n) + f(∆) for some function f . Reducing

the color palette by just one color may seem of little importance, but it is not, for two reasons.
First, a palette of size (∆+1)(∆+2)

2 − 1 is the best that we are aware of for which it is possible
to proper color all graphs of maximum degree ∆ in O(log⋆ n) rounds in ASYNC LOCAL
(ignoring the additional term depending on ∆ only). Saving one more color appears to be
challenging. Second, in the case of cycles, i.e., ∆ = 2, this allows us to fix a bug in the
5-coloring algorithm from [16]. Indeed, this latter algorithm is shown to be erroneous, as

2 Weak symmetry breaking is the task in which processes start with no inputs, and each process must
output 0 or 1, under the constraint that, whenever all processes terminate, at least one process must
output 0, and at least one process must output 1.

3 In the context of distributed computing in networks, especially in the LOCAL and CONGEST models,
one is interested in properly coloring graphs with maximum degree ∆ using a palette of f(∆) colors,
where f(∆) grows slowly with ∆. One typical example is f(∆) = ∆ + 1 as all graphs of maximum
degree ∆ can be properly colored with ∆ + 1 colors, but one is also interested in larger functions f , e.g.,
f(∆) = Θ(∆2), whenever this choice enables to obtain faster algorithms.



A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:5

there are schedulings of the nodes that result in livelocks preventing the algorithm from
terminating. Nevertheless, our algorithm shows that 5-coloring the n-node cycles in O(log⋆ n)
rounds under ASYNC LOCAL is indeed possible.

1.3.2 Lower Bounds and Impossibility Results
Our second line of contribution is related to lower bounds on the size of the color palette
enabling to proper color graphs asynchronously. It was observed in [16] that since the class
of graphs with maximum degree ∆ includes the clique with n = ∆ + 1 nodes, and since
renaming [2] in a set of less than 2N − 1 names cannot be done wait-free in N -process shared-
memory systems whenever N is a power of a prime, proper coloring graphs of maximum
degree ∆ in ASYNC LOCAL cannot be achieved with a color palette smaller than 2∆ + 1
colors, i.e., 5 colors in the case of cycles (independently from the number of rounds). However,
the question of whether one can 4- or even 3-color long cycles (i.e., excluding the specific case
of the clique C3) under ASYNC LOCAL was left open in [16]. We show that this is impossible
whenever n is prime, that is, there are infinitely many values of n for which 5-coloring the
n-node cycle is the best that can be achieved in ASYNC LOCAL.

1.3.3 Reduction from Weak Symmetry-Breaking with Inputs
We achieve our lower bound on the number of colors thanks to a result of independent
interest in the standard framework of wait-free shared-memory computing. We show that
there are no symmetric wait-free algorithms solving weak symmetry-breaking [2] in n-process
asynchronous shared-memory systems whenever n is prime, even if processes are provided
with inputs from a non-prime-divisible and order-invariant set of inputs. We achieve this
impossibility result by extending the proof in [1] for weak symmetry-breaking to the case in
which processes have inputs that do not trivially break symmetry. Our impossibility result for
weak symmetry-breaking with inputs has other consequences on the ASYNC LOCAL model,
including the facts that weak 2-coloring is impossible in cycles of prime size, and that, for
every even ∆ ≥ 2, there is an infinite family of regular graphs for which (∆ + 2)-coloring
cannot be solved in ASYNC LOCAL.

Finally, using different techniques, we also show that even a weak variant of maximal
independent set (MIS) cannot be solved in cycles with at least 7 nodes, and that, for every
∆ ≥ 2, (∆ + 1)-coloring trees of maximum degree ∆ is impossible under ASYNC LOCAL.

1.4 Related Work
The combination of asynchrony and failures in the general framework of distributed computing
in networks has been studied a lot in the context of self-stabilization. The latter deals with
transient failures susceptible to modify the content of some of the variables defining the
states of the nodes. The role of a self-stabilizing algorithm is therefore to guarantee that if
the network is in an illegal configuration (i.e., a configuration not satisfying some specific
correctness condition), then it will automatically return to a legal configuration, and will
remain in a legal configuration, unless some other failure(s) occur. Self-stabilizing graph
coloring algorithms have been designed [5, 6, 7, 8]. However, these algorithms provide solutions
only for executions during which there are no failures. Instead, in ASYNC LOCAL, failures
may occur at any time during the execution, and once a process crashes it never recovers.
This has important consequences on what can or cannot be computed in ASYNC LOCAL.
For instance, 3-coloring the n-node cycle is possible in a self-stabilizing manner for every
n ≥ 3, while we show that even 4-coloring the n-node cycle is impossible for infinitely many n

(namely, for all prime n).

DISC 2024



5:6 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

It is also worth mentioning [11, 13], which introduced the DECOUPLED model, where crash-
prone processes occupy the nodes of a reliable and synchronous network. The DECOUPLED
model is stronger than ASYNC LOCAL, and indeed it was shown that if there exists an
algorithm solving a task in the LOCAL model, then there exists an algorithm solving that
task in the DECOUPLED model as well, with limited slowdown. Instead, we show that even
a weak variant of MIS is impossible in large cycles under ASYNC LOCAL.

Another field of research very much related to our work is the study of synchronous
networks with failures, whether it be crash or even malicious process failures, or message
omission failures (see, e.g., [10, 26, 29, 30]). In these models, the focus has mostly been
put on the study of tasks such as consensus and set-agreement. The ASYNC LOCAL model
somehow mixes some of the key aspects of the models considered in these work, including
the presence of crash failures, and the fact that the communications are mediated by a
graph distinct from the complete graph. The same way standard wait-free computing in
shared-memory systems can be viewed as one specific instance of the oblivious message
adversary model, wait-free computing in the ASYNC LOCAL model in a graph G may be
viewed as the instance of the oblivious message adversary model in which messages can only
be sent along the edges of the graph G. We however focus on solving graphs problems such
as coloring or independent set, motivated by the need to solve various symmetry breaking
problems in networks, including frequency assignment and cluster decomposition. For such
problems, it is more more convenient to use the framework of ASYNC LOCAL, in which the
graph G is part of the input, as in the LOCAL model.

2 Model and Definitions

We first recall the ASYNC LOCAL model as introduced in [16], and then provide an example
for an algorithm in this model.

2.1 The ASYNC LOCAL model
Like the LOCAL model [27], the ASYNC LOCAL model assumes a set of n ≥ 1 processes,
each process occupying a distinct node of an n-vertex graph G = (V, E), which is supposed
to be simple and connected. Each process, i.e., each node v ∈ V , has an identifier idv that is
supposed to be unique in the graph. The identifiers are not necessarily between 1 and n,
but they are supposed to be stored on O(log n) bits. That is, all node identifiers lie in the
integer interval [1, N ] for some bound N = poly(n). Like in the asynchronous shared-memory
model, every node v comes equipped with a single-writer/multiple-reader register R(v) in
which it can write values. However, in contrast with the shared-memory model, only v’s
neighbors in the graph G are able to read its register R(v), and symmetrically, node v can
only read the registers R(w) of nodes w ∈ NG(v) = {u ∈ V | {u, v} ∈ E}. We assume that
each node can write in its register, and then read all its neighbors’ registers, in a single
atomic operation. Neighboring nodes can perform this write&read operation concurrently, in
which case they both read the value concurrently written in the other node’s register. This
communication primitive is thus akin to an immediate snapshot object with read accesses
mediated by a graph, in a similar manner to the atomic state model in the context of self-
stabilizing algorithms [9]. Computation proceeds asynchronously, and each node may crash,
in which case it stops functioning, and it never recovers. Therefore, in the particular case of
the clique G = Kn, ASYNC LOCAL boils down to the standard asynchronous crash-prone
shared-memory model with immediate snapshots [2]. The registers are of unbounded size.
Therefore, as in the LOCAL model, and as in most wait-free computing models [21] as well,
we can assume full-information protocols, in which every node writes its entire state in its
register, and read the states of its neighbors in their registers.



A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:7

Remark. Due to its nature, the ASYNC LOCAL model may have also been named “iterated
immediate local snapshot”. Nevertheless, for its close connection to the standard LOCAL
model used for the study of graph problems (e.g., coloring) in distributed computing, we
preferred to stick to the terminology ASYNC LOCAL.

Input. In addition to its identifier idv, every node v may be provided with some input,
denoted by inputv. The latter may be the number n of nodes in the graph, or an upper
bound N on n, or any label ℓ(v) ∈ {0, 1}∗ whose semantic depends on the context (e.g.,
it may represent a boolean mark, or a color, etc.). Note that the network G is typically
unknown to the nodes, even if some specific parameters may be provided to each node as
input, such as the maximum degree ∆ of G.

Algorithm. An algorithm A for the ASYNC LOCAL model may be described by two func-
tions:

Init: used to initialize the state of each node, as a function of its input;
Alg: used to update the state of a node, as a function of its current state, and of the
states of its neighbors.

Scheduling. An execution of an algorithm A depends on how the nodes are scheduled. A
scheduling is a sequence S = S1, S2, . . . of subsets Si ⊆ V of nodes. For every i ≥ 1, the
set Si denotes the set of nodes that are activated at step i. Each of these nodes performs
an immediate-snapshot, and updates its state accordingly. For instance, the scheduling
{u, v}, {v}, {v}, {v}, . . . represents the execution in which nodes u and v run concurrently
at the first step, and then v runs solo, i.e., v is the only node activated at every step i ≥ 2.
That is, u has crashed after step 1, and all the nodes w /∈ {u, v} had crashed initially, none of
them taking any step. Instead, the scheduling V, V, V, . . . represents a synchronous execution
in which no node crashes.

Full-Information Protocols. For every v ∈ V , let OldStatev,1 ← ⊥, and NewStatev,1 ←
Init(idv, inputv). For every i ≥ 1, the variable OldStatev,i represents what a neighbor
of v gets whenever reading the memory of v, and NewStatev,i represents the updated
state of v, which will become visible to its neighbors the next time v is scheduled. More
specifically, for every i ≥ 1, if v /∈ Si, then OldStatev,i+1 ← OldStatev,i and NewStatev,i+1 ←
NewStatev,i. Instead, if v ∈ Si, then OldStatev,i+1 ← NewStatev,i, and NewStatev,i+1 ←
Alg(OldStatev,i+1, {OldStateu,i+1 | u ∈ NG(v)}). In other words, all nodes that are scheduled
at step i write their current state, then read the state of their neighbors, and then use the
obtained knowledge in order to update their state. The new states resulting from these
updates will become visible to their neighbors the next time that they are scheduled. That
is, we model a setting in which writing and then reading the state of the neighbors is an
atomic operation, but it may take some time to compute a new state.

Termination. We let Terminated(x) be a special state denoting that a node terminates
with output x. If a node v satisfies NewStatev,t = Terminated(x) at some step t ≥ 1, then v

decides the output x, and it is assumed that if v is scheduled again in the future, then its
state does not change, that is, NewStatev,t+i = NewStatev,t for all i ≥ 1.

DISC 2024



5:8 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

Algorithm 1 An algorithm for 6-coloring cycles. Code of node v, with sole input idv.

procedure CycleSixColoring(idv)
x← idv; a← 0; b← 0; ▷ (x, a, b) is the state s of v

repeat forever
(s1, s2)←WriteSnapshot(s) ▷ s1 and s2 are the states of the two neighbors of v

if (a, b) /∈ {(s1.a, s1.b), (s2.a, s2.b)} then return (a, b)
else ▷ In the following: si = ⊥ =⇒ (si.x = ⊥) ∧ (si.a = ⊥) ∧ (si.b = ⊥).

a← minN∖ {si.a | (i ∈ {1, 2}) ∧ (si ̸= ⊥) ∧ (si.x > x)}
b← minN∖ {si.b | (i ∈ {1, 2}) ∧ (si ̸= ⊥) ∧ (si.x < x)}

end if
end repeat

end procedure

Round complexity. The runtime of a node v is defined as

Tv = |{i ≥ 1 | v ∈ Si and NewStatev,i ̸= Terminated(x) for any possible output x}|.

That is, the runtime of a v is equal to how many times v is scheduled before it terminates.
The runtime of an algorithm on a graph G = (V, E) is then max{Tv | v ∈ V }. The runtime
of an algorithm in a graph class G is the maximum runtime of the algorithm, over all graphs
G ∈ G. The runtime of an algorithm may depend on the identifiers given to the nodes.
However, as said before, we use the standard assumption that the identifiers are from the
interval [1, N ] where N = poly(n). The runtime is thus typically expressed as a function of
n (the order of the graph) and ∆ (the maximum degree of the graph). The complexity of a
problem is the minimum runtime (as a function of n and ∆) among all possible algorithms
that solve the problem. The typical graph class we are interested in is G∆, the class of all
graphs with maximum degree ∆.

Remark. In absence of failures, and if all nodes run synchronously, the runtime of an algorithm
in the ASYNC LOCAL model is identical to its runtime in the LOCAL model.

2.2 Algorithm Description
While an algorithm can be formally described by providing the two functions Init and Alg,
we now describe an alternative, and possibly easier way of describing an algorithm. An
example is provided in Algorithm 1 from [16], which is aiming at solving 6-coloring in cycles.
This algorithm uses the function WriteSnapshot(s), which allows to perform an immediate
snapshot (i.e., a write of the current state s immediately followed by a snapshot of all the
states of the neighbors), and uses the function return, which explicitly provides the output
(instead of using Terminated(x)).

In Algorithm 1, the state s of each (non terminated) node is a triplet s = (x, a, b) of
natural numbers. Given a state s, s.x, s.a, and s.b respectively denote the first, second, and
third element in s. The state of a terminated node is a pair (a, b) of natural numbers. One
can check (see [16]) that the output pairs (a, b) can take at most 6 different values.

The state s of a node v is updated by updating some of all of its components x, a, or b.
Actually, the entry x = idv does not change. The entry a is updated to the smallest natural
number excluding the a-values used by neighbors of larger identifiers, and b is updated to the
smallest natural number excluding the b-values used by the neighbors of smaller identifiers.
These values are equal to ⊥ if they have not yet been written in the register (i.e., if a neighbor



A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:9

has not yet performed a single write). If a node v notices that its current state (x, a, b) is
such that (a, b) is different from the (a, b)-pairs of both neighbors, then v terminates, and
decides color (a, b). An example of an execution of Algorithm 1 is provided in Appendix A.

3 Results and Road Map

We have now all ingredients sufficient to formally state our results.

3.1 Algorithms for ASYNC LOCAL
We first show (cf. Section 4) that Linial’s O(∆2)-coloring algorithm can be adapted to work
in the asynchronous wait-free setting.

▶ Theorem 1. For every ∆ ≥ 2, the round-complexity of O(∆2)-coloring graphs of maximum
degree ∆ in the ASYNC LOCAL model is O(log∗ n).

Then, we show (cf. Section 5) that, at the cost of increasing the runtime by an additive
factor depending on ∆, it is possible to reduce the number of colors from O(∆2) to (∆ +
1)(∆ + 2)/2.

▶ Theorem 2. For every ∆ ≥ 2, the round-complexity of 1
2 (∆ + 1)(∆ + 2)-coloring graphs of

maximum degree ∆ in the ASYNC LOCAL model is O(log∗ n) + f(∆), where f is a function
depending on ∆ only.

Finally, we show (cf. Section 6) that we can exploit the fact that the coloring produced
by Theorem 2 satisfies special properties for reducing the size of the color palette by one.

▶ Theorem 3. For every ∆ ≥ 2, the round-complexity of ( 1
2 (∆ + 1)(∆ + 2) − 1)-coloring

graphs of maximum degree ∆ in the ASYNC LOCAL model is O(log∗ n) + f(∆), for some
function f that only depends on ∆.

An important consequence of this result is the case ∆ = 2. Theorem 3 shows that there
is an algorithm for 5-coloring cycles. While such an algorithm was already claimed to exist
in [16], we show (cf. Appendix B) that the algorithm supporting that claim is erroneous.
Specifically, we provide an instance in which the algorithm does not terminate. Theorem 3
provides a novel algorithm, which allows us to establish the following result.

▶ Corollary 4. The round-complexity of 5-coloring cycles in the ASYNC LOCAL model is
O(log∗ n).

3.2 Impossibility Results
As pointed out in [16] several impossibility results for ASYNC LOCAL are mere consequences of
the fact the this model coincides with the standard wait-free shared-memory model whenever
the underlying graph G is a clique Kn. This is for instance the case of the impossibility of
4-coloring C3 (by reduction from renaming), and the impossibility of constructing a maximal
independent set, i.e., MIS (by reduction from strong symmetry breaking). Whether or
not it is possible to 4-color cycles Cn for n > 3 was left open in [16]. We show that, for
infinitely many values of n, the problem of 4-coloring the n-node cycle Cn is not solvable in
ASYNC LOCAL. To establish this result, we prove a result of independent interest, in the
framework of wait-free shared memory computing. Specifically, we extend the proof in [1]
that weak symmetry breaking is impossible in the wait-free shared memory systems. We show

DISC 2024



5:10 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

that this problem remains impossible even if some input are provided to the processes, which
may potentially help them to break symmetry. The set of possible inputs has to agree with
some restrictions, called non-prime-divisible and order-invariant (with respect to a particular
subset of processes). Roughly, the set of possible input assignments must not be divisible by
the number n of processes whenever n is prime, and it must be closed under permuting the
identifiers of a particular subset of the processes by an order-invariant permutation. Also
recall that an algorithm is symmetric if for every execution α on a subset P of processes,
and for every permutation π : [n]→ [n] order preserving on P , we have that, for every i ∈ P ,
process i outputs x in α if and only if process π(i) outputs x on the execution π(α) resulting
from permuting the scheduling of the processes in P according to α. Our impossibility results
are shown in the full version.

▶ Theorem 5. Let n be a prime number. There are no symmetric wait-free deterministic
algorithms solving weak symmetry break in the asynchronous wait-free shared memory model
with n processes, even if the processes are provided with inputs from a non-prime-divisible
and order-invariant set of inputs.

Theorem 5 has three important consequences.

▶ Corollary 6. Let n ≥ 3 be a prime number. The problem of 4-coloring the n-node cycle
cannot be solved deterministically in ASYNC LOCAL.

A weaker form of symmetry breaking is weak 2-coloring [25]. It is required to 2-color the
input graph such that every (non isolated) node has at least one neighbor colored with a
different color.

▶ Corollary 7. Let n ≥ 3 be a prime number. The problem of weak 2-coloring the n-node
cycle cannot be solved deterministically in ASYNC LOCAL.

Finally, we prove that, for even values of ∆, there are a infinitely many ∆-regular graphs
that cannot be (∆ + 2)-colored in ASYNC LOCAL. This extends the lower bound of 2∆ + 1
colors, which applies only for the clique of ∆ + 1 nodes with ∆ + 1 power of a prime, to an
infinite family of graphs with maximum degree ∆.

▶ Corollary 8. Let ∆ be an even number, and let n > ∆ be a prime number. The problem of
(∆+2)-coloring n-node ∆-regular graphs cannot be solved deterministically in ASYNC LOCAL.

We complete the lower bound analysis with some additional results. The version of MIS
considered in [16], which was proved impossible to solve, asks the nodes to output a set of
vertices which forms an MIS in the graph induced by the correct nodes. Instead, we consider
a weaker variant of MIS, asking the nodes to output a set of vertices which forms an MIS in
the graph whenever all processes are correct, i.e., no crashes occurred. We show that even
this weaker variant of MIS is impossible in ASYNC LOCAL.

▶ Theorem 9. For every n ≥ 7, no deterministic algorithms can solve weak MIS in the
n-node cycle under ASYNC LOCAL.

Finally, we show impossibility results for coloring general graphs.

▶ Theorem 10. For every ∆ ≥ 2, no deterministic algorithms can solve (∆ + 1)-coloring in
trees of maximum degree ∆ under ASYNC LOCAL.

We conclude, in Section 7, with some open questions.



A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:11

4 Coloring General Graphs with O(∆2) Colors

In this section, we provide a simple algorithm for coloring a graph with O(∆2) colors. This
algorithm is an adaptation of Linial’s coloring algorithm [23] (which is designed to work in
the LOCAL model) to the asynchronous setting. More in detail, we prove the following result.

▶ Theorem 1. For every ∆ ≥ 2, the round-complexity of O(∆2)-coloring graphs of maximum
degree ∆ in the ASYNC LOCAL model is O(log∗ n).

In order to prove this result, we start by summarizing Linial’s coloring algorithm, and
then we show how to adapt it to the wait-free setting. We start by recalling the notion of set
systems and of cover-free family of sets.

▶ Definition 11. A set system is a pair (X,F), where X is a set, and F is a collection
of subsets of X. A set system (X,F) is a k-cover-free family if, for every choice of k + 1
distinct sets S0, S1, . . . , Sk in F , the following holds: S0 ∖

⋃k
i=1 Si ̸= ∅.

To provide an intuition about how to use these two definitions, let us assume that the
nodes of the input graph G are properly c-colored, and let us assume that there exists a
∆-cover-free family (X,F) satisfying c ≤ |F|. It follows from these assumptions that there
exists a one-to-one function f from the set of colors to F . W.l.o.g., assume that X contains
the numbers in {1, . . . , |X|}. One step of Linial’s algorithm is able to recolor the nodes with
c′ = |X| colors, as follows.
1. Every node v communicates with its d neighbors to get their current colors c1, . . . , cd,

where d ≤ ∆ is the degree of v.
2. Every node v computes Xv = f(cv) ∖

⋃d
i=1 f(ci), where cv is the color of v, and then

recolors itself with the minimum value in Xv.
Note that Xv is guaranteed to be non-empty by the fact that (X,F) is a ∆-cover-free family,
and that the obtained color c′

v satisfies 1 ≤ c′
v ≤ c′. Linial’s coloring algorithm repeats this

process multiple times, each time using a different cover-free family. The runtime and the
resulting number of colors depend on the choice of cover-free families. We summarize the
cover-free families used by Linial’s algorithm in the following two lemma.

▶ Lemma 12 ([23]). (a) For any c > ∆, there exists a ∆-cover-free family (X,F) with c ≤ |F|,
and |X| ≤ 5⌈∆2 log c⌉. (b) There exists a ∆-cover-free family (X,F) with 10∆3 ≤ |F|, and
|X| ≤ (4∆ + 1)2.

In [23], Lemma 12 has been proved in a non-constructive way. However, it is possible to
obtain a similar statement by using polynomials over finite fields [14]. We will use the above
lemma as a black-box. However, the correctness of our algorithm will be independent from
which specific cover-free family construction is used.

We now discuss how these cover-free families are used. Linial’s algorithm, in its standard
formulation for LOCAL, requires the nodes to be aware of an upper bound N on the size of
the identifier space. At the first round, nodes recolor themselves by using 5⌈∆2 log N⌉ colors,
thanks to a cover-free family from Lemma 12(a) with parameter c = N . We denote by f1 the
one-to-one function used by the nodes to map their color to the elements of the cover-free
family. At the second round, nodes use the cover-free family from Lemma 12(a) with parameter
c = 5⌈∆2 log N⌉, from which they obtain a coloring that uses 5⌈∆2 log(5⌈∆2 log N⌉)⌉ colors.
We denote by f2 the one-to-one function used by the nodes to map their color to the elements
of the cover-free family. The nodes repeat this process multiple times, each time using a
cover-free family from Lemma 12(a) with parameter c equal to the amount of colors obtained

DISC 2024



5:12 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

Algorithm 2 O(∆2)-coloring arbitrary graph. Code of node v: idv ∈ {1, . . . , N}; inputv = N .

1: procedure WaitFreeLinial(idv,inputv)
2: S ← (idv,⊥, . . .⊥); ▷ S is an array of length T + 1 = O(log⋆ N), and is the state s of

v

3: for i = 1 to T do
4: (s1, . . . , sd)←WriteSnapshot(s)
5: A← {sj .S[i] | (j ∈ {1, . . . , d}) ∧ (sj .S[i] ̸= ⊥)} ▷ ith entry of each array sj .S

6: S[i + 1]← min fi(S[i]) ∖
⋃

a∈A fi(a)
7: end for
8: return s[T + 1]
9: end procedure

in the previous rounds. Linial proved that it takes O(log∗ N) rounds to reach a coloring that
uses at most 10∆3 colors. Since it is typically assumed that N = poly(n), the runtime is
O(log∗ n). At this point, the cover-free family from Lemma 12(b) is used to get a coloring
that uses (4∆ + 1)2 = O(∆2) colors.

Let us denote by T the number of rounds performed in total, including the last round that
uses the family from Lemma 12(b) for reducing the number of colors to at most (4∆ + 1)2.
For 1 ≤ i ≤ T , let fi be the one-to-one function used by the nodes to map their colors to the
elements of the cover-free family while executing the ith round of Linial’s algorithm.

The Algorithm. Let us show that the approach used in Linial’s LOCAL algorithm can
be adapted to work in ASYNC LOCAL as well. We assume that inputv contains the same
upper bound N on the range of identifiers. So, in particular, every node v can compute T

as a function of inputv. The adaptation of Linial’s coloring algorithm to ASYNC LOCAL
is displayed as Algorithm 2. The main challenge when running Linial’s algorithm in the
ASYNC LOCAL model comes from the fact that a vertex v may be in the ith iteration of
Linial’s algorithm, while a neighbor u of v may be in iteration j ̸= i. Nevertheless, we will
prove that our adaptation of Linial’s algorithm correctly handles these cases. The runtime of
Algorithm 2 is clearly O(log∗ n). The proof that Algorithm 2 is correct can be found in the
full version.

5 Reducing the Colors to (∆ + 1)(∆ + 2)/2

In this section, we show that, at the cost of increasing the running time by an additive factor
depending on ∆ only, we can decrease the amount of colors from O(∆2) to 1

2 (∆ + 1)(∆ + 2).

▶ Theorem 2. For every ∆ ≥ 2, the round-complexity of 1
2 (∆ + 1)(∆ + 2)-coloring graphs of

maximum degree ∆ in the ASYNC LOCAL model is O(log∗ n) + f(∆), where f is a function
depending on ∆ only.

The algorithm that we provide is a generalization to general graphs of the 6-coloring
algorithm for cycles presented in [16], and restated in Algorithm 1. On a high-level, the
algorithms works as follows. First, we compute an initial O(∆2)-coloring of the nodes. Then,
the final color of each node is given by a pair (a, b). This pair is computed by repeatedly
updating the values of a and b until the pair is different from the pairs of the neighbors. The
value of a is updated as a function of the a-values of the neighbors with larger initial color,
while the value of b is updated as a function of the b-values of the neighbors with smaller
initial color.



A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:13

Algorithm 3 Reducing the number of colors from O(∆2) to (∆ + 1)(∆ + 2)/2.

1: procedure SaveColors(idv,inputv)
2: x← inputv; (a, b)← (0, 0) ▷ x ∈ [O(∆2)] is the original color of v

3: repeat forever ▷ s = (x, a, b) is the state of v

4: (s1, . . . , sd)←WriteSnapshot(s)
5: if (a, b) /∈ {(si.a, si.b) | (i ∈ {1, . . . , dv}) ∧ (si ̸= ⊥)} then return (a, b)
6: else
7: a← minN∖ {si.a | (i ∈ {1, . . . , dv}) ∧ (si ̸= ⊥) ∧ (x < si.x)}
8: b← minN∖ {si.b | (i ∈ {1, . . . , dv}) ∧ (si ̸= ⊥) ∧ (x > si.x)}
9: end if

10: end repeat
11: end procedure

The algorithm. In order to prove Theorem 2, we first analyze the algorithm SaveColors,
displayed as Algorithm 3. Given an O(∆2)-coloring as input, this procedure produces a
((∆+1)(∆+2)/2)-coloring, in f(∆) rounds for some function f . Theorem 2 follows by running
Algorithm WaitFreeLinialReduced below, in which if a node v is running SaveColors
while some neighbor u of v is still running WaitFreeLinial, then v treats the memory of u

as ⊥.
procedure WaitFreeLinialReduced(idv,inputv)

cv ←WaitFreeLinial(idv, inputv)
return SaveColors(idv, cv)

end procedure
The proofs of correctness and runtime of Algorithm 3 can be found in the full version of

the paper.

6 Saving One More Color

We now modify Algorithm 3 in order to save one additional color. This new algorithm, shown
in Algorithm 4, allows us to establish the following theorem.

▶ Theorem 3. For every ∆ ≥ 2, the round-complexity of ( 1
2 (∆ + 1)(∆ + 2) − 1)-coloring

graphs of maximum degree ∆ in the ASYNC LOCAL model is O(log∗ n) + f(∆), for some
function f that only depends on ∆.

An important consequence of this result is Corollary 4, that is, the existence of a 5-coloring
algorithm for the cycles in the ASYNC LOCAL model. This result is original because the
5-coloring algorithm proposed in [16] has a bug (cf. Appendix B where we exhibit an instance
of 5-coloring C4 for which the algorithm in [16] does not terminate).

6.1 Intuition of the algorithm
We start by providing the high level idea of the algorithm. The algorithm that we provide
is similar to Algorithm 3, and it exploits some special properties of the pairs (a, b) that it
produces. Specifically, we modify Algorithm 3 such that, if a node outputs the pair (∆, 0),
then none of its neighbors output the pair (0, ∆). In this case, we can identify the pairs (∆, 0)
and (0, ∆) as the same color, reducing the amount of colors in use by one.

Notice that a node that outputs the pair (∆, 0) is necessarily a local minimum with
respect to the node identifiers, and similarly a node that outputs the pair (0, ∆) is necessarily
a local maximum. The problematic case of neighbors outputting both pairs (∆, 0) and (0, ∆)

DISC 2024



5:14 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

can therefore only happen when the both neighbors are local extrema. However, for such
neighboring nodes to reach a state where they would output problematic pairs, some specific
conditions must hold which can be handled by the nodes as a specific case.

More in detail, in such a situation, we make nodes flip their relative ordering: if node u

is a local minimum and node v is a local maximum, then u will treat v as smaller when
comparing their x variables, and v will treat u as larger. By flipping relative ordering, we are
forcing neighboring local extrema with pairs (∆, 0) and (0, ∆) to stop being local extrema,
leading them to change their output pairs. This modification will affect the termination time,
and hence we also need to introduce new terminating conditions.

6.2 Formal Description
The algorithm is displayed in Algorithm 4, but some of its functions are presented below.

Treating special pairs as equal. The first modification applied to Algorithm 3 is the
following. In line 5, instead of directly using the pairs (a, b) of the node, and the pairs of its
neighbors, we first map them by using the function Map shown below. Observe that Map
behaves as the identity function for all pairs different from (∆, 0), and it maps (∆, 0) to
(0, ∆). In this way, the algorithm behaves similarly as the original one, except that it forbids
neighboring nodes with pairs (0, ∆) and (∆, 0) to terminate, since after applying Map, they
are both mapped to (0, ∆), and hence they are treated as having the same pair.

procedure Map(a,b)
if (a, b) = (∆, 0) then return (0, ∆)
else return (a, b)
end if

end procedure

A new ordering relation. In Algorithm 3, nodes exploit their variables x (that is, the given
coloring) to determine an ordering relation between them. In the new algorithm, each node
keeps an additional variable f , which is a set of identifiers. The semantic is the following.
For two nodes u and v, if u ∈ v.f or v ∈ u.f , then the ordering w.r.t. their variables x is
flipped. We call an edge {u, v} flipped whenever u ∈ v.f or v ∈ u.f .

Let us define two auxiliary Boolean functions that are used by a node v to determine
whether the ordering relation with a neighbor u should be considered flipped or not. These
functions take as input the state sv and su of the two (neighboring) nodes. The variable z,
as will be shown in the algorithm, stores the identifier of the node.

procedure IsNotFlipped(sv, su)
return (sv ̸= ⊥) ∧ (su ̸= ⊥) ∧ (su.z /∈ sv.f) ∧ (sv.z /∈ su.f)

end procedure
procedure IsFlipped(sv, su)

return (sv ̸= ⊥) ∧ (su ̸= ⊥) ∧
(
(su.z ∈ sv.f) ∨ (sv.z ∈ su.f)

)
end procedure
We are now ready to define the new ordering relation. For this purpose, we define two

functions that, given the state s of the node, and the state si of its ith neighbors, return
the neighbors that are considered smaller, and the neighbors that are considered larger,
respectively.



A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:15

procedure Smaller(s,(s1, . . . , sk))
return

{
i ∈ {1, . . . , k} |

(
(IsNotFlipped(s, si) ∧ (s.x > si.x)

)
∨

(
IsFlipped(s, si) ∧ (s.x < si.x)

)}
end procedure
procedure Larger(s,(s1, . . . , sk))

return
{

i ∈ {1, . . . , k} |
(
IsNotFlipped(s, si) ∧ (s.x < si.x)

)
∨

(
IsFlipped(s, si) ∧ (s.x > si.x)

)}
end procedure

Special termination. We also define a function that provides an extra termination condition.
It relies on an additional function that detects a neighborhood with special properties. It
uses some variables α and β that are both set to true if a node has at least one smaller
neighbor (that is, it is not a local minima), and it has at least one larger neighbor (that
is, it is not a local maxima). We assume that the maximum degree ∆ is part of the input
provided to the nodes.

procedure SpecialNeighborhood(s,(s1, . . . , s∆))
return

(( ∧∆
i=1(si ̸= ⊥)

)
∧

(
{s.a, s.b}∪(∪∆

i=1{si.a, si.b}) ⊆ {0, . . . , ∆−1}
)
∧ s.α ∧ s.β

∧
( ∧∆

i=1
(
(si.α ∨ |Smaller(si, [s])| = 1) ∧ (si.β ∨ |Larger(si, [s])| = 1)

)))
end procedure
That is, a neighborhood of a node v is special if (1) node v has seen all its neighbors,

(2) they are precisely ∆, (3) the a and b variables of the node and of all its neighbors are in
{0, . . . , ∆− 1}, and (4) node v and all its neighbors have at least one smaller, and at least
one larger neighbor. The reason why we use the condition si.α ∨ |Smaller(si, [s])| = 1 for
checking whether a node has at least one smaller neighbor, instead of just using si.α is the
following. Let u be the node with state si, and v be the node with state s. It could be the
case that v is smaller than u, but u has been scheduled earlier than v. So it may be the case
that u has never seen v. In this case, we could get that u.α is false, even though u has v

as smaller neighbor. For this reason, node v computes whether u.α would become true if u

were to be scheduled one additional round, by checking whether v is smaller than u using
the condition |Smaller(si, [s])| = 1. A similar reasoning is applied for checking whether
a node has at least one larger neighbor. Note that, in the algorithm, once a node sets α

(resp. β) to true, that is when it realizes that it is not a local minima (resp., maxima), it will
never change its value. The reason is that, as we will prove later, a node never becomes a
local minima (resp., maxima) by flipping edges. We now introduce the special termination
condition. According to this special condition, a node terminates if (1) its neighborhood
is special, and (2) it is a local maxima according to the original ordering, that is, before
flipping any edge.

procedure SpecialTermination(s,(s1, . . . , s∆))
return SpecialNeighborhood(s, (s1, . . . , s∆)) ∧

(
∀i ∈ {1, . . . , ∆}, s.x > si.x

)
end procedure

The new algorithm. The algorithm is displayed as Algorithm 4. Like in the case of
Algorithm 3, we assume that inputv is the result of running WaitFreeLinial. Observe that
the algorithm is similar to Algorithm 3, with only three exceptions. First, it identifies (0, ∆)
with (∆, 0) when checking for termination at line 6. Second, it uses the custom ordering
relation induced by the functions Smaller and Larger at lines 11 and 12. Third, it has
an additional termination condition at line 17. The proof that Algorithm 4 is correct, and
the analysis of its runtime can be found in the full version.

DISC 2024



5:16 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

Algorithm 4 Saving 1 color from palette [ 1
2 (∆ + 1)(∆ + 2)]. Algorithm of node v with color

inputv.

1: procedure SaveOneMoreColor(idv,inputv)
2: a← 0; b← 0 ; x← inputv ; z ← idv

3: f ← {}; α← false; β ← false ▷ s = (a, b, x, f, α, β, z) is the state of node v

4: repeat forever
5: (s1, . . . , s∆)←WriteSnapshot(s) ▷ if dv < ∆, we assume si = ⊥, ∀i > dv

6: if Map(a, b) /∈ {Map(si.a, si.b) | i ∈ {1, . . . , ∆}∧si ̸= ⊥} then return Map(a, b)
7: else
8: if (a = ∆) ∨ (b = ∆) then ▷ We compute the flipped edges.
9: f ← f ∪

{
si.z | (i ∈ {1, . . . , ∆})(si ̸= ⊥) ∧

(
(si.a = ∆) ∨ (si.b = ∆)

)}
10: end if
11: a← N∖ {si.a | i ∈ Larger(s, (s1, . . . , s∆))}
12: b← N∖ {si.b | i ∈ Smaller(s, (s1, . . . , s∆))}
13: if |Smaller(s, (s1, . . . , s∆))| ≥ 1 then α← true
14: end if
15: if |Larger(s, (s1, . . . , s∆))| ≥ 1 then β ← true
16: end if
17: if SpecialTermination(s, (s1, . . . , s∆)) then return (0, ∆)
18: end if
19: end if
20: end repeat
21: end procedure

7 Open Questions

We have shown that every n-node graph of maximum degree ∆ can be properly colored with
1
2 (∆ + 1)(∆ + 2) − 1 colors in ASYNC LOCAL, in O(log⋆ n) + f(∆) rounds. The number
of colors may seem large, but the ASYNC LOCAL model is considerably weaker than the
(synchronous and failure-free) LOCAL model. In particular, it is known that even the clique
with n = ∆ + 1 nodes cannot be colored with less than 2∆ + 1 colors in ASYNC LOCAL
(whenever ∆ + 1 is power of a prime), and we have shown that there exists an infinite family
of regular graphs with even degree ∆ that cannot be colored with less than ∆ + 3 colors
in ASYNC LOCAL. One major question as far as solving graph problems in asynchronous
crash-prone networks is thus the following.

Open Problem: Is there a (2∆ + 1)-coloring algorithm for graphs with maximum degree ∆
in the ASYNC LOCAL model, for every ∆ ≥ 2?

Of course, if one puts aside cliques, there might be a coloring algorithm for ASYNC LOCAL
using a palette of less than 2∆ + 1 colors. However, we have shown that, for ∆ = 2, the
bound 2∆ + 1 = 5 is tight for infinitely many cycles. The only generic bound applying to
infinitely many graphs of maximum degree ∆ is however only ∆ + 3, so there might be room
for improvement. Yet, saving even just a single color in a palette of 1

2 (∆ + 1)(∆ + 2) colors
was very delicate and difficult. So, progressing from a quadratic number of colors to a linear
number of colors appears to be a challenge in ASYNC LOCAL.

Finally, we question the efficiency of randomized algorithms in the ASYNC LOCAL model.

Open Problem: To which extent randomized algorithms help in the ASYNC LOCAL model,
in term of both complexity and computability?



A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:17

References
1 Hagit Attiya and Ami Paz. Counting-based impossibility proofs for set agreement and renaming.

J. Parallel Distributed Comput., 87:1–12, 2016. doi:10.1016/J.JPDC.2015.09.002.
2 Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and

advanced topics. Wiley, 2004.
3 Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Michael E. Saks. Adapting to

asynchronous dynamic networks. In 24th ACM Symposium on Theory of Computing (STOC),
pages 557–570, 1992.

4 Baruch Awerbuch and David Peleg. Network synchronization with polylogarithmic overhead.
In 31st IEEE Symposium on Foundations of Computer Science (FOCS), pages 514–522, 1990.
doi:10.1109/FSCS.1990.89572.

5 Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (δ + 1)-
coloring below szegedy-vishwanathan barrier, and applications to self-stabilization and to
restricted-bandwidth models. In 37th ACM Symposium on Principles of Distributed Computing
(PODC), pages 437–446, 2018. URL: https://dl.acm.org/citation.cfm?id=3212769.

6 Samuel Bernard, Stéphane Devismes, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil.
Optimal deterministic self-stabilizing vertex coloring in unidirectional anonymous networks. In
23rd IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pages
1–8, 2009. doi:10.1109/IPDPS.2009.5161053.

7 Jean R. S. Blair and Fredrik Manne. An efficient self-stabilizing distance-2 coloring algorithm.
Theoretical Computer Science, 444:28–39, 2012. doi:10.1016/J.TCS.2012.01.034.

8 Lélia Blin, Laurent Feuilloley, and Gabriel Le Bouder. Brief announcement: Memory lower
bounds for self-stabilization. In 33rd International Symposium on Distributed Computing
(DISC), volume 146 of LIPIcs, pages 37:1–37:3. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPICS.DISC.2019.37.

9 Lélia Blin and Sébastien Tixeuil. Compact deterministic self-stabilizing leader election - the
exponential advantage of being talkative. In 27th Int. Symp. on Distributed Computing (DISC),
volume 8205 of LNCS, pages 76–90. Springer, 2013. doi:10.1007/978-3-642-41527-2_6.

10 Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, and
Corentin Travers. Synchronous t-resilient consensus in arbitrary graphs. Inf. Comput.,
292:105035, 2023. doi:10.1016/J.IC.2023.105035.

11 Armando Castañeda, Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and
Michel Raynal. Making local algorithms wait-free: the case of ring coloring. Theory of
Computing Systems, 63(2):344–365, 2019. doi:10.1007/S00224-017-9772-Y.

12 Richard Cole and Uzi Vishkin. Deterministic coin tossing and accelerating cascades: micro
and macro techniques for designing parallel algorithms. In 18th ACM Symposium on Theory
of Computing (STOC), pages 206–219, 1986. doi:10.1145/12130.12151.

13 Carole Delporte-Gallet, Hugues Fauconnier, Pierre Fraigniaud, and Mikaël Rabie. Distributed
computing in the asynchronous LOCAL model. In 21st International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS), LNCS 11914, pages 105–110. Springer,
2019.

14 P. Erdös, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered by the
union ofr others. Israel Journal of Mathematics, 51(1):79–89, 1985.

15 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

16 Pierre Fraigniaud, Patrick Lambein-Monette, and Mikaël Rabie. Fault tolerant coloring of the
asynchronous cycle. In 36th Int. Symp. on Distributed Computing (DISC), volume 246 of LIPIcs,
pages 23:1–23:22. Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.DISC.2022.23.

17 Marc Fuchs and Fabian Kuhn. List defective colorings: Distributed algorithms and applications.
In 37th Int. Symp. on Distributed Computing (DISC), volume 281 of LIPIcs, pages 22:1–22:23.
Schloss Dagstuhl - Leibniz-Zentrum für Inf., 2023. doi:10.4230/LIPICS.DISC.2023.22.

DISC 2024

https://doi.org/10.1016/J.JPDC.2015.09.002
https://doi.org/10.1109/FSCS.1990.89572
https://dl.acm.org/citation.cfm?id=3212769
https://doi.org/10.1109/IPDPS.2009.5161053
https://doi.org/10.1016/J.TCS.2012.01.034
https://doi.org/10.4230/LIPICS.DISC.2019.37
https://doi.org/10.1007/978-3-642-41527-2_6
https://doi.org/10.1016/J.IC.2023.105035
https://doi.org/10.1007/S00224-017-9772-Y
https://doi.org/10.1145/12130.12151
https://doi.org/10.1145/3149.214121
https://doi.org/10.4230/LIPICS.DISC.2022.23
https://doi.org/10.4230/LIPICS.DISC.2023.22


5:18 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

18 Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster,
and without network decomposition. In 62nd IEEE Symposium on Foundations of Computer
Science (FOCS), pages 1009–1020, 2021. doi:10.1109/FOCS52979.2021.00101.

19 Mohsen Ghaffari and Anton Trygub. A near-optimal deterministic distributed synchronizer.
In 42th ACM Symposium on Principles of Distributed Computing (PODC), pages 180–189,
2023. doi:10.1145/3583668.3594598.

20 Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. Near-optimal
distributed degree+1 coloring. In 54th ACM Symposium on Theory of Computing (STOC),
pages 450–463, 2022. doi:10.1145/3519935.3520023.

21 Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2013.

22 Juho Hirvonen and Jukka Suomela. Distributed Algorithms. Creative Commons, 2020.
23 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,

1992. doi:10.1137/0221015.
24 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
25 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J. Comput.,

24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.
26 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. Topological characterization of consensus

under general message adversaries. In 38th ACM Symposium on Principles of Distributed
Computing (PODC), pages 218–227, 2019. doi:10.1145/3293611.3331624.

27 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
28 Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic Approach.

Springer, 2018. doi:10.1007/978-3-319-94141-7.
29 Nicola Santoro and Peter Widmayer. Time is not a healer. In 6th Annual Symposium on

Theoretical Aspects of Computer Science (STACS), volume 349 of LNCS, pages 304–313.
Springer, 1989. doi:10.1007/BFB0028994.

30 Kyrill Winkler, Ami Paz, Hugo Rincon Galeana, Stefan Schmid, and Ulrich Schmid. The time
complexity of consensus under oblivious message adversaries. In 14th Innovations in Theoretical
Computer Science Conference (ITCS), volume 251 of LIPIcs, pages 100:1–100:28. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ITCS.2023.100.

https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.1145/3583668.3594598
https://doi.org/10.1145/3519935.3520023
https://doi.org/10.1137/0221015
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1145/3293611.3331624
https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1007/BFB0028994
https://doi.org/10.4230/LIPICS.ITCS.2023.100


A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie 5:19

A Example of an execution of an algorithm for 6-coloring cycles

An example of an execution of Algorithm 1 is provided in Table 1, in which the old and new
states of each node after each step is displayed.

Table 1 An example of execution of Algorithm 1, for the cycle C5 with consecutive node identifiers
(3, 5, 4, 1, 6). The example corresponds to the scheduling S = {1, 3, 5}, {4, 5}, {3, 4}, {6}, {6}, . . . ,
and T stands for Terminated. At each step, the states that are updated are highlighted in bold.

3 5 4 1 6
Old New Old New Old New Old New Old New

Initialization ⊥ (3, 0, 0) ⊥ (5, 0, 0) ⊥ (4, 0, 0) ⊥ (1, 0, 0) ⊥ (6, 0, 0)
{1, 3, 5}

after write (3, 0, 0) (3, 0, 0) (5, 0, 0) (5, 0, 0) ⊥ (4, 0, 0) (1, 0, 0) (1, 0, 0) ⊥ (6, 0, 0)
update (3, 0, 0) (3, 1, 0) (5, 0, 0) (5, 0, 1) ⊥ (4, 0, 0) (1, 0, 0) T (0, 0) ⊥ (6, 0, 0)
{4, 5}

after write (3, 0, 0) (3, 1, 0) (5, 0, 1) (5, 0, 1) (4, 0, 0) (4, 0, 0) (1, 0, 0) T (0, 0) ⊥ (6, 0, 0)
update (3, 0, 0) (3, 1, 0) (5, 0, 1) T (0, 1) (4, 0, 0) (4, 1, 1) (1, 0, 0) T (0, 0) ⊥ (6, 0, 0)
{3, 4}

after write (3, 1, 0) (3, 1, 0) (5, 0, 1) T (0, 1) (4, 1, 1) (4, 1, 1) (1, 0, 0) T (0, 0) ⊥ (6, 0, 0)
update (3, 1, 0) T (1, 0) (5, 0, 1) T (0, 1) (4, 1, 1) T (1, 1) (1, 0, 0) T (0, 0) ⊥ (6, 0, 0)

{6}
after write (3, 1, 0) T (1, 0) (5, 0, 1) T (0, 1) (4, 1, 1) T (1, 1) (1, 0, 0) T (0, 0) (6, 0, 0) (6, 0, 0)

update (3, 1, 0) T (1, 0) (5, 0, 1) T (0, 1) (4, 1, 1) T (1, 1) (1, 0, 0) T (0, 0) (6, 0, 0) (6, 0, 1)
{6}

after write (3, 1, 0) T (1, 0) (5, 0, 1) T (0, 1) (4, 1, 1) T (1, 1) (1, 0, 0) T (0, 0) (6, 0, 1) (6, 0, 1)
update (3, 1, 0) T (1, 0) (5, 0, 1) T (0, 1) (4, 1, 1) T (1, 1) (1, 0, 0) T (0, 0) (6, 0, 1) T (0, 1)

B A Counterexample for an Existing Algorithm for 5-Coloring Cycles

We merely exhibit an instance of 5-coloring C4 for which the algorithm in [16] does not
terminate4. The algorithm presented in [16] is shown in Algorithm 5. In Table 2, we provide
an example of execution where the algorithm loops forever.

4 For the interested reader, we found this counterexample by implementing a simulator for the
ASYNC LOCAL model. This simulator tests a given algorithm with random schedulings.

DISC 2024



5:20 Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

Algorithm 5 The (erroneous) 5-coloring algorithm of [16].

procedure FiveColoring(idv,inputv)
x← idv; a← 0; b← 0 ▷ s = (x, a, b) is the state of node v

repeat forever
(s1, s2)←WriteSnapshot(s)
P + ← {i ∈ {1, 2} | si ̸= ⊥ ∧ si.x > x} ▷ neighbors with larger id
C+ ← {xi.a | i ∈ P +} ∪ {xi.b | i ∈ P +} ▷ a and b of neighbors with larger id
C ← {xi.a | i ∈ {1, 2} ∧ si ̸= ⊥} ∪ {xi.b | i ∈ {1, 2} ∧ si ̸= ⊥} ▷ a and b of all

neighbors
if a /∈ C then return a

else
if b /∈ C then return b

else
a← minN∖ C+

b← minN∖ C

end if
end if

end repeat
end procedure

Table 2 An example of execution where Algorithm 5 loops, for a 4-cycle with nodes’ identifiers
(3, 4, 2, 1) in consecutive order. The example is for the scheduling {2, 3, 4}, {1, 3, 4}, {3, 4}, {3, 4}, . . . .
Observe that the state obtained after scheduling {1, 3, 4} is the same state as the one obtained after
the fourth step (when {3, 4} is scheduled for the second time). Therefore, there exists a scheduling
that makes the algorithm looping forever.

3 4 2 1
Old New Old New Old New Old New

Initialization ⊥ (3, 0, 0) ⊥ (4, 0, 0) ⊥ (2, 0, 0) ⊥ (1, 0, 0)
{2, 3, 4}

after write (3, 0, 0) (3, 0, 0) (4, 0, 0) (4, 0, 0) (2, 0, 0) (2, 0, 0) ⊥ (1, 0, 0)
update (3, 0, 0) (3, 1, 1) (4, 0, 0) (4, 0, 1) (2, 0, 0) (2, 1, 1) ⊥ (1, 0, 0)
{1, 3, 4}

after write (3, 1, 1) (3, 1, 1) (4, 0, 1) (4, 0, 1) (2, 0, 0) (2, 1, 1) (1, 0, 0) (1, 0, 0)
update (3, 1, 1) (3, 2, 2) (4, 0, 1) (4, 0, 2) (2, 0, 0) (2, 1, 1) (1, 0, 0) (1, 2, 2)
{3, 4}

after write (3, 2, 2) (3, 2, 2) (4, 0, 2) (4, 0, 2) (2, 0, 0) (2, 1, 1) (1, 0, 0) (1, 2, 2)
update (3, 2, 2) (3, 1, 1) (4, 0, 2) (4, 0, 1) (2, 0, 0) (2, 1, 1) (1, 0, 0) (1, 2, 2)
{3, 4}

after write (3, 1, 1) (3, 1, 1) (4, 0, 1) (4, 0, 1) (2, 0, 0) (2, 1, 1) (1, 0, 0) (1, 2, 2)
update (3, 1, 1) (3, 2, 2) (4, 0, 1) (4, 0, 2) (2, 0, 0) (2, 1, 1) (1, 0, 0) (1, 2, 2)



Speedup of Distributed Algorithms for Power
Graphs in the CONGEST Model
Leonid Barenboim #

Open University of Israel, Ra’anana, Israel

Uri Goldenberg #

Ben-Gurion University of the Negev, Beersheba, Israel

Abstract
We obtain improved distributed algorithms in the CONGEST message-passing setting for problems
on power graphs of an input graph G. This includes Coloring, Maximal Independent Set, and related
problems. For R = f(∆k, n), we develop a general deterministic technique that transforms R-round
LOCAL model algorithms for Gk with certain properties into O(R · ∆k/2−1)-round CONGEST
algorithms for Gk. This improves the previously-known running time for such transformation, which
was O(R · ∆k−1). Consequently, for problems that can be solved by algorithms with the required
properties and within polylogarithmic number of rounds, we obtain quadratic improvement for Gk

and exponential improvement for G2. We also obtain significant improvements for problems with
larger number of rounds in G. Notable implications of our technique are the following deterministic
distributed algorithms:

We devise a distributed algorithm for O(∆4)-coloring of G2 whose number of rounds is O(log ∆ +
log∗ n). This improves exponentially (in terms of ∆) the best previously-known deterministic
result of Halldorsson, Kuhn and Maus.[25] that required O(∆ + log∗ n) rounds, and the standard
simulation of Linial [30] algorithm in Gk that required O(∆ · log∗ n) rounds.
We devise an algorithm for O(∆2)-coloring of G2 with O(∆ · log ∆ + log∗ n) rounds, and (∆2 + 1)-
coloring with O(∆1.5 · log ∆ + log∗ n) rounds. This improves quadratically, and by a power of
4/3, respectively, the best previously-known results of Halldorsson, Khun and Maus. [25].
For k > 2, our running time for O(∆2k)-coloring of Gk is O(k · ∆k/2−1 · log ∆ · log∗ n).
Our running time for O(∆k)-coloring of Gk is Õ(k · ∆k−1 · log∗ n).
This improves best previously-known results quadratically, and by a power of 3/2, respectively.
For constant k > 2, our upper bound for O(∆2k)-coloring of Gk nearly matches the lower bound
of Fraigniaud, Halldorsson and Nolin. [16] for checking the correctness of a coloring in Gk.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Math-
ematics of computing → Graph coloring

Keywords and phrases Distributed Algorithms, Graph Coloring, Power Graph, CONGEST

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.6

Related Version Full Version: https://arxiv.org/abs/2305.04358 [10]

Funding This research was supported by The Open University of Israel’s Research Fund.

1 Introduction

1.1 Model and Results

In the distributed message-passing model a communication network is represented by an
unweighted n-vertex graph G = (V, E) with maximum degree ∆. Each vertex has a unique
ID, represented by O(log n) bits. Computations proceed in synchronous discrete rounds,
each of which consists of message exchange between neighbours, and local computations of
vertices. The input for an algorithm is the network graph G, where initially each vertex

© Leonid Barenboim and Uri Goldenberg;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 6; pp. 6:1–6:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:leonidb@openu.ac.il
https://orcid.org/0000-0002-9021-3549
mailto:goldeuri@post.bgu.ac.il
https://orcid.org/0009-0002-0130-6100
https://doi.org/10.4230/LIPIcs.DISC.2024.6
https://arxiv.org/abs/2305.04358
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model

knows only its own ID and the IDs of its neighbours1, and the values n and ∆. During an
execution, within k > 0 rounds, vertices may obtain information about other vertices in their
k-hop-neighborhood. The output of an algorithm consists of the final answers returned by
all vertices. The running time of an algorithm is the number of rounds until the algorithm
terminates in all vertices. In the current paper we focus on the CONGEST model. In this
model the number of bits that can be sent over each edge in each round is bounded by
O(log n). Consequently, within k rounds each vertex can learn only a small portion of the
information that resides in its k-hop-neighborhood. Such a neighborhood may contain up to
∆k + 1 vertices, whose information is much larger than what can be received in k rounds,
namely up to O(k ·∆ · log n) bits. This is in contrast to the distributed LOCAL model, where
message size is unbounded, and each vertex can learn the entire k-hop-neighborhood within
k rounds.

Among the most studied problems in this setting are coloring and maximal independent
set (henceforth, MIS). These problems are very well motivated by real-life network tasks,
such as resource allocation, scheduling, channel assignment, etc. Often, in order to perform
such a task, a coloring or MIS has to be computed on a power graph of the network, rather
than the original graph that represents the network. For example, in job scheduling, where
each vertex can perform one job at a time, and can send one neighbor a job to perform,
a coloring is used for job scheduling. In this scheduling all vertices of a certain color are
executed at the same time. Then these vertices and neighbours selected by them execute
jobs. However, an ordinary proper coloring will not suffice, since a vertex may have several
neighbours with the same color, who send it jobs to perform. Since it can handle only one
job, the other jobs that are sent simultaneously are lost. To prevent this, 2-distance coloring
is used, where each pair of vertices at distance at most 2 one from another in G obtain
distinct colors. (This is equivalent to an ordinary proper coloring of the power graph G2.)
Now each vertex has at most one neighbor with a certain color, and no more than one job
arrives to the vertex at a time.

Because of their importance, problems on power graphs for computing coloring, MIS,
and related tasks have been very intensively studied in the distributed setting. A plethora of
significant results have been obtained in recent years in the CONGEST setting [4, 13, 16,
25, 26, 33]. In particular, Bar-Yehuda, Censor-Hillel, Maus, Pai and Pemmaraju [4] devised
approximate Minimum Dominating Set and Minimum Vertex cover (MVC) algorithms for G2.
Halldorsson, Khun, Maus and Nolin. [26] devised a logarithmic-time randomized algorithm
for distance-2 coloring using ∆2 + 1 colors. (For a positive integer q, distance-2 coloring
with q colors is equivalent to ordinary proper coloring of G2 with q colors.) Halldorsson,
Khun and Maus [25] devised deterministic algorithms for distance-2 coloring using O(∆2)
colors with time polylog(n), and using (∆2 + 1) colors with time O(∆2 + log∗ n). Fraigniaud,
Halldorsson and Nolin [16] showed that for k > 2, testing whether a given proper coloring
is correct requires Ω(∆⌊(k−1)/2⌋) rounds. Also, a general well-known scheme for simulating
LOCAL R-round algorithms for Gk in the CONGEST setting provides algorithms with time
O(R ·∆k−1) in the CONGEST setting.

In the last decades, much attention of researchers was devoted to understanding the
complexity of these problems on G and Gk as a function of ∆, modulo the unavoidable factor of
log∗ n. A major question that remained open for many years is whether o(∆)+log∗ n solutions
are possible for O(∆)-coloring, MIS and related problems on G. In recent breakthroughs
it was shown that while MIS and Maximal Matching require Ω(∆) time [3], the problem

1 A node can learn the ids of its neighbours within a single round in the CONGEST model



L. Barenboim and U. Goldenberg 6:3

of O(∆)-coloring can be solved in Õ(
√

∆ + log∗ n) time [5]. However, this question for
coloring power graphs in sublinear-in-∆k time still remained open, since the best results for
O(∆k)-coloring of Gk were at least O(∆k). Specifically, for k = 2 it is O(∆2 + log∗ n) [25],
and for k > 2 it is Õ(∆k+k/2−1 + ∆k−1 log∗ n) (by applying a standard simulation for Gk

to [9]).
In this paper we answer this question in the affirmative, by providing deterministic

CONGEST algorithms for O(∆2)-coloring of G2 with Õ(∆ + log∗ n) rounds, and O(∆k)-
coloring of Gk with Õ(∆k−1 + log∗ n) rounds2. More generally, we provide a speedup
technique for various problems, including coloring and MIS, that improves quadratically
each phase of an algorithm for Gk that adheres to certain requirements. In particular, such
algorithms that perform the standard simulation are improved from running time O(R ·∆k−1)
to O(R ·∆k/2−1). In the case of G2 our speedup of a phase is exponential (in terms of ∆),
resulting in running time O(R · polylog(∆)). For example, we compute O(∆4)-coloring of G2

within O(log ∆ + log∗ n) time, improving the best previously-known result of O(∆ + log∗ n).
Our results also give rise to a quadratic improvement in the memory complexity per

vertex. Specifically, when using aggregation functions, the size of the result computed by w

for each vertex in its k/2-hop-neighborhood is reduced from ∆k/2 to a much smaller value,
ideally, O(1). Using such technique the required memory per vertex is also reduced from
Õ(∆k) to Õ(∆k/2).

An interesting implication of our results is that O(∆2k)-coloring of Gk can be computed
in the CONGEST model in O(∆k/2−1 log ∆ log∗ n) rounds. This nearly matches the lower
bound of Fraigniaud, Halldorsson and Nolin [16] for testing a proper coloring that requires
Ω(∆⌊(k−1)/2⌋) rounds.

1.2 Our Techniques
The previously-known technique for simulating CONGEST algorithms from G on Gk proceeds
as follows. For each round of the simulated algorithm, each vertex v ∈ V has to obtain its
k-hop-neighborhood information. Since the number of vertices in the k-hop-neighborhood
is bounded by O(∆k) and the number of edges is bounded by O(∆k ·∆) = O(∆k+1), this
neighborhood structure (consisting of vertices and edges between them) can be delivered to
v within O(∆k) rounds. This information is sufficient for v to simulate its local computation
in that round for the algorithm in Gk. Then, v broadcasts a message to all vertices in its
k-hop-neighborhood. Such a broadcast is performed by all vertices of G in parallel, and
requires O(∆k−1) rounds. We note that often it is sufficient to employ O(∆k−1) rounds also
in the stage of obtaining the k-hop-neighborhood information. This is the case when only
information about vertices is needed, rather than how they are connected. Consequently,
various CONGEST algorithms that require f(∆, n) rounds in G can be transformed into
O(f(∆k, n) ·∆k−1)-round algorithms for Gk.

Our new method improves this idea, by performing stages of information collection and
information broadcast only half the way, to distance k/2 rather than k. Indeed, for each pair
of vertices u, v ∈ V at distance k one from another, there is a vertex w in the middle of a
path between them that can obtain their information by collecting its k/2-hop-neighborhood.
Then w can perform a computation on v and w (as well as all other vertices in its k/2-hop-
neighborhood) and return the results to them. However, if this is done in a trivial way, then w

2 For simplicity of presentation, we assume that k is even. Our results extend directly to any positive
integer k ≥ 2, by replacing k/2 with ⌈k/2⌉.

DISC 2024



6:4 Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model

should return information of size ∆k/2 to each vertex in its k/2-hop-neighborhood. In general,
this is done not only by w, but by all vertices in the graph in parallel. Consequently, in order
to collect ∆k/2 pieces of information from each of ∆k/2 vertices in a k/2-hop-neighborhood,
again O(∆k) rounds are needed. Thus, a straightforward approach for going half the way
does not provide an improvement. But we obtain an improvement using the following more
sophisticated method.

Various algorithms can be decomposed into basic steps that perform such operations as
checking whether a variable of a vertex appears in its k-hop-neighborhood, summing the
number of certain value, computing maximum or minimum, etc. In such cases, rather than
collecting the entire k-hop-neighborhood information and then computing a function locally,
aggregation functions can be applied iteratively and distributively. For example, consider a
function for computing the maximum of variables in the k-hop-neighborhood. In this case,
w who is in the middle of a k-length path between u and v applies the function iteratively
and locally on all vertices in the k/2-hop-neighborhood of w. The vertex w sends the result
to all its immediate neighbours, including the one that is at distance k/2− 1 from v. Then
this vertex computes the maximum of the maxima it received from its neighbours, and sends
it to its own neighbours, one of which is at distance k/2− 2 from v. After k/2 such rounds,
v receive the maximum value in its k-hop-neighborhood.

The example of the maximum function is a simple case, when the maximum in the
k/2-hop-neighborhood of w is the same for all its vertices. However, in general, different
answers may be needed for different vertices. Another example is a function that checks
whether variables of vertices are equal. It may be the case that u has a vertex in the
k/2-hop-neighborhood of w with a variable that equals to that of u, but v does not have such
a variable. Then, w must store for each vertex in its k/2-hop-neighborhood its own answer.
This is done by w, by applying aggregation functions locally and iteratively, for each such
vertex. The result of size ∆k/2 is sent to all neighbours of w in parallel. Then, each neighbor
applies the aggregation functions for all vertices in its (k/2− 1)-hop-neighborhood. It does
so starting from the results it received from w. This way, the outcome now is regarding
distance k/2 + 1. This continues for k/2 phases, where in each phase less data has to be
sent (it is reduced by a factor of ∆ in each phase), but the radius of the computation grows
by 1. After k/2 such phases, each vertex holds the result of function applications in its
k-hop-neighborhood.

In order for this technique to work, it employs functions that are (1) commutative and
(2) idempotent. That is, (1) the order of function application must not affect the result, and
(2) applying the same function several times must not affect the result, no matter how many
times it is applied. For example, this is the case in the function maxt(x) = max(x, t). A
series of applications maxt1(maxt2(...(maxtq (x)...)) can be applied in any order, and each
maxti

can appear any positive number of times, without changing the outcome. This is
important to the success of our method, since pairs of vertices u, v may belong to many
k/2-hop-neighborhoods that perform computations for them, and the order of computations
is not predefined. As mentioned above, we show that various algorithms for complicated tasks,
including coloring and MIS, can be constructed from steps consisting of such operations.

We extend our technique also to functions that are not idempotent, in order to generalize
it further. In particular, the counting operation is a very useful building block in various
algorithms. For example, it makes it possible to compute how many times a certain value
appears in the variables of a k-hop-neighborhood of a vertex. (The function increases the
result by one each time it is applied on a variable with that value. But when the function
is applied on a variable with a different value, the result does not change.) However, this



L. Barenboim and U. Goldenberg 6:5

operation is not idempotent, since the outcome depends on the number of times the function
is applied. Consequently, if we apply our technique as described above, the result may be
larger than the actual number of variables with that value. This is because a certain function
invocation may be repeated several times by different vertices in the k-hop-neighborhood.

We propose two solutions for this challenge. In the first solution we analyze how much the
result over-counts the correct answer. In certain cases this can be bounded, so an algorithm
still works, even with over-counting. In more complicated cases, when precise computation is
required, we use BFS trees of radius k/2 that are constructed from all vertices in parallel.
These trees are broadcasted to distance k/2. Then unique paths can be produced between
pairs of vertices at distance k one from another. These paths are used to make sure that
each function application is executed exactly once, for an (ordered) pair of vertices in a
k-hop-neighborhood. This incurs an additional running time of O(∆k−1), but only once
during execution. Consequently, the running time of a transformation of an f(∆, n)-round
algorithm for G becomes O(∆k−1 + f(∆k, n) ·∆k/2−1) in Gk. This is again a significant
improvement over the previously known time of O(f(∆k, n) ·∆k−1).

Another tool we introduce for shrinking message size, which may be of independent interest,
is binary search in neighborhoods. A common building block of distributed algorithms is
performing computations on lists that vertices hold, as follows. A vertex has to compute a
certain function on its own list and the lists of its neighbours. In some functions the outcome
can be determined by a single element of a list. (For example, finding an element that does
not appear in the neighbours lists.) A naive computation for lists of size t requires t rounds,
since the lists have to be delivered to neighbours that apply the function on them. To speedup
this process we perform a binary search with assistance of neighbours, so that lists shrink
by a certain factor in each round, but each of them still contains an element from which
the function outcome can be deduced. Finally, each list contains just a single element, who
provides the desired result. This tool is a main ingredient in our algorithm for O(∆4)-coloring
of G2 in O(log ∆ + log∗ n) time, and O(∆2)-coloring of G2 in O(∆ · log ∆ + log∗ n) time.

1.3 Related Work
Among the first works on deterministic distributed symmetry breaking are algorithms for
(1-hop) coloring and MIS of paths and trees. An O(log∗ n)-round algorithm for 3-coloring
paths was devised by Cole and Vishkin in 1986 [12]. This was extended to oriented trees by
Goldberg, Plotkin, and Shannon in 1987 [24]. A (1-hop) coloring deterministic algorithm
for general graphs that employs O(∆2)-colors and has running time O(log∗ n) was obtained
by Linial in 1987 [30]. This algorithm gives rise to (∆ + 1)-coloring in O(∆2 + log∗ n) time.
The running time for (∆ + 1)-coloring was improved to O(∆ · log ∆ + log∗ n) by Szegedy and
Vishwanathan in 1993 [36], and by Kuhn and Wattenhofer in 2006 [29], by a more explicit
construction. This was further improved to O(∆ + log∗) by Barenboim, Elkin and Kuhn in
2009 [7]. The latter result also implies an algorithm for MIS in O(∆ + log∗ n) rounds. As
proven in [3], this result for MIS is tight. On the other hand, sublinear-in-∆ algorithms for
(∆ + 1)-coloring are possible, as shown by Barenboim [5], who devised such an algorithm with
running time Õ(∆3/4 + log∗ n). This was further improved in several works [9, 17, 18, 32],
to the current state of the art, which is Õ(

√
∆ + log∗ n).

In addition to the thread of research on algorithms with dependency on ∆ in the running
time, there has been also progress with deterministic algorithms that depend on n (in a
stronger way than just log∗ n). Several results were obtained using network decompositions
[2, 34, 21], and the recent breakthrough of Rozhon and Ghaffari [21] makes it possible
to compute coloring and MIS deterministically within poly(log n) time. In addition, it

DISC 2024



6:6 Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model

is even possible to obtain (∆ + 1)-coloring and MIS without network decompositions in
O(log n log2 ∆) time [23, 14] and (log2 n) for MIS [20]. Both threads of research are very
important and attracted much attention of researchers. In the case where the dependency on
n is larger than log∗ n, a main goal is improving this dependency, as well as the dependency
on ∆. In the case that the dependency on n is O(log∗ n), which is unavoidable, the main
goal is improving the dependency on ∆.

Randomized symmetry breaking algorithms have been very extensively studied as well.
The first algorithms for (∆ + 1)-coloring and MIS, due to Luby [31] and Alon, Babai and
Itai [1] required O(log n)-time. This was improved by Kothapalli, Scheideler, Onus and
Schindelhauer in 2006 [28] who obtained O(∆)-coloring in Õ(

√
log n) rounds. In several

major advances, this was improved even further to O(log ∆+poly(log log n)) for MIS [19, 35],
O(

√
log ∆ + poly(log log n)) for coloring [27], and O(poly(log log n)) for coloring [11].

Since currently-known randomized algorithms have better dependency on ∆, while
deterministic algorithms have better dependency on n, the improvement of either randomized
or deterministic solutions is valuable. In particular, improving the dependency on ∆ in
deterministic algorithms is very important, since the gap between the current deterministic
and randomized solutions is quite large.

Recently, distance-k problems and computations on power graphs attracted much attention
in the research of distributed algorithms. Emek, Pfister, Seidel and Wattenhofer [13] proved
that every problem that can be solved (and verified) by a randomized anonymous algorithm
can also be solved by a deterministic anonymous algorithm provided that the latter is
equipped with a distance-2 coloring of the input graph. Computing distance-k coloring is a
key component in the derandomization of LOCAL distributed algorithms, due to Ghaffari,
Harris and Kuhn [22] from 2019. Upper- and lower-bounds for approximate Minimum
Dominating Set on power graphs were devised by Bar-Yehuda, Censor-Hillel, Maus, Pai and
Pemmaraju [4] in 2020. Deterministic and randomized distance-2 coloring algorithms were
obtained by Halldorsson, Kuhn and Maus [25]. Improved randomized results for distance-2
coloring were obtained by Halldorsson, Kuhn, Maus and Nolin [26]. Very recently, in 2023,
Maus, Peltonen, and Uitto [33] devised deterministic algorithms for k-ruling sets on Gk

with time Õ(k2 log4 n log ∆). They also devised randomized algorithm for this problem, as
well as for MIS, with logarithm dependency on ∆ and poly-log-log dependency on n. The
most recent result for 2-distance coloring is a randomized algorithm by Flin, Halldorson and
Nolin [15], whose running time is O(log6 log n).

2 Distance-2 coloring G with O(∆4) colors in O(log ∆ + log∗ n)
rounds

In this section we devise an algorithm for distance-2 coloring of G using O(∆4) colors, which
is a distance-1 coloring of G2. Our algorithm significantly speeds-up the previously-known
algorithms for distance-2 coloring with this number of colors. The previous algorithms [25]
are based on simulating Linial’s [30] algorithm in G2. (See also [8], for more details about
the original algorithm of Linial [30].) The algorithm of [25] for G2 requires spending ∆
rounds to simulate certain rounds of Linial’s algorithm. On the other hand, our new method
improves this, so that only O(log ∆) rounds are required to simulate a round of Linial’s
algorithm. Consequently, our algorithm produces a proper O(∆4) coloring of G2 within
O(log ∆ + log∗ n) rounds in the CONGEST model. Moreover, most rounds of Linial’s
algorithm can be simulated within O(1) rounds.



L. Barenboim and U. Goldenberg 6:7

The principle of our method is binary search. Consider the i-th round, i =
1, 2, ..., O(log∗ n), of Linial’s original algorithm. Each vertex v generates a subset of possible
colors S(ϕ(v)) = {s1, s2, ..., sj} from the palette of {1, 2, ...(∆ · log(i) n)2}, such that there
exists a color sj ∈ S(ϕ(v)), where sj /∈ S(ϕ(u)), for all neighbours u of v. Moreover, Linial’s
algorithm makes it possible to construct a set system, such that for any pair of neighbours
u,v, it holds that

|S(ϕ(u))|
|S(ϕ(u)) ∩ S(ϕ(v))| > ∆ and |S(ϕ(v))|

|S(ϕ(u)) ∩ S(ϕ(v))| > ∆.

Each vertex v selects such a color sj , which is from its own set S(ϕ(v)), but does not
belong to any of its neighbours sets, from which the neighbours select colors. Consequently,
the coloring is proper. Since in each round the subsets are taken from smaller sets, the
number of colors is reduced in each round. We show that the element sj can be found using
binary search, without knowing the neighbours sets S(ϕ(u)), but only knowing the number of
intersections with neighbours’ sets in a specific range. When solving 2-distance-coloring using
this idea in a straightforward way, each node needs to receive all the subsets from 2-distant
neighbours. This causes all nodes to send messages with size of at least O(∆) for each node
in order to receive messages with all of its distance-2 neighbours colors. (Each neighbor of a
given vertex sends it the colors of all its own neighbours.) Using this information a vertex
can compute the available color to choose. However, this approach exchanges much more
information than needed and can be optimized for restricted bandwidth models. We provide
this optimization in Section 2.1.

2.1 High level description

Our technique does not use an ordinary set, but an ordered set, thus we can perform a binary
search. The goal of the binary search, for a vertex v ∈ V , is finding an element in S(v),
that does not belong to any set S(u), for u in the 2-hop-neighborhood of v. To this end, for
each vertex we define a range, that initially contains all elements of S(v). Then we reduce
the range size by a factor of at least 2 in each stage of the binary search. Eventually, each
v ∈ V reduces its range to contain a single element that does not belong to any range in its
2-hop-neighborhood. However, there is a cost in running time because each binary search
requires O(log k) rounds where k is the size of the colors palette of the current stage.

The technique in high level is that each vertex knows its 1-distance neighbours subsets
that are based on the coloring ϕ(u) and marked S(ϕ(u)) and computes the number of
intersections with these subsets. Each node holds two indices that constitute the beginning
and end of the relevant range. The neighbours are aware of those indices and refer to the
beginning index by left and the ending index by right. On every iteration the number of
intersecting values of the subsets is reduced by a factor of at least two, simply by counting
the elements in each half of a range and choosing the half-range with less intersections. On
each round each vertex receives the number of intersecting values for both their left half and
right half from its neighbours and decides whether in the next round it will use the left half
of the range or the right half, and update its left, right indices accordingly. The selected
half of the range is the one with fewer intersecting values.

Next, we provide the pseudocode of our algorithm (see Algorithm 1 below), called
2-Distance-Linial, and analyze its correctness and running time.

DISC 2024



6:8 Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model

Algorithm 1 2-Distance-Linial’s algorithm phase.
1: Let t be the size of each set in the current phase /* All sets have the same size in the

same phase */
2: Let S(v) = S(ϕ(v)) = {s1(v), s2(v), ..., st(v)} be the ordered set produced by the al-

gorithm of Linial for the vertex v. /* S(ϕ(v)) is computed locally by Linial’s algorithm
as a function of ϕ(v). */

3: Let S(ui) = S(ϕ(ui)) = {s1(ui), s2(ui), ..., st(ui)}
4: From Linial’s proof we know that every S contains an element si, such that si belongs

to S and does not belong to any other S(ϕ(uj)) with ϕ(uj) ̸= ϕ(ui)
5: The vertex v performs a binary search in the set S, with assistance of its neighbours, as

follows:
6: left = 1, right = t

7: while left ̸= right do
8: for u ∈ Γ(v) in parallel do
9: Intl(v, u) = Number of intersections of S(v) and {si(u) | i ∈ [left, ..., right

2 − 1]}
10: Intr(v, u) = Number of intersections of S(v) and {si(u) | i ∈ [ right

2 , right]}
11: end for
12: All neighbours u of v notify v, in parallel, about Intl(u, v) and Intr(u, v).
13: All nodes in parallel send Intl(ui, v) and Intr(ui, v) to 1-hop-neighbours ui

14: A node v receives Intl(u, v) and Intr(u, v) from all of its neighbours
15: The vertex v computes the sums suml =

∑
u∈Γ(v) Intl(u, v) and

sumr =
∑

u∈Γ(v) Intr(u, v).
16: if sumr ≥ suml then
17: right = right

2 − 1
18: Send to all neighbours “left chosen”
19: else
20: left = right

2
21: Send to all neighbours “right chosen”
22: end if
23: The new set S(v) for the next phase of the binary search is

S(v) = {sleft(v), ..., sright(v)}
24: Receive all neighbours [left \ right] choices and compute S(u) for all u ∈ Γ(v)
25: end while
26: return the color sleft(v) /* now sleft(v) = sright(v) */

2.2 Proof and run time analysis
▶ Lemma 2.1. After each invocation of 2-Distance-Linial’s algorithm phase the coloring ϕ

remains proper.

▶ Lemma 2.2. The running time of 2-distance-Linial in the CONGEST model is O(log∗ n ·
log ∆ + log log n).

Details and proofs of the lemmas in section 2.2 appear in the full version of this paper [10].
Next, we provide an improvement, which removes the O(log log n) factor from Lemma 2.2.

To this end, we perform each binary search for O(log ∆) phases, rather than O(log t).
Moreover, in each phase we send just one bit to indicate whether the left half is chosen or the
right one, rather than sending indices of ranges. This information is sufficient to compute
the new range from the previous one. After O(log ∆) phases, we obtain consecutive range of



L. Barenboim and U. Goldenberg 6:9

size O(t/∆) = O(log n). Recall that the previous range size is t = O(∆ · log n), which is a
square root of the number of colors. The new range defines a bit-string of size O(log n) that
represents whether there is a conflict for each element in {sleft(v), ..., sright(v)}. This string
is then sent directly to v by each of its 1-hop-neighbours. This is done using O(log n)-bits
messages, within one round in parallel by all neighbours. Then v finds an index i ∈ O(log n)
of a bit with a 0 value, which exists since there is an index without conflicts in the range
{sleft, ..., sright}. The resulting color with no conflicts is sleft+i(v). We summarize this in
the next theorem.

▶ Theorem 2.3. A proper distance-2 coloring with O(∆4)-colors can be computed in O(log ∆ ·
log∗ n) rounds in the CONGEST model.

Theorem 2.3 demonstrates that for each of the log∗ n iterations of Linial’s algorithm,
O(log ∆) rounds are performed to compute the color for the next iteration. We now argue
that it is sufficient to perform just two iterations with O(log ∆) rounds, while the remaining
O(log∗ n) iterations require O(1) rounds each. The idea is similar to an improvement from
O(∆ log∗ n) to O(∆ + log∗ n) of [25]. Specifically, after 2 iterations the number of colors
becomes O(∆4 log2 log n). If ∆4 > log2 log n. Then this is an O(∆8)-coloring. It can be
converted into an O(∆4)-coloring within a single iteration, using a field of size Θ(∆2), and
polynomials of degree 4. Indeed, each of the current O(∆8) colors can be assigned a unique
polynomial, and each such polynomial has at least one non-intersecting point with any ∆2

others. These are used for computing new colors in a range of size O(∆4). The other possibility
is that ∆4 ≤ log2 log n. Then, instead of performing a binary search, one can directly send
∆ messages, each of which consists of a color in a range of O(∆4 log2 log n) = O(log4 log n).
Since ∆ ≤

√
log log n, the number of bits in the concatenation of these ∆ messages is

poly(log log n), so it can be sent over an edge within O(1) rounds of the CONGEST model.

▶ Corollary 2.4. A proper distance-2 coloring with O(∆4)-colors can be computed in O(log ∆+
log∗ n) rounds in the CONGEST model.

3 Distance-2 coloring with O(∆2) colors in O(∆ · log ∆ + log∗ n)
rounds

3.1 High level description
In this section we provide an improved algorithm for distance-2 coloring of G using O(∆2)
colors, which is distance-1 coloring of G2. The improvement is from O(∆2 + log∗ n) rounds
to O(∆ · log ∆ + log∗ n) rounds in the CONGEST model. The result is achieved by applying
our technique to the algorithm of [9] that provides an O(∆) coloring of an input graph G in
O(
√

∆ log ∆ + log∗ n) rounds. The algorithm of [9] is based on the following notions.
A p-defective coloring is a vertex coloring such that each vertex may have up to p neighbours
with its color.
An p-arbdefective coloring is a vertex coloring, such that each subgraph induced by a color
class of the coloring has arboricity bounded by p. The arboricity is the minimum number of
forests into which the edge set of a graph can be decomposed.

The algorithm of [9] for distance-1 coloring consists of three stages:
1. Computing O(

√
∆)-defective O(∆)-coloring of G in O(log∗ n) time.

2. Computing O(
√

∆)-arbdefective O(
√

∆)-coloring of G in O(
√

∆) time.
3. Iterating over the O(

√
∆) color classes of step 2, and computing a proper coloring of G

iteratively. Each iteration of Stage 3 requires a constant number of rounds.

DISC 2024



6:10 Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model

As a first step of our extension of this scheme to work in G2, we introduce the following
proxy communication method. The goal is establishing a single path between any pair of
vertices that need to communicate, and are at distance at most 2 one from another. (In
section A.2, we generalize this to vertices of distance k one from another.) This way, the
desired information is passed only once, which improves communication costs, and avoids
miscalculations caused by duplicated data. To this end, for each vertex, a BFS tree of radius
two that is rooted at the vertex is computed. This computation starts with sending the list of
neighbours of each vertex to all its neighbours. This requires O(∆) rounds, because in each
round each vertex sends the information to a neighbor that has not been sent yet. Then, each
vertex is aware of the neighbours of its neighbours. For any distance-2 neighbor, it knows
the immediate neighbours that connect to it, and selects exactly one of these neighbours.
The selected neighbor is referred to as proxy. Note that a vertex v with its proxy nodes and
their neighbours form a BFS of radius two that contains the two-hop neighborhood of v.

In Sections 3.2.1 - 3.2.3, we describe the generalizations and modifications in the above-
mentioned stages (1) - (3), for coloring G2 in O(∆ · log ∆ + log∗ n) rounds in the CONGEST
setting. For these computations we need the above-mentioned notion of proxy nodes.

The running time analysis assumes that the proxy nodes have already been computed.
Otherwise, an O(∆) term should be added. However, this does not affect the overall running
time of the entire algorithm of Section 3, which is O(∆ log ∆ + log∗ n).

3.2 Detailed description of the algorithm

3.2.1 Our variant for distance-2 defective coloring
The computation of O(∆)-defective O(∆2)-coloring of G2 proceeds as follows.
The procedure starts by computing a proper O(∆4)-coloring of G2, using Algorithm 1. Next,
find a prime q = Θ(∆), such that the number of colors is bounded by q4. Note that each
color is represented by a tuple ⟨a, b⟩, a, b ∈ q and Zq is a field modulo q. Assign each color a
unique polynomial p(x) = a + b · x + c · x2 + d · x3, such that 0 ≤ a, b, c, d ≤ q − 1. Assign
each vertex a polynomial according to its color. We say that two polynomials p(x), p′(x)
intersect at the value t,0 ≤ t ≤ q − 1, if p(t) = p′(t). Next, each vertex v ∈ V finds a value
t, 0 ≤ t ≤ q−1, such that p(t) intersects with the minimum number of polynomials of vertices
of distance at most 2 from v. This is done as follows, by a binary search. The vertex v sends
its polynomial to its 1-hop neighbours. Each of these neighbours u ∈ Γ(v) computes the
number of intersections of v’s polynomial with polynomials of neighbours w of u, such that u

is the proxy for {v, w}. In addition, each u ∈ Γ(v) computes the number of intersections of its
polynomial with that of v. The number of intersections is computed for each half of the range
{0, 1, ...., q− 1}, i.e., {0, 1, .... ⌈q/2⌉} and {⌈q/2⌉+ 1, ⌈q/2⌉+ 2, ....q− 1]}. This information is
returned to v by all its 1-hop neighbours. Then v knows how many intersections with its 2-hop
neighbours its polynomial has in {0, 1, .... ⌈q/2⌉} and {⌈q/2⌉+ 1, ⌈q/2⌉+ 2, ....q − 1]}. The
half-range with fewer intersections is selected for the next iteration of the binary search. This
is repeated for log q iterations, until the range contains a single element t ∈ {0, 1, ..., q − 1}.
The color of v returned by the procedure is ⟨t, p(t)⟩. This completes the description of the
procedure. Its correctness and running time are analyzed below.

▶ Lemma 3.1. The procedure computes an O(∆)-defective O(∆2)-coloring of G2.

Proof’s details appear in the full version of this paper [10].

▶ Lemma 3.2. The running time of the procedure is O(log ∆ + log∗ n).



L. Barenboim and U. Goldenberg 6:11

Proof. First, in order to compute O(∆4) coloring we employ Algorithm 1 that has running
time O(log ∆+log∗ n), by Corollary 2.4. The remaining part of the procedure is a binary search
on a range of size O(∆4), and thus requires O(log(∆4)) = O(log ∆) phases, each of which
consists of a constant number of rounds. The overall running time is O(log ∆ + log∗ n). ◀

3.2.2 Algorithm for Distance-2 Arbdefective Coloring
For a graph G, given an O(∆)-defective O(∆2)-coloring of G2, we would like to produce an
O(∆)-arbdefective O(∆)-coloring of G2 within O(∆) rounds. The algorithm is as follows:

This algorithm extends the ideas of [9] to work in G2 in the CONGEST model. In that
paper the authors devised an O(

√
∆)-arbdefective O(

√
∆)-coloring algorithm for G with

O(
√

∆ + log∗ n) rounds. The main idea of the algorithm is as follows. In each round, each
vertex counts how many of its neighbours have the same color as its own. The number of such
neighbours is the number of conflicts. If a vertex has too many conflicts, it selects a new color,
using a certain function. Otherwise, the vertex finalizes its color. The original algorithm
[9] proceeds for O(

√
∆) rounds, and selects the round with the smallest number of conflicts.

By the pigeonhole principle, there must be a round in which the number of color conflicts
is at most O(

√
∆). However, computing the number of conflicts with all 2-hop-neighbours

is expensive, since each original round can take up to O(∆) rounds, when applied in a
straightforward way to G2. To improve this, each vertex collects information about conflicts
from its 2-hop-neighborhood in a bit-efficient manner. Specifically, a vertex receives from
each of its 1-hop neighbours the number of conflicts it has with 2-hop-neighbours, instead of
lists of their colors. During the execution of the algorithm, in each iteration the conflicts are
counted, and if the total number of 2-distance conflicts is below a predefined t, the vertex
finalizes the current color. For any t ∈ [1, ∆2], this stage requires O( ∆2

t ) time and it results
in O(t)-arbdefective O( ∆2

t )-coloring of G2. Setting t = O(∆) results in O(∆)-arbdefective
O(∆)-coloring in time O(∆). See pseudocode of Algorithms 2 - 3 below. (Each color in an
initial O(∆2)-coloring is represented by an ordered pair ⟨a, b⟩, where a, b ∈ O(∆). When
Algorithm 3 terminates, the resulting color resides in the b-coordinate, and it is in the range
[0, 1, ..., O(∆)].) Next, we analyze Algorithm 3.

Algorithm 2 Procedure number-of-conflicts (⟨a0, b0⟩, ⟨a1, b1⟩) .. ⟨an, bn⟩ ).
1: /* This procedure is performed internally by a vertex, within 0 rounds */
2: numberOfConflicts = 0
3: for i = 1, 2, ..., n do
4: if b0 = bi then
5: numberOfConflicts = numberOfConflicts + 1
6: end if
7: end for
8: return numberOfConflicts

DISC 2024



6:12 Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model

Algorithm 3 2-Distance AG Arbdefective Coloring(maxDefect = t).
1: We are given a p-coloring ϕ. Denote q as the smallest prime number such that q ≥ √p.

The parameter maxDefect is the maximal arb-defect allowed for coloring.
2: Denote ϕ(v) = ⟨a, b⟩, where a, b ≤ q

3: while ϕ(v) ̸= ⟨0, b⟩ do
4: Denote by conflicts(v, u)← number-of-conflicts(ϕ(v)

⋃
ui∈Γ(u) ϕ(ui))

5: for i = 1, 2, .., deg(v) in parallel do
6: send to the ith neighbor of v, which is ui, the message conflicts(ui, v)
7: end for
8: Receive all conflicts(v, ui) messages from neighbours
9: if

∑
(v,ui)∈E conflicts(v, ui) ≤ maxDefect then

10: ϕ(v) = ⟨0, b⟩
11: Send “Done” to all neighbours
12: else
13: ϕ(v) = ⟨a, a + b mod q⟩
14: Send “Not done” to all neighbours
15: end if
16: Receive all “Done”, “Not Done” messages from neighbours, and compute ϕ(ui) for

i = 1, 2, ..., deg(v)
17: end while

▶ Lemma 3.3. After running 2-Distance AG Arbdefective Coloring for ⌈2∆2/maxDefect⌉
rounds, all vertices have colors of the form ⟨0, b⟩, and each color class has arboricity at most
maxDefect in G2.

Proof’s details appear in the full version of this paper [10].

3.2.3 Iterative Algorithm for Distance-2 Proper Coloring
In this subsection we describe an algorithm that produces an O(∆2)-proper-coloring of G2

within O(∆ · log ∆ + log∗ n) rounds. This algorithm is based on a the technique devised
in [9], but our algorithm extends this technique to work for G2. For more details regarding
this technique, see section 3 in [5]. Our new algorithm starts with computing an O(∆)-
arbdefective O(∆)-coloring φ for G2. The coloring φ constitutes a partition of the graph
into O(∆) color sets V1, V2, ..., Vd, d ∈ O(∆). Each color class is O(∆)-arbdefective. This
means that the arboricity of a subgraph of G2 induced by Vj , j ∈ O(∆), is bounded by
O(∆). Moreover, each pair of vertices u, v at distance at most 2 one from another have
a parent-child relation in a certain forest. Specifically, when an arbdefective coloring is
computed with Algorithm 3, if u, v terminate (arrive to step 10 of the algorithm) in distinct
rounds, then the parent is the vertex that terminated earlier. Otherwise, the parent is the
vertex with lower ID. Vertices do not have to know their parents explicitly.

The algorithm iterates over i = 1, 2, ..., d. In each iteration i the algorithm computes a
new color φ′ for all of the nodes with color ϕ(v) = i, using at most O(∆2) colors. To this end,
each vertex constructs a set of polynomials, and finds a polynomial P in this set, such that:
(1) The number of intersections of the polynomial P with colors φ′ of vertices in its 2-hop

neighborhood that already selected such colors in previous rounds is as small as possible.
(2) The number of intersections of P with polynomials of its parents in its 2-hop-neighborhood

that are active in the same round i is as small as possible.



L. Barenboim and U. Goldenberg 6:13

The construction of the polynomial set of a vertex u ∈ Vi is performed as follows. Let
q = O(∆) be a prime, such that q > c · ∆, for a sufficiently large constant c ≥ 1. We
represent the color φ(u) by ⟨a, b⟩, where 0 ≤ a, b < q. The set of polynomials of u is
{a · x2 + b · x + j | j = 0, 1, ..., q − 1}. The number of polynomials in the set is q = O(∆).

According to (1), our goal is finding a polynomial P in the set of u, such that the number
of vertices at distance at most 2 from u with the following property is minimized.

(*) For a vertex w that already has a color φ′(w) = ⟨a′
w, b′

w⟩, there exists t ∈ 0, 1, ..., q − 1,
such that ⟨a′

w, b′
w⟩ = ⟨t, P (t)⟩.

According to the Pigeonhole principle, there must be a polynomial in the set of size
q > c ·∆, for which at most q/2 vertices at distance at most 2 satisfy this property. This is
because each vertex satisfies this property for at most one polynomial in this set (the set
consists of non-intersecting polynomials), and the number of vertices at distance at most 2 is
at most q2/2. Our goal is finding such a polynomial. The challenge is that when running
a naive version of this algorithm in the CONGEST model, every vertex needs to know its
2-hop neighbours’ colors. Sending this information requires O(∆) rounds. Next we describe
an optimization that requires only to compute how many intersections there are in sets of
polynomials. This speeds up the running time from O(∆) to O(log ∆).

Next, we describe how each vertex selects the desired polynomial a · x2 + b · x + j from
its set within O(log ∆) rounds. This is done using a binary search on j. To this end, each
vertex has to inform its neighbours about its set of polynomials. Even though there are
q polynomials in the set, this is done just within one round, as follows. Given a set of
polynomials {a · x2 + b · x + j | j = 0, 1, ..., q − 1} of a vertex u, only the coefficients a, b are
sent to the neighbours of u. (Each coefficient requires O(log ∆) bits.) Then the neighbours
can reconstruct the set of polynomials from a, b, since they know that j runs from 0 to q − 1.
Next, every vertex initialize start = 1 and end = q and defines two ranges. The ranges are
low = [start, ⌈ end−start

2 ⌉] and high = [⌈ end−start
2 ⌉ + 1, end]. At the first step each vertex

sends to each of its neighbours w the number of intersections of colors φ′ with polynomials
that have j in range low, as well as the number of intersections for j in range high. In the
next step each vertex receives from its neighbours the number of such intersections in ranges
low and high in its 2-hop-neighborhood. Then each vertex decides for its new start and
end according to the half range in which there are fewer intersection with its polynomials.
Consequently, after halving O(log ∆) times, the range contains just a single value ĵ. It defines
a single polynomial from the set, which is a · x2 + b · x + ĵ.

The next lemma provides a helpful property of the polynomials, which will assist us to
compute the coloring of a set Vi, given colorings of V1, V2, ..., Vi−1.

▶ Lemma 3.4. Suppose that we are given a graph with O(∆)-arbdefective O(∆)-coloring φ of
G2, that partitions the input graph into subsets V1, V2, ..., VO(∆), according to color classes of φ.
Moreover for an integer i ≥ 0, suppose that we already have a proper 2-distance coloring φ′ for
V1, V2, ..., Vi−1. Then we can find a polynomial P = a·x2+b·x+ĵ for each vertex u with φ(u) =
i, such that at least half of the elements in the set {⟨0, P (0)⟩, ⟨1, P (1)⟩..., ⟨q − 1, P (q − 1)⟩}
does not appear as φ′ colors in the 2-hop neighborhood of u.

Proof’s details appear in the full version of this paper [10].
According to Lemma 3.4, it is possible to iterate over the color classes of the arbdefective

coloring φ, for i = 1, 2, ..., O(∆). In each iteration i, each vertex in the color class i obtains a
single polynomial with the properties stated in the lemma. Specifically, it has sufficiently
many elements that still can be used for their φ′ color. Specifically, the number of elements
is larger (by a factor greater than 2) than the number of their parents in G2. Consequently,

DISC 2024



6:14 Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model

a variant of Linial’s algorithm that considers only parents in the 2-hop-neighborhood can
be executed. (For the case of distance-1 coloring, this is a well-known extension of Linial’s
algorithm, which is called arb-Linial [6].) In the case of distance-2 coloring it can be computed
in O(log ∆) phases in the same way as in Corollary 2.4, but considering only 2-hop-parents,
rather than entire 2-hop-neighborhood. Recall that a vertex can deduce the parent-child
relationship of a pair of its neighbours, by inspecting their termination round in Algorithm 3
and their IDs. Hence, we obtain the following Corollary.

▶ Corollary 3.5. It is possible to compute a proper distance-2 coloring with O(∆2) colors
within O(∆ · log ∆ + log∗ n) rounds in the CONGEST model.

3.2.4 Coloring G2 using (∆2 + 1) colors in O(∆3
2 · log ∆ + log∗ n)

rounds
In this section we show how to reduce the number of colors to (∆2 + 1). To this end, we
parameterize the steps of our scheme in a different way, as follows.
1. Compute an 0-defective O(∆2)-coloring of G2, i.e., a proper O(∆2)-coloring.
2. Compute O(

√
∆)-arbdefective O(∆3/2)-coloring of G2.

3. Iterate over the O(∆3/2) color classes that were generated in step 2, and compute a
proper coloring of G2 iteratively, using ∆2 + O(∆3/2) colors.

4. Apply a simple reduction to produce a (∆2+1)coloring of G2 from a ∆2+O(∆3/2)-coloring.

The steps are performed as follows. Step 1 is obtained by applying Corollary 3.5. This
step requires O(∆ · log ∆ + log∗ n) rounds. Step 2 is obtained by applying Lemma 3.3
with maxDefect =

√
∆ and q = Θ(∆3/2). This step requires O(∆3/2) rounds. Step 3 is

performed similarly to Section 3.2.3, but now we have O(∆3/2) color classes to iterate on,
rather than O(∆). On the other hand, the arboricity of each of them is significantly smaller,
and consequently a proper coloring from a range of size ∆2 + O(∆3/2) can be computed. To
this end, let q be a prime, such that q > ∆ + O(

√
∆), q < 2 ·∆ + O(

√
∆). Then each vertex

v in G2 has at most ∆2 neighbours which have finalized their colors in previous rounds, thus
it cannot select their colors. By the pigeonhole principle, there exists a polynomial P of v,
such that P intersects with at most ∆2

q neighboring colors. This polynomial is defined over a
field of size q, and there is a value t ≤ ∆2/q + O(

√
∆), such that ⟨t, P (t)⟩ does not intersect

with any neighboring polynomial, nor with any neighboring color. Thus, ⟨t, P (t)⟩ is selected
as the color of v, and it is from a range of size q · ( ∆2

q + O(
√

∆)) + q = ∆2 + O(∆3/2). This is
the resulting number of colors of step 3, whose running time is O(∆3/2 · log ∆) as described
in Section 3.2.3.

Next we describe step 4, which reduces the number of colors from ∆2 +O(∆3/2) to ∆2 +1.
This step is performed using an adaptation of a simple color reduction for G to G2. The
simple color reduction for G works as follows. Each vertex whose color is greater than all its
neighbours colors (and greater than ∆(G) + 1), selects a new color from {1, 2, ..., ∆(G) + 1}
that is not used by any neighbor. By starting from a proper (∆(G) + k)-coloring, for a
parameter k > 1, and repeating this for k−1 rounds, a proper (∆(G)+1)-coloring is achieved.
If message size is unbounded, this can be directly applied in G2. However, each vertex needs
to collect the colors of its 2-distance neighbourhood. This is in order to know which colors
are available. Thus, O(∆) rounds are required to simulate each original round. To perform
this in the CONGEST setting efficiently, we improve this by invoking a binary search to find
an available color. This is done as in Section 2 and requires O(log ∆) rounds. Consequently,
an O(∆2 + O(∆3/2))-coloring of G2 can be reduced into (∆2 + 1)-coloring of G2 within
O(∆3/2 log ∆) rounds. This completes the description of step 4. The result of invoking steps
1 to 4 is summarized in the next corollary.



L. Barenboim and U. Goldenberg 6:15

▶ Corollary 3.6. (∆2 + 1)-coloring of G2 can be computed within O(∆3/2 log ∆ + log∗ n)
rounds in the CONGEST setting.

4 Speedup technique for algorithms on Gk in the CONGEST model

In this section we devise a method which speeds up the running time of a wide class of
algorithms for problems on Gk in the CONGEST model. This includes algorithms for
problems such as: MIS, maximal matching, edge coloring, vertex coloring, ruling set, cluster
decomposition, etc. Our goal is reducing the amount of data passed in the network, by
exchanging messages only half-the-way, compared to standard algorithm for Gk. In the
general case, in a problem for k-distance, a node may have up to ∆k neighbours. Thus,
previously-known solutions require ∆k−1 rounds for collecting information about k-hop
neighbours in each step of an algorithm. This way, an algorithm with f(∆, n) rounds for G is
translated into an algorithm with f(∆k, n)·∆k−1 rounds for Gk. (In general, the running time
may be even larger, but we focus on solutions in which each vertex makes a decision based
on the current information of vertices in its k-hop-neighborhood, where each vertex holds
O(log n) bits.) On the other hand, our new technique makes it possible to collect aggregated
data from distance only k/2. As a result, the size of the collected data becomes O(∆k/2). This
allows us to obtain a running time of f(∆k, n) ·∆k/2−1 instead of f(∆k, n) ·∆k−1. Nowadays,
various problems have algorithms with running time f(∆, n) = O(polylog(∆) + log∗ n) for G.
In such cases our technique provides a quadratic improvement for Gk, i.e., for distance-k
computations on G. Our technique is based on idempotent functions, described below.

4.1 Idempotent functions
An idempotent function is a function f from a set A to itself, such that for every x ∈ A,
it holds that f(f(x)) = f(x). For example, the following boolean functions from {0, 1} to
{0, 1} are idempotent. F0(x) = x OR 0 , F1(x) = x OR 1 , G0(x) = x AND 0 , G1(x) =
x AND 1. Another example, are functions Ĥt, Ȟt : N → N , where t ∈ N , defined as follows.
Ĥt(x) = max(x, t) , Ȟt(x) = min(x, t).

A pair of functions f(), g() is commutative if f(g(x)) = g(f(x)). A set of functions is a
commutative set if any pair of functions in the set is commutative.
We define an idempotent composition as follows. A set A with a commutative set of functions
f1, f2, ..., fk from A to itself is an idempotent composition, if for any q (not necessarily distinct)
indices j1, j2, ..., jq, in the range [k], and p ≤ q distinct indices i1 ≠ i2, ..., ̸= ip, such that
{i1, i2, ..., ip} = {j1, j2, ..., jq} , it holds that

fj1(fj2(...fjq
(x))...)) = fi1(fi2(...fip

(x))...)).

For example, the set {0, 1} with the functions F0, F1 as defined above is an idempotent
composition. Indeed, F0(F0(...F0(x)...)) = F0(x) = x, F1(F1(...F1(x)...)) = F1(x) = 1, and
any composition of functions F0 and F1 equals F0(F1(x)) = F1(F0(x)) = 1.

4.2 High level description of our technique for Gk

This section assumes k is even. In the case k is odd our technique cost another factor of O(∆)
of communication rounds per algorithm round. Hence it behaves as if the distance required
is k + 1 in terms for CONGEST communication. Our method for distance-k computations
consists of two stages.

DISC 2024



6:16 Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model

In the first stage each vertex collects information from its k/2-hop-neighborhood. This is
done by broadcasting in parallel from all vertices to distance k/2. Consequently, for any pair
of vertices u, v at distance k one from another, there exists a vertex w in the middle of a path
between u and w that received the information of u and v. Indeed, the distance between u

and w is k/2, and between v and w it is k/2. Next, w computes internally, for each u in the
k/2-hop-neighborhood of w, the available information for u regarding its k-hop-neighbours.
That is, the neighbours at distance k from u who are also in the k/2-neighborhood of w,
Which, sometimes contains all of the vertices in the k/2-neighborhood of w and sometimes
only part of in case we would like to avoid double counting.

In the second stage, for all v ∈ V , all information computed for v in its k/2-hop-
neighborhood should be delivered to v. Recall that the information computed by vertices in
the k/2-hop-neighborhood of v is about the k-hop-neighborhood of v. But delivering the
entire information in a straightforward way to v requires up to ∆k rounds. Indeed, vertices
at distance k/2 from v hold information of size up to ∆k/2, and the number of such vertices
is up to ∆k/2. In order to reduce the amount of information that has to be passed, an
aggregation function is used. Specifically, each vertex v collects information in a convergecast
manner. That is, each vertex at distance k/2 from v sends information of size ∆k/2 to its
neighbours. This requires O(∆k/2) rounds. Now vertices at distance k/2− 1 from v have
received information from their neighbours at distance k/2 from v. But instead of sending
all this information to v they perform an aggregation in which the information size shrinks
to ∆k/2−1. In the following phase, the information size shrinks to ∆k/2−2, etc. See Figure 1.

Figure 1 A vertex w in the middle of a path between v and u collects information about
its k/2-hop-neighborhood. Then a convergecast process is performed, in which balls of radius
k/2 − i, i = 1, 2, ..., k/2, around vk/2−i are formed within k/2 stages. The balls contain aggregated
information that after k/2 stages is about the k-hop-neighborhood of v. After stage k/2 this
information resides in a ball of radius 0 of v, i.e., in v itself.

Further details of our technique are available in the appendix below.



L. Barenboim and U. Goldenberg 6:17

References
1 N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the

maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986. doi:10.1016/
0196-6774(86)90019-2.

2 B. Awerbuch, A. Goldberg, V. Luby, and M. Plotkin. Network decomposition and locality in
distributed computation. in proc. of the 30th annual symposium on foundations of computer
science (focs). pp., pages 364–369, 1989.

3 A. Balliu, S. Brandt, J. Hirvonen, D. Olivetti, M. Rabie, and J. Suomela. Lower bounds for
maximal matchings and maximal independent sets. poceeding of the 60th annual symposium
on foundations of computer science (focs). pp., pages 481–497, 2019.

4 R. Bar-Yehuda, K. Censor-Hillel, Y. Maus, S. Pai, and S. V. Pemmaraju. Distributed
approximation on power graphs. In Proceedings of the 39th Symposium on Principles of
Distributed Computing (PODC), pages 501–510, 2020.

5 L. Barenboim. Deterministic (δ + 1)-coloring in sublinear (in δ) time in static, dynamic and
faulty networks. Journal of the ACM, 63(5), 2016. doi:10.1145/2979675.

6 L. Barenboim and M. Elkin. Sublogarithmic distributed mis algorithm for sparse graphs using
nash-williams decomposition. In Proc. of the 27th ACM Symp. on Principles of Distributed
Computing, pages 25–34, 2008.

7 L. Barenboim and M. Elkin. Distributed (∆ + 1)- coloring in linear (in ∆) time. In Proc. of
the 41st ACM Symp. on Theory of Computing, pages 111–120, 2009.

8 L. Barenboim and M. Elkin. Distributed graph coloring: Fundamentals and recent developments.
Springer Nature, 2022.

9 L. Barenboim, M. Elkin, and U. Goldenberg. Locally-iterative distributed (δ + 1)-coloring
below szegedy-vishwanathan barrier, and applications to self-stabilization and to restricted-
bandwidth models. In Proceedings of the ACM Sym-posium on Principles of Distributed
Computing (PODC), pages 437–446, 2018.

10 L. Barenboim and U. Goldenberg. Speedup of distributed algorithms for power graphs in the
congest model. arXiv preprint, 2023. arXiv:2305.04358.

11 Y. Chang, W. Li, and S. Pettie. Distributed (δ + 1)-coloring via ultrafast graph shattering.
SIAM Journal on Computing, 49(3):497–539, 2020. doi:10.1137/19M1249527.

12 R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list
ranking. Information and Control, 70(1):32–53, 1986. doi:10.1016/S0019-9958(86)80023-7.

13 Y. Emek, C. Pfister, J. Seidel, and R. Wattenhofer. Anonymous networks: randomization=
2-hop coloring. In Proceedings of the 2014 ACM symposium on Principles of distributed
computing, 2014.

14 S. Faour, M. Ghaffari, C. Grunau, F. Kuhn, and V. Rozhoň. Local distributed rounding:
Generalized to mis, matching, set cover, and beyond. In Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied
Mathematics, 2023.

15 M. Flin, M. Halldórsson, and A. Nolin. Fast coloring despite congested relays. In 37th
International Symposium on Distributed Computing (DISC), 2023.

16 P. Fraigniaud, M. M. Halldorsson, and A. Nolin. Distributed testing of distance-k colorings.
Proc., 27th Coll. on Structural Information and Communication Complexity (SIROCCO),
2020.

17 P. Fraigniaud, M. Heinrich, and A. Kosowski. Local conflict coloring. In Proceeding of the
57th annual symposium on foundations of computer science (FOCS), pages 625–634, 2016.

18 M. Fuchs and F. Kuhn. List defective colorings: Distributed algorithms and applications. In
37th International Symposium on Distributed Computing (DISC), 2023.

19 M. Ghaffari. An improved distributed algorithm for maximal independent set. In Proceedings
of the twenty-seventh annual ACM-SIAM Symposium on Discrete Algorithms. (SODA), pages
270–277, 2016.

DISC 2024

https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1145/2979675
https://arxiv.org/abs/2305.04358
https://doi.org/10.1137/19M1249527
https://doi.org/10.1016/S0019-9958(86)80023-7


6:18 Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model

20 M. Ghaffari and C. Grunau. Faster deterministic distributed mis and approximate matching.
In Proceedings of the 55th Annual ACM Symposium on Theory of Computing. 2023, 2023.

21 M. Ghaffari, C. Grunau, and V. Rozhoň. Improved deterministic network decomposition. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA) . Society for
Industrial and Applied Mathematics, pages 2904–2923, 2021.

22 M. Ghaffari, D. G. Harris, and F. Kuhn. On derandomizing local distributed algorithms. In
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). IEEE,
2018.

23 M. Ghaffari and F. Kuhn. Deterministic distributed vertex coloring: Simpler, faster, and
without network decomposition. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 2022, pages 1009–1020, 2022.

24 A. Goldberg, S. Plotkin, and G. Shannon. Parallel symmetry-breaking in sparse graphs. SIAM
Journal on Discrete Mathematics, 1(4):434–446, 1988. doi:10.1137/0401044.

25 M. M. Halldorson, F. Kuhn, and Y. Maus. Distance-2 coloring in the congest model. in proc.
of the 39th acm symposium on principles of distributed computing (podc). pp., pages 233–242,
2020.

26 M. M. Halldorsson, F. Kuhn, Y. Maus, and A. Nolin. Coloring fast without learning your
neighbours’ colors. Proc. of the 34th International Symposium on Distributed Computing
(DISC), 39(1-39):17, 2020.

27 D. Harris, J. Schneider, and H. Su. Distributed (delta + 1)-coloring in sublogarithmic rounds.
In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing (STOC),
pages 465–478, 2016.

28 K. Kothapalli, C. Scheideler, M. Onus, and C. Schindelhauer. Distributed coloring in Õ(
√

log n)
bit rounds. in proc,. of the, 20th International Parallel and Distributed Processing Symposium,
2006.

29 F. Kuhn and R. Wattenhofer. On the complexity of distributed graph coloring. in proc. 25th
acm symp. Principles of Distributed Computing, pp., pages 7–15, 2006.

30 N. Linial. Locality in distributed graph algorithms siam j. comput., 21 (1992). pp., 193–
201:275–290, 1992.

31 M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. on
Computing, 15:1036–1053, 1986. doi:10.1137/0215074.

32 Y. Maus. Distributed graph coloring made easy. In Proceedings of the 33rd ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 362–372, 2021.

33 Y. Maus, S. Peltonen, and J. Uitto. Distributed symmetry breaking on power graphs via
sparsification. In Proceeding of the 42nd Symposium on Principles of Distributed Computing
(PODC), pages 157–167, 2023.

34 A. Panconesi and A. Srinivasav. On the complexity of distributed network decomposition.
Journal of Algorithms, 20(2):356–374, 1996. doi:10.1006/JAGM.1996.0017.

35 V. Rozhoň and M. Ghaffari. Polylogarithmic-time deterministic network decomposition and
distributed derandomization. In Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing (STOC), pages 350–363, 2020.

36 M. Szegedy and S. Vishwanathan. Locality based graph coloring. in proc. In 25th ACM
Symposium on Theory of Computing, pages 201–207, 1993.

A Appendix

A basic building block of ours for the first stage is a procedure for broadcasting to distance
k/2, initiated by all vertices in parallel. In this procedure, each message contains three
elements: Node id of the originator of broadcast, the distance from the originator, and
additional information. The part that contains the id and the distance is called header. In
addition, each vertex v maintains a local data structure Dv that initially contains only the
element of v. In the beginning of the broadcast procedure, each vertex sends a message with

https://doi.org/10.1137/0401044
https://doi.org/10.1137/0215074
https://doi.org/10.1006/JAGM.1996.0017


L. Barenboim and U. Goldenberg 6:19

the contents of Dv (in the additional information field of the message) to all its neighbours.
During the execution of the broadcast procedure, if a node receives several messages with the
same id of the originator, the node considers only one of these messages (which was the first
to arrive; ties are broken arbitrarily) and ignores the others. In each round of the broadcast,
each vertex updates its data structure Dv with additional information it learnt, and sends it
to its neighbours. Specifically the update of Dv considers each received message and each
element in the message with ID that the vertex has not received yet. The vertex v adds each
such element to Dv. Then the updated data structure Dv is sent to v’s neighbours. The
broadcast procedure continues this way until the distance reaches k/2. Each message with
distance greater than k/2 from the origin is discarded. Thus the broadcast process stops
after k/2 rounds from initiation.

Once the broadcast stops, for any vertex w at distance at most k/2 from v, the vertex w

computes locally an appropriate value for v, using aggregation functions. These functions are
applied iteratively for each vertex in the k/2-hop-neighborhood of w. Next, a convergecast
process is performed for k/2 phases. Its goal is that each v ∈ V learns the outcome of a
series of function invocations that are applied to all vertices in the k-hop-neighborhood of
v. (This is done with assistance of vertices at distance up to k/2 from v.) To this end,
aggregation functions f : A→ A, A ⊆ N0 are used. In certain cases A is of size 2, as in the
example of deciding whether the value of v appears in its k-hop-neighborhood. But in other
cases |A| may be larger. It has to satisfy log(|A|) = o(∆k/2), to provide a speed-up in our
method. The number of aggregation functions is |A|, one per element of A. (This is because
each element may affect uniquely the aggregated data, and an appropriate function for each
element is needed.) In each phase i = 1, 2, ..., k/2 of the convergecast process each vertex
v ∈ V receives from its neighbours the results of the aggregation functions applied to each
vertex z in the (k/2 + 2− i)-hop-neighborhood of v. (Note that these function applications
hold results about distance (k/2 + i) from v at that stage.) For each such vertex z, there
are up to ∆ results of functions application, one per neighbor of v. Then for each z′ in the
(k/2 + 1− i)-hop-neighborhood of v, the vertex v applies the aggregation function iteratively,
up to ∆ times, according to the number of results for z′ that v received from its neighbours.
This shrinks the amount of information by a factor of ∆ for the next phase, where the radius
of function application becomes smaller by 1, and the radius of gained information becomes
larger by 1. After k/2 phases, each vertex v ∈ V holds a single result of the applications of
aggregation functions on all vertices in the k-hop-neighborhood of v.

A key property of the above process, which constitutes its correctness, is provided in the
next lemma.

▶ Lemma A.1. After each phase i = 1, 2, ..., k/2, for each pair of vertices v, u in G at
distance k one from another, there exists a vertex z at distance k/2− i from v whose result
of applications of the aggregation functions until this stage includes an invocation for u.

Proof’s details appear in full version of the paper [10].
The above lemma shows that after i phases of the convergecast stage the (k/2 − i)-

hop-neighborhood of each vertex v contains all needed information for v about its k-hop
neighborhood. Indeed for any vertex u of distance up to k from v there is a vertex at distance
(k/2− i) from v who holds a result of a series of applications of the aggregation functions,
one of which is an invocation for v on u. Thus after k/2 phases each vertex v ∈ V holds the
result of invocations of the aggregation functions for all vertices in its k-hop-neighborhood.
The number of rounds of each phase i = 1, 2, ..., k/2 is O(log |A| ·∆k/2+1−i).

We illustrate this scheme by devising an algorithm for computing k-distance O(∆k)-
coloring. The algorithm generalizes 2-distance algorithms as follows and based on the
additive group coloring (AG) algorithm. The aggregation functions are the OR function,

DISC 2024



6:20 Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model

where A = {0, 1}. Specifically: F0(x) = x OR 0 ; F1(x) = x OR 1. Each vertex w ∈ V

collects the current colors of its k/2-hop-neighborhood. For each vertex v in the k/2-hop-
neighborhood of w, the vertex w computes whether the b (We indicate a vertex color by the
notation ⟨a, b⟩ when we compute additive group coloring) element of the color of v equals to
at least one of the b elements of the other vertices in the k/2-hop-neighborhood of w. To
this end, for each vertex u in its k/2-hop-neighborhood, w applies a function Fi(x), where
i = 1 if the b values of v equals to that of u, and i = 0 otherwise. Each invocation of Fi(x)
by w, except the first invocation of a phase, is applied on the result of another invocation
by w in that phase. If this is the first invocation, then it is applied on x = 0. Once the
vertices apply the function for their k/2-hop-neighbours, the resulting ∆k/2 values are sent
to immediate neighbours. Consequently, each vertex v ∈ V receives information of the
k/2-hop-neighborhoods of its own neighbours. Note that vertices at distance up to k/2− 1
from v received information about vertices at distance up to k from v. Now the same is
repeated, but for distance k/2− 1, rather than k/2. This continues for k/2 phases. Finally,
as a result of the function invocations and exchange of messages, each vertex v ∈ V holds a
single result, indicating whether there is another vertex in its k-hop-neighborhood with the
same b value. This allows to compute the next color of v, as in the AG algorithm. Thus,
within O(∆(Gk)) = O(∆k) iteration of computing the next colors as described above, a
proper distance-k coloring with O(∆k) colors is obtained, from an initial O(∆2k)-coloring to
distance k. The latter coloring can be obtained by generalizing 2-distance-Linial’s algorithm
(Algorithm 1) to distance k. (We elaborate on this in Section A.1.) Each iteration requires
O(∆k/2) rounds, and the overall running time is O(∆k+k/2 + k ·∆k/2 · log ∆ · log∗ n). We
summarize this discussion with the next theorem.

▶ Theorem A.2. Distance-k coloring with O(∆k) colors can be computed within O(∆k+k/2 +
k ·∆k/2 · log ∆ · log∗ n) rounds in the CONGEST model.

In Section A.1 we show how the running time for distance-k coloring can be improved.
We conclude the current section by improving the running time of simulating a round

of an algorithm for G in Gk. The improvement is from O(∆k/2) to O(∆k/2−1). Consider
the last phase of broadcast, when each vertex needs to receive information about (k/2− 1)-
neighborhoods from each of its immediate neighbours. A (k/2− 1)-neighborhood contains
up to ∆k/2−1 vertices, each of which holds O(log n) bits of data for transmission. Thus,
O(∆k/2−1) rounds are needed in the last phase of broadcast to deliver the required information
to each vertex, which then employs it to compute locally the information regarding its k/2-hop-
neighborhood. Then, in the first phase of convergecast, instead of sending the computation
of the entire k/2-hop-neighborhood, each neighbor receives information only about its
(k/2− 1)-hop-neighborhood. Indeed, in the second phase of the convergecast (k/2− 1)-hop-
neighborhoods are considered, so this information from the first phase is sufficient. This
requires O(⌈ log |A|

log n ⌉ ·∆
k/2−1) rounds. The other phases require a smaller number of rounds.

Thus the overall running time becomes O(⌈ log |A|
log n ⌉ ·∆

k/2−1). We summarize this in the next
Corollary.

▶ Corollary A.3. An R round algorithm for G in the CONGEST model that employs a set of
commutative idempotent functions f1, f2, ..., ft : A→ A can be transformed into an algorithm
for Gk in the CONGEST model, with running time O(R · ⌈ log |A|

log n ⌉ ·∆
k/2−1).

We also obtain an improvement in the memory complexity, as shown in the next corollary.

▶ Corollary A.4. Denote by M the local memory of a vertex needed to complete an algorithm
in a straightforward way for Gk, k ≥ 2, in the CONGEST model. The local memory required



L. Barenboim and U. Goldenberg 6:21

for an algorithm which uses our aggregation functions, such that log |A| = O(log n), is
bounded by O( M

∆k/2 ) ∼ O(
√

M).

Memory considerations as in Corollary A.4 are usually not analyzed in the CONGEST
model. However, in real life applications that consider RAM limitations, our technique
provides an improvement, which can make algorithm implementation much more efficient.

A.1 Computations with non-idempotent functions
A function that is broadly used by us, and is not idempotent is the counting function.
Specifically, given a value that a vertex holds, it needs to compute how many times this
value appears in the k-hop-neighborhood of the vertex. It is applied on each vertex in
the k-hop-neighborhood, and increments the result by one, each time it encounters the
given value. (It does not change the result when it is applied on a different value.) Hence,
the number of function applications may affect the result, and thus it is non-idempotent.
Nevertheless, we are still interested in using such a function, since it appears in Linial’s
algorithm for computing number of polynomial intersections, and in arbdefective-coloring for
computing the number of vertices of the k-hop-neighborhood with the same color.

There are two options to address this goal. The first option is analysing the solution
with the possibility of over-counting. In this case the result is a correct upper bound on the
desired solution, and the goal is analyzing how far it is from a solution that counts exactly.
The second option is to obtain exact counting, using a more sophisticated construction, which
we describe in the sequel.

In the first option we perform an adaption from G to Gk as in the case of idempotent
functions, described in Section 4.2. Now we analyze the maximum number of function
invocations in an iteration. Note that each invocation corresponds to a unique path of length
at most k that starts from a vertex v, goes through a vertex w in the middle of the path, and
ends in a vertex in the k/2-hop-neighborhood of w. The number of such paths is bounded by
∆k + ∆k−1 + ∆k−2 + ....∆ = O(∆k). Denote this bound by dp. Now we can use dp instead of
∆k in the computations for k-distance-Linial algorithm or arbdefective colorings to distance k.
(Note that ∆ is known to all vertices, so they can compute dp = ∆k + ∆k−1 + ∆k−2 + ....∆.)
These computations will provide correct results, according to the same pigeonhole principle,
as in the proof of the distance-2 variants, but the results now depend on dp, rather than ∆k.

We illustrate this with an adaptation of Linial’s algorithm to provide distance-k coloring
with O(∆2k) colors, for a constant k. Let dp = O(∆k), as described above. We compute
a coloring with O(d2

p) = O(∆2k) colors. This is done by O(log∗ n) stages, each of which
perform a binary search for O(log ∆k) = O(log ∆) phases. The binary search is done using the
aggregation counting function, to count the number of conflicts in distance k of a polynomial
P , for each half of its range. Even though this may cause over-counting, the aggregation
functions are applied at most dp times per polynomial per phase. Thus using a field of size q,
dp < q < 2dp, guarantees that there is going to be t ∈ {0, 1, ..., q − 1}, such that P (t) does
not intersect with any polynomial in its k-hop-neighborhood. Such value t is going to be
found by the binary search. This results in an O(d2

t )-coloring in O(∆k/2−1 · log dt · log∗ n)
time, i.e., O(∆2k)-coloring in O(∆k/2−1 · log ∆ · log∗ n) time. We summarize this in the next
corollary.

▶ Corollary A.5. For a constant k ≥ 1, we compute O(∆2k)-coloring of Gk in O(∆k/2−1 ·
log ∆ · log∗ n) rounds in the CONGEST model.

While the above option is a simple solution, it provides an upper bound, which may be
several times larger that the exact value. Also, for other functions, applying them more

DISC 2024



6:22 Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model

than the required number of times may not work. Thus we propose a second option that
allows executing the function exactly the desired number of times. This requires a one-time
preprocessing stage with O(∆k−1) rounds. Still, for algorithms with running time R in G of
at least ∆1/2, this does not affect significantly the overall running time of the transformation
for Gk. (Recall that the best currently-known deterministic algorithm for O(∆)-coloring and
MIS have running times Õ(∆1/2 + log∗ n) and O(∆ + log∗ n), respectively.)

In the preprocessing stage, each vertex v ∈ V computes a BFS tree of height k/2 rooted
at v. (Thus, the radius of the tree is also bounded by k/2.) This is the BFS tree of the k/2-
hop-neighborhood of v. Then each vertex receives the BFS trees of its k/2-hop-neighborhood.
Hence, information about k-hop-neighborhoods is obtained. The construction of BFS trees
proceeds in k/2 phases. In each phase i = 1, 2, ..., k/2, BFS trees of height i are constructed
from BFS trees of height i− 1, as follows. A vertex receives the BFS trees of height i− 1
from its neighbours. It constructs locally a graph Gv, consisting of all vertices of all these
trees, and all edges of the trees. (Note that such a composition of trees may cause cycles.)
Now a local BFS algorithm is executed on Gv, starting from v. Note that in the graph Gv

all edges containing v connect it to roots of trees of height i− 1. Consequently, the BFS of
Gv results in a tree of height i. It is broadcasted to the neighbours of v in phase i. Since a
BFS tree of height i may have up to O(∆i) vertices and edges, the running time of phase
i is O(∆i). The overall running time for computing BFS trees of height k/2 is O(∆k/2−1).
This is because in the beginning of phase k/2, BFS trees of height k/2 − 1 are received,
which requires O(∆k/2−1) rounds. Then BFS trees of height k are constructed locally, which
completes the computation of the BFS tree.

Next, for each vertex v ∈ V in parallel, the BFS tree that v computed is sent to all
vertices in the k/2-hop-neighborhood of v. This is done by parallel broadcasting within k/2
phases. Phase 1 requires O(∆k/2) rounds, phase 2 requires O(∆k/2+1) rounds, etc. Phase
k/2 requires O(∆k−1) rounds, which is also the overall time of the preprocessing stage.

Next, we explain how these BFS trees are used to make sure that each function invocation
in the convergecast stage of our algorithm is performed exactly once, for each vertex in the
k-hop-neighborhood of v. Let w ∈ V be a vertex that performs the convergast stage, and v, u

be vertices in the k/2-hop-neighborhood of w. The vertex w has to decide whether to invoke
a function of v on u. Since w holds the BFS tree of height k/2 of v, the vertex w knows
who are all the other vertices w′ that also considering at that stage whether to execute a
function for v. Moreover, w knows the set W ′ = {w′ | w′ is a vertex at distance k/2 from v,

and at distance at most k/2 from u}. This is because w holds all BFS trees of its k/2-hop-
neighborhood. Now, w can find the vertex with the smallest ID in W ′. If this is w itself it
applies the function, and does not apply it otherwise. This way, out of all vertices w′ that
could have applied it, exactly one vertex does so.

It remains to address vertices u at distance less than k/2 from v, for which there are no
vertex w at distance k/2 from v, such that u is in the k/2-hop-neighborhood of w. This is
addressed directly by v, using the BFS tree of v. Since the BFS tree of w is also known to v,
the vertex v can decide to apply the function on such u that are not in the BFS tree of w.

Now, our scheme that described in Section 4.2 for computations on Gk with idempotent
functions can be extended to non-idempotent functions. The difference in the generalized
scheme is that it starts with the preprocessing stage of computing BFS-trees of height k/2.
In addition, during the main stages of the scheme, whenever a function has to be applied,
a check is performed to ensure that it is applied exactly once for a pair v, u, as explained
above. This gives rise to the following result.

▶ Theorem A.6. Suppose we are given a set A of all possible inputs and outputs of aggregation
functions, and an R-round algorithm for G in the CONGEST setting, where each round



L. Barenboim and U. Goldenberg 6:23

consists of a series of invocations of commutative aggregation functions f1, f2, ...ft : A→ A.
Then we can obtain an algorithm for the same problem on Gk whose running time in the
CONGEST model is O(R · ⌈ log |A|

log n ⌉ ·∆
k/2−1 + ∆k−1).

A.2 Applications of the speedup technique for Gk

In this section we provide several application of Theorem A.6. Consider the O(∆)-coloring
algorithm for G on which the results of Section 3 are built. It consists of three parts:
(1) Computing defective coloring. This part employs an aggregation function to compute

number of intersections in Linial’s algorithm.
(2) Computing arbdefective coloring. This part employs an aggregation function to compute

the number of neighbors with the same color.
(3) Iterating over color classes and computing a proper coloring iteratively. This part employs

an aggregation function that again computes the number of polynomial intersections,
but this time according to the algorithm in Section 3.2.3.

In all these functions we can set A = {1, 2, ..., n}, since the results are always bounded
by the number of vertices in the graph. Since the algorithm for G composed of these steps
requires Õ(∆1/2 + log∗ n) rounds [9], it gives rise to an Õ(k ·∆k−1 + k ·∆ k

2 log∗ n)-round
algorithm for Gk, by Theorem A.6. (The factor of k appears in the running time because the
O(log ∆) running time for binary searches in G translates into O(log ∆k) = k log ∆ phases
in Gk.) This is summarized in the next corollary.

▶ Corollary A.7. For k > 1, an O(∆k)-coloring of Gk can be computed in Õ(k ·∆k−1 + k ·
∆ k

2 log∗ n) rounds in the CONGEST model.

Next, we obtain an MIS algorithm for Gk. It starts with computing O(∆k)-coloring of
Gk. Then, for each color class i = 1, 2, ..., an iteration is performed, consisting of k rounds.
Specifically, all vertices of color i perform broadcast to distance k. That is, each such vertex
initializes a broadcast message with a counter that is initialized to 0. Each time such a
message is received, the counter is incremented by 1. If a vertex receives several messages
in parallel, it handles only one of them, and the others are discarded. If the counter of the
message is smaller than k it is sent to the immediate neighbors. Otherwise, it is discarded.
Therefore, an iteration completes within k rounds. Then vertices of color i that initiated
the broadcast decide to join the MIS, and vertices that received the messages decide not to
join. Vertices that made decisions become inactive. Then the next iteration starts on the
remaining active vertices, etc. After O(∆k) such iterations, the algorithm terminates.

▶ Theorem A.8. MIS of Gk can be computed within Õ(k ·∆k + k ·∆k−1 · log∗ n) rounds in
CONGEST model.

Proofs and details of section A.2 appear in the full version of this paper [10].

DISC 2024





A Fully Concurrent Adaptive Snapshot Object for
RMWable Shared-Memory
Benyamin Bashari #

University of Calgary, Canada

David Yu Cheng Chan #

University of Calgary, Canada

Philipp Woelfel #

University of Calgary, Canada

Abstract
An adaptive RMWable snapshot object maintains an array A[0..m−1] of m readable shared memory
objects that support an arbitrary set of read-modify-write (RMW) operations, in addition to Read().
Each array entry A[i] can be accessed by any process using an operation Invoke(i, op), which simply
applies a supported RMW operation op to A[i] and returns the response of op. In addition, processes
can record the state of the array by calling Click(). While Click() does not return anything, a
process p can call Observe(i) to determine the value of A[i] at the point of p’s latest Click().

Recently, Jayanti, Jayanti, and Jayanti [10] presented an RMWable adaptive snapshot object,
where all operations have constant step complexity. Their algorithm is single-scanner, meaning
that Click() operations cannot be executed concurrently. We present the first fully concurrent
RMWable adaptive snapshot object, where all operations can be executed concurrently, assuming the
the system provides atomic Fetch-And-Increment and Compare-And-Swap operations. Click() and
Invoke() operations have constant step complexity, and Observe() has step complexity O(log n).
The total number of base objects needed is O(mn log n).

2012 ACM Subject Classification Theory of computation → Shared memory algorithms

Keywords and phrases Shared memory, snapshot, camera object, RMW, distributed computing

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.7

Funding We acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC),under Discovery Grant RGPIN/2019-04852, and the Canada Research Chairs
program.

1 Introduction

Linearizable snapshot objects are a fundamental building block for shared memory algorithms.
A snapshot object maintains an array of m registers, A[0 . . . m − 1]. The standard definition
allows a process to write to an array entry, and to perform a Scan(), which returns the
vector (A[0], . . . , A[m − 1]). Most research considers single-writer snapshots, where m is
equal to the number of processes, n, and process i can only write to A[i].

Implementing deterministic linearizable single-writer snapshot objects from atomic regis-
ters (which support read and write operations) has been studied intensively (e.g., [6, 1, 2, 8]).
Inoue and Chen [8] devised a linearizable snapshot, where each operation has at most
linear step complexity, which is optimal at least for Scan() operations [12]. In order to
circumvent this lower bound, researchers limited the number of operations [3] or employed
randomization [4, 13].

Many snapshot algorithms assume that the size of a memory word is large enough to
store the entire state of array A. This is an unrealistic assumption, unless large registers are
simulated by smaller ones, which is inherently inefficient. Employing stronger primitives,
such as compare-and-swap (CAS) and fetch-and-increment (FAI) objects, one can obtain

© Benyamin Bashari, David Yu Cheng Chan, and Philipp Woelfel;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 7; pp. 7:1–7:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benyaminbashari@gmail.com
https://orcid.org/0000-0002-6984-9032
mailto:david.chan1@ucalgary.ca
mailto:woelfel@ucalgary.ca
https://orcid.org/0000-0002-7847-4631
https://doi.org/10.4230/LIPIcs.DISC.2024.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

snapshot objects, where it is sufficient for a memory location to store a single array entry [15].
However, then the complexity of a Scan() is inherently lower bounded by the size of the
array.

To deal with this inherent inefficiency, some researchers studied snapshot types that
allowed certain operations to return limited information about array A more efficiently. For
example, Jayanti [9] proposed the f-array object, where a Read() operation returns the
value of a function f applied to all components of array A. This function can be computed
in a constant number of steps, but updating array A is more expensive: In Jayanti’s original
algorithm (which allows read-modify-write (RMW) operation to be applied to individual
components of A) updating a single component of A has step complexity Θ(m), where m is
the size of the array. Obryk [14] provided a version of this object, where components can
only be updated with write operations, but in O(log3 m) steps.

Attiya, Guerraoui, and Ruppert [5] followed a different approach: Their partial snapshot
object allows processes to obtain a view of only some of the entries of A. The step complexity
of such a partial scan is quadratic in the number of array entries the view contains, and the
amortized step complexity of updates is bounded by the maximum interval contention, as
well as the maximum number of components accessed by partial scan operations. Bashari and
Woelfel [7] devised an adaptive single-writer snapshot object, where a snapshot is taken by a
Click()1 operation that does not return anything. Instead, a process can later determine
the value of any array entry A[i] at the point of its latest preceding Click(), by performing
an Observe(i) operation. Contrary to the partial snapshots of Attiya, Guerraoui, and
Ruppert [5], this semantics allows observed array entries to be chosen adaptively, based on
previously observed values. The algorithm uses polynomially many single-word registers and
CAS objects, as well as an unbounded FAI object. Click() has constant step-complexity,
whereas updating or observing an array entry takes O(log n) steps.

Another shortcoming of many snapshot algorithms is that the entries of array A can only
be updated with write operations. But modern shared memory systems critically support
many types of read-modify-write (RMW) operations, which are much more powerful than
reads and writes, and most non-trivial data structures rely on such RMW operations. Thus,
conventional snapshot algorithms (where write is the only allowed update operation) cannot
be used to obtain snapshots of most data structures. Jayanti’s f -array object [9] addresses
this issue, by allowing the components of array A to be of arbitrary types. But, as mentioned
earlier, updates have step complexity of Ω(m).

Wei, Ben-David, Blelloch, Fatourou, Ruppert and Sun [16] also presented a snapshot
object, where the array entries can be modified with CAS() operations. The algorithm
supports a snapshot operation that returns a handle. The value of individual array entries at
the point of when the handle was obtained, can then be inspected adaptively. The algorithm
uses CAS objects, and the step complexity of observing the value of a single array entry
grows linearly with the number of updates that may have occurred on that location, since
the corresponding snapshot was taken. The authors also showed that their interface can be
used to easily add snapshot operations to concurrent data structures (that are implemented
from CAS objects), and presented experimental results, indicating a low overhead of this
approach.

Very recently, Jayanti, Jayanti, and Jayanti [10] presented an RMWable adaptive snapshot
object. Their algorithm generalizes the semantics of Bashari and Woelfel’s adaptive snapshot
object, by allowing array entries to be updated with any RMW operations [10] that are

1 This operation was also called Scan() in [7]. Jayanti, Jayanti, and Jayanti [10] used the term Click(),
which more clearly indicates that the semantics is different from a standard Scan().



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:3

supported by the system. Their algorithm has optimal constant step complexity for Click(),
but multiple Click() operations cannot be executed concurrently. We present a (completely
different and independently devised) algorithm for the same sequential specification. Our
algorithm achieves full concurrency (i.e., it allows concurrent Click() operations) for the
price of Observe() operations having a step complexity O(log n) instead of constant.

Consider a set O of wait-free linarizable objects available to the system, such that each
object supports a read operation (among others). Our adaptive RMWable snapshot object
maintains an array A of m objects from O, where m is an arbitrary positive integer. (The
assumption that all array components are of the same type is made for ease of description
only; in fact, each array entry can be of a different readable type.)

Each process p can execute Invoke(i, op) to apply any operation op (supported by the
object represented by A[i]) to A[i] and obtain the response of that operation. A process can
take a snapshot of the array using a Click() operation, which returns nothing. Finally, p

can at any point call Observe(i), which returns the value of A[i] at the point of p’s latest
Click() operation.

We assume that the system provides atomic FAI and CAS operations. In a system with n

processes, Click() and Invoke() operations have constant step complexity, and Observe()
has step complexity O(log n). The total number of base objects needed is O(mn log n).

The FAI object needs to perform approximately one increment per implemented operation,
and the resulting values need to be stored in other objects. Thus, strictly speaking, our
algorithm can only perform a bounded number of operations. However, in practice this
bound will never be reached on 64-bit architectures.

In the following section we describe the system model and specify the object we are
implementing. Then, in Section 3 we present the algorithm and its properties. Finally, in
Section 4, we will proof correctness. The analysis of time and space complexity is omitted
due to space restrictions.

2 Preliminaries

We consider the standard asynchronous shared memory model with n processes with IDs
0, . . . , n − 1, which communicate using atomic (or linearizable) shared memory operations on
base objects.

A register supports the standard Read() and Write() operations. An LL/SC object
provides operations, LL() and SC(v), where LL() returns the object’s value, and SC(v) called
by process p updates the value to v, if p has previously called LL() and no successful SC()
operation has occurred since then. An SC() operation returns a Boolean value indicating if
it successfully stored its parameter. A FAI object stores an integer, initially 1, and provides
an operation FAI(), which increments the object’s value by 1 and returns the value before
the increment.

While FAI() is available on standard hardware, LL/SC is not. However, there are efficient
implementations of LL/SC from registers and CAS objects, which are usually available. For
example, by using unbounded sequence numbers, one can implement an LL/SC object from a
single CAS object with constant step complexity. An algorithm by Jayanti and Petrovic [11]
avoids unbounded sequence numbers, but needs O(n) CAS objects to implement an LL/SC
object with constant step complexity.

DISC 2024



7:4 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

The Adaptive RMWable Snapshot Object
Let O denote a set of wait-free linearizable objects that are available in the system. Each
object in that set must be readable, i.e., support an operation that returns the state of the
object without changing it. For the ease of description, we assume that each operation on
such an object takes at most a constant number of steps.

The adaptive RMWable snapshot object maintains an array of m components, each
corresponding to an object in O in its initial state. For convenience, we assume w.l.o.g. that
the initial state of each component is 0.

An adaptive RMWable snapshot object allows each process p to perform the following
operations:

Invoke(i, op) performs operation op (which must be one of the operations supported by
O) on the i-th component , and returns the corresponding response.
Click() simply returns done (this is convenient for our proofs, but equivalently, one
may assume that it returns nothing).
Observe(i) returns the value of component i at the time of p’s last Scan(); or the initial
state 0 of component i if no such Scan() exists.

3 The Algorithm

Let n and m be positive integers, κ be a sufficiently large constant, ∆′ = O(log n), and
∆ = κn log n/∆′. In this section, we present an implementation of the adaptive RMWable
snapshot object for n processes and m components such that:

The space complexity of the implementation is O(m∆).
The time complexity of Click() operations is O(1).
The time complexity of Invoke() operations is O(∆′).
The time complexity of Observe() operations is O(log ∆).

Thus if we select ∆′ = 1, we have ∆ = O(n log n) and thus obtain:
The space complexity of the implementation is O(mn log n).
The time complexity of Click() operations is O(1).
The time complexity of Invoke() operations is O(1).
The time complexity of Observe() operations is O(log n).

3.1 Bashari and Woelfel’s Single-Writer Snapshot
The fundamental idea of our algorithm is based on Bashari and Woelfel’s adaptive partial
snapshot algorithm [7]. Their algorithm implements an adaptive snapshot object for n

processes and m = n components that each correspond to a single writer register. Hence,
instead of Invoke(i, −), it supports Write(i, val), which only process i can execute in order
to write some value val to the i-th component. Their algorithm employs a FAI object clk,
and m single-writer multi-reader red-black trees. The i-th red-black tree can only be updated
by process i, who uses it to record the past states of component i. On a high level, the
algorithm works as follows:

Each Click() operation takes a timestamp from the FAI object clk.
Each Write()i, val operation takes a timestamp from the FAI object clk. Then it simply
stores val along with its timestamp into the i-th red-black tree.
Each Observe(i) operation by a process p searches the i-th red-black tree for the state
with the largest timestamp that is smaller than the timestamp of the latest Click()
operation by process p.
The red-black trees are periodically pruned of recorded states that are no longer necessary,
and thus inserts and searches take only O(log n) steps.



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:5

The i-th red-black tree serves as a predecessor data structure that can be queried by all
processes but only updated by process i. As our algorithm allows updates on component
i to be performed by any process, we need to replace each red-black tree with a multi-
writer predecessor data structure. Moreover, adding the correct elements to the predecessor
data structure is substantially more challenging, because multiple processes may perform
Invoke(i, −)2 concurrently.

3.2 Outline of our Algorithm
Algorithm 1 depicts our adaptive RMWable snapshot implementation. Similar to Bashari
and Woelfel we use an FAI object clk to record timestamps. Consider some i ∈ {0, . . . , m−1}.
We use an object O[i] with the same sequential specification as the i-th component object.
To perform Invoke(i, opi), a process p performs operation opi on O[i] and records the
return value, which it will later use as its response. Before p’s Invoke(i, opi) can linearize,
the resulting state of component i needs to be “recorded” in a predecessor data structure,
together with a timestamp obtained from clk.

The predecessor data structure for the i-th component is implemented using a circularly
sorted array R[0 . . . ∆ − 1][i]. For now assume that at most ∆ Invoke(i, −) operations can
be performed; this will ensure that R[0 . . . ∆ − 1][i] remains completely sorted.

First consider the simplified single-updater case, in which only one process p is allowed to
call Invoke(i, opi). In its j-th Invoke(i, opi) operation, after performing opi on O[i], p can
obtain a new timestamp k using a FAI() operation on clk, and then write k and the new
value of O[i] into R[j][i]. This way, R[0 . . . ∆ − 1][i] remains sorted (by timestamp values).
A process q that performs a Click() also obtains a timestamp k′ from clk. To observe
component i, q can then simply return the value of O[i] that was recorded in the array entry
R[j][i], j ∈ {0, . . . , ∆ − 1}, with the largest timestamp k ≤ k′. That array entry can be found
in O(log ∆) steps using a binary search.

In order to support multiple concurrent Invoke(i, −) operations, processes with pending
such operations will agree on some state of O[i], and add that agreed upon value to an
appropriate array entry of R[0 . . . ∆ − 1][i], together with an appropriate timestamp k. This
is done in a HelpUpdate() method, as follows: We use an LL/SC object lastUpdate[i], which
stores a triple (j, k, val) where j is a sequence number, k is either a timestamp or ⊥, and
val is either a state of O[i] or ⊥. Initially, lastUpdate[i] = (0, ⊥, ⊥). In HelpUpdate(), a
process q repeats the following several times: If lastUpdate[i] = (j, ⊥, ⊥) then it reads the
current value val from O[i] and tries to change lastUpdate[i] to (j + 1, ⊥, val) using an SC()
operation. If lastUpdate[i] = (j, ⊥, val) for val ̸= ⊥, then q obtains a timestamp k from clk

and tries to change lastUpdate[i] to (j, k, val). Once lastUpdate[i] = (j, k, val) for k, val ̸= ⊥,
the pair (k, val) is the agreed upon pair that will be added to the predecessor object. Since
(k, val) is the j-th agreement pair, it can simply be written to R[j][i]. Nothing changes for
Click() and Observe() operations.

To see that this is linearizable, consider the following linearization points: A Click()
linearizes when the calling process obtains a timestamp from clk, and an Observe() can
linearize at any point during its execution interval. Now consider an Invoke(i, opi) operation
during which process p performs opi on O[i] at some point t. Let t′ be the first point after t,
at which the value of O[i] is copied to lastUpdate[i]. Then p’s Invoke(i, opi) linearizes at

2 Throughout this text we use a dash (“−”) as the argument of a method call, to indicate that the
statement applies to all arguments.

DISC 2024



7:6 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

Algorithm 1 Adaptive RMWable Snapshot Implementation.
Shared:

FAI clk, initially 1
LL/SC lastScan[0 . . . n − 1 ][0 . . . m], each initially (0, 0, 0, 0, 0)
LL/SC/Read lastUpdate[0 . . . m − 1 ], each initially (0, 0,⊥)
Object O[0 . . . m− 1], each initially fresh.
LL/SC R[0 . . . ∆− 1][0 . . . m− 1], initially (0, 0, 0)

Code for each process p:
1 Function Click()
2 (k,−,−,−, v)← lastScan[p][m].LL()
3 if v = 0 then lastScan[p][m].SC(k, 0 , 0 , 0 , 1)
4 HelpScan(p)
5 return done
6 Function HelpScan(q)
7 (−,−,−,−, v)← lastScan[q][m].LL()
8 if v = 1 then
9 k ← clk.FAI()

10 lastScan[q][m].SC(k, 0 , 0 , 0 , 0)
11 Function Observe(i)
12 HelpUpdate(i)
13 repeat v ← HelpObserve(p, i) until v ̸= ⊥
14 return v
15 Function HelpObserve(q, i)
16 (ki, maxKey, jleft, jright, v)← lastScan[q][i].LL()
17 (km,−,−,−,−)← lastScan[q][m].LL()
18 if km > ki then
19 (ju, ku, vu)← lastUpdate[i].Read()
20 if (ku, vu) ̸= (0,⊥) then jright ← ju + ∆− 1 mod ∆
21 else jright ← ju mod ∆
22 jleft ← jright + 1 mod ∆
23 (−, maxKey,−)← R[jright][i].LL()
24 (ki, v)← (km,⊥)
25 if maxKey < ki then return ⊥
26 else
27 if v ̸= ⊥ then return v
28 if jleft > jright then j ← ⌈(jleft + jright + ∆)/2⌉ mod ∆
29 else j ← ⌈(jleft + jright)/2⌉
30 (−, kr,−)← R[j][i].LL()
31 if kr ≥ ki and kr ≤ maxKey then jright ← j + ∆− 1 mod ∆
32 else jleft ← j
33 if jleft = jright then (−,−, v)← R[jleft][i].LL()
34 lastScan[q][i].SC(ki , maxKey, jleft, jright, v)
35 return ⊥
36 Function Invoke(i, opi)
37 vres ← O[i].opi()
38 HelpUpdate(i)
39 return vres
40 Function HelpUpdate(i)
41 for a ∈ {0, . . . , 5} do
42 (ju, ku, vu)← lastUpdate[i].LL()
43 if vu = ⊥ then
44 v ← O[i].Read()
45 lastUpdate[i].SC(ju + 1 ,⊥, v)
46 else
47 if ku = ⊥ then
48 k ← clk.FAI()
49 lastUpdate[i].SC(ju , k, vu)
50 else
51 (j,−,−)← R[ju mod ∆][i].LL()
52 if j < ju then R[ju mod ∆][i].SC(ju , ku , vu)
53 for a′ ∈ {0 . . . ∆′} do
54 HelpScan(ju mod n)
55 HelpObserve(ju mod n, i)
56 lastUpdate[i].SC(ju , 0 ,⊥)



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:7

the first point when some process obtains a sequence number k from clk, such that the pair
(k, val) gets stored in lastUpdate[i]. In other words, if (j, kj , valj) is the j-th triple stored
in lastUpdate[i] satisfying valj , kj ̸= ⊥, then all Invoke(i, −) operations whose operation
on O[i] is reflected in valj but not valj−1 linearize at the point timestamp kj is obtained.
The essential steps of HelpUpdate() are repeated sufficiently many times to ensure that this
happens before any of the linearized Invoke(i, −) methods respond.

In the above approach, HelpUpdate() allows processes to repeatedly agree on a value
O[i] and an associated timestamp. If (kj , valj) is the j-th agreed timestamp-value pair, then
the triple (j, kj , valj) will be written to R[j][i]. As R[0 . . . ∆ − 1][i] has size ∆, this only
works if the number of Invoke(i, −) operations is bounded by ∆. To support an unbounded
number of Invoke(i, −) operations, the triple (j, kj , valj) will be written to R[j mod ∆][i],
instead. While the array remains circularly sorted, and binary search is still possible, we
now face the problem that old values in R[0 . . . ∆][i] will eventually get overwritten.

We deal with that as follows: Following a Click() call by process p, for each i ∈
{0, . . . , m − 1}, the relevant value stored in R[0 . . . ∆][i] (i.e., the one which p would have
to return in a subsequent Observe(i) operation), will be copied to another LL/SC object,
lastScan[p][i]. When some process q performs HelpUpdate(i), it contributes O(∆′) of work
to that, guaranteeing that all relevant array entries of R[0 . . . ∆][i] are copied to lastScan[p][i],
before they get overwritten. It does so by calling HelpObserve(p, i). In that method call, it
contributes a constant number of steps to a binary search on R[0 . . . ∆][i] for the relevant
array entry. To facilitate multiple processes participating in this binary search, lastScan[p][i]
stores a 5-tuple (ki, maxKey, jleft, jright, v), where ki is the timestamp that p obtained
during its Click(), maxKey is essentially the largest key found in lastUpdate[i], when the
first process started the binary search, jleft and jright are the current left and right borders
found during the binary search, and v will eventually be set to the correct value (representing
the state of O[i]) found in the binary search. Each process q contributes to the binary search
by loading the value of lastScan[p][i], computing the next value that needs to be written to
lastScan[p][i], and then attempting to write that value using an SC() operation. If some
other process has already performed that next step of the binary search, then q’s SC() will
simply fail. The exact details of the binary search are described in Section 3.3.

We still need to deal with one other problem: Suppose process p obtains a timestamp
k from clk in its Click() method, and immediately after that falls asleep, before it can
write k anywhere. Then the relevant value of R[0 . . . ∆][i] may get overwritten before any
other process even learns about k. I.e., no process can help copying relevant values from
R[0 . . . ∆][i] to lastScan[p][i], before it’s too late. To deal with that, at the beginning of its
Click(), process p announces that it has started a Click() operation by setting a bit in the
last component of lastScan[p][m]. (Note the index m, which means the array entry is not
used for values copied from R.) That bit indicates that other processes should help p with
its Click() operation, specifically with obtaining and publishing a timestamp. They do so
by calling a method HelpScan(p) before each HelpObserve(p) call during HelpUpdate()
(the helped process, p is chosen in a round-robin fashion, based on the sequence number
found in lastUpdate[i]). In such a HelpScan(p) call, process q checks if p wants help (as
indicated by the last component of lastScan[p][m]), and if yes, q obtains a timestamp k from
clk. Then, using an SC() operation, it tries to store that timestamp into the first component
of lastScan[p][m] while also resetting the last component to 0. The timestamp associated
with p’s Click() operation is then the first timestamp that gets written to lastScan[p][m],
and the Click() linearizes when that timestamp is obtained from clk.

DISC 2024



7:8 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

3.3 Low Level Description

Our algorithm uses the following shared objects:
clk: A FAI object that stores timestamps.
lastScan[0 . . . n − 1 ][0 . . . m]: An array of LL/SC objects that record the timestamps of
the last Click() operation by each process and the states of each component object at
the time when the timestamp was received from clk.
For every process p ∈ {0, 1, . . . , n − 1}, lastScan[p][m] stores a tuple (k, 0, 0, 0, v), where k

is the timestamp of the last Click() operation by process p, and v = 1 if p needs another
timestamp for pending Click() operation; otherwise v = 0.
For every process p ∈ {0, 1, . . . , n−1} and every integer i ∈ {0, 1, . . . , m−1}, lastScan[p][i]
stores a tuple (k, maxKey, jleft, jright, v), where k is the last detected timestamp of the
last Click() operation by process p, v is either the state of the i-th component object at
the time when k was received from clk or ⊥ if that is yet to be deduced, and maxKey,
jleft, and jright are integers that are used to help deduce that state.
O[0 . . . m − 1]: For every integer i ∈ {0, 1, . . . , m − 1}, O[i] is a wait-free linearizable
readable base object with the same sequential specification as the i-th component object,
and is used to determine the state of this i-th component object at various timestamps.
Note that at any time, the state of the i-th component object is not necessarily the same
as the state of O[i].
lastUpdate[0 . . . m − 1 ]: For every integer i ∈ {0, 1, . . . , m−1}, lastUpdate[i] is an LL/SC
object that is intuitively used to repeatedly pair a timestamp k received from clk with
a state v read from the base object O[i], and thus intuitively set the state of the i-th
component object to v at the time when timestamp k was received from clk.
R[0 . . . ∆ − 1][0 . . . m − 1]: For every integer i ∈ {0, 1, . . . , m − 1}, R[0 . . . ∆ − 1][i] is a
circularly sorted array of LL/SC objects that records the previous states for the i-th
component object (replacing the red-black trees of [7]).
For every integer i ∈ {0, 1, . . . , m − 1} and j ∈ {0, 1, . . . , ∆ − 1}, R[j][i] stores a tuple
(jr, kr, vr), where roughly speaking, kr is a timestamp, vr was the state of the i-th
component at the time when kr was received from clk, and (jr, kr, vr) was the value in
lastUpdate[i] at the time when R[j][i] was last modified.

To achieve the desired time and space complexities, our algorithm heavily relies
on various helping mechanisms, which we have divided into the auxiliary functions
HelpScan(q), HelpObserve(q, i), and HelpUpdate(i) that intuitively help to complete
Click(), Observe(), and Invoke() operations respectively.

In the following we describe which steps a process p performs during each of the indicated
operations.

3.3.1 HelpScan()

During each HelpScan(q) operation, a process p performs the following steps:
1. It performs an LL() operation on lastScan[q][m] to check whether process q needs a

timestamp for a pending Click() operation (line 7).
2. If so, it takes a timestamp k from the FAI object clk (line 9), and attempts to give this

timestamp to q’s pending Click() operation by performing an SC(k, 0 , 0 , 0 , 0) operation
on lastScan[q][m] (line 10).



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:9

3.3.2 HelpObserve()

During each HelpObserve(q, i) operation, a process p performs the following steps:
1. It performs an LL() operation on lastScan[q][i] to get a tuple (ki, maxKey, jleft, jright, v),

which indicates the prior progress (if any) that has been made in helping a potential
Observe(i) operation by process q after its last Click() operation (line 16).

2. It performs an LL() operation on lastScan[q][m] to read the timestamp km of the last
Click() operation by process q (line 17).

3. If the timestamp in lastScan[q][i] is older than the timestamp km in lastScan[q][m], then
that indicates that no progress has been made in helping a potential Observe(i) operation
by process q after its last Click() operation (line 18).
In this case, the tuple (ki, maxKey, jleft, jright, v) that was received from lastScan[q][i] is
outdated and p has to compute replacement values for them. So p performs the following
steps:
a. It reads lastUpdate[i] (line 19) to determine the integer jright that corresponds to the

(first or second) most recent entry of R[0 . . . ∆ − 1][i] to be modified (lines 20 to 21),
and the integer jleft that is for the next entry after jright.

b. It then reads the timestamp maxKey from the entry corresponding to jright (line 23).
c. It then sets ki to km and v to ⊥ (line 24).
d. If the timestamp maxKey is older than the timestamp ki = km that was received from

lastScan[q][m], then it is not safe to help any potential Observe(i) operation by q

yet. Intuitively, this is because there could still be pending Invoke(i, −) operations
that could potentially be linearized before the last Click() operation by process q.
So in this case, p simply returns ⊥ on line 25, indicating that future help may still be
needed.

e. Otherwise, p attempts to set lastScan[q][i] to (km, maxKey, jleft, jright, ⊥) (line 34),
and returns ⊥ on line 35, indicating that future help may still be needed.

Otherwise, p performs the following steps:
a. It checks whether v is a non-⊥ value. If so, then this non-⊥ value v is already the

appropriate value for any potential Observe(i) operation by process q to return, and
so there is no more need to help. Thus p simply returns this non-⊥ value v on line 27.

b. It performs a single iteration of a binary search on the circularly sorted array R[0 . . . ∆−
1][i], checking the entry that is intuitively the mid-point of jleft and jright to compare
its timestamp to ki, and then appropriately setting either jleft or jright to the mid-point
(lines 28 to 32).

c. If jleft = jright, then that indicates that the binary search has completed, and intuitively
R[jleft][i] should contain (−, kr, vr) such that the timestamp kr is just before the
timestamp ki, and vr is the state of the i-th component object at the time that the
timestamp kr was received from clk. So in this case, p simply reads (−, −, v) from
R[jleft][i] (line 33).

d. Finally, p attempts to set lastScan[q][i] to (ki, maxKey, jleft, jright, v) (line 34), and
returns ⊥ on line 35, indicating that future help may still be needed.

3.3.3 HelpUpdate()

During each HelpUpdate(i) operation, a process p performs the following steps:
1. It performs an LL() operation on lastUpdate[i] to receive a tuple (ju, ku, vu) on line 42.

If vu = ⊥, then lastUpdate[i] currently contains neither a timestamp from clk nor a state
from O[i] (line 43). So p performs the following steps:

DISC 2024



7:10 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

a. It reads a state v from O[i] (line 44).
b. It performs an SC(ju + 1 , ⊥, v) operation to store this state v into lastUpdate[i]

(line 45).
Otherwise, if ku = ⊥, then lastUpdate[i] currently does not contain a timestamp from clk
(line 47). So p performs the following steps:
a. It takes a timestamp k from clk via a FAI operation (line 48).
b. It performs an SC(ju, k, vu) operation to store this timestamp k into lastUpdate[i]

(line 49).
Otherwise, lastUpdate[i] currently contains both a timestamp ku from clk and a state vu

from O[i], indicating that the state of the i-th component object was vu at the time when
the timestamp ku was received from clk. So p performs the following steps:
a. It performs an LL() operation on R[ju mod ∆][i] (line 51), which intuitively should be

the least recent entry of R[0 . . . ∆ − 1][i] to be modified, which makes it the safest to
overwrite.

b. If this entry has not yet been modified by a concurrent HelpUpdate(i) operation by any
other process, then process p performs an SC(ju, ku, vu) operation on R[ju mod ∆][i]
(line 52) to now record that the state of the i-th component object was vu at the time
when the timestamp ku was received from clk.

c. It performs ∆′ + 1 alternating HelpScan(ju mod n) and HelpObserve(ju mod n, i)
operations (lines 53 to 55). Intuitively, this ensures that enough help is given to Click()
and Observe() operations such that the next least recent entries of R[0 . . . ∆ − 1][i]
are no longer needed and can be safely overwritten.

d. It performs an SC(ju, 0 , ⊥) operation on lastUpdate[i] to indicate that it is now ready
for a new timestamp and state pair (line 56).

2. It repeats from the start another 5 times, which intuitively ensures that enough help is
given to Invoke() operations such that the resulting state of the i-th component object
and a corresponding timestamp is now recorded.

3.3.4 Click()

Each process p performs the following steps to perform a Click() operation:
1. It changes the last field of lastScan[p][m] to 1 (line 2), to indicate to all other processes

that process p needs a timestamp for this pending Click() operation.
2. It calls HelpScan(p) (line 4) to help itself complete this Click() operation, then returns

done (line 5).

3.3.5 Observe()

Each process p performs the following steps to perform an Observe(i) operation:
1. It calls HelpUpdate(i) (line 12) to help complete any pending Invoke(i, −) operations

that could interfere with this Observe(i) operation.
2. It repeatedly calls HelpObserve(p, i) to help this Observe(i) operation until it receives

a non-⊥ value v (line 12), which it then returns (line 14).

3.3.6 Invoke()

Each process p performs the following steps to perform an Invoke(i, opi) operation:
1. It performs the operation opi on O[i] (line 37), changing the state of O[i] and receiving

an appropriate response value vres for this Invoke(i, opi) operation.
2. It calls HelpUpdate(i) (line 38) to help to record down a state of the i-th component

and a timestamp into R[0 . . . ∆ − 1][i], then returns vres (line 39).



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:11

4 Proof of Correctness

In this section we prove that our algorithm is linearizable. Let H be any history of the
adaptive RMWable snapshot object.

▶ Observation 1. From the algorithm, it is clear that for every integer i ∈ [0 . . . m − 1]:
Whenever lastUpdate[i] = (−, k, ⊥), k = 0.
Every successful SC operation on lastUpdate[i] on line 45 changes lastUpdate[i] from
(j, 0, ⊥) to (j + 1, ⊥, v) for some integer j and some non-⊥ value v such that between the
matching LL operation on lastUpdate[i] on line 42 and this successful SC operation on
lastUpdate[i], v is received from a Read() operation on O[i] on line 44.
Every successful SC operation on lastUpdate[i] on line 49 changes lastUpdate[i] from
(j, ⊥, v) to (j, k, v) for some integer j, some positive integer k, and some non-⊥ value
v such that between the matching LL operation on lastUpdate[i] on line 42 and this
successful SC operation on lastUpdate[i], k is received from a FAI() operation on clk on
line 48.
Every successful SC operation on lastUpdate[i] on line 49 sets lastUpdate[i] to (−, k, −)
for some positive integer k that is greater than any previous successful SC operation on
lastUpdate[i] on line 49.
Every successful SC operation on lastUpdate[i] on line 56 changes lastUpdate[i] from
(j, k, v) to (j, 0, ⊥) for some integer j, some positive integer k, and some non-⊥ value v.

We now assign every operation on O[0 . . . m − 1] a timestamp that roughly approximates
the order in which they occur:

▶ Definition 2. For every integer i ∈ [0 . . . m − 1], we assign every operation on O[i] a
timestamp as follows:

For each Read() operation opi on O[i], let p be the process that performs opi and v be
the return value of opi. If (i) opi is performed when p executes line 44, (ii) p successfully
performs an SC(−, ⊥, v) operation on lastUpdate[i] when it next executes line 45, and
(iii) the next successful SC operation on lastUpdate[i] changes it to (−, k, v) for some
positive integer k, then the timestamp of opi is this positive integer k.
For each remaining operation opi on O[i], let op′

i be the earliest operation such that op′
i

has a timestamp and opi precedes op′
i. If op′

i exists, then the timestamp of opi is the
timestamp of op′

i; otherwise the timestamp of opi is ∞.

Thus by Observation 1 and Definition 2:

▶ Observation 3. For every operation opi on O[i]:
If opi precedes another operation op′

i on O[i], then the timestamp of opi cannot be greater
than the timestamp of op′

i.
If the timestamp of opi is a positive integer k, then k is received from a FAI() operation
on clk after opi is performed on O[i].

We now define a completion H ′ of H, for which we will find a linearization.

▶ Definition 4. Let H ′ be a completion of H such that:
For each incomplete Invoke(i, opi) operation op that has performed opi on O[i] on line 37
such that the timestamp of opi is a positive integer (not ∞), op is completed with the
same return value as opi.
All other incomplete operations are removed.

DISC 2024



7:12 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

The following lemma will help us prove that each Invoke(i, opi) operation can be
linearized between its invocation and response, because the timestamp of opi is received
during that interval. We will need it later in Definition 8, where we associate that timestamp
with the Invoke(i, opi) operation.

▶ Lemma 5. For each Invoke(i, opi) operation op in H ′, op has performed opi on O[i] and
the timestamp of opi is a positive integer k that is received from a FAI() operation on clk
between (inv(op), rsp(op)) (or simply after inv(op) if op is incomplete in H).

Observation 6 below describes some important structural properties of the timestamps
and the last bit stored in lastScan[p][m].

▶ Observation 6. From the algorithm, it is clear that for every process p ∈ [0 . . . n − 1]:
At any time t, there is a non-negative integer k and a value v ∈ {0, 1} such that
lastScan[p][m] = (k, 0, 0, 0, v).
Every successful SC operation on lastScan[p][m] on line 3 changes lastScan[p][m] from
(k, 0, 0, 0, 0) to (k, 0, 0, 0, 1), for some non-negative integer k.
Every successful SC operation on lastScan[p][m] on line 10 changes lastScan[p][m] from
(k, 0, 0, 0, 1) to (k′, 0, 0, 0, 0) for some positive integer k′ > k such that k′ was previously
received from a FAI() operation on clk on line 9.
Only process p can set lastScan[p][m] to (−, 0, 0, 0, 1), and only on line 3.

The following lemma will help us associate each Click() operation with a timestamp
(see also Definition 8 below), which will then help us determine the linearization order.

▶ Lemma 7. For every process p ∈ [0 . . . n − 1]:
1. For every complete HelpScan(p) operation hs, there is a time t between (inv(hs), rsp(hs))

such that lastScan[p][m] contains (−, 0, 0, 0, 0) at time t.
2. For each Click() operation op in H ′ invoked by process p, there is a non-negative integer

k such that op finds that lastScan[p][m] = (k, 0, 0, 0, 0) on line 2 and then successfully
changes lastScan[p][m] to (k, 0, 0, 0, 1) on line 3.

3. For each Click() operation op in H ′ invoked by process p, there is a positive integer
kop such that lastScan[p][m] = (kop, 0, 0, 0, 0) at time rsp(op) and at some time t ∈
(inv(op), rsp(op)), some process performs a FAI() operation on clk on line 9 that returns
kop.

We now assign every operation in H ′ an integer called its timestamp. These timestamps
roughly approximate the order in which the operations occur, and so they are useful for
constructing a linearization of H ′.

▶ Definition 8. We assign every operation in H ′ an integer timestamp as follows:
For each Invoke(i, opi) operation op in H ′, the timestamp of op in H ′ is the timestamp
of opi on O[i]. Note that by Lemma 5, this timestamp is a positive integer k such that
k is received from a FAI() operation on clk between (inv(op), rsp(op)) (or simply after
inv(op) if op is incomplete in H).
If op is a Click() operation by a process p, then by Lemma 7, there is a positive integer
kop such that at time rsp(op), lastScan[p][m] = (kop, 0, 0, 0, 0). The timestamp of op is
this positive integer kop.
If op is an Observe(i) operation by a process p, then the timestamp of op is the same as
the timestamp of the last Click() operation by process p that precedes op; or 0 if no such
Click() operation exists.



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:13

Next, we define a linearization L of H ′.

▶ Definition 9. Let L be a linearization of H ′ such that:
Each Invoke(i, opi) operation with timestamp k is linearized ϵ infinitesimals before the
time when a FAI() operation that returns k is applied on clk, where ϵ is the number of
operations on O[i] between opi and the last operation on O[i] with timestamp k.
Each Click() operation with timestamp k is linearized at the time when a FAI() operation
that returns k is applied on clk.
Each Observe(i) operation is linearized at the end of its interval.

▶ Lemma 10. Each operation in H ′ has a unique, well-defined linearization point in L that
is within its execution interval.

The next lemma shows that the order of Invoke(i, opi) operations in the linearization,
L, is consistent with the order of opi operations on O[i].

▶ Lemma 11. Let op be an Invoke(i, opi) operation in H ′, and op′ be an Invoke(i, op′
i)

operation in H ′. Then op precedes op′ in L if and only if opi precedes op′
i on O[i].

▶ Observation 12. For every integer i ∈ [0 . . . m − 1] and every integer j ∈ [0 . . . ∆ − 1], if
some process p changes R[j][i] from some value (j′, −, −) to some value (j′′, k, v) at some
time t, then:

p does so on line 52.
p found that lastUpdate[i] = (j′′, k, v) when it last executed line 42.
j′ < j′′ and j′′ mod ∆ = j.
j′′ is a positive integer, k is a positive integer and v is a non-⊥ value.

The following two lemmas describe some structural properties of arrays R and lastUpdate,
which will be useful for the linearization proof.

▶ Lemma 13. For every integer i ∈ [0 . . . m − 1], every positive integer j, every positive
integer k, and every non-⊥ value v, if lastUpdate[i] is set to (j, k, v) at some time t, let t′

be the earliest time when a process executes line 52 after finding that lastUpdate[i] contains
(j, k, v) on line 42. Then at any time tR, R[j mod ∆][i] is changed to (j, k, v) if and only if
t′ exists and t′ = tR.

▶ Lemma 14. For every integer i ∈ [0 . . . m − 1], every positive integer kr, every integer
j ∈ [0 . . . ∆ − 1], every value jr, and every value vr, if R[j][i] is set to (jr, kr, vr) at some
time t then jr is a positive integer, jr mod ∆ = j, vr ̸= ⊥, and lastUpdate[i] = (jr, kr, vr) at
time t.

The next observation will describe how array lastScan[0 . . . n − 1 ] can change.

▶ Observation 15. From the algorithm, it is clear that for every process p ∈ [0 . . . n − 1] and
every integer i ∈ [0 . . . m − 1]:
1. lastScan[p][i] can only be modified on line 34.
2. Let k be a positive integer, and t be the earliest time when lastScan[p][i] contains

(k, −, −, −, −). Then at time t, lastScan[p][i] contains (k, maxKey, jleft, jright, ⊥) such
that maxKey ≥ k and dist(jleft, jright) = ∆ − 1. Furthermore, before time t, (i) there is a
time when lastScan[p][m] is set to (k, 0, 0, 0, −), (ii) there is a time when R[jright][i] is set
to (−, maxKey, −), and (iii) there is no time when lastScan[p][i] contains (k′, −, −, −, −)
such that k′ ≥ k.

DISC 2024



7:14 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

3. Let k be a non-negative integer and v be a non-⊥ value. Then lastScan[p][i] cannot be
changed from (k, −, −, −, v) to (k′, −, −, −, −) for any non-negative integer k′ ≤ k.

4. At any time t, if lastScan[p][i] is changed from (k, maxKey, jleft, jright, ⊥) to
(k, maxKey′, j′

left, j′
right, v′), then (i) maxKey′ = maxKey, (ii) dist(j′

left, j′
right) =

⌈(dist(jleft, jright) + 1)/2⌉ − 1, and (iii) v′ = ⊥ if and only if dist(j′
left, j′

right) ̸= 0.

We will now define successful HelpObserve() operations, which manage to update
lastScan[0 . . . n − 1 ].

▶ Definition 16. For each HelpObserve(q, i) operation ho, we say that ho is successful if
and only if ho performs a successful SC operation on lastScan[q][i] on line 34.

The next lemma shows that each successful HelpObserve() operation corresponds to a
Click() operation after which the helped Observe() operation can linearize.

▶ Lemma 17. For every process p ∈ [0 . . . n − 1] and every integer i ∈ [0 . . . m − 1], if there
is a successful HelpObserve(p, i) operation ho, then p invokes a Click() operation op in H

such that ho executes line 34 after inv(op).

▶ Corollary 18. For every process p ∈ [0 . . . n − 1] and every integer i ∈ [0 . . . m − 1],
lastScan[p][i] can only be changed from its initial value (0, 0, 0, 0, 0) after the invocation of a
Click() operation by p.

▶ Lemma 19. For every process p ∈ [0 . . . n − 1], every integer i ∈ [0 . . . m − 1], every non-
negative integer k, every non-⊥ value v, every non-negative integer jleft and every non-negative
integer jright, if lastScan[p][m] = (k, 0, 0, 0, −) and lastScan[p][i] is set to (k, −, jleft, jright, v)
at some time t, then R[jleft][i] = (−, k∗, v) at some time t∗ ≤ t, where k∗ is the largest integer
such that k∗ ≤ k and there is a time when some entry of R[0 . . . ∆ − 1][i] contains (−, k∗, −).

The following technical lemma is critical for the linearizability proof; it helps us determine
that Observe() operations follow the corresponding Click() operation.

▶ Lemma 20. For every process p ∈ [0 . . . n−1] and every integer i ∈ [0 . . . m−1], if op is an
Observe(i) operation with response v by p in H ′ and a positive integer k is the timestamp of
op, then (i) lastScan[p][i] = (k, −, −, −, v) at some time before rsp(op), and (ii) some entry
of R[0 . . . ∆ − 1][i] contains (−, k′, −) for some integer k′ ≥ k at some time before rsp(op).

▶ Lemma 21. Linearization L of H ′ respects the specification of the adaptive RMWable
snapshot object.

Proof. Suppose, for contradiction, that the linearization L of H ′ does not respect the
specification of the adaptive RMWable snapshot object. Let op be the operation with the
earliest linearization in L such that op violates the specification of the adaptive RMWable
snapshot object, i.e., the return value of op differs from what op would have returned in a
sequential history corresponding to L.

First assume that op is an Invoke(i, opi) operation. From the algorithm, for each
operation op′

i performed on O[i], either op′
i is a Read() operation, or op′

i is performed on
O[i] by an Invoke(i, op′

i) operation in H on line 37. By Definition 2 and Definition 4,
every Invoke(i, −) operation that is in H but not in H ′ does not perform any operation
on O[i] that precedes opi. Furthermore, by Lemma 11, for each Invoke(i, op′

i) operation
op′ in H ′, op′ precedes op in L if and only if op′

i precedes opi on O[i]. Consequently, since
Read() operations cannot change the state of O[i], the return value of op cannot violate the
specification of the adaptive RMWable snapshot object. This is a contradiction.



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:15

Now assume that op is an Observe(i) operation invoked by some process p. Let kop be
the timestamp of op.

First, consider the case where kop = 0. Then by Definition 8, p does not invoke any
Click() operation before op. Then according to the specification of the adaptive RMWable
snapshot object, the Observe(i) operation op by p should return 0, the initial state of
component i. Furthermore, by Corollary 18, lastScan[p][i] always contains its initial value
(0, 0, 0, 0, 0) before rsp(op).

So consider the first HelpObserve(p, i) operation ho called by op on line 13. Since
lastScan[p][i] always contains its initial value (0, 0, 0, 0, 0) before rsp(op), ho finds that
lastScan[p][i] = (0, 0, 0, 0, 0) on line 16. Then since there is no Click() operation by p before
rsp(op), by Observation 6 ho finds that lastScan[p][m] = (0, 0, 0, 0, 0). So ho evaluates the
conditional on line 18 as false, then evaluates the conditional on line 27 as true. Thus ho
returns v = 0 ̸= ⊥ to op, and so op returns 0 on line 14 – contradicting that op violates the
specification of the adaptive RMWable snapshot object.

So it remains to consider the case where kop > 0. Then by Definition 8, p invokes Click()
operation(s) before op, and the last Click() operation op′ by p before op also has timestamp
kop. Thus by the definition of L, op′ is linearized at the time that the FAI() operation that
returns kop is applied on clk.

Let vop be the response value of op. Then by Lemma 20, (i) lastScan[p][i] =
(kop, −, jleft, jright, vop) at some time before rsp(op), for some values jleft and jright, and (ii)
some entry of R[0 . . . ∆−1][i] contains (−, k′, −) for some integer k′ ≥ kop at some time before
rsp(op). Let t < rsp(op) be the time when lastScan[p][i] is set to (kop, −, jleft, jright, vop).
Then by Observation 15(2), lastScan[p][m] is set to (kop, 0, 0, 0, −) at some time tm < t.

By Definition 8, since kop is the timestamp of the Click() operation op′ by p,
lastScan[p][m] = (kop, 0, 0, 0, 0) at time rsp(op′). So by Observation 6, since op′ is
the last Click() operation by p before the Observe(i) operation op, lastScan[p][m] =
(kop, 0, 0, 0, 0) between (rsp(op′), rsp(op)). Thus tm < rsp(op′), and by Observation 6,
lastScan[p][m] = (kop, 0, 0, 0, 0) between (tm, rsp(op)). So since tm < t < rsp(op),
lastScan[p][m] = (kop, 0, 0, 0, 0) at time t. Thus by Lemma 19 R[jleft][i] = (−, k∗, vop)
at some time t∗ ≤ t, where k∗ is the largest integer such that k∗ ≤ kop and there is a time
when some entry of R[0 . . . ∆ − 1][i] contains (−, k∗, −).

Therefore, there is no integer k̂ such that k∗ < k̂ ≤ kop and there is a time when some entry
of R[0 . . . ∆ − 1][i] contains (−, k̂, −). Now recall that some entry of R[0 . . . ∆ − 1][i] contains
(−, k′, −) for some integer k′ ≥ kop at some time before rsp(op). So by Observation 1 and
Lemma 13, from the algorithm it is clear that there is no integer k̂ such that k∗ < k̂ ≤ kop and
there is a time when lastUpdate[i] contains (−, k̂, −). Thus by Definition 2 and Definition 8,
there is no integer k̂ such that k∗ < k̂ ≤ kop and some Invoke(i, −) operation in H ′ has
timestamp k̂. Now there are two cases: either k∗ = 0, or k∗ > 0.

First, consider the case where k∗ = 0. Then, by the definition of L there are no
Invoke(i, −) operations in H ′ linearized before the Click() operation op′ by p. Thus
according to the specification of the adaptive RMWable snapshot object, the Observe(i)
operation op by p should return 0, the initial state of component i. Furthermore, since k∗ = 0,
by Observation 12 R[jleft][i] still contains its initial value (0, 0, 0) at time t∗, and so the
Observe(i) operation op returns vop = 0 – contradicting that op violates the specification of
the adaptive RMWable snapshot object.

Now it remains to consider the case where k∗ > 0. Let t̂∗ ≤ t∗ be the time when
R[jleft][i] is set to (−, k∗, vop). Then let j∗ be an integer such that at time t̂∗, R[jleft][i]
is set to (j∗, k∗, vop). Then by Lemma 14, lastUpdate[i] = (j∗, k∗, vop) at time t̂∗. Thus

DISC 2024



7:16 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

by Observation 1, there is a process q such that (i) q performs a Read() operation opi on
O[i] that returns vop on line 44, (ii) q successfully performs an SC(j∗, ⊥, vop) operation on
lastUpdate[i] when it next executes line 45, and (iii) the next successful SC operation on
lastUpdate[i] changes it to (j∗, k∗, vop). So by Definition 2, this Read() operation opi on O[i]
has timestamp k∗.

Now recall that there is no integer k̂ such that k∗ < k̂ ≤ kop and some Invoke(i, −)
operation in H ′ has timestamp k̂. So by the definition of L, every Invoke(i, −) operation in
H ′ is linearized before the Observe(i) operation op if and only if its timestamp is at most k∗.
Thus by Definition 2 and Definition 8, every Invoke(i, −) operation in H ′ that is linearized
before op executes line 37 before the Read() operation opi on O[i] with timestamp k∗.

By Definition 2 and Definition 4, every Invoke(i, −) operation that is in H but not in
H ′ does not perform any operation on O[i] that precedes opi. Furthermore, by Lemma 11,
all Invoke(i, −) operations in H ′ are linearized by the order in which they execute line 37.
Consequently, according to the specification of the adaptive RMWable snapshot object, the
Observe(i) operation op by p should have the same response value as the Read() operation
opi on O[i]. Finally, recall that the response value of the Read() operation opi on O[i] is vop,
the response value of op – contradicting that op violates the specification of the adaptive
RMWable snapshot object. Thus, we have shown that op is not an Observe() operation.

Since op is neither an Invoke() nor an Observe() operation, it must be a Click()
operation. Thus the Click() operation op returns done on line 5 – contradicting that op
violates the specification of the adaptive RMWable snapshot object. ◀

Consequently, this algorithm implements a linearizable adaptive RMWable snapshot
object.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. J. of the ACM, 40(4):873–890, 1993. doi:10.1145/153724.
153741.

2 Thomas Anderson. The performance of spin lock alternatives for shared-memory multiproces-
sors. IEEE Trans. Parallel Distrib. Syst., 1:6–16, 1990. doi:10.1109/71.80120.

3 James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith Ellen. Limited-use atomic
snapshots with polylogarithmic step complexity. J. of the ACM, 62(1):1–22, 2015. doi:
10.1145/2732263.

4 James Aspnes and Keren Censor-Hillel. Atomic snapshots in O(log3 n) steps using randomized
helping. In Proc. of 27th DISC, pages 254–268, 2013. doi:10.1007/978-3-642-41527-2_18.

5 Hagit Attiya, Rachid Guerraoui, and Eric Ruppert. Partial snapshot objects. In Fried-
helm Meyer auf der Heide and Nir Shavit, editors, Proc. of 20th SPAA, pages 336–343, 2008.
doi:10.1145/1378533.1378591.

6 Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Efficient atomic snapshots using lattice
agreement. In Proc. of 6th WDAG, pages 35–53, 1992.

7 Benyamin Bashari and Philipp Woelfel. An efficient adaptive partial snapshot implementation.
In Proc. of the 2021 ACM PODC, pages 545–555, 2021. doi:10.1145/3465084.3467939.

8 Michiko Inoue and Wei Chen. Linear-time snapshot using multi-writer multi-reader registers.
In Proc. of the 8th WDAG, pages 130–140, 1994. doi:10.1007/BFb0020429.

9 Prasad Jayanti. f -arrays: Implementation and applications. In Proc. of 21st PODC, pages
270–279, 2002. doi:10.1145/571825.571875.

10 Prasad Jayanti, Siddhartha Jayanti, and Sucharita Jayanti. MemSnap: A fast adaptive
snapshot algorithm for RMWable shared-memory. In Proc. of 43rd PODC, pages 25–35, 2024.
doi:10.1145/3662158.3662820.

https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/153724.153741
https://doi.org/10.1109/71.80120
https://doi.org/10.1145/2732263
https://doi.org/10.1145/2732263
https://doi.org/10.1007/978-3-642-41527-2_18
https://doi.org/10.1145/1378533.1378591
https://doi.org/10.1145/3465084.3467939
https://doi.org/10.1007/BFb0020429
https://doi.org/10.1145/571825.571875
https://doi.org/10.1145/3662158.3662820


B. Bashari, D. Y. C. Chan, and P. Woelfel 7:17

11 Prasad Jayanti and Srdjan Petrovic. Efficient and practical constructions of ll/sc variables. In
Proc. of 22nd PODC, pages 285–294, 2003. doi:10.1145/872035.872078.

12 Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower bounds for nonblocking
implementations. SIAM J. on Comp., 30(2):438–456, 2000. doi:10.1137/S0097539797317299.

13 MirzaBaig, Danny Hendler, Alessia Milani, and Corentin Travers. Long-lived snapshots with
polylogarithmic amortized step complexity. In Proc. of the 2020 ACM PODC, pages 31–40,
2020. doi:10.1145/3382734.3406005.

14 Robert Obryk. Write-and-f-array: implementation and an application. Master’s thesis,
Jagiellonian University, 2013.

15 Yaron Riany, Nir Shavit, and Dan Touitou. Towards a practical snapshot algorithm. Theor.
Comp. Sci., 269(1-2):163–201, 2001. doi:10.1016/S0304-3975(00)00412-6.

16 Yuanhao Wei, Naama Ben-David, Guy Blelloch, Panagiota Fatourou, Eric Ruppert, and Yihan
Sun. Constant-time snapshots with applications to concurrent data structures. In Proc. of
26th PPOPP, pages 31–46, 2021. doi:10.1145/3437801.3441602.

A Additional Proofs

This appendix contains some of the proofs omitted from Section 4.
In order to prove Lemma 5, we use the following statement, which describes how

lastUpdate[i] is affected by a complete HelpUpdate(i) operation.

▶ Lemma 22. For each complete HelpUpdate(i) operation hu, there is a positive integer j

such that:
There are at least 6 successful SC operations on lastUpdate[i] that occur between
(inv(hu), rsp(hu)).
Some process reads a non-⊥ value v from O[i] on line 44 at some time t0 ∈
(inv(hu), rsp(hu)), then successfully performs an SC(j, ⊥, v) operation on lastUpdate[i]
when it next executes line 45 at some time t1 ∈ (t0, rsp(hu)).
Some process (not necessarily distinct from the first) receives a positive integer k from
a FAI() operation on clk on line 48 at some time t2 ∈ (t1, rsp(hu)), then performs the
next successful SC operation on lastUpdate[i] when it next executes line 49 at some time
t3 ∈ (t2, rsp(hu)), which changes lastUpdate[i] from (j, ⊥, v) to (j, k, v).
Some process (not necessarily distinct from the first two) performs the next successful
SC operation on lastUpdate[i] on line 56 at some time t4 ∈ (t3, rsp(hu)), which changes
lastUpdate[i] from (j, k, v) to (j, 0, ⊥).

Proof. From the algorithm, it is clear that in every outermost loop iteration of hu, hu
performs an LL operation on lastUpdate[i] on line 42, then performs an SC operation on
lastUpdate[i] (line 45, 49, or 56). So a successful SC operation on lastUpdate[i] occurs within
each loop iteration. Thus there are at least 6 successful SC operations on lastUpdate[i] that
occur between (inv(hu), rsp(hu)). Consequently, by Observation 1:

There is a positive integer j and non-⊥ value v such that the second, third, or fourth
successful SC operation on lastUpdate[i] within (inv(hu), rsp(hu)) changes lastUpdate[i]
from (j − 1, 0, ⊥) to (j, ⊥, v) at some time t1 ∈ (inv(hu), rsp(hu)).
The process that does this successful SC operation on lastUpdate[i] at time t1 reads v

from O[i] on line 44 at some time t0 ∈ (inv(hu), t1).
There is a positive integer k such that the next successful SC operation on lastUpdate[i]
within (inv(hu), rsp(hu)) changes lastUpdate[i] from (j, ⊥, v) to (j, k, v) at some time
t3 ∈ (t1, rsp(hu)).

DISC 2024

https://doi.org/10.1145/872035.872078
https://doi.org/10.1137/S0097539797317299
https://doi.org/10.1145/3382734.3406005
https://doi.org/10.1016/S0304-3975(00)00412-6
https://doi.org/10.1145/3437801.3441602


7:18 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

The process that does this successful SC operation on lastUpdate[i] at time t3 receives
this positive integer k from a FAI() operation on clk on line 48 at some time t2 ∈ (t1, t3).
The next successful SC operation on lastUpdate[i] within (inv(hu), rsp(hu)) changes
lastUpdate[i] from (j, k, v) to (j, 0, ⊥) at some time t4 ∈ (t3, rsp(hu)).

Thus, since inv(hu) < t0 < t1 < t2 < t3 < t4 < rsp(hu), the lemma holds. ◀

Proof of Lemma 5. First, consider the case where op is incomplete in H. Then by Defini-
tion 4, op has performed opi on O[i] and the timestamp of opi is a positive integer k. So
by Definition 2, there exists a Read() operation op′

i on O[i], a process p that performs op′
i,

and a value v returned by op′
i such that (i) op′

i is performed when p executes line 44, (ii) p

successfully performs an SC(−, ⊥, v) operation on lastUpdate[i] when it next executes line 45,
(iii) the next successful SC() operation on lastUpdate[i] changes it to (−, k, v), and (iv) opi

precedes op′
i on O[i]. Thus by Observation 1, this positive integer k is received from a FAI()

operation on clk after op performs opi on O[i], which is clearly after inv(op).
It now remains to the consider the case where op is complete in H. Thus op performs

opi on O[i] on line 37, then calls HelpUpdate(i) on line 38. Since op is complete in H,
this HelpUpdate(i) call completes before rsp(op). So by Lemma 22, during this complete
HelpUpdate(i) call:

There are at least 6 successful SC operations on lastUpdate[i]
Some process q receives non-⊥ value v from a Read() operation op′

i on O[i] on line 44,
then performs the second, third, or fourth successful SC operation on lastUpdate[i] when
it next executes line 45, changing it to (−, ⊥, v).
The next successful SC operation on lastUpdate[i] changes it to (−, k′, v) for some positive
integer k′ that was received from a FAI() operation on clk after the successful SC(−, ⊥, v)
operation on lastUpdate[i] by q.

Thus by Definition 2, the timestamp of op′
i is this positive integer k′. As opi precedes op′

i,
by Definition 2 and Observation 3, the timestamp of opi is a positive integer k ≤ k′, which is
returned from a FAI() operation on clk after op performs opi on O[i] on line 37. Hence, as
k′ ≥ k is received from a FAI() operation on clk during the complete HelpUpdate(i) call of
op, k is received from a FAI() operation on clk during (inv(op), rsp(op)). ◀

Proof of Lemma 7. (1): Let hs be a complete HelpScan(p) operation. By Observation 6,
there is a value v ∈ {0, 1} such that hs finds that lastScan[p][m] contains (−, 0, 0, 0, v) on
line 7. If v = 0, we are done. So suppose v = 1. Then hs evaluates the conditional on line 8
as true, gets a positive integer k from a FAI() operation on clk on line 9, and then performs
an SC(k, 0 , 0 , 0 , 0) operation on lastScan[p][m] on line 10.

Let t0 and t1 be the times when hs executes lines 7 and 10 respectively. Note that inv(hs) <

t0 < t1 < rsp(hs). Then, since hs performs an LL operation on lastScan[p][m] at time
t0 > inv(hs), and an SC operation on lastScan[p][m] at time t1 < rsp(hs), there must exist a
successful SC operation on lastScan[p][m] between (inv(hs), rsp(hs)). By Observation 6, every
successful SC operation on lastScan[p][m] changes it either from (−, 0, 0, 0, 0) to (−, 0, 0, 0, 1)
or from (−, 0, 0, 0, 1) to (−, 0, 0, 0, 0). So there is a time t between (inv(hs), rsp(hs)) such
that lastScan[p] contains (−, 0, 0, 0, 0) at time t. Thus we have proven (1).

(2): Initially, lastScan[p][m] = (0, 0, 0, 0, 0). By Observation 6:
Only process p can set lastScan[p][m] to (−, 0, 0, 0, 1), and only on line 3.
Every successful SC operation on lastScan[p][m] changes it either from (−, 0, 0, 0, 0) to
(−, 0, 0, 0, 1) or from (−, 0, 0, 0, 1) to (−, 0, 0, 0, 0).

Thus only a Click() operation by process p can change lastScan[p][m] from (−, 0, 0, 0, 0),
and only on line 3. Consequently, every complete Click() operation by process p in H:



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:19

Finds that lastScan[p][m] contains (k, 0, 0, 0, 0) on line 2 for some non-negative integer k

(Observation 6).
Successfully changes lastScan[p][m] to (k, 0, 0, 0, 1) on line 3.
Finishes with a HelpScan(p) call on line 4, which, since we have already proven (1),
ensures that lastScan[p][m] is changed to (−, 0, 0, 0, 0) for the next Click() operation by
p.

Finally, by Definition 4, every Click() operation in H ′ is complete in H. Thus we have
proven (2).

(3): Let op be a Click() operation in H ′ that is invoked by process p. By Definition 4,
every Click() operation in H ′ is complete in H, so op is complete in H. Since we have
already proven (2), p successfully changes lastScan[p][m] to (−, 0, 0, 0, 1) on line 3 at some
time t1 > inv(op). Then p calls HelpScan(p) on line 4, which, since we have already proven
(1), ensures that some process q (not necessarily distinct from p) sets lastScan[p][m] to
(kop, 0, 0, 0, 0) for some value kop at some time t′ < rsp(op).

By Observation 6, kop is a positive integer, and at time t′, q performs a successful
SC(kop, 0 , 0 , 0 , 0) operation on lastScan[p][m] on line 10 within a HelpScan() operation.
Furthermore, since q performs a successful SC operation on lastScan[p][m] on line 10, q must
have performed the matching LL operation on lastScan[p][m] on line 7 after the successful
SC(−, 0 , 0 , 0 , 1) on lastScan[p][m] by process p at time t1. Thus q received kop from a FAI()
operation on clk on line 9 at some time t ∈ (t1, t′). Then, since t1 > inv(op) and t′ < rsp(op),
t ∈ (inv(op), rsp(op)).

Finally, from the algorithm it is clear that p does not execute line 3 after calling
HelpScan(p) on line 4. So by Observation 6, lastScan[p][m] cannot be changed again
before rsp(op), so lastScan[p][m] still contains (kop, 0, 0, 0, 0) at time rsp(op). Thus we have
proven (3). ◀

Proof of Lemma 10. This is clearly true for all Observe(i) operations in H ′.
By Lemma 7, for each Click() operation op in H ′ invoked by a process p ∈ [0 . . . n − 1],

there is a positive integer kop such that lastScan[p][m] = (kop, 0, 0, 0, 0) at time rsp(op) and
at some time t ∈ (inv(op), rsp(op)), some process performs a FAI() operation on clk on line 9
that returns kop. So by Definition 8, this positive integer kop is the timestamp of op. Thus by
Definition 9, op is linearized at the time t ∈ (inv(op), rsp(op)) when some process performs
a FAI() operation on clk on line 9 that returns kop. Consequently, every Click() operation
in H ′ has a unique, well-defined linearization point in L that is within its execution interval.

Thus it remains to consider the Invoke() operations in H ′. Let op be an Invoke(i, opi)
operation in H ′, and k be the timestamp of op in H ′. Then by Definition 8, k is also the
timestamp of opi on O[i]. Then by Lemma 5, k is received from a FAI() operation on clk
between (inv(op), rsp(op)). Then by Definition 9, there is a finite integer ϵ such that op is
linearized ϵ infinitesimals before this FAI() operation on clk. Consequently, every Invoke()
operation in H ′ has a unique, well-defined linearization point in L that is within its execution
interval. ◀

Proof of Lemma 11. Suppose opi precedes op′
i on O[i]. Then by Observation 3, the times-

tamp of opi on O[i] cannot be greater than the timestamp of op′
i on O[i]. So by Definition 9,

the Invoke(i, opi) operation op precedes the Invoke(i, op′
i) operation op′ in L.

Thus if opi precedes op′
i on O[i], then op precedes op′ in L. By symmetric arguments, if

op′
i precedes opi on O[i], then op′ precedes op in L. Consequently, op precedes op′ in L if

and only if opi precedes op′
i on O[i]. ◀

DISC 2024



7:20 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

Proof of Lemma 13. Suppose, for contradiction, that the lemma does not hold. Then let j

be the smallest positive integer for which the lemma does not hold.
First, consider the case where t′ does not exist, i.e., no process executes line 52 after

finding that lastUpdate[i] contains (j, k, v) on line 42. Then by Observation 12, no process
ever sets R[j mod ∆][i] to (j, k, v) – contradicting that the lemma does not hold for j.

So it remains to consider the case where t′ exists. Then t′ is the earliest time when a
process p executes line 52 after finding that lastUpdate[i] contains (j, k, v) on line 42. By
Observation 1:

lastUpdate[i] is never set to (j, k′, v′) for some non-⊥ values k′ and v′ such that (k′, v′) ̸=
(k, v).
lastUpdate[i] is only set to (j, k, v) at time t (and so t < t′).
Before lastUpdate[i] is set to (j, k, v) at time t, lastUpdate[i] never contains (j′, −, −) such
that j′ > j.

Thus by Observation 12, before time t′, no process ever sets R[j mod ∆][i] to (j′, −, −) such
that j′ ≥ j. So p finds that R[j mod ∆][i] contains (jLL, −, −) for some integer jLL < j on
line 51. Thus at time t′, p evaluates the conditional on line 52 as true, and performs an
SC(j, k, v) operation on R[j mod ∆][i].

Since the lemma does not hold, this p must fail this SC(j, k, v) operation on R[j mod ∆][i]
at time t′. Thus for some integer ĵ, at some time t̂ that is between the time when p performs
the matching LL operation on R[j mod ∆][i] on line 51 and time t′, there is a successful
SC(̂j, −, −) operation on R[j mod ∆][i]. So by Observation 12, ĵ is a positive integer.
Furthermore, recall that before time t′, no process ever sets R[j mod ∆][i] to (j′, −, −) such
that j′ ≥ j. Thus ĵ < j.

Now recall that j is the smallest positive integer for which the lemma does not hold.
Thus the lemma holds for the positive integer ĵ < j. So t̂ is the earliest time when a process
executes line 52 after finding that lastUpdate[i] contains (ĵ, k̂, v̂) on line 42 for some positive
integer k̂ and some non-⊥ value v̂.

By Observation 1, lastUpdate[i] can only be changed from (ĵ, k̂, v̂) on line 56. Thus from
the algorithm, it is clear that at time t̂, lastUpdate[i] still contains (ĵ, k̂, v̂). Consequently,
lastUpdate[i] contains (j, −, −) at time t and (ĵ, −, −) at time t̂ such that t < t̂ and j > ĵ –
contradicting Observation 1. ◀

Proof of Lemma 14. Let q be the process that sets R[j][i] to (jr, kr, vr) at time t. By
Observation 12, jr is a positive integer, jr mod ∆ = j, vr ̸= ⊥, and q does so on line 52,
after finding that lastUpdate[i] contains (jr, kr, vr) on line 42. Then, by Lemma 13, t is
the earliest time when a process (namely q) executes line 52 after finding that lastUpdate[i]
contains (jr, kr, vr) on line 42.

By Observation 1, lastUpdate[i] can only be changed from (jr, kr, vr) on line 56. Thus
from the algorithm, it is clear that at time t, lastUpdate[i] still contains (jr, kr, vr). ◀

Proof of Lemma 17. Let ho be the successful HelpObserve(p, i) operation that executes
line 34 earliest. Then let t be the time when ho executes line 34. By Observation 15(1) and Def-
inition 16, lastScan[p][i] can only be changed on line 34, within a successful HelpObserve(p, i)
operation. So at time t, lastScan[p][i] is changed from its initial value (0, 0, 0, 0, 0). Thus
by Observation 15(3), there is a positive integer k > 0 such that at time t, lastScan[p][i] is
changed to (k, −, −, −, −). So by Observation 15(2), before time t, there is a time when
lastScan[p][m] is set to (k, 0, 0, 0, −). By Observation 6, lastScan[p][m] can only be changed
from its initial value (0, 0, 0, 0, 0) on line 3, within a Click() operation by process p. Thus p

invokes a Click() operation op in H such that ho executes line 34 after inv(op). ◀



B. Bashari, D. Y. C. Chan, and P. Woelfel 7:21

▶ Lemma 23. For every process p ∈ [0 . . . n − 1], every integer i ∈ [0 . . . m − 1], and every
positive integer k, if lastScan[p][i] is first set to (k, −, −, −, −) at some time ti, then clk
returns k to a FAI() operation at some time t < ti and between (t, ti), R[0 . . . ∆ − 1][i] is
modified at most n + 2 times.

The proof is omitted due to space restrictions.
Given any two integers j and j′ in [0 . . . ∆ − 1], we define dist(j, j′) to be j′ − j, if j′ ≥ j,

and j′ − j + ∆, otherwise. Note that if j ̸= j′, then dist(j, j′) = ∆ − dist(j′, j).

Proof of Lemma 19. First, consider the case where k = 0. Then by Observation 15(3),
lastScan[p][i] still contains its initial value (0, 0, 0, 0, 0). Then, since R[0][i] initially contains
(0, 0, 0), it is clear that the lemma holds.

So it remains to consider the case where k is a positive integer. Let ti be the ear-
liest time when when lastScan[p][i] = (k, −, −, −, −). Since lastScan[p][i] initially con-
tains (0, 0, 0, 0, 0), ti exists and ti < t. By Observation 15(2), at time ti, lastScan[p][i] =
(k, maxKey, j′

left, j′
right, ⊥), such that maxKey ≥ k, dist(j′

left, j′
right) = ∆ − 1, and be-

fore time ti, there is a time when lastScan[p][m] = (k, 0, 0, 0, −) and a time when
R[j′

right][i] = (−, maxKey, −).

▶ Subclaim 23.1. For each complete HelpObserve(p, i) operation ho such that ti <

inv(ho) < rsp(ho) < t, there is a successful HelpObserve(p, i) operation (not necessar-
ily distinct from ho) that executes line 34 between (inv(ho), rsp(ho)).

Proof. Consider ho:
Since ti < inv(ho) < rsp(ho) < t, by Observation 15 ho finds that lastScan[p][i] =
(k, −, −, −, ⊥) on line 16.
Since lastScan[p][m] = (k, 0, 0, 0, −) at some time before time ti and lastScan[p][m] =
(k, 0, 0, 0, −) at time t > ti, by Observation 6, lastScan[p][m] always contains (k, 0, 0, 0, −)
between (ti, t). Thus since ti < inv(ho) < rsp(ho) < t, ho finds that lastScan[p][m] =
(k, 0, 0, 0, −) on line 17.
So ho evaluates the conditionals on lines 18 and 27 as false.
Thus ho performs an SC operation on lastScan[p][i] on line 34.

Consequently, by Definition 16 there exists a successful HelpObserve(p, i) operation (not
necessarily distinct from ho) that executes line 34 between (inv(ho), rsp(ho)). ◀

Let tk be the time when a FAI() operation on clk returns k. By Lemma 23, tk exists
and tk < ti < t.

The proofs of the following twwo claims are omitted due to space restrictions.

▶ Subclaim 23.2. R[0 . . . ∆ − 1][i] is modified O(n log ∆/∆′) times between (tk, t).

▶ Subclaim 23.3. There is an integer j∗ ∈ [0 . . . ∆ − 1] such that:
1. R[j′

right][i] always contains (−, maxKey, −) between (ti, t).
2. R[j∗][i] always contains (−, k∗, −) between (ti, t).
3. For every integer j ∈ [0 . . . ∆ − 1] such that dist(j′

left, j) ≤ dist(j′
left, j∗), at any time t̂

such that ti ≤ t̂ ≤ t, R[j][i] = (−, k̂, −) for some integer k̂ such that either k̂ < k or
k̂ > maxKey.

4. For every integer j ∈ [0 . . . ∆−1] such that dist(j′
left, j) > dist(j′

left, j∗), at any time t̂ such
that ti ≤ t̂ ≤ t, R[j][i] = (−, k̂, −) for some integer k̂ such that k̂ > k and k̂ ≤ maxKey.

Now consider each successful HelpObserve(p, i) operation ho′ that sets lastScan[p][i] to
(k, −, −, −, −) on line 34 after time ti. Recall that ti is the earliest time when lastScan[p][i]
contains (k, −, −, −, −), t is the time when lastScan[p][i] is set to (k, −, jleft, jright, v), and
v is a non-⊥ value. So by Observation 15, from the algorithm it is clear that ho′ executes

DISC 2024



7:22 A Fully Concurrent Adaptive Snapshot Object for RMWable Shared-Memory

line 16 after time ti, and executes line 34 before or at time t. Furthermore, by Observation 15,
there are integers j1, j2, j3, and j4 such that ho′ changes lastScan[p][i] from (k, −, j1, j2, −)
to (k, −, j3, j4, −) on line 34. Thus from the algorithm it is clear that ho′ evaluates the
conditionals on lines 18 and 27 as false. Therefore ho′:

Finds that lastScan[p][i] = (k, −, j1, j2, −) on line 16.
Evaluates the conditional on line 18 as false.
Finds that R[j][i] = (−, kr, −) on line 30, where j is an integer such that dist(j1, j) ≤
dist(j1, j2).
By Subclaim 23.3, evaluates the conditional on line 31 as true if and only if dist(j′

left, j) >

dist(j′
left, j∗).

Consequently dist(j′
left, j1) ≤ dist(j′

left, j3) ≤ dist(j′
left, j∗) ≤ dist(j′

left, j4) ≤ dist(j′
left, j2) ≤

dist(j′
left, j′

right).
Finally, by Observation 15(1) and Definition 16, some successful HelpObserve(p, i)

operation hot sets lastScan[p][i] to (k, −, jleft, jright, v) on line 34 at time t > ti. So, since
v ≠ ⊥, by Observation 15(4), jleft = jright = j∗. Thus hot finds that R[j∗][i] = (−, −, v) on
line 33 at some time between (ti, t). Therefore by Subclaim 23.3, R[jleft][i] = (−, k∗, v) at
some time t∗ ≤ t, where k∗ is the largest integer such that k∗ ≤ k and there is a time when
some entry of R[0 . . . ∆ − 1][i] contains (−, k∗, −). ◀

Proof of Lemma 20. By Definition 8, k is also the timestamp of the last Click() operation
op′ by p that precedes op in H ′, and at rsp(op′), lastScan[p][m] = (k, −, −, −, −). Note that
by Observation 6, lastScan[p][m] always contains (k, −, −, −, −) between (rsp(op′), rsp(op)).
Since the Observe(i) operation op returns v, op calls a HelpObserve(p, i) operation ho that
returns v on line 13, and v ̸= ⊥.

Consider this HelpObserve(p, i) operation ho. On line 16, ho finds that
lastScan[p][i] = (ki, −, −, −, v′). Since lastScan[p][m] always contains (k, −, −, −, −) between
(rsp(op′), rsp(op)), ho finds that lastScan[p][m] = (k, −, −, −, −) on line 17. Then since ho
returns v ̸= ⊥, from the algorithm it is clear that ho evaluates the conditional on line 18 as
false, and so k ≤ ki. So by Observation 15(2), k = ki. Finally, since ho does not return ⊥,
ho returns v′ on line 27. Thus v′ = v, and so ho found that lastScan[p][i] = (k, −, −, −, v) on
line 16.

Next, let k′ be a value such that ho found that lastScan[p][i] = (k, k′, −, −, v) on line 16.
Furthermore, let t be the earliest time when lastScan[p][i] contains (k, −, −, −, −). Then
by Observation 15(4), lastScan[p][i] contains (k, k′, −, −, −) at time t. Consequently, by
Observation 15(2), k′ ≥ k and before time t, there is a time when some entry of R[0 . . . ∆−1][i]
is set to (−, k′, −). ◀



Hyperproperty-Preserving Register Specifications
Yoav Ben Shimon #

Tel Aviv University, Israel

Ori Lahav #

Tel Aviv University, Israel

Sharon Shoham #

Tel Aviv University, Israel

Abstract
Reasoning about hyperproperties of concurrent implementations, such as the guarantees these
implementations provide to randomized client programs, has been a long-standing challenge. Standard
linearizability enables the use of atomic specifications for reasoning about standard properties, but
not about hyperproperties. A stronger correctness criterion, called strong linearizability, enables
such reasoning, but is rarely achievable, leaving various useful implementations with no means for
reasoning about their hyperproperties. In this paper, we focus on registers and devise non-atomic
specifications that capture a wide-range of well-studied register implementations and enable reasoning
about their hyperproperties. First, we consider the class of write strong-linearizable implementations,
a recently proposed useful weakening of strong linearizability, which allows more implementations,
such as the well-studied single-writer ABD distributed implementation. We introduce a simple shared-
memory register specification that can be used for reasoning about hyperproperties of programs
that use write strongly-linearizable implementations. Second, we introduce a new linearizability
class, which we call decisive linearizability, that is weaker than write strong-linearizability and
includes multi-writer ABD, and develop a second shared-memory register specification for reasoning
about hyperproperties of programs that use register implementations of this class. These results
shed light on the hyperproperties guaranteed when simulating shared memory in a crash-resilient
message-passing system.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Program specifications; Theory of computation → Distributed algorithms; Theory of computation
→ Concurrent algorithms

Keywords and phrases Hyperproperties, Concurrent objects, Distributed objects, Linearizability,
Strong linearizability, Simulation

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.8

Related Version Extended Version: https://arxiv.org/abs/2408.11015 [21]

Funding This work is supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement no. [759102-SVIS]
and 851811) and the Israel Science Foundation (grant number 2117/23 and 814/22).

1 Introduction

Linearizability [17] is a widely accepted correctness criterion for concurrent and distributed
implementations of objects, allowing clients of an object to pretend that they use an atomic
abstraction thereof, whose behaviors are much easier to understand [13]. The observational
refinement between a linearizable implementation and its atomic specification is, however,
restricted to reasoning about reachability of “bad” states. Dealing with more intricate
properties, such as the ability of an adversary to control the probability distribution of the
results of an object’s methods, reveals that a linearizable implementation may manifest be-
haviors exceeding those permissible by the atomic specification [14]. In the terminology of [3],

© Yoav Ben Shimon, Ori Lahav, and Sharon Shoham;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 8; pp. 8:1–8:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yoavbenshimon@gmail.com
https://orcid.org/0000-0002-8893-8874
mailto:orilahav@tau.ac.il
https://orcid.org/0000-0003-4305-6998
mailto:sharon.shoham@gmail.com
https://orcid.org/0000-0002-7226-3526
https://doi.org/10.4230/LIPIcs.DISC.2024.8
https://arxiv.org/abs/2408.11015
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


8:2 Hyperproperty-Preserving Register Specifications

linearizability ensures preservation of safety properties but fails to maintain hyperproperties,
which are properties of sets of executions, rather than individual executions. These properties
allow one to express security guarantees, such as noninterference, as well as probability
distributions on program outcomes [9].

The preservation of hyperproperties of concurrent implementations, a.k.a. strong observa-
tional refinement, necessitates a more strict connection between the implementation and its
atomic specification, known as strong linearizability [14], which is equivalent to (a certain
form of) forward simulation between the implementation and the atomic specification [3, 12].
Many implementations are, however, known to be non-strongly linearizable, leaving us with
no means to reason about hyperproperties of programs that use these implementations by
assuming simpler abstractions. In particular, the well-studied ABD implementation, which
shows how shared memory can be simulated in a crash-tolerant message-passing system [2],
is not strongly linearizable, and, in fact, a strongly linearizable implementation with similar
guarantees does not exist [5].

Focusing on registers and observing that strong linearizability is hardly achievable,
Hadzilacos et al. [15] recently proposed a weakening of strong linearizability, called write
strong-linearizability, which captures more implementations. This includes single-writer ABD,
and, in fact, as shown in [15], every linearizable implementation of a single-writer register.
We are left, however, with substantial gaps: how should one reason about hyperproperties of
programs that use write strongly-linearizable register implementations? and what can be
said about existing non-strongly-linearizable implementations of multi-writer registers?

The current work aims to address these gaps. Inspired by Attiya and Enea [3], who
propose to reason about hyperproperties of programs that use non-strongly-linearizable
implementations by using simpler (albeit non-atomic) implementations related to them by
strong observational refinement, we present a simple (but necessarily not atomic) specification
of a shared multi-writer register, which we call WSR (for “Write Strong Register”) that can
be used for reasoning about hyperproperties of programs that use any write strongly-
linearizable implementation (including single-writer ABD). To do so, we prove that every
write strongly-linearizable implementation has a forward simulation to WSR, and utilize the
correspondence between forward simulation and strong observational refinement (preservation
of hyperproperties). Moreover, since write strong-linearizability is downward closed w.r.t.
forward simulation and WSR is write strongly-linearizable, one can also prove write strong-
linearizability for a given implementation by establishing a forward simulation to WSR, which
may be more amenable to automatic/machine-assisted proofs than a direct proof. Drawing
an analogy to complexity theory, we refer to WSR as a complete implementation for the class
of write strongly-linearizable register implementations: WSR is write strongly-linearizable and
every write strongly-linearizable implementation has a forward simulation to WSR.

As for multi-writer registers, we present a second specification of a shared register that
is “complete” for a family of implementations that admit a weakening of write strong-
linearizability, which we call decisive linearizability. In particular, we show that multi-writer
ABD [19] belongs to this family. Thus, the complete implementation, which we call DR (for
“Decisive Register”), enables reasoning about hyperproperties of programs that use ABD via
a simpler shared-memory specification. (We also use DR to demonstrate that multi-writer
ABD is decisively linearizable by showing a forward simulation to DR.) Intuitively speaking,
unlike strong linearizability and write strong-linearizability, decisive linearizability gradually
commits on the relative order of operations in the sequential history, rather than on the
exact position of operations in that history.



Y. Ben Shimon, O. Lahav, and S. Shoham 8:3

write(1);
write(2);
a← coin();

b← read();

Program P1.

write(1);
a← coin();
barrier();

write(2);
barrier();
b← read();

Program P2.

write(1);
barrier();
a← coin();

write(2);
barrier();
b← read();

Program P3.

T1 =
{

|w1 | |w2 | 1
|r 1| ,

|w1 | |w2 | 2
|r 2|

}
T2 =

{
|w1 | 1

|w2 | |r 1| ,
|w1 | 2

|w2 | |r 2|

}
T3 =

{
|w1 | 1

|w2 | |r 1| ,
|w1 | 2

|w2 | |r 2|

}
Figure 1 Client programs (upper part) and corresponding trace sets (lower part) that, if an

adversary can generate them, violate the hyperproperty “a = b with probability 1
2 ”.

Outline. The rest of this paper is structured as follows. In §2 we make the introductory
discussion more concrete by outlining several examples. In §3 we provide the necessary
preliminaries for our formal development. In §4 we introduce and study the notion of a
complete implementation for a given linearizability class. In §5 we present the complete
implementation for write strong-linearizability. In §6 we define decisive linearizability and
present a complete implementation for this class. We discuss related work and conclude in
§7. In Appendix A we provide proof sketches for several lemmas and theorems. The full
version of this paper [21] provides full proofs.

2 Motivating Examples: A Tale of Four Registers

This section demonstrates certain intricacies arising when examining hyperproperties of client
programs using (linearizable) implementations of concurrent registers. The specifications we
develop in the next sections are based on the observations arising from these examples. We
keep the discussion informal, deferring the formal treatment to the next sections.

Figure 1 (upper part) presents three programs, in which two threads read and write from
a shared register, and invoke a method coin() that returns 1 or 2 uniformly at random.
Programs P2 and P3 also employ a synchronization method barrier() that ensures the
threads wait for each other before executing the rest of the code. Given that the underlying
register implementation is linearizable, one can analyze standard properties of a single
(finite) trace (e.g., the final values of the variables) of these programs by considering an
atomic register (ATR in Fig. 2) [13]. In technical terms, one says that every linearizable
implementation observationally refines the atomic register, and that the atomic register
provides a specification (a.k.a. reference implementation) for any linearizable implementation.

However, as observed by Golab et al. [14], the atomic register cannot be used for analyzing
properties of sets of program traces, a.k.a. hyperproperties, which cannot be deduced from a
single program trace. For investigating hyperproperties, one considers the sets of program
traces that can be generated by an adversary that controls the scheduling and the steps of the
implementation. (By program trace we mean the sequence of actions performed by the client
where the object’s implementation internal actions are invisible.) Specifically, we consider
the standard strong adversary that sees the whole execution so far and makes choices that
depend on previous coin-toss results.

DISC 2024



8:4 Hyperproperty-Preserving Register Specifications

Atomic (ATR).
Method read()

out ← X;
return out;

Method write(v)
X ← v;
return;

Double load (DLR).
Method read()

out1 ← X;
out2 ← X;
if * then return out1;
else return out2;

Method write(v)
X ← v;
return;

Try-not-to-store (TNSR).
Method read()

out ← X;
return out;

Method write(v)
a1 ← X;
a2 ← X;
if * then

if a1 ̸= a2 then return;
X ← v;
return;

ABD implementation for N processes (ABDN ).
Shared Variables: A set Broadcasts of query/update messages and a mapping Replies from

messages to their replies.
Local Variables: Process p stores the most recent value it observed, vp, and its timestamp, tsp.
Timestamps are pairs ts = ⟨t, p⟩ with t ∈ N ordered lexicographically (assuming an arbitrary order

on process id’s). max{⟨v1, ts1⟩, ... ,⟨vn, tsn⟩} retrieves the timestamped value ⟨vi, tsi⟩ with the
maximum timestamp.

Method read()
⟨v, ts⟩ ←query();
update(v, ts);
return v;

Method write(v)
⟨_, ⟨t, _⟩⟩ ←query();
update(v, ⟨t + 1, my_process_id()⟩);
return;

Function update(v, ts)
broadcast m = update(v, ts);
wait until |Replies(m)| > N/2;
return;

Function query()
broadcast m = query;
wait until |Replies(m)| > N/2;
Q←pick Q ⊆ Replies(m) s.t. |Q| > N/2;
return max Q;

Background activity by process p:
when m ∈ Broadcasts received

if m = query then
reply ⟨vp, tsp⟩ to m;

if m = update(v, ts) then
⟨vp, tsp⟩ ← max{⟨v, ts⟩, ⟨vp, tsp⟩};
reply “ack” to m;

Figure 2 Four register implementations.

For instance, for the programs above, we may aim to verify that under any adversarial
scheduling the probability that a = b at the end of execution is exactly 1

2 , which indicates
that the adversary cannot leak the coin-toss result from one thread to another.1 With an
atomic register, this property holds in all three programs. For instance, in programs P1 and
P3, if the adversary performs the atomic read() before the coin is tossed, it cannot force a
correlation between the coin and the read value; and by the time the coin is tossed, there is
only one possible value that can be read.

Next, we demonstrate that this does not mean that other linearizable implementations
guarantee this hyperproperty. To this end, we depict below each program in Fig. 1 a set of
traces that forces a = b with probability 1, and to show that the hyperproperty of a program
is violated for certain implementations, we describe an adversary that generates this set.

We consider three linearizable register implementations, in addition to the atomic register
(ATR) discussed above, presented in Figure 2: a “double load” implementation (DLR), a
“try-not-to-store” implementation (TNSR), and the well-studied ABD implementation. Like
ATR, DLR and TNSR are shared-memory implementations, using a single primitive (atomic)
shared memory cell X initialized to 0 (all other variables are local). We refer to the accesses

1 By adding conditional loops in the programs, one can correlate the probability that a = b with the
probability that the program diverges, and thus concentrate on asking whether an adversary can force
non-termination, as considered in some previous work [15, 6].



Y. Ben Shimon, O. Lahav, and S. Shoham 8:5

to X as loads/stores, and to the methods of the register as reads/writes. In contrast, ABD is
a register implementation in a crash-resilient message passing system, originally proposed
to demonstrate that such a system can emulate a shared memory [2]. We present the
multi-writer version of ABD from [19].

DLR. This implementation loads twice and non-deterministically picks which value to return
(using if *). Using DLR, in P1 the adversary can generate T1 by ensuring this particular
interleaving of the two threads, and moreover: execute the first load in the read method after
1 is stored to X, so that out1 = 1; execute the second load after 2 is stored to X, so that
out2 = 2; and resolve the non-deterministic choice only after the coin is tossed ensuring that
out1 is returned if the coin result is 1, and out2 is returned if the coin result is 2. (Recall
that the adversary controls object-implementation-internal steps, including non-deterministic
choices.) However, it is easy to see that for programs P2 and P3, the hyperproperty holds
when DLR is used. Indeed, without a read concurrently executed with a write, DLR behaves
just like ATR.

TNSR. This implementation tries to avoid some stores by recognizing that if the value is
concurrently altered during a write operation, then that operation does not have to actually
store as it may pretend it was overrun by the concurrent write. With this implementation,
the hyperproperty holds for P1. Indeed, without two concurrently executed writes, TNSR
behaves just like ATR. However, using TNSR, in P2 the adversary can generate T2 by ensuring
that the first load in write(2) reads 0 (the initial value), then execute write(1) atomically
and have the second load in write(2) read 1. Then, if the coin result is 1, the adversary
makes write(2) skip writing its value (it can do so since the two loaded values are not
equal). Otherwise, if the coin result is 2, write(2) stores its value. Finally, it is easy to see
that for P3 the hyperproperty holds with TNSR. Indeed, after both threads reach the barrier,
only one value can be returned by the read method, since at this point in the execution,
both write methods are completed.

ABD. This implementation uses timestamps to order the written values (breaking ties using
some predetermined order on the process identifiers). Each process maintains the most recent
timestamped value it observed. For reading, a process broadcasts a query, waits for replies
from a quorum (majority) of processes, and returns the value with the largest timestamp,
but only after broadcasting this timestamped value and receiving acknowledgments from
a quorum of processes. In turn, for writing value v a process broadcasts a query, waits for
replies from a quorum of processes, broadcasts v with timestamp larger than all replies, and
waits for a quorum of acknowledgments. Note that in ABD, processes are also constantly
active as “servers”: (i) replying to queries with their current timestamped values, and (ii)
acknowledging new written values after (possibly) updating their current timestamped values.

Using ABD, the hyperproperty is violated for P1 and P2. For the violation we need to
have at least three processes, two of them running the code of the program, and the others
are used as servers that reply to messages and participate in quorums. (ABD2 is degenerate
since a quorum must consist of all processes.) Essentially, ABD≥3 allows both the behaviors
exposed by DLR and the behaviors exposed by TNSR. However, the actual adversaries for
ABD≥3 are more complicated than the ones for DLR and TNSR due to the absence of a global
centralized memory cell that values are stored in and loaded from.

We describe adversaries that generate T1 for P1 and T2 for P2:
For P1, the adversary lets the reader invoke a query and lets the writer complete the
execution of write(1) by choosing a quorum of processes that acknowledge the new
value. Next, the adversary lets all the processes in the quorum reply to the query of

DISC 2024



8:6 Hyperproperty-Preserving Register Specifications

ATR DLR TNSR ABD≥3

P1 ✓ ✗ ✓ ✗

P2 ✓ ✓ ✗ ✗

P3 ✓ ✓ ✓ ✓

For each program and register implementation,
✓ indicates that the hyperproperty “a = b with
probability 1

2 ” holds under any adversary, and ✗

indicates the hyperproperty is refuted by some
adversary.

Figure 3 Summary of examples.

the reader reporting value 1. Then, the adversary lets the writer execute write(2),
again obtaining a quorum of processes that are aware of the new value, where this time
the adversary picks a quorum that includes at least one process that is not part of the
previous quorum, and therefore has not yet replied to the reader’s query (this is where at
least three processes are needed). This process also replies to the reader’s query, but with
value 2. At this time, the query message of the reader has pending replies from a quorum
in which all replies include value 1, and from one additional process that is already aware
of the more recent value 2. However, the adversary postpones the delivery of the replies
until after the coin toss, at which time it picks the replies to match the coin value: if
the coin value is 1, the replies from the homogeneous quorum where all replies include
value 1 are delivered; otherwise the replies from the all but of one of the processes in the
aforementioned quorum are delivered together with the reply of the additional process
that includes value 2, thus forming a (heterogeneous) quorum whose most recent value is
2. Accordingly, the reader returns a value that is equal to the coin value.
For P2, the adversary starts by invoking a query during write(2) and making a quorum
of processes send replies to the query (with the initial value) before write(1) is initiated
in the left process. The adversary then lets the left process execute up to the barrier,
at which point at least one reply with the value 1 is sent to the right process’s query by
a process that is aware of the left process’s update. The adversary then performs the
delivery of the replies to the query in write(2) according to the coin value. If the coin
result is 2, the adversary delivers a quorum of replies that includes the reply sent when
the left process reached the barrier, causing the right process to be aware of the most
recent timestamp of the left process, such that the right process updates the value 2 with
a larger timestamp. On the other hand, if the coin result is 1, the adversary delivers only
the replies sent before write(1), whose timestamp is outdated, causing the right process
to choose a timestamp for the new value 2 that is at a tie with the timestamp attached
by the left process to the value 1. Assuming the id of the left process has precedence,
the tie is resolved to its timestamp, making 1 appear to be the most recent value. This
determines the result of the subsequent read to be equal to the coin result.

Finally, the hyperproperty holds when ABD is used in P3. To see this, suppose, w.l.o.g., that
the timestamp assigned to 2 is larger than the one of 1. Then, after the two writes complete,
in every quorum there is at least one process that knows about the value 2, and a reader
that queries after this point can only read 2.

Figure 3 summarizes the above observations. In particular, the hyperproperty holds in
P3 for all four implementations. Nevertheless, as we show later in Example 6.2, it can be
still violated by some linearizable implementations.

To capture differences between linearizable implementations, such as the ones shown in
the above examples, [3] introduced strong observational refinement as a refinement relation
between an implementation and a specification that preserves hyperproperties. Then, while
ATR, DLR, TNSR, and ABD can be shown to be observationally equivalent (i.e., observationally



Y. Ben Shimon, O. Lahav, and S. Shoham 8:7

refine each other), as we demonstrated above, they are not strongly observational equivalent.
In particular, none of the relatively simple shared-memory implementations in Fig. 2 can
be used as a specification of ABD when hyperproperties are considered, as ABD is not a
strong observational refinement of any of them. (This is unfortunate, since, as we have seen,
reasoning about the sets of program traces generated when ABD is used is much more involved
than with the other implementations.) We also note that each of the implementations
admits a different linearizability criterion: ATR is strongly linearizable [14], DLR is write
strongly-linearizable [15], while TNSR and ABD are neither.

In the rest of the paper we propose hyperproperty-preserving specifications for classes
of linearizable register implementations, including ABD. Such specifications can drastically
simplify verification of hyperproperties of client programs using these implementations, a
task which is typically challenging, especially when complex implementations are considered,
since it requires reasoning about all possible adversaries.

3 Preliminaries

We start with general notations, continue to our modeling of objects, implementations, and
programs (§3.1), and finally recap the formal notions of preservation of hyperproperties via
strong observational refinement (§3.2).

Sequences. For a finite alphabet Σ, we denote by Σ∗ the set of all (finite) sequences over Σ.
The length of a sequence s is denoted by |s|. We write s[k] for the symbol at position
1 ≤ k ≤ |s| in s. We write σ ∈ s if s[k] = σ for some 1 ≤ k ≤ |s|. We use “·” for the
concatenation of sequences. We often identify symbols with sequences of length 1 or
their singletons (e.g., in expressions like s · σ). The restriction of a sequence s w.r.t. a
set Γ, denoted by s|Γ, is the longest subsequence of s that consists only of symbols in Γ.
This notation is extended to sets by S|Γ ≜ {s|Γ | s ∈ S}. We write s1 ⪯S s2 when s1 is a
subsequence of s2, and s1 ⪯P s2 when s1 is a prefix of s2.

Labeled Transition Systems. A labeled transition system (LTS, for short) is a tuple A =
⟨Q, Σ, q0, T ⟩, where Q is a set of states, Σ is a (possibly infinite) alphabet (whose elements
are called transition labels), q0 ∈ Q is an initial state, and T ⊆ Q × Σ × Q is a set of
transitions. We denote by A.Q, A.Σ, A.q0, and A.T the components of an LTS A. We
write σ−→A for the relation {⟨q, q′⟩ | ⟨q, σ, q′⟩ ∈ A.T}. An execution e of A is a (possibly
empty) finite sequence of transitions in A.T such that the first transition starts in q0 and
each other transition continues from the target of the previous transition. An execution
e induces a trace ρ ∈ A.Σ∗, where ρ[i] is given by the label of e[i] for every 1 ≤ i ≤ |e|.
We denote by E(A) and traces(A) the set of all executions of A and the set of all traces
induced by executions of A (respectively). Note that we only consider finite executions
and traces.

Forward Simulations. Given LTSs A and A# and a set Γ ⊆ A.Σ ∩ A#.Σ, a relation R ⊆
A.Q×A#.Q is a Γ-forward simulation from A to A# if

(i) ⟨A.q0, A#.q0⟩ ∈ R; and
(ii) if q σ−→A q′ and ⟨q, q#⟩ ∈ R, then there exist q#′ ∈ A#.Q and ρ ∈ A#.Σ∗ such that

q# ρ[1]−−→A# ...
ρ[|ρ|]−−−→A# q#′, ρ|Γ = σ|Γ, and ⟨q′, q#′⟩ ∈ R.

We write A ⊑Γ
F A# when such relation exists.

DISC 2024



8:8 Hyperproperty-Preserving Register Specifications

3.1 Objects, Implementations, and Programs
We review standard notions that are needed for our formal results. We assume a set Tid of
thread identifiers and an infinite set Id of action identifiers.

Objects. An object is a pair O = ⟨M, Val⟩, where M is a set of method names and Val
is a set of values. An object O is associated with actions divided into invocations
i = inv⟨m, v, p, k⟩ ∈ I(O) and responses r = res⟨m, v, p, k⟩ ∈ R(O), where m ∈ M,
v ∈ Val ∪ {⊥}, p ∈ Tid, and k ∈ Id. We let IR(O) ≜ I(O) ∪ R(O).

Histories. A history h of an object O is a finite sequence over IR(O). A history h is sequential
if it alternates between invocations and responses (starting with an invocation), such
that every consecutive i, r in h have the same method and thread identifiers, and a
unique action identifier across h. A history h is well-formed if its restriction to actions
of each p ∈ Tid, denoted by h|p, is sequential. An invocation i ∈ h is pending if there is
no response in h with the same thread and action identifiers. Otherwise, i is complete.
These notions are also applied on operations o, which are either single invocations o = i

or pairs of matching invocation and response o = ⟨i, r⟩. We let completed(h) denote the
subsequence of h consisting of actions that are a part of completed operations.

Real-time Order. The real time order induced by a well-formed history h, denoted by <h, is
the partial order on operations defined by o1 <h o2 iff o1’s response appears in h before
o2’s invocation.

Specifications. A specification of O is a prefix-closed set of sequential histories of O.
Registers. A register object is given by Reg = ⟨{read, write},N⟩. Its specification, denoted

by SpecReg, is defined as usual, assuming that 0 is the initial register value.
Object Implementations. We assume a set IInt of labels for implementation internal actions

and define an implementation I of an object O to be an LTS over the alphabet IR(O)∪ IInt.
We assume that the history induced by every execution e of I, denoted by h(e), is a
well-formed history. The pseudo-code presented in specific implementations in the paper
is easily translatable to formal LTSs, whose executions represent executions generated
by the methods’ code when they are repeatedly and concurrently invoked with arbitrary
arguments.

Client Programs. We assume a set PInt of labels for client internal actions (disjoint from IInt)
and define a client program P for an object O as an LTS over the alphabet IR(O) ∪ PInt.
A program P and implementation I are linked by taking “interface parallel composition”,
denoted by P [I]. The resulting LTS interleaves the steps of P and I while forcing the
two LTSs to synchronize on labels from IR(O). The defining property of P [I] is given by:
▶ Proposition 3.1. ρ ∈ traces(P [I]) iff ρ|I.Σ ∈ traces(I) and ρ|P.Σ ∈ traces(P ).

3.2 Hyperproperties Preservation via Strong Observational Refinement
A hyperproperty ϕ of a program P is a set of sets of the program’s traces (i.e., ϕ ⊆
P(traces(P ))). Such sets can capture probabilistic requirements, such as the one informally
described in §2, via suitable encodings of traces [9].

The hyperproperties that are satisfied by an object implementation, and accordingly,
strong observational refinement between implementations, are defined using deterministic
schedulers, which formalize the notion of a strong adversary [3].

Schedulers. Given a program P and an implementation I, a scheduler is a function S :
E(P [I])→ P(P [I].T). An execution e ∈ E(P [I]) is consistent with S if e[j] ∈ S(e[1] ··· e[j−
1]) for every 1 ≤ j ≤ |e|. We denote by E(P [I], S) the set of executions of P [I] that



Y. Ben Shimon, O. Lahav, and S. Shoham 8:9

are consistent with S, and by traces(P [I], S) the traces of executions in E(P [I], S). A
scheduler is deterministic if for every e ∈ E(P [I]), either |S(e)| ≤ 1 or all transitions in
S(e) are labeled by actions in PInt.
▶ Remark 3.2. Attiya and Enea [3] restricted their attention to step-deterministic im-
plementations in which a trace uniquely determines an execution (which includes the
intermediate states along the trace). We avoid this technical restriction, and thus use
executions instead of traces in the definitions of schedulers, as well as of linearizability
criteria below. In particular, we define schedulers as functions from executions to sets
of transitions instead of functions from traces to sets of labels. For step-deterministic
implementations our definitions coincide with those of [3].

Hyperproperty Satisfaction. An implementation I satisfies a hyperproperty ϕ of P , denoted
by I |=P ϕ, if traces(P [I], S)|P.Σ ∈ ϕ for every deterministic scheduler S.
▶ Example 3.3. For the client program P2 (represented as an LTS) and the set of traces
T2 from Fig. 1, we have that DLR |=P2 P(traces(P2)) \ {T2}. This is because, as discussed
in §2, there exists no scheduler S such that traces(P2[DLR], S)|P.Σ = T2. ⌟

Strong Observational Refinement. An implementation I strongly observationally refines an
implementation I#, denoted by I ≤s I#, if I# |=P ϕ =⇒ I |=P ϕ for every program P

and hyperproperty ϕ of P . The following alternative characterization follows from the
definition.
▶ Lemma 3.4. I ≤s I# iff for every program P and deterministic scheduler S, there
exists a deterministic scheduler S# such that traces(P [I], S)|P.Σ = traces(P [I#], S#)|P.Σ.
Attiya and Enea [3, Theorem 8] show that IR(O)-forward simulation between implemen-
tations is equivalent to strong observational refinement. (Their result applies to finite
traces as we consider here; see [12] for a discussion on infinite traces.) We adapt this
result to our setting. In the sequel, for implementations I and I# of an object O, we
write I ⊑F I# for I ⊑IR(O)

F I#.
▶ Theorem 3.5. I ≤s I# iff I ⊑F I#.
▶ Example 3.6. It is easy to show that ATR ⊑F DLR, and we obtain that ATR ≤s DLR. Thus,
ATR |=P2 P(traces(P2)) \ {T2} follows from DLR |=P2 P(traces(P2)) \ {T2}. In addition,
since DLR ̸≤s ATR (see §2), we have DLR ̸⊑F ATR. Indeed, if a concurrent write is about to
change the value of X after a read of DLR performs its first load, ATR has no matching
action: if it performs its (single) load it will not be able to return the right value in case
DLR returns the value read in the second load; and similarly, if it waits, it will fail to
return the same value if DLR returns the value of the first load. ⌟

4 Complete Implementations for Linearizability Classes

Knowing that a given implementation is a member of a certain linearizability class is
only useful if it enables reasoning about programs that use that implementation without
understanding the implementation itself. For hyperproperties, such reasoning is made possible
if the implementation is known to strongly observationally refine a simpler implementation,
in which case the latter can be used instead of the actual implementation in the analysis. To
standardize the relation between linearizability classes and strong observational refinement,
we propose a definition of hard and complete implementations in analogy to hardness and
completeness w.r.t. complexity classes, where instead of reductions, we use simulations, which
ensure strong observational refinement:

▶ Definition 4.1. Let I be a class of implementations of an object O that is downward closed
w.r.t. forward simulation (i.e., I ∈ I whenever I ′ ∈ I and I ⊑F I ′). An implementation I#

of O is I-hard if I ⊑F I# for every I ∈ I. It is I-complete (or complete for I) if we also have
I# ∈ I.

DISC 2024



8:10 Hyperproperty-Preserving Register Specifications

In addition to allowing reasoning about hyperproperties of implementations in I, an
I-complete implementation I# also provides a sound and complete method to establish the
membership of an implementation I in I by showing that I ⊑F I#.

In the following we take I to be the set of implementations of some object that satisfy
certain linearizability criteria.

Linearizability. Consider first standard linearizability [17, 20]:

▶ Definition 4.2. A history s of an object O is a linearization of a history h of O, denoted
by h ⊑ s, if there exists a sequence of responses r̄ for some of the pending invocations in h

such that the following hold for h′ = completed(h · r̄):
(i) h′|p = s|p for every p ∈ Tid; and
(ii) <h′ ⊆ <s.

A history h of O is linearizable w.r.t. a specification Spec of O if it has a linearization s ∈ Spec.
An implementation I of O is linearizable w.r.t. Spec if h(e) is linearizable w.r.t. Spec for every
e ∈ E(I).

▶ Proposition 4.3. The class of linearizable implementations of an abject O w.r.t. a spec-
ification Spec is downward closed w.r.t. forward simulation, and there exists a complete
implementation for it.

Proof (sketch). Downward closedness follows from the fact that I ⊑F I ′ implies that
{h(e) | e ∈ E(I)} ⊆ {h(e) | e ∈ E(I ′)}. A complete implementation is the implementation
that tracks in its internal state the history h generated so far. When executing an invocation
or response, the action is added in the end of the current history. But, while invocations are
always enabled, a response r is only enabled when h · r is linearizable w.r.t. Spec. ◀

The (theoretical) construction in the above proof provides us with a complete implemen-
tation, which may help in streamlining and mechanizing linearizability arguments as forward
simulations (e.g., [18] utilized such implementation). However, since it directly encodes the
definition of the class, it is unhelpful for reasoning about hyperproperties of implementa-
tions. Thus, for the stronger classes considered below we are interested in identifying simple
complete implementations that are not based on history tracking.

Strong linearizability. Golab et al. [14] proposed a strengthening of linearizability, called
strong linearizability, and showed that it is necessary and sufficient for reasoning on probability
distributions of outcomes that a strong adversary can generate. Roughly speaking, while
linearizability allows one to choose the linearization order “after the fact” in view of the whole
execution, strong linearizability requires the linearization of implementation histories into
specification histories to be done online in a prefix-preserving manner, that is, by continuously
adding operations at the end of the linearized history.

▶ Definition 4.4. A linearization mapping for an implementation I of an object O w.r.t. a
specification Spec of O is a function L : E(I)→ Spec such that h(e) ⊑ L(e) for every e ∈ E(I).
An implementation I of O is strongly linearizable w.r.t. a specification Spec of O if there is a
linearization mapping L for I w.r.t. Spec such that L(e1) ⪯P L(e2) whenever e1 ⪯P e2.

Since we aim to also capture non-deterministic implementations (and do not assume step-
determinism), our linearizations apply on executions rather than traces (see also Remark 3.2).



Y. Ben Shimon, O. Lahav, and S. Shoham 8:11

▶ Example 4.5. From the register implementations presented in §2, only ATR is strongly
linearizable. We use the histories associated with the set T1 from Fig. 1 to show that DLR
and ABD are not strongly linearizable. Consider the following history h, its two possible
extensions h1 and h2, and its possible linearizations s1, s2, s3:

h = |w1 | |w2 |
|r h1 = |w1 | |w2 |

|r 1| h2 = |w1 | |w2 |
|r 2|

s1 = |w1 | |r 1| |w2 |
s2 = |w1 | |w2 | |r 2|
s3 = |w1 | |w2 |

Unlike ATR (and TNSR), both DLR and ABD have a single execution e that induces h and can
be extended into two alternative executions that induce h1 and h2. Then, L(e) can be s1, s2,
or s3, but any choice at this stage is doomed to fail:

(i) s1 fails if the execution continues to generate h2;
(ii) s2 fails if the execution continues to generate h1; and
(iii) s3 fails if the execution continues to generate h1 since we are only allowed to extend

the current linearization by adding operations at its end. The history of the common
prefix of the traces in T2 from Fig. 1 can be similarly used to show that TNSR is not
strongly linearizable. ⌟

Attiya and Enea [3] show that the class of strongly linearizable implementations is down-
ward closed w.r.t. forward simulation, and that every strongly linearizable implementation
strongly observationally refines the atomic implementation (e.g., ATR for registers). Together
with Thm. 3.5, this result is restated as follows:

▶ Theorem 4.6. The atomic implementation for specification Spec of an object O is complete
for the class of strongly linearizable implementations of O w.r.t. Spec.

Additional linearizability classes. We observe that downward-closedness w.r.t. simulation,
as well as the existence of a complete implementation, generalize to a range of linearizability
classes beyond linearizability and strong linearizability mentioned above. These linearizability
classes are parameterized by a preorder that must hold between the linearizations of an
execution and its extensions. Formally, given a preorder R (i.e., reflexive and transitive
relation) on sequences, the class IR(O, Spec) consists of all implementations I of O for which
there exists a linearization mapping L : E(I)→ Spec such that ⟨L(e1), L(e2)⟩ ∈ R whenever
e1 ⪯P e2. The class of all linearizable implementations of O w.r.t. Spec is obtained by taking
R = Spec × Spec, whereas for all strongly linearizable implementations we take R =⪯P.
Other classes defined in the rest of this paper are also instances of this definition.

▶ Lemma 4.7. For every preorder R on sequences, the class IR(O, Spec) is downward closed
w.r.t. forward simulation, and there exists a complete implementation for it.

The complete implementation for IR(O, Spec) is constructed similarly to the one in
the proof of Prop. 4.3 (which is a special case), except that here the state also tracks a
linearization of the history so far, and ensures in each transition that the linearizations in
the pre-state and post-state are related by R.

Similarly to the construction in Prop. 4.3, the generic construction in Lemma 4.7 is not
helpful for reasoning about hyperproperties. In contrast, Thm. 4.6 proposes a simple and
useful complete implementation for strong linearizability. In the remainder of the paper we
seek useful complete implementations for other linearizability classes of interest.

DISC 2024



8:12 Hyperproperty-Preserving Register Specifications

5 Complete Implementation for Write Strong Linearizability

Focusing on registers and identifying that useful register implementations are not strongly
linearizable, Hadzilacos et al. [15] have recently proposed a weakening of strong linearizability,
called write strong-linearizability, and showed that every linearizable single writer register
implementation, including single-writer ABD, is write strongly-linearizable. However, they do
not provide a specification for write strong-linearizability that plays the role that the atomic
register implementation plays for strong linearizability.

Write strong-linearizability weakens the prefix-preservation requirement of strong lineariz-
ability by applying it only to writes, thus allowing reads to be linearized offline, and freely
“move around” when more operations are added. For the formal definition, we let s|write

denote the restriction of s ∈ SpecReg to write operations.

▶ Definition 5.1. Let I be a register implementation. A linearization mapping L : E(I)→
SpecReg is write strong if L(e1)|write ⪯P L(e2)|write whenever e1 ⪯P e2. We say that I is write
strongly-linearizable if there exists a write strong linearization mapping L : E(I)→ SpecReg.

▶ Example 5.2. From the implementations in §2, ATR and DLR are write strongly-linearizable.
(For DLR, for h from Example 4.5, we can pick s3, and later on, when the read returns, pick
either s1, by adding a read in the middle, or s2 according to the returned value.) We use
the histories associated with the set T2 from Fig. 1 to show that TNSR and ABD are not write
strongly-linearizable. (For ABD this also follows from the general result in [8].) Consider the
following history h, its two possible extensions h1 and h2, and its possible linearizations
s1, s2, s3:

h = |w1 |
|w2 h1 = |w1 |

|w2 | |r 2| h2 = |w1 |
|w2 | |r 1|

s1 = |w1 | |w2 |
s2 = |w2 | |w1 |
s3 = |w1 |

Unlike ATR and DLR, both TNSR and ABD have a single execution e that induces h and can be
extended into two alternative executions that induce h1 or h2. Then, L(e) can be s1, s2, or
s3, but any choice at this stage is doomed to fail:

(i) s1 fails if the execution continues to generate h2 since no extension of s1 linearizes h2;
(ii) s2 fails if the execution continues to generate h1 since no extension of s2 linearizes h1;

and
(iii) s3 fails if the execution continues to generate h2 since no extension of s3, where write

operations are only added after the write operation in s3, linearizes h1. ⌟

We denote by Iws the class of write strongly-linearizable register implementations. By
Lemma 4.7 (with R ordering histories using the prefix relation on the restriction to writes),
Iws is downward-closed w.r.t. simulation, and the notion of a complete implementation is
well-defined. Algorithm 1 presents our proposed complete implementation for this class. Its
construction is inspired by a specification given by Attiya and Enea [3, §6] for capturing the
hyperproperties of a specific snapshot implementation [1]. It is a generalization of DLR from
§2, where instead of loading twice, the reader repeatedly loads from X as long as new values
are observed, and non-deterministically decides which value to return.
▶ Remark 5.3. One can define a sequence {Ik}∞

k=1 of implementations, all with atomic write,
and read that non-deterministically picks between k-loads (so ATR = I1 and DLR = I2). It
can be shown that all of these implementations are write strongly-linearizable, but for every
k, Ik+1 does not strongly observationally refine Ik. The WSR implementation is what one gets
“at the limit” of this sequence, and every Ik trivially strongly observationally refines WSR.



Y. Ben Shimon, O. Lahav, and S. Shoham 8:13

Algorithm 1 WSR: A complete implementation for write strongly-linearizable registers.
Shared Variables: the current value X.
Multi-assignments are executed atomically.
Method read()
V ← {X};
do
⟨Vprev,V⟩ ← ⟨V ,V ∪ {X}⟩;

while V ̸= Vprev;
out ← pick v ∈ V;
return out;

Method write(v)
X ← v;
return;

▶ Theorem 5.4. WSR is complete for the class of write strongly-linearizable register imple-
mentations.

As a consequence of Thm. 5.4, we obtain that single-writer ABD strongly observationally
refines WSR, and so we can use WSR to argue about the hyperproperties of client programs
that use single-writer ABD.

6 Complete Implementation for Decisive Linearizability

In this section we identify a novel linearizability criterion, which we call decisive linearizability.
Then, we present a complete implementation for the corresponding class of register implemen-
tations, which can serve as a hyperproperty-preserving specification for any implementation in
the class. Using this implementation, we show that multi-writer ABD is decisively linearizable,
and that decisive linearizability (for registers) is weaker than write strong-linearizability.

▶ Definition 6.1. Let I be an implementation of an object O and Spec be a specification of
O. A linearization mapping L : E(I)→ Spec is decisive if L(e1) ⪯S L(e2) whenever e1 ⪯P e2.
We say that I is decisively linearizable w.r.t. Spec if there there exists a decisive linearization
mapping L : E(I)→ Spec.

Decisive linearizability, like strong and write strong-linearizability, requires the lineariza-
tion process to be “online”. Nevertheless, unlike strong and write strong-linearizability, it
does not require that the sequences of linearizations produced in this process are increasing
“at the end”, thus allowing operations to be added to the linearized history possibly before
operations that are already included in the linearized history. The only requirement of
decisive linearizability is that this process maintains the relative order of already linearized
operations: once the order between o1 and o2 has been decided, it cannot be reverted.

▶ Example 6.2. All implementations in §2 are decisively linearizable: ATR and DLR are
already write strongly-linearizable (which is a stronger condition, as we show below) and
for TNSR and ABD, which are not write strongly-linearizable, this will be proven later in
the section. To illustrate how a suitable linearization mapping can be obtained for these
implementations, we revisit the histories h and its extensions h1 and h2 from Example 5.2.
To linearize h, we can pick s3; later on, if the execution continues according to h1, we append
w2 to the linearization, and if the execution continues to h2, we add w2 to the linearization
before w1 – note that decisive linearizability allows this; finally, when the read returns we
add it immediately after the corresponding write.

For a “non-example”, we use the histories associated with the set T3 from Fig. 1 to show
that the complete implementation for the class of linearizable registers (see Prop. 4.3) is not
decisively linearizable. Consider the following history h, its two possible extensions h1 and

DISC 2024



8:14 Hyperproperty-Preserving Register Specifications

Algorithm 2 DR: A complete implementation for decisively linearizable registers.
Shared Variables: the current value X, the current version number Ver , and a lock flag L.
await B do C blocks until the condition B is met, at which point the evaluation of B and the

body C are atomically executed. Multi-assignments and atomic blocks are executed atomically.
Method read()

await L = 0 do ⟨s,V⟩ ← ⟨Ver , {X}⟩;
do

atomic
Vprev ← V;
if Ver ≥ s then V ← V ∪ {X};

while V ̸= Vprev;
out ← pick v ∈ V;
return out;

Method write(v)
await L = 0 do s← Ver ;
if * then

await L = 0 do ⟨X, Ver⟩ ← ⟨v, Ver + 1⟩;
else

await L = 0 ∧Ver > s do
⟨L, tmp, X, Ver⟩ ← ⟨1, X, v, Ver − 1⟩;

⟨L, X, Ver⟩ ← ⟨0, tmp, Ver + 1⟩;
return;

h2, and its possible linearizations s1 and s2:

h = |w1 |
|w2 | h1 = |w1 | |r 1|

|w2 | h2 = |w1 | |r 2|
|w2 |

s1 = |w1 | |w2 |
s2 = |w2 | |w1 |

Recall that in the complete implementation for standard linearizability, an execution e that
induces h can be extended both to an execution e1 that induces h1 and to an execution
e2 that induces h2. (In particular, this means that an adversary for P3 from Fig. 1 can
decide between these options after the coin toss, refuting the hyperproperty discussed in §2,
which is satisfied when each of ATR, DLR, TNSR, ABD and in fact any decisively linearizable
implementation is used.) If L(e) = s1 then the linearization of e1 must reorder the writes in
s1, violating decisiveness. Similarly, if L(e) = s2, then the linearization of e2 must reorder
the writes in s2, violating decisiveness. Thus, no decisive linearization mapping exists. ⌟

By Lemma 4.7 (with R being the subsequence relation), the class of decisively linearizable
implementations is downward-closed w.r.t. simulation and a complete implementation exists
for it, for any object. Next, we present a complete implementation for the class of decisively
linearizable register implementations. We note that while Definition 6.1 is not specific
to registers (unlike Definition 5.1) and Lemma 4.7 applies to any object, the complete
implementation we present is only for register implementations. We denote by Id the class
of all decisively linearizable register implementations. The complete implementation, DR, is
presented in Algorithm 2.

DR stores the current value in X and a corresponding version number in Ver . Reads use
repeated loads similarly to WSR, but add loaded values to V only when their version number
is not older than the version number when the read started (stored in s). The return value
is picked non-deterministically from V.

Writes are based on the idea used in TNSR, allowing stores to non-deterministically choose
to be overwritten by a concurrent write, with two important differences. First, new stores by
concurrent writes are identified based on version number (Ver > s) rather than values (to
avoid data dependencies). Second, even if a write chooses to be overwritten, the store to X

is not skipped but momentarily executed with a lower version number, to allow concurrent
reads to observe it. This is done by a step that temporarily decreases Ver and stores the
input value to X, followed by a step that restores Ver and X to their newer values. The two
steps are not executed atomically, letting concurrent reads to load the intermediate value.
Importantly, a lock L is used to prevent concurrent methods from setting their start version
number (s) to a temporary version number, and from updating Ver based on a temporary
version number.



Y. Ben Shimon, O. Lahav, and S. Shoham 8:15

write(1);
a← coin();
barrier();

write(2);
barrier();
b← read();

c← read();
barrier(); T4 =


|w1| 2
|w2 | |r2|
|r 2|

,

|w1| 1
|w2 | |r1|
|r 2|


Figure 4 A program P4 and a set T4 of traces of the program.

To simplify the presentation, the pseudo-code is written such that a write makes the
non-deterministic choice whether to be overwritten or not before it determines that it can
indeed be overwritten. As a result, the execution may get stuck. This does not affect
linearizability, and this behavior is impossible in our formulation of DR as an LTS.

▶ Example 6.3. Allowing concurrent reads to observe “overwritten” writes is crucial for
capturing all behaviors of decisively linearizable implementations such as multi-writer ABD.
Consider the program P4 and set of traces T4 in Fig. 4. The program P4 extends P2 from
Fig. 1 with another thread, and T4 is similar to T2 except that the additional thread observes
the value 2 written by the middle thread, even when this value ends up being overwritten.
Recall that T2 can be generated by an adversary for both TNSR and ABD. For TNSR, this
leverages the ability of the adversary to postpone the decision whether to store 2 or not
until after the coin toss. In contrast, T4 is not possible for TNSR, since in the trace where the
middle thread reads 1, it must be the case that TNSR chose to overwrite 2 and as a result
has never stored 2 to X, preventing concurrent threads from loading the value before it is
overwritten. (DR does perform a store in such a case, allowing T4.) Unlike TNSR, ABD allows
this behavior: The adversary acts on the left and middle processes similarly to the adversary
for P2 that generates T2 described in §2, with the added right process sending an additional
query when write(2) does so, immediately receiving replies with the initial value from a set
of process that excludes the middle process and is one-short from a quorum. Then, when
write(2) sends its update, it also replies to the right process with the timestamp it chose.
Regardless of the chosen timestamp, it is larger than the initial timestamp, causing the right
process to return the value 2. ⌟

▶ Theorem 6.4. DR is complete for the class of decisively linearizable register implementations.

While not immediate from the definitions, a corollary of Theorems 5.4 and 6.4, together
with the observation that WSR ⊑F DR, is that every write strongly-linearizable implementation
is also decisively linearizable. That is, decisive linearizability is indeed weaker than write
strong-linearizability.

Having constructed a complete implementation, we now leverage it to show that other
implementations are decisively linearizable: all we need to do is prove that they are simulated
by DR. For example, TNSR is trivially simulated by DR, and is therefore decisively linearizable.
We show that the same holds for multi-writer ABD.

▶ Theorem 6.5. ABD ⊑F DR.

▶ Corollary 6.6. ABD is decisively linearizable.

Thus, DR provides a shared-memory specification for multi-writer ABD that enables
reasoning about its hyperproperties.

DISC 2024



8:16 Hyperproperty-Preserving Register Specifications

7 Related and Future Work

Since the observation that linearizability does not suffice for reasoning about randomized
client programs and the introduction of strong linearizability [14], many works have studied
(im)possibility of implementing strongly linearizable objects under different progress con-
ditions. Helmi et al. [16] showed that lock-free strongly linearizable multi-writer registers,
max registers, snapshots, and counters cannot be constructed from a single-writer registers.
Attiya et al. [5] and Chan et al. [8] adapted and extended these results for a fault-tolerant
message passing setting.

Attiya et al. [6] developed a methodology of making existing implementations proba-
bilistically close to strongly linearizable ones by repeating an effect-free preamble of every
method and picking uniformly at random which outcome to continue with. They introduced
a correctness condition called tail strong linearizability that ensures the effectiveness of
this construction. This criterion depends on the choice of the preamble and is thus not
comparable to decisive linearizability. Interestingly, the construction in [6] is not effective for
our complete implementations (WSR and DR).

The work of Hadzilacos et al. [15] is closer to our work in its aim to give up strong
linearizability, and study what existing implementations do provide. In addition to what we
have already discussed, [15, Algorithm 4] demonstrated a multi-writer register implementation
that is not write strongly-linearizable. This implementation is essentially a simplified version
of ABD, and using forward simulation to ABD, one can conclude that it is decisively linearizable.

As discussed in length, our work is heavily inspired by [3] that uncovered the corre-
spondence between strong observational refinement and simulation, and suggested the use
of non-atomic specifications for reasoning about non-strongly-linearizable implementations.
Derrick et al. [10] and Dongol et al. [12] identified a gap in the way [3] handle infinite
traces, and show that in that case, while simulation is still necessary for strong observational
refinement, only a stronger relation, called (weak) progressive forward simulation is sufficient.
We focus solely on finite traces, leaving infinite traces to future work.

Bouajjani et al. [7] used forward simulations to non-atomic reference implementations as
means to establish linearizability. In particular, they developed abstract stack and queue
specifications such that forward simulations to these specifications is necessary and sufficient
for establishing linearizability. In our terms, this gets close to complete implementations
for the class of linearizable stacks and queues, but, their results are, however, limited to
implementations that have explicit marking of linearization points (or so-called “commit
points”) in some of the methods. Their implementations are highly beneficial in simplify-
ing (and possibly automating) complex linearizability arguments, as the ones needed for
Herlihy&Wing Queue [17] and the Time-Stamped Stack [11].

Finally, we note that although we focused on registers, decisive linearizability is a
general correctness criterion. Investigating its applicability beyond registers is left for future
work. We believe that various implementations that are not strongly linearizable are still
decisively linearizable (but, there are known implementations that are not even decisively
linearizable, such as the Time-Stamped Stack [11], which allows concurrent complete push
operations to remain unordered until a later pop determines their order). Identifying complete
implementations for the class of decisively linearizable implementations of other objects is an
important (and challenging!) avenue for future work. It would also be interesting to study
(im)possibility for decisively linearizable implementations with different progress guarantees.



Y. Ben Shimon, O. Lahav, and S. Shoham 8:17

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. J. ACM, 40(4):873–890, 1993. doi:10.1145/153724.153741.
2 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing

systems. J. ACM, 42(1):124–142, 1995. doi:10.1145/200836.200869.
3 Hagit Attiya and Constantin Enea. Putting strong linearizability in context: Preserving

hyperproperties in programs that use concurrent objects. In DISC, volume 146 of LIPIcs,
pages 2:1–2:17, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.DISC.2019.2.

4 Hagit Attiya and Constantin Enea. Putting strong linearizability in context: Preserving
hyperproperties in programs that use concurrent objects. CoRR, abs/1905.12063, 2019.
arXiv:1905.12063.

5 Hagit Attiya, Constantin Enea, and Jennifer L. Welch. Impossibility of strongly-linearizable
message-passing objects via simulation by single-writer registers. In DISC, volume 209
of LIPIcs, pages 7:1–7:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPICS.DISC.2021.7.

6 Hagit Attiya, Constantin Enea, and Jennifer L. Welch. Blunting an adversary against
randomized concurrent programs with linearizable implementations. In PODC, pages 209–219.
ACM, 2022. doi:10.1145/3519270.3538446.

7 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil. Proving
linearizability using forward simulations. In CAV, volume 10427 of LNCS, pages 542–563.
Springer, 2017. doi:10.1007/978-3-319-63390-9_28.

8 David Yu Cheng Chan, Vassos Hadzilacos, Xing Hu, and Sam Toueg. An impossibility
result on strong linearizability in message-passing systems. CoRR, abs/2108.01651, 2021.
arXiv:2108.01651.

9 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–
1210, 2010. doi:10.3233/JCS-2009-0393.

10 John Derrick, Simon Doherty, Brijesh Dongol, Gerhard Schellhorn, and Heike Wehrheim. Brief
announcement: On strong observational refinement and forward simulation. In DISC, volume
209 of LIPIcs, pages 55:1–55:4. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPICS.DISC.2021.55.

11 Mike Dodds, Andreas Haas, and Christoph M. Kirsch. A scalable, correct time-stamped stack.
In POPL, pages 233–246. ACM, 2015. doi:10.1145/2676726.2676963.

12 Brijesh Dongol, Gerhard Schellhorn, and Heike Wehrheim. Weak progressive forward simulation
is necessary and sufficient for strong observational refinement. In CONCUR, volume 243 of
LIPIcs, pages 31:1–31:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPICS.CONCUR.2022.31.

13 Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for con-
current objects. Theoretical Computer Science, 411(51):4379–4398, 2010. URL: https://www.
sciencedirect.com/science/article/pii/S0304397510005001, doi:10.1016/J.TCS.2010.
09.021.

14 Wojciech Golab, Lisa Higham, and Philipp Woelfel. Linearizable implementations do not
suffice for randomized distributed computation. In STOC, pages 373–382, New York, NY,
USA, 2011. ACM. doi:10.1145/1993636.1993687.

15 Vassos Hadzilacos, Xing Hu, and Sam Toueg. On register linearizability and termination. In
PODC, pages 521–531. ACM, 2021. doi:10.1145/3465084.3467925.

16 Maryam Helmi, Lisa Higham, and Philipp Woelfel. Strongly linearizable implementations:
possibilities and impossibilities. In PODC, pages 385–394. ACM, 2012. doi:10.1145/2332432.
2332508.

17 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990. doi:
10.1145/78969.78972.

DISC 2024

https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/200836.200869
https://doi.org/10.4230/LIPIcs.DISC.2019.2
https://arxiv.org/abs/1905.12063
https://doi.org/10.4230/LIPICS.DISC.2021.7
https://doi.org/10.4230/LIPICS.DISC.2021.7
https://doi.org/10.1145/3519270.3538446
https://doi.org/10.1007/978-3-319-63390-9_28
https://arxiv.org/abs/2108.01651
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.4230/LIPICS.DISC.2021.55
https://doi.org/10.1145/2676726.2676963
https://doi.org/10.4230/LIPICS.CONCUR.2022.31
https://doi.org/10.4230/LIPICS.CONCUR.2022.31
https://www.sciencedirect.com/science/article/pii/S0304397510005001
https://www.sciencedirect.com/science/article/pii/S0304397510005001
https://doi.org/10.1016/J.TCS.2010.09.021
https://doi.org/10.1016/J.TCS.2010.09.021
https://doi.org/10.1145/1993636.1993687
https://doi.org/10.1145/3465084.3467925
https://doi.org/10.1145/2332432.2332508
https://doi.org/10.1145/2332432.2332508
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972


8:18 Hyperproperty-Preserving Register Specifications

18 Prasad Jayanti, Siddhartha Jayanti, Ugur Yavuz, and Lizzie Hernandez. A universal, sound,
and complete forward reasoning technique for machine-verified proofs of linearizability. Proc.
ACM Program. Lang., 8(POPL), January 2024. doi:10.1145/3632924.

19 Nancy A. Lynch and Alexander A. Shvartsman. Robust emulation of shared memory using
dynamic quorum-acknowledged broadcasts. In FTCS, pages 272–281. IEEE Computer Society,
1997. doi:10.1109/FTCS.1997.614100.

20 Gal Sela, Maurice Herlihy, and Erez Petrank. Brief announcement: Linearizability: A typo.
In PODC, pages 561–564, New York, NY, USA, 2021. ACM. doi:10.1145/3465084.3467944.

21 Yoav Ben Shimon, Ori Lahav, and Sharon Shoham. Hyperproperty-preserving register
specifications (extended version), 2024. doi:10.48550/arXiv.2408.11015.

A Proof Sketches

Proof (sketch) of Lemma 4.7. For downward closure, we observe that I ⊑F I ′ implies that
there exists a mapping π : E(I) → E(I ′) such that h(e) = h(π(e)) for every e ∈ E(I), and
π(e1) ⪯P π(e2) whenever e1 ⪯P e2. Then, given a suitable linearization mapping L for I ′,
the composition L ◦ π is a suitable linearization mapping for I.

A complete implementation for IR(O, Spec) is similar to the complete implementation
for the class of all linearizable implementations presented in the proof of Prop. 4.3, except
that in addition to tracking in its internal state the history h it has observed so far, it also
tracks a linearization s of h. When executing an invocation or response α, the linearization
is non-deterministically updated to a linearization s′ of h · α such that ⟨s, s′⟩ ∈ R. If such s′

does not exist, the α step is not enabled. This construction generalizes the implementation
in [4, Appendix C] which uses the same set of states but only allows to append actions to
the linearization. ◀

Proof (sketch) of Theorem 5.4. To show that WSR ∈ Iws, we construct a linearization
mapping L : E(WSR) → SpecReg by assigning “linearization points”: Write operations that
have already stored their values in X are linearized to the transition where they stored this
value, and reads that picked a value to return are linearized to the transition where they
first loaded that value. Other pending operations are not included in the linearization.

Hardness is much more challenging. Given a write strongly-linearizable implementation I,
we begin by instrumenting the state of I with a ghost variable that tracks the full execution
performed so far. Then, given an execution e and a transition t, we compare L(e) and L(e · t),
where L is the given write strong-linearization mapping for I. A naive attempt to show
I ⊑F WSR would execute a store in WSR at the time the corresponding write operation w is
added to the linearization. This fails since w might be added to linearization immediately
after all previous writes have been linearized, which can be before w takes effect, and
performing the store of WSR at that step will not allow later reads (that are concurrent with
w) to load earlier values.

To overcome this, we prove the existence of a so-called lazy linearization mapping.
Informally, this mapping adds operations to the linearization only when it must, e.g., when
an operation completes, or when a write is needed to justify a completed read. More
concretely, assuming arbitrary write strong-linearization mapping L, we prove the existence
of a write strong-linearization mapping L∗ : E(I) → SpecReg with the following additional
properties:
1. L∗(e) = L∗(e · t) for every e · t ∈ E(I) such that the transition t is not labeled with a

response.
2. For every e ∈ E(I) and operation o in L∗(e), if o is not completed in h(e), then it is a

write operation and it is not last in L∗(e).
3. L∗ is decisive.

https://doi.org/10.1145/3632924
https://doi.org/10.1109/FTCS.1997.614100
https://doi.org/10.1145/3465084.3467944
https://doi.org/10.48550/arXiv.2408.11015


Y. Ben Shimon, O. Lahav, and S. Shoham 8:19

Using L∗, the simulation works. Invocation and response transitions are simulated by an
identical invocation or response, where invocations of read operations also load the stored
value once. The stores in write operations are executed when the write operations are added
to the lazy linearization, after which all pending reads that did not already load the stored
value load it.

The crux of the proof is to justify that when a completed read is added to the linearization,
the matching read in WSR has already loaded the value it needs to pick to match the return
value of that read. For this, it suffices to show that the value the read returns was written by
a write that either was rightmost in the linearizaton of the prefix of the execution up to the
transition that invoked the read, or was added to the linearization later (as these are exactly
the writes whose stores we load as described above). The properties of the lazy linearization
are used to establish this fact. ◀

Proof (sketch) of Theorem 6.4. For inclusion, DR ∈ Id, given an execution of DR we con-
struct a linearization that only includes writes that already stored their value in X and
reads that picked a value to return. This is similar to the linearization in the proof that
WSR ∈ Iws. However, the order in which the operations are linearized is more involved. We
begin by assigning to each operation we intend to include in the linearization a version
number: for a write operation it is the version number it wrote in the transition where it
stored its value into X, and for a read operation it is the version number in the pre-state
of the transition where it first loaded the value it later picked to return. Operations are
ordered based on version number, with ties broken based on the ordering induced by the
aforementioned transitions. The ordering between existing operations according to these
rules does not change when new operations are added, and so the mapping we get is decisive.
We can use the conditions guarding loads and “roll backs” to earlier version numbers to show
the ordering according to the above rules respects real time order.

For hardness, the proof closely follows the proof that WSR is Iws-hard. The main difference
is that when a write appears for the first time in a linearization, it might not appear to the
right of writes which already appeared earlier. We use the roll back mechanism to simulate
these writes, thus maintaining an invariant that X contains the value of the rightmost write
in the linearization. ◀

Proof (sketch) of Theorem 6.5. The simulation keeps track of when a pair of value v and
timestamp ts reaches a majority of other processes for the first time. This can happen due
to either a write distributing its newly written value or a read distributing its decided read
value. When this happens, we check whether ts is larger than the current maximal timestamp
that reached a majority of processes. If so, we perform in DR a store of v, attached to a new,
larger version number, and then load this value with all threads that are active in a read
method. Otherwise, we use the “overwritten value” path of DR: temporarily store v with a
lower version number, collect this value by concurrent readers that can see it, and finally
restore X to its latest value. ◀

DISC 2024





Freeze-Tag in L1 Has Wake-Up Time Five with
Linear Complexity
Nicolas Bonichon #

LaBRI, University of Bordeaux, CNRS, Bordeaux INP, France

Arnaud Casteigts #

LaBRI, University of Bordeaux, CNRS, Bordeaux INP, France
CS Department, University of Geneva, Switzerland

Cyril Gavoille #

LaBRI, University of Bordeaux, CNRS, Bordeaux INP, France

Nicolas Hanusse #

LaBRI, University of Bordeaux, CNRS, Bordeaux INP, France

Abstract
The Freeze-Tag Problem, introduced in Arkin et al. (SODA’02) consists of waking up a swarm
of n robots, starting from a single active robot. In the basic geometric version, every robot is given
coordinates in the plane. As soon as a robot is awakened, it can move towards inactive robots to
wake them up. The goal is to minimize the makespan of the last robot, the makespan.

Despite significant progress on the computational complexity of this problem and on approxi-
mation algorithms, the characterization of exact bounds on the makespan remains one of the main
open questions. In this paper, we settle this question for the ℓ1-norm, showing that a makespan
of at most 5r can always be achieved, where r is the maximum distance between the initial active
robot and any sleeping robot. Moreover, a schedule achieving a makespan of at most 5r can be
computed in time O(n). Both bounds, the time and the makespan are optimal. Our results also
imply for the ℓ2-norm a new upper bound of 5

√
2r ≈ 7.07r on the makespan, improving the best

known bound of (5 + 2
√

2 +
√

5)r ≈ 10.06r.
Along the way, we introduce new linear time wake-up strategies, that apply to any norm and

show that an optimal bound on the makespan can always be achieved by a schedule computable in
linear time.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases freeze-tag problem, metric, algorithm

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.9

Related Version Full Version: http://arxiv.org/abs/2402.03258 [7]

Funding The last three authors are supported by the French ANR, project ANR-22-CE48-0001
(TEMPOGRAL).

Acknowledgements We thank J.S. Mitchell and the anonymous referees for their advice on a previous
version of this article.

1 Introduction

In a collaborative swarm of robots, individual robots often have limited capacities in terms
of energy, sensing, computation, movement or communication. They cooperate in order to
achieve global tasks like exploring a network [11] or planning the motion of each individual
robot without conflict [24]. As the robots energy is limited, it may be necessary to switch
them off and wake them up later, which requires an efficient way to do so.

© Nicolas Bonichon, Arnaud Casteigts, Cyril Gavoille, and Nicolas Hanusse;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 9; pp. 9:1–9:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bonichon@labri.fr
https://orcid.org/0000-0002-7012-6851
mailto:acasteig@labri.fr
https://orcid.org/0000-0002-7819-7013
mailto:gavoille@labri.fr
https://orcid.org/0000-0003-3671-8607
mailto:hanusse@labri.fr
https://orcid.org/0009-0008-9082-7437
https://doi.org/10.4230/LIPIcs.DISC.2024.9
http://arxiv.org/abs/2402.03258
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity

The Freeze-Tag Problem (FTP) is an optimization problem that consists of activating
as fast as possible a swarm of robots represented by points in some metric space (in general,
not necessarily Euclidean). Active (or awake) robots can move towards any point of the
space at a constant speed, whereas inactive robots are asleep (or frozen) and can be activated
only by a robot moving to their position. Initially, there are n sleeping robots and one awake
robot. The goal is to determine a schedule whose makespan is minimized; that is, the time
until all the robots have been activated is minimized. FTP has applications not only in
robotics, e.g. with group formation, searching, and recruitment, but also in network design,
e.g. with broadcast and IP multicast problems. See [4, 3, 18] and references therein.

State of the art. FTP is NP-Hard in high dimension metrics like centroid metrics [3]
(based on weighted star n-vertex graphs) or unweighted graph metrics with a robot per
node [4]. Many subsequent works have extended this hardness result to constant dimensional
metric spaces, including the Euclidian ones. A series of papers [1, 15, 21] proves that FTP is
actually NP-Hard in (R3, ℓp), for every p ≥ 1, i.e., in 3D with any ℓp-norm1. For 2D spaces,
this remains NP-Hard in L2 = (R2, ℓ2), leaving open the question for other norms [1]. It
is believed, see [3, Conjecture 28], that FTP remains NP-Hard in L1 = (R2, ℓ1). Beyond
being interesting from a theoretical point of view, the L1 case corresponds to the case where
movements are restricted to be orthogonal. This is the case for swarms of robots in certain
warehouses.

Several approximation algorithms and heuristics were designed. In their seminal work,
[3] developed a 14-approximation for centroid metrics, and a PTAS for (Rd, ℓp). The authors
of [4] presented a O(1)-approximation for unweighted graph metrics with one robot per
node, and a greedy strategy analyzed in [25] gives a O(log1−1/d n)-approximation in (Rd, ℓp).
For general metrics, the best approximation ratio is O(

√
log n ) [18]. For heuristics, several

experimental results can be found in [9, 10, 17]. See [5, 20, 14, 8] for generalizations and
variants of the problem, including the important online version.

As observed by [2], the FTP can be rephrased as finding a rooted spanning tree on a
set of points with minimum depth, where the root node (corresponding to the awake robot)
has one child and all the other nodes (corresponding to the n sleeping robots) have at most
two children (see Figure 1). Each edge has a non-negative length, representing the distance
in the metric space between its endpoints. Such a tree is called a wake-up tree, and its
weighted-depth is called the makespan.

This problem can be approached by constructing a bounded-degree B minimum diameter
spanning tree (BDST), whose best known approximation is O(

√
logB n) [18]. As shown in [3],

the BDST problem for B = 2 can be approximated within a constant using approximation
algorithms for Traveling Salesman Problem, in its metric version (hereafter, simply
TSP). Moreover, the Path-TSP, a generalization of TSP in which one asks for finding a
minimum path length spanning a point set from given start and end points, provides a valid
wake-up tree and thus a solution for FTP. The link with TSP is reenforced by the recent
approximated reduction of Path-TSP to TSP [26]. In fact, as shown by [18], the BDST
problem for B = 3, implies the same guarantee for FTP, i.e., O(

√
log n) times the optimal.

This being said, there are significant differences between TSP and FTP, the latter being
considered as a cooperative TSP version where awake robots can help in visiting unvisited
cities. First, from an algorithmic point of view, the best lower bound on the approximation

1 The ℓp-norm of a given a vector u = (u1, . . . , ud) ∈ Rd is defined by ℓp(u) = (
∑d

i=1 |ui|p)1/p. We denote
by (Rd, ℓp) the d-dimensional normed linear space where the distance between two points u, v ∈ Rd is
given by ℓp(u − v). We denote by Lp the 2D normed linear space (R2, ℓp).



N. Bonichon, A. Casteigts, C. Gavoille, and N. Hanusse 9:3

p0

p1 p1

p2

p2

p3

p3

p4

p4

p5

p5

p6

p6

p0

p10

p11

p10

p11
p9

p9

p8

p8

p7

p7

Figure 1 Example of a (here, Euclidean) instance of FTP (on the left). The robot at p0 must
wake up n = 11 sleeping robots at p1, . . . , pn. In this example, positions are normalized in the unit
ℓ2-disk, p0 being at the center. An optimal solution, depicted by arrows, can be represented as a
binary weighted tree (right). The makespan is the length of the longest (weighted) branch in that
tree, here 2.594, corresponding to the path (p0, p1, p2, p8, p9). Observe that, even if the sleeping
robots are in a convex configuration, the optimal solution may have multiple edge crossings.

factor are 5/3 − ε for FTP [3], and only 123/122 − ε for TSP [16] (assuming P ̸= NP). On the
other side, the time complexity for PTAS in (Rd, ℓp) is n(log n)(d/ε)O(d) for TSP [6, 22, 19]
vs. O(n log n) + 2(d/ε)O(d) for FTP [3], subject to ε ≤ εd, where εd depends on the number
of dimensions d. Second, and perhaps more fundamentally, it is well known that, even in
the unit ball in (Rd, ℓp), the shortest spanning path (or tour) has unbounded length in the
worst-case (it depends on n), whereas the makespan for FTP is bounded by a constant (that
does not depend on n). For TSP, the worst-case length is Θd(n1−1/d) [12], whereas for FTP
the worst-case optimal makespan is no more than some constant ρd, independent of n [3].

The constant ρd plays an important role for PTAS and approximation algorithms. For
instance, it drives the condition “ε ≤ εd” in the grid refinement approach of [3], where local
solutions in radius-(1/ε) balls have to be constructed. For (R2, ℓ2), the constant ρ2 coming
from the approach of [3] has been proved to be at most 57 by [27]. The latter authors also
construct in time O(n) a wake-up tree of makespan at most 5 + 2

√
2 +

√
5 ≈ 10.06, which is

the best known upper bound for ρ2.

Main contributions. Although some of our results hold for arbitrary norms η, we mostly
focus on the ℓ1-norm assuming that robots are spread in the plane R2 within a normalized
disk of radius 1 centered at its initial awake robot of coordinate (0, 0). Note that the unit
ℓ2-disk is a usual disk whereas the unit ℓ1-disk is a square, rotated by 45 degrees with respect
to the coordinate axes.

Our results are summarized in Table 1 and deal with lower and upper bounds on the
makespan for different norms, as well as their algorithmic solutions. For ℓp-norms, the upper
bounds mainly come from our new upper bound for ℓ1 (Theorem 1). Moreover, we show
how to build, in linear time, a wake-up tree achieving a makespan of at most the best upper
bounds known for arbitrary norm (Theorem 2).

More precisely, we get:

▶ Theorem 1. A robot at the origin can wake up any set of n sleeping robots in the unit
ℓ1-disk with a makespan of at most 5. The wake-up tree can be constructed in O(n) time.

DISC 2024



9:4 Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity

Table 1 Lower and upper bounds on the makespan denoyed by the wake-up constant γ(η) for
different norms η. The number π(η) ∈ [3, 4] (resp.

V

(η) ∈ [2, π(η)]) is the half-perimeter of a unit
η-disk (resp. of the largest inscribed parallelogram in the unit η-disk), measured in the η-metric.
φ = (1 +

√
5)/2 is the golden ratio. Note that by Theorem 2, all our upper bounds are complemented

with a linear time algorithm constructing wake-up trees of makespan no more than these bounds.

Norm Lower bounds (Theorem 10) Upper bounds References
ℓ1,ℓ∞ 5 5 Theorem 1, Section 3

ℓ2 5 + 2
√

2 +
√

5 ≈ 10.06 [27]
ℓ2 1 + 2

√
2 ≈ 3.83 5

√
2 ≈ 7.07 Corollary 13, Section 5

ℓp 1 + 21+max(1/p,1−1/p) 5 · 2min(1/p,1−1/p) Corollary 13, Section 5
Arbitrary η 1 +

V

(η) ∈ [3, 1 + π(η)] ⊆ [3, 5] 3 + φπ(η) ≤ 9.473 Corollary 11, Section 5

Obviously, if the awake robot is at distance at most r from all the sleeping robots, then by
scaling the unit disk with their positions, and by using Theorem 1, one can construct a wake-
up tree of makespan of at most 5r. By a loose argument, this yields also a 5-approximation
O(n) time algorithm for (R2, ℓ1), since r is a trivial lower bound on the makespan. A similar
statement holds for (R2, ℓ∞).

Both bounds in Theorem 1 are optimal: the makespan of 5, and obviously the linear
time construction of the wake-up tree. The upper bound of 5 is reached with n = 4 sleeping
robots at positions (±1, 0) and (0, ±1).

By a simple argument, Theorem 1 immediately improves the best known upper bound
for the ℓ2-norm. Indeed (see also Corollary 13), by scaling the unit ℓ2-disk, we can use
the construction of Theorem 1 to obtain a makespan of 5

√
2 ≈ 7.07 for the unit ℓ2-disk,

improving upon the previous 10.06 upper bound of [27].
Our second result concerns algorithmic aspects of the FTP. Theorem 2 (and its simplified

version in Corollary 12) states that there is a linear time algorithm that can match the best
known upper bound to wake up a unit disk. The result is general enough to hold in any
normed linear space (R2,η), a.k.a. Minkowski plane.

To make the statement of Theorem 2 precise, let us define γn(η) as the worst-case optimal
makespan of a wake-up tree for any set of n sleeping robots in the unit η-disk and rooted
at the origin. In other words, γn(η) is the best possible upper bound of the makespan to
wake up n sleeping robots from an awake robot placed at the origin, in the unit η-disk, all
distances being measured according to the η-metric. Finally, let us introduce the wake-up
constant w.r.t. the η-norm defined by

γ(η) = sup
n∈N

γn(η) .

Note that the constant ρ2 introduced above is simply γ(ℓ2), the ℓ2 wake-up constant.

▶ Theorem 2. Let η be any norm and let τ > 3 be any real such that τ ≥ γ(η). In time
O(n), a wake-up tree of makespan at most τ , rooted at the origin, can be built for any set of
n points in the unit η-disk.

So, if one plugs η = ℓ1 and τ = 5 in Theorem 2, then proving that γ(ℓ1) ≤ 5 becomes
sufficient to obtain a linear time construction of a wake-up tree of makespan at most 5 as
claimed in Theorem 1. In other words, given Theorem 2, the main Theorem 1 can simply be
restated as: γ(ℓ1) ≤ 5. Furthermore, as already explained, the bound of 5 is attained for
n = 4 sleeping robots, so γ(ℓ1) ≥ γ4(ℓ1) = 5, and the wake-up constant in ℓ1-norm is thus 5.

To prove Theorem 1 and Theorem 2, we need several intermediate results, which we
believe are of independent interest.



N. Bonichon, A. Casteigts, C. Gavoille, and N. Hanusse 9:5

Table 2 Makespan and complexity to wake-up, from the origin, n sleeping robots in a cone of
arc-length w in the unit η-disk.

Strategy Makespan Complexity References
Heap-Strategy 1 + w log2 n O(n) Proposition 7, Section 4.1
Split-Cone-Strategy 1 + φw O(n log n) Proposition 8, Section 5.1
Linear-Split-Strategy 1 + φw + O(w · (log3 n)/n) O(n) Proposition 9, Section 5.1

In particular, we show how to build efficiently wake-up trees with a small makespan in
subregions of the unit disk, like truncated cones (that is the part of a cone within the unit
disk) of arc length w. The algorithms presented in Table 2 are named with respect to their
underlying strategies. The complexity and makespan of Linear-Split-Strategy come from
a non-trivial combination of two strategies: Heap-Strategy and Split-Cone-Strategy,
introduced in this paper.

Outline. The proof of Theorem 1 is divided into two parts: (1) the upper bound is
presented in Section 3 and its proof, based on a strategy called L1-Strategy, is construc-
tive; (2) the linear complexity of the construction is then proved in Section 4, based on
Heap-Strategy. Theorem 2 is proved by the use of similar strategies. In Section 5, we
describe Split-Cone-Strategy and show how these strategies can be combined to get new
bounds for arbitrary norms. Due to space limitations, some of the proofs are deferred to the
Full Version [7], while providing a summary of the main ideas in the body of the paper.

2 Preliminaries: from cones to triangles and squares

Most of our algorithms are based on a partitioning of the unit disk into several shapes. The
basic shape is a cone centered at the initial awake robot p0 = O. Given two points A, B of
the unit circle centered at the origin O, we denote by arc(A, B) the part of the circle that
is traversed anti-clockwise from A to B. The length of arc(A, B) is denoted by |arc(A, B)|,
and is called arc-length. We have |arc(A, B)| ∈ [0, 2π(η)), where π(η) is the half-perimeter
of a unit η-disk. Note that arc-length and half-perimeter are measured in the η-norm. For
instance, π(ℓ2) = 3.14... and π(ℓ1) = 4. Then, cone(A, w), where w = |arc(A, B)|, is the
region of the unit η-disk bounded by arc(A, B) and the segments [OA] and [OB].

Let us focus on L1. The unit ℓ1-disk has a four-fold symmetry and has perimeter
2π(ℓ1) = 8. We consider two specific cones: squares and triangles. See Figure 2. More
precisely, and up to scaling and symmetry along the four axis, a square is a cone(P, 2)
with a point P = (1/2, −1/2), whereas a triangle is a cone(Q, 1) where Q = (1, 0). In the
unit ℓ1-disk, each sides of a square has length 1, as well as its diameter (its diagonals). A
triangle has also diameter 1 (its hypotenuse), with both sides of length 1, and it forms an
isosceles right triangle. Thus, each square region represents a fourth of the unit disk, possibly
subdivided further into two equal triangles.

3 The makespan for L1 is at most 5

At a high level, the proof consists of recruiting first a team of robots in a dense subregion,
then these robots can wake up the other regions in parallel. The difficult part is to select
these regions (triangles and squares) appropriately, depending on the number of sleeping
robots and their distribution, and to prove that the bound holds in all the cases.

DISC 2024



9:6 Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity

Figure 2 The unit ℓ1-disk, divided into squares and triangles of diameter 1.

The proof relies on three key lemmas dealing with different wake-up processes in specific
subregions, namely:

▶ Lemma 3. A robot located at a corner of a square of diameter one can wake up any number
n ≤ 5 of robots in the square in two time units.

Unfortunately, Lemma 3 cannot be extended beyond 5 robots. We can show that
a makespan of 13/6 is required to wake up some configurations with 6 robots. It seems
unavoidable to consider a case-based proof, which motivates the distinction between Lemma 3
and Lemma 4.

▶ Lemma 4. A robot located at a corner of a square of diameter one can wake up 6 robots
in the square and return to the origin with these robots in three time units.

▶ Lemma 5. A robot located at any of the three corners of a triangle T of diameter one, or
two robots located at a same point on a side of T (not the hypotenuse) can wake up all the
robots in T in two time units.

A significant part of the paper is devoted to proving these lemmas. In particular, the
proof of Lemma 5 is based on a complex recursive algorithm which is divided into 13 subcases.

Equipped with these lemmas, the proof of the main statement can be described as follows.

3.1 Proof of Theorem 1
It is based on the following strategy, called L1-Strategy, that is split into four scenarios as
follows, depending on the number n0 of robots in the densest square:

n0 = 1. In this case, there are at most four robots to be awakened. The initiator
wakes up one of them in one time unit. We now have two awake robots. Each of them
independently wakes up another sleeping robot (if needed), in at most two time units
(largest possible distance within the unit ℓ1-disk). Then, any of the awake robots wakes
up the last robot (if any) in at most two time units, which gives a total makespan of at
most 1 + 2 + 2 = 5.
2 ≤ n0 ≤ 5. We recruit n0 robots from the densest square S in two time units
(Lemma 3), then come back to the origin (by time 2 + 1 = 3) with n0 + 1 ≥ 3 awake
robots. Since S is the densest square, three of the awake robots at the origin can each
wake up one of the remaining squares (Lemma 3) in two time units, which gives a total
of at most 3 + 2 = 5.
6 ≤ n0 ≤ 10. We recruit 6 robots (chosen arbitrarily) in the densest square S and move
them to the origin in 3 time units (Lemma 4). Together with the initiator, this makes
7 robots. One of them wakes up the remaining robots in S, of which there are at most



N. Bonichon, A. Casteigts, C. Gavoille, and N. Hanusse 9:7

4, in two time units (Lemma 3). The 6 others split into three teams of two robots, one
team for each remaining square, and each robot wakes up half of the sleeping robots in
its assigned square, again in two time units (Lemma 3), which gives a total of at most
3 + 2 = 5.
n0 ≥ 11. The densest square S must contain a triangle T with at least ⌈n0/2⌉ ≥ 6
sleeping robots. We wake up all the robots of T in 2 time units (Lemma 5) and move
them to the origin. This makes at least 7 awaken robots at the origin. Each of them
wakes up a remaining triangle in 2 time units (Lemma 5 again), which gives a total of at
most 2 + 1 + 2 = 5 time units.

This completes the upper bound of 5 on the makespan for L1. Thanks to Theorem 2, a
wake-up tree with such a makespan can be constructed in linear time, which completes the
proof of Theorem 1.

3.2 Lemmas 3 and 4: monotonic paths
The full proofs of these lemmas are given in the Full Version [7]. We give here a summary of
the main ideas. A path (p0, p1, . . . , pt) is monotonic if it is both x-monotonic and y-monotonic.
An essential feature of the ℓ1-norm is that all monotonic paths are shortest paths. In other
words, the length of a monotonic path equals the distance between its endpoints. A path
is k-monotonic if it can be subdivided into at most k consecutive monotonic paths. A key
remark is that within a region of diameter δ, the length of a k-monotonic path is at most kδ.

For Lemma 3, we establish that for any set of at most 5 points, there exists a wake-up
tree such that every branch is 2-monotonic.

For Lemma 4, a similar approach is taken by incorporating segments that return to the
starting point and demonstrating that the resulting paths are 3-monotonic.

Observe that the monotonic nature of a path is solely determined by the relative ar-
rangement of points in terms of their x and y coordinates. Therefore, our considerations are
confined to a finite number of configurations (that can be indexed by permutations). See
Figure 3.

p0

p2

p1

p5

p6

p3

p4

Figure 3 Illustration of a case of Lemma 4, the awake robot being at position p0. Robots are
first ordered w.r.t. their x-coordinate. p0, p2, p3, p6 is a 1-monotonic path whereas p0, p2, p3, p4 is
a 2-monotonic path. p0, p2, p5, p1, p0 is a 3-monotonic path. This wake-up tree is valid for any set
of sleeping robots whose orders relative to the axes correspond to the permutation (3246517): the
relative y-order of p0 is 3, the one of p1 is 2, . . . , the one of p6 is 7.

DISC 2024



9:8 Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity

3.3 Lemma 5: recursive wake-up in triangles
Lemma 5 establishes that an arbitrary number of sleeping robots in a triangle T of diameter 1
can be woken up within two time units. The approach is inductive. Namely, waking
up a triangle often reduces to waking up smaller nested triangles (containing strictly less
sleeping robots), which explains why the statement of the lemma addresses several starting
configurations. We present here a representative subset of three cases (out of thirteen). The
other cases are presented in the Full Version [7].

▶ Lemma 5. A robot located at any of the three corners of a triangle T of diameter one, or
two robots located at a same point on a side of T (not the hypotenuse) can wake up all the
robots in T in two time units.

Because the unit ℓ1-disk has a four-fold symmetry, we assume that the triangle T is
oriented as in Figure 4, with vertices ABC and hypotenuse [BC].

A

TA

T0
TB TC

F E

D

B C

Figure 4 The triangle T with vertices B = (0, 0), C = (1, 0) and A = (1/2, 1/2). Subdivision of
the triangle T .

The goal is to show that all sleeping robots in T can be woken up in two time units, for
each of the possible starting configurations. Up to symmetry, these configurations are: Case
A: one awake robot is located in A; Case B: one awake robot is located in B; Case C: two
awake robots are located at a same point along segment [AB].

The strategy depends critically on how the robots are distributed within the triangle,
which gives rise to a number of subcases (13 overall). Our proof is fully constructive (i.e., it
yields an actual quadratic time algorithm that we have implemented) and we show in the Full
Version [7] how to get a linear time algorithm. Technically, we proceed by induction on the
number of sleeping robots in T . For cases A and B, at least one sleeping robot, at position
p1 in T , will be awake by the robot at p0 ∈ {A, B}. For Case C, this is not necessarilly the
case as an awake robot may simply move to another location without waking up any other
robot. However, after one application of Case C, we check that Case C cannot immediately
reapply. In other words, after two steps of induction, cases A or B will apply with one less
sleeping robot.

The proof of Case B and C, and their subcases, relies on a regular subdivision of T into
four smaller triangles of equal size. Call D, E, F the middle points of segments [BC], [CA]
and [AB], respectively, and let TA, TB , TC , T0 be the triangles AFE, BDF , CED, and DEF

(see Figure 4). Each of these triangles has diameter 1/2. Let ♢ PB be the parallelogram
BDEF . The diameter of ♢ PB is 1.

We now present three of the thirteen cases (see Figure 5). These three cases are
representative of the different arguments used. In these cases, the awake robot starts at
point B, also referred to as p0. The case analysis depends on the number of sleeping robots
in ♢ PB . Namely, we apply Case B0 if it is empty, B1 if it contains one robot, and B2 if it
contains two robots. A graphical summary of these three subcases is shown in Figure 5.



N. Bonichon, A. Casteigts, C. Gavoille, and N. Hanusse 9:9

p0
p1

A′
C′

Case B0

p0
p1

Case B1

p0

p1

p2

Case B2

Figure 5 The subcases B0, B1 and B2 of Case B for Lemma 5. Regions in blue correspond to
region where recursion occurs. Outgoing purple arrows indicates that the region will be woken up
from the head location. A thick edge indicates that two awake robots follow the same path.

Case B0. ♢ PB is empty. We increase the size of ♢ PB homothetically, keeping one of
its corners at B, until a point p1 is found (see Figure 5 - B0). The new parallelogram
intersects with [AC] in two points C ′ and A′, where C ′ is the closest to A. This
forms two smaller triangles which are homothetic to ABC. Because they result from
intersecting a parallelogram, these triangles have the same size; namely, they have
diameter d = |AC ′| = |A′C|, which also implies that |C ′A′| = 1 − 2d.
The wake-up tree is as follows. The initial robot wakes up p1. Depending on what side
of the parallelogram p1 lies on, both robots reach C ′ or A′ using a path that is still
monotonic from p0, so they arrive before one time unit. One of them then reaches the
other point (C ′ or A′) in time 1−2d. Finally, each robot wakes up one of the two triangles
(separately) in time 2d, recursing into case A and B (respectively). Overall, the makespan
is thus 1 + (1 − 2d) + 2d = 2.
Case B1. ♢ PB contains one robot. The robot at p0 wakes up this robot, then both
robots move to E before one time unit, since the path (p0, p1, E) is monotonic. Finally,
one of them wakes up TA (recursing in Case B) and the other TC (recursing in Case A).
These triangles have half the size of T , thus the makespan is at most 1 + 2 · (1/2) = 2.
Case B2. ♢ PB contains two robots at p1 and p2. W.l.o.g., assume p1 ≤x p2. If
(p0, p1, p2) is monotonic, the strategy is the same as in Case B1: the robots reach point E

in one time unit, then two of them wake up TA and TC independently. Otherwise, there
exists a point C∗ of [DE] such that (p1, p2, C∗) is 1-monotonic. In this case, the initial
robot wakes up the robot in p1, then moves to E before one time unit and wakes up TA

in 2 · (1/2) = 1 time unit. Meanwhile, the robot in p1 wakes up the robot in p2 and both
move to C∗.

▷ Claim 6. The 2-monotonic path (p0, p1, p2, C∗) has length at most one.

Proof. Let p1 = (x, y) and C∗ = (x′, y′). By 2-monotonicity, the length of the path is
|p0p1| + |p1C∗| = (x + y) + ((x′ − x) + (y − y′)) = 2y + x′ − y′. In terms of y-coordinate,
the height of T is 1/2, thus the height of ♢ PB is 1/4, and y ≤ 1/4. Moreover, because
C∗ lies on [DE], we have y′ = x′ − 1/2, so 2y + x′ − y′ ≤ 1/2 + x′ − (x′ − 1/2) = 1. ◁

DISC 2024



9:10 Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity

We thus have two robots located at C∗ before one time unit. These robots can wake up
TC (of diameter 1/2) in one time unit, by recursing in Case C.

4 Linear time algorithm

4.1 Heap-Strategy and linear time for L1

A crude analysis of L1-Strategy shows that its complexity is quadratic. Even if we use
a suitable data structure, we believe that the current proof cannot lead to a better than
Ω(n log n) time algorithm.

To obtain a linear algorithm, we will combine it with an algorithm that runs in linear
time and achieves a makespan of 3 + O((log n)/

√
n ). Therefore, for small values of n (up to

a characterized constant), we use L1-Strategy, and for larger values, we use the latter.
The strategy, called Generic-Strategy, is as follows: in a first phase, we divide the disk

into
√

n cones of arc-length w = 2π(ℓ1)/
√

n = 8/
√

n. Initially, we awake the robots in the
densest cone using a strategy called Heap-Strategy. This particular cone contains at least√

n robots. In a second phase, we assign one awake robot to each of the remaining cones,
in parallel, every ”sleeping” cone is awaken using Heap-Strategy again. Therefore, the
makespan of the Generic-Strategy is no more than 1 + 2C(w,

√
n) = 1 + 2C(8/

√
n,

√
n),

where C(w, n) is the wake-up time for n points in a cone of arc-length w.

O

Γ

Figure 6 On the left, an arbitrary partition of the unit ℓ1-disk into cones. In the middle, a
wake-up tree computed using Heap-Strategy for an arbitrary cone (Γ represents an arc for an
arbitrary norm). On the right, the analysis of the length of a branch drawn in black. In blue (resp.
red) the radial (resp. angular) displacement of each edge.

To wake up a cone from p0 containing points p1, p2, . . . , pn, we use the Heap-Strategy
that simply constructs a minimum heap (binary) tree whose key is the ℓ1-distance from the
origin. By design, every path from p0 to a point pi has a non-decreasing distance property of
the nodes w.r.t. the root.

More precisely, Heap-Strategy consists in building a minimum (binary) heap tree H for
{p1, . . . , pn} where the key of pi is the distance from p0 to pi. The wake-up tree rooted at p0
is then composed of H itself, plus the edge connecting p0 to the root of H (its top element),
i.e., the closest point from p0. Using the standard “build-heap” and “heapify” routines, H

and thus the wake-up tree can be constructed in time O(n).



N. Bonichon, A. Casteigts, C. Gavoille, and N. Hanusse 9:11

Although we focus on L1 in this section, the following proposition holds for any norm η:

▶ Proposition 7. If P is contained in a cone of arc-length w, then Heap-Strategy constructs
in time O(n) a wake-up tree for P , rooted at the origin, with makespan at most 1+w ⌊log2 n⌋.

Proof. We can bound the length of an edge by the radial displacement plus the angular
displacement. For each edge, the angular displacement is bounded by the arc-length w (see
Figure 6). Furthermore, along a branch, the total radial displacement is bounded by the
depth of the cone. Since the wake-up tree is a binary tree, each branch has at most ⌊log2 n⌋
edges. Hence we obtain a makespan of 1 + w ⌊log2 n⌋ for the Heap-Strategy on a cone of
arc-length w. ◀

Thus, from Proposition 7, we have C(w, n) = 1 + w ⌊log2 n⌋, and the makespan of the
Generic-Strategy for L1 is smaller than 3 + 16 log2 n/

√
n. So, for n large enough, that is

as soon a 3 + 16 log2 n/
√

n ≤ 5, we can use this generic strategy to get a linear time for L1,
and we use the L1-Strategy otherwise, both with a guarantee of 5 on the makespan.

4.2 Linear time for arbitrary norms
We can generalize the generic strategy to arbitrary norms for any admissible bound on the
makespan. The main difference is that the threshold n0 ≤ n to use the generic algorithm
depends on the wanted upper bound τ > 3 assuming that τ ≥ γ(η). For L1, we know that
γ(ℓ1) = 5 and we show a solution for τ = 5.

Thus we get:

▶ Theorem 2. Let η be any norm and let τ > 3 be any real such that τ ≥ γ(η). In time
O(n), a wake-up tree of makespan at most τ , rooted at the origin, can be built for any set of
n points in the unit η-disk.

Proof. Assume that τ > 3 and τ ≥ γ(η). We use the generic strategy presented for
L1. Since it is well-known that π(η) ∈ [3, 4], we compute the least integer n0 such that2

3 + 16 log2 n0/
√

n0 ≤ τ . Note that n0 is a fixed constant, independent of n.

If n ≥ n0, then we can apply Generic-Strategy providing a makespan that is less than τ .
If n < n0, then we use can brute-force algorithm for finding an optimal wake-up tree
whose makespan is at most γ(η) by definition of γ(η). This is also at most τ by
the choice of τ . The number of wake-up trees we have to consider in a brute-force
algorithm is at most the number of labeled binary trees on n vertices that is n! · Cn =
(2n)!/(n + 1)! ≤ (2n0)!/(n0 + 1)! = O(1) since n0 is constant, where Cn =

(2n
n

)
/(n + 1)

is the nth Catalan’s number. And, checking the makespan of each of these trees costs
O(n) = O(n0) = O(1). ◀

5 Wake-up constants for other norms

Observe that Heap-Strategy suffers from having an unbounded makespan of 1 + w log2 n

if w = ω(1/ log n). We address this as follows. First, we introduce a new strategy:
Split-Cone-Strategy in order to remove this dependency to get a makespan of3 1 + φw but

2 For η = ℓ1, this integer appears to be n0 = 11 665. In the detailed proof of Theorem 2, in the Full
Version [7], we show that we can use Linear-Split-Strategy instead of Split-Cone-Strategy in the
Generic-Strategy, and that it is enough to choose the least n0 such that 3 + 26/

√
n0 ≤ τ . For η = ℓ1,

this improved strategy gives an n0 = 169.
3 Recall that φ = (1 +

√
5)/2 is the golden ratio.

DISC 2024



9:12 Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity

running in time O(n log n). Then, we use Split-Cone-Strategy to get new bounds on the
makespan for arbitrary norms. At the end of the section, we give some hints to get a linear
time version of Split-Cone-Strategy, the full proof being presented in the Full Version [7].

Notations for arbitrary norms. In this paper, we concentrate our attention to the plane
R2. Given a norm η, the unit disk w.r.t. η, or the unit η-disk for short, is the normed linear
subspace of (R2,η) induced by all the points at distance at most one from the origin, where
distances are measured according to η, the distance between u and v being η(v − u). The
unit η-disk can be an arbitrary convex body that is symmetric about the origin. Note that
the unit ℓ2-disk4 is a usual disk whereas the unit ℓ1-disk is a square, rotated by 45 degrees
with respect to the coordinate axes.

5.1 Split-Cone-Strategy

Let us describe the construction of the wake-up tree corresponding to Split-Cone-Strategy:
(1) the initial awake robot located at this origin, wakes up the closest robot located at position
p1 w.r.t. the η-distance; (2) we split the current cone of arc-length w into two subcones of
arc-length w/φ and (1 − 1/φ)w; (3) the current point p is linked to the closest point in the
non-decreasing order in each of the two subcones; (4) each subcone is subdivided recursively
according to Steps 2 and 3 until every point of the initial cone belongs to the binary wake-up
tree.

It turns out that the subcone assigned to a point at depth i in the wake-up tree
has an arc-length at most w/φi. After a precise analysis of the wake-up tree defined
by Split-Cone-Strategy, we get:

▶ Proposition 8. If P is contained in a cone of arc-length w, then Split-Cone-Strategy
constructs in time O(n log n) a wake-up tree for P , rooted at the origin, of makespan at most
1 + φw.

O

Γ

Figure 7 Illustration of the Split-Cone-Strategy, producing non-decreasing wake-up trees. The
arc Γ is of length w in the η-norm. Note that edges can cross in such wake-up trees.

Let us sketch the proof of Proposition 8. To analyze the length of the longest branch of
the wake-up tree (the makespan), we proceed as in the case of Heap-Strategy: we bound
the length of each edge by its radial movement plus its lateral movement. The sum of the
radial movements of a branch is at most the radius of the cone, that is 1. In addition, the
lateral movement of the i-th edge is at most w/φi−1. So the sum of the lateral movements
along a branch is at most φw. Hence the makespan of Split-Cone-Strategy is at most
1 + φw.

4 For convenience, and to avoid extra notation, we use the same “unit η-disk” terminology to denote the
normed subspace and, like here, its support, that is the set of all points/vectors of norm at most 1 (the
unit disk).



N. Bonichon, A. Casteigts, C. Gavoille, and N. Hanusse 9:13

If we combine Split-Cone-Strategy on the O(n/ log n) closest points from the initial
position and Heap-Strategy on the remaining points in tiny subcones, we have (see the Full
Version [7] for the proofs):

▶ Proposition 9. If P is contained in a cone of arc-length w, the Linear-Split-Strategy
constructs in time O(λn) a wake-up tree for P , rooted at the origin, with makespan at most
1 + φw + w · (log2 n)3/(λn), for every λ ≥ 1.

5.2 Lower bounds
In L1, consider four sleeping robots at positions (±1, 0) and (0, ±1). Any wake-up tree
spanning more than four points must have (unweighted) a depth at least 3. Then, the first
hop has length 1, and the next two hops have length 2 (as the four points are mutually at
distance 2), which overall gives a makespan of at least 5 for any wake-up tree. In Theorem 10,
we give a generalization of this argument for any norm η, leading to an intriguing open
question of matching this lower bound for other norms (see Conjecture 14).

Given a norm η, let us define

V

(η) as half the perimeter of the largest inscribed par-
allelogram in the unit η-disk measured in the η-metric. (For the ℓ1-norm, this perimeter
corresponds to the circumference of the disk itself, and so

V

(ℓ1) = 4.) This is a classical
parameter of 2D normed spaces. It can be formally defined by (see [23, 13]),

V

(η) = sup
u,v∈R2

η(u),η(v)≤1

{ η(u + v) + η(u − v) } .

It is easy to check that

V

(η) ∈ [2, 4]. For general norms, the constant

V

(η) can be difficult to
calculate precisely. However, it is known (see [13, Proposition 1] for instance), that, for every
p ∈ [1, ∞],

V
(ℓp) = 21+max(1/p,1−1/p). In particular,

V
(ℓ1) =

V
(ℓ∞) = 4 and

V
(ℓ2) = 2

√
2.

The wake-up constants for n ∈ {0, 1, 2, 3} are easy to calculate. We have γ0(η) = 0,
γ1(η) = 1, γ2(η) = γ3(η) = 3, and also γn(η) ≥ 3 for all5 n ≥ 3. Our next result gives the
exact value for γ4(η).

▶ Theorem 10. For any norm η, γ4(η) = 1 +

V

(η).

This implies a general lower bound of γ(η) ≥ 1 +

V

(η), for any norm η.

5.3 Upper bounds, ℓp-norms, and the conjecture
Wake-up cones of arc-length w with a makespan 1 + φw allow us to state a first general
upper bound: once two robots are awake at the origin (this can be done in at most two time
units), each one can wake up half of the unit disk with arc-length π(η). By this way, we can
bound the wake-up constant for every norm:

▶ Corollary 11. For any norm η, γ(η) < 3 + φπ(η) ≤ 9.473.

Note that since

V

(η) ≥ 2, by letting τ = 1 +

V

(η), Theorem 2 simplifies and rewrites in
the following meta-theorem:

▶ Corollary 12. For any norm η with

V

(η) > 2, one can construct in time O(n) a wake-up
tree of makespan at most γ(η) for any set of n points in the unit η-disk and rooted at the
origin.

5 For n ≥ 2, it is enough to place one sleeping robot at (1, 0) and the n − 1 others at (−1, 0).

DISC 2024



9:14 Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity

Now, combining Theorem 1, Theorem 10 (with η = ℓp), and standard inclusion arguments
of unit ℓp-disk, we get the following bounds for the ℓp wake-up constant, which are better
than what one can get by Corollary 11 with π(ℓp):

▶ Corollary 13. For every p ∈ [1, ∞], 1 + 21+max(1/p,1−1/p) ≤ γ(ℓp) ≤ 5 · 2min(1/p,1−1/p).

In the light of the lower bound γ(η) ≥ 1 +

V

(η) implied by Theorem 10, we propose the
following natural conjecture.

▶ Conjecture 14. For any norm η, γ(η) = 1 +

V

(η).

According to Theorem 10, which states that the bound 1 +

V

(η) is reached by n = 4
robots and doing some experiments, Conjecture 14 can be captured in the aphorism:

Wake up n robots is quicker than wake up four.

Theorem 1 and Corollary 13 prove the conjecture for η ∈ {ℓ1, ℓ∞}. For η = ℓ2, if true,
Conjecture 14 combined with Theorem 2 implies that in time O(n) one can construct a wake-
up tree of makespan 1 + 2

√
2 ≈ 3.82. Using an analysis of the Generic-Strategy combined

with the Split-Cone-Strategy (see the Full Version [7]), we can show that Conjecture 14
is true for ℓ2 whenever n ≥ 551.

6 Conclusion

In this article, we showed that a wake-up tree can be built in linear time with a makespan at
most five for robots in L1. This wake-up constant “five” is optimal: no strategy can guarantee
less than five times the radius under the ℓ1-norm. Our results imply a new upper bound
of 7.07 for the ℓ2-norm, improving upon the existing bound of 10.06, and so, in linear time.
Some of our results are general enough to apply to every norm, implying an upper bound
of 9.473 for every norm by introducing new algorithmic strategies, namely Heap-Strategy
and Split-Cone-Strategy. We also showed how to get in linear time a wake-up tree of
makespan no more than the wake-up constant, for every norm. The construction could be
used in another setting since it provides a subcubic geometric graph with small diameter,
namely at most 2γ(η) < 2 · (3 + φπ(η)) times the radius of the point set (Corollary 11).

Along the way, we conjecture that, for every norm η, the wake-up constant is 1 +

V

(η),
where

V

(η) is half the perimeter of the largest inscribed parallelogram in the unit disk of
(R2,η). According to our results, the conjecture is equivalent to saying that waking up n

robots is always faster than waking up four robots. This conjecture is proved for the special
cases of ℓ1 and ℓ∞ norms. As a first step towards proving the full conjecture, it would be
interesting to determine the status of the ℓ2-norm whose wake-up constant, according to our
conjecture, should be 1 + 2

√
2 ≈ 3.82. Among ℓp-norms, ℓ2 is the norm whose current gap

between the upper and lower bounds is the largest.
We also showed that the wake-up constant for fixed n asymptotically decreases with n,

i.e., γn(ℓ2) < γ4(ℓ2) for large n (above 500), but we were unable to show that this inequality
occurs for small n (say, 10). Surprisingly, some experiments that we conducted (see the Full
Version [7]) show that at least one of the two following statements is wrong: (1) the wake-up
constant is reached for points that are equally distributed along the boundary of the unit
circle; and (2) for every n ≥ 4, γn+2(ℓ2) < γn(ℓ2).



N. Bonichon, A. Casteigts, C. Gavoille, and N. Hanusse 9:15

In summary, the main open questions are the following:
Is the wake-up constant of the ℓ2-norm equal to 1 + 2

√
2?

Is the wake-up constant of the regular-hexagonal-norm6 equal to 4?
Is Conjecture 14 true for all ℓp-norms? And if so, is it true every norm?
Does a linear time PTAS exists?
What is the status of higher dimensions?

References
1 Zachary Abel, Hugo A. Akitaya, and Yu Jingjin. Freeze tag awakening in 2D is NP-hard. In

27th Annual Fall Workshop on Computational Geometry (FWCG), November 2017. URL:
https://www.ams.stonybrook.edu/~jsbm/fwcg17/proceedings.html.

2 Esther M. Arkin, Michael A. Bender, Sándor P. Fekete, Joseph S.B. Mitchell, and Martin
Skutella. The freeze-tag problem: How to wake up a swarm of robots. In 13th Symposium on
Discrete Algorithms (SODA), pages 568–577. ACM-SIAM, 2002. URL: http://dl.acm.org/
citation.cfm?id=545381.545457.

3 Esther M. Arkin, Michael A. Bender, Sándor P. Fekete, Joseph S.B. Mitchell, and Martin
Skutella. The freeze-tag problem: How to wake up a swarm of robots. Algorithmica, 46:193–221,
2006. doi:10.1007/s00453-006-1206-1.

4 Esther M. Arkin, Michael A. Bender, Dongdong Ge, Simai He, and Joseph S.B. Mitchell. Im-
proved approximation algorithms for the freeze-tag problem. In 15th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 295–303. ACM Press, June 2003.
doi:10.1145/777412.777465.

5 Amitai Armona, Adi Avidora, and Oded Schwartz. Cooperative tsp. Theoretical Computer
Science, 411(31-33):2847–2863, June 2010. doi:10.1016/j.tcs.2010.04.016.

6 Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. Journal of the ACM, 45(5):753–782, September 1998. doi:
10.1145/290179.290180.

7 Nicolas Bonichon, Arnaud Casteigts, Cyril Gavoille, and Nicolas Hanusse. Freeze-tag in
L1 has wake-up time five. Technical Report 2402.03258v1 [cs.DS], arXiv, February 2024.
doi:2402.03258v1.

8 Josh Brunner and Julian Wellman. An optimal algorithm for online freeze-tag. In 10th
International Conference Fun with Algorithms (FUN), volume 157 of LIPIcs, pages 8:1–11,
September 2020. doi:10.4230/LIPIcs.FUN.2021.8.

9 Dan George Bucatanschi. The ant colony system for the freeze-tag problem. In Midstates
Conference on Undergraduate Research in Mathematics and Computer Science (MCURCSM),
pages 61–69, 2004.

10 Dan Georges Bucatanschi, Blaine Hoffmann, Kevin R. Hutson, and R. Matthew Kretchmar. A
neighborhood search technique for the freeze tag problem. In Extending the Horizons: Advances
in Computing, Optimization, and Decision Technologies, volume 37 of Operations Research/-
Computer Science Interfaces Series, pages 97–113, 2007. doi:10.1007/978-0-387-48793-9_7.

11 Shantanu Das. Graph explorations with mobile agents. In Paola Flocchini, Giuseppe Prencipe,
and Nicola Santoro, editors, Distributed Computing by Mobile Entities, volume 11340 of
Lecture Notes in Computer Science, chapter 16, pages 403–422. Springer, Cham, 2019. doi:
10.1007/978-3-030-11072-7_16.

12 L. Few. The shortest path and the shortest road through n points. Mathematika, 2(2):141–144,
1955. doi:10.1112/S0025579300000784.

6 With this norm, it is easy to show that its unit disk (a regular hexagon) contains inscribed parallelograms
of half perimeter 3. This is clearly the largest possible length since 3 is also the half-perimeter of this
disk (a hexagon).

DISC 2024

https://www.ams.stonybrook.edu/~jsbm/fwcg17/proceedings.html
http://dl.acm.org/citation.cfm?id=545381.545457
http://dl.acm.org/citation.cfm?id=545381.545457
https://doi.org/10.1007/s00453-006-1206-1
https://doi.org/10.1145/777412.777465
https://doi.org/10.1016/j.tcs.2010.04.016
https://doi.org/10.1145/290179.290180
https://doi.org/10.1145/290179.290180
https://doi.org/2402.03258v1
https://doi.org/10.4230/LIPIcs.FUN.2021.8
https://doi.org/10.1007/978-0-387-48793-9_7
https://doi.org/10.1007/978-3-030-11072-7_16
https://doi.org/10.1007/978-3-030-11072-7_16
https://doi.org/10.1112/S0025579300000784


9:16 Freeze-Tag in L1 Has Wake-Up Time Five with Linear Complexity

13 Jil Gao. Normal structure and the arc length in banach spaces. Taiwanese Journal of
Mathematics, 5(2):353–366, June 2001. URL: http://www.jstor.org/stable/43828249.

14 Mikael Hammar, Bengt J. Nilsson, and Mia Persson. The online freeze-tag problem. In 7th
Latin American Symposium on Theoretical Informatics (LATIN), volume 3887 of Lecture Notes
in Computer Science, pages 569–579. Springer, March 2006. doi:10.1007/11682462_53.

15 Matthew Johnson. Easier hardness for 3D freeze-tag. In 27th Annual Fall Workshop on
Computational Geometry (FWCG), November 2017. URL: https://www.ams.stonybrook.
edu/~jsbm/fwcg17/proceedings.html.

16 Marek Karpinski. Towards better inapproximability bounds for TSP: A challenge of global
dependencies. In Electronic Colloquium on Computational Complexity (ECCC), TR15-097,
June 2015. URL: https://eccc.weizmann.ac.il/report/2015/097/.

17 Hamidreza Keshavarz. Applying tabu search to the freeze-tag. In 1st Conference on Swarm
Intelligence and Evolutionary Computation (CSIEC), pages 37–41. IEEE Computer Society
Press, March 2016. doi:10.1109/CSIEC.2016.7482136.

18 Jochen Könemann, Asaf Levin, and Amitabh Sinha. Approximating the degree-bounded
minimum diameter spanning tree problem. Algorithmica, 41(2):117–129, 2005. doi:10.1007/
s00453-004-1121-2.

19 Joseph S.B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM Journal on Computing, 28(4):1298–1309, 1999. doi:10.1137/S0097539796309764.

20 Zahra Moezkarimi and Alireza Bagheri. A PTAS for geometric 2-FTP. Information Processing
Letters, 114(12):670–675, 2014. doi:10.1016/j.ipl.2014.06.017.

21 Lehilton Lelis Chaves Pedrosa and Lucas de Oliveira Silva. Freeze-tag is NP-hard in 3D
with L1 distance. In 12th Latin-American Algorithms, Graphs and Optimization Symposium
(LAGOS), volume 223:C, pages 360–366. Procedia Computer Science, September 2023. doi:
10.1016/j.procs.2023.08.248.

22 Carsten Rössner and Jean-Pierre Seifert. Hardness of approximating shortest integer relations
among rational numbers. Theoretical Computer Science, 209(1-2):287–297, December 1998.
doi:10.1016/S0304-3975(97)00118-7.

23 Juan Jorge Schäffer. Geometry of Spheres in Normed Spaces, volume 20 of Lecture Notes in
Pure and Applied Mathematics. Dekker, Marcel, 1976.

24 Trevor Standley. Finding optimal solutions to cooperative pathfinding problems. In 24th
AAAI Conference on Artificial Intelligence (AAAI), volume 24, pages 173–178. AAAI Press,
July 2010. doi:10.1609/aaai.v24i1.7564.

25 Marcelo O. Sztainberg, Esther M. Arkin, Michael A. Bender, and Joseph S.B. Mitchell.
Theoretical and experimental analysis of heuristics for the "freeze-tag" robot awakening problem.
IEEE Transactions on Robotics, 20(4):691–701, August 2004. doi:10.1109/TRO.2004.829439.

26 Vera Traub, Jens Vygen, and Rico Zenklusen. Reducing path TSP to TSP. In 52nd Annual
ACM Symposium on Theory of Computing (STOC), pages 14–27. ACM Press, June 2020.
doi:10.1145/3357713.3384256.

27 Ehsan Najafi Yazdia, Alireza Bagheri, Zahra Moezkarimia, and Hamidreza Keshavarz. An
O(1)-approximation algorithm for the 2-dimensional geometric freeze-tag problem. Information
Processing Letters, 115(6-8):618–622, June 2015. doi:10.1016/j.ipl.2015.02.011.

http://www.jstor.org/stable/43828249
https://doi.org/10.1007/11682462_53
https://www.ams.stonybrook.edu/~jsbm/fwcg17/proceedings.html
https://www.ams.stonybrook.edu/~jsbm/fwcg17/proceedings.html
https://eccc.weizmann.ac.il/report/2015/097/
https://doi.org/10.1109/CSIEC.2016.7482136
https://doi.org/10.1007/s00453-004-1121-2
https://doi.org/10.1007/s00453-004-1121-2
https://doi.org/10.1137/S0097539796309764
https://doi.org/10.1016/j.ipl.2014.06.017
https://doi.org/10.1016/j.procs.2023.08.248
https://doi.org/10.1016/j.procs.2023.08.248
https://doi.org/10.1016/S0304-3975(97)00118-7
https://doi.org/10.1609/aaai.v24i1.7564
https://doi.org/10.1109/TRO.2004.829439
https://doi.org/10.1145/3357713.3384256
https://doi.org/10.1016/j.ipl.2015.02.011


Vertical Atomic Broadcast and Passive Replication
Manuel Bravo
Informal Systems, Madrid, Spain

Gregory Chockler
University of Surrey, Guildford, UK

Alexey Gotsman
IMDEA Software Institute, Madrid, Spain

Alejandro Naser-Pastoriza
IMDEA Software Institute, Madrid, Spain
Universidad Politécnica de Madrid, Spain

Christian Roldán
IMDEA Software Institute, Madrid, Spain

Abstract
Atomic broadcast is a reliable communication abstraction ensuring that all processes deliver the same
set of messages in a common global order. It is a fundamental building block for implementing fault-
tolerant services using either active (aka state-machine) or passive (aka primary-backup) replication.
We consider the problem of implementing reconfigurable atomic broadcast, which further allows
users to dynamically alter the set of participating processes, e.g., in response to failures or changes in
the load. We give a complete safety and liveness specification of this communication abstraction and
propose a new protocol implementing it, called Vertical Atomic Broadcast, which uses an auxiliary
service to facilitate reconfiguration. In contrast to prior proposals, our protocol significantly reduces
system downtime when reconfiguring from a functional configuration by allowing it to continue
processing messages while agreement on the next configuration is in progress. Furthermore, we show
that this advantage can be maintained even when our protocol is modified to support a stronger
variant of atomic broadcast required for passive replication.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Reconfiguration, consensus, replication

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.10

Related Version Extended Version: https://arxiv.org/abs/2408.08702 [4]

Funding This work was partially supported by the projects BYZANTIUM, DECO and PRODIGY
funded by MCIN/AEI, and REDONDA funded by the CHIST-ERA network.

1 Introduction

Replication is a widely used technique for ensuring fault tolerance of distributed services.
Two common replication approaches are active (aka state-machine) replication [33] and
passive (aka primary-backup) replication [6]. In active replication, a service is defined by a
deterministic state machine and is executed on several replicas, each maintaining a copy of
the machine. The replicas are kept in sync using atomic broadcast [10], which ensures that
client commands are delivered in the same order to all replicas; this can be implemented
using, e.g., Multi-Paxos [21].

In contrast, in passive replication commands are executed by a single replica (the leader or
primary), which propagates the state updates induced by the commands to the other replicas
(followers or backups). This approach allows replicating services with non-deterministic
operations, e.g., those depending on timeouts or interrupts. But as shown in [3, 17, 19],

© Manuel Bravo, Gregory Chockler, Alexey Gotsman, Alejandro Naser-Pastoriza, and
Christian Roldán;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2024.10
https://arxiv.org/abs/2408.08702
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


10:2 Vertical Atomic Broadcast and Passive Replication

implementing it requires propagating updates from the leader to the followers using a stronger
primitive than the classical atomic broadcast. This is because in passive replication, a state
update is incremental with respect to the state it was generated in. Hence, to ensure
consistency between replicas, each update must be applied by a follower to the same state
in which it was generated by the leader. Junqueira et al. formalized the corresponding
guarantees by the notion of primary-order atomic broadcast (POabcast) [18,19], which can
be implemented by protocols such as Zab [18], viewstamped replication [30] or Raft [31].

The above implementations of atomic or primary-order atomic broadcast require repli-
cating data among 2f + 1 replicas to tolerate f failures. This is expensive: in principle,
storing the data at f + 1 replicas is enough for it survive f failures. Since with only f + 1
replicas even a single replica failure will block the system, to recover we need to reconfigure
it, i.e., change its membership to replace failed replicas with fresh ones. Unfortunately,
processes concurrently deciding to reconfigure the system need to be able to agree on the
next configuration; this reduces to solving consensus, which again requires 2f +1 replicas [22].
The way out of this conundrum is to use a separate configuration service with 2f + 1 replicas
to perform consensus on configurations. In this way we use 2f + 1 replicas to only store
configuration metadata and f + 1 replicas to store the actual data. This vertical approach,
layering replication on top of a configuration service, was originally proposed in RAMBO [27]
for atomic registers and in Vertical Paxos [23] for single-shot consensus. Since then it has
been used by many practical storage systems [2,8,11,14]. These often use reconfiguration
not only to deal with failures, but also to make changes to a functional configuration: e.g., to
move replicas from highly loaded machines to lightly loaded ones, or to change the number
of machines replicating the service [26,29,39].

Unfortunately, while the space of atomic broadcast protocols with 2f +1 replicas has been
extensively explored, the design of such protocols in vertical settings is poorly understood.
Even though one can obtain a vertical solution for atomic broadcast by reducing it to Vertical
Paxos, this would make it hard to ensure the additional properties required for passive
replication. Furthermore, both Vertical Paxos and similar protocols [3] stop the system
as the very first step of reconfiguration, which increases the downtime when reconfiguring
from a functional configuration. Due to the absence of a theoretically grounded and efficient
atomic broadcast protocol for vertical settings, the designs used in industry are often ad hoc
and buggy. For example, until recently the vertical-style protocol used in Kafka, a widely
used streaming platform, contained a number of bugs in its failure handling [14]. In this
paper we make several contributions to improve this situation.

First, we give a complete safety and liveness specification of reconfigurable atomic broadcast,
sufficient for active replication (§3). We then propose its implementation in a vertical system
with f + 1 replicas and an external configuration service, which we call Vertical Atomic
Broadcast (VAB) (§4). In contrast to prior vertical protocols [3, 23], our implementation
allows the latest functional configuration to continue processing messages while agreement on
the next configuration is in progress. This reduces the downtime when reconfiguring from a
functional configuration from 4 message delays in the prior solutions to 0. We rigorously prove
that the protocol correctly implements the reconfigurable atomic broadcast specification,
including both safety and liveness.

We next consider the case of passive replication (which we review in §5). We propose
speculative primary-order atomic broadcast (SPOabcast), which we show to be sufficient for
implementing passive replication in a reconfigurable system (§6). A key novel aspect of
SPOabcast is that SPOabcast is able to completely eliminate the downtime induced by a
Primary Integrity property of the existing POabcast [18, 19]. This property requires the



M. Bravo, G. Chockler, A. Gotsman, A. Naser-Pastoriza, and C. Roldán 10:3

leader of a new configuration to suspend normal operation until an agreement is reached on
which messages broadcast in the previous configurations should survive in the new one: in
passive replication, these messages determine the initial service state at the leader. Instead,
SPOabcast allows the leader to speculatively deliver a tentative set of past messages before the
agreement on them has been reached, and then to immediately resume normal broadcasting.
SPOabcast guarantees that, if a process delivers a message m2 broadcast by the new leader,
then prior to this the process will also deliver every message m1 the leader speculatively
delivered before broadcasting m2. This helps ensure that the process applies the update
in m2 to the same state in which the leader generated it, as required for the correctness of
passive replication.

We show that SPOabcast can be implemented by modifying our Vertical Atomic Broadcast
protocol. The use of speculative delivery allows the resulting protocol to preserve VAB’s
downtime of 0 when reconfiguring from a functional configuration. It thus allows using
Vertical Atomic Broadcast to replicate services with non-deterministic operations.

Overall, we believe that our specifications, protocols and correctness proofs provide
insights into the principles underlying existing reconfigurable systems, and can serve as a
blueprint for building future ones.

2 System Model

We consider an asynchronous message-passing system consisting of an (infinite) universe of
processes P which may fail by crashing, i.e., permanently stopping execution. A process
is correct if it never crashes, and faulty otherwise. Processes are connected by reliable
FIFO channels: messages are delivered in FIFO order, and messages between non-faulty
processes are guaranteed to be eventually delivered. The system moves through a sequence
of configurations. A configuration C is a triple ⟨e, M, pi⟩ that consists of an epoch e ∈ N
identifying the configuration, a finite set of processes M ⊆ P that belong to the configuration,
and a distinguished leader process pi ∈M . We denote the set of configurations by Config.
In contrast to static systems, we do not impose a fixed global bound on the number of faulty
processes, but formulate our availability assumptions relative to specific configurations (§3).

Reconfiguration is the process of changing the system configuration. We assume that
configurations are stored in an external configuration service (CS), which is reliable and
wait-free. The configuration service provides three atomic operations. An operation
compare_and_swap(e, ⟨e′, M, pl⟩) succeeds iff the epoch of the last stored configuration is
e; in this case it stores the provided configuration with a higher epoch e′ > e. Operations
get_last_epoch() and get_members(e) respectively return the last epoch and the members
associated with a given epoch e.

In practice, a configuration service can be implemented under partial synchrony using
Paxos-like replication over 2f + 1 processes out of which at most f can fail [22] (as is done
in systems such as Zookeeper [17]). Our protocols use the service as a black box, and as a
result, do not require any further environment assumptions about timeliness [12] or failure
detection [7].

3 Specification

In this section we introduce reconfigurable atomic broadcast, a variant of atomic broadcast [10]
that allows reconfiguration. The broadcast service allows a process to send an application
message m from a set Msg using a call broadcast(m). Messages are delivered using a

DISC 2024



10:4 Vertical Atomic Broadcast and Passive Replication

notification deliver(m). Any process may initiate system reconfiguration using a call
reconfigure(). If successful, this returns the new configuration C arising as a result;
otherwise it returns ⊥. Each process participating in the new configuration then gets a
notification conf_changed(C), informing it about C. In practice, reconfigure would take
as a parameter a description of the desired reconfiguration. For simplicity we abstract from
this in our specification, which states broadcast correctness for any results of reconfigurations.

We record the interactions between the broadcast and its users via histories h – sequences
of actions a of one of the following forms:

broadcasti(m), deliveri(m), conf_changedi(C),
reconfig_reqi, reconfig_respi(C), introductioni(C),

where pi ∈ P , m ∈ Msg and C ∈ Config. Each action is parameterized by a process pi where
it occurs (omitted when irrelevant). The first three actions respectively record invocations of
broadcast, deliver and conf_changed. The next pair of actions record calls to and returns
from the reconfigure function. Finally, the introduction action records the moment when
this function stores the new configuration in the configuration service.

For a history h we let hk be the k-th action in h, and we write a ∈ h if a occurs in
h. We also write _ for an irrelevant value. We only consider histories where calls to and
returns from reconfigure match, and a process may perform at most one introduction
action during the execution of reconfigure. For simplicity we assume that all application
messages broadcast in a single execution are unique:

∀m, k, l. hk = broadcast(m) ∧ hl = broadcast(m) =⇒ k = l.

For a history h, a partial function epochOf : N ⇀ N returns the epoch of the action in h with
a given index. This is the epoch of the latest preceding conf_changed at the same process:

epochOf(k) = e ⇐⇒ (∃i, l, a. hk = ai ∧ hl = conf_changedi(⟨e, _, _⟩) ∧ l < k ∧
∀l′. l < l′ < k =⇒ hl′ ̸= conf_changedi(⟨_, _, _⟩)).

When epochOf(k) = e, we say that the action hk occurs in e.
Reconfigurable atomic broadcast is defined by the properties over histories h listed in

Figure 1. Properties 1 and 2 are self-explanatory. Property 3 ensures that processes cannot
deliver messages in contradictory orders. Property 4 disallows executions where sequences of
messages delivered at different processes diverge.

The liveness requirements of reconfigurable atomic broadcast are given by Property 5.
Property 5a asserts a termination guarantee for reconfiguration requests. As shown by
Spiegelman and Keidar [36], wait-free termination is impossible to support even for reconfig-
urable read/write registers, which are weaker than atomic broadcast. Hence, the guarantee
given by Property 5a is similar to obstruction-freedom [15]. Let us say that a configuration
C is activated when all its members get conf_changed(C) notifications. Property 5a asserts
that, in a run with finitely many reconfigurations, the last reconfiguration request invoked
by a correct process and executing in isolation must eventually succeed to introduce a config-
uration C, which must then become activated if all its members are correct. Properties 5b-c
state liveness guarantees for the configuration C similar to those of the classical atomic
broadcast. Property 5b asserts that any message broadcast by a (correct) member of C

eventually gets delivered to all members of C. Property 5c additionally ensures that the
members of C eventually deliver all messages delivered by any process in any configuration.

As in prior work [1, 3, 37], the liveness of our protocols is premised on the following
assumption, which limits the power of the environment to crash configuration members.



M. Bravo, G. Chockler, A. Gotsman, A. Naser-Pastoriza, and C. Roldán 10:5

1. Basic Configuration Change Properties.
a. Any epoch e is associated with unique membership and leader:

∀e, i, j, M1, M2. conf_changed(⟨e, M1, pi⟩) ∈ h ∧ conf_changed(⟨e, M2, pj⟩) ∈ h =⇒
pi = pj ∧ M1 = M2

b. If a process pi joins a configuration C = ⟨_, M, _⟩, then pi is a member of M :

∀i, M. conf_changedi(_, M, _) ∈ h =⇒ pi ∈M

c. Processes join configurations with monotonically increasing epochs:

∀e1, e2, i, k, l. hk = conf_changedi(e1, _, _) ∧ hl = conf_changedi(e2, _, _) ∧ k < l =⇒
e1 < e2

d. Any configuration a process joins is introduced; a configuration is introduced at most once:

∀C. (conf_changed(C) ∈ h =⇒ introduction(C) ∈ h) ∧
(∀k, l. hk = introduction(C) ∧ hl = introduction(C) =⇒ k = l)

2. Integrity. A process delivers a given application message m at most once, and only if m was
previously broadcast:

∀m, i, k, l. hk = deliveri(m) ∧ hl = deliveri(m) =⇒
k = l ∧ ∃j. hj = broadcast(m) ∧ j < k

3. Total Order. If some process delivers m1 before m2, then any process that delivers m2 must
also deliver m1 before this:

∀m1, m2, i, j, k, l, l′. hk = deliveri(m1) ∧ hl = deliveri(m2) ∧ k < l ∧
hl′ = deliverj(m2) =⇒ ∃k′. hk′ = deliverj(m1) ∧ k′ < l′

4. Agreement. If pi delivers m1 and pj delivers m2, then either pi delivers m2 or pj delivers m1:

∀m1, m2, i, j. deliveri(m1) ∈ h ∧ deliverj(m2) ∈ h =⇒
(deliveri(m2) ∈ h ∨ deliverj(m1) ∈ h)

5. Liveness. Consider an execution with finitely many reconfiguration requests (reconfig_req),
and let r be the last reconfiguration request to be invoked. Suppose that r is invoked by a correct
process and no other reconfiguration call takes steps after r is invoked. Then r terminates, having
introduced a configuration C = ⟨e, M, pi⟩: reconfig_resp(C). Furthermore, if all processes in
M are correct, then:
a. all processes in M deliver conf_changed(C);
b. if pi ∈M broadcasts m while in e, then all processes in M eventually deliver m;
c. if a process delivers m, then all processes in M eventually deliver m.

Figure 1 Properties of reconfigurable atomic broadcast over a history h.

▶ Assumption 1 (Availability). Let C = ⟨e, M, _⟩ be an introduced configuration, i.e., such
that introduction(C) ∈ h. Then at least one member of M does not crash before another
configuration C ′ = ⟨e′, _, _⟩ with e′ > e is activated.

Our protocols use the period of time when some member of M is guaranteed not to crash to
copy its state to the members of a new configuration.

Finally, we note that in the case of a single static configuration, our specification in
Figure 1 corresponds to the classical notion of atomic broadcast [10].

DISC 2024



10:6 Vertical Atomic Broadcast and Passive Replication

1 epoch← 0 ∈ Z
2 new_epoch← 0 ∈ Z
3 next← 0 ∈ Z
4 init_len← −1 ∈ Z
5 last_delivered← −1 ∈ Z
6 members ∈ 2P

7 leader ∈ P
8 msg[ ] ∈ N→ Msg ∪ {⊥}
9 status ∈ {leader, follower, fresh}

10 function broadcast(m):
11 send FORWARD(m) to leader

12 when received FORWARD(m) from pj

13 // function broadcast(m):
14 pre: pi = leader
15 msg[next]← m

16 send ACCEPT(epoch, next, m)
to members \ {pi}

17 next← next + 1

18 when received ACCEPT(e, k, m) from pj

19 pre: status = follower ∧ epoch = e

20 msg[k]← m

21 send ACCEPT_ACK(e, k) to pj

22 when received ACCEPT_ACK(e, k)
from all members \ {pi}

23 pre: status = leader ∧ epoch = e

24 send COMMIT(e, k) to members

25 when received COMMIT(e, k)
26 pre: status ∈ {leader, follower} ∧

epoch = e ∧ k = last_delivered + 1
27 last_delivered← k

28 deliver(msg[k])

Figure 2 Vertical Atomic Broadcast at a process pi: normal operation.

4 The Vertical Atomic Broadcast Protocol

In Figures 2 and 3 we present a protocol implementing the specification of §3, which we
call Vertical Atomic Broadcast (VAB) by analogy with Vertical Paxos [23]. For now the
reader should ignore the code in blue. At any given time, a process executing the protocol
participates in a single configuration, whose epoch is stored in a variable epoch. The
membership of the configuration is stored in a variable members. Every member of a given
configuration is either the leader or a follower. A status variable at a process records whether
it is a leader, a follower, or is in a special fresh state used for new processes. A leader
variable stores the leader of the current configuration. We assume that the system starts in
an initial active configuration with epoch 0.

Normal operation. When a process receives a call broadcast(m), it forwards m to the
leader of its current configuration (line 10). Upon receiving m (line 12), the leader adds it to
an array msg; a next variable points to the first free slot in the array (initially 0). The leader
then sends m to the followers in an ACCEPT(e, k, m) message, which carries the leader’s epoch
e, the position k of m in the msg array, and the message m itself.

A process acts on the ACCEPT message (line 19) only if it participates in the corresponding
epoch. It stores m in its local copy of the msg array and sends an ACCEPT_ACK(e, k) message
to the leader of e. The application message at position k is committed if the leader of e receives
ACCEPT_ACK messages for epoch e and position k from all followers of its configuration (line
22). In this case the leader notifies all the members of its configuration that the application
message can be safely delivered via a COMMIT message. A process delivers application messages
in the order in which they appear in its msg array, with last_delivered storing the last delivered
position (line 25).

Reconfiguration: probing. Any process can initiate a reconfiguration, e.g., to add new
processes or to replace failed ones. Reconfiguration aims to preserve the following invariant,
key to proving the protocol correctness.



M. Bravo, G. Chockler, A. Gotsman, A. Naser-Pastoriza, and C. Roldán 10:7

29 function reconfigure():
30 var e, M, enew, Mnew

31 e← get_last_epoch() at CS
32 enew ← e + 1
33 repeat
34 if e ≥ 0 then
35 M ← get_members(e) at CS
36 send PROBE(enew, e) to M

37 wait until received
PROBE_ACK(_, enew)
from a process in M

38 e← e− 1

39 until received PROBE_ACK(true, enew)
from some pj

40 Mnew ← compute_membership()
41 if compare_and_swap(enew−1, ⟨enew, Mnew, pj⟩)

at CS /* introduction(⟨enew, Mnew, pj⟩) */
then

42 send NEW_CONFIG(enew, Mnew) to pj

43 return ⟨enew, Mnew, pj⟩
44 else
45 return ⊥

46 when received PROBE(enew, e) from pj

47 pre: enew ≥ new_epoch
48 new_epoch← enew

49 if epoch ≥ e then
50 send PROBE_ACK(true, enew) to pj

51 else
52 send PROBE_ACK(false, enew) to pj

53 when received NEW_CONFIG(e, M)
from pj

54 pre: new_epoch = e

55 status← leader
56 epoch← e

57 members←M

58 leader← pi

59 next← max{k | msg[k] ̸= ⊥}+ 1
60 init_len← next− 1
61 conf_changed(e, M, pi)
62 // conf_changed(e, M, pi,

msg[last_delivered+1..init_len])
63 send NEW_STATE(e, msg, M)

to members \ {pi}

64 when received NEW_STATE(e, msg, M)
from pj

65 pre: new_epoch ≤ e

66 status← follower
67 epoch← e

68 new_epoch← e

69 msg← msg
70 leader← pj

71 conf_changed(e, M, pj)
72 // conf_changed(e, M, pj ,⊥)
73 send NEW_STATE_ACK(e) to pj

74 when received NEW_STATE_ACK(e)
from all members \ {pi}

75 pre: new_epoch = epoch = e

76 for k = 1..init_len do
send COMMIT(e, k) to members

Figure 3 Vertical Atomic Broadcast at a process pi: reconfiguration.

▶ Invariant 1. Assume that the leader of an epoch e sends COMMIT(e, k) while having msg[k] =
m. Whenever any process pi has epoch = e′ > e, it also has msg[k] = m.

The invariant ensures that any application message committed in an epoch e will persist at
the same position in all future epochs e′. This is used to establish that the protocol delivers
application messages in the same order at all processes.

To ensure Invariant 1, a process performing a reconfiguration first probes the previous
configurations to find a process whose state contains all messages that could have been
committed in previous epochs, which will serve as the new leader. The new leader then
transfers its state to the followers of the new configuration. We say that a process is initialized
at an epoch e when it completes the state transfer from the leader of e; it is at this moment
that the process assigns e to its epoch variable, used to guard the transitions at lines 18, 22,
25. Our protocol guarantees that a configuration with epoch e can become activated only
after all its members have been initialized at e. Probing is complicated by the fact that
there may be a series of failed reconfiguration attempts, where the new leader fails before
initializing all its followers. For this reason, probing may require traversing epochs from the
current one down, skipping epochs that have not been activated.

In more detail, a process pr initiates a reconfiguration by calling reconfigure (line 29).
The process picks an epoch number enew higher than the current epoch stored in the
configuration service and then starts the probing phase. The process pr keeps track of the

DISC 2024



10:8 Vertical Atomic Broadcast and Passive Replication

epoch being probed in e and the membership of this epoch in M . The process initializes these
variables when it obtains the information about the current epoch from the configuration
service. To probe an epoch e, the process sends a PROBE(enew, e) message to the members of its
configuration, asking them to join the new epoch enew (line 36). Upon receiving this message
(line 46), a process first checks that the proposed epoch enew is ≥ the highest epoch it has
ever been asked to join, which is stored in new_epoch (we always have epoch ≤ new_epoch).
In this case, the process sets new_epoch to enew. Then, if the process was initialized at an
epoch ≥ the epoch e being probed, it replies with PROBE_ACK(true, enew); otherwise, it
replies with PROBE_ACK(false, enew).

If pr receives at least one PROBE_ACK(false, enew) from a member of e (line 37), pr can
conclude that e has not been activated, since one of its processes was not initialized by the
leader of this epoch. The process pr can also be sure that e will never become activated,
since it has switched at least one of its members to the new epoch. In this case, pr starts
probing the preceding epoch e− 1. Since no application message could have been committed
in e, picking a new leader from an earlier epoch will not lose any committed messages and
thus will not violate Invariant 1. If pr receives some PROBE_ACK(true, enew) messages, then
it ends probing: any process pj that replied in this way can be selected as the new leader (in
particular, pr is free to maintain the old leader if this is one of the processes that replied).

Reconfiguration: initialization. Once the probing finds a new leader pj (line 39), the process
pr computes the membership of the new configuration using a function compute_membership
(line 40). We do not prescribe any particular implementation for this function, except that the
new membership must contain the new leader pj . In practice, the function would take into
account the desired changes to be made by the reconfiguration. Once the new configuration
is computed, pr attempts to store it in the configuration service using a compare_and_swap
operation. This succeeds if and only if the current epoch in the configuration service is still
the epoch from which pr started probing, which implies that no concurrent reconfiguration
occurred during probing. In this case pr sends a NEW_CONFIG message with the new config-
uration to the new leader and returns the new configuration to the caller of reconfigure;
otherwise, it returns ⊥. A successful compare_and_swap also generates an introductionr

action for the new configuration, which is used in the broadcast specification (§3).

When the new leader receives the NEW_CONFIG message (line 53), it sets status to leader,
epoch to the new epoch, and stores the information about the new configuration in members
and leader. The leader also sets next to the first free slot in the msg array and saves its
initial length in a variable init_len. The leader then invokes conf_changed for the new
configuration. In order to finish the reconfiguration, the leader needs to transfer its state to
the other members of the configuration. To this end, the leader sends a NEW_STATE message
to them, which contains the new epoch and a copy of its msg array (line 63; a practical
implementation would optimize this by sending to each process only the state it is missing).
Upon receiving a NEW_STATE message (line 64), a process overwrites its msg array with the
one provided by the leader, sets its status to follower, epoch to the new epoch, and leader
to the new leader. The process also invokes conf_changed for the new configuration. It
then acknowledges its initialization to the leader with an NEW_STATE_ACK message. Upon
receiving NEW_STATE_ACK messages from all followers (line 74), the new leader sends COMMITs
for all application messages from the previous epoch, delimited by init_len. These messages
can be safely delivered, since they are now stored by all members of epoch e.



M. Bravo, G. Chockler, A. Gotsman, A. Naser-Pastoriza, and C. Roldán 10:9

pr

p1

p2

p3

p4

p5

probe the current
configuration

compute
membership

probe the current
configuration

notify the
new leader
and move
to 2

initially: ⟨1, {p1, p2, p3}, p3⟩

Configuration
service

PROBE(2
, 1)

PR
OB

E_
AC

K(
T,

2) NEW_CONFIG
PROBE(3

, 2) probe the preceding
configuration

PROBE(3, 1)

PR
OB

E_
AC

K(
F,

3)

PROBE_ACK(T, 3)
compute
membership

notify the
new leader
and move
to 3

transfer
state and
move to 3

deliver
messages

NEW_CONFIG

NEW_STATE

store(⟨2, {p1, p2, p4}, p2⟩) store(⟨3, {p1, p4, p5}, p1⟩)

NE
W_

ST
AT

E_
AC

K

COMMIT(3
, 1)

Figure 4 The behavior of the protocol during reconfiguration.

Example. Figure 4 gives an example illustrating the message flow of reconfiguration. Assume
that the initial configuration 1 consists of processes p1, p2 and p3. Following a failure of
p3, a process pr initiates reconfiguration to move the system to a new configuration 2. To
this end, pr sends PROBE(2, 1) to the members of configuration 1. Both processes p1 and p2
respond to pr with PROBE_ACK(true, 2). The process pr computes the membership of the
new configuration, replacing p3 by a fresh process p4, and stores the new configuration in the
configuration service, with p2 as the new leader. Next, pr sends a NEW_CONFIG message to p2.

Assume that after receiving this message p2 fails, prompting pr to initiate yet another
reconfiguration to move the system to a configuration 3. To this end, pr sends PROBE(3, 2)
to the members of configuration 2, and p4 responds with PROBE_ACK(false, 3). The process
pr concludes that epoch 2 has not been activated and starts probing the preceding epoch
1: it sends PROBE(3, 1) and gets a reply PROBE_ACK(true, 3) from p1, which is selected as
the new leader. The process pr computes the new set of members, replacing p3 by a fresh
process p5, stores the new configuration in the configuration service, and sends a NEW_CONFIG
message to the new leader p1. This process invokes the conf_changed upcall for the new
configuration and sends its state to the followers in a NEW_STATE message. The followers store
the state, invoke conf_changed upcalls and reply with NEW_STATE_ACKs. Upon receiving
these, p1 sends COMMITs for all application messages in its state.

Steady-state latency and reconfiguration downtime. A configuration is functional if it
was activated and all its members are correct. A configuration is stable if it is functional and
no configuration with a higher epoch is introduced. The steady-state latency is the maximum
number of message delays it takes from the moment the leader pi of a stable configuration
receives a broadcast request for a message m and until m is delivered by pi. It is easy to see
that our protocol has the steady-state latency of 2 (assuming self-addressed messages are
received instantaneously), which is optimal [22].

The system may be reconfigured not only in response to a failure, but also to make
changes to a functional configuration: e.g., to move replicas from highly loaded machines to
lightly loaded ones, or to change the number of machines replicating the service [26,29,39]. As
modern online services have stringent availability requirements, it is important to minimize
the period of time when a service is unavailable due to an ongoing reconfiguration. More
precisely, suppose the system is being reconfigured from a functional configuration C to a

DISC 2024



10:10 Vertical Atomic Broadcast and Passive Replication

stable configuration C ′. The reconfiguration downtime is the maximum number of message
delays it takes from the moment C is disabled and until the leader of C ′ is ready to broadcast
application messages in the new configuration.

As we argue in §7, existing vertical solutions for atomic broadcast stop the system as
the first step of reconfiguration [3], resulting in the reconfiguration downtime of at least 4 (2
message delays to disable the latest functional configuration plus at least 2 message delays
to reach consensus on the next configuration and propagate the decision). In contrast, our
protocol achieves the downtime of 0 by keeping the latest functional configuration active
while the probing of past configurations and agreement on a new one is in progress.

▶ Theorem 1. The VAB protocol reconfigures a functional configuration with 0 downtime.

Proof. Suppose that the current configuration C with an epoch e is functional. Note that the
normal path of our protocol is guarded by preconditions epoch = e, so that C can broadcast
and deliver application messages as long as this holds at all its members (lines 19, 23 and
26). Assume now that a process pr starts reconfiguring the system to a new configuration C ′

with epoch e + 1. The process pr will send PROBE messages to the members of C and, since
C is functional, pr will only get replies PROBE_ACK(true, e + 1). Handling a PROBE message
only modifies the new_epoch variable, not epoch. Therefore, C can continue processing
broadcasts while pr is probing its members, storing C ′ in the configuration service, and
sending NEW_CONFIG(e + 1, _) to the leader pi of C ′. When the new leader pi handles
NEW_CONFIG(e + 1, _), it will set epoch = e + 1, disabling the old configuration. However, the
leader will at once be ready to broadcast messages in the new configuration, as required. ◀

Correctness. Our protocol achieves the above 0-downtime guarantee without violating
correctness. Informally, this is because it always chooses the leader of the new configuration
from among the members of the latest activated configuration, and a message can only be
delivered in this configuration after having been replicated to all its members. Hence, the
new leader will immediately know about all previously delivered messages, including those
delivered during preliminary reconfiguration steps. The following theorem (proved in [4, §A])
states the correctness of our protocol.

▶ Theorem 2. The VAB protocol correctly implements reconfigurable atomic broadcast as
defined in Figure 1.

5 Passive Replication

The protocol presented in the previous section can be used to build reconfigurable fault-
tolerant services via active (aka state-machine) replication [33]. Here a service is defined by a
deterministic state machine and is executed on several replicas, each maintaining a copy of the
machine. All replicas execute all client commands, which they receive via atomic broadcast.
Together with the state machine’s determinism, this ensures that each command yields the
same result at all replicas, thus maintaining an illusion of a centralized fault-tolerant service.

In the rest of the paper, we focus on an alternative approach of building reconfigurable
fault-tolerant services via passive (aka primary-backup) replication [6]. Here commands are
only executed by the leader, which propagates the state changes induced by the commands
to the other replicas. This allows replicating services with non-deterministic operations, e.g.,
those depending on timeouts or interrupts.

Formally, we consider services with a set of states S that accept a set of commands C. A
command c ∈ C can be executed using a call execute(c), which produces its return value.
Command execution may be non-deterministic. To deal with this, the effect of executing a



M. Bravo, G. Chockler, A. Gotsman, A. Naser-Pastoriza, and C. Roldán 10:11

command c on a state Σ ∈ S is defined by transition relation Σ c→ ⟨r, δ⟩, which produces a
possible return value r of c and a state update δ performed by the command. The latter can
be applied to any state Σ′ using a function apply(Σ′, δ), which produces a new state. For
example, a command if x = 0 then y← 1 else y← 0 produces a state update y← 1 when
executed in a state with x = 0. A command assigning x to a random number may produce an
update x← 42 if the random generator returned 42 when the leader executed the command.

We would like to implement a service over a set of fault-prone replicas that is lineariz-
able [16] with respect to a service that atomically executes commands on a single non-failing
copy of the state machine. The latter applies each state update to the machine state Σ
immediately after generating it, as shown in Figure 5. Informally, this means that commands
appear to clients as if produced by a single copy of the state machine in Figure 5 in an order
consistent with the real-time order, i.e., the order of non-overlapping command invocations.

5.1 Passive Replication vs Atomic Broadcast

As observed in [3,17,19], implementing passive replication requires propagating updates from
the leader to the followers using a stronger primitive than atomic broadcast. To illustrate
why, Figure 6 gives an incorrect attempt to simulate the specification in Figure 5 using our
reconfigurable atomic broadcast (ignore the code in blue for now). This attempt serves as a
strawman for a correct solution we present later. Each process keeps track of the epoch it
belongs to in cur_epoch and the leader of this epoch in cur_leader. To execute a command
(line 5), a process sends the command, tagged by a unique identifier, to the leader. It then
waits until it hears back about the result.

A process keeps two copies of the service state – a committed state Σ and a speculative
state Θ; the latter is only used when the process is the leader. When the leader receives a
command c (line 10), it executes c on its speculative state Θ, producing a return value r

and a state update δ. The leader immediately applies δ to Θ and distributes the triple of
the command identifier, its return value and the state update via atomic broadcast. When
a process (including the leader) delivers such a triple (line 15), it applies the update to its
committed state Σ and sends the return value to the process the command originated at,
determined from the command identifier. When a process receives a conf_changed upcall
(line 18), it stores the information received in cur_epoch and cur_leader. If the process is the
leader of the new epoch, it also initializes its speculative state Θ to the committed state Σ.

In passive replication, a state update is incremental with respect to the state it was
generated in. Thus, to simulate the specification in Figure 5, it is crucial that the committed
state Σ at a process delivering a state update (line 16) be the same as the speculative state
Θ from which this state update was originally derived (line 12). This is captured by the
following invariant. Let Σi(k) denote the value of Σ at process pi before the k-th action in
the history (and similarly for Θ).

▶ Invariant 2. Let h be a history of the algorithm in Figure 6. If hk = deliveri(m), then
there exist j and l < k such that hl = broadcastj(m) and Σi(k) = Θj(l).

Unfortunately, if we use atomic broadcast to disseminate state updates in Figure 6, we
may violate Invariant 2. We next present two examples showing how this happens and how
this leads to violating linearizability. The examples consider a replicated counter x with two
commands – an increment (x← x + 1) and a read (return x). Initially x = 0, and then two
clients execute two increments.

DISC 2024



10:12 Vertical Atomic Broadcast and Passive Replication

1 Σ← Σ0 ∈ S
2 function execute(c):
3 Σ c→ ⟨r, δ⟩
4 Σ← apply(Σ, δ)
5 return r

Figure 5 Passive replication specification.

1 cur_epoch ∈ N
2 cur_leader ∈ P
3 Σ← Σ0 ∈ S // committed state
4 Θ← Θ0 ∈ S // speculative state
5 function execute(c):
6 id ← get_unique_id()
7 send EXECUTE(id, c) to cur_leader
8 wait until receive RESULT(id, r)
9 return r

10 when received EXECUTE(id, c)
11 pre: cur_leader = pi

12 Θ c→ ⟨r, δ⟩
13 Θ← apply(Θ, δ)
14 broadcast(⟨id, r, δ⟩)

15 upon deliver(⟨id, r, δ⟩)
16 Σ← apply(Σ, δ)
17 send RESULT(id, r) to origin(id)

18 upon conf_changed(⟨e, M, pj⟩)
19 // conf_changed(⟨e, M, pj⟩, σ)
20 cur_epoch← e

21 cur_leader← pj

22 if pi = pj then
23 Θ← Σ
24 // ⟨_, _, δ1⟩ . . . ⟨_, _, δk⟩ ← σ

25 // forall l = 1..k do Θ← apply(Θ, δl)

Figure 6 Passive replication on top of broadcast: code at process pi.

Example 1. The two increments are executed by the same leader. The first one generates an
update δ1 = (x← 1) and a speculative state Θ = 1. Then the second generates δ2 = (x← 2).
Atomic broadcast allows processes to deliver the updates in the reverse order, with δ1 applied
to a committed state Σ = 2. This violates Invariant 2. Assume now that after the increments
complete we change the configuration to move the leader to a different process. This process
will initialize its speculative state Θ to the committed state Σ = 1. If the new leader now
receives a read command, it will return 1, violating the linearizability with respect to Figure 5.

Example 2. The first increment is executed by the leader of an epoch e, which generates
δ1 = (x← 1). The second increment is executed by the leader of an epoch e′ > e before it
delivers δ1 and, thus, in a speculative state Θ = 0. This generates δ2 = (x ← 1). Finally,
the leader of e′ delivers δ1 and then δ2, with the latter applied to a committed state Σ = 1.
This is allowed by atomic broadcast yet violates Invariant 2. It also violates linearizability
similarly to Example 1: if now the leader of e′ receives a read, it will incorrectly return 1.

5.2 Primary-Order Atomic Broadcast
To address the above problem, Junqueira et al. proposed primary-order atomic broadcast
(POabcast) [18, 19], which strengthens the classical atomic broadcast. We now briefly review
POabcast and highlight its drawbacks, which motivates an alternative proposal we present
in the next section. In our framework we can define POabcast by adding the properties over
histories h in Figure 7 to those of Figure 1. This yields a reconfigurable variant of POabcast
that we call reconfigurable primary-order atomic broadcast (RPOabcast). RPOabcast also
modifies the interface of reconfigurable atomic broadcast (§3) by only allowing a process to
call broadcast if it is the leader of its current configuration.



M. Bravo, G. Chockler, A. Gotsman, A. Naser-Pastoriza, and C. Roldán 10:13

Property 6 (Local Order) restricts the delivery order of messages broadcast in the same
epoch: they must be delivered in the order the leader broadcast them. Property 7 (Global
Order) restricts the delivery order of messages broadcast in different epochs: they must be
delivered in the order of the epochs they were broadcast in. Finally, Property 8 (Primary
Integrity) ensures that the leader of an epoch e′ does not miss relevant messages from previous
epochs: each message broadcast in an epoch e < e′ either has to be delivered by the leader
before entering e′, or can never be delivered at all. Local and Global Order trivially imply
Property 3 (Total Order), so we could omit it from the specification. POabcast is stronger
than plain atomic broadcast: the latter can be implemented from the former if each process
forwards messages to be broadcast to the leader of its configuration.

▶ Proposition 3. Reconfigurable atomic broadcast can be implemented from RPOabcast.

When the passive replication protocol in Figure 6 is used with POabcast instead of
plain atomic broadcast, Invariant 2 holds, and the protocol yields a service linearizable with
respect to the specification in Figure 5 [19]. In particular, Local Order disallows Example 1
from §5.1, and Primary Integrity disallows Example 2 (which does not violate either Local
or Global Order). POabcast can be obtained from our Vertical Atomic Broadcast (VAB)
algorithm in §4 as follows. First, VAB already guarantees both Local and Global Order: e.g.,
this is the case for Local Order because processes are connected by reliable FIFO channels.

▶ Theorem 4. VAB guarantees Local and Global order.

Second, to ensure Primary Integrity, neither the new leader nor the followers invoke
conf_changed upon receiving NEW_CONFIG (line 61) or NEW_STATE (line 71). Instead, the
leader first waits until it receives NEW_STATE_ACK messages from all followers (line 74) and tells
the processes to deliver all application messages from the previous epoch via COMMIT messages.
Only once a process delivers all these application messages does it invoke conf_changed for
the new configuration (and if the process is the leader, starts broadcasting).

Deferring the invocation of conf_changed at the leader is the key to guarantee Primary
Integrity. On the one hand, it ensures that, before the newly elected leader of an epoch
e′ generates conf_changed, it has delivered all application messages that could have been
delivered in previous epochs: Invariant 1 from §4 guarantees that the leader’s initial log
includes all such messages. On the other hand, the leader can also be sure that any message
broadcast in an epoch < e′ but not yet delivered can never be delivered by any process.
This is because, by the time the leader generates conf_changed, all followers in e′ have
overwritten their log with that of the new leader.

Since deferring conf_changed results in deferring the start of broadcasting by the leader,
the modified VAB protocol has a reconfiguration downtime of 2 messages delays. This cost
is inherent: the lower bound of Friedman and van Renesse [13] on the latency of Strong
Virtually Synchronous broadcast (a variant of POabcast) implies that any solution must
have a non-zero downtime. In the next section we circumvent this limitation by introducing
a weaker variant of POabcast, which we show sufficient for passive replication.

6 Speculative Primary-Order Atomic Broadcast

We now introduce speculative primary-order atomic broadcast (SPOabcast), a weaker variant
of POabcast that allows implementing passive replication with minimal downtime. During
reconfiguration, SPOabcast allows the new leader to deliver messages from previous epochs
speculatively – without waiting for them to become durable – and start broadcast right away.

DISC 2024



10:14 Vertical Atomic Broadcast and Passive Replication

6. Local Order. If the leader of some epoch e receives broadcast(m1) before receiving
broadcast(m2), then any process that delivers m2 must also deliver m1 before m2:

∀m1, m2, i, j, k, l, l′. hk = broadcasti(m1) ∧ hl = broadcasti(m2) ∧ k < l ∧
epochOf(k) = epochOf(l) ∧ hl′ = deliverj(m2) =⇒ ∃k′. hk′ = deliverj(m1) ∧ k′ < l′

7. Global Order. Assume the leaders of e and e′ > e receive broadcast(m1) and broadcast(m2)
respectively. If a process pi delivers m1 and m2, then it must deliver m1 before m2:

∀m1, m2, i, k, k′, l, l′. hk = broadcast(m1) ∧ hl = broadcast(m2) ∧
epochOf(k) < epochOf(l) ∧ hk′ = deliveri(m1) ∧ hl′ = deliveri(m2) =⇒ k′ < l′

8. Primary Integrity. Assume some process delivers an application message m originally broadcast
in an epoch e. If any process pi joins an epoch e′ > e, then pi must deliver m before joining e′:

∀m, i, k, l, l′, e, e′. hk = broadcast(m) ∧ epochOf(k) = e ∧ hl = deliver(m) ∧
hl′ = conf_changedi(⟨e

′, _, _⟩) ∧ e < e′ =⇒ ∃k′. hk′ = deliveri(m) ∧ k′ < l′

Figure 7 Properties of reconfigurable primary-order atomic broadcast over a history h.

9. Basic Speculative Delivery Properties. A process pi can speculatively deliver a given
application message m at most once in a given epoch and only if pi is the leader of the epoch, m

has previously been broadcast, and m has not yet been delivered by pi:

∀i, j, k, σ. hk = conf_changedi(⟨_, _, pj⟩, σ) =⇒ (σ ̸=⊥ =⇒ pi = pj) ∧ (∀m1, m2 ∈ σ. m1 ̸= m2)
∧ (∀m ∈ σ. (∃l. hl = broadcast(m) ∧ l < k) ∧ (¬∃l. hl = deliveri(m) ∧ l < k))

10. Prefix Consistency.
a. Consider m1 and m2 broadcast in different epochs. Assume that a process pi delivers m2,

and a process pj broadcasts m2 in an epoch e′. Then pi delivers m1 before m2 iff pj delivers
m1 before joining e′ or speculatively delivers m1 when joining e′:

∀m1, m2, i, j, k0, l0, k, l, l′, σ, e′. hk0 = broadcast(m1) ∧ hl0 = broadcast(m2) ∧
epochOf(k0) ̸= epochOf(l0) ∧ hk = deliveri(m2) ∧ hl = broadcastj(m2) ∧
hl′ = conf_changedj(⟨e′, _, pj⟩, σ) ∧ epochOf(l) = e′ =⇒
((∃k′. hk′ = deliveri(m1) ∧ k′ < k) ⇐⇒ ((∃l′′. hl′′ = deliverj(m1) ∧ l′′ < l′) ∨ m1 ∈ σ)

b. Consider m1 and m2 broadcast in different epochs. Assume that a process pi delivers m2, and
a process pj speculatively delivers m2 when joining an epoch e′. Then pi delivers m1 before
m2 iff pj delivers m1 before joining e′ or speculatively delivers m1 before m2 when joining e′:

∀m1, m2, i, j, k0, l0, k, l, σ, e′. hk0 = broadcast(m1) ∧ hl0 = broadcast(m2) ∧
epochOf(k0) ̸= epochOf(l0) ∧ hk = deliveri(m2) ∧ hl = conf_changedj(⟨e′, _, pj⟩, σ) ∧
m2 ∈ σ =⇒ ((∃k′. hk′ = deliveri(m1) ∧ k′ < k) ⇐⇒
((∃l′. hl′ = deliverj(m1) ∧ l′ < l) ∨ σ = _m1_m2_))

pi pj

deliver m1 (speculatively) deliver m1

deliver m2 broadcast m2

y tim
e pi pj

deliver m1 (speculatively) deliver m1

deliver m2 speculatively deliver m2

(a) (b)

Figure 8 Properties of speculative primary-order atomic broadcast over a history h. Property 10
replaces Property 8 from Figure 7. The tables summarize its action orderings: the actions at the
top happen before the actions at the bottom.



M. Bravo, G. Chockler, A. Gotsman, A. Naser-Pastoriza, and C. Roldán 10:15

SPOabcast specification. SPOabcast modifies the interface of reconfigurable atomic broad-
cast (§3) in two ways. First, like in POabcast, a process can call broadcast only if it is the
leader. Second, the conf_changed upcall for a configuration C carries an additional argument
σ: conf_changed(C, σ). When the upcall is invoked at the leader of C, σ is a sequence of
messages speculatively delivered to the leader (σ is not used at followers). SPOabcast is
defined by replacing Primary Integrity in the definition of POabcast by the properties in
Figure 8. Property 9 is self-explanatory. Property 10 (Prefix Consistency) constrains how
speculative deliveries are ordered with respect to ordinary deliveries and broadcasts. For the
ease of understanding, in Figure 8 we summarize these orderings in tables.

Part (a)/“only if” of Prefix Consistency is a weaker form of Primary Integrity. Assume
that the leader pj of an epoch e′ broadcasts a message m2. The property ensures that for
any message m1 delivered before m2 at some process pi, the leader pj has to either deliver
m1 before joining e′ or speculatively deliver m1 when joining e′. As we demonstrate shortly,
the latter option, absent in Primary Integrity, allows our implementation of SPOabcast to
avoid extra downtime during reconfiguration. Part (a)/“if” conversely ensures that, if the
leader pj speculatively delivers m1 before broadcasting m2, then m1 must always be delivered
before m2. This ensures that the speculation performed by the leader pj is correct if any of
the messages it broadcasts (e.g., m2) are ever delivered at any process. Part (b) of Prefix
Consistency ensures that the order of messages in a sequence speculatively delivered at a
conf_changed upcall cannot contradict the order of ordinary delivery.

Speculative delivery provides weaker guarantees than ordinary delivery, since it does
not imply durability. In particular, we allow a message to be speculatively delivered at a
process p but never delivered anywhere, e.g., because p crashed. However, in this case Part
(a)/“if” of Prefix Consistency ensures that all messages p broadcast after such a non-durable
speculative delivery will also be lost. As we show next, this allows us to use SPOabcast to
correctly implement passive replication without undermining its durability guarantees.

Passive replication using SPOabcast. The passive replication protocol in Figure 6 requires
minimal changes to be used with SPOabcast, highlighted in blue. When the leader of an
epoch e receives a conf_changed upcall for e (line 19), in addition to setting the speculative
state Θ to the committed state Σ, the leader also applies the state updates speculatively
delivered via conf_changed to Θ (lines 24-25). The leader can then immediately use the
resulting speculative state to execute new commands (line 10). We prove the following
in [4, §B].

▶ Theorem 5. The version of the protocol in Figure 6 that uses SPOabcast satisfies Invariant 2
and implements a service linearizable with respect to the specification in Figure 5.

In particular, part (a)/“only if” of Prefix Consistency disallows Example 2 from §5.1: it
ensures that the leader broadcasting δ2 will be aware of δ1, either via ordinary or speculative
delivery. More generally, part (a) ensures that, if a process pi delivers a state update δ2
broadcast by a leader pj , then at the corresponding points in the execution, pi and pj are
aware of the same set of updates (cf. the table in Figure 8). Part (b) of Prefix Consistency
furthermore ensures that the two processes apply these updates in the same order. This
contributes to validating Invariant 2 and, thus, the specification in Figure 5.

Implementing SPOabcast. To implement SPOabcast we modify the Vertical Broadcast
Protocol in Figures 2-3 as follows. First, since broadcast can only be called at the leader,
we replace lines 10-12 by line 13. Thus, the leader handles broadcast calls in the same

DISC 2024



10:16 Vertical Atomic Broadcast and Passive Replication

way it previously handled FORWARD messages. Second, we augment conf_changed upcalls
with speculative deliveries, replacing line 61 by line 62, and line 71 by line 72. Thus, the
conf_changed upcall at the leader speculatively delivers all application messages in its
log that have not yet been (non-speculatively) delivered. It is easy to check that these
modifications do not change the 0-downtime guarantee of Vertical Atomic Broadcast.

▶ Theorem 6. The primary-order version of the Vertical Atomic Broadcast protocol is a
correct implementation of speculative primary-order atomic broadcast.

Thus, Theorems 5 and 6 allow us to use VAB to replicate even non-deterministic services
while minimizing the downtime from routine reconfigurations, e.g., those for load balancing.

We prove Theorem 6 in [4, §C]. Here we informally explain why the above protocol
validates the key part (a)/“only if” of Prefix Consistency, weakening Primary Integrity (cf.
the explanations we gave regarding the latter at the end of §5.2). On the one hand, as in
the ordinary VAB, Invariant 1 from §4 guarantees that the log of a newly elected leader of
an epoch e′ contains all application messages m1 that could have been delivered in epochs
< e′. The new leader will either deliver or speculatively deliver all such messages before
broadcasting anything (line 62). On the other hand, if the leader broadcasts a message m2,
then a follower will only accept it after having overwritten its log with the leader’s initial one,
received in NEW_STATE (line 64). This can be used to show that, if m2 is ever delivered, then
any message broadcast in an epoch < e′ that was not in NEW_STATE will never get delivered.

7 Related Work

The vertical paradigm of implementing reconfigurable services by delegating agreement
on configuration changes to a separate component was first introduced by Lynch and
Shvartsman [27] for emulating dynamic atomic registers. It was further applied by Lamport
et al. [23] to solve reconfigurable single-shot consensus, yielding the Vertical Paxos family of
protocols. Vertical Paxos and its follow-ups [3, 5, 11, 25, 28] require prior configurations to be
disabled (“wedged”) at the start of reconfiguration. In contrast, our VAB protocol allows
the latest functional configuration to continue processing messages while the agreement on
the next configuration is in progress. This results in the downtime of 0 when reconfiguring
from a functional configuration. This feature is particularly desirable for atomic broadcast,
where we want to keep producing new decisions when reconfiguration is triggered for load
balancing rather than to handle failures.

To achieve the minimal downtime, the VAB protocol uses different epoch variables to
guard the normal operation (epoch) and reconfiguration (new_epoch). By not modifying
the epoch variable during the preliminary reconfiguration steps, the protocol allows the old
configuration to operate normally while the reconfiguration is in progress (cf. the proof
of Theorem 1 in §4). In contrast, Vertical Paxos uses a single epoch variable (maxBallot)
for both purposes, thus disabling the current configuration at the start of reconfiguration.
Our protocol for SPOabcast further extends the minimal downtime guarantee to the case of
passive replication.

Both our VAB and SPOabcast protocols achieve an optimal steady-state latency of two
message delays [22]. Although Junqueira et al. [19] show that no POabcast protocol can
guarantee optimal steady-state latency if it relies on black-box consensus to order messages,
our SPOabcast implementation is not subject to this impossibility result, as it does not use
consensus in this manner.

Although the vertical approach has been widely used in practice [2, 8, 11, 32, 38], prior
systems have mainly focused on engineering aspects of directly implementing a replicated
state machine for a desired service rather than basing it on a generic atomic broadcast layer.



M. Bravo, G. Chockler, A. Gotsman, A. Naser-Pastoriza, and C. Roldán 10:17

Our treatment of Vertical Atomic Broadcast develops a formal foundation that sheds light
on the algorithmic core of these systems. This can be reused for designing future solutions
that are provably correct and efficient.

Most reconfiguration algorithms that do not rely on an auxiliary configuration service can
be traced back to the original technique of Paxos [21], which intersperses reconfigurations
within the stream of normal command agreement instances. The examples of practical
systems that follow this approach include SMART [26], Raft [31], and Zookeeper [35].
Other non-vertical algorithms [24] implement reconfiguration by spawning a separate non-
reconfigurable state machine for each newly introduced configuration. In the absence of
an auxiliary configuration service, these protocols require at least 2f + 1 processes in each
configuration [22], in contrast to f + 1 in our atomic broadcast protocols.

The fault-masking protocols of Birman et al. [3] and a recently proposed MongoDB
reconfiguration protocol [34] separate the message log from the configuration state, but
nevertheless replicate them at the same set of processes. As in non-vertical solutions, these
algorithms require 2f +1 replicas. They also follow the Vertical Paxos approach to implement
reconfiguration, and as a result, may wedge the system prematurely as we explain above.

A variant of Primary Integrity, known as Strong Virtual Synchrony (or Sending View
Delivery [9]), was originally proposed by Friedman and van Renesse [13] who also studied its
inherent costs. Our SPOabcast abstraction is a relaxation of Strong Virtually Synchrony and
primary-order atomic broadcast (POabcast) of Junqueira et al. [18,19]. Keidar and Dolev [20]
proposed Consistent Object Replication Layer (COReL) in which every delivered message is
assigned a color such that a message is “yellow” if it was received and acknowledged by a
member of an operational quorum, and “green” if it was acknowledged by all members of
an operational quorum. While the COReL’s yellow messages are similar to our speculative
messages, Keidar and Dolev did not consider their potential applications, in particular, their
utility for minimizing the latency of passive replication.

References
1 Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. Dynamic atomic

storage without consensus. J. ACM, 58(2), 2011. doi:10.1145/1944345.1944348.
2 Mahesh Balakrishnan, Dahlia Malkhi, John D. Davis, Vijayan Prabhakaran, Michael Wei, and

Ted Wobber. CORFU: A distributed shared log. ACM Trans. Comput. Syst., 31(4), 2013.
doi:10.1145/2535930.

3 Kenneth Birman, Dahlia Malkhi, and Robbert van Renesse. Virtually synchronous methodology
for building dynamic reliable services. In Guide to Reliable Distributed Systems - Building
High-Assurance Applications and Cloud-Hosted Services, chapter 22. Springer, 2012.

4 Manuel Bravo, Gregory Chockler, Alexey Gotsman, Alejandro Naser-Pastoriza, and Chris-
tian Roldán. Vertical atomic broadcast and passive replication (extended version). arXiv,
abs/2408.08702, 2024. URL: https://arxiv.org/abs/2408.08702.

5 Manuel Bravo and Alexey Gotsman. Reconfigurable atomic transaction commit. In Symposium
on Principles of Distributed Computing (PODC), 2019.

6 Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. The primary-backup
approach. In Distributed Systems (2nd Ed.). ACM Press/Addison-Wesley, 1993.

7 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2), 1996. doi:10.1145/226643.226647.

8 Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael
Burrows, Tushar Chandra, Andrew Fikes, and Robert Gruber. Bigtable: A distributed storage
system for structured data. In Symposium on Operating Systems Design and Implementation
(OSDI), 2006.

DISC 2024

https://doi.org/10.1145/1944345.1944348
https://doi.org/10.1145/2535930
https://arxiv.org/abs/2408.08702
https://doi.org/10.1145/226643.226647


10:18 Vertical Atomic Broadcast and Passive Replication

9 Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications:
A comprehensive study. ACM Comput. Surv., 33(4), 2001. doi:10.1145/503112.503113.

10 Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4), 2004. doi:10.1145/1041680.
1041682.

11 Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzelmann,
Alex Shamis, Anirudh Badam, and Miguel Castro. No compromises: Distributed transactions
with consistency, availability, and performance. In Symposium on Operating Systems Principles
(SOSP), 2015.

12 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2), 1988. doi:10.1145/42282.42283.

13 Roy Friedman and Robbert van Renesse. Strong and weak virtual synchrony in Horus. In
Symposium on Reliable Distributed Systems (SRDS), 1996.

14 Jason Gustafson. Hardening Kafka replication. Talk at Kafka Summit San Francisco, 2018.
URL: https://www.confluent.io/kafka-summit-sf18/hardening-kafka-replication/.

15 Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization: Double-
ended queues as an example. In International Conference on Distributed Computing Systems
(ICDCS), 2003.

16 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3), 1990. doi:10.1145/78969.78972.

17 Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX Annual Technical Conference
(USENIX ATC), 2010.

18 Flavio Paiva Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-performance
broadcast for primary-backup systems. In Conference on Dependable Systems and Networks
(DSN), 2011.

19 Flavio Paiva Junqueira and Marco Serafini. On barriers and the gap between active and
passive replication. In Symposium on Distributed Computing (DISC), 2013.

20 Idit Keidar and Danny Dolev. Efficient message ordering in dynamic networks. In Symposium
on Principles of Distributed Computing (PODC), 1996.

21 Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2), 1998. doi:
10.1145/279227.279229.

22 Leslie Lamport. Lower bounds for asynchronous consensus. Distributed Computing, 19(2),
2006. doi:10.1007/S00446-006-0155-X.

23 Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical Paxos and primary-backup
replication. In Symposium on Principles of Distributed Computing (PODC), 2009.

24 Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Reconfiguring a state machine. SIGACT
News, 41(1), 2010. doi:10.1145/1753171.1753191.

25 Leslie Lamport and Mike Massa. Cheap Paxos. In Conference on Dependable Systems and
Networks (DSN), 2004.

26 Jacob R. Lorch, Atul Adya, William J. Bolosky, Ronnie Chaiken, John R. Douceur, and Jon
Howell. The SMART way to migrate replicated stateful services. In European Conference on
Computer Systems (EuroSys), 2006.

27 Nancy Lynch and Alex A. Shvartsman. RAMBO: A reconfigurable atomic memory service for
dynamic networks. In Symposium on Distributed Computing (DISC), 2002.

28 John MacCormick, Chandramohan A. Thekkath, Marcus Jager, Kristof Roomp, Lidong Zhou,
and Ryan Peterson. Niobe: A practical replication protocol. ACM Trans. Storage, 3(4), 2008.
doi:10.1145/1326542.1326543.

29 Neha Narkhede, Gwen Shapira, and Todd Palino. Kafka: The Definitive Guide. O’Reilly
Media, 2017.

https://doi.org/10.1145/503112.503113
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1145/42282.42283
https://www.confluent.io/kafka-summit-sf18/hardening-kafka-replication/
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1007/S00446-006-0155-X
https://doi.org/10.1145/1753171.1753191
https://doi.org/10.1145/1326542.1326543


M. Bravo, G. Chockler, A. Gotsman, A. Naser-Pastoriza, and C. Roldán 10:19

30 Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy method
to support highly-available distributed systems. In Symposium on Principles of Distributed
Computing (PODC), 1988.

31 Diego Ongaro and John K. Ousterhout. In search of an understandable consensus algorithm.
In USENIX Annual Technical Conference (USENIX ATC), 2014.

32 Jun Rao, Eugene J. Shekita, and Sandeep Tata. Using Paxos to build a scalable, consistent, and
highly available datastore. Proc. VLDB Endow., 4(4), 2011. doi:10.14778/1938545.1938549.

33 Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4), 1990. doi:10.1145/98163.98167.

34 William Schultz, Siyuan Zhou, Ian Dardik, and Stavros Tripakis. Design and analysis of a
logless dynamic reconfiguration protocol. In Conference on Principles of Distributed Systems
(OPODIS), 2021.

35 Alexander Shraer, Benjamin Reed, Dahlia Malkhi, and Flavio Paiva Junqueira. Dynamic re-
configuration of primary/backup clusters. In USENIX Annual Technical Conference (USENIX
ATC), 2012.

36 Alexander Spiegelman and Idit Keidar. On liveness of dynamic storage. In Colloquium on
Structural Information and Communication Complexity (SIROCCO), 2017.

37 Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Dynamic reconfiguration: Abstraction
and optimal asynchronous solution. In Symposium on Distributed Computing (DISC), 2017.

38 Robbert van Renesse and Fred B. Schneider. Chain replication for supporting high throughput
and availability. In Symposium on Operating Systems Design and Implementation (OSDI),
2004.

39 Michael J. Whittaker, Neil Giridharan, Adriana Szekeres, Joseph M. Hellerstein, Heidi Howard,
Faisal Nawab, and Ion Stoica. Matchmaker Paxos: A reconfigurable consensus protocol. J.
Syst. Res., 1(1), 2021.

DISC 2024

https://doi.org/10.14778/1938545.1938549
https://doi.org/10.1145/98163.98167




What Cannot Be Implemented on Weak Memory?
Armando Castañeda #

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico

Gregory Chockler #

Department of Computer Science, University of Surrey, Guildford, UK

Brijesh Dongol #

Department of Computer Science, University of Surrey, Guildford, UK

Ori Lahav #

School of Computer Science, Tel Aviv University, Israel

Abstract
We present a general methodology for establishing the impossibility of implementing certain con-
current objects on different (weak) memory models. The key idea behind our approach lies in
characterizing memory models by their mergeability properties, identifying restrictions under which
independent memory traces can be merged into a single valid memory trace. In turn, we show that
the mergeability properties of the underlying memory model entail similar mergeability requirements
on the specifications of objects that can be implemented on that memory model. We demonstrate
the applicability of our approach to establish the impossibility of implementing standard distributed
objects with different restrictions on memory traces on three memory models: strictly consistent
memory, total store order, and release-acquire. These impossibility results allow us to identify tight
and almost tight bounds for some objects, as well as new separation results between weak memory
models, and between well-studied objects based on their implementability on weak memory models.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Concurrent algorithms

Keywords and phrases Impossibility, Weak Memory Models, Total-Store Order, Release-Acquire

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.11

Related Version Full Version: https://arxiv.org/abs/2405.16611 [14]

Funding Armando Castañeda: Supported by DGAPA PAPIIT project IN108723 and Royal Society
grant IES\R1\221226.
Gregory Chockler : Supported by Royal Society grant: IES\R1\221226; CHIST-ERA project RE-
DONDA EP/Y036425/1; and EPSRC grants: EP/X037142/1 and EP/X015149/1.
Brijesh Dongol: Supported by VeTSS; Royal Society grant: IES\R1\221226; CHIST-ERA project
REDONDA EP/Y036425/1; and EPSRC grants: EP/X037142/1, EP/X015149/1, EP/V038915/1,
and EP/R025134/2.
Ori Lahav: Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no. 851811) and the Israel
Science Foundation (grant number 814/22).

1 Introduction

Weak memory models have become standard in modern hardware architectures and pro-
gramming languages. Unlike traditional strictly consistent memory (SCM), which provides
atomic read/write instructions, memories achieve efficiency by multiple optimizations, which,
in particular, delay propagation of writes instead of making them immediately visible to
subsequent reads in other threads. Two well-studied models, which we consider in this paper,

© Armando Castañeda, Gregory Chockler, Brijesh Dongol, and Ori Lahav;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 11; pp. 11:1–11:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:armando.castaneda@im.unam.mx
https://orcid.org/0000-0002-8017-8639
mailto:g.chockler@surrey.ac.uk
https://orcid.org/0000-0001-6700-9235
mailto:b.dongol@surrey.ac.uk
https://orcid.org/0000-0003-0446-3507
mailto:orilahav@tau.ac.il
https://orcid.org/0000-0003-4305-6998
https://doi.org/10.4230/LIPIcs.DISC.2024.11
https://arxiv.org/abs/2405.16611
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 What Cannot Be Implemented on Weak Memory?

Example 1 Linearizable Obstruction-Free Set.
Consider a set object that provides the high-level operations add(v) and remove(v), where remove
returns true iff the element v is in the abstract set and in this case removes v from the set. Consider
the following histories assuming two processes:

p1 : |add(1) ack| |remove(1) true|
p2 :

p1 : |add(1) ack|
p2 : |remove(1) true|

history h1 history h2

Let σ0 be the trace of a set implementation I generated by p1 executing add(1) until completion from
the initial state, and for i ∈ {1, 2}, let σi be the trace generated by pi after σ0 to induce history hi.
Such traces must exist assuming I is obstruction-free. If σ1 and σ2 can be merged into a trace σ such
that σ0 · σ is a valid trace of a memory model M , then we reach a contradiction because p1 (resp.,
p2) cannot distinguish between σ1 (resp., σ2) and σ, and thus both remove operations of p1 and p2

in σ return true, contradicting linearizability of I. In other words, since the two remove invocations
cannot be merged into a single linearizable object history, it must be that the corresponding memory
traces cannot be merged. In particular, if σ1 and σ2 have neither RAW nor RMW, then they can
always be merged on SCM, which gives us the impossibility result of [6] for this object.

are total store order model (TSO), as implemented in SPARC [36, 23] and x86 multiproces-
sors [31], and the weaker release-acquire model (RA), a fragment of C/C++11 [8, 26], which
guarantees causal consistency together with per-location strict consistency (a.k.a. coherence).

The standard memory model for the design and analysis of asynchronous shared memory
algorithms is SCM. These algorithms however, are not guaranteed to work correctly on
weaker memory models (such as TSO and RA) due to the lack of atomicity of reads
and writes. To ensure atomicity, one can use fence or atomic read-modify-write (RMW)
instructions provided by the weak memory models. However, since fences and RMWs disable
hardware optimizations and enforce synchronization between threads, they incur substantial
performance overheads. Thus, one would like to understand when fences and RMWs are
necessary and when they can be avoided, in order to correctly and efficiently implement the
large body of existing shared memory algorithms on weak memory architectures.

In this paper, we set out to tackle this important and challenging question. The crux of
our approach is based on mergeability of traces and object histories. Roughly speaking, two
memory traces (sequences of memory accesses) of some memory model M are strongly (resp.,
weakly) mergeable if every (resp., some) interleaving of these traces forms a valid trace of M .
Likewise, two object histories (sequences of invocations and responses) of some object O are
strongly (resp., weakly mergeable) if every (resp., some) interleaving of these histories forms
a valid history of O. Then, our key result is the Merge Theorem, which, roughly speaking,
states that strongly (resp., weakly) mergeable memory traces can only be used to implement
strongly (resp., weakly) mergeable object histories. Contrapositively, when operations of a
certain concurrent object are not strongly (resp., weakly) mergeable, then the memory traces
implementing these operations on a memory model M cannot be strongly (resp., weakly)
mergeable in M . The correctness and progress conditions in the Merge Theorem are weaker
versions of linearizability [22] and obstruction-freedom [21].

A prerequisite for applying our Merge Theorem for a particular memory model is to
identify useful mergeability properties of the model. For SCM, TSO, and RA, we develop a
set of properties (see Table 1) that describe conditions under which traces of the models can
be (weakly/strongly) merged. These results provide key insights into the synchronization
power of these memory models, and together with the Merge Theorem allow us to derive
multiple impossibility results, and identify optimal implementations.



A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 11:3

For instance, consider the read-after-write pattern (RAW), which is often used by shared
memory algorithms under SCM (such as classical mutual exclusion [17, 28]) as a synchroniza-
tion mechanism. In RAW, a process first writes to a shared variable and then reads from a
different shared variable, and under SCM, this ensures that at least one of the two processes
writing to two different variables has to observe the value written by the other process (see
the SB program in §2). This means that solo traces that use RAW are not mergeable into a
single trace. In turn, it is straightforward to establish that any two RAW-free read-write
traces (by distinct processes) are weakly mergeable under SCM (§3).

With this observation, we easily re-establish (and generalize) the “Laws of Order” results
from [6], showing that mutual exclusion protocols, as well as concurrent objects with strongly
non-commutative methods, cannot be implemented on SCM with neither RAW nor RMW.
We do so by simple mergeability-based arguments (see, e.g., Example 1), instead of rather
complex and ad-hoc application of the covering technique used in [6]. Intuitively, two methods
are strongly non-commutative if executing one of them first affects the response of the other,
and vice versa. Moreover, by using mergeability properties for TSO and RA we directly
obtain similar impossibility results for these models, whereas the argument in [6] for weak
memory models is only implicit, based on the fact that enforcing a write to be executed
before a read (i.e., implementing RAW) on a weak model requires a fence.

A benefit of our generic methodology is that we can also reason about implementability
of methods that are not strongly non-commutative, hence not covered by [6]:

One-Sided Non-Commutative Operations. Some objects such as register, max-register,
snapshot and monotone counter have pairs of methods that do not strongly non-commute. To
support them, we consider one-sided non-commutativity of pairs of methods, which, roughly
speaking, means that executing one of them first affects the response of the other, but not
necessarily vice versa. We then apply the Merge Theorem to show that any linearizable
obstruction-free implementations of these objects must use fences or RMWs in TSO and RA.

Then, for max-register, a useful building block in several implementations, e.g., [3, 7, 15],
we obtain fence-optimal implementations in TSO and RA. The TSO implementation is
obtained through a more general fence-insertion strategy: a transformation that takes any
read/write linearizable implementation in SCM and adds fences between every write followed
by a read or a return of an operation, provably resulting in a linearizable implementation in
TSO. Combined with a wait-free read/write max-register implementation in SCM (with uses
neither RAW nor RMW), the transformation gives a fence-optimal wait-free read/write max-
register implementation in TSO. For RA, we develop a similar linearizable implementation by
placing a fence in the beginning and the end of every operation, which leads to a fence-optimal
implementation of max-register in RA.

Snapshot and Counter. We also reason about snapshot and (non-monotone) counter, which
fall beyond the scope of non-commutativity. These two objects are of particular interests:
snapshot is universal for a family of objects whose pairs of operations either commute or one
overwrites the other [5], and counter is a useful building block for randomized consensus [2, 4].
For TSO, the fence-insertion transformation above once again provides a wait-free fence-
optimal snapshot (resp., counter) implementation where every update operation ends with a
fence. However, we use our Merge Theorem to show that, in sharp contrast to max-register,
there is no obstruction-free read/write snapshot (resp., counter) implementation in RA,
whose operations start with a fence and end with a fence (see outline in Example 2). To
the best of our knowledge, this is the first sharp separation between max-register on the one
hand and snapshot and counter on the other in terms of their implementability under RA
using only reads, writes and fences.

DISC 2024



11:4 What Cannot Be Implemented on Weak Memory?

Example 2 Linearizable Obstruction-Free Snapshot.
Mergeability can justify a novel impossibility result for RA, showing that a shared (single-writer
multi-reader) snapshot object cannot be implemented with only reads, writes and fences under the
restriction that all fences are only placed at the beginning and end of a method invocation. Consider
the following histories assuming three processes:

p1 : |update(1) ack|
p2 :
p3 : |scan ⟨1,⊥,⊥⟩|

p1 :
p2 : |update(1) ack| |scan ⟨⊥,1,⊥⟩|
p3 :

history h1 history h2

An obstruction-free implementation should generate both histories. A merge-based argument implies
that the memory traces σ1 and σ2 induced by the implementation when it generates h1 and h2 must
not be mergable in the underlying memory model. Otherwise, the same algorithm will also allow
some interleaving h of h1 and h2, but it is easy to observe that no such interleaving is linearizable:
no valid single history h with only two updates, update(1) by p1 and update(1) by p2, can have both
scan results ⟨1, ⊥, ⊥⟩ and ⟨⊥, 1, ⊥⟩. The RA memory model allows any two RMW-free traces σ1

and σ2 by disjoint sets of processes to be merged, provided that fences are not used in the middle of
these traces. Roughly speaking, following [26, 24], the semantics of RA is based on point-to-point
communication, making it is possible for p1 and p3 to communicate directly, without affecting p2.
Thus, every implementation of snapshot on RA uses RMWs or fences in the middle of operations.

Outline. The rest of this paper is structured as follows. In §2 we define the notion of a
memory model. In §3 we establish multiple mergeability properties for these memory models.
In §4 we present the general impossibility result. In §5 we discuss applications of the theorem
for well known objects, and tightness of the obtained lower bounds. We conclude and discuss
related work in §6. The full version of that paper [14] contains more details and full proofs.

2 Weak Memory Models

In this paper, we consider three memory models:

Strictly Consistent Memory (SCM): In this model every write is propagated to all threads
immediately after being executed. In the weak memory literature, this memory model is
often referred to as sequential consistency, but it essentially corresponds to a collection of
linearizable (a.k.a. atomic) register objects [22].

Total Store Order (TSO): Each process has a local FIFO store buffer. Writes are first
enqueued in the buffer of the writing process, and later propagate from the buffer to main
memory in an internal step that occurs non-deterministically as part of the system’s
execution. A read of a variable returns the latest write to the variable in the reading
process’ buffer or the value in main memory if there is no pending write to that variable
in the buffer.

Release/Acquire (RA): This model employs a notion of synchronization between processes
through acquiring instructions (read or RMW) which synchronize with previously exe-
cuted releasing instructions (write or RMW) when the acquiring instruction reads its
value from the releasing instruction. Such synchronization transfers “happens-before”
knowledge from the releasing instruction to the acquiring instruction. Following a release-
acquire synchronization, instructions that follow (in “happens-before” order) the acquire
instruction must be consistent with the happens-before knowledge received through the
synchronization.



A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 11:5

The classic examples used to explain these memory models are the store buffering (SB),
independent reads of independent writes (IRIW), and message passing (MP) programs, given
below. We assume shared variables x and y initialized with the value 0 and process-local
variables a, b, .... The possible final values of a, b, ... depend on the memory model.

Proc p1

x := 1;
a := y;

Proc p2

y := 1;
b := x;

(SB)

Proc p1

x := 1;
Proc p2

a := x;
b := y;

Proc p3

c := y;
d := x;

Proc p4

y := 1;

(IRIW)

Proc p1

x := 1;
y := 1;

Proc p2

a := y;
b := x;

(MP)
Under SCM, no execution of SB ends with a = b = 0, while this outcome is possible

under both TSO and RA. Under both SCM and TSO, no execution of IRIW ends with
a = c = 1 and b = d = 0, while this outcome is possible under RA, indicating that under RA,
processes p2 and p3 observe the writes to x and y in a different order. In particular, under
RA, suppose that both p1 and p4 execute their writes. It is possible for p2 (resp., p3) to read
the new value for x (resp., y) then read the old value for y (resp., x). Although RA is weaker
than both SCM and TSO, like TSO, RA maintains causal consistency as demonstrated MP.
Under all three memory models, when MP terminates, if a = 1, then b = 1, indicating that if
p2 is aware of the write to y by p1, then it must also be aware of the prior write to x.

Non-SCM-outcomes (a.k.a. weak behaviors) can be avoided in weak memory models by
using fence instructions. In TSO fences drain the store buffer of the process that executes
the fence. In RA fences synchronize in pairs, transferring happens-before knowledge from
one process to another. We formally include fences also in SCM (with “no-op” semantics).

2.1 Formalizing Weak Memory Models
For the formal definitions of the models, we find it most convenient to follow an operational
presentation, where memory models are specified by labeled transition systems.

Sequences. For a sequence s = ⟨x1, ... ,xn⟩, s[i] denotes the ith element of s (i.e., xi), and
|s| denotes the length of s (i.e., n). We write x ∈ s when s[i] = x for some 1 ≤ i ≤ n. We
denote by ε the empty sequence, write s1 · s2 for concatenation of s1 and s2 and denote
by X∗ the set of all sequences over elements of a set X. The restriction of a sequence s

w.r.t. a set Y , denoted s|Y , is the longest subsequence of s that consists only of elements
in Y . These notations are lifted to sets in the obvious way (e.g., S · s′ ≜ {s · s′ | s ∈ S}
and S|Y ≜ {s|Y | s ∈ S}). We use the suffix ‘-set’ to lift a function f from some set X to
a function form sequences over X, formally defined by: f -set(s) ≜ {f(s[i]) | 1 ≤ i ≤ |s|}.

Labeled Transition Systems (LTSs). An LTS L consists of a set of states, states(L); an
initial state, init(L) ∈ states(L); a set of transition labels, labels(L); and a set of transitions,
trans(L) ⊆ states(L) × labels(L) × states(L). We write q

l−→L q′ for ⟨q, l, q′⟩ ∈ trans(L),
and given π = ⟨l1, ... ,ln⟩ ∈ labels(L)∗, we write q

π−→L q′ for ∃q2, ... ,qn. q
l1−→L q2

l2−→L

... qn
ln−→L q′. An execution fragment of L is a sequence α = ⟨q0, l1, q1, l2, ... ,ln, qn⟩ of

alternating states and transition labels such that qi
li+1−−→L qi+1 for every 0 ≤ i ≤ n − 1.

The trace of α, denoted trace(α), is the restriction of α w.r.t. labels(L). We denote by
traces(L, q) the set of all sequences that are traces of some execution fragment α of L

that starts from q ∈ states(L). An execution fragment α of L is an execution of L if
it starts from init(L). A sequence π of transition labels is a trace of L if it is a trace
of some execution of L. We denote by traces(L) the set of all traces of L (so we have
traces(L) = traces(L, init(L))).

Domains. We assume sets Var of shared variables and Val of values with a distinguished
initial value 0 ∈ Val. We let P ≜ {p1, ... ,pN } be the set of process identifiers.

DISC 2024



11:6 What Cannot Be Implemented on Weak Memory?

Memory Actions. Memory operations execute atomically using memory actions, which
include both argument and return values. Formally, a memory action a ∈ MemActs is one
the following (where x ∈ Var and v, vold, vnew ∈ Val): (i) write action of the form W(x, v);
(ii) read action of the form R(x, v); (iii) RMW action of the form RMW(x, vold, vnew); and
(iv) fence action of the form F. We denote by typ(a) the type of the memory action a (W,
R, RMW, or F) and by var(a) the variable accessed by action a (when applicable).

Memory Events. A memory event e ∈ MemEvs is a pair e = p:a where p ∈ P and a ∈
MemActs. We use proc(e) and act(e) to retrieve the components of e (p and a, respectively).
The functions typ(·) and var(·) are lifted to events in the obvious way.

Memory Models. The semantics of the memory operations is given by an LTS, called a
memory model. The transition labels of a memory model M , labels(M) ≜ MemEvs ∪ {τ},
consist of memory events, as well as τ , which represents a silent memory internal step.

We demonstrate the formulation of TSO as an LTS. The formal models for SCM and RA
can be found in [14].

▶ Definition 2.1. TSO’s states are pairs ⟨m, b⟩, where m ∈ Var → Val is the main memory
and b ∈ P → (Var × Val)∗ assigns a store buffer to every process; the initial state is
init(TSO) ≜ ⟨λx. 0, λp. ε⟩ (i.e., all variables in memory are zeroed and all store buffers are
empty); and the transitions are as follows, where β|x denotes the restriction of a store buffer
β to pairs of the form ⟨x, _⟩:

write
e = p:W(x, v)

b′ = b[p 7→ b(p) · ⟨x, v⟩]
⟨m, b⟩ e−→ ⟨m, b′⟩

read-from-buffer
e = p:R(x, v)

b(p)|x = _ · ⟨⟨x, v⟩⟩
⟨m, b⟩ e−→ ⟨m, b⟩

read-from-memory
e = p:R(x, v)

b(p)|x = ε m(x) = v

⟨m, b⟩ e−→ ⟨m, b⟩

rmw
e = p:RMW(x, vold, vnew)

b(p) = ε m(x) = vexp

⟨m, b⟩ e−→ ⟨m[x 7→ vnew], b⟩

fence
e = p:F
b(p) = ε

⟨m, b⟩ e−→ ⟨m, b⟩

propagate
b(p) = ⟨⟨x, v⟩⟩ · β

m′ = m[x 7→ v] b′ = b[p 7→ β]
⟨m, b⟩ τ−→ ⟨m′, b′⟩

Memory Sequences. We refer to sequences ρ ∈ (MemEvs ∪ {τ})∗ as memory sequences
and to sequences σ ∈ MemEvs∗ as observable memory sequences. We use the following
notations:

σ|p denotes the restriction of σ w.r.t. {e ∈ MemEvs | proc(e) = p}.
otraces(M, q) denotes the set of all observable memory sequences obtained by restricting
traces of M from a state q to non-τ steps, i.e., otraces(M, q) ≜ traces(M, q)|MemEvs.
otraces(M) ≜ traces(M)|MemEvs is the set of all observable memory sequences of M .

Stable States. A state q ∈ states(M) is stable if q ̸ τ−→M q′ for any q′ ∈ states(M). Every
state of SCM is stable, a state of TSO is stable iff all store buffers are empty, and a state
of RA is stable iff all processes are aware of all writes.

Well-Behaved Memory Models. TSO is strictly weaker than SCM and RA is strictly weaker
than TSO, which formally means that otraces(SCM) ⊊ otraces(TSO) ⊊ otraces(RA). In
the sequel we will need the following assumption on memory models:

▶ Definition 2.2. A memory model M is well-behaved if there exists a simulation
R from SCM to M whose codomain consists solely of stable states. That is, there
should exist a relation R ⊆ states(SCM) × {q ∈ states(M) | q is stable} such that (i)
⟨init(SCM), init(M)⟩ ∈ R; and (ii) if ⟨m, q⟩ ∈ R and m

l−→SCM m′, then q
l−→M

τ−→
∗
M q′

and ⟨m′, q′⟩ ∈ R for some stable q′ ∈ states(M).



A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 11:7

Table 1 Merging observable memory sequences σ1 and σ2 such that proc-set(σ1)∩proc-set(σ2) = ∅.

Memory Restrictions on σ1 Restrictions on σ2 Merge
#Name model process events pattern process events pattern property
1 TSOs TSO solo RW — solo RW — Strong
2 RAs

1 RA — RW — — — — Strong
3 RAs

2 RA — RWF PPTF — — PPTF Strong
4 RAs

3 RA — RWF PPLF — — PPLF Strong
5 SCMw SCM — RW RBW — — — Weak
6 TSOw TSO solo RWF LTF — — — Weak
7 RAw RA — RWF LTF — — — Weak

Note that if M is well-behaved, then σ0 ·σ ∈ otraces(SCM) implies that there exist a stable
state q ∈ states(M) and a memory trace ρ0 such that init(M) ρ0−→M q, ρ0|MemEvs = σ0,
and σ ∈ otraces(M, q). The following lemma is proven in [14].

▶ Lemma 2.3. Each M ∈ {SCM, TSO, RA} is well-behaved.

3 Mergeability Results for Memory Models

We consider two notions of mergeability of observable memory traces, weak mergeability,
which means that some interleaving of the given traces is admitted, and strong mergeability,
which requires that all interleavings are admitted. We denote by s1 � s2 the the set of all
interleavings of s1 and s2.

For our impossibility result to handle a non-empty base object history (as in Example 1),
it does not suffice to merge memory traces from the initial state. Instead, we require the
traces to be mergeable from every stable state:

▶ Definition 3.1. Two observable memory traces σ1, σ2 with proc-set(σ1) ∩ proc-set(σ2) = ∅
are weakly (resp., strongly) mergeable in a memory model M if for every stable state
q0 ∈ states(M) such that σ1, σ2 ∈ otraces(M, q0), we have σ ∈ otraces(M, q0) for some (resp.,
every) σ ∈ σ1 � σ2.

Table 1 presents the merge properties established for the memory models we consider
(see [14] for the proofs). To specify restrictions on the mergeable traces, we say that an
observable memory sequence σ is:

solo if |proc-set(σ)| = 1;
read-write (RW ) if typ-set(σ) ⊆ {R, W};
read-write-fence (RWF) if typ-set(σ) ⊆ {R, W, F};
read-before-write (RBW ) if for every k1 < k2, if typ(σ[k1]) = W, typ(σ[k2]) = R, and

var(σ[k1]) ̸= var(σ[k2]), then typ(σ[k]) = W and var(σ[k]) = var(σ[k2]) for some k1 < k <

k2;1
trailing-fence (TF) if there is no k such that typ(σ[k]) = F but typ(σ[k + 1]) ̸= F;
leading-fence (LF) if there is no k such that typ(σ[k]) = F but typ(σ[k − 1]) ̸= F;
per-process trailing fence (PPTF) if σ|p is TF for all processes p;
per-process leading fence (PPLF) if σ|p is LF for all processes p; and
leading-and-trailing-fence (LTF) if σ = σ1 · σ2 for some LF σ1 and TF σ2.

1 RBW is equivalent to the absence of the read-after-write (RAW) pattern as defined in [6].

DISC 2024



11:8 What Cannot Be Implemented on Weak Memory?

We have three types of restrictions, namely: (i) a restriction on the processes (solo); (ii) re-
strictions on the types of events (RW and RWF); and (iii) restrictions on the access pattern
(all others). The restrictions on types and access patterns correspond to synchronization
mechanisms that are expensive performance wise. RMWs and non-RBW were identified as
such in [6], and since we explicitly deal with weak memory models, we add fences to this
list. To motivate our focus on leading/trailing fence placement, we note that the trivial
linearizable implementation of an atomic register using a write/read instruction requires
fences: at the end of every write operation on TSO, and at the beginning and the end of
every (write/read) operation on RA. We aim to investigate whether other objects admit
similar implementations.

Next, we briefly discuss the results in the table:

SCM. In SCM, if σ1 is RW-RBW, then it can be weakly merged with any other observable
memory trace. Indeed, being RW-RBW, σ1 must be of the form σr

1 · σw
1 where σr

1 is a
sequence of reads and σw

1 is a sequence of writes and reads, starting with a write, where
the reads in σw

1 read from the writes in σw
1 . Then, it is straightforward to see that σ1 and

any observable memory sequence σ2 can be merged to form the trace σ = σr
1 · σ2 · σw

1 ,
which is valid trace under SCM. We note that the RBW restriction is necessary here, as
⟨p1:W(x, 1), p1:R(y, 0)⟩ and ⟨p2:W(y, 1), p2:R(x, 0)⟩ (which may arise from the SB example)
are not weakly mergeable. Also note that there is no useful strong merge property for
SCM. Even ⟨p1:W(x, 1)⟩ and ⟨p2:R(x, 0)⟩ cannot be strongly merged.

TSO. In TSO, σ1 and σ2 can be strongly merged when they are both solo-RW traces.
This holds because with only writes and reads, there is always an observable trace
where all the writes of both σ1 and σ2 remain in the local store buffers, allowing the
events of σ1 and σ2 to be arbitrarily interleaved. TSO also satisfies a weak merge
property if σ1 is solo-RWF-LTF and σ2 is arbitrary. To do so, we let σ1 = σlf

1 · σ′
1 · σtf

1
where typ-set(σlf

1 ) ∪ typ-set(σtf
1 ) ⊆ {F} and σ′

1 is RW. Then, σlf
1 · σ′

1 · σ2 · σtf
1 is a valid

TSO observable trace since no instruction in σ′
1 forces writes to propagate. We note

that the solo restriction is essential. For example, ⟨p1:W(x, 1), p2:R(x, 1), p2:R(y, 0)⟩ and
⟨p4:W(y, 1), p3:R(y, 1), p3:R(x, 0)⟩ (which may arise from the IRIW example) are not weakly
mergeable.

RA. We prove three strong merge properties for RA: (RAs
1) If σ1 is RW, then it can be

strongly merged with σ2 even when σ1 is non-solo. Indeed, in the absence of RMWs
and fences in σ1, the writes in σ1 can be propagated to other processes of σ1, but never
propagate to the processes of σ2, and vice-versa. (RAs

2) If σ1 is RWF-PPTF and σ2 is
PPTF, the strong merge argument is as follows. First, we remove all the fences in σ1,
which results in an RW trace. From RAs

1, this trace can be strongly merged with σ2. In
the resulting trace, we reintroduce the fences removed from σ1 arbitrarily after the last
read or write of the corresponding process. Regardless of whether this fence is before
or after a fence of σ2, the resulting fence synchronization has no effect since σ2 is also
PPTF. (RAs

3) If σ1 is RWF-PPLF and σ2 is PPLF the argument is symmetric to RAs
2.

Finally, RA satisfies a weak merge property if σ1 is RWF-LTF. As in the TSO weak
merge property, we split σ1 = σlf

1 · σ′
1 · σtf

1 . By RAs
1, σ′

1 · σ2 is an RA observable trace.
Then, σlf

1 · σ′
1 · σ2 · σtf

1 is an RA observable trace since the leading/trailing fences have no
bearing on the execution.



A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 11:9

4 A Recipe for Merge-Based Impossibility Results

We introduce objects, implementations, and histories (§4.1), and our main theorem (§4.2).

4.1 Objects and Their Implementations
We consider systems implementing of a high-level object O using the low-level atomic
shared-memory operations provided by the memory model M .

Objects. An object O is a pair O = ⟨ops, rets⟩, where ops is a set of operation names (each
of which may include argument values) and rets is a set of response values. We use ops(O)
and rets(O) to retrieve the components of an object O (ops and rets, respectively). We
use ack for a default response value for operations that do not return any value.

Object Actions. To delimit executions of operations of O, we use object actions that can be
either invocation actions of the form inv(o) with o ∈ ops(O), or response actions of the
form res(u) with u ∈ rets(O). We let acts(O) denote the set of all object actions of O.

Object Events. Like memory events defined in §2, object events are pairs e = p:a where
p ∈ P and a ∈ acts(O). We apply the same notations used for memory events to object
events, and let Evs(O) denote the set of all object events. By event we collectively refer
to either a memory event or an object event. Given a sequence π of events, we define the
following notations:

π|p denotes the restriction of π w.r.t. the set of events e with proc(e) = p.
π|M denotes the restriction of π w.r.t. the set MemEvs of memory events.
π|O denotes the restriction of π w.r.t. the set Evs(O) of object events.

Histories. A history of an object O is a sequence of events in Evs(O). We denote by (p: |o u|)
the history consisting of a single operation by process p ∈ P invoking o ∈ ops(O) with
response value u ∈ rets(O) (and omit the response value if it is ack), i.e., (p: |o u| ) ≜
⟨p:inv(o), p:res(u)⟩ and (p: |o |) ≜ ⟨p:inv(o), p:res(ack)⟩. A history h is:

sequential if it is a prefix of a history of the form (p1: |o1u1|) · (p2: |o2u2|) · · · (pn: |onun|);
well-formed if h|p is sequential for every p ∈ P; and
complete if it is well-formed and each h|p ends with a response event.

We let H(O), ComH(O), and ComSeqH(O) denote the sets of all well-formed histories of
O, all complete histories of O, and all complete sequential histories of O (respectively).

Specifications. We assume that every object O is associated with a specification, denoted
spec(O), that is a subset of ComSeqH(O) that is prefix-closed (in the sense that h′ ∈
spec(O) for every h′ ∈ ComSeqH(O) that is a prefix of some h ∈ spec(O)). An object O

is deterministic if no two histories in spec(O) have longest common prefix that ends with
an invocation.

Implementations. An implementation I of an operation o for a process p is an LTS whose
set of transition labels are events with process identifier p. We assume that a response
event is always the last transition of executions of I (i.e., if q

p:res(u)−−−−−→I q′, then no
transition is enabled in q′). An implementation I of an object O is a function assigning
an implementation I(o, p) of o for p to every o ∈ ops(O) and p ∈ P.
An implementation I of an object O induces an LTS, denoted SI , that repeatedly and
concurrently executes the operations of O as I prescribes. To formally define SI , we
first define the “per-process” LTS induced by I, denoted Sp

I . This LTS is given by:
states(Sp

I) ≜ {⊥} ∪ {⟨o, q⟩ | o ∈ ops(O), q ∈ states(I(o, p))}; init(Sp
I) ≜ ⊥; labels(Sp

I) ≜
Evs(O) ∪ MemEvs; and the transitions are given in Fig. 1. The state ⊥ means that the

DISC 2024



11:10 What Cannot Be Implemented on Weak Memory?

e = p:inv(o)
q = init(I(o, p))

⊥ e−→Sp
I

⟨o, q⟩

e ∈ MemEvs
q

e−→I(o,p) q′

⟨o, q⟩ e−→Sp
I

⟨o, q′⟩

e = p:res(u)
q

e−→I(o,p) _
⟨o, q⟩ e−→Sp

I
⊥

Figure 1 Transitions of Sp
I .

q̄(p) e−→Sp
I

q′

q̄
e−→SI q̄[p 7→ q′]

Figure 2 Transitions of SI .

process is not currently executing any operation, whereas ⟨o, q⟩ means that process p is
currently executing o and it is in state q of the implementation of o for p.
In turn, SI is given by: states(SI) is the set of all mappings assigning a state in states(Sp

I)
to every p ∈ P; init(SI) ≜ λp. ⊥; labels(SI) ≜ Evs(O) ∪ MemEvs; and the transition
relation in Fig. 2. This transition simply interleaves the transitions of the different
processes. In the sequel, we let traces(I) ≜ traces(SI).

Histories of Implementations. Let I be an implementation of an object O, π0 be a sequence
of events, and M be a memory model. A history h of O is:

generated by I after π0 if h = π|O for some π such that π0 · π ∈ traces(I).
generated by I after π0 under M if h = π|O for some π such that π0 · π ∈ traces(I)
and (π0 · π)|M ∈ otraces(M).

We denote by H(π0, I) the set of all histories that are generated by I after π0, and by
H(π0, I, M) the set of all histories generated by I after π0 under M . We also write H(I)
instead of H(ε, I) and H(I, M) instead of H(ε, I, M).

4.2 The Merge Theorem
Our main result relates mergeability properties of memory models and objects implemented
in those models, assuming that the implementation provides minimal safety and liveness
guarantees. This result can be also seen as a CAP Theorem for weak memory models [19],
where partition tolerance of CAP corresponds to mergeability, as it allows two traces of
distinct set of processes to run concurrently without interaction. Our results are more fine
grained, as we show the correspondence between mergeability of certain traces in a memory
model, and the (in)ability of these traces to implement non-mergeable object histories.

For the formal treatment, we first present the following lemma (proven in [14]). The lemma
describes the key shape of our results, namely that given two traces of an implementation
over a memory model, the merge property over these traces carries over to a merge property
over the histories induced by the traces.

▶ Lemma 4.1. Let I be an implementation of O. Suppose that there exist sequences π0, π1, π2
of events such that the following hold:
(a) proc-set(π1) ∩ proc-set(π2) = ∅; π0 · π1, π0 · π2 ∈ traces(I); π0|O ∈ ComH(O); and
(b) π0|M · σ ∈ otraces(M) for some (resp., every) σ ∈ π1|M � π2|M.
Then, h ∈ H(π0, I, M) for some (resp., every) h ∈ π1|O � π2|O.

The Merge Theorem, which we obtain using this lemma, makes several assumptions on
implementations. First, the safety condition, which we call consistency, is restriction of
linearizability to complete histories. For its definition, we first define reorderings of sequences.

▶ Definition 4.2. Let R ⊆ X × X. A sequence s′ ∈ X∗ is an R-reordering of a sequence
s ∈ X∗ if there exists a bijection f : {1, ... ,|s|} → {1, ... ,|s′|} such that s[i] = s′[f(i)]
for every 1 ≤ i ≤ |s|, and f(i) < f(j) whenever i < j and ⟨s[i], s[j]⟩ ∈ R. We denote
by reorderR(s) the set of all R-reorderings of s, and lift this notation to sets by letting
reorderR(S) ≜

⋃
s∈S reorderR(s).



A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 11:11

We define sproc and lin relations on events:

sproc ≜ {⟨e1, e2⟩ | proc(e1) = proc(e2)}
lin ≜ sproc ∪ ({e | e is a response event} × {e | e is a invocation event})

▶ Definition 4.3. A history h′ ∈ H(O) linearizes a history h ∈ H(O), denoted h ⊑ h′, if
h′ ∈ reorderlin(h). For a set H ′ ⊆ H(O), we write h ⊑ H ′ if h ⊑ h′ for some h′ ∈ H ′.

▶ Definition 4.4. An implementation I of an object O is consistent under a memory model
M if h ⊑ spec(O) for every complete history h ∈ H(I, M).

Consistency follows from linearizability [22], and it is equivalent to linearizability for
implementations in which every history can be extended to a complete history.

Next, the liveness condition, which we call availability, requires progress for the specific
histories under consideration.

▶ Definition 4.5. An implementation I of O is available after a history h0 ∈ ComSeqH(O)
w.r.t. a history h ∈ H(O) if h ∈ H(π0, I, SCM) for every π0 ∈ traces(I) such that π0|M ∈
traces(SCM) and π0|O = h0. We say I is available w.r.t. h, if it is available after ε w.r.t. h

(i.e., h ∈ H(I, SCM)). We call I spec-available if for every h0, h ∈ ComSeqH(O) such that
h0 · h ∈ spec(O), I is available after h0 w.r.t. h.

Availability w.r.t. h after h0 only guarantees that the implementation under SCM is able
to generate the history h when it starts executing after generating h0. For deterministic
implementations, availability w.r.t. h after h0 follows from availability w.r.t. h0 · h (after ϵ).
Note that availability considers SCM rather than a general memory model M , but when M

is well-behaved (Def. 2.2), h ∈ H(π0, I, SCM) ensures that h ∈ H(π0, I, M). Spec-availability
essentially means that the implementation can generate all (sequential) specification histories
and for deterministic objects and implementations, it follows from obstruction-freedom [21].

The next lemma (proven in [14]) is used in the sequel to derive availability w.r.t. a history
h from the fact that availability holds w.r.t. a sequential history that linearizes h.

▶ Lemma 4.6. Suppose that I is available after h0 w.r.t. a history h′ ∈ H(O). Then, I is
available after h0 w.r.t. every h ∈ H(O) such that h ⊑ h′.

Next, we define mergeability for objects, akin to mergeability for memory models (Def. 3.1):

▶ Definition 4.7. Two histories h1, h2 ∈ ComH(O) with proc-set(h1) ∩ proc-set(h2) = ∅
are weakly (resp., strongly) mergeable in spec(O) after a history h0 ∈ ComSeqH(O) if
h0 · h1 ⊑ spec(O) and h0 · h2 ⊑ spec(O) imply that h0 · h ⊑ spec(O) for some (resp., every)
h ∈ h1 � h2.

We now have all prerequisites to state our Merge Theorem (see [14] for the proof).

▶ Theorem 4.8. Let I be an implementation of an object O that is consistent under a
well-behaved memory model M . Suppose that there exist π0 ∈ traces(I), h1, h2 ∈ ComH(O)
such that the following hold, where h0 = π0|O and σ0 = π0|M:
(i) h0 ∈ spec(O), σ0 ∈ traces(SCM), and proc-set(h1) ∩ proc-set(h2) = ∅,
(ii) I is available after h0 w.r.t. some hi

seq ∈ ComSeqH(O) such that hi ⊑ hi
seq for

i ∈ {1, 2},
(iii) h1 and h2 are not weakly (resp., strongly) mergeable in spec(O) after h0.
Then, there exist π1 and π2 such that all of the following hold:

DISC 2024



11:12 What Cannot Be Implemented on Weak Memory?

(a) For i ∈ {1, 2}, we have π0 · πi ∈ traces(I); πi|O = hi; σ0 · πi|M ∈ traces(SCM); and
proc-set(πi) = proc-set(hi).

(b) For every π′
1 ∈ reordersproc(π1) and π′

2 ∈ reordersproc(π2) such that π′
1|O = h1, π′

2|O = h2,
and σ0 · π′

1|M, σ0 · π′
2|M ∈ traces(SCM), we have that π′

1|M and π′
2|M are not weakly

(resp., strongly) mergeable in M . In particular, π1|M and π2|M are not weakly (resp.,
strongly) mergeable in M .

For simplicity, we explain Thm. 4.8 for π0 = ε (and hence h0 = σ0 = ε). The theorem
assumes that we start with an implementation I that is consistent under the memory model
M under consideration. Moreover, we assume that we have two complete histories h1 and h2
of the object such that the processes of h1 and h2 are distinct (condition (i)), I is available
w.r.t. some linearization of h1 and h2 (condition (ii)), and that h1 and h2 are not weakly
(strongly) mergeable (condition (iii)). Then, for i ∈ {1, 2} there must be a trace πi of I,
corresponding to hi, whose memory events are allowed by SCM, and processes are only
included in πi if they call some operation of the object (condition (a)), such that π1 and π2
restricted to memory events are not weakly (strongly) mergeable in M (second clause of
condition (b)). In fact, weak (strong) non-mergeability extends to any process-preserving
reordering of π1 and π2 whose corresponding histories are h1 and h2 and corresponding
memory traces are SCM traces (first clause of condition (b)).

5 Implementability of Objects on Weak Memory Models

We demonstrate the power of the Merge Theorem by using it along with the mergeability
results in Table 1 to characterize implementability of objects under weak memory models.

5.1 One-Sided Non-Commutative Operations
We start by analyzing implementability of pair of operations o1 and o2 such that o1 is
one-sided non-commutative w.r.t. o2. Roughly, this means that the execution order of o1 and
o2 affects the response of o1. Formally:

▶ Definition 5.1. An operation o1 ∈ ops(O) is one-sided non-commutative w.r.t. an operation
o2 ∈ ops(O) in spec(O) if there exist h0 ∈ ComSeqH(O), processes p1 ̸= p2, and response
values u1, v1, u2 ∈ rets(O) such that: (i) u1 ̸= v1; (ii) h0 · (p1: |o1u1| ) ∈ spec(O); and
(iii) h0 · (p2: |o2u2|) · (p1: |o1 v1|) ∈ spec(O).

▶ Example 5.2. Consider a standard register object Reg with initial value 0, and operations
write(v), where v ∈ V for some set of values V , and read. Then, read is one-sided non-
commutative w.r.t. write in spec(Reg). Indeed, for p1 ̸= p2 and h0 = ε, we have both
(p1: |read 0| ) ∈ spec(Reg) and (p2: |write(1) | ) · (p1: |read 1| ) ∈ spec(Reg). The same holds
for max-register [3], denoted MaxReg, that stores integers with the initial value 0. We note
that all pairs of specification histories of Reg and MaxReg with disjoint sets of processes are
weakly mergeable.

▶ Example 5.3. Consider a monotone counter object MC with initial value 0, and operations
inc and read. Then, read is one-sided non-commutative w.r.t. inc in spec(MC) as for p1 ̸= p2
and h0 = ε, we have (p1: |read 0|) ∈ spec(MC) and (p2: |inc |) · (p1: |read 1|) ∈ spec(MC).

The next lemma (proven in [14]) shows that for deterministic objects, the existence of a
pair of operations one of which is one-sided non-commutative w.r.t. to the other implies that
their corresponding histories are not strongly mergeable:



A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 11:13

▶ Lemma 5.4. Let O be a deterministic object and suppose that o1 ∈ ops(O) is one-sided non-
commutative w.r.t. o2 ∈ ops(O) in spec(O). Then, there exist h0 ∈ ComSeqH(O), processes
p1 ̸= p2, and response values u1, u2 ∈ rets(O) such that (p1: |o1u1|) and (p2: |o2u2|) are not
strongly mergeable in spec(O) after h0.

Then, the following theorem (proven in [14]) follows from Thm. 4.8 and properties TSOs

and RAs
1 in Table 1.

▶ Theorem 5.5. Let O be a deterministic object and suppose that o1 ∈ ops(O) is one-sided
non-commutative w.r.t. o2 ∈ ops(O) in spec(O). Let I be a spec-available implementation of O

that is consistent under M ∈ {TSO, RA}. Then, there exist p1, p2 ∈ P, π1 ∈ traces(I(o1, p1)),
and π2 ∈ traces(I(o2, p2)) such that the following hold for σ1 = π1|M and σ2 = π2|M:
(a) if M = TSO, then either σ1 or σ2 has a fence or a RMW event; and
(b) if M = RA, then neither σ1 nor σ2 is RW, and one of the following holds: (i) either

σ1 or σ2 has a RMW event; (ii) either σ1 or σ2 is not LTF (i.e., has a fence in the
middle); (iii) σ1 is LF and σ2 is TF; or (iv) σ1 is TF and σ2 is LF.

Since read is one-sided non-commutative w.r.t. write in both spec(Reg) and
spec(MaxReg), their respective implementations under TSO and RA are subject to the
constraints given in Thm. 5.5. The same holds for the implementations of the read and inc
operations of MC.

To establish the tightness of these lower bounds, we present linearizable wait-free imple-
mentations of Reg and MaxReg that are optimal w.r.t. the above bounds: for TSO, it uses
only reads, writes, and a single fence at the end of write; and for RA, it uses only reads,
writes, and a pair of fences at both the beginning and the end of both write and read.

A Reg object is trivial to implement under SCM and there are MaxReg implementations
under SCM [3] with every operation being RBW. We use these implementations as a basis
for implementations under TSO and RA as follows:

TSO. For TSO, we utilize a fence-insertion strategy, which derives a linearizable TSO
implementation of an object from its SCM counterpart by inserting a fence in-between
every consecutive pair of write and read, as well as between a final write of an operation (if
it exists) and the operation’s response. We give full details, prove correctness, and present
more examples of applications of this transformation in [14]. Using this strategy, we
obtain a TSO implementation of Reg as follows: write first writes to a memory location,
and then executes a fence, and read reads the same memory location and returns the
value read. Likewise, to implement MaxReg under TSO, we add a fence at the end of the
write implementations of [3], and leave their read implementation as is.

RA. We augment the TSO implementations above by adding another fence at the beginning
of write as well as fences at the beginning and the end of read. The pseudocode of
the MaxReg algorithm appears in §A and its correctness proof can be found in [14].
Further details of the register implementation and its correctness proof appear in [14]. For
conciseness, our MaxReg implementation under RA is derived from a simplified version
of the algorithm in [3] (with linear step complexity instead of logarithmic as in [3]).

5.2 Two-Sided Non-Commutative Operations and Mutual Exclusion
We next explore implementability of objects with non-weakly mergeable histories. We apply
our framework to generalize the “laws of order” (LOO) results of [6]. The next notion of
two-sided non-commutativity is a strengthening of one-sided non-commutativity defined
above, and is identical to the notion of strong non-commutativity in [6]:

DISC 2024



11:14 What Cannot Be Implemented on Weak Memory?

▶ Definition 5.6. Two operations o1, o2 ∈ ops(O) are two-sided non-commutative in spec(O)
if there exist history h0 ∈ ComSeqH(O), processes p1 ̸= p2, and response values u1 ̸=
v1 and u2 ̸= v2 in rets(O) such that: (i) h0 · (p1: |o1u1| ) · (p2: |o2 v2| ) ∈ spec(O); and
(ii) h0 · (p2: |o2u2|) · (p1: |o1 v1|) ∈ spec(O).

▶ Example 5.7. Revisiting Example 1, in a standard set object Set the operations remove(v)
and remove(v) (for any v) are strongly non-commutative. Indeed, we can take any p1 ̸= p2,
h0 = (p: |add(v) | ) (with any p ∈ P), u1 = u2 = true, and v1 = v2 = false, and we have
(p: |add(v) | ) · (p1: |remove(v) true| ) · (p2: |remove(v) false| ) ∈ spec(Set) and (p: |add(v) | ) ·
(p2: |remove(v) true|) · (p1: |remove(v) false|) ∈ spec(Set).

▶ Example 5.8. Consider a consensus object Consensus with operations propose(0) and
propose(1) and return values {0, 1}. Its specification spec(Consensus) consists of all histories
h ∈ ComSeqH(Consensus) such that every propose(v) invoked in h returns the same value,
which is either v or the argument of one of the previously invoked propose operations. The
operations propose(0) and propose(1) are two-sided non-commutative. Indeed, for any
p1 ≠ p2 and h0 = ε, we have (p1: |propose(0) 0| ) · (p2: |propose(1) 0| ) ∈ spec(Consensus) and
(p2: |propose(1) 1|) · (p1: |propose(0) 1|) ∈ spec(Consensus).

Examples for other objects with consensus number > 1, such as swap, compare-and-swap,
fetch-and-add, queues, stacks, are constructed similarly. In [14] we show that deterministic
objects with a pair of two-sided non-commutative operations must have consensus numbers
> 1. (We conjecture that the converse also holds.)

We prove in [14] that two-sided non-commutative operations imply non-weakly merge-
ability:

▶ Lemma 5.9. Let O be a deterministic object and o1, o2 ∈ ops(O) be two-sided non-
commutative operations in spec(O). Then, there exist h0 ∈ ComSeqH(O), processes p1 ̸= p2
and response values u1, u2 ∈ rets(O) such that (p1: |o1u1| ) and (p2: |o2u2| ) are not weakly
mergeable in spec(O) after h0.

We now apply the merge theorem and the properties SCMw, TSOw, RAw from Table 1
to obtain the lower bounds of LOO under SCM along with impossibilities for TSO and RA
(see [14] for the proof):

▶ Theorem 5.10. Let O be a deterministic object with a pair of strongly non-commutative
operations o1, o2 ∈ ops(O) in spec(O). Let I be a spec-available implementation of O that
is consistent under a memory model M . Then, there exist p1 ∈ P and π1 ∈ traces(I(o1, p1))
such that the following hold for σ1 = π1|M:
(a) if M = SCM, then σ1 either has an RMW or is not RBW; and
(b) if M ∈ {TSO, RA}, then σ1 either has an RMW or is not LTF (i.e., has a fence in the

middle).

Since deterministic objects with a pair of two-sided non-commutative operations have
consensus numbers > 1, their wait-free implementations must rely on RMWs [20]. We
therefore consider their obstruction-free implementations to obtain upper bounds in the
absence of RMWs.2 In [14], we show that every object in this class has an obstruction-
free implementation under TSO with a fence pattern optimal w.r.t. our lower bounds in

2 It is known that every deterministic object has read/write obstruction-free linearizable implementations
in SCM [21].



A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 11:15

contention-free executions, i.e., when a process runs solo for long enough to complete its
operation. For that, we use a variant of a universal construction from [33] instantiated on
top of a TSO-based obstruction-free consensus algorithm. The latter is obtained from shared
memory Paxos [18] using our fence-insertion strategy.

Finally, in §B, we derive lower bounds for mutual exclusion. We define an object Lock
that can be implemented by means of an entry section of a mutual exclusion algorithm. We
show that Lock has a pair of non-weakly mergeable histories, and apply the merge theorem
to obtain the lower bounds of LOO for SCM and their counterparts for TSO and RA. A
matching upper bound for TSO is obtained by adding a single fence to the entry section of
the Bakery algorithm [28].

5.3 Snapshot and Counter
We next explore implementability of snapshot [1] (Snapshot) and (non-monotone) counter
(Counter). The former is known to be universal w.r.t. a large class of objects implementable
in read/write SCM [5], and the latter has been studied extensively as a building block for
randomized consensus (e.g., [4, 2]).

In §C, we revisit and formalize Example 2, and obtain lower bounds on memory events and
fence structure that must be exhibited by any consistent and spec-available implementation
of snapshot and counter under the memory models we consider. Specifically, we obtain the
following for snapshot:

▶ Theorem 5.11. Let I be a spec-available implementation of Snapshot that is consistent
under a memory model M . Then, there exist p, p′ ∈ P, π1 ∈ traces(I(update(w), p)) for
some i ∈ {1..m} and w ∈ W , and π2 ∈ traces(I(scan, p′)) such that the following hold for
σ1 = π1|M and σ2 = π2|M:
(a) if M = SCM, then σ1 · σ2 either has an RMW or is not RBW;
(b) if M = TSO, then σ1 · σ2 either has an RMW or is not LTF (i.e., has a fence in the

middle); and
(c) if M = RA, then (i) either σ1 or σ2 has an RMW, or (ii) either σ1 or σ2 is not LTF.

We show that a similar lower bounds holds for Counter for π1 ∈ traces(I(o, p)) with
o ∈ {inc, dec} and π2 ∈ traces(I(read, p′)).

The wait-free linearizable implementations of both Snapshot and Counter under SCM
are well-known [1, 5]. The implementation of update operation uses collect followed by a
write, and the implementation of scan uses a sequence of three collects. Counter can be
implemented on top of a snapshot using a single call to update to implement increment and
decrement, and a single call to scan to implement read. Both implementations exhibit a
single read-after-write across a consecutive pair of update and read, and are therefore optimal
w.r.t. to the above lower bounds.

To obtain optimal upper bounds for TSO, the above algorithms are modified using the
fence-insertion strategy discussed above that inserts a fence at the end of update for snapshot,
and at the end of the increment and decrement for counter. Optimal implementations under
RA are left for future work.

Max-register vs. snapshot and counter. Our analysis yields the first sharp separation
between max-register on the one hand and snapshot and counter on the other in terms of
their implementability under RA using only reads, writes, and fences. Specifically, as we
show above, max-register can be implemented under RA using fences only at the beginning

DISC 2024



11:16 What Cannot Be Implemented on Weak Memory?

and the end of read and write. On the other hand, our lower bounds for snapshot and
counter show that this fence placement is insufficient to correctly implement these objects
under RA. We are unaware of prior results separating these objects. In particular, all of
them are equivalent w.r.t. their power to solve consensus under SCM [20].

6 Related Work

Our mergeability approach is inspired by the work of Kawash [25], who showed that, without
fences and RMWs, the critical section problem, as well as certain producer/consumer
coordination problems, cannot be solved in a variety of weak memory models that were
studied at that time (including TSO). However, while Kawash considers specific tasks, we
derive a general result by relating mergeability of traces in the underlying memory model to
mergeability at the level of the implemented object histories.3 Moreover, we also use different
mergeability properties to differentiate between weak memory models.

We have already discussed how the results of [6], which were based on a covering
technique [13], are obtained by a simpler merge-based argument. The main advantage of our
approach is its applicability beyond “strongly non-commutative operations” (see Lem. 5.9),
as well as the fact that we directly handle weak memory models, which is only implicit in [6].
In addition, [6] is restricted to deterministic objects and implementations, while our merge
theorem avoids these assumptions by stating more precise availability requirements.

Through consensus numbers, Herlihy [20] already showed that for some of the ob-
jects we consider here, such as sets, queues and stacks, RMW operations are required in
any lock-free linearizable implementation. This result does not have any implication for
obstruction-freedom. In fact, for every object, there is a read/write obstruction-free lineariz-
able implementation under SCM (as consensus is universal and read/write obstruction-free
solvable [20, 21]). Due to our results, if the object has non-weakly mergeable operations, any
such implementation cannot be RBW.

For several objects such as snapshot, counter, max register, work stealing and even
relaxations of queues, stacks, and data sketches, there have been proposed lock-free or wait-free
read/write linearizable (or variants of it) RBW implementations under SCM [5, 1, 3, 15, 16, 34].
None of these works relate the possibility of such implementations with mergeability properties
of the objects implemented. Morrison and Afek [30] show how memory fences can be
eliminated on TSO in the implementation of work stealing by assuming that the store buffers
are bounded in size, and using this bound in the thief implementation to guarantee that a
write is propagated to main memory after a number of subsequent writes. In contrast, the
store buffers in the TSO model we study are unbounded, and hence their implementation is
not considered linearizable.

In the weak memory literature, some works studied robustness of concurrent implemen-
tations under TSO and RA, where a robust implementation cannot have any non-SCM
behaviors [11, 9, 27, 10, 29]. We note, however, that robustness does not entail that
linearizability under SCM is transferred to linearizability under TSO or RA (a register
implementation that uses one shared variable is robust, but fences are needed to ensure
linearizability under TSO and RA). This is different from the fence-insertion strategy in §5.1
that transfers linearizability under SCM to linearizability under TSO. Other works stud-
ied alternatives to linearizability for TSO and RA [12, 35, 32], whereas we take standard
linearizability as a correctness criterion.

3 We also note that Kawash’s merge strategy for TSO traces is unnecessarily complex, while our proofs
directly exploit the local store buffers for avoiding inter-thread communication.



A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 11:17

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. J. ACM, 40(4):873–890, 1993. doi:10.1145/153724.153741.
2 James Aspnes. Time-and space-efficient randomized consensus. In PODC, pages 325–331,

New York, NY, USA, 1990. ACM. doi:10.1145/93385.93433.
3 James Aspnes, Hagit Attiya, and Keren Censor-Hillel. Polylogarithmic concurrent data

structures from monotone circuits. J. ACM, 59(1):2:1–2:24, 2012. doi:10.1145/2108242.
2108244.

4 James Aspnes and Maurice Herlihy. Fast randomized consensus using shared memory. Journal
of Algorithms, 11(3):441–461, 1990. doi:10.1016/0196-6774(90)90021-6.

5 James Aspnes and Maurice Herlihy. Wait-free data structures in the asynchronous PRAM
model. In SPAA, pages 340–349. ACM, 1990. doi:10.1145/97444.97701.

6 Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M. Michael, and
Martin T. Vechev. Laws of order: expensive synchronization in concurrent algorithms cannot
be eliminated. In POPL, pages 487–498. ACM, 2011. doi:10.1145/1926385.1926442.

7 Mirza Ahad Baig, Danny Hendler, Alessia Milani, and Corentin Travers. Long-lived counters
with polylogarithmic amortized step complexity. Distributed Comput., 36(1):29–43, 2023.
doi:10.1007/S00446-022-00439-5.

8 Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematizing
C++ concurrency. In POPL, pages 55–66, New York, NY, USA, 2011. ACM. doi:10.1145/
1926385.1926394.

9 Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Checking and enforcing robustness
against TSO. In ESOP, volume 7792 of LNCS, pages 533–553. Springer, 2013. doi:10.1007/
978-3-642-37036-6_29.

10 Ahmed Bouajjani, Constantin Enea, Suha Orhun Mutluergil, and Serdar Tasiran. Reasoning
about TSO programs using reduction and abstraction. In CAV, pages 336–353, Cham, 2018.
Springer International Publishing. doi:10.1007/978-3-319-96142-2_21.

11 Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. Deciding robustness against total
store ordering. In ICALP (2), pages 428–440, 2011. doi:10.1007/978-3-642-22012-8_34.

12 Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. Concurrent
library correctness on the TSO memory model. In ESOP, pages 87–107, Berlin, Heidelberg,
2012. Springer. doi:10.1007/978-3-642-28869-2_5.

13 James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual exclusion. Inf.
Comput., 107(2):171–184, 1993. doi:10.1006/INCO.1993.1065.

14 Armando Castañeda, Gregory Chockler, Brijesh Dongol, and Ori Lahav. What cannot be
implemented on weak memory? CoRR, abs/2405.16611, 2024. doi:10.48550/arXiv.2405.
16611.

15 Armando Castañeda and Miguel Piña. Read/write fence-free work-stealing with multiplicity.
J. Parallel Distributed Comput., 186:104816, 2024. doi:10.1016/J.JPDC.2023.104816.

16 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Set-linearizable implementations
from read/write operations: Sets, fetch &increment, stacks and queues with multiplicity.
Distributed Comput., 36(2):89–106, 2023. doi:10.1007/s00446-022-00440-y.

17 Edsger W. Dijkstra. EWD123: Cooperating Sequential Processes. Technical report, University
of Texas, 1965. URL: http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.
html.

18 Eli Gafni and Leslie Lamport. Disk paxos. Distrib. Comput., 16(1):1–20, February 2003.
doi:10.1007/S00446-002-0070-8.

19 Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002. doi:10.1145/
564585.564601.

20 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
1991. doi:10.1145/114005.102808.

DISC 2024

https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/93385.93433
https://doi.org/10.1145/2108242.2108244
https://doi.org/10.1145/2108242.2108244
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1145/97444.97701
https://doi.org/10.1145/1926385.1926442
https://doi.org/10.1007/S00446-022-00439-5
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-319-96142-2_21
https://doi.org/10.1007/978-3-642-22012-8_34
https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1006/INCO.1993.1065
https://doi.org/10.48550/arXiv.2405.16611
https://doi.org/10.48550/arXiv.2405.16611
https://doi.org/10.1016/J.JPDC.2023.104816
https://doi.org/10.1007/s00446-022-00440-y
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
https://doi.org/10.1007/S00446-002-0070-8
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/114005.102808


11:18 What Cannot Be Implemented on Weak Memory?

21 Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization: Double-
ended queues as an example. In ICDCS, pages 522–529, 2003. doi:10.1109/ICDCS.2003.
1203503.

22 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi:10.1145/78969.78972.

23 Intel. Intel® 64 and IA-32 architectures software developer’s manual. Volume 3B: system
programming guide, Part, 2(11):1–64, 2011.

24 Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A promising
semantics for relaxed-memory concurrency. In POPL, pages 175–189, New York, NY, USA,
2017. ACM. doi:10.1145/3009837.3009850.

25 J. Y. Kawash. Limitation and capabilities of weak memory consistency systems. PhD thesis,
University of Calgary, 2000. doi:10.11575/PRISM/19939.

26 Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. Taming release-acquire consistency. In
POPL, pages 649–662, New York, NY, USA, 2016. ACM. doi:10.1145/2837614.2837643.

27 Ori Lahav and Roy Margalit. Robustness against release/acquire semantics. In PLDI, pages
126–141, New York, NY, USA, 2019. ACM. doi:10.1145/3314221.3314604.

28 Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem. Commun.
ACM, 17(8):453–455, 1974. doi:10.1145/361082.361093.

29 Roy Margalit and Ori Lahav. Verifying observational robustness against a C11-style memory
model. Proc. ACM Program. Lang., 5(POPL), January 2021. doi:10.1145/3434285.

30 Adam Morrison and Yehuda Afek. Fence-free work stealing on bounded TSO processors. In
ASPLOS, pages 413–426. ACM, 2014. doi:10.1145/2541940.2541987.

31 Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-
TSO. In TPHOLs, pages 391–407, Berlin, Heidelberg, 2009. Springer. doi:10.1007/
978-3-642-03359-9_27.

32 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis. On library
correctness under weak memory consistency: Specifying and verifying concurrent libraries
under declarative consistency models. Proc. ACM Program. Lang., 3(POPL), January 2019.
doi:10.1145/3290381.

33 Michel Raynal. Distributed universal construcitons: a guided tour. Bulleting of EATCS:
Distributed Computing Column, (121), 2011.

34 Arik Rinberg and Idit Keidar. Intermediate value linearizability: A quantitative correctness
criterion. In DISC, volume 179 of LIPIcs, pages 2:1–2:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.DISC.2020.2.

35 Abhishek Kr Singh and Ori Lahav. An operational approach to library abstraction under
relaxed memory concurrency. Proc. ACM Program. Lang., 7(POPL):1542–1572, 2023. doi:
10.1145/3571246.

36 SPARC International Inc. The SPARC architecture manual (version 9). Prentice-Hall, 1994.

A Fence-optimal Max Register Under RA

The pseudocode of a linearizable wait-free implementation of MaxReg under RA is given
in Algorithm 1. The function collect(M) reads one by one, in an arbitrary order, the entries
of M , and returns an array with the read values. The algorithm is fence-optimal. It uses one
fence at the beginning and one fence at the end of every operation, thus matching the lower
bounds of Thm. 5.5. The correctness proof appears in [14].

B Mutual Exclusion

We use the merge theorem (Thm. 4.8) for the case of non-weakly mergeable histories and
the mergeability results for the memory models to establish minimum synchronization

https://doi.org/10.1109/ICDCS.2003.1203503
https://doi.org/10.1109/ICDCS.2003.1203503
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/3434285
https://doi.org/10.1145/2541940.2541987
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3290381
https://doi.org/10.4230/LIPIcs.DISC.2020.2
https://doi.org/10.1145/3571246
https://doi.org/10.1145/3571246


A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 11:19

Algorithm 1 MaxReg implementation in RA. Algorithm for proces pi.

Shared variables:
int[n] M = [0, ... , 0]

1: procedure read( )
2: fence()
3: m[] = collect(M)
4: fence()
5: return max(m[])

6: procedure write(v)
7: fence()
8: m[] = collect(M)
9: if max(m[]) < v then

10: M [i] = v

11: fence()
12: return ack

requirements for mutual exclusion. Our result for SCM reproves the corresponding lower
bound of [6].

Consider a (non-standard) lock object Lock with ops(Lock) ≜ {acquire} and rets(Lock) ≜
{ack}. Its specification is given by

spec(Lock) ≜ {ε} ∪ {(p: |acquire |) | p ∈ P}.

The histories (p: |acquire | ) and (p′: |acquire | ) where p ̸= p′ are not weakly mergeable.
Thus, by the merge theorem and properties SCMw, TSOw, and RAw in Table 1, we have:

▶ Theorem B.1. Let I be a spec-available implementation of Lock that is consistent under
a memory model M . Then, there exist p ∈ P and π ∈ traces(I(acquire, p)) such that the
following hold for σ = π|M:
(a) if M = SCM, then σ either has an RMW event or is not RBW; and
(b) if M ∈ {TSO, RA}, then σ either has an RMW event or a fence.

The proof of this theorem is identical to that of Thm. 5.10, which appears in [14]. Since
the implementation of the entry section of a mutual exclusion algorithm can be used to
implement acquire, we obtain that entry section of a solo-terminating mutual exclusion
algorithm on SCM has to use a RAW pattern or an RMW; and on TSO or RA, it must use
an RMW or a fence.

There exist many algorithms implementing starvation-free mutual exclusion under SCM,
which use the RAW pattern to implement the entry section. As before, their counterparts
under TSO can be obtained by adding a fence between every pair of consecutive write and
read (§5.1). For example, the transformation of Bakery algorithm [28] only requires a single
fence to separate a write-only block at the beginning of the entry section from the read-only
block right afterwards. The resulting implementation is therefore tight. Mutual exclusion
under RA with an RMW or a fence has several verified implementations [27].

C Lower and Upper Bounds for Snapshot and Counter

Lower bounds for snapshot. Consider a (single-writer) snapshot object Snapshot storing a
vector of a length |P| over a set of values W (also represented as function in P → W ) with
the initial vector of ⟨⊥, ... ,⊥⟩. The operations are {update(w) | w ∈ V } ∪ {scan}, and its
return values are {ack} ∪ (P → W ). The specification spec(Snapshot) consists of all complete
sequential histories where each scan event returns v such that v(p) is the value written by
the last preceding update by process p, or ⊥ if no such update exists.

DISC 2024



11:20 What Cannot Be Implemented on Weak Memory?

▶ Proposition C.1. Let w, w′ ∈ W , p1, p2, p3 ∈ P, and h1, h2 ∈ ComH(Snapshot), such that
w ̸= w′, i ̸= j, proc-set(h1) ∩ proc-set(h2) = ∅, and the following hold:

h1 ⊑ (p1: |update(w) |) · (p3: |scan v|), where v = λp. if p = p1 then w else ⊥; and
h2 ⊑ (p2: |update(w′) |) · (p2: |scan v′|), where v′ = λp. if p = p2 then w′ else ⊥.

Then, h1 and h2 are not weakly mergeable in spec(Snapshot) after ε.

Next, we use the merge theorem (instantiated for the case of non-weakly mergeable
histories) together with Prop. C.1 and the mergeability results SCMw, TSOw, and RAw from
Table 1 to establish lower bounds on implementability of snapshot.

▶ Theorem 5.11. Let I be a spec-available implementation of Snapshot that is consistent
under a memory model M . Then, there exist p, p′ ∈ P, π1 ∈ traces(I(update(w), p)) for
some i ∈ {1..m} and w ∈ W , and π2 ∈ traces(I(scan, p′)) such that the following hold for
σ1 = π1|M and σ2 = π2|M:
(a) if M = SCM, then σ1 · σ2 either has an RMW or is not RBW;
(b) if M = TSO, then σ1 · σ2 either has an RMW or is not LTF (i.e., has a fence in the

middle); and
(c) if M = RA, then (i) either σ1 or σ2 has an RMW, or (ii) either σ1 or σ2 is not LTF.

Proof. First, consider the case of M ∈ {SCM, TSO}. Let p1, p2 be distinct processes and
consider the histories

h1 = (p1: |update(1) |) · (p1: |scan v|) and h2 = (p2: |update(1) |) · (p2: |scan v′|),

where v = λp. if p = p1 then w else ⊥ and v′ = λp. if p = p2 then w′ else ⊥. Then, by
Prop. C.1, h1 and h2 are not weakly mergeable in spec(Snapshot) after h0 = ε. Clearly, we
also have h1, h2 ∈ spec(Snapshot), and since I is spec-available, it is available w.r.t. both h1
and h2.

Thus, by Thm. 4.8, there exist π′
1, π′

2 ∈ traces(I) such that h1 = π′
1|Snapshot and h2 =

π′
2|Snapshot, and σ′

1 = π′
1|M and σ′

2 = π′
2|M are not weakly mergeable in M . Observe that

π′
1 = π1 ·π2 where π1 ∈ traces(I(update(1), p1)) and π2 ∈ traces(I(scan, p1)). Let σ1 = π1|M

and σ2 = π2|M. Then, σ′
1 = σ1 · σ2. Thus, the required follows properties SCMw and TSOw

in Table 1.

Next, we consider the case of M = RA. Let p1, p2, p3 ∈ P be distinct processes, and
consider the histories:

h1 = ⟨p1:inv(update(1)), p3:inv(scan), p1:res(ack), p3:res(v)⟩ and
h2 = (p2: |update(2) |) · (p2: |scan v′|),

where v = λp. if p = p1 then w else ⊥ and v′ = λp. if p = p2 then w′ else ⊥. Then, by
Prop. C.1, h1 and h2 are not weakly mergeable in spec(Snapshot) after h0 = ε. Note that
h2 ∈ spec(Snapshot). Consider the following sequential history of spec(Snapshot):

h1
seq = (p1: |update(1) |) · (p3: |scan v|)

By assumption, I is available w.r.t. h2 and h1
seq.

Then, by Thm. 4.8, there exist π1 and π2 such that:
πi|Snapshot = hi for i ∈ {1, 2}.
πi ∈ traces(I) for i ∈ {1, 2}.
πi|M ∈ traces(SCM) for i ∈ {1, 2}.
proc-set(πi) = proc-set(hi) for i ∈ {1, 2}.



A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 11:21

For every π′
1 ∈ reordersproc(π1) such that π′

1|M ∈ traces(SCM) and π1|Snapshot = h1 and
π′

2 ∈ reordersproc(π2) such that π′
2|M ∈ traces(SCM) and π2|Snapshot = h2, π′

1|M and π′
2|M

are not weakly mergeable in RA.
Let π′

1 be the sequence obtained from π1 by:
moving ⟨p1, inv(update(1))⟩, ⟨p3, inv(scan)⟩ and all leading fences to the beginning of
the sequence; and
moving ⟨p1, res(ack)⟩, ⟨p3, res(v)⟩ and all trailing fences to the end of the sequence.

In this rearrangement we keep the internal order among moved events as it is in π1. Then,
π′

1 ∈ reordersproc(π1) and π1|Snapshot = h1. Moreover, among memory events, we only moved
fences which are no-ops under SCM. Thus, π1|M ∈ traces(SCM) implies π′

1|M ∈ traces(SCM).
By taking π′

2 = π2, we obtain that π′
1|M and π′

2|M are not weakly mergeable in RA. Finally,
by property RAw in Table 1, we obtain that π′

1|M is not LTF, or it contains some RMW event.
This implies that either π′

1|M|p1 or π′
1|M|p3 are not LTF or contain some RMW event. ◀

Lower bounds for counter. Consider a counter object Counter with the initial value of 0,
and the increment (inc), decrement (dec), and read (read) operations. Then, we have:

▶ Proposition C.2. Let p1, p2, p3 ∈ P and h1, h2 ∈ ComH(Counter) such that proc-set(h1) ∩
proc-set(h2) = ∅ and the following hold:

h1 ⊑ (p1: |inc |) · (p3: |read 1|); and
h2 ⊑ (p2: |dec |) · (p2: |read −1|)

Then, h1 and h2 are not weakly mergeable in spec(Counter) after ε.

Then, the following can be obtained by instantiating the proof of Thm. 5.11 to use
Prop. C.2.

▶ Theorem C.3. Let I be a spec-available implementation of Counter that is consistent under
a memory model M . Then, there exist p, p′ ∈ P, π1 ∈ traces(I(o, p)) where o ∈ {inc, dec}
and π2 ∈ traces(I(read, p′)) such that the following hold for σ1 = π1|M and σ2 = π2|M}:
(a) if M = SCM, then σ1 · σ2 either has a RMW event or is not RBW; and
(b) if M = TSO, then σ1 · σ2 has either a RMW event or is non-LTF (i.e., has a fence in

the middle).
(c) if M = RA, then (i) either σ1 or σ2 has an RMW, or (ii) either σ1 or σ2 is non-LTF.

Upper bounds. There is a wait-free snapshot implementation [1] that is linearizable under
SCM, in which scan performs a sequence of reads, and update performs a sequence of
reads followed by a write, Using the fence insertion strategy in §5.1, a linearizable wait-free
implementation of snapshot under TSO is obtained from such implementations by adding a
single fence at the end of update.

▶ Theorem C.4. For M ∈ {SCM, TSO}, there exists a linearizable wait-free implementation
of snapshot SnapshotM under M such that:
(a) SnapshotSCM uses only a sequence of reads followed by a write to implement update

and only reads to implement scan, and
(b) SnapshotTSO uses only a sequence of reads followed by a write and a fence at the end

to implement update, and only reads to implement scan.

Observe that Thm. C.4 (a) implies that any pair of consecutive update and scan is RBW,
which is tight in the lower bound of Thm. 5.11 (a). Likewise, Thm. C.4 (b) is tight in the
lower bound of Thm. 5.11 (b), which stipulates that a fence is needed somewhere within
consecutively executed update and scan.

DISC 2024



11:22 What Cannot Be Implemented on Weak Memory?

A linearizable wait-free counter can be implemented on top of a snapshot instance
as follows: each process pi stores its contribution to the current counter value in a local
variable ci initialized to 0. To increment (resp., decrement) the counter, pi increments (resp.,
decrements) ci, and then invokes update(ci) to share its contribution with other processes.
To read the counter, a process calls scan and returns the sum of the values stored in the
returned vector.

▶ Theorem C.5. For M ∈ {SCM, TSO}, there exists a linearizable wait-free implementation
of counter CounterM under M such that:
(a) CounterSCM uses only writes to implement inc and dec and only reads to implement

read, and
(b) CounterTSO uses only writes and a fence at the end to implement inc and dec, and

only reads to implement read.

As in the case of snapshot, the synchronization strategy stipulated by this result is optimal
w.r.t. the lower bound of Thm. C.3. The optimal implementations of snapshot and counter
under RA are left for future work.



Faster Cycle Detection in the Congested Clique
Keren Censor-Hillel # Ñ

Department of Computer Science, Technion, Haifa, Israel

Tomer Even #

Department of Computer Science, Technion, Haifa, Israel

Virginia Vassilevska Williams #

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We provide a fast distributed algorithm for detecting h-cycles in the Congested Clique model, whose
running time decreases as the number of h-cycles in the graph increases. In undirected graphs,
constant-round algorithms are known for cycles of even length. Our algorithm greatly improves upon
the state of the art for odd values of h. Moreover, our running time applies also to directed graphs,
in which case the improvement is for all values of h. Further, our techniques allow us to obtain a
triangle detection algorithm in the quantum variant of this model, which is faster than prior work.

A key technical contribution we develop to obtain our fast cycle detection algorithm is a new
algorithm for computing the product of many pairs of small matrices in parallel, which may be of
independent interest.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Distributed algorithms

Keywords and phrases triangle detection, cycle detection, distributed computing, Congested Clique,
quantum computing, Fast matrix multiplication, Fast rectangular matrix multiplication

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.12

Related Version Full Version: https://www.arxiv.org/abs/2408.15132

Funding Keren Censor-Hillel: The research is supported in part by the Israel Science Foundation
(grant 529/23).
Virginia Vassilevska Williams: Supported by NSF Grant CCF-2330048, BSF Grant 2020356, and a
Simons Investigator Award.

Acknowledgements We would like to thank the anonymous reviewers for their feedback.

1 Introduction

Finding small subgraph patterns is a fundamental computational task, with a multitude of
applications for uncovering connections between elements in a data set. Research has been
thriving, addressing the complexity of different variants of subgraph isomorphism for fixed
size subgraph patterns H in a larger host graph G: detecting whether a copy of H exists,
listing all of its copies, counting the number of occurrences, and more.

In this paper, we provide a fast distributed algorithm for detecting h-cycles in the
Congested Clique model [37], in which n machines communicate by sending O(log n)-bit
messages to each other, in synchronous rounds.

The pioneering work of [19] showed that all copies of any fixed h-vertex graph H in an
n node graph can be listed in this model within O(n1−2/h) rounds. This result of course
applies also to the detection variant. For the case when H is a cycle, [12] provided an h-cycle
detection algorithm running in 2O(h)nρ rounds, for both undirected and directed graphs
(henceforth digraphs). Here, ρ is the exponent of distributed fast matrix multiplication
(FMM) in the Congested Clique model, i.e., the value such that O(nρ) rounds are sufficient
for multiplying two n× n matrices. The value of ρ is currently known to be at most 1− 2/ω

where ω is the centralized fast matrix multiplication exponent, and since ω ≤ 2.371552 [2],
© Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ckeren@cs.technion.ac.il
http://ckeren.net.technion.ac.il/
https://orcid.org/0000-0003-4395-5205
mailto:tomer.even@campus.technion.ac.il
https://orcid.org/0009-0001-8942-3637
mailto:virgi@mit.edu
https://orcid.org/0000-0003-4844-2863
https://doi.org/10.4230/LIPIcs.DISC.2024.12
https://www.arxiv.org/abs/2408.15132
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 Faster Cycle Detection in the Congested Clique

0.1 0.2 0.3 0.4 0.5

0.05

0.1

0.15

0.2

logn(t)

logn(#rounds)

Õ((n/t2 + 1)1/3) [19]
O(nρ) [12]

Approach One + Theorem 14
Approach Two

Theorem 1

Figure 1 An illustrative comparison between our results and prior work, for the case of triangles.
For each algorithm, we plot the base-n logarithm of the number of rounds as a function of the base-n
logarithm of the number of triangles.

we get a bound for ρ of 0.15667. In the case of 4-cycles in undirected graphs, [12] obtained a
constant-round detection algorithm, and this result was later generalized by [10] to hold for
detection of any even-length cycle in undirected graphs.

This leaves the complexity of odd-cycle detection as an open question, as well as the
detection of cycles of any length in digraphs. For triangles, [19] showed a detection algorithm
that completes within Õ(n1/3/(t2/3 + 1)) rounds, w.h.p.1, where t is the number of triangles.
Since [20] hints that lower bounds for H detection in this model are not within reach, it
remains open whether the above is optimal.

Question: For a given graph H, is there a faster H-detection algorithm when the number of
instances of H in the input graph is large?

We answer this question in the affirmative, providing a fast h-cycle detection algorithm
whose complexity decreases as the number t of instances of H grows. Our algorithm has the
same running time for detecting h-cycles in graphs as well as in digraphs. For triangles, the
complexity of our algorithm greatly improves upon that of [19]. For larger odd cycles in
graphs, as well as cycles of any length in digraphs, to the best of our knowledge, this is the
first improvement over [12].

An important insight of our main technical contribution is to identify a new refined
parameter as a key player for detection: the number of vertices x that participate in an
h-cycle. Below, we elaborate on our result and technical approach.

1.1 Our Contributions and Technical Overview
To frame our technical contributions, we first briefly overview the two previous approaches
for the case of triangles. In [19], an Õ(n1/3/(t2/3 + 1))-round algorithm is presented, where t

is the number of triangles. The algorithm samples n induced subgraphs, and for each sample

1 High probability in this paper refers to a probability that is at least 1 − 1/nc for some constant c ≥ 1.



K. Censor-Hillel, T. Even, and V. Vassilevska Williams 12:3

it checks for a triangle by letting a dedicated vertex collect the edges of the sample. In [12],
a 2O(h)nρ-round algorithm is presented which employs fast matrix multiplication over the
entire graph.

Warm-up. As a warm-up, consider the following combination of these approaches to get the
best of both worlds, leading to an algorithm that completes in Õ(nρ/(t2ρ + 1)) rounds, which
is already an improvement over the prior state of the art (recall that ρ < 1/3). To obtain
this, we sample only t2 induced subgraphs to which each vertex is added with probability
1/t. Using the second moment method, we can show that at least one sampled subgraph
contains a triangle with probability Ω (1). To check if each subgraph contains a triangle we
use matrix multiplication, and so no vertex has to collect the edges of an entire sample. To
compute the product of t2 square matrices of size n/t, we develop a new algorithm, which
computes the product of s pairs of square matrices of size k in O(nρ−2 · k2 · s1−ρ) rounds.
This algorithm may be of independent interest.

Another natural approach to consider is one that samples a subset of vertices and checks
whether any of these vertices participates in a triangle, rather than attempting to sample
a complete triangle. Here, we can sample each vertex with probability 1/t1/3 and check
whether it is in a triangle by invoking rectangular matrix multiplication. While this too
improves upon the state of the art for some graphs, it is always slower than our first approach.
Note that trying to reduce the running time by sampling with a probability that is smaller
than 1/t1/3 would reach a dead-end since it is not likely to hit any vertex in a triangle in
case all t triangles are induced by a clique of t1/3 vertices. See Figure 1 for a comparison of
the two approaches, as well as the previous algorithms, and our new algorithm.

A caveat is that the first approach does not extend for h-cycles, as the number of samples
it needs to perform increases with h. For example, for C4 detection, if we sample uniformly
random induced subgraph with n/t vertices, it contains a copy of C4 with probability at
least roughly 1/t3 which means we have to sample at least t3 subgraphs to ensure that we
find a copy of C4 with a constant probability. This is slower than the previous best known
algorithm of [12] which takes 2O(h)nρ rounds. In other words, the first approach is slower as
h is larger.

Our contribution. Our key insight is that we can further boost these two approaches such
that they complement each other, in the following sense. For a fixed value of t, the first
approach is better when the number of vertices that participate in a triangle, which we
denote by x, is small, while the second approach is better when x is large. This refinement
of considering the parameter x along with t allows us to bring these two approaches a big
leap forward by obtaining a faster algorithm for triangle detection, as well as an algorithm
for h-cycle detection for longer cycles, in both graphs and digraphs.

Our first algorithm, which we refer to as Find-Cycle, follows the first approach. It samples
s = x3/t subsets of vertices (U1, . . . , Us), by adding each vertex to Ui independently with
probability 1/x. The algorithm then checks for every i ∈ [s] if G[Ui] contains a triangle. This
involves computing the product of s pairs of square matrices of size n/x each, which we do
in Õ(nρ−2 · (n/x)2 · s1−ρ) = Õ(nρ · (1/x)2 · (x3/t)1−ρ) rounds. Using the second moment
method (which is very similar to Chebyshev’s inequality) we show that at least one of the s

induced subgraphs contains a triangle with a constant probability.
Our second algorithm, which we refer to as Find-Vertex-In-Cycle, follows the second

approach. It samples a subset of vertices S, by adding each vertex to S independently with
probability 1/x. The algorithm then checks if one of the vertices from S participates in a

DISC 2024



12:4 Faster Cycle Detection in the Congested Clique

triangle by computing the product of a rectangular matrix of size n/x × n and a square
matrix of size n. Interestingly, the algorithm Find-Vertex-In-Cycle also achieves the same
round complexity, as a function of x, for h-cycle detection, for h = O(1).

Our final algorithm alternates between the two algorithms until one of them terminates.
Among all n vertices with t triangles, the final algorithm is the slowest when the two
algorithms have the same round complexity, which happens when x3−1.82408 = Θ(t).

The following states the running time of our fast h-cycle detection algorithm, and is
proven in Appendix A.

▶ Theorem 1 (h-Cycle Detection). Let G be a (directed) graph with t copies of h-cycles.
There is a randomized Congested Clique algorithm for h-cycle detection, which takes Õ(hO(h) ·
n0.1567/(t

0.4617
h−1.82408 + 1)) rounds w.h.p.

Here, the constants 0.1567, 0.4617 arise from the complexity of rectangular multiplication.
We are able to show that the product of a rectangular matrix of size k×n and a square matrix
can be computed in O(n0.1567/k0.4617) rounds, using the formula of [27] and an adaptation
of the code of [5]. To get a flavor of the above complexity, note that a crucial implication of
Theorem 1 is that we detect a triangle in Õ(1) rounds for graphs with at least t = Ω(n0.3992)
triangles, improving upon the previously known threshold of t = Ω(n1/2) from [19].

Many Matrix Multiplications in Parallel. To implement our Find-Cycle algorithm, we need
to compute the product of many small random square matrices, which are submatrices of
the adjacency matrix of the input graph. We state this informally in the following theorem.

▶ Theorem 2 (Informal). Let k, s be two integers such that k ∈ [
√

n, n], and s ≤ (n/k)2.
Then, in the Congested Clique model, the n vertices can compute the product of s pairs of
square matrices of size k in O(nρ−2 · k2 · s1−ρ) rounds, given that the input is distributed
among the vertices in a “balanced” manner.

The formal definitions and the proof of Theorem 2 appear in Section 3, as well as the
definitions and claims we need for the proof of Theorem 1.

The conceptual contribution of Theorem 2 is as follows. On one hand, it is known that n

vertices can compute the product of n pairs of matrices of size
√

n in a constant number of
rounds, given that the input is balanced, by letting the i-th vertex collect all the entries of
the i-th pair of matrices and computing their product. On the other hand, n vertices can
also compute the product of one square matrix of size n in O(nρ) rounds, as shown in [12].
Theorem 2 gives a smooth trade-off between these two extremes.

Note that [27] provides an algorithm for computing the product of s pairs of square
matrices of size n in O(nρ · s1−ρ) rounds for s ≤ n. The paper also provides an algorithm
for computing the product of s pairs of rectangular matrices of sizes n × m and m × n,
where the bound on the round complexity is more involved and is not given by an analytic
expression, see Section 3.3 for a discussion. Moreover, we need to compute the product of
square matrices of size smaller than n, which is not covered by the above algorithm.

Before providing intuition about our proof of Theorem 2, we explain what we mean by a
balanced input and how the output should be distributed. Given a set of s pairs of square
matrices Q = {(Si, Ti)}i∈[s] of size k each, where sk2 ≤ n2, we think of the input as a “flat”
array of sk2 entries. The input is distributed as follows. The input given to the first vertex
is the first n entries in this array. The second vertex gets the next n entries and so on. For
the output {(Pi)}i∈[s], where Pi = Si · Ti for i ∈ [s], we again transform the set of output
matrices into a flat array and let each vertex learn distinct consecutive n entries from it. Note



K. Censor-Hillel, T. Even, and V. Vassilevska Williams 12:5

that as long as each vertex holds unique n entries from the input, and every vertex knows
which entries from the input every other vertex holds, then the input can be redistributed in
O(1) rounds, using Lemma 8. We therefore define a balanced input as such.

▶ Definition 3 (Balanced Input). An input for n vertices is balanced if it is partitioned
between the vertices such that each vertex holds at most n (unique) entries from the input,
and every vertex knows which entries from the input are held by every other vertex.

Now we can give the intuition behind the proof of Theorem 2. We partition the n vertices
into s sets of size n/s each. For every i ∈ [s] we call the i-th set in the partition the i-th team.
The i-th team is responsible for computing the product (Si, Ti) (this partitioning method is
similar to that of [27]). After partitioning, the problem boils down to computing one product
of square matrices of size k using n/s vertices with bandwidth of size s log n, which we solve
by extending the work of [12], which considers only the product of square matrices of size
equal to the number of vertices.

Recall that our main motivation for this tool of Theorem 2 is to implement the algorithm
Find-Cycle. That is, given a graph G with n vertices, we sample s subsets of vertices
(U1, . . . , Us), where each vertex joins each set independently with probability p. Each set
Ui defines an induced subgraph G[Ui] with an adjacency matrix Ai. We need to compute
(Ai)h for every i ∈ [s], and we denote the set Q = {(Ai, Ai)}i∈[s] as the input, where we
assume s ≤ 1/p2. In order to implement the algorithm Find-Cycle using Theorem 2, we need
to show that Q is a balanced input. However, this does not precisely hold, but we can show
a sufficient guarantee of Q being “almost” balanced w.h.p., in which the requirements in
Definition 3 are weakened. These weaker conditions still allow us to quickly redistributed
the elements into a balanced input in O(log n) rounds w.h.p.

To conclude, we obtain a fast algorithm for h-cycle detection, which beats the previous
state-of-the art for odd-length cycles, as well as directed cycles. The algorithm is faster as
the number of copies of h-cycles increases, where the key parameter for the algorithm and
the analysis is the number of vertices in the graph that participate in an h-cycle.

Triangle Detection in the Quantum Congested Clique Model. Our new matrix multiplic-
ation tool turns out to be helpful for additional tasks. In the quantum setting, we obtain
the following in the Quantum Congested Clique model, which is similar to the Congested
Clique model, but the vertices exchange messages of O(log n) qubits in each round instead of
standard bits.

▶ Theorem 4. There exists a Quantum Congested Clique Õ((n/(t2 + 1))3ρ/4)-round algorithm
for triangle detection, with a success probability of at least 1/2.

Due to space considerations, the proof of Theorem 4 is deferred to the full version of
the paper. Theorem 4 obtains a Õ(n3ρ/4)-round algorithm that remains effective even when
t = 0. This is faster than the previous state-of-the-art algorithm from [12], which takes
O(nρ) rounds and does not leverage the additional capabilities that the Quantum Congested
Clique model offers. For subgraphs other than triangles, there are detection algorithms in the
Quantum Congested Clique which use the extra power of the model. For example, [9] provides
an algorithm for larger clique detection. Moreover, in the quantum Congest model, there
are algorithms for clique and cycle detection [32, 26], which are faster than their Congest
counterparts.

Our algorithm uses a Grover search [30], which is a quantum algorithm to find an element
in an unsorted list of size L, while accessing only

√
|L| entries from the list. Generally, given

a function f : X → {0, 1} and a universe X, Grover search is a quantum algorithm which

DISC 2024



12:6 Faster Cycle Detection in the Congested Clique

finds an x ∈ X such that f(x) = 1 (assuming such x exists), by querying f at most
√
|X|

times w.h.p. In [35] a distributed implementation of Grover search was provided, for the
quantum Congest model, which was later extended to the Quantum Congested Clique model
in [31, 9].

We provide an overview of our algorithm, which has two steps. In the first step, we
sample s = 1/t2 random induced subgraphs (U1, . . . , Us), where each vertex joins every set
independently with probability 1/t. We partition the vertices into s sets, each of n/s vertices,
which we call teams. For i ∈ [s], the i-th team uses Grover search to detect a triangle in the
subgraph G[Ui], as follows. It samples ℓ = 8 log n/q3 subsets of vertices (W1, . . . , Wℓ), where
each vertex from Ui joins each set independently with probability 1/q. The universe for the
search is the set X ≜ {G[Wi]}i∈[ℓ], and the boolean function g is defined as g(G[Wi]) = 1 if
G[Wi] contains a triangle, and 0 otherwise.

The correctness of the algorithm follows because if the graph G has t triangles, then
there exists an index i ∈ [s] such that G[Ui] contains a triangle with probability at least 1/10.
The i-th team finds this triangle using

√
1/q3 evaluations of g w.h.p. The final detail of the

algorithm is to set q such that each evaluation of g takes O(1) rounds, which optimizes the
round complexity of this approach.

Our above fast triangle detection algorithm for the Quantum Congested Clique model is
given in the full version of the paper, as well as a discussion on why extending our approach
to h-cycle detection is not straightforward.

Additional Related Work. In this Congested Clique model, matrix multiplication was first
studied by [20]. After the aforementioned works of [12, 27], the work of [13] showed an
algorithm whose running time improves with the sparsity of the input matrices, and [8]
showed algorithms for sparse matrix multiplication which also enjoy the sparsity of the
output or when only a sparse piece of the output is needed.

The task of listing subgraphs has also received great attention in the Congested Clique
model. Here, each vertex needs to output a list of copies of the subgraph H, such that the
union of the lists is exactly the set of all copies of H in the graph. As mentioned, [19] give an
algorithm for listing all h-vertex graphs within O(n1−2/h) rounds. For triangles, this is known
to be tight by [32, 38]. This optimality extends to larger cliques due to [25]. Listing triangles
in sparse graphs can be done faster, as first shown by [38] with a randomized algorithm, and
then followed up by [13] with a deterministic algorithm. Afterward, [11] showed faster sparse
listing for larger cliques, which also has a deterministic algorithm due to [10].

We mention that in the closely-related Congest model, in which the communication graph
is the input graph itself, rather than being a complete network, the state of affairs is in
stark contrast to the Congested Clique model. For listing cliques, optimal algorithms are
known due to [16, 7], with deterministic solutions in [17, 14, 15]. The underlying approach,
initiated by [16], is to construct an expander decomposition, which partitions the vertices
into components with good expansion (low mixing time). At a very high level, the vertices
of each component list cliques for which some edges are inside the component, and then
recurse over the remaining edges. However, for an algorithmic approach of the Congested
Clique model to have a fast implementation in the Congest model, also when using the known
routing procedures [28, 29], the algorithm has to adhere to certain conditions. In other words,
it is not the case that any algorithm in the Congested Clique model can be executed efficiently
by the components of the expander decomposition in the Congest model.

Specifically, we stress that for the detection variant in Congest, the state of the art even
just for triangles is the same as for listing. That is, even the O(nρ) algorithm of [12] does
not have an implementation in the Congest model, and it is unknown how to detect triangles



K. Censor-Hillel, T. Even, and V. Vassilevska Williams 12:7

in less than the time it takes for listing them (interestingly, the only lower bounds that are
known are that a single round does not suffice [1, 25]). For larger h-cycles, detection for odd
values of h is known to have a complexity of Θ̃(n) [21]. Much work is invest in studying the
complexity of detecting even cycles [21, 34, 10, 22, 9, 39, 26], with the state of the art being
a recent result showing that h-cycles can be detected in Õ(n1−2/h) rounds for even values of
h [26].

Investigations into the subgraph detection problem have also been conducted in additional
models such as the quantum Congest and Quantum Congested Clique models, where vertices
exchange qubits instead of standard bits. In [33], a quantum Congest Õ(n1/4)-round algorithm
for triangle detection was presented, which outperforms the Õ(n1/3)-round Congest algorithm.
This approach was further improved in [9] by developing an Õ(n1/5) rounds quantum
algorithm. Additional upper and lower bounds for cycle detection in the quantum Congest
model were presented in [39, 26]. In [9], an Quantum Congested Clique algorithm for p-clique
detection, for p ≥ 4, was presented, which achieves an Õ(n1−2/(p−1))-round complexity, which
is faster than the classical Congested Clique algorithm. Further research in the quantum
distributed models includes both upper and lower bounds for various problems [23, 31, 39].

There is extensive research about subgraph finding in additional models of distributed
computing. All of these important works are a bit more far from our work here, and hence
we refer the reader to the survey of [6], which contains a recent overview of subgraph finding
algorithms for distributed settings.

2 Preliminaries

We use [n] to denote the set {1, . . . , n}. We denote the base graph by G, its vertices by V (G),
where unless stated otherwise we assume V (G) = [n]. Fix some constant integer h ≥ 0. Let t

denote the number of h-cycles in G, and let VCh
(G) denote the set of vertices that participate

in an h-cycle in G, where we denote by x the size of the set VCh
(G). This parameter plays

a crucial role in the analysis in Appendix A. We establish a connection between the two
parameters x and t as follows.

▶ Definition 5 (δ). For undirected graph, G with t copies of h-cycle, and VCh
(G) = x, we

define δ as such that xh−δ = 2h · t. If G is directed, we define δ as such that xh−δ = h · t.

We present two claims on δ. We show that δ ∈ [0, h− 1], and that the term x−δ is equal to
is the probability for h vertices sampled uniformly at random with replacement from VCh

(G)
to form an h-cycle in G.

▷ Claim 6. Let G be a graph with t copies of an h-cycle and x vertices that participate in
at least one h-cycle. Sample h vertices (v1, . . . , vh) from VCh

(G) uniformly at random with
replacement from VCh

(G). Then the probability that they form an h-cycle is exactly x−δ.

▷ Claim 7. It holds that δ ∈ [0, h− 1].

The proofs of Claims 6 and 7 are deferred to the full version of the paper.

2.1 Additional Tools
▶ Lemma 8 (Lenzen’s Routing Lemma [36]). The following is equivalent to the Congested
Clique model: In every round, each vertex can send (receive) {bi}i∈[n] bits to (from) the i-th
vertex, for any sequence {bi}i∈[n] satisfying

∑n
i=1 bi = O(n log n). In other words, any routing

scheme in which no vertex sends or receives more than O(n) messages can be preformed in
O(1) rounds.

DISC 2024



12:8 Faster Cycle Detection in the Congested Clique

▶ Theorem 9 (Chernoff Bound [18, Corollary 1.10.6.]). Let X1, . . . , Xn be independ-
ent random variables taking values in [0, 1] and X =

∑
i Xi. Let δ ∈ [0, 1]. Then,

Pr [|X − E [X] ≥ δE [X]|] ≤ 2 exp
(
−δ2 · E [X] /3

)
▶ Theorem 10 (Reverse Markov’s inequality [18, (1.6.4)]). Let X be a random variable with
support contained in [0, M ]. Then, for R ∈ R, we have Pr [X > R] ≥ E[X]−R

M−R .

▶ Theorem 11 (FMM-based triangle detection [12]). There is a deterministic algorithm for
triangle detection, which takes O(nρ) rounds.

3 Fast Matrix Multiplication in Congested Clique

3.1 Preliminaries and Balanced Products
In this section, we define the problem of computing s pairs of square matrices of size k

each, as well as defining what is a balance input. We assume throughout the paper that the
matrices are over a field F, where each element can be represented using O(log n) bits. Due
to space constraints, we the proofs of this section are omitted, and can be found in the full
version of the paper. We introduce the following definitions to specify the required input.

▶ Definition 12 (The notations A[i, ∗] and A[∗x∗, ∗y∗]). Let A be some matrix. We denote
the i-th row of A by A[i, ∗]. For a matrix A of dimension n× n and two indices x, y ∈ [

√
k]

for k ≤ n, we also use A[∗x∗, ∗y∗] to denote a matrix of dimension n/
√

k × n/
√

k, which is
the following submatrix of A. For every index v ∈ [n], we split it into three indices v = v1v2v3
where v1, v3 ∈ [n1/2 · k−1/4], v2 ∈ [

√
k]. The expression ∗x∗ then refers to all v for which

v2 = x.

The following definition formally defines the problem of multiple matrix multiplications.

▶ Definition 13 (Product (Q)). Given set of s pairs of square matrices Q = {(Si, Ti)}i∈[s]
of size k × k. In the Product (Q) problem, n nodes need to compute the products of those
pairs of matrices. The input is distributed as follows. Each vertex v ∈ V is assigned a label
ℓ(v) = (i, x, y), where i ∈ [s], and x, y ∈ [

√
n/s]. The vertex v gets as input the submatrix

Si[∗x∗, ∗y∗], Ti[∗x∗, ∗y∗], and has to learn the entries of the submatrix Pi[∗x∗, ∗y∗], where
Pi = Si · Ti for i ∈ [s]. We denote the round complexity of this problem by MM (k, k, k; s).

Note that every vertex can learn the label of each other vertex in O(1) rounds. The following
theorem is the main theorem for this section, in which we provide an upper bound for the
round complexity of the Product (Q) problem.

▶ Theorem 14. For any two integers k, s where k ∈ [
√

n, n] and s ≤ (n/k)2, we have that

MM (k, k, k; s) = O(nρ−2 · k2 · s1−ρ).

To prove the theorem, we first partition the n nodes into s sets of size n/s each. For
every i ∈ [s] we call the i-th set in the partition the i-th team. The i-th team is responsible
for computing the i-th product in Q, i.e., the product (Si, Ti). After partitioning into teams,
the problem boils down to computing one product of square matrices of size k using n/s

node with bandwidth of size s log n. This extends [12], in which only the product of square
matrices of size equal to the number of vertices is considered, and uses [27], in which multiple
products are divided into teams. A crucial step in the algorithm for Theorem 14 is to
compute the product of a single matrix of size R using n′ nodes, which we define next.



K. Censor-Hillel, T. Even, and V. Vassilevska Williams 12:9

▶ Definition 15 (Single9Product (n′, R)). Let H be a team with n′ vertices. Let S, T be two
square matrices of dimension R for some R ∈ [1, (n′)2], and define P = ST . Each vertex
v ∈ H is assigned a label ℓ′(v) = xy, where x, y ∈ [

√
n′]. The input of each vertex v ∈ H

with label ℓ′(v) = xy is S[∗x∗, ∗y∗] and T [∗x∗, ∗y∗], and its output should be P [∗x∗, ∗y∗]. We
denote this problem by Product (n′, R).

▶ Proposition 16. The Single9Product (n′, R) problem can be solved in the Congested Clique
model with n′ vertices in the base graph and bandwidth B, in O((n′)ρ · (R/n′)2 · F

B ) rounds,
where each entry in R can be represented using O(F ) bits. Using bandwidth B means that in
each round, each vertex in the base graph can send B bits to every other vertex.

3.2 Multiple Products of Random Submatrices
In this subsection, we explain how to use the tools we developed in the previous subsection,
to detect an h-cycle in s induced subgraphs sampled uniformly at random. Specifically, we
explain how to compute the h-th power of the adjacency matrices of those subgraphs.

Let U = (U1, . . . , Us) be a set of subsets of vertices, where each subset is a uniformly
random set. That is, each vertex joins to the set Ui independently and uniformly at random,
with probability p. For each i ∈ [s], we denote the the adjacency matrix of G[Ui] by Ai, and
define Q = {(Ai, Ai)}i∈[s].

We explain how to compute the h-th power of {Ai}i∈[s] in parallel by reducing this
problem into the Product(Q) problem. In other words, we explain how to redistribute the
initial input, into an input for the Product(Q) problem. We show that the reduction takes
O(log n) rounds (Proposition 20) w.h.p., and provide an algorithm that tests whether the
reduction algorithm can be executed in O(log n) or not (Claim 23). The testing algorithm
takes O(1) rounds. In case the testing algorithm indicates that we sampled a set U for which
the reduction takes more than O(log n) rounds, we discard the current sample set U , and
sample a new set. We also prove that w.h.p. we will not have to discard the sampled set
(Claim 22).

In Section 3.1, we described an algorithm to compute the product of s pairs of matrices of
size k each. Here, we describe an algorithm to compute the product of 1/pa pairs of matrices
of size at most 4np each. The connection between the parameters s, k, p and a is as follows.
We set k = 4np, and s = 1/pa where a ∈ [0, 2]. We get that sk2 ≤ n2 as desired. We provide
a definition for a set U for which we can redistribute the input in O(log n) rounds. We call
such a set a p-balanced set.

▶ Definition 17 (p-Balanced Set). Given is a parameter p. Let U be a set of subsets of
vertices from V (G). Let a be a constant for which |U| = p−a. We say that U is a p-balanced
set if all the following conditions hold:
1. a ∈ [0, 2] (so |U| ≤ (1/p)2).
2. n−1/2 ≤ p ≤ 1.
3. Every vertex v ∈ V (G) belongs to at most ⌈|U| · p⌉4 log n =

⌈
p1−a

⌉
4 log n sets in U .

4. Every set U ∈ U is of size at most ⌈4np⌉.
Note that (1) and (2) imply that |U| ≤ n.

The next claim proves that if U = (U1, . . . , Up−a) is a p-balanced set, then every vertex v

can learn the IDs of all vertices in Uj for each set Uj to which v belongs.

▷ Claim 18. Let U = (U1, . . . , Up−a) be a p-balanced set, where every vertex knows to which
Uj it belongs. There is an O(log n)-round Congested Clique algorithm that allows each vertex
to learn the IDs of all vertices in Uj for each set Uj to which v belongs.

DISC 2024



12:10 Faster Cycle Detection in the Congested Clique

In what follows, we explain how to route the input of a p-balanced set U , after each
vertex learns the IDs of all vertices in Uj for each set Uj to which v belongs, to match the
input of the Product(Q) problem. This routing takes O(log n) rounds. Before providing a
routing algorithm, we introduce new notation that we need in order to explain how the input
is routed.

▶ Definition 19 (The notation A[i, Uj ]). Recall that V = [n], and let Uj ⊂ V , and let i be
some vertex in Uj. Let Aj be the corresponding adjacency matrix of Uj. For vertex i in the
set Uj we define A[i, Uj ] as the submatrix of A, which contains only the i-th row, and all k

columns, for k ∈ Uj.

▶ Proposition 20 (Redistributing the Input). Given a parameter p, let U ≜ (U1, . . . , Up−a)
be a set of subsets of vertices from V (G) which is a p-balanced set. For each i ∈ [p−a],
let Ai be the adjacency matrix of the induced graph G[Ui]. Label each vertex v ∈ [n] as
ℓ(v) ≜ (x, y, i) ∈ [

√
npa]× [

√
npa]× [p−a] . Partition the vertices into p−a teams, each of

size n · pa, where the j-th team contains all vertices v with label ℓ(v) = (x, y, i) such that
i = j. Then, in parallel, each vertex v with label ℓ(v) = (x, y, i) can learn Ai[∗x∗, ∗y∗] in
O(log n) rounds.

The next corollary address the detection of an h-cycle in one of the sampled graphs. It
follows from Proposition 20 and Theorem 14. The algorithmic aspects of this corollary are
presented in Appendix A.

▶ Corollary 21. Given r and p, let U = (U1, . . . , Ur) be a set of subsets of vertices from
V (G), where U is a p-balanced set, and every vertex in G knows whether it belongs to Uj

for every j ∈ [s]. For each i ∈ [p−a], let Ai be the adjacency matrix of the induced graph
G[Ui]. Label each vertex v ∈ [n] as ℓ(v) ≜ (x, y, i) ∈ [

√
npa]× [

√
npa]× [p−a] . Then, for

every integer h, in parallel, each vertex v with label ℓ(v) = (x, y, i) can learn (Ai)h[∗x∗, ∗y∗]
in O(log(h) · nρ · p2+a(ρ−1) + log n) rounds.

The remainder of this subsection shows that a set U of uniformly random subsets of
vertices is a p-balanced set w.h.p. We also provide an algorithm to test whether a set of
subsets of vertices is a p-balanced set in a constant number of rounds. We create s ≜ p−a

subsets of vertices, by letting each vertex join each set independently with probability p

(each vertex knows p and a). We denote the sets by U = (U1, . . . , Us), and show that U
is p-balanced w.h.p., and that the vertices can determine whether this is the case in O(1)
rounds. If U is indeed p-balanced then in O(log n) rounds each vertex can learn the IDs of
all vertices in each set Uj to which it belongs. This is

▷ Claim 22. U is balanced with probability at least 1− 2/n3.

▷ Claim 23. There is a Congested Clique algorithm that decides if U is p-balanced in O(1)
rounds.

3.3 Rectangular Matrices
Here we set the ground for computing the product of two rectangular matrices in Congested
Clique. We build on the work of [27], which shows that computing the product of two
rectangular matrices S, T of size n× nβ0 and nβ0 × n respectively takes O(no(1)) rounds.



K. Censor-Hillel, T. Even, and V. Vassilevska Williams 12:11

▶ Definition 24 (Rectangular matrix multiplication RM (S, T )). Given two matrices S, T of
dimension n×nz and nz ×n where z ∈ [0, 1], the RM (S, T ) problem is to compute P = S ·T
in the Congested Clique model with n nodes. The input of each vertex i ∈ [n] is S[i, ∗] and
T [∗, i], and its output should be P [i, ∗]. We abuse the notation and use it also to denote the
complexity of the problem by MM (n, n, nz) or RM (nz).

▶ Remark 25. For two matrices S, T of size nz × n and n× n (or n× n and n× nz), we get
the same round complexity [24, Theorem 6]. In this case, we assume the input is of each
vertex i ∈ [n] is S[∗, i] and T [∗, i], and its output should be P [i, ∗].

▶ Definition 26 (The exponent of matrix multiplication). The exponent of the sequential
complexity of computing the product of two matrices of dimensions n × nz and nz × n

respectively is denoted by ω(z). We denote by O(nρ(z)) the round complexity of computing
this product in the Congested Clique model. Let α0 = limε→0 sup {z | ω(z) ≤ 2 + ε} , and
β0 = limε→0 sup {z | ρ(z) = ε}. Then α0 ≥ 0.321334 [40] and β0 ≥ (1 + α0)/2 ≥ 0.660667
[27, 40].

We would like to upper bound the function ρ(z) by some analytic function, which is easy to
work with. To do so, we use the following notation.

▶ Definition 27 (The notation B, A). We will use B, A for two real non-negative constants
such that, for every y ∈ [0, 1− β0] we have ρ(1− y) ≤ B− Ay.

We give two explicit linear functions which bound the function ρ(1− y). First, if the function
ρ(z) is convex, then we can set A = ρ(1)/(1− β0) and B = ρ(1), by taking the line passing
through the points (β0, ρ(β0)) and (1, ρ(1)). This is of course the “best” (minimizing l∞
norm) linear function that upper bounds the function ρ(1 − y). Yet, proving that ρ(z) is
convex is beyond the scope of this paper. Instead, the following claim is an additional explicit
linear function we provide, which does not assume that ρ(z) is convex.

▷ Claim 28. We can set A = 0.4617 and B = 0.1567.

The proof of Claim 28 (appears in the full version) is numeric: We build a step function
which is always above ρ(z), and then find a line which is above the step function in the
desired range. For any choice of B, A that fits Definition 27 and any p ∈ (0, 1) we have
RM (np) = O(nρ(1−logn(1/p))) ≤ O(nB−A·logn(1/p)) = O(nB ·pA). Thus, by the above discussion
and by Claim 28 we get the following.

▶ Conclusion 1. For p ∈ (0, 1) we have RM (np) ≤ O(n0.1567 · p0.4617) . If ρ(z) is convex, we
have RM (np) ≤ O(nρ · pρ/(1−β0)).

References
1 Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Christoph Lenzen. Fooling views: a new

lower bound technique for distributed computations under congestion. Distributed Comput.,
33(6):545–559, 2020. doi:10.1007/S00446-020-00373-4.

2 Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei
Zhou. More asymmetry yields faster matrix multiplication, 2024. arXiv:2404.16349, doi:
10.48550/arXiv.2404.16349.

3 Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2016.
4 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM),

42(4):844–856, 1995. doi:10.1145/210332.210337.

DISC 2024

https://doi.org/10.1007/S00446-020-00373-4
https://arxiv.org/abs/2404.16349
https://doi.org/10.48550/arXiv.2404.16349
https://doi.org/10.48550/arXiv.2404.16349
https://doi.org/10.1145/210332.210337


12:12 Faster Cycle Detection in the Congested Clique

5 Jan van den Brand. Complexity term balancer. www.ocf.berkeley.edu/~vdbrand/
complexity/. Tool to balance complexity terms depending on fast matrix multiplication.

6 Keren Censor-Hillel. Distributed subgraph finding: Progress and challenges (invited talk).
In 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021,
July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages
3:1–3:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. Up-to-date version on Arxiv,
https://doi.org/10.48550/arXiv.2203.06597, 2021. doi:10.4230/LIPIcs.ICALP.2021.3.

7 Keren Censor-Hillel, Yi-Jun Chang, François Le Gall, and Dean Leitersdorf. Tight distributed
listing of cliques. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2878–2891. SIAM, 2021. doi:10.1137/1.9781611976465.171.

8 Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf. Fast approximate
shortest paths in the congested clique. Distributed Comput., 34(6):463–487, 2021. doi:
10.1007/s00446-020-00380-5.

9 Keren Censor-Hillel, Orr Fischer, François Le Gall, Dean Leitersdorf, and Rotem Oshman.
Quantum distributed algorithms for detection of cliques. In Mark Braverman, editor, 13th
Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February
3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 35:1–35:25. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ITCS.2022.35.

10 Keren Censor-Hillel, Orr Fischer, Tzlil Gonen, François Le Gall, Dean Leitersdorf, and Rotem
Oshman. Fast distributed algorithms for girth, cycles and small subgraphs. In Hagit Attiya,
editor, 34th International Symposium on Distributed Computing, DISC 2020, October 12-
16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 33:1–33:17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.DISC.2020.33.

11 Keren Censor-Hillel, François Le Gall, and Dean Leitersdorf. On distributed listing of cliques.
In Proceedings of the 39th Symposium on Principles of Distributed Computing, pages 474–482,
2020. doi:10.1145/3382734.3405742.

12 Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and Jukka
Suomela. Algebraic methods in the congested clique. Distributed Comput., 32(6):461–478,
2019. doi:10.1007/s00446-016-0270-2.

13 Keren Censor-Hillel, Dean Leitersdorf, and Elia Turner. Sparse matrix multiplication and
triangle listing in the congested clique model. Theoretical Computer Science, 809:45–60, 2020.
doi:10.1016/J.TCS.2019.11.006.

14 Keren Censor-Hillel, Dean Leitersdorf, and David Vulakh. Deterministic near-optimal distrib-
uted listing of cliques. In Proceedings of the 2022 ACM Symposium on Principles of Distributed
Computing, pages 271–280, 2022. doi:10.1145/3519270.3538434.

15 Yi-Jun Chang, Shang-En Huang, and Hsin-Hao Su. Deterministic expander routing: Faster
and more versatile. arXiv preprint arXiv:2405.03908, 2024. doi:10.48550/arXiv.2405.03908.

16 Yi-Jun Chang, Seth Pettie, Thatchaphol Saranurak, and Hengjie Zhang. Near-optimal
distributed triangle enumeration via expander decompositions. Journal of the ACM (JACM),
68(3):1–36, 2021. doi:10.1145/3446330.

17 Yi-Jun Chang and Thatchaphol Saranurak. Deterministic distributed expander decomposition
and routing with applications in distributed derandomization. In Sandy Irani, editor, 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 377–388. IEEE, 2020. doi:10.1109/FOCS46700.2020.00043.

18 Benjamin Doerr and Frank Neumann, editors. Theory of Evolutionary Computation - Recent
Developments in Discrete Optimization. Natural Computing Series. Springer, 2020. doi:
10.1007/978-3-030-29414-4.

19 Danny Dolev, Christoph Lenzen, and Shir Peled. “tri, tri again”: finding triangles and small
subgraphs in a distributed setting. In Distributed Computing: 26th International Symposium,
DISC 2012, Salvador, Brazil, October 16-18, 2012. Proceedings 26, pages 195–209. Springer,
2012.

www.ocf.berkeley.edu/~vdbrand/complexity/
www.ocf.berkeley.edu/~vdbrand/complexity/
https://doi.org/10.4230/LIPIcs.ICALP.2021.3
https://doi.org/10.1137/1.9781611976465.171
https://doi.org/10.1007/s00446-020-00380-5
https://doi.org/10.1007/s00446-020-00380-5
https://doi.org/10.4230/LIPICS.ITCS.2022.35
https://doi.org/10.4230/LIPICS.DISC.2020.33
https://doi.org/10.1145/3382734.3405742
https://doi.org/10.1007/s00446-016-0270-2
https://doi.org/10.1016/J.TCS.2019.11.006
https://doi.org/10.1145/3519270.3538434
https://doi.org/10.48550/arXiv.2405.03908
https://doi.org/10.1145/3446330
https://doi.org/10.1109/FOCS46700.2020.00043
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-030-29414-4


K. Censor-Hillel, T. Even, and V. Vassilevska Williams 12:13

20 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Magnús M. Halldórsson and Shlomi Dolev, editors, ACM Symposium on Principles
of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014, pages 367–376. ACM,
2014. doi:10.1145/2611462.2611493.

21 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proceedings of the 2014 ACM symposium on Principles of distributed computing,
pages 367–376, 2014. doi:10.1145/2611462.2611493.

22 Talya Eden, Nimrod Fiat, Orr Fischer, Fabian Kuhn, and Rotem Oshman. Sublinear-time
distributed algorithms for detecting small cliques and even cycles. Distributed Computing,
pages 1–28, 2022.

23 Michael Elkin, Hartmut Klauck, Danupon Nanongkai, and Gopal Pandurangan. Can quantum
communication speed up distributed computation? In Magnús M. Halldórsson and Shlomi
Dolev, editors, ACM Symposium on Principles of Distributed Computing, PODC ’14, Paris,
France, July 15-18, 2014, pages 166–175. ACM, 2014. doi:10.1145/2611462.2611488.

24 Michael Elkin and Ofer Neiman. Centralized, parallel, and distributed multi-source shortest
paths via hopsets and rectangular matrix multiplication. In 39th International Symposium on
Theoretical Aspects of Computer Science (STACS 2022). Schloss-Dagstuhl-Leibniz Zentrum
für Informatik, 2022.

25 Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. Possibilities and impossibilities
for distributed subgraph detection. In Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures, pages 153–162, 2018. doi:10.1145/3210377.3210401.

26 Pierre Fraigniaud, Mael Luce, Frederic Magniez, and Ioan Todinca. Even-cycle detection in
the randomized and quantum congest model. arXiv preprint arXiv:2402.12018, 2024.

27 François Le Gall. Further algebraic algorithms in the congested clique model and applications
to graph-theoretic problems. In Cyril Gavoille and David Ilcinkas, editors, Distributed
Computing - 30th International Symposium, DISC 2016, Paris, France, September 27-29, 2016.
Proceedings, volume 9888 of Lecture Notes in Computer Science, pages 57–70. Springer, 2016.
doi:10.1007/978-3-662-53426-7_5.

28 Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed mst and routing in almost
mixing time. In Proceedings of the ACM Symposium on Principles of Distributed Computing,
pages 131–140, 2017. doi:10.1145/3087801.3087827.

29 Mohsen Ghaffari and Jason Li. New distributed algorithms in almost mixing time via
transformations from parallel algorithms. In 32nd International Symposium on Distributed
Computing, 2018.

30 Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.
doi:10.1145/237814.237866.

31 Taisuke Izumi and François Le Gall. Quantum distributed algorithm for the all-pairs shortest
path problem in the CONGEST-CLIQUE model. In Peter Robinson and Faith Ellen, editors,
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC
2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 84–93. ACM, 2019. doi:
10.1145/3293611.3331628.

32 Taisuke Izumi and François Le Gall. Triangle finding and listing in congest networks. In
Proceedings of the ACM Symposium on Principles of Distributed Computing, pages 381–389,
2017. doi:10.1145/3087801.3087811.

33 Taisuke Izumi, François Le Gall, and Frédéric Magniez. Quantum distributed algorithm for
triangle finding in the congest model. In 37th International Symposium on Theoretical Aspects
of Computer Science (STACS 2020). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

34 Janne H. Korhonen and Joel Rybicki. Deterministic subgraph detection in broadcast CON-
GEST. In James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão, editors, 21st Inter-
national Conference on Principles of Distributed Systems, OPODIS 2017, Lisbon, Portugal,

DISC 2024

https://doi.org/10.1145/2611462.2611493
https://doi.org/10.1145/2611462.2611493
https://doi.org/10.1145/2611462.2611488
https://doi.org/10.1145/3210377.3210401
https://doi.org/10.1007/978-3-662-53426-7_5
https://doi.org/10.1145/3087801.3087827
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/3293611.3331628
https://doi.org/10.1145/3293611.3331628
https://doi.org/10.1145/3087801.3087811


12:14 Faster Cycle Detection in the Congested Clique

December 18-20, 2017, volume 95 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPICS.OPODIS.2017.4.

35 François Le Gall and Frédéric Magniez. Sublinear-time quantum computation of the diameter
in congest networks. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, pages 337–346, 2018. URL: https://dl.acm.org/citation.cfm?id=3212744.

36 Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In
Proceedings of the 2013 ACM symposium on Principles of distributed computing, pages 42–50,
2013. doi:10.1145/2484239.2501983.

37 Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning tree
construction in o (log log n) communication rounds. SIAM journal on computing, 35(1):120–131,
2006. doi:10.1137/S0097539704441848.

38 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. On the distributed complexity of
large-scale graph computations. ACM Transactions on Parallel Computing (TOPC), 8(2):1–28,
2021. doi:10.1145/3460900.

39 Joran van Apeldoorn and Tijn de Vos. A framework for distributed quantum queries in
the CONGEST model. In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM
Symposium on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages
109–119. ACM, 2022. doi:10.1145/3519270.3538413.

40 Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In Proc. SODA, page to appear, 2024.

A h-Cycle Detection

In this section, we prove the following theorem.

▶ Theorem 1 (h-Cycle Detection). Let G be a (directed) graph with t copies of h-cycles.
There is a randomized Congested Clique algorithm for h-cycle detection, which takes Õ(hO(h) ·
n0.1567/(t

0.4617
h−1.82408 + 1)) rounds w.h.p.

We do so by presenting two algorithms and analyzing their running time and success
probability as a function of the parameters n, t, and x. Figure 2 depicts their running times.
All the proofs, and implementation details are omitted due to space constraints and can be
found in the full version of the paper.

Before presenting the algorithms, we overview the color-coding technique [4], which is
a common method used to find paths or cycles of constant length h. To detect an h-cycle,
first color the vertices of the graph using h colors, where each vertex is colored uniformly at
random and independently of all other vertices. Then look for a colorful h-cycle, which is an
h-cycle with exactly one vertex of each color. This provides additional structure, which a
detection algorithm can benefit from. However, not every coloring induces a colorful h-cycle,
which means that to detect an h-cycle, we might have to repeat this experiment multiple
times, until we sample a coloring that induces a colorful h-cycle.

In more detail, given a graph G with n vertices, we sample a uniformly random coloring
φ : V → [h], which means that φ colors each vertex uniformly independently at random. We
then build the auxiliary graph Gφ which is a directed graph, as follows.

▶ Definition 29 (Gφ). Given a graph G, and a coloring φ : V → [h], we define a
new directed graph Gφ on the same vertex set, with a set of directed edges E(Gφ) ≜
{(u, v) ∈ E(G) | φ(v) = (φ(u) + 1) mod h}. That is, only a subset of the edges is kept,
and it consists of the edges from the vertices of color i to the vertices of color (i + 1) mod h,
for i ∈ [h].

https://doi.org/10.4230/LIPICS.OPODIS.2017.4
https://dl.acm.org/citation.cfm?id=3212744
https://doi.org/10.1145/2484239.2501983
https://doi.org/10.1137/S0097539704441848
https://doi.org/10.1145/3460900
https://doi.org/10.1145/3519270.3538413


K. Censor-Hillel, T. Even, and V. Vassilevska Williams 12:15

0.1 0.2 0.3 0.4 0.5

0.05

0.1

0.15

0.2

δ
=

0

δ =
2

δ = 0

δ
=

2

δ
=

1.82408

logn(t)

logn(#rounds)

Õ((n/t2 + 1)1/3) [19]
O(nρ) [12]

Find-Cycle (Theorem 33)
Find-Vertex-In-Cycle

(Theorem 31)
Theorem 1

Figure 2 An illustrative comparison between our results and prior work, for the case of triangles.
For each algorithm, we plot the base-n logarithm of the number of rounds as a function of the base-n
logarithm of the number of triangles. An additional axis represents the value of δ ranging from 0 to
2. For a fixed t, Find-Cycle performs faster as δ decreases, with its round complexity depicted by the
area shaded in teal. Conversely, Find-Vertex-In-Cycle performs better as δ increases, and its round
complexity is shown by the area shaded in violet.

The graph Gφ has the property that every walk of length smaller than h is a simple path,
and every closed walk of length h is a cycle. Here, a walk of length h on a (directed) graph
is a sequence of vertices (v1, v2, . . . , vh+1) not necessarily distinct, such that for i ∈ [h] we
have that (vi, vi+1) is an edge in G. We say that a walk is a simple path if all the vertices in
the walk are distinct. A walk (v1, v2, . . . , vh, vh+1) is closed if v1 = vh+1.

We explain how we benefit from the property that every closed walk of length h in Gφ is
a cycle. Let Aφ denote the adjacency matrix of Gφ. We can compute the h-th power of the
matrix Aφ, and look at the diagonal of the obtained matrix. Then, Gφ is h-cycle free if and
only if all the entries on the diagonal are equal to 0. Clearly, if G does not contain an h-cycle,
then for any coloring φ, we have that Gφ does not contain an h-cycle. The more interesting
property of this random coloring is that if G contains an h-cycle, then the probability that
Gφ contains one is at least 1/hh, as we prove next.

▷ Claim 30. Let G be a graph with at least one h-cycle. Let φ : V → [h] be some uniformly
random coloring. Then Gφ contains an h-cycle with probability at least 1

hh .

A.1 The Algorithm Find-Vertex-In-Cycle
We explain how to detect an h-cycle in time O(MM (n, n, n/x)·log2 n) w.h.p., with a one-sided
error, as stated in the next theorem.

▶ Theorem 31. There exists a randomized Congested Clique algorithm to detect an h-cycle
in time Õ(MM

(
n, n, n

x

)
) w.h.p., with a one-sided error.

Let G be a graph with n vertices and t copies of an h-cycle, for a fixed constant h. For a
graph H, we denote by VCh

(H) the set of vertices that participate in an h-cycle in H. Let
x = |VCh

(G)|. We prove Theorem 31 by analyzing the following random process.

DISC 2024



12:16 Faster Cycle Detection in the Congested Clique

Find-Vertex-In-Cycle. The input of the algorithm is a graph G and some value p ∈ [0, 1].
The output is “True” if at least one h-cycle is detected, and “False” otherwise. The algorithm
works as follows. The algorithm samples a coloring φ : V (G)→ [h], uniformly at random,
and uses it to define a new auxiliary graph Gφ, as explained in Definition 29. Let Vi denote
the set of vertices in Gφ that are assigned the color i, for i ∈ [h]. The algorithm then samples
a subset of vertices from V1, by sampling each vertex independently with probability p. Let
U1 denote the set obtained. Define Fφ as the induced subgraph of Gφ with the vertex set
U1 ∪

⋃h
i=2 Vi. Let AFφ denote the adjacency matrix of the graph Fφ. Next, the algorithm

exactly counts the number of h-cycles in Fφ using rectangular matrix multiplication. That
is, it computes the trace of the h-th power of AFφ

, and outputs “True” if it is not zero,
and “False” otherwise. Clearly, this can be computed by first computing the h-th power of
AFφ

, and then computing its trace, which takes O(MM (n, n, n)) rounds. However, a faster
well-known way to compute this trace, without computing the h-th power of AFφ , is as
follows. Compute the following product:

AFφ
[U1, V2] ·AFφ

[V2, V3] · · ·AFφ
[Vh−1, Vh] ·AFφ

[Vh, U1] ,

where for S, T ⊆ V the matrix AFφ
[S, T ] denotes the rectangular matrix with |S| rows and

|T | columns, every for every s ∈ S and T ∈ t we have that (AFφ [S, T ])s,t = 1 if (s, t) ∈ E(Fφ)
and 0 otherwise. This matrix is also called the biadjacency matrix. The order in which the
multiplications are computed affects the round complexity. The algorithm computes this
product by sequentially multiplying a rectangular matrix of size at most 4np×n and a matrix
of size at most n × n, to get a new matrix of size 4np × n. In other words, the algorithm
first computes the product AFφ [U1, V2] · AFφ [V2, V3], to obtain some matrix B2, and then
computes the product B2 · AFφ

[V3, V4]. In this way, the algorithm does not multiply two
square matrices of size n, and can benefit from the fact that it only computes the product
of one smaller rectangular matrix with a square one. This completes the description of the
algorithm.

Clearly, the algorithm never outputs “True” if the graph G is h-cycle free. In what follows,
we give a lower bound on the probability that it outputs “True” when the graph has h-cycles.

▷ Claim 32. If the sampling probability of vertices from V1 into U1 satisfies p ≥ 4hh

x , then
the algorithm outputs “True” with probability at least 1

4hh .

The implementation of the algorithm in the Congested Clique model appears in the full
version of the paper.

A.2 The Algorithm Find-Cycle
In the next two subsections, we explain how to prove the following theorem.

▶ Theorem 33. There exists a randomized Congested Clique algorithm to detect an h-cycle
in time Õ(MM

(
n
x , n

x , n
x ; xδ

)
) w.h.p., with one-sided error.

Recall that G is a graph with n vertices and t copies of an h-cycle for h = O(1). For a
graph H, we denote by VCh

(H) the set of vertices that participates in an h-cycle in H. Let
x = |VCh

(G)|. We also use δ for the solution for xh−δ = 2ht satisfies that δ ∈ [0, h− 1].

▶ Remark 34. Recall that MM
(

n
x , n

x , n
x ; xδ

)
= O(nρ · x−(2+δ(ρ−1))), by Corollary 21.

We prove Theorem 33 by analyzing the following random process.



K. Censor-Hillel, T. Even, and V. Vassilevska Williams 12:17

Find-Cycle. The input of the algorithm is a graph G A graph G, a value p ∈ [0, 1], and a
value a ∈ [0, 2]. The output is “True” if at least one h-cycle is detected, and “False” otherwise.
The algorithm works as follows.
1. Sample uniformly at random a coloring φ : V → [h].
2. Sample r ← 8(4h)h+2 · p−a subsets of vertices U = (U1, . . . , Ur), where each vertex joins

Ui independently with probability p for i ∈ [r].
3. For every U ∈ U , define two graphs. The first one is the induced graph F = G[U ], and

the second one is the colored directed graph Fφ, obtained from applying φ on F . Denote
the adjacency matrix of Fφ by MU .

4. For U ∈ U , compute the trace of the h-th power of the matrix MU , and output “True” if
for at least one set U , this trace is not zero. Otherwise, output “False”.

Fix some set U ∈ U , and a random coloring φ, and let F = G[U ], and Fφ = (G[U ])φ. We
prove that for p ≥ 1/x, the subgraph Fφ contains an h-cycle with probability Ω

(
x−δ

)
. For

that, it suffices to prove that if p ≥ 1/x then F contains an h-cycle with probability at least
1

xδ·(4h)h+1 : We proved in Claim 30 that if F contains an h-cycle then Fφ contains an h-cycle
with probability at least 1

hh . In the next proposition, we prove that the subgraph F contains
an h-cycle with probability at least 1

xδ·(4h)h+2 , if p ≥ 1
x .

▶ Proposition 35. If p ≥ 1
x , then F contains an h-cycle with probability at least 1

xδ·(4h)h+2 .

To prove the above, we use the second moment method [3, Theorem 4.3.1]. The proof of the
proposition, as well as the implementation of the algorithm in the Congested Clique model, is
deferred to the full version of the paper.

A.3 Wrap-Up: Fast Cycle Detection

In this subsection, we wrap up to prove our fast algorithm for h-cycle detection, when
h = O(1), in both undirected and directed graphs. Our algorithm is the fastest for odd cycle
detection when the number of cycles is super polylogarithmic, and for h-cycle detection in
directed graphs, when the number of h-cycles is super polylogarithmic. For graphs with
small t, our algorithm has the same running time as the fastest algorithm for multiplying
two matrices of size n×n, and our running time is never worse than it up to polylogarithmic
factors.

▶ Theorem 1 (h-Cycle Detection). Let G be a (directed) graph with t copies of h-cycles.
There is a randomized Congested Clique algorithm for h-cycle detection, which takes Õ(hO(h) ·
n0.1567/(t

0.4617
h−1.82408 + 1)) rounds w.h.p.

Let R(G) denote the round complexity of Theorem 1. Let R1(G),R2(G) denote the
round complexity of the algorithms in Theorem 33 and Theorem 31 respectively. To prove
Theorem 1, we show that for every graph G with n vertices and t copies of an h-cycle, we
have min {R1(G),R2(G)} ≤ R(G). To show that, we use a case analysis. Recall that x

denotes the number of vertices in G that participate in an h-cycle, and that xh−δ = 2ht. We
show that if δ ≥ 1.82408, then R2(G) ≤ R(G), and if δ ≤ 1.82408, then R1(G) ≤ R(G).

The theorem then follows, as we can run the algorithms Find-Cycle and Find-Vertex-In-Cycle
one step at a time, until one of them detects a triangle.

Proof of Theorem 1.

DISC 2024



12:18 Faster Cycle Detection in the Congested Clique

The Case δ ≥ 1.82408. The execution of the algorithm Find-Vertex-In-Cycle takes
MM

(
n
x , n, n

)
rounds, where MM

(
n
x , n, n

)
≤ nB ·x−A by Definition 27. Since we assumed that

δ ≥ 1.82408, we have x = (2ht)1/(h−δ) ≥ t1/(h−1.82408). We get that R2(G) ≤ nB · t− A
2−1.82408 .

By plugging in A = 0.4617, B = 0.1567, (see Claim 28) we get that the round complexity is
bounded by n0.1567 · t− 0.4617

2−1.82408 , which completes the proof of this case.
The Case δ ≤ 1.82408. The execution of the algorithm Find-Vertex-In-Cycle takes
MM

(
n
x , n

x , n
x ; xδ

)
rounds, where

MM
(n

x
,

n

x
,

n

x
; xδ

)
=O(nρ/x2+δ(ρ−1))

=O(nρ/t
2+δ(ρ−1)

h−δ )

≤O(nρ/t
2+1.82408(ρ−1)

h−1.82408 )

≤O(n0.1567 · t
0.4617

h−1.82408 )

The first equality follows from Theorem 14. The penultimate inequality follows since the
function δ 7→ 2+δ(ρ−1)

h−δ is monotonically decreasing in the range δ ∈ [0, 1.82408]. The last
inequality follows by setting ρ← 0.1567, which completes the proof. ◀



Deterministic Self-Stabilising Leader Election for
Programmable Matter with Constant Memory
Jérémie Chalopin #

Aix Marseille Univ, CNRS, LIS, Marseille, France

Shantanu Das #

Aix Marseille Univ, CNRS, LIS, Marseille, France

Maria Kokkou #

Aix Marseille Univ, CNRS, LIS, Marseille, France

Abstract
The problem of electing a unique leader is central to all distributed systems, including programmable
matter systems where particles have constant size memory. In this paper, we present a silent
self-stabilising, deterministic, stationary, election algorithm for particles having constant memory,
assuming that the system is simply connected. Our algorithm is elegant and simple, and requires
constant memory per particle. We prove that our algorithm always stabilises to a configuration
with a unique leader, under a daemon satisfying some fairness guarantees (Gouda fairness [27]).
We use the special geometric properties of programmable matter in 2D triangular grids to obtain
the first self-stabilising algorithm for such systems. This result is surprising since it is known that
silent self-stabilising algorithms for election in general distributed networks require Ω(log n) bits of
memory per node, even for ring topologies [20].

2012 ACM Subject Classification Computer systems organization → Fault-tolerant network topolo-
gies; Computing methodologies → Self-organization

Keywords and phrases Leader Election, Programmable Matter, Self-Stabilisation, Silent, Determin-
istic, Unique Leader, Simply Connected, Gouda fair Daemon, Constant Memory

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.13

Related Version Full Version: https://arxiv.org/abs/2408.08775 [11]

Funding This work has been partially supported by ANR project DUCAT (ANR-20-CE48-0006).

1 Introduction

Leader election (LE), introduced by Le Lann [32], allows to distinguish a unique process in the
system as a leader. The leader process can then act as an initiator or a coordinator, for solving
other distributed problems. Thus, election algorithms are often used as building blocks for
many problems in this domain. We are interested in deterministic election algorithms that
are self-stabilising. Since the seminal work of Dijkstra [18], the self-stabilisation paradigm has
been thoroughly investigated (see [19] for a survey). A distributed algorithm is self-stabilising
if when executed on a distributed system in an arbitrary global initial configuration, the
system eventually reaches a legitimate configuration. Self-stabilising protocols are able to
autonomously recover from transient memory failures, without external intervention. A
self-stabilising algorithm is silent if the system always reaches a configuration where the
processes no longer change their states. In the self-stabilising setting, LE is particularly
important, as many self-stabilising algorithms rely on the existence of a distinguished node.

The concept of silent self-stabilising algorithms is also related to proof-labelling schemes [31]
where each node is given a local certificate to verify certain global properties of the system
(e.g., the existence of a unique leader). Each node can check its own certificate and those of
its neighbours to verify it is in a correct configuration. If the global configuration is incorrect,

© Jérémie Chalopin, Shantanu Das, and Maria Kokkou;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jeremie.chalopin@lis-lab.fr
https://orcid.org/0000-0002-2988-8969
mailto:shantanu.das@lis-lab.fr
https://orcid.org/0000-0003-4008-2445
mailto:maria.kokkou@lis-lab.fr
https://orcid.org/0009-0009-8892-3494
https://doi.org/10.4230/LIPIcs.DISC.2024.13
https://arxiv.org/abs/2408.08775
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Self-Stabilising LE with Constant Memory

at least one node should be able to detect an inconsistency using the local certificates. In
this case, this node will change its state, leading its neighbours to change their states and so
on, until the system stabilises to a correct configuration. Blin et al. [5] proved that from
any proof-labelling scheme where each process has a certificate of size ℓ, one can build a
silent self-stabilising algorithm using O(ℓ + log n) bits of memory per process, where n is the
number of processes in the network. One of the standard techniques for self-stabilising LE is
to build a spanning tree rooted at the leader, with all other nodes pointing towards their
parent in the tree. In order to detect cycles when the system is in an incorrect state, the
local certificate at each node includes the hop-distance to the root, in addition to the pointer
to the parent. So the size of the certificate depends on the size of the system.

Here, we consider programmable matter (PM) systems which are distributed systems
consisting of small, intelligent particles that connect to each other and can autonomously
change shapes according to input signals. Such systems should be scalable to arbitrary sizes,
so the particles have constant size memory independent of the size of the system, similar to
finite state automata. This requirement also implies that the particles are anonymous (i.e.,
do not have unique identifiers) and all communication is limited to O(1) size messages. One
well-studied model for PM is the Amoebot model [15] where particles operate on a triangular
grid (see Section 1.2). LE is a well studied problem in this model. When the system is
simply connected, there are stationary deterministic algorithms for election based on the
erosion approach [17] where the algorithm starts by deactivating particles on the boundary
and moving inwards, until the last active node becomes the leader. This approach works
under the minimum assumptions on the system and is the inspiration for our work.

Tolerating faults is important for PM, however none of the existing algorithms for election
in these systems are self-stabilising. The question is: given the constant memory of particles,
is it still possible to obtain a self-stabilising algorithm for PM, using other properties of
such systems? We answer this question in the affirmative for simply connected PM systems,
showing that in this case, a deterministic silent self-stabilising algorithm for LE is indeed
possible. We use the property of such systems that there is a unique boundary in the system
that is well defined, such that any particle can determine whether it is on the boundary.

1.1 Our results
We present a silent self-stabilising, deterministic, stationary, election algorithm for constant-
memory particles, in a simply connected system. We prove our algorithm always stabilises
to a unique leader configuration, under a sequential scheduler with some fairness guarantees.

We first present a proof labelling scheme ensuring the existence of a unique leader. Our
certificate orients the edges of the network and a configuration is valid when: every edge is
oriented, outgoing edges appear consecutively around each particle and there are no directed
triangles. Note that our certificate does not ensure that the global orientation of the network
is acyclic. However, using the geometric properties of the configuration, we are able to show
that any valid configuration has a unique sink. As we are interested in a constant memory
algorithm, one cannot transform our proof labelling scheme into a self-stabilising algorithm
using [5]. However, we design a very simple algorithm to orient the edges of the system. We
show that under our fairness assumption, one always reaches a valid configuration and that
this configuration contains a unique sink that is designated as the leader.

Following the classification of [21], our scheduler is Gouda fair [27]: for any configuration
C that appears infinitely often in the execution, any successor C ′ of C also appears infinitely
often. Since each particle has constant memory, there exists only a finite number of global



J. Chalopin, S. Das, and M. Kokkou 13:3

configurations of the system. In this setting, Gouda fairness ensures that any configuration
that is infinitely often reachable is eventually reached. Observe that a scheduler that at each
step activates a particle chosen uniformly at random is a Gouda fair sequential scheduler.

We do not assume that there exists an agreement on the orientation of the grid, or
even on its chirality. Observe that without simple connectivity and without agreement on
orientation or chirality, it is possible to construct arbitrarily large rings of even size where
all processes have the same geometric information about the system (see Figure 1). In this
setting, the results of [20] show that there is no silent self-stabilising LE algorithm using
constant memory. This is part of our motivation for considering simply connected systems.

5 0

3
4

2
1

5 0

3
4

2
1

5
0

34
2
1

5
0

34
2
1

5
0

34
2
1

5
0 3

4

21

50

3
4

2
1

50

3
4

2
1

50

3
4

2
1

5
0

3 4
2
1

5
0

3 4
2
1

5
0

3 4
2
1

5
03

4

2 1

5
03

4

2 1

5
03

4

2 1

5 0

3
4

2
1

5
0 3

4

21

5
0 3

4

21

Figure 1 An 18-particle ring where for each particle, the occupied neighbours are reached through
port numbers 2 and 4. Two nodes have the same colour if they agree on the grid orientation.

1.2 Related Work
In general networks, there is no self-stabilising leader election algorithm where each process
has a constant memory. More precisely, Dolev et al. [20] established that any silent self-
stabilising algorithm electing a leader in the class of rings requires Ω(log n) bits of memory
per process (where n is the size of the ring). This lower bound only uses the assumption
that there exists a silent correct configuration and holds for any kind of scheduler. More
recently, Blin et al. [4] showed that non-silent self-stabilising algorithms require Ω(log log n)
bits of memory per process in order to elect a leader synchronously in the class of rings.
Note that these lower bounds are tight in the sense that for rings, there exist silent (resp.
non-silent) self-stabilising LE algorithms using O(log n) (resp., O(log log n)) bits of memory
per process [12, 6]. Constant memory self stabilising algorithms for rings can be designed
under special assumptions, as in [30] which gives an algorithm for prime sized rings assuming
a sequential scheduler. However, [20] established that this algorithm cannot be made silent.

There exists a large literature about distributed systems where each process has finite
memory. Cellular automata, introduced in the 40s in [34] are one of the best known models
of this kind. More recently, numerous papers have been devoted to population protocols
introduced in [1]. In this model, there is a population of finite-state agents and at each step,
a scheduler picks two agents that jointly update their states according to their current states.
The scheduler satisfies the same fairness condition as the one we consider in this paper:
any configuration that is infinitely often reachable is eventually reached. In this setting,
there exist election protocols using only two states when all agents start in the same state.
However, when considering self-stabilising LE in this setting, Cai et al. [9] showed that a

DISC 2024



13:4 Self-Stabilising LE with Constant Memory

protocol using n − 1 states cannot solve the problem in a population of n agents. This shows
that even with a Gouda fair scheduler, it is not always possible to solve the LE problem in a
self-stabilising way when processes have constant memory.

PM was introduced in [33] and has since gained popularity. Several models have been
introduced, such as [28, 35, 24]. In this paper we consider the well studied Amoebot model
[15, 13]. In this model, constant-memory computational entities, called particles, operate in
a triangular grid. Each node of the grid is occupied by at most one particle and particles
can determine whether nodes at distance one are occupied by particles. Each particle can
communicate with its neighbours by reading their respective registers. It is usually assumed
that particles do not have any global sense of direction, while some papers assume that the
particles have a common sense of rotational orientation, called chirality (e.g., [22, 3]) or that
particles agree on a common direction (e.g., [10]). In Amoebot, particles have the ability to
move to neighbouring nodes (e.g., [22, 23]), which we do not use. The problem of LE has
been studied in the specific context of PM in both 2D (e.g., [3, 17]) and 3D settings (e.g.,
[26, 8]) and both deterministic (e.g., [22]) and randomized algorithms (e.g., [16]) have been
proposed. The existing algorithms for LE in PM can be categorized based on the use of two
main techniques: erosion (e.g., [17, 25]) and message passing on boundaries (e.g., [3, 16]).

Research on self-stabilisation in the PM setting is more limited. In [16], a randomised
LE algorithm is given and the authors discuss the possibility of making it self-stabilising
by combining it with techniques from [2, 29]. However, it is assumed that particles have
O(log∗ n) memory. In the same paper, it is argued that self-stabilisation in PM is not possible
for problems where movement is needed, as the system can become permanently disconnected.
A self-stabilising algorithm for constructing a spanning forest was introduced in [14]. The
algorithm in [14] is deterministic and particles have constant memory. However, it is assumed
that at least one non-faulty special particle always remains in the system. The need to
extend the Amoebot model to also address self-stabilising algorithms is also discussed in [13].

2 Model

Let G∆ be an infinite regular triangular grid where each node has six neighbours. A connected
particle system, P, is simply connected if G∆\P is connected. We assume each node of the
simply connected P contains exactly one particle. We call nodes that are in P occupied and
those that are not in P, empty. Each particle is anonymous, has constant memory and is
stationary (i.e., does not move). A particle is incident to six ports, leading to consecutive
neighbouring nodes in G∆. Each port is associated with a label so that ports i and i + 1
mod 6 lead to neighbouring nodes. A particle knows if each port leads to an occupied or
empty node. For each occupied neighbour q, the particle p knows the label assigned by q

to qp. Each particle has a constant-size register with arbitrary initial contents. A particle
can read the register of each occupied neighbour but can only write in its own register. All
particles are inactive unless activated by the scheduler. An activated particle reads the
contents of its register and the register of each of the neighbouring particles. Based on this
information it updates the contents of its own register according to the given algorithm.

We call P , the support of the particle system. The configuration C of the system at any
time, consists of the set P and the contents of the registers of each particle in P . A distributed
algorithm A is a set of local rules that particles execute. The rules of the algorithm depend
only on the content of the registers of the particles and of its neighbours and they modify
only the register of the particle. For an algorithm A, a configuration C, and a particle p,
we say that p is activable in C, if the execution of A modifies the contents of the register



J. Chalopin, S. Das, and M. Kokkou 13:5

of p. For two configurations, C and C ′ that have the same support, we say that C ′ is a
successor of C if there exists an activable particle p in C such that, when p executes A, C ′ is
obtained. An execution S is an infinite sequence of configurations S = C0, C1, . . . such that
for any i, Ci and Ci+1 have the same support and either there exists an activable particle
pi such that when pi executes A in Ci, Ci+1 is obtained, or there is no activable particle
and Ci+1 = Ci. If there exists a step where Ci+1 = Ci, we call Ci a final configuration. An
execution is Gouda fair [21, 27] if for any configuration C that appears infinitely often in
the execution, any successor C ′ of C also appears infinitely often. An algorithm A is silent
self-stabilising under a Gouda fair scheduler, if any such execution of the algorithm contains
a final configuration C∗ that is valid. The notion of valid configurations depends on the
algorithm. In the next section, we define the valid configurations we consider in this paper.

We now present some notations and observations about the geometry of the system. Let
v and v′ be two neighbouring nodes in P. We say that an edge that is oriented from v to a
neighbouring node v′ is outgoing for v and incoming for v′. We write

−→
vv′ to denote an edge

directed from v to v′ and vv′ to denote an undirected edge or an edge whose orientation is
not known. Particles with at least one neighbour that is not in P are on the boundary. Since
P is simply connected, there exists only one boundary in the system. Let p be a particle on
the boundary. We say that p is pending if p has a unique neighbouring particle in P . We say
that p is an articulation point if the removal of p disconnects P . If p is neither pending, nor
an articulation point, then p is incident to two distinct edges pq, pr on the boundary of P.
In this case, since P is simply connected, there is a path of particles in the 1-neighbourhood
of p from q to r. We say that p is on a θ ∈ {60◦, 120◦, 180◦, 240◦} angle to denote the angle
that is formed when moving from q to r around p and no empty nodes are encountered. By
slight abuse of notation, we also call a particle on a θ angle a θ particle. It is easy to see
that a particle on the boundary cannot be on a 300◦ angle, otherwise q and r are adjacent
and p is not on the boundary, a contradiction. P is 2–connected if it does not contain any
articulation point. Notice that in systems with at least three particles, a system with no
articulation point does not contain any pending particle. In a 2–connected particle system,
the following observation implies that there should be a 60◦ or a 120◦ particle.

▶ Observation 1. If P is 2–connected and |P| ≥ 3, particles on the boundary satisfy the
formula 2n60 + n120 − n240 = 6, where nθ is the number of θ particles on the boundary.

Proof. If P is 2–connected, it forms a simple polygon. The sum of internal angles of a simple
polygon is (n − 2)π, where n is the number of vertices of the polygon. So (n60 + n120 + n180 +
n240 − 2)π = n60

π
3 + n120

2π
3 + n180π + n240

4π
3 , that is, 2n60 + n120 − n240 = 6. ◀

▶ Lemma 2. In any simply connected particle system P with at least two particles, the
boundary of P contains one of following:
1. a pending particle, or
2. a 60◦ particle, or
3. two 120◦ particles that are connected by a path of 180◦ particles on the boundary.

Proof. A block is a 2–connected component of P . As P contains at least two particles, each
block is either an edge or it contains at least three particles. The block tree of P is a tree
where each vertex is a block and there is an edge between two blocks if they share a vertex
(i.e., an articulation point of P). A leaf, P ′, of the block tree is a 2–connected component of
P and contains a unique articulation point p′ of P. If P ′ contains precisely two particles p′

and q′, then p′ is the unique neighbour of q′ in P and q′ is a pending particle, as in Case 1.

DISC 2024



13:6 Self-Stabilising LE with Constant Memory

Suppose P ′ contains at least three particles. Since P ′ is 2–connected, every particle on
the boundary of P ′ is a θ ∈ {60◦, 120◦, 180◦, 240◦} particle. Any θ particle p ̸= p′ of P ′ is
also a θ particle of P . So a 60◦ particle p ̸= p′ in P ′, is a 60◦ particle in P , which is Case 2.

Suppose now that in P ′, any boundary particle p different from p′ is a θ particle with
θ ∈ {120◦, 180◦, 240◦}. Let n′

120, n′
180, n′

240 be respectively the number of 120◦, 180◦, 240◦

particles in P ′ that are different from p′. Since p′ is an articulation point, p′ cannot have
more than three consecutive particle neighbours. Consequently, in P ′, p′ is either a 60◦ or a
120◦ particle. If p′ is a 60◦ particle in P ′, from Observation 1, we have 2 + n′

120 − n′
240 = 6. If

p′ is a 120◦ particle in P ′, from Observation 1, we have n′
120 + 1 − n′

240 = 6. In both cases, we
then have n′

120 ≥ n′
240 + 4. Let p1, . . . , pn′

120
be the 120◦ particles of P ′ in the order in which

they appear when we move on the boundary of P ′ starting from p′ (i.e., p′ appears between
pn′

120
and p1). Since n′

120 ≥ n′
240 + 4 > n′

240 + 1, there exists an index 1 ≤ i ≤ n′
120 − 1 such

that only 180◦ particles appear on the boundary of P ′ between pi and pi+1. Since all these
180◦ particles are also 180◦ particles on the boundary of P, we are in Case 3. ◀

We explain how two adjacent particles in a triangle detect each other’s chirality. The
label λ(Π) of a path Π = (p1, p2, . . . , pk) in the graph induced by the particles is a sequence
of pairs of labels (a1, b2), (a2, b3), . . . , (ak−1, bk) where for each i, ai (resp. bi) is the port
connecting pi to pi+1 (resp. pi−1).

Following [36], we define the view of depth k of a particle p, denoted by viewk(p), to
be the set of labels λ(Π) of paths Π starting at p of length at most k. Note that for each
1 ≤ j ≤ k, if both (a1, b2), (a2, b3), . . . , (aj , bj+1) and (a1, b2), (a2, b3), . . . , (aj , b′

j+1) belong
to viewk(p), then bj+1 = b′

j+1. From [7], for any constant k, each particle p can construct
viewk(p) in a self stabilising way with constant memory.

▶ Lemma 3. For any triangle of particles pqr, p can infer the chirality of q from view3(p).

Proof. In the following, for a particle p, we let {pi | 0 ≤ i ≤ 5} be the set of ports incident
to p and we assume that either pi+1 = pi + 1 for each 0 ≤ i ≤ 5, or pi+1 = pi − 1 for each
0 ≤ i ≤ 5 (where additions are made modulo 6). We will use the following observation.

▷ Claim 4. If pqr is a triangle, then the ports connecting r to p and q are consecutive.

Consider a triangle pqr. Let p1 (resp. q1) be the port through which p (resp. q) is
connected to q (resp. p). Further, let p (resp. r) be connected to r (resp. p) through p0
(resp. r1). Observe that if p learns the port through which q is connected to r, it also learns
the chirality of q. Note that by Claim 4, this port is either q0 or q2 and the port from r to q

is either r0 or r2. Notice that if r is the only common neighbour of p and q, then only one of
{(p1, q1), (q0, x) | 0 ≤ x ≤ 5} ∪ {(p1, q1), (q2, x) | 0 ≤ x ≤ 5} is in view3(p) and p can then
infer the chirality of q. Suppose now that p and q have two common neighbours r and r′.

▷ Claim 5. The edge qr is labelled (q2, r0) if and only if the following formula holds:

(p1, q1), (q2, r0), (r1, p0) ∈ view3(p) ∧ (p0, r1), (r0, q2), (q1, p1) ∈ view3(p)

∧
[
(p1, q1), (q0, r2) /∈ view3(p) ∨ (p2, r5) /∈ view3(p)

]
Proof. First let us suppose that the edge qr is labelled (q2, r0). Then, the first two expressions
of the formula are satisfied. Let us suppose (p1, q1), (q0, r2) ∈ view3(p). Then from Claim 4,
qr′ is labelled (q0, r2) and pr′ is either labelled (p2, r1) or (p2, r3). In either case, (p2, r5) /∈
view3(p) and the formula is satisfied.



J. Chalopin, S. Das, and M. Kokkou 13:7

Let us now suppose that the formula is satisfied and assume that qr is not labelled (q2, r0).
Then by Claim 4, qr is labelled either (q2, r2), or (q0, r0), or (q0, r2). Note that the first two
cases are impossible since (p1, q1), (q2, r0) and (p0, r1), (r0, q2) belong to view3(p). Conse-
quently, qr is labelled (q0, r2) and since (p1, q1)(q2, r0) ∈ view3(p), by Claim 4, qr′ is labelled
(q2, r0), and the label of pr′ is either (p2, r5) or (p2, r1). Note that we are necessarily in the sec-
ond case since we assumed that the formula holds and since (p1, q1)(q0, r2) ∈ view3(p). This
implies that (p1, q1)(q2, r0)(r1, p2) ∈ view3(p), and thus (p1, q1)(q2, r0)(r1, p0) /∈ view3(p),
contradicting the fact that the formula holds. ◁

From Claim 4, qr must be labelled (q0, r0), (q0, r2), (q2, r0) or (q2, r2). Applying Claim 5 to
each possibility, p can detect the label of qr and thus infer the chirality of q. ◀

3 A Proof Labelling Scheme for Leader Election

Our aim is to orient all edges so that a unique sink particle (i.e., particle with no outgoing
edges) that we define to be the leader exists. The certificate given to each particle consists of a
direction for each edge incident to the particle. The orientation of the edges is chosen so that
particles that are reached by an outgoing edge of some particle p, induce a connected graph
of size at most three. In general we cannot avoid the existence of cycles in the orientation,
but we will show that the existence of a unique sink is always guaranteed. Each particle p

checks that the following rules are locally satisfied or detects an error.

R1 Each edge is oriented and both particles agree on the direction of the edge.
R2 Particle p has at most three outgoing edges. We consider edges between p and empty

nodes to be incoming for p.
R3 When looking at the ports of p cyclically, all outgoing edges of p are consecutive.
R4 For every 3-particle triangle p belongs in, the triangle is not a cycle.

We call a configuration where every particle satisfies R1–R4 a valid configuration. Note
that R4 does not guarantee an acyclic orientation (i.e., that larger cycles do not exist in
the configuration). We do not forbid global cycles, but we will prove that even if cycles of
size larger than three are formed by the incoming and outgoing edges, the remaining rules
guarantee that there exists a unique sink in the system that we define to be the leader.

▶ Theorem 6. If all rules R1–R4 are satisfied, then there exists a unique sink in the system.

A valid configuration that does not contain any oriented cycle is a valid acyclic orientation.
Observe that any particle system admits a valid acyclic orientation, as it can be constructed
from any erosion based Leader Election algorithms for programmable matter (e.g., [17, 22]).
Indeed, consider an execution of an erosion algorithm on a system, and orient any edge pq

from p to q if p is eroded before q in the execution. This orientation is acyclic and it thus
obviously satisfies R1 and R4. Since an erosion based algorithm erodes only a particle that
does not disconnect its neighbourhood and that is strictly convex (i.e., that has at most
three non-eroded neighbours), the orientation also satisfies R2 and R3.

4 A Self-Stabilising Algorithm for Leader Election

In Section 3, we claimed that if all rules are locally satisfied a unique sink exists in the
system. Here, we show how a valid configuration is reached from a configuration containing
errors. Our algorithm is simple: when a particle, p, is incident to an undirected edge e, p

orients e as outgoing. If the orientation of the edges incident to p violates a rule, p undirects
all its outgoing edges. Each activated particle always executes both lines of Algorithm 1.

DISC 2024



13:8 Self-Stabilising LE with Constant Memory

Algorithm 1 Self Stabilising LE.

If ¬R1 : Mark all undirected edges as outgoing
If ¬R2 ∨ ¬R3 ∨ ¬R4 : Mark all outgoing edges as undirected

The directed edges incident to particles are encoded by each particle p having a variable
linkp[v′] ∈ {in, out} for each neighbouring node v′. For particle p ∈ P and v′ ∈ VG∆\P ,
linkp[v′] = in. Any particle p can locally detect whether it is incident to an empty node, so
we assume that edges between occupied and unoccupied nodes are always marked correctly.
For two adjacent particles p, p′ ∈ P, if linkp[p′] = in and linkp′ [p] = out, pp′ is directed
from p′ to p. We encode an undirected edge between two particles p and p′ as linkp[p′] =
linkp′ [p] = in. We address linkp[p′] = linkp′ [p] = out, as a special case. The endpoint that
is activated first (say p) marks linkp[p′] as in. Notice that this is only possible during the
first activation of p. In the remainder of this paper we only use the orientation of the edges
without referencing their encoding. That is, we say that an edge between two particles p

and q is: directed from p to q (i.e., −→pq), directed from q to p (i.e., −→qp) or undirected (i.e., pq

or qp). From Lemma 3 particles in a common triangle detect each other’s chirality. Since
particles know both labels assigned to an edge, particles can compute the orientation of edges
in triangles they belong in and check R4. From now on we only refer to particles detecting
cyclic triangles. We prove that when executing our algorithm, any particle system reaches a
valid configuration that contains a unique sink.

▶ Theorem 7. Starting from an arbitrary simply connected configuration any Gouda fair
execution of Algorithm 1 eventually reaches a configuration satisfying R1–R4 in which no
rules can be applied and there exists a unique sink.

5 Proof of Theorem 6 and Theorem 7

Here, we prove Theorem 7. Notice the second statement of Theorem 7 is precisely Theorem 6.
A configuration of a particle system executing Algorithm 1 is described by the direction of
each edge pq (i.e., −→pq, −→qp or undirected). We make a few observations on how to change the
orientation of some edges of a valid configuration and maintain a valid configuration.

▶ Observation 8. Let p be a particle such that R3 is satisfied at p. Let e be an incoming
edge to p and e′ be an outgoing edge of p, s.t. when moving cyclically around p, e and e′ are
consecutive. If e becomes outgoing (resp. e′ becomes incoming), R3 is not violated at p.

▶ Observation 9. Let C be a configuration and let p be a particle so that R1 (resp., R2, R4)
is satisfied at some particle q ̸= p in C. Then, R1 (resp., R2, R4) is satisfied at q in C \ {p}.

Let S = C0, C1, . . . be an execution of Algorithm 1 starting from a configuration C0.
Notice a particle p is activable in a configuration C if when it executes Algorithm 1, one of its
undirected edges becomes outgoing or one of its outgoing edges becomes undirected. If there
exists a configuration Cf where no node is activable, then Cf = Cj for all j > f , and we say
that the execution stabilises to a final configuration. If all rules are satisfied in this final
configuration, then this configuration is valid and we say it is a final directed configuration.
If a configuration Ci is not final, we can assume that there exists an activable particle pi

such that we obtain Ci+1 by activating pi in Ci. Since each particle has constant memory,
the number of possible configurations is finite. Hence there exists an index i0 in S such that
any configuration Ci with i ≥ i0 appears infinitely often in S. We write Si0 = Ci0 , Ci0+1, . . .



J. Chalopin, S. Das, and M. Kokkou 13:9

to denote the part of the execution starting at Ci0 and in the following we consider only Si0

and configurations Ci with i ≥ i0. We call the edges that are never undirected in Si0 , stable
edges. Observe that by the definition of i0, each edge is either stable or undirected infinitely
often. Notice that any edge pq directed from p to q in Ci with i ≥ i0, is directed from p to q

infinitely often, regardless of whether it is stable. We establish some properties in Si0 .

▶ Lemma 10. In any configuration Ci with i ≥ i0, Rules R2, R3 and R4 are always satisfied.

Proof. Let ni be the number of particles in Ci that do not satisfy R2, R3 or R4. If a particle
p is activated in Ci, then R2, R3 and R4 are satisfied at p in Ci+1. Moreover, if R2, R3, and
R4 are satisfied at some particle p in Ci that is not activated at step i, then they are still
satisfied at step Ci+1. Consequently, ni+1 ≤ ni. Since for i ≥ i0, Ci appears infinitely often,
we get that for every i ≥ i0, we have ni = ni0 . If ni > 0, there exists a particle p that always
violates one of the rule R2, R3 or R4. Thus, p is eventually activated at some step i and in
Ci+1, p satisfies the rules, a contradiction. Consequently, for any i ≥ i0, R2, R3 and R4 are
satisfied at every particle in Ci. ◀

▶ Lemma 11. If a particle p is incident to a stable outgoing edge, p is never activable in Si0

and all edges incident to p are stable edges.

Proof. In a configuration Ci, if a particle p is incident to an outgoing edge and an undirected
edge, then p is activable in Ci. After its activation, either all the undirected edges incident
to p have become outgoing edges, or all outgoing edges of p have become undirected.

Let −→pq be a stable edge, hence, p never marks −→pq as undirected. Let us suppose that
in addition to −→pq, p is also incident to an unstable edge pr. Then infinitely often, pr is
undirected and thus there exists a step where p is activated and pr is undirected. At this
step, p marks −→pr as outgoing. Then if −→pr becomes undirected at a later step, −→pq must also
become undirected, which is a contradiction. Hence, all edges incident to p are stable. ◀

▶ Lemma 12. If a particle p is incident to an unstable edge in Si0 , the unstable edges
incident to p are at least two and do not appear consecutively around p, or there are at least
four unstable edges incident to p.

Proof. Suppose the lemma does not hold and that there exists a particle p incident to
1 ≤ k ≤ 3 unstable edges that appear consecutively around p. Then, there exists an unstable
edge pq incident to p such that for every unstable edge pr incident to p, either r = q or r is
adjacent to q. Note that by Lemma 11, all stable edges incident to p are incoming to p.

▷ Claim 13. Consider an unstable edge pr with r ̸= q and let s be the common neighbour
of p and r that is distinct from q. Then −→sp and −→sr are stable.

Proof. By the definition of q, sp is stable, and by Lemma 11, sp is oriented from s to p. By
Lemma 11 applied at s and r, sr is also stable and it is directed from s to r. ◁

Suppose first there is a configuration Ci with i ≥ i0 such that pq is directed from p to q

in Ci and undirected in Ci+1. This implies that p is activated at step i. By Lemma 10 there
exists at least an undirected edge pr in Ci, and when orienting all undirected edges incident
to p in Ci as outgoing edges, one of R2, R3, R4 is violated. By the definition of q, this cannot
be R2 or R3. If R4 is violated, it implies that in Ci, there exists an undirected edge pr and
directed edges −→rs and −→sp. By Claim 13, s = q but this is impossible since −→pq is in Ci.

Then, at each step i ≥ i0, either qp is undirected or it is −→qp. If there is no step i ≥ i0
where q is activated, then q never has any outgoing edge, qp is always undirected and we
let i1 = i0. Otherwise, consider a step i1 − 1 where q is activated such that in Ci1 , qp is

DISC 2024



13:10 Self-Stabilising LE with Constant Memory

undirected. Then at step i1, all edges incident to p are either incoming or undirected. We
claim that if we activate p at step i1, it orients pq from p to q. Indeed by the definition of q,
rules R2 and R3 are satisfied when pq is oriented from p to q. By Claim 13, any triangle
violating R4 should contain q, but this is impossible since q has no outgoing edges in Ci1 . So,
by the fairness condition, there exists a configuration Ci containing −→pq, a contradiction. ◀

We now prove Theorem 7 using the structure of the boundary of P given by Lemma 2.
Informally, the proof has the following structure. We assume that it is possible that the
system does not stabilise and arrive at a contradiction. Out of the particle systems that
do not stabilise to a configuration that satisfies all rules and has a unique sink, we take
a system with the minimum number of particles. On the boundary of that system there
exists a particle p satisfying one of the cases of Lemma 2. For each orientation of the edges
incident to p we show that the edges incident to p are stable. Then we take a smaller system
containing exactly one less particle, p. We show that the execution in both systems for
particles that are not p is the same. Hence, if the system that contains p does not satisfy all
rules and does not have a unique sink, the same is true for the system that does not contain
p. Since we had assumed that the system containing p is the minimum size system that does
not stabilise to a valid configuration, a smaller system not stabilising is a contradiction.

Proof of Theorem 7. Let us suppose that there exists a fair execution S = C0, C1, . . . on
a particle configuration C = C0 that does not stabilise to a final directed configuration
containing a unique sink. Consider such an execution S with a support P of minimum size.
As defined above, consider a fair execution Si0 = Ci0 , Ci0+1, . . . containing only configurations
appearing infinitely often. By Lemma 2, we can assume that the boundary of P contains
either a pending particle, or a 60◦ particle, or two 120◦ particles that are connected by a
path of 180◦ particles on the boundary. In the following, we show that each of these cases
cannot occur. We first consider the case where P contains a pending particle.

▶ Lemma 14. If P contains a pending particle p (i.e., a particle with only one neighbouring
particle w), all edges are stable in Si0 and there is a unique sink in the final configuration.

Proof. By Lemma 12, the edge pw is stable. Suppose first that pw is directed from p to
w in Si0 . For each i ≥ i0, let C ′

i = Ci \ {p} and consider the sequence of configurations
S ′

i0
= C ′

i0
, C ′

i0+1, . . . , C ′
i, . . .. Observe that for each i ≥ i0, either Ci+1 = Ci or there exists

pi such that Ci+1 is obtained from Ci by activating pi and thus modifying the orientations
of edges incident to pi. Since −→pw is stable, by Lemma 11, for any i ≥ i0, pi ≠ p. Moreover,
for each i ≥ i0, the edges of C ′

i have the same orientation as in Ci. So, p′ ̸= p is activable in
C ′

i if and only if it is activable in Ci. Furthermore, the configuration obtained by activating
pi in C ′

i is precisely C ′
i+1 since the edges of C ′

i have the same orientation as in Ci. Hence,
S ′

i0
is a fair execution of Algorithm 1 on P \ {p}. By the minimality of the size of P, there

exists a step i1 ≥ i0 such that C ′
i1

is a final directed configuration that contains a unique
sink p′′. Since the edges incident to p are stable, Ci1 is a final directed configuration. By our
definition of i0, this implies that i1 = i0. Since p has an outgoing edge, −→pw, in Ci1 = Ci0 , p

is not a sink of Ci0 and p′′ is the unique sink in Ci0 .
Suppose now that −→wp is stable. Notice that in this case, p is a sink in Ci for each i ≥ i0.

Moreover, since −→wp is stable, by Lemma 11, w is never activated. Since the two common
neighbours of p and w are empty, by R3, p is the only outgoing neighbor of w in Ci for any
i ≥ i0. Consequently, w is a sink in Ci \ {p} for any i ≥ i0. For each i ≥ i0, let C ′

i = Ci \ {p}
and consider the sequence of configurations S ′

i0
= C ′

i0
, C ′

i0+1, . . . , C ′
i, . . . Observe that for each

i ≥ i0, either Ci+1 = Ci or there exists pi such that Ci+1 is obtained from Ci by activating
pi and thus modifying the orientations of edges incident to pi. Since p has only incoming



J. Chalopin, S. Das, and M. Kokkou 13:11

edges in Ci, pi ≠ p. Moreover, since −→wp is stable, pi ≠ w. Moreover, for each i ≥ i0, the
edges of C ′

i have the same orientation as in Ci. Consequently, p′ ̸= p is activable in C ′
i if

and only if it is activable in Ci. Furthermore, the configuration obtained by activating pi in
C ′

i is precisely C ′
i+1 since the edges of C ′

i have the same orientation as in Ci. Consequently,
S ′

i0
is a fair execution of Algorithm 1 on P \ {p}. By the minimality of the size of P, there

exists a step i1 ≥ i0 such that C ′
i1

is a final directed configuration that contains a unique
sink p′′ = w in C ′

i1
. Since −→wp is stable, Ci1 is a final directed configuration. By our definition

of i0, this implies that i1 = i0. Since any p′ ∈ Ci0 \ {p, w} is not a sink in C ′
i0

, and since −→wp

is in Ci0 , p is the unique sink in the valid configuration Ci0 . ◀

We now consider the case where the boundary of P contains a 60◦ particle p, and we let
q and r be the two neighbours of p on the boundary of P.

▶ Lemma 15. If P contains a 60◦ particle p, all edges are stable and there is a unique sink
in the final configuration.

Proof. By Lemma 12, pq and pr are stable. Consequently, pq and pr are always directed
in the same way all along Si0 and we can talk about the orientation of pq and pr in Si0 .
For each i ≥ i0, let C ′

i = Ci \ {p} and consider the sequence of configurations S ′
i0

=
C ′

i0
, C ′

i0+1, . . . , C ′
i, . . .. For each i ≥ i0, either Ci+1 = Ci or there exists pi such that Ci+1 is

obtained from Ci by activating pi and thus modifying the orientations of edges incident to
pi. Since all edges incident to p are stable in Si0 , we can assume pi ̸= p, for any i ≥ i0.

We distinguish three cases, depending on the orientation of pq and pr in Si0 .

▷ Case 1. The edges incident to p are −→pq and −→pr.

Proof. For each i ≥ i0, the edges of C ′
i have the same orientation as in Ci. Hence, a particle

p′ ̸= p is activable in C ′
i if and only if it is activable in Ci. The configuration obtained by

activating pi in C ′
i is precisely C ′

i+1 since the edges of C ′
i have the same orientation as in

Ci. So, S ′
i0

is a fair execution of Algorithm 1 on P \ {p}. By the minimality of the size of
P, there exists a step i1 ≥ i0 such that C ′

i1
is a final directed configuration with a unique

sink p′′. Since the edges incident to p are stable, Ci1 is a final directed configuration. By our
definition of i0, this implies that i1 = i0. Since p has only outgoing edges in Ci1 = Ci0 , p is
not a sink of Ci0 and p′′ is the unique sink in Ci0 . ◁

▷ Case 2. The edges incident to p are −→qp and −→pr.

Proof. Since −→qp is stable, qr is also stable by Lemma 11. By R4, qr is directed from q to r in
Si0 . Notice that since q and p are incident to outgoing stable edges, from Lemma 11, p and
q are incident only to stable edges and are never activable. The edges of C ′

i≥i0
\ {p} have

the same orientation as in Ci≥i0 . Consequently, for any p′ /∈ {p, q}, p′ is activable in C ′
i if

and only if it is activable in Ci. Let us consider q. In Ci, −→qp is stable and directed and in C ′
i,

q has an incoming edge from the respective empty node. Furthermore, q is incident to an
incoming edge from the empty common neighbour of p and q. Hence, R3 is satisfied for q in
C ′

i from Observation 8, and the remaining rules are satisfied for q in C ′
i from Observation

9. Therefore, q is never activable in C ′
i≥i0

and thus a particle p′ ̸= p is activable in C ′
i≥i0

if
and only if it is activable in Ci≥i0 . So, S ′

i0
is a fair execution of Algorithm 1 on P \ {p}. By

the minimality of the size of P, there exists a step i1 ≥ i0 such that C ′
i1

is a final directed
configuration that contains a unique sink p′′. Note that p′′ ≠ q since −→qr ∈ C ′

i1
. Since the

edges incident to p are stable and since q is not activable, Ci1 is a final directed configuration.
By our definition of i0, this implies that i1 = i0. Since p has an outgoing edge in Ci1 = Ci0 ,
p is not a sink of Ci0 and p′′ is therefore the unique sink in Ci0 . ◁

DISC 2024



13:12 Self-Stabilising LE with Constant Memory

▷ Case 3. The edges incident to p are −→qp and −→rp.

Proof. Since −→qp and −→rp are stable, from Lemma 11, q and r are never activable and all edges
incident to q and r are stable. Hence qr is stable and we assume without loss of generality
that qr is directed as −→qr in Ci≥i0 . Notice that p is a sink in C and that from R3 all edges
incident to r except −→rp are incoming to r in Ci. Edges in C ′

i \ {p} have the same orientation
as in Ci. Using the arguments from Case 2, R1–R4 are satisfied for q and for r in C ′

i. So, q

and r are never activable in C ′
i. For the reasons in Case 2, S ′

i0
is a fair execution of Algorithm

1 on P \ {p}. Since P is of minimum size, there exists a step i1 ≥ i0 such that C ′
i1

is a final
directed configuration that contains a unique sink p′′. Since the only outgoing edge of r in
Ci0 is −→rp, r = p′′ is the unique sink of C ′

i1
. Furthermore, since the edges incident to p, q, r are

stable, Ci1 is a final directed configuration. By our definition of i0, this implies that i1 = i0.
Since p has only incoming edges in Ci1 = Ci0 , p is a sink in Ci0 and r is not a sink in Ci0

due to −→rp, so p is the unique sink in Ci0 . ◁

Therefore, for any orientation of the edges incident to p in Si0 , Ci0 is a directed final
configuration containing a unique sink. ◀

Now assume there exist two 120◦ particles connected by a path of 180◦ particles on the
boundary of P.

▶ Lemma 16. If P contains two 120◦ particle p, p∗ connected by a path of 180◦ particles on
the boundary, all edges are stable and there is a unique sink in the final configuration.

Proof. Let q and r be the neighbours of p on the boundary and let s be the common
neighbour of p, q and r. By Lemma 12, we know that ps is stable in Si0 . We split the proof
of the lemma in different cases, depending on the orientation of ps in Ci≥i0 . Due to space
constraints, we omit some details, which can be found in [11], in the proofs of Cases 1.1 – 2.3.

▷ Case 1. The edge between p and s is −→ps.

For each i ≥ i0, let C ′
i = Ci \ {p} and consider the sequence of configurations S ′

i0
=

C ′
i0

, C ′
i0+1, . . . , C ′

i, . . . For each i ≥ i0, either Ci+1 = Ci or there exists pi such that Ci+1 is
obtained from Ci by activating pi and thus modifying the orientations of edges incident to pi.
From Lemma 11, since −→ps is stable, p is never activable and the edges pq and pr are stable.
Consequently, pi ̸= p for any i ≥ i0. The orientations of pq and pr lead to the following cases.

▷ Case 1.1. Particle p is incident to −→pq, −→ps and −→pr.

Proof. The proof for this case follows the same argumentation as Case 1 of Lemma 15. ◁

▷ Case 1.2. Particle p is incident to −→pq, −→ps and −→rp.

Proof. Since −→rp is stable, from Lemma 11, r is not activable in C and rs is stable. From R4,
−→rs is in Ci≥i0 . The edges of C ′

i≥i0
\ {p} have the same orientation as in Ci≥i0 . So for any

p′ /∈ {p, r}, p′ is activable in C ′
i if and only if p′ is activable in Ci. Let us consider r. From

Observation 8 and the incoming edge from the empty common neighbour of p and r to r, R3
is satisfied for r in C ′

i. R1, R2 and R4 are satisfied for r in C ′
i from Observation 9. Hence, r

is never activable in C ′
i. So, S ′

i0
is a fair execution of Algorithm 1 on P \ {p}. The unique

sink in C ′
i0

is p′′ ̸= r, since r has an outgoing edge −→rs in C ′
i. Since p has outgoing edges in

Ci0 , p is not a sink of Ci0 and p′′ is the unique sink in Ci0 . ◁

▷ Case 1.3. Particle p is incident to −→qp, −→ps and −→rp.



J. Chalopin, S. Das, and M. Kokkou 13:13

Proof. Since −→qp and −→rp are stable, from Lemma 11, r and q are not activable in C and the
edges rs and qs are stable. By R4, −→rs and −→qs belong to Ci≥i0 . The edges of C ′

i≥i0
\ {p} have

the same orientation as in Ci≥i0 . Consequently, for any p′ /∈ {p, q, r}, p′ is activable in C ′
i if

and only if p′ is activable in Ci. Let us consider q and r. Using the same arguments as in
Case 1.2, R1–R4 are satisfied for q and for r in C ′

i. Consequently, q and r are never activable
in C ′

i. Therefore, C ′
i satisfies all rules and S ′

i0
is a fair execution of Algorithm 1 on P \ {p}.

Since q and r each have an outgoing edge to s in C ′
i, p′′ /∈ {q, r}. Since p has outgoing edges

in Ci0 , p is not a sink of Ci0 and p′′ is therefore the unique sink in Ci0 . ◁

We now consider the case where the edge between p and s is −→sp. Observe that by
Lemma 11, sq and sr are stable edges. Note that by Lemma 12, pq is stable if and only if pr

is stable. We distinguish two cases depending on whether these two edges are stable.

▷ Case 2. The edge between p and s is −→sp, and the edges pq and pr are stable.

The possible orientations of the stable edges sq and sr in Si0 give the following subcases.

▷ Case 2.1. Particle s is incident to −→qs and −→rs.

Proof. By Lemma 11, r and q are never activable and rp and qp are stable. By R4, −→qp and
−→rp are in Ci≥i0 . The edges of C ′

i≥i0
\ {p} have the same orientation as in Ci≥i0 and thus for

any p′ /∈ {q, r, s}, p′ is activable in C ′
i if and only if it is activable in Ci. Let us consider

q, r, s. Using the same arguments as in Case 1.2, R1–R4 are satisfied for q and r in C \ {p}.
Since sp is between two incoming edges, from Observation 8, R3 is satisfied for s in C ′

i. R1,
R2 and R4 are satisfied for s in C ′

i from Observation 9. So, q, r, s are never activable in C ′
i.

Furthermore, the configuration obtained by activating pi ̸= q, s, r in C ′
i is precisely C ′

i+1
since the edges of C ′

i have the same orientation as in Ci. Hence, S ′
i0

is a fair execution of
Algorithm 1 on P \ {p}. By R3, the only outgoing edge of s in Ci0 is −→sp, so p′′ = s is the
unique sink of C ′

i0
. Since s has an outgoing edge −→sp in Ci0 , s is not a sink of Ci0 and p is the

unique sink in Ci0 . ◁

Observe that if s is incident to −→qs (resp., −→rs), then since qp (resp., rp) is stable, by R4, p

is incident to −→qp (resp., −→rp). When among qs and rs, there is one outgoing and one incoming
edge, we consider two cases depending on whether p is a sink in Si0 .

▷ Case 2.2. Particle s is incident to −→qs and −→sr and p is incident to −→rp.

Proof. Since −→qs and −→sp are stable, necessarily −→qp is stable and p is a sink in Ci≥i0 . So, p is
never activable in Si0 and from Lemma 11, q, r, s are never activable in Si0 either. The edges
of C ′

i≥i0
\ {p} have the same orientation as in Ci≥i0 and thus any particle p′ /∈ {p, q, r, s}

is activable in C ′
i if and only if it is activable in Ci. Let us consider q, r, s. Since −→sp is

between an incoming and an outgoing edge, by Observation 8, R3 is satisfied for s in C ′
i.

The remaining rules are satisfied for s in C ′
i from Observation 9. The arguments for q are the

same as in Case 2.1. Due to the incoming edge from the common empty neighbour of r and p

and from Observation 8, R3 is satisfied for r in C ′
i. The remaining rules are satisfied for r in

C ′
i from Observation 9. So, q, r, s are never activable in C ′

i≥i0
. Hence, all rules are satisfied

in C ′
i and S ′

i0
is a fair execution of Algorithm 1 on P \ {p}. By R3, the only outgoing edge

of r in Ci is −→rp, so p′′ = r is the unique sink of C ′
i. Since p does not have outgoing edges in

Ci1 = Ci0 , r is not a sink of Ci0 due to −→rp and p is the unique sink in Ci0 . ◁

▷ Case 2.3. Particle s is incident to −→qs and −→sr and p is incident to −→pr.

DISC 2024



13:14 Self-Stabilising LE with Constant Memory

Proof. As noted before the stable edge qp is oriented as −→qp by R4. By Lemma 11, p, q and s

are never activable in Si0 and the edges pr and sr are stable. The edges of C ′
i≥i0

\ {p} have
the same orientation as in Ci≥i0 . So, for any p′ /∈ {p, q, s}, p′ is activable in C ′

i if and only if
it is activable in Ci. Let us consider q and s. Using the same arguments for both q and s as
in Case 2.2, we obtain that R1–R4 are always satisfied at q and s, and that they are never
activable in C ′

i≥i0
. Hence, S ′

i0
is a fair execution of Algorithm 1 on P \ {p}. The unique sink

of C ′
i0

, p′′ /∈ {q, s}, since q and s have outgoing edges in C \ {p}. Since the edges incident to
p are stable, Ci0 is a final directed configuration. Since p is incident to −→pr in Ci0 , p is not a
sink in Ci, hence p′′ is the unique sink in Ci0 . ◁

▷ Case 2.4. Particle s is incident to −→sq and −→sr.

Proof. Since pq, pr, ps are stable and since ps is directed as −→sp in Ci≥i0 , p is incident to at
most one outgoing edge. Without loss of generality, we can thus assume that −→qp is in Ci≥i0 .
Observe that by R3, −→qp is the only outgoing edge at q and no neighbour of q is activable in
Ci≥i0 by Lemma 11. Note also that s has three outgoing edges −→sq, −→sp, −→sr in Ci and since s is
not activable in Ci, by R2, all other edges incident to s are incoming. Again, this implies
that all neighbours of s different from r are not activable in Ci≥i0 . For each i ≥ i0, let C∗

i

be the configuration obtained from Ci by replacing −→sq by −→qs.
For any particle p′ /∈ {s, q}, R2 and R3 are satisfied at p′ in C∗

i since they are satisfied at
p′ in Ci by Lemma 10 and the orientation of the edges incident to p′ in C∗

i is the same as in
Ci. Since q only has one outgoing edge in Ci, R2 and R3 are satisfied at q in C∗

i . Since s

has three outgoing edges −→sq, −→sp, −→sr in Ci and since all other edges incident to s are incoming,
R2 directly holds at s in C∗

i and R3 holds at s in C∗
i since p, q and r are reached through

consecutive ports of s by definition. If R4 is not satisfied at some particle p′ in C∗
i , there is a

directed triangle made of the edges −→qs,
−→
sp′,

−→
p′q in C∗

i . Since the only out-neighbours of s in
C∗

i are p and r, necessarily, p′ = p, but this is impossible since pq is oriented from q to p. So,
R2, R3, R4 are always satisfied in C∗

i≥i0
. Since all edges incident to q and s are stable in Ci,

R1 is also satisfied at s and q in Ci and in C∗
i . Hence, q and s are never activable in C∗

i . For
any p′ /∈ {q, s}, p′ is activable in C∗

i if and only if it is activable in Ci. Therefore, S∗
i is a

fair execution of Algorithm 1 on P. Note that when considering C∗
i≥i0

, we are in Case 2.2
or 2.3. So, we know that C∗

i0
is a final directed configuration that contains a unique sink p′′

different from q and s. Since a particle p′ is activable in Ci0 if and only if it is activable in
C∗

i0
, Ci0 is also a final directed configuration, and p′′ is the unique sink of Ci0 . ◁

Finally, we consider the case where the edges pq and pr are not stable. We remind the
reader that from Lemma 12, pq and pr are either both stable or both unstable.

▷ Case 3. The edge between p and s is −→sp and the edges pq and pr are not stable.

Proof. We will prove that this case is not possible.

■
. . .

q s s2 s3 sk sk+1

rkrk−1r2rp

(a)

■
. . .

q s s2 s3 sk sk+1

rkrk−1r2rp

(b)

Figure 2 Left: The setting in Case 3, that is, a 120◦ particle p (square) with {pq, pr} unstable
and s incident to the directed edges sq, sp and sr. Right: The final orientation of edges in Case 3.



J. Chalopin, S. Das, and M. Kokkou 13:15

Without loss of generality, assume that r is on the path connecting p to p∗ via 180◦

particles. Note that it is possible that p∗ = r. Let (r0 = p, r1 = r, r2, . . . , rk = p∗) be the
path on the boundary from p to p∗ whose inner particles are all 180◦ particles (if r = p∗,
then k = 1). Let sj+1 be the common neighbour of any pair of consecutive particles rj and
rj+1 with 0 ≤ j ≤ k − 1, and observe that s1 = s. Let s0 = q and let sk+1 be the neighbour
of rk on the boundary that is distinct from rk−1. This setting is also shown in Figure 2a.

Since s is incident to a stable edge, −→sp, from Lemma 11 all edges incident to s are stable.
By Lemma 11 applied at q and r and since pq and pr are not stable, necessarily −→sq and −→sr

are stable in Si0 . Since in this setting s has three outgoing edges, sq, sp and sr, from R2 ss2
is incoming to s. So, s2 is incident to the stable outgoing edge −→s2s. From Lemma 11, s2 is
not activable and all edges incident to s2 are stable and directed. From R4, s2r is oriented
from s2 to r. If r = p∗ (i.e., if k = 1), r is incident to only one edge that is not stable, which
is impossible from Lemma 12. Hence, k ≥ 2 and rr2 is not stable. As s2 is not activable,
from Lemma 11, s2r2 is stable. If s2r2 is directed from r2 to s2, r2 has a stable outgoing
edge and from Lemma 11, rr2 is stable, which is a contradiction for r. So s2r2 is directed
from s2 to r2.

Generalising, for i ≥ 1 each particle si is incident to the stable edges −−−→sisi−1, −−−→siri−1 and
−−→siri and the edge ri−1ri is not stable. Then, for i = k the edge rk−1rk should be the only
unstable edge incident to rk which is impossible from Lemma 12, a contradiction. ◁

This ends the proof of Lemma 16. ◀

The proof of Theorem 7 follows from Lemmas 2, 14, 15 and 16. ◀

6 Further Remarks

We showed that our algorithm works assuming that the scheduler is sequential and Gouda fair.
The execution presented in Figure 3 shows that if we consider a sequential unfair scheduler
(i.e., we only ask that the scheduler activates an activable particle at each step), there exist
periodic executions that never reach a valid configuration. It would thus be interesting to
understand if we can design a self-stabilising leader election algorithm for simply connected
configurations that is correct even with an unfair scheduler. In the case where this is possible,
we believe that this would lead to a much more complex algorithm than our algorithm.

Figure 3 A periodic unfair execution of our algorithm. At each step, the red vertex is activated,
and it modifies the status of its incident red edges (i.e., the ones that are not incoming).

Our algorithm heavily uses the geometry of the system and relies on the support being
simply connected. For particles that agree on the orientation of the grid, the impossibility
results of Dolev et al. [20] no longer hold. One can thus wonder if it is possible to design a silent
self-stabilising LE algorithm using constant memory for arbitrary connected configurations if
particles agree on the orientation of the grid. Again, the geometry of the grid should be used
to overcome the impossibility results of [20], but it seems very challenging.

DISC 2024



13:16 Self-Stabilising LE with Constant Memory

References
1 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational

power of population protocols. Distributed Comput., 20(4):279–304, 2007. doi:10.1007/
s00446-007-0040-2.

2 Baruch Awerbuch and Rafail Ostrovsky. Memory-efficient and self-stabilizing network reset.
In PODC 1994, pages 254–263. ACM, 1994. doi:10.1145/197917.198104.

3 Rida A. Bazzi and Joseph L. Briones. Stationary and deterministic leader election in self-
organizing particle systems. In SSS 2019, volume 11914 of Lecture Notes in Comput. Sci.,
pages 22–37. Springer, 2019. doi:10.1007/978-3-030-34992-9_3.

4 Lélia Blin, Laurent Feuilloley, and Gabriel Le Bouder. Optimal space lower bound for
deterministic self-stabilizing leader election algorithms. Discret. Math. Theor. Comput. Sci.,
25, 2023. doi:10.46298/dmtcs.9335.

5 Lélia Blin, Pierre Fraigniaud, and Boaz Patt-Shamir. On proof-labeling schemes versus silent
self-stabilizing algorithms. In SSS 2014, volume 8756 of Lecture Notes in Comput. Sci., pages
18–32. Springer, 2014. doi:10.1007/978-3-319-11764-5_2.

6 Lélia Blin and Sébastien Tixeuil. Compact deterministic self-stabilizing leader election on a
ring: the exponential advantage of being talkative. Distributed Comput., 31(2):139–166, 2018.
doi:10.1007/s00446-017-0294-2.

7 Paolo Boldi and Sebastiano Vigna. Universal dynamic synchronous self–stabilization. Dis-
tributed Comput., 15:137–153, 2002. doi:10.1007/s004460100062.

8 Joseph L. Briones, Tishya Chhabra, Joshua J. Daymude, and Andréa W. Richa. Invited paper:
Asynchronous deterministic leader election in three-dimensional programmable matter. In
ICDCN 2023, pages 38–47. ACM, 2023. doi:10.1145/3571306.3571389.

9 Shukai Cai, Taisuke Izumi, and Koichi Wada. How to prove impossibility under global fairness:
On space complexity of self-stabilizing leader election on a population protocol model. Theory
Comput. Syst., 50(3):433–445, 2012. doi:10.1007/s00224-011-9313-z.

10 Jérémie Chalopin, Shantanu Das, and Maria Kokkou. Deterministic leader election for station-
ary programmable matter with common direction. In SIROCCO 2024, volume 14662 of Lecture
Notes in Comput. Sci., pages 174–191. Springer, 2024. doi:10.1007/978-3-031-60603-8_10.

11 Jérémie Chalopin, Shantanu Das, and Maria Kokkou. Deterministic self-stabilising leader
election for programmable matter with constant memory. arXiv preprint, 2024. doi:10.48550/
arXiv.2408.08775.

12 Ajoy Kumar Datta, Lawrence L. Larmore, and Priyanka Vemula. Self-stabilizing leader election
in optimal space under an arbitrary scheduler. Theor. Comput. Sci., 412(40):5541–5561, 2011.
doi:10.1016/j.tcs.2010.05.001.

13 Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The canonical Amoebot
model: Algorithms and concurrency control. Distributed Comput., 36(2):159–192, 2023.
doi:10.1007/s00446-023-00443-3.

14 Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber. Bio-inspired energy distribution
for programmable matter. In ICDCN 2021, pages 86–95. ACM, 2021. doi:10.1145/3427796.
3427835.

15 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W Richa, Christian Scheideler,
and Thim Strothmann. Amoebot – A new model for programmable matter. In SPAA 2014,
pages 220–222. ACM, 2014. doi:10.1145/2612669.2612712.

16 Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida A. Bazzi, Andréa W. Richa, and
Christian Scheideler. Leader election and shape formation with self-organizing programmable
matter. In DNA 2015, volume 9211 of Lecture Notes in Comput. Sci., pages 117–132. Springer,
2015. doi:10.1007/978-3-319-21999-8_8.

17 Giuseppe Antonio Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. Distributed Comput., 33(1):69–101,
2020. doi:10.1007/s00446-019-00350-6.

https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1145/197917.198104
https://doi.org/10.1007/978-3-030-34992-9_3
https://doi.org/10.46298/dmtcs.9335
https://doi.org/10.1007/978-3-319-11764-5_2
https://doi.org/10.1007/s00446-017-0294-2
https://doi.org/10.1007/s004460100062
https://doi.org/10.1145/3571306.3571389
https://doi.org/10.1007/s00224-011-9313-z
https://doi.org/10.1007/978-3-031-60603-8_10
https://doi.org/10.48550/arXiv.2408.08775
https://doi.org/10.48550/arXiv.2408.08775
https://doi.org/10.1016/j.tcs.2010.05.001
https://doi.org/10.1007/s00446-023-00443-3
https://doi.org/10.1145/3427796.3427835
https://doi.org/10.1145/3427796.3427835
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1007/978-3-319-21999-8_8
https://doi.org/10.1007/s00446-019-00350-6


J. Chalopin, S. Das, and M. Kokkou 13:17

18 Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974. doi:10.1145/361179.361202.

19 Shlomi Dolev. Self-Stabilization. MIT Press, 2000. doi:10.7551/mitpress/6156.001.0001.
20 Shlomi Dolev, Mohamed G. Gouda, and Marco Schneider. Memory requirements for silent

stabilization. Acta Inf., 36(6):447–462, 1999. doi:10.1007/s002360050180.
21 Swan Dubois and Sébastien Tixeuil. A taxonomy of daemons in self-stabilization. arXiv

preprint, 2011. doi:10.48550/arXiv.1110.0334.
22 Fabien Dufoulon, Shay Kutten, and William K. Moses Jr. Efficient deterministic leader election

for programmable matter. In PODC 2021, pages 103–113. ACM, 2021. doi:10.1145/3465084.
3467900.

23 Yuval Emek, Shay Kutten, Ron Lavi, and William K Moses Jr. Deterministic leader election
in programmable matter. In ICALP 2019, volume 132 of LIPIcs Leibniz Int. Proc. Inform.,
pages 140:1–140:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/
LIPIcs.ICALP.2019.140.

24 Sándor P. Fekete, Robert Gmyr, Sabrina Hugo, Phillip Keldenich, Christian Scheffer, and
Arne Schmidt. Cadbots: Algorithmic aspects of manipulating programmable matter with
finite automata. Algorithmica, 83(1):387–412, 2021. doi:10.1007/s00453-020-00761-z.

25 Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni. Distributed leader
election and computation of local identifiers for programmable matter. In ALGOSENSORS
2018, volume 11410 of Lecture Notes in Comput. Sci., pages 159–179. Springer, 2018. doi:
10.1007/978-3-030-14094-6_11.

26 Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni. Leader election and
local identifiers for three-dimensional programmable matter. Concurr. Comput. Pract. Exp.,
34(7), 2022. doi:10.1002/cpe.6067.

27 Mohamed G. Gouda. The theory of weak stabilization. In WSS 2001, volume 2194 of Lecture
Notes in Comput. Sci., pages 114–123. Springer, 2001. doi:10.1007/3-540-45438-1_8.

28 Elliot Hawkes, Byoungkwon An, Nadia M. Benbernou, H. Tanaka, Sangbae Kim, Erik D.
Demaine, Daniela Rus, and Robert J. Wood. Programmable matter by folding. Proc. Natl.
Acad. Sci., 107(28):12441–12445, 2010. doi:10.1073/pnas.0914069107.

29 Gene Itkis and Leonid Levin. Fast and lean self-stabilizing asynchronous protocols. In FOCS
1994, pages 226–239. IEEE Computer Society, 1994. doi:10.1109/SFCS.1994.365691.

30 Gene Itkis, Chengdian Lin, and Janos Simon. Deterministic, constant space, self-stabilizing
leader election on uniform rings. In WDAG 1995, volume 972 of Lecture Notes in Comput.
Sci., pages 288–302. Springer, 1995. doi:10.1007/BFb0022154.

31 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Comput.,
22(4):215–233, 2010. doi:10.1007/s00446-010-0095-3.

32 Gérard Le Lann. Distributed systems - towards a formal approach. In IFIP 1977, pages
155–160. North-Holland, 1977. URL: https://inria.hal.science/hal-03504338.

33 Tommaso Toffoli and Norman Margolus. Programmable matter: Concepts and realization.
Int. J. High Speed Comput., 5(2):155–170, 1993. doi:10.1016/0167-2789(91)90296-L.

34 John von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, 1966.
URL: https://dl.acm.org/doi/book/10.5555/1102024.

35 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin.
Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In ITCS
2013, pages 353–354. ACM, 2013. doi:10.1145/2422436.2422476.

36 Masafumi Yamashita and Tiko Kameda. Computing on an anonymous network. In PODC
1988, pages 117–130. ACM, 1988. doi:10.1145/62546.62568.

DISC 2024

https://doi.org/10.1145/361179.361202
https://doi.org/10.7551/mitpress/6156.001.0001
https://doi.org/10.1007/s002360050180
https://doi.org/10.48550/arXiv.1110.0334
https://doi.org/10.1145/3465084.3467900
https://doi.org/10.1145/3465084.3467900
https://doi.org/10.4230/LIPIcs.ICALP.2019.140
https://doi.org/10.4230/LIPIcs.ICALP.2019.140
https://doi.org/10.1007/s00453-020-00761-z
https://doi.org/10.1007/978-3-030-14094-6_11
https://doi.org/10.1007/978-3-030-14094-6_11
https://doi.org/10.1002/cpe.6067
https://doi.org/10.1007/3-540-45438-1_8
https://doi.org/10.1073/pnas.0914069107
https://doi.org/10.1109/SFCS.1994.365691
https://doi.org/10.1007/BFb0022154
https://doi.org/10.1007/s00446-010-0095-3
https://inria.hal.science/hal-03504338
https://doi.org/10.1016/0167-2789(91)90296-L
https://dl.acm.org/doi/book/10.5555/1102024
https://doi.org/10.1145/2422436.2422476
https://doi.org/10.1145/62546.62568




Efficient Signature-Free Validated Agreement
Pierre Civit
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Muhammad Ayaz Dzulfikar
NUS Singapore, Singapore

Seth Gilbert
NUS Singapore, Singapore

Rachid Guerraoui
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Jovan Komatovic
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Manuel Vidigueira
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Igor Zablotchi
Mysten Labs, Zürich, Switzerland

Abstract
Byzantine agreement enables n processes to agree on a common L-bit value, despite up to t > 0
arbitrary failures. A long line of work has been dedicated to improving the bit complexity of
Byzantine agreement in synchrony. This has culminated in COOL, an error-free (deterministically
secure against a computationally unbounded adversary) solution that achieves O(nL + n2 log n)
worst-case bit complexity (which is optimal for L ≥ n log n according to the Dolev-Reischuk lower
bound). COOL satisfies strong unanimity: if all correct processes propose the same value, only that
value can be decided. Whenever correct processes do not agree a priori (there is no unanimity),
they may decide a default value ⊥ from COOL.

Strong unanimity is, however, not sufficient for today’s state machine replication (SMR) and
blockchain protocols. These systems value progress and require a decided value to always be valid
(according to a predetermined predicate), excluding default decisions (such as ⊥) even in cases where
there is no unanimity a priori. Validated Byzantine agreement satisfies this property (called external
validity). Yet, the best error-free (or even signature-free) validated agreement solutions achieve only
O(n2L) bit complexity, a far cry from the Ω(nL + n2) Dolev-Reischuk lower bound. Is it possible to
bridge this complexity gap?

We answer the question affirmatively. Namely, we present two new synchronous algorithms for
validated Byzantine agreement, HashExt and ErrorFreeExt, with different trade-offs. Both
algorithms are (1) signature-free, (2) optimally resilient (tolerate up to t < n/3 failures), and (3)
early-stopping (terminate in O(f + 1) rounds, where f ≤ t denotes the actual number of failures).
On the one hand, HashExt uses only hashes and achieves O(nL + n3κ) bit complexity, which
is optimal for L ≥ n2κ (where κ is the size of a hash). On the other hand, ErrorFreeExt is
error-free, using no cryptography whatsoever, and achieves O

(
(nL + n2) log n

)
bit complexity, which

is near-optimal for any L.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Validated Byzantine agreement, Bit complexity, Round complexity

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.14

Related Version The full version of this paper, which includes detailed pseudocode and proofs, is
available online.
Full Version: https://arxiv.org/abs/2403.08374v3 [20]

© Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic,
Manuel Vidigueira, and Igor Zablotchi;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 14; pp. 14:1–14:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2394-1201
https://orcid.org/0009-0002-7962-0677
https://orcid.org/0000-0003-3298-7412
https://orcid.org/0000-0002-4794-8902
https://orcid.org/0009-0006-9714-4079
https://orcid.org/0009-0008-5821-2571
https://orcid.org/0000-0002-9271-518X
https://doi.org/10.4230/LIPIcs.DISC.2024.14
https://arxiv.org/abs/2403.08374v3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


14:2 Efficient Signature-Free Validated Agreement

Funding Pierre Civit: Supported in part by the FNS (#40B2-0_218648).
Seth Gilbert: Supported in part by the Singapore MOE Tier 2 grant MOE-T2EP20122-0014.
Manuel Vidigueira: Supported in part by the FNS (#200021_215383).

1 Introduction

Byzantine agreement [42] is arguably the most important problem of distributed computing.
It lies at the heart of state machine replication (SMR) [6, 16, 38, 1, 7, 37, 59, 48, 50] and
blockchain systems [46, 13, 4, 32, 3, 25, 24]. Additionally, Byzantine agreement plays an
essential role in cryptographic protocols such as multi-party computation [33, 11, 36, 10, 30,
17].

Byzantine agreement operates among n processes, out of which up to t > 0 can be
corrupted by the adversary. A corrupted process is said to be faulty and can behave
arbitrarily; a non-faulty process is said to be correct and follows the prescribed protocol. Let
Value denote the set of L-bit values. (As this paper is concerned with multi-valued Byzantine
agreement, we set no restrictions on the cardinality of the Value set.) During the agreement
protocol, each process proposes exactly one value, and eventually the protocol outputs a
single decision, as per the following interface:

request propose(v ∈ Value) : a process proposes an L-bit value v.
indication decide(v′ ∈ Value): a process decides an L-bit value v′.

Intuitively, Byzantine agreement ensures that all correct processes agree on the same admis-
sible value. (We formally define the properties of Byzantine agreement in the later part of
this section.)

Practical notion of value-admissibility. A critical question in designing practical Byzan-
tine agreement algorithms is which values should be considered admissible. Traditionally,
Byzantine agreement algorithms treated the proposals of correct processes as admissible.
Consequently, they have focused on properties like strong unanimity [5, 18, 52]: if every
correct process proposes the same value v, then v is the only possible decision. Notice that
in such cases, if even one correct process proposes a value different from the (same) value
held by all other n− 1 processes, it is perfectly legal to decide some default “null op” value
(e.g., ⊥); it is also perfectly legal to decide a value that is “nonsense” from the perspective
of the underlying application. Thus, unless all correct processes agree a priori, Byzantine
agreement algorithms with strong unanimity are not guaranteed to make any “real” progress.

Many modern applications may require a stronger requirement: even if correct processes
propose different values, the resulting decision should still adhere to some validity test,
ensuring that the decision is not “wasted”. Such a condition is usually called external
validity [14, 41, 45, 56, 5, 61, 31, 44, 55]: any decided value must be valid according to
a predetermined logical predicate. We underline that the external validity property is
prevalent in today’s blockchain systems. Indeed, as long as a produced block is valid (e.g., no
double-spending), the block can safely be added to the chain (irrespectively of who produced
it).1

1 Let us underline that real-world blockchain systems might be concerned with fairness, thus making the
question of “who produced a block” important. However, this work does not focus on fairness (or any
similar topic [34, 35]).



P. Civit et al. 14:3

Synchronous validated agreement. We study validated agreement, a variant of the Byzan-
tine agreement problem satisfying the external validity property, in the standard synchronous
setting. Formally, let valid : Value→ {true, false} be any predetermined predicate. Impor-
tantly, correct processes propose valid values. The following properties are guaranteed by
validated agreement:

Agreement: No two correct processes decide different values.
Integrity: No correct process decides more than once.
Termination: All correct processes eventually decide.
Strong unanimity: If all correct processes propose the same value v, then no correct
process decides any value v′ ̸= v.
External validity: If a correct process decides a value v, then valid(v) = true.

We underline that validated agreement algorithms usually do not satisfy strong unanimity
(but only external validity). Additionally, we emphasize that obtaining an agreement
algorithm A⋆ that satisfies both strong unanimity and external validity is straightforward
given (1) an agreement algorithm A1 satisfying only strong unanimity, and (2) an agreement
algorithm A2 satisfying only external validity. Indeed, to obtain A⋆, processes run A1 and
A2 in parallel. Then, processes decide (1) the value of A1 if that value is valid, or (2) the
value of A2 otherwise.

Complexity of synchronous validated agreement. There exist two dominant worst-case
complexity metrics when analyzing any synchronous validated agreement algorithm: (1) the
bit complexity, the total number of bits correct processes send, and (2) the round complexity,
the number of synchronous rounds it takes for all correct processes to decide (and halt). The
lower bound on the bit complexity of validated agreement is Ω(nL + n2): (1) the “nL” term
comes from the fact that each correct process needs to receive the decided value, and (2) the
“n2” term comes from the seminal Dolev-Reischuk bound [27] stating that even agreeing on a
single bit requires Ω(n2) exchanged bits. We emphasize that the Ω(nL + n2) lower bound
holds even in failure-free executions in the signature-free world (with signatures, the bound
does not hold [56]). The lower bound on the round complexity is Ω(f + 1) [28], where f ≤ t

denotes the actual number of failures. If an algorithm achieves O(f + 1) round complexity,
it is said that the algorithm is early-stopping.2

State-of-the-art. The most efficient known validated agreement algorithm is Ada-Dare [19].
Ada-Dare achieves O(nL + n2κ) bit complexity (optimal for L > nκ), where κ denotes a
security parameter. However, Ada-Dare internally utilizes threshold signatures [54]. (We
emphasize that if t < n/3, some partially synchronous authenticated algorithms [60, 15]
can trivially be adapted to achieve O(nL + n2κ) bit complexity in synchrony; Ada-Dare
tolerates up to t < n/2 failures.) Perhaps surprisingly, the best signature-free validated
agreement algorithms [43, 12, 22, 18] still achieve only O(n2L) bit complexity, a far cry from
the Ω(nL + n2) lower bound.

The fact that no efficient signature-free validated agreement is known becomes even more
surprising when considering that optimal signature-free algorithms exist for the “traditional”
Byzantine agreement problem. COOL [18] is a Byzantine agreement algorithm satisfying
(only) strong unanimity while exchanging O(nL+n2 log n) bits. Although it was not the goal
of the COOL algorithm, COOL can trivially achieve early-stopping (by internally utilizing
an early-stopping binary agreement such as [43]). In addition, COOL is optimally resilient

2 We consider only asymptotic early-stopping (as in [43]) instead of strict early stopping (as in [28]) that
requires termination in exactly f + 2 rounds.

DISC 2024



14:4 Efficient Signature-Free Validated Agreement

(tolerates up to t < n/3 failures). Importantly, COOL uses no cryptography whatsoever:
we say that COOL is error-free as it is deterministically secure against a computationally
unbounded adversary.

Is there a fundamental complexity gap between external validity and strong unanimity
in the signature-free world? Can signature-free validated agreement be solved efficiently in
synchrony? These are the questions we study in this paper.

1.1 Contributions
In this paper, we present the first validated agreement algorithms achieving o(n2L) bit
complexity without signatures:

First, we introduce HashExt, a hash-based algorithm that exchanges O(nL + n3κ) bits
(optimal for L ≥ n2κ), where κ denotes the size of a hash.
Second, we provide ErrorFreeExt, an error-free (i.e., cryptography-free) solution that
achieves O

(
(nL + n2) log n

)
bit complexity and is thus nearly-optimal.

Importantly, both HashExt and ErrorFreeExt are (1) optimally resilient (tolerate up
to t < n/3 failures), and (2) early-stopping (terminate in O(f + 1) synchronous rounds). A
comparison of our new algorithms with the state-of-the-art can be found in Table 1.

Table 1 Performance of deterministic synchronous agreement algorithms with L-bit values and
κ-bit security parameter. S stands for “strong unanimity”, E stands for “external validity”, and IC
stands for “interactive consistency” (where processes agree on the proposals of all processes). (There
exists a trivial reduction from IC to S + E, where each correct process decides the most represented
valid value in the decided vector. Hence, we write that IC implies S + E.) All considered algorithms
are early-stopping, except for Ada-Dareic and Ada-Daresu (whose goal was not early-stopping).

Protocol Validity Bit complexity Resilience Cryptography
COOL [18, 43] S O(nL + n2 log n) n > 3t None
Parallel COOL

[18, 43]
IC → (S +

E)
O(n2L + n3 log n) n > 3t None

Ada-Dareic [19] IC → (S +
E)

O(n2L + n2κ) n > 2t Threshold Sign.

Ada-Daresu [19] S + E O(nL + n2κ) n > 2t Threshold Sign.
HashExt S + E O(nL + n3κ) n > 3t Hash

ErrorFreeExt S + E O
(
(nL + n2) log n

)
n > 3t None

Lower
bound [27, 21]

Any Ω(nL + n2) t ∈ Ω(n) Any

1.2 Overview & Technical Challenges
Why is efficient validated agreement hard? To solve the validated agreement problem (i.e.,
to satisfy external validity), a decided value must be valid. Therefore, a validated agreement
algorithm needs to ensure that it is operating on (or converging to) a valid value. If the
value (in its entirety) is attached to every message, satisfying external validity is (relatively)
simple: each message can be individually validated and invalid messages can be ignored.
Unfortunately, attaching an L-bit value to each message is inherently expensive, yielding a
sub-optimal bit complexity of Ω(n2L).

To avoid attaching an L-bit value to each message, the most efficient solutions to validated
agreement (designed for arbitrary-sized values) involve coding techniques, where an L-bit value
is split into n different shares of O( L

n + log n) size. The goal is to (somehow) reach agreement
on a valid value using O(n2) messages of O( L

n + log n) bits, for a total of O(nL + n2 log n)
exchanged bits. However, this “coding-based” design introduces a new challenge. How can a



P. Civit et al. 14:5

process that only holds one share (or constantly many shares) know that the corresponding
value is valid? For example, to check if a split value v is valid, correct processes might
attempt to reconstruct it, expending O(nL + n2 log n) bits in the process (as reconstruction
is expensive). Since there may be (in the worst case) up to t ∈ Ω(n) invalid values (from
as many faulty processes), this reconstruction process might have to be repeated many
times before a valid value is found, resulting in (say) sub-optimal O(n2L + n3 log n) total
communication.

Overview of HashExt. To overview HashExt’s design, we first revisit how efficient
signature-based validated agreement is solved (see, e.g., [19]). In the signature-based paradigm,
efficient validated agreement algorithms adopt the following approach: (1) First, each process
disseminates its value (using coding techniques) and obtains a proof of retriveability (PoR).
A PoR is a cryptographic object containing a digest (of a value) and proving that (i) the
pre-image of the digest can be retrieved by all correct processes, and (ii) the pre-image
of the digest is valid. (2) Second, processes agree on a single PoR. (3) Third, processes
retrieve a value corresponding to the agreed-upon PoR. Importantly, each PoR must be
“self-certifying”: once a correct process obtains an alleged PoR, the process must be able to
determine if the PoR is valid to be sure that if this PoR gets decided in the second step, a
valid value can be retrieved. That is why PoRs are usually implemented using signatures: if
a PoR contains a signature-based certificate, processes can be confident in its validity. Due to
this “self-certifying” nature of PoRs, it seems challenging to adapt them to the signature-free
world.

To design a hash-based validated agreement algorithm HashExt, we (roughly) follow
the aforementioned three-step approach with one fundamental difference: HashExt utilizes
implicit (“non-self-certyfing”) PoRs. Given any observed digest d, a correct process executing
HashExt can determine if (1) the pre-image v of digest d can be retrieved, and (2) v is
valid. There is no proof that the valid pre-image can be retrieved – only the protocol design
ensures this guarantee.

Overview of ErrorFreeExt. To implement ErrorFreeExt, our error-free (cryptography-
free) near-optimal solution, we rely on a recursive structure – carefully adapting to long values
the recursive design proposed by [12, 22, 43, 51] that is only concerned with constant-sized
values. At each recursive iteration with n processes, processes are statically partitioned into
two halves that run the algorithm among n/2 processes. Moreover, each recursive iteration
exhibits “additional work” through the graded consensus [9, 2] primitive. Intuitively, the
graded consensus primitive reconciles decisions made by two distinct halves to ensure that all
processes agree on a unique valid value. Due to the recursive nature of ErrorFreeExt, its
bit complexity depends on the complexity of graded consensus. To obtain ErrorFreeExt’s
near-optimal O

(
(nL+n2) log n

)
bit complexity, we observe that a graded consensus algorithm

with O(nL + n2 log n) bits can be derived from the “reducing” technique introduced by the
previously mentioned COOL [18] protocol.3

Roadmap. We define the system model and introduce some preliminaries in §2. We present
HashExt in §3, whereas ErrorFreeExt is introduced in §4. Finally, we conclude in §5.
Omitted pseudocode, detailed related work and proofs are relegated to the full version of the
paper.

3 A similar observation has recently been made for (balanced) synchronous gradecast, a sender-oriented
counterpart to graded consensus [8].

DISC 2024



14:6 Efficient Signature-Free Validated Agreement

2 System Model & Preliminaries

2.1 System Model
Processes. We consider a static set Π = {p1, p2, ..., pn} of n processes, where each process
acts as a deterministic state machine. Our HashExt (resp., ErrorFreeExt) algorithm
implements validated agreement against a computationally bounded (resp., unbounded)
adversary that can corrupt up to t < n/3 processes at any time during an execution. (We
underline that no signature-free agreement algorithm can tolerate n/3 or more failures [40],
disregarding the restricted-resource model [29] that allows for a higher corruption threshold.)
A corrupted process is said to be faulty; a non-faulty process is said to be correct. We denote
by f ≤ t the actual number of faulty processes; we emphasize that f is not known.

Stopping. Each correct process can invoke a special stop request while executing any
protocol. Once a correct process stops executing a protocol, it ceases taking any steps (e.g.,
sending and receiving messages).

Communication network. Processes communicate by exchanging messages over an authen-
ticated point-to-point network. The communication network is reliable: if a correct process
sends a message to a correct process, the message is eventually received.

Synchrony. We assume the standard synchronous environment in which the computation
unfolds in synchronous δ-long rounds, where δ denotes the known upper bound on message
delays. In each round 1, 2, ... ∈ N, each process (1) performs (deterministic) local computa-
tions, (2) sends (possibly different) messages to (a subset of) the other processes, and (3)
receives the messages sent to it by the end of the round.

2.2 Complexity Measures
Let Agreement be any synchronous validated agreement algorithm, and let E(Agreement)
denote the set of Agreement’s executions. Let α ∈ E(Agreement) be any execution. The bit
complexity of α is the number of bits correct processes collectively send throughout α. The
bit complexity of Agreement is then defined as

max
α∈E(Agreement)

{
the bit complexity of α

}
.

Similarly, the latency complexity of α is the time it takes for all correct processes to decide
and stop in α. The latency complexity of Agreement is then defined as

max
α∈E(Agreement)

{
the latency complexity of α

}
.

We say that Agreement satisfies early stopping if and only if the latency complexity of
Agreement belongs to O

(
(f + 1)δ

)
. Note that the maximum number of rounds Agreement

requires to decide – the round complexity of Agreement – is equal to the latency complexity
of Agreement divided by δ. Throughout the paper, we use the latency and round complexity
interchangeably.

2.3 Building Blocks
This subsection overviews building blocks utilized in both HashExt and ErrorFreeExt.



P. Civit et al. 14:7

Reed-Solomon codes. HashExt and ErrorFreeExt rely on Reed-Solomon (RS)
codes [53]. We use RSEnc and RSDec to denote RS’ encoding and decoding algorithms.
In brief, RSEnc(M, m, k) takes as input a message M consisting of k symbols, treats it as
a polynomial of degree k − 1, and outputs m evaluations of the corresponding polynomial.
Similarly, RSDec(k, r, T ) takes as input a set of symbols T (some of the symbols might be
incorrect) and outputs a degree k − 1 polynomial (i.e., k symbols) by correcting up to r

errors (incorrect symbols) in T . Note that RSDec can correct up to r errors in T and output
the original message given that |T | ≥ k + 2r [47]. Importantly, the bit-size of an RS symbol
obtained by the RSEnc(M, m, k) algorithm is O( |M |

k + log m), where |M | denotes the bit-size
of the message M .

Graded consensus. Both HashExt and ErrorFreeExt make extensive use of the graded
consensus primitive [9, 2] (also known as Adopt-Commit [26]), whose formal specification
is given in Module 1. In brief, graded consensus allows processes to propose their input
value from the GC_Value set and decide on some value from the GC_Value set with some
binary grade. The graded consensus primitive ensures agreement among correct processes
only if some correct process decides a value with (higher) grade 1. If no correct process
decides with grade 1, graded consensus allows correct processes to disagree. (Thus, graded
consensus is a weaker problem than validated agreement.) HashExt employs the graded
consensus primitive on hash values (GC_Value ≡ the set of all hash values). On the other
hand, ErrorFreeExt utilizes graded consensus on values proposed to validated agreement
(GC_Value ≡ Value).

Module 1 Graded consensus.
Events:

request propose(v ∈ GC_Value): a process proposes a value v ∈ GC_Value.
indication decide(v′ ∈ GC_Value, g′ ∈ {0, 1}): a process decides a value v′ ∈ GC_Value with a
grade g′.

Assumed behavior:
Every correct process proposes exactly once.
All correct processes propose simultaneously (i.e., in the same round). (We revisit this assumption
for the graded consensus primitive employed in ErrorFreeExt; see §4.3.)

Properties:
Strong unanimity: If all correct processes propose the same value v and a correct process decides a
pair (v′, g′), then v′ = v and g′ = 1.
Justification: If a correct process decides a pair (v′, ·), then v′ was proposed by a correct process.
Consistency: If any correct process decides a pair (v, 1), then no correct process decides any pair
(v′ ̸= v, ·).
Integrity: No correct process decides more than once.
Termination: All correct processes decide simultaneously (i.e., in the same round). (The “simulta-
neous” termination is revisited in the graded consensus primitive employed in ErrorFreeExt;
see §4.3.)

3 HashExt: Optimal Early-Stopping Hash-Based Solution

In this section, we present HashExt, our hash-based validated Byzantine agreement solution
that achieves O(nL + n3κ) bit complexity, which is optimal for L ≥ n2κ (κ denotes the
size of a hash value). Additionally, HashExt is (1) optimally resilient as it tolerates up to
t < n/3 faults, and (2) early-stopping as it terminates in O

(
(f + 1)δ

)
time (i.e., O(f + 1)

synchronous rounds).

DISC 2024



14:8 Efficient Signature-Free Validated Agreement

We start by introducing the building blocks of HashExt (§3.1). Then, we present
HashExt’s pseudocode (§3.2). Finally, we present a proof sketch of HashExt’s correctness
and complexity (§3.3). We relegate a proof of HashExt’s correctness and complexity to the
full version of the paper.

3.1 Building Blocks
Digests. We assume a collision-resistant function digest : Value→ Digest ≡ {0, 1}κ, where
κ is a security parameter. Concretely, the digest(v ∈ Value) function performs the following
steps: (1) it encodes value v into n RS symbols [m1, m2, ..., mn] ← RSEnc(v, n, t + 1); (2)
it aggregates [m1, m2, ..., mn] into an accumulation value zv using the Merkle-tree-based
(i.e., hash-based) cryptographic accumulator [49]; (3) it returns zv. Note that, as we employ
hash-based Merkle trees, an accumulation value zv is a hash. The formal definition of the
digest(·) function can be found in the full version of the paper.

Data dissemination. The formal specification of the data dissemination primitive is given
in Module 2. Intuitively, the data dissemination primitive allows all correct processes to
obtain the same value v⋆ assuming that (1) all correct processes a priori agree on the digest
d⋆ of value v⋆ (even if processes do not know the pre-image v⋆ of d⋆ a priori), and (2) at least
one correct process initially holds the pre-image v⋆. We relegate the implementation of the
data dissemination primitive to the full version of the paper. In brief, the implementation
heavily relies on Merkle-tree-based accumulators and it exchanges O(nL + n2κ log n) bits
while terminating in 2δ time.

Module 2 Data dissemination.
Events:

request input(v ∈ Value ∪ {⊥}, d ∈ Digest): a process inputs a value v (or ⊥) and a digest d.
request output(v′ ∈ Value): a process outputs a value v′.

Assumed behavior:
All correct processes input a pair. We underline that correct processes might not input their values
simultaneously (i.e., at the exact same round).
No correct process stops unless it has previously output a value.
There exists a value v⋆ ∈ Value (v⋆ ̸= ⊥) and a digest d⋆ = digest(v⋆) such that:

If any correct process inputs a pair (v ∈ Value, ·), then v = v⋆.
If any correct process inputs a pair (·, d ∈ Digest), then d = d⋆.
At least one correct process inputs a pair (v⋆, d⋆).

Properties:
Safety: If any correct process outputs a value v, then v = v⋆.
Liveness: Let τ be the first time by which all correct processes have input a pair. Then, every
correct process outputs a value by time τ + 2δ.
Integrity: No correct process outputs a value unless it has previously input a pair.

3.2 Pseudocode
The pseudocode of HashExt is given in Algorithm 1.

Key idea. The crucial idea behind HashExt is to ensure that all correct processes agree
on a digest d⋆ of a valid value v⋆ such that at least one correct process knows the pre-image
v⋆ of d⋆. To solve validated agreement, it then suffices to utilize the data dissemination
primitive (see Module 2): if (1) all correct processes input the same digest d⋆, and (2) at
least one correct process inputs the pre-image v⋆ of d⋆, then all correct processes agree on the



P. Civit et al. 14:9

(valid) value v⋆. Given that the data dissemination primitive exchanges O(nL + n2κ log n)
bits and terminates in 2 rounds, HashExt dedicates O(nL + n3κ) bits and O(f + 1) rounds
to agreeing on digest d⋆.

Protocol description. HashExt internally utilizes an instance DD of the data dissemination
primitive. We design HashExt in a view-based manner: HashExt operates in (at most)
f + 1 views, where each view V has its leader leader(V ) = pV .4 Each view V internally uses
two instances GC1[V ] and GC2[V ] of the graded consensus primitive (see Module 1) that
operates on digests.

We say that a correct process pi commits a digest d in view V if and only if pi invokes
DD.input(·, d) in view V (line 44). Each correct process pi maintains four important local
variables:

lockedi (line 6): holds a digest (or ⊥) on which pi is currently “locked on”.
votei (line 7): holds a digest (or ⊥) currently supported by pi.
known_valuesi[D], for every digest D (line 9): holds the pre-image of digest D observed
by pi.
acceptedi[V ], for every view V (line 10): holds the set of digest that are “accepted” in
view V .

Let pi be any correct process. Each view V operates in four steps:
1. Process pi proposes lockedi to GC1[V ] and decides a pair (d1, g1) (line 16). Intuitively,

if d1 ̸= ⊥ and g1 = 1, pi sticks with digest d1 throughout the view as it is possible that
some other correct process has previously committed digest d1. (Hence, not sticking with
digest d1 in view V might be dangerous as it could lead to a disagreement on committed
digests.)

2. Here, the leader of view V (if correct) aims to enable all correct processes to commit a
digest in view V . Specifically, the leader behaves in the following manner:

If it decided a non-⊥ digest from GC1[V ], then the leader disseminates the digest
(line 20).
Otherwise, the leader disseminates its proposal (line 22).

Process pi behaves according to the following logic:
If pi decided a non-⊥ digest d with grade 1 from GC1[V ] (d1 = d ̸= ⊥ and g1 = 1; see
the rule at line 23), then pi supports digest d by broadcasting a support message for
d (line 24).
If pi decided ⊥ from GC1[V ], then pi supports a digest d by broadcasting a support
message for d (line 27 or line 30) if (1) it receives digest d from the leader and pi

accepted d in any previous view (line 26), or (2) it receives a valid value v from the
leader such that digest(v) = d (line 28). If the latter case applies, process pi “observes”
the pre-image v of digest d (line 29).

3. Process pi accepts a digest d in view V if it receives a support message for d from t + 1
processes (line 33). Moreover, process pi updates its votei variable to a digest d if it
receives a support message for d from 2t + 1 processes (line 35). Otherwise, process pi

sets its votei variable to ⊥ (line 37). Observe that if any correct process pj updates its
votej variable to a digest d, then every correct process pk accepts d in view V . Indeed, as
pj receives a support message for digest d from at least 2t + 1 processes out of which at
least t + 1 are correct, it is guaranteed that pk receives a support message for d from at
least t + 1 processes.

4 HashExt elects leaders in a round-robin fashion.

DISC 2024



14:10 Efficient Signature-Free Validated Agreement

Algorithm 1 HashExt: Pseudocode (for process pi).

1: Uses:
2: Graded consensus, instances GC1[V ], GC2[V ], for each view V ∈ [1, t + 1] ▷ bits: O(n2κ);

rounds: 2
3: Data dissemination, instance DD ▷ bits: O(nL + n2κ log n); rounds: 2

4: Local variables:
5: Value vi ← pi’s proposal
6: Digest lockedi ← ⊥ ▷ locked digest
7: Digest votei ← ⊥ ▷ digest to be voted for
8: View committeed_viewi ← ⊥
9: Map(Digest→ Value) known_valuesi ← {⊥,⊥, ...,⊥} ▷ values corresponding to digests

10: Map(View→ Set(Digest)) acceptedi ← {∅, ∅, ..., ∅} ▷ accepted digests per view

11: – Task 1 –
12: for each view V ∈ [1, t + 1]:
13: if committed_viewi ̸= ⊥ and commited_viewi + 1 = V : complete the view after 6 synchronous

rounds
14: if commited_viewi ̸= ⊥ and V > committed_viewi + 1: do not execute the view
15: Step 1 of view V : ▷ 2 synchronous rounds
16: Let (d1 ∈ Digest ∪ {⊥}, g1 ∈ {0, 1})← GC1[V ].propose(lockedi)
17: Step 2 of view V : ▷ 2 synchronous round
18: if pi = leader(V ):
19: if d1 ̸= ⊥: ▷ check if a non-⊥ digest is decided from GC1[V ]
20: broadcast d1 ▷ broadcast a non-⊥ digest decided from GC1[V ]
21: else:
22: broadcast vi ▷ broadcast the proposed value
23: if d1 ̸= ⊥ and g1 = 1:
24: broadcast ⟨support, d1⟩
25: else:
26: if dl ∈ Digest is received from leader(V ) and a view V ′ < V exists with dl ∈ accepted[V ′]:

27: broadcast ⟨support, dl⟩
28: else if vl ∈ Value is received from leader(V ) such that valid(vl) = true:
29: known_values[digest(vl)]← vl

30: broadcast ⟨support, digest(vl)⟩
31: Step 3 of view V : ▷ 0 synchronous round (only local computation)
32: if exists d ∈ Digest such that a ⟨support, d⟩ message is received from t + 1 processes:
33: acceptedi[V ]← acceptedi[V ] ∪ {d}
34: if exists d ∈ Digest such that a ⟨support, d⟩ message is received from 2t + 1 processes:
35: votei ← d
36: else:
37: votei ← ⊥
38: Step 4 of view V : ▷ 2 synchronous rounds
39: Let (d2 ∈ Digest ∪ {⊥}, g2 ∈ {0, 1})← GC2[V ].propose(votei)
40: if d2 ̸= ⊥: ▷ check if a non-⊥ digest is decided from GC2[V ]
41: lockedi ← d2 ▷ digest d2 is locked as some correct process might commit it
42: if g2 = 1 and committed_viewi = ⊥: ▷ check if digest d2 is decided with grade 1
43: committed_viewi ← V
44: invoke DD.input(known_values[d2], d2) ▷ commit digest d2

45: – Task 2 – ▷ executed in a separate thread
46: upon DD.output(v′ ∈ Value):
47: trigger decide(v′)
48: wait for view committed_viewi+1 to be completed (if not yet and if committed_viewi+1 ≤ t+1)

49: trigger stop ▷ process pi stops HashExt



P. Civit et al. 14:11

4. Process pi proposes votei to GC2[V ] and decides a pair (d2, g2). If d2 ̸= ⊥, process pi

updates its lockedi variable to d2 (line 41). Additionally, if g2 = 1, then pi commits d2
(line 44). Importantly, if any correct process pj commits a digest d ̸= ⊥ in view V , every
correct process pk updates its lockedk variable to d. Indeed, as pj commits d, it decides
(d ̸= ⊥, 1) from GC2[V ]. The consistency property of GC2[V ] ensures that each correct
process pk decides d from GC2[V ].

We emphasize that if process pi commits a digest in some view V , process pi does not execute
any view greater than V + 1 (line 14). Moreover, if pi commits in view V < t + 1, then
process pi necessarily completes view V + 1 before stopping (line 48). Importantly, process pi

completes view V + 1 after exactly 6 rounds have elapsed. Let us elaborate. As some correct
process pj ̸= pi might never enter view V + 1 (since it has committed in a view smaller than
view V ), it is possible that not all correct processes participate in view V + 1. This implies
that utilized graded consensus instances might never complete, which further means that
process pi can forever be stuck executing a graded consensus instance in view V + 1. To
avoid this scenario, process pi completes view V + 1 after 6 rounds irrespectively of which
step of view V + 1 pi is in after 6 rounds. Finally, once pi outputs a value v′ from DD
(and completes the aforementioned “next view”), pi decides v′ (line 47) and stops executing
HashExt (line 49).

3.3 Proof Sketch
This subsection provides a proof sketch of the following theorem:

▶ Theorem 1. HashExt (Algorithm 1) is a hash-based early-stopping validated agreement
algorithm with O(nL + n3κ) bit complexity.

Our proof sketch focuses on the crucial intermediate guarantees ensured by HashExt.

Preventing disagreement on committed digests. First, we show that correct processes do
not disagree on committed digests. Let V denote the first view in which a correct process
commits; let d⋆ be the committed digest. No correct process commits any non-d⋆ digest in
view V due to the consistency property of GC2[V]: it is impossible for correct processes to
decide different digests from GC2[V] with grade 1.

If V < t + 1, HashExt prevents any non-d⋆ digest to be committed in any view greater
than V. Specifically, HashExt guarantees that all correct processes commit d⋆ (and no
other digest) by the end of view V + 1. The consistency property of GC2[V] ensures that
every correct process pi updates its lockedi variable to d⋆ at the end of view V. Therefore,
all correct processes propose d⋆ to GC1[V + 1], which implies that all correct processes decide
(d⋆, 1) from GC1[V + 1] (due to the strong unanimity property of GC1[V + 1]). Hence, all
correct processes broadcast a support message for digest d⋆ (line 24), which further implies
that all correct processes propose d⋆ to GC2[V + 1]. Finally, the strong unanimity property of
GC2[V + 1] ensures that all correct processes decide (d⋆, 1) from GC2[V + 1] and thus commit
d⋆ by the end of view V + 1.

Ensuring eventual agreement on the committed digest. Second, we prove that an agree-
ment on the committed digest eventually occurs. Concretely, we now show that all correct
processes commit a digest by the end of the first view whose leader is correct. Let that view
be denoted by Vl ∈ [1, f + 1] and let pVl

be the leader of Vl. If any correct process commits a
digest in any view smaller than Vl, then all correct processes commit the same digest by the
end of view Vl due to the argument from the previous paragraph. Hence, suppose no correct
process commits any digest in any view preceding view Vl. We distinguish two scenarios:

DISC 2024



14:12 Efficient Signature-Free Validated Agreement

Let pVl
decide a digest d ̸= ⊥ from GC1[Vl]. Crucially, the justification property of GC1[Vl]

ensures that d ̸= ⊥ is proposed by some correct process pj . Hence, the value of the
lockedj variable is d at the beginning of view Vl. Let V ′ < Vl denote the view in which pj

updates lockedj to d upon deciding d ≠ ⊥ from GC2[V ′]. Again, the justification property
of GC2[V ′] guarantees that a correct process proposed d to GC2[V ′] upon receiving 2t + 1
support messages for d. As at least t + 1 such messages are received from correct
processes, every correct process accepts digest d in view V ′.
In this case, process pVl

broadcasts digest d in Step 2. We show that all correct processes
broadcast a support message for digest d. Consider any correct process pi. We study
two possible cases:

Let pi decide a non-⊥ digest d′ with grade 1 from GC1[Vl]. In this case, the consistency
property of GC1[Vl] ensures that d = d′. Thus, process pi sends a support message
for digest d (line 24).
Let pi decide ⊥ or with grade 0 from GC1[Vl]. In this case, process pi sends a support
message for digest d (line 27) as (1) it receives d from pVl

, and (2) it accepts d in view
V ′ < Vl.

Let pVl
decide ⊥ from GC1[Vl]. Note that this implies that no correct process decides

a non-⊥ digest with grade 1 from GC1[Vl] (due to the consistency property of GC1[Vl]).
Hence, process pVl

broadcasts its valid value v, which then implies that all correct
processes send a support message for digest d = digest(v) (line 30).

Hence, there exists a digest d for which all correct processes express their support in both
cases. Therefore, all correct processes propose d to GC2[Vl]. Finally, the strong unanimity
property ensures that all correct processes decide (d, 1) from GC2[Vl] and thus commit digest
d in view Vl.

Ensuring that some correct process knows the valid pre-image of the committed digest.
We show how HashExt enables processes to “obtain” implicit PoRs (see §1). Let d⋆ denote
the (unique) committed digest. For d⋆ to be committed, there exists a correct process that
sends a support message for d⋆ in a view in which d⋆ is committed (due to the justification
property of GC2[V ], for every view V ). Therefore, it suffices to show that the first correct
process to ever send a support message for d⋆ (or any other digest) does so at line 30
upon receiving valid value v⋆ with digest(v⋆) = d⋆. Let pi denote the first process to send a
support message for digest d⋆ and let it do so in some view V . We study if pi could have
sent the message at lines 24 and 27:

Process pi could not have sent the support message at line 24 as this would imply that
pi is not the first correct process to send the message for d⋆. The justification property
of GC1[V ] ensures that some correct process pj has its lockedj variable set to d⋆ at the
beginning of view V . For process pj to update its lockedj variable to d⋆ in some view
V ′ < V , there must exist a correct process that sends a support message for d⋆ in view
V ′ (due to the justification property of GC2[V ′]). Therefore, pi cannot be the first correct
process to send a support message for d⋆.
Process pi could not have sent the support message at line 27 as this would also imply
that pi is not the first correct process to send the message for d⋆. Indeed, for the message
to be sent at line 27, process pi accepts d⋆ in some view V ′ < V , which implies that at
least one correct process sends a support message for d⋆ in view V ′.

Hence, pi must have sent the message at line 30, which implies that pi knows the pre-image
v⋆ of digest d⋆ and that v⋆ is valid (due to the check at line 28).



P. Civit et al. 14:13

Correctness. The previous three intermediate results show that the preconditions of DD
(see Module 2) are satisfied, which implies that DD behaves according to its specification.
Hence, all correct processes decide the same valid value from HashExt due to the properties
of DD.

Complexity. Each view with a non-correct leader exchanges O(n2κ) bits. Moreover, each
view with a correct leader exchanges O(nL + n2κ) bits. As DD exchanges O(nL + n2κ log n)
bits and it is ensured that only O(1) views with correct leaders are executed, HashExt
exchanges O(nL + n2κ) + n ·O(n2κ) + O(nL + n2κ log n) = O(nL + n3κ) bits.

As all correct processes start DD at the end of the first view with a correct leader (at
the latest), all correct processes input to DD in O(f + 1) rounds (recall that each view has 6
rounds). Since DD guarantees agreement in 2 rounds, all correct decide and stop in O(f + 1)
rounds.

On the lack of strong unanimity. Note that HashExt as presented in Algorithm 1 does
not satisfy strong unanimity. Indeed, even if all correct processes propose the same value
v, it is possible that correct processes agree on a value v′ proposed by a faulty leader.
However, as specified in §1, it is trivial to modify HashExt to obtain an early-stopping
algorithm with both strong unanimity and external validity that exchanges O(nL + n3κ) bits.
Indeed, this can be done by running in parallel (1) the current (without strong unanimity)
implementation of HashExt, and (2) the error-free early-stopping COOL [18, 43] protocol
with only strong unanimity.

4 ErrorFreeExt: Near-Optimal Early-Stopping Error-Free Solution

This section presents ErrorFreeExt, an error-free validated Byzantine agreement algorithm
that achieves (1) O

(
(nL + n2) log n

)
bit complexity, and (2) early stopping. Recall that

ErrorFreeExt is also optimally resilient (tolerates up to t < n/3 Byzantine processes).
We start by introducing ErrorFreeExt’s building blocks (§4.1). To introduce Error-

FreeExt’s recursive structure, we first show how (a simplified version of) the recursive
structure yields a near-optimal validated agreement without early-stopping – SlowExt
(§4.2). Then, we overview ErrorFreeExt (§4.3) and give a proof sketch of its correctness
and complexity (§4.4). We relegate ErrorFreeExt’s full pseudocode and a formal proof
to the full version of the paper.

4.1 Building Blocks
We now overview the building blocks of ErrorFreeExt. Given ErrorFreeExt’s recursive
structure, the specification of each building block explicitly states its participants (to increase
the clarity). Moreover, given that building blocks might be executed among an overly
corrupted set of participants (due to the recursion), each building block explicitly states
what properties are ensured given the level of corruption among its participants.

Committee broadcast. The formal specification of the committee broadcast primitive
is given in Module 3. Committee broadcast is concerned with two sets of processes: (1)
Entire ⊆ Π, and (2) Committee ⊆ Entire. Moreover, the primitive is associated with a
validated Byzantine agreement algorithm VA to be executed among processes in Committee.
Intuitively, the committee broadcast primitive ensures the following: (1) correct processes
in Committee agree on the same value using the VA algorithm (given that Committee is

DISC 2024



14:14 Efficient Signature-Free Validated Agreement

not overly corrupted), and (2) correct processes in Committee disseminate the previously
agreed-upon value to all processes in Entire. We underline that the totality property of
committee broadcast (deliberately written in orange in Module 3) is important only for
ErrorFreeExt’s early-stopping, i.e., it can be ignored for SlowExt (in §4.2).

Module 3 Committee broadcast ⟨Entire, Committee,VA⟩.
Participants:

Entire ⊆ Π; let x = |Entire| and let x′ be the greatest integer smaller than x/3.
Committee ⊆ Entire; let y = |Committee|, let y′ be the greatest integer smaller than y/3 and let f ′

be the actual number of faulty processes in Committee.

Utilized validated agreement among Committee:
VA; let LVA(y, f ′) denote the worst-case latency complexity of VA with up to f ′ faulty processes
and let BVA(y) denote the maximum number of bits any correct process sends while executing VA
with up to y′ faulty processes. (We underline that LVA(y, f ′) is based on the non-known actual
number of failures, whereas BVA(y) is based on the known upper bound on the number of failures.)

Events:
request input(v ∈ Value, g ∈ {0, 1}): a process inputs a pair (v, g).
indication output(v′ ∈ Value): a process outputs a value v′.

Assumed behavior:
Every correct process inputs a pair.
If a correct process inputs a pair (v, ·), then valid(v) = true.
No correct process stops unless it has previously output a value.
If any correct process inputs a pair (v, 1), for any value v, then no correct process inputs a pair
(v′ ̸= v, ·).

Properties ensured only if up to x′ processes in Entire are faulty:
Totality: Let τ denote the first time at which a correct process outputs a value. Then, every correct
process outputs a value by time τ + 2δ.
Stability: If a correct process inputs a pair (v, 1) and outputs a value v′, then v′ = v.
External validity: If a correct process outputs a value v, then valid(v) = true.
Optimistic consensus: If (1) there are up to y′ faulty processes in Committee, and (2) all correct
processes in Entire start within 2δ time of each other, the following properties are satisfied:

Liveness: Let τ be the first time by which all correct processes in Committee have input a pair.
Then, every correct process outputs a value by time τ + 7δ + LVA(y, f ′).
Agreement: No two correct processes output different values.
Strong unanimity: If every correct process proposes a pair (v, ·), for any value v, then no correct
process outputs a value different from v.

Properties ensured even if more than x′ processes in Entire are faulty:
Complexity: Each correct process sends O(L + x log x) + BVA bits.

Finisher. The formal specification of the finisher primitive is given in Module 4. Finisher is
executed among a set Entire ⊆ Π of processes. Each process inputs a pair (v ∈ Value, g ∈
{0, 1}), where v is a value and g is a binary grade. In brief, finisher ensures that all correct
processes output the same value if all correct processes input the same value with grade 1
(the liveness property). Moreover, finisher ensures totality: if any correct process outputs
a value, then all correct processes output the same value. We emphasize that the finisher
primitive is introduced only for achieving early-stopping in ErrorFreeExt, i.e., it plays no
role in SlowExt.

4.2 SlowExt: Achieving Near-Optimality Without Early-Stopping
Wisdom of the ancients. As mentioned in §1.2, the problem with the sequential reconstruc-
tive approach is that, by allowing each Byzantine process to impose its own value, we can
end up with f = t ∈ O(n) (wasted) reconstructions of invalid values (with O(n2) messages
each), for a total of O(n3) messages. Making an analogy to a parliamentary system (e.g., of



P. Civit et al. 14:15

Module 4 Finisher ⟨Entire⟩.
Participants:

Entire ⊆ Π; let x = |Entire| and let x′ be the greatest integer smaller than x/3.

Events:
request input(v ∈ Value, g ∈ {0, 1}): a process inputs a pair (v, g).
indication output(v′ ∈ Value): a process outputs a value v′.

Assumed behavior:
All correct processes input a pair and they do so within 2δ time of each other.
No correct process stops unless it has previously output a value.
If any correct process inputs a pair (v, 1), for any value v, then no correct process inputs a pair
(v′ ̸= v, ·).

Properties ensured only if up to x′ processes in Entire are faulty:
Preservation: If a correct process pi outputs a value v′, then pi has previously input a pair (v′, ·).
Agreement: No two correct processes output different values.
Justification: If a correct process outputs a value, then a pair (·, 1) was input by a correct process.
Liveness: Let all correct processes input a pair (v, 1), for any value v. Let τ be the first time by
which all correct processes have input. Then, all correct processes output value v by time τ + δ.
Totality: Let τ be the first time at which a correct process outputs a value. Then, all correct
processes output a value by time τ + 2δ.

Properties ensured even if more than x′ processes in Entire are faulty:
Complexity: Each correct process sends O(x) bits.

some island in ancient Greece [39]), this is the equivalent of allowing every single member
of parliament to present their proposal to all others. This is somewhat wasteful. In many
modern parliamentary systems, since time is limited, proposals are first filtered internally
within each party before each party presents one proposal to the whole assembly. Hence,
no matter how many bad proposals a party might have internally, the whole assembly only
discusses one per party. The cost of dealing with bad actors (and proposals) is shifted to
the parties, which are individually smaller than the whole assembly. This is (essentially) the
crucial realization of [12, 22]. By adopting a recursive framework with two “parties” at each
level, [12, 22] obtain non-early-stopping solutions with optimal O(n2) exchanged messages
(albeit still O(n2L) exchanged bits).

SlowExt in a nutshell. To design SlowExt, we adapt the recursive framework of [12, 22]
to long values. More precisely, we follow the recent variant of the framework proposed
by [51, 43] that utilizes (1) the graded consensus [9, 2] primitive (instead of the “universal
exchange” primitive of [12]; see Module 1), and (2) the committee broadcast primitive (see
Module 3). At each recursive iteration, processes are statically partitioned into two halves
(according to their identifiers) that run the algorithm among n/2 processes (inside that half’s
committee broadcast primitive) in sequential order. The recursion stops once a validated
agreement instance with only a single process is reached; at this point, the process decides
its proposal. A graphical depiction of SlowExt is given in the gray part of Figure 1.

Crucially, as t < n/3, at least one half contains less than one-third of faulty processes.
Therefore, there exists a “healthy” (non-corrupted) half that successfully executes the recursive
call (i.e., successfully executes the committee broadcast primitive). However, agreement
achieved among a healthy half must be preserved, i.e., preventing an unhealthy half from
ruining the “healthy decision” is imperative. To this end, the recursive framework utilizes
the graded consensus primitive that allows the correct processes to stick with their previously
made (if any) decision. For example, suppose that the first half of processes is healthy.
Hence, after executing SlowExt among the first half of processes (i.e., in the first committee
broadcast primitive), all correct processes obtain the same value (due to the optimistic

DISC 2024



14:16 Efficient Signature-Free Validated Agreement

Graded
Consensus

Committee
Broadcast

Graded
Consensus

Committee
Broadcast

Graded
Consensus

Committee
Broadcast

Graded
Consensus

( ) Finisher Finisher

( )

First half

 

Second half

 

Default leader
 

Figure 1 The recursive structure of ErrorFreeExt (and SlowExt).

consensus property of committee broadcast). In this case, the graded consensus primitive
GC2 ensures that correct processes cannot change their values due to the actions of the second
half, thus preserving the previously achieved agreement. By implementing both the graded
consensus and committee broadcast primitives with only O(nL + n2 log n) bits (see the full
version of the paper), SlowExt achieves near-optimal asymptotic bit complexity:

log n∑
i=0

2i ·
( n

2i
L +

( n

2i

)2
log

( n

2i

))
≤

log n∑
i=0

(
nL + n2

2i
log n

)
∈ O

(
(nL + n2) log n

)
.

4.3 ErrorFreeExt: Overview
The pseudocode for ErrorFreeExt is provided in the paper’s full version and its graph-
ical presentation can be found in Figure 1. Below, we give key insights for obtaining
ErrorFreeExt.

Why is SlowExt not early-stopping? SlowExt does not achieve early stopping as
SlowExt allocates a predetermined number of rounds for each recursive call: processes
cannot prematurely terminate a recursive call even if they have already decided. In particular,
each recursive call consumes the maximum number of rounds necessary for its completion.
This maximum number of rounds is proportional to the upper bound t on the number of
Byzantine processes rather than the actual number f ≤ t of Byzantine processes. As a result,
SlowExt incurs round complexity dependent on t rather than f .

From SlowExt to ErrorFreeExt. To achieve early stopping from SlowExt, ErrorFree-
Ext mirrors the binary approach of [43] and carefully adapts it to long L-bit values. The
first key ingredient is the introduction of the finisher instance F2 that we position (1) before
the committee broadcast instance CB2 led by the second half of processes, and (2) after the
graded consensus instance GC2. In brief, F2 leverages the presence of the graded consensus
instance GC2 to check if GC2 ensured agreement among correct processes. If that is the
case, then F2 allows correct processes to terminate immediately (i.e., in O(δ) time) after the
termination of the committee broadcast instance CB1 led by the first half of processes.

However, the introduction of F2 to tackle early-stopping brings its share of technical
difficulties. Indeed, since the actual number of failures f is unknown, processes cannot
remain perfectly synchronized: a correct process pi might decide (and terminate) at some



P. Civit et al. 14:17

time τ thinking this is the maximum time before all correct processes decide given the
failures pi observed, whereas another correct process pj might still be running after time τ

as it has observed more failures than pi. To handle the aforementioned desynchronization,
ErrorFreeExt relies on weak synchronization ensuring that correct processes execute
different sub-modules with at most 2δ desynchronization time: if the first correct process starts
executing a sub-module at time τ , then all correct processes start executing the same sub-
module by time τ +2δ. To achieve this weak synchronization, we follow the standard approach
of [57, 58]. Furthermore, to handle the 2δ desynchronization in ErrorFreeExt’s sub-
modules, we extend the round duration of graded consensus instances from the original δ time
to 3δ time. (The specification of the other sub-modules directly tackles the aforementioned
desynchronization.) We emphasize that at some point τ , correct processes might be in
different rounds: e.g., a correct process pi can be in round 4, whereas another correct process
pj is in round 5. However, the round duration of 3δ ensures that all correct processes overlap
in each round for (at least) δ time. As message delays are bounded by δ, the δ-time-overlap
is enough to ensure that each correct process hears all r-round-messages from all correct
processes before leaving round r. (We emphasize that this is a well-known simulation
technique; see, e.g., [43, 23].)

It is important to mention that ErrorFreeExt starts with a single standard “Phase
King” iteration: (1) the committee broadcast instance CBl with a predetermined leader pℓ,
(2) the graded consensus instance GCℓ, and (3) the finisher instance Fℓ. This iteration is
added to prevent ErrorFreeExt from running for Θ(log n) time when there are only O(1)
faults. Indeed, if the predetermined leader pℓ is correct, the committee broadcast instance
CBℓ ensures that all correct processes propose the same valid value v to GCℓ in O(1) time
after starting ErrorFreeExt. Then, the strong unanimity property of GCℓ ensures that all
correct processes decide (v, 1) from GCℓ and input (v, 1) to Fℓ. This enables Fℓ to make all
correct processes decide v immediately (i.e., in O(δ) time) after starting.

Finally, the graded consensus instance GCsu (together with GCℓ) ensures the
strong unanimity property. If all correct processes propose the same value v to ErrorFree-
Ext, then (1) all correct processes decide (v, 1) from GCsu and propose v to GCℓ, (2) all
correct processes decide (v, 1) from GCℓ and input (v, 1) to Fℓ, and (3) output v from Fℓ

and decide v from ErrorFreeExt.

4.4 Proof Sketch
This subsection provides a proof sketch of the following theorem:

▶ Theorem 2. ErrorFreeExt is an error-free early-stopping validated agreement algorithm
with O

(
(nL + n2) log n

)
bit complexity.

We underline that ErrorFreeExt achieves balanced bit complexity as its per-process
complexity is O

(
(L+n) log n

)
. This subsection discusses the key intermediate results ensured

by ErrorFreeExt.

Gluing all sub-modules together. Processes execute each sub-module within 2δ time of each
other, thus enabling the associated implementations to realize the corresponding specifications.
The consistency property of the graded consensus primitive ensures a similar consistency
for the inputs to the following committee broadcast primitive. Under this condition, the
strong unanimity property of the underlying validated agreement protocol ensures agreement
if the recursive call is executed with a healthy (non-corrupted) committee.

DISC 2024



14:18 Efficient Signature-Free Validated Agreement

Ensuring strong unanimity. Strong unanimity is implied by (1) the strong unanimity
properties of GCsu and GCℓ, (2) the stability property of CBℓ, and (3) liveness and agreement
of Fℓ.

Finisher’s “lock”. If a process decides a value v via a finisher F ∈ {Fℓ,F2}, the justification
property of F , combined with the consistency property of the graded consensus GC ∈
{GCℓ,GC2} positioned immediately before, ensures that every correct process outputs (v, ·)
from GC.

From a correct leader or the first healthy committee to a common valid decision. If
the predetermined leader pℓ is correct, all correct processes agree on a common value after
Fℓ: this holds due to (1) the optimistic consensus property of CBℓ, (2) the strong unanimity
property of GCℓ, and (3) the liveness and agreement properties of Fℓ. Similarly, if pℓ is faulty,
but the first half of processes is healthy, all correct processes agree on a common value after
F2. Importantly, if some correct process decides via Fℓ, the finisher’s lock (see the paragraph
above), combined with strong unanimity of GC1 and GC2 and the stability property of CB1,
guarantees agreement.

From the second healthy committee to a common valid decision. If a correct process
does not decide via Fℓ or F2, it means that both the predetermined leader pℓ and the first
half of processes are unhealthy, which implies that the second half is healthy. If some correct
process decides via F2, the finisher’s lock, combined with CB2’s strong unanimity, preserves
agreement. Let us emphasize that if some correct process decides via Fℓ, the agreement is
ensured due to (1) the finisher’s lock, (2) the strong unanimity properties of GC1 and GC2,
and (3) the stability property of CB1.

Complexity. The per-process bit complexity B(n) of ErrorFreeExt follows from the
equation B(n) ≤ O(L + n log n) + max

(
B(⌊n

2 ⌋),B(⌈n
2 ⌉)

)
. Similarly, the early stopping

property holds due to the following equations: (1) L(n, f) ∈ O(δ) if the predetermined leader
pℓ is correct, and (2) L(n, f) ≤ O(δ) + L(|H1|, f1) + L(|H2|, f2) otherwise, where f1 (resp.,
f2) denotes the actual number of faulty processes among the first (resp., second) half of
processes H1 (resp., H2).

5 Concluding Remarks

This paper introduces HashExt and ErrorFreeExt, two synchronous signature-free
algorithms for validated Byzantine agreement. Both algorithms are (1) optimally resilient,
and (2) early stopping. On one side, HashExt utilizes only collision-resistant hashes,
achieving a bit complexity of O(nL + n3κ), which is optimal when L ≥ n2κ (with κ being
the size of a hash value). Conversely, ErrorFreeExt is error-free, avoids cryptography
entirely, and achieves a bit complexity of O

(
(nL + n2) log n

)
, which is nearly optimal for any

L. In the future, we plan to focus on the following open questions:
Is it possible to design an error-free validated agreement algorithm with a bit complexity
of O(nL)? Our ErrorFreeExt algorithm achieves only O(nL log n) bit complexity.
Can HashExt be optimized to achieve O(nL) bit complexity for a wider range of
proposal sizes L? Currently, HashExt allows for optimal O(nL) bit complexity only
when L ≥ n2κ.



P. Civit et al. 14:19

References
1 Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael K Reiter, and Jay J

Wylie. Fault-Scalable Byzantine Fault-Tolerant Services. ACM SIGOPS Operating Systems
Review, 39(5):59–74, 2005. doi:10.1145/1095810.1095817.

2 Ittai Abraham and Gilad Asharov. Gradecast in synchrony and reliable broadcast in asynchrony
with optimal resilience, efficiency, and unconditional security. In Alessia Milani and Philipp
Woelfel, editors, PODC ’22: ACM Symposium on Principles of Distributed Computing, Salerno,
Italy, July 25 - 29, 2022, pages 392–398. ACM, 2022. doi:10.1145/3519270.3538451.

3 Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solidus:
An Incentive-compatible Cryptocurrency Based on Permissionless Byzantine Consensus. CoRR,
abs/1612.02916, 2016.

4 Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solida:
A Blockchain Protocol Based on Reconfigurable Byzantine Consensus. In James Aspnes,
Alysson Bessani, Pascal Felber, and João Leitão, editors, 21st International Conference on
Principles of Distributed Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017,
volume 95 of LIPIcs, pages 25:1–25:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPICS.OPODIS.2017.25.

5 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated
asynchronous byzantine agreement. In Peter Robinson and Faith Ellen, editors, Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 337–346. ACM, 2019. doi:10.1145/3293611.3331612.

6 Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R.
Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and Roger Wattenhofer. FARSITE:
federated, available, and reliable storage for an incompletely trusted environment. In David E.
Culler and Peter Druschel, editors, 5th Symposium on Operating System Design and Implemen-
tation (OSDI 2002), Boston, Massachusetts, USA, December 9-11, 2002. USENIX Association,
2002. URL: http://www.usenix.org/events/osdi02/tech/adya.html.

7 Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina Nita-
Rotaru, Josh Olsen, and David Zage. Steward: Scaling byzantine fault-tolerant replication
to wide area networks. IEEE Trans. Dependable Secur. Comput., 7(1):80–93, 2010. doi:
10.1109/TDSC.2008.53.

8 Gilad Asharov and Anirudh Chandramouli. Perfect (parallel) broadcast in constant expected
rounds via statistical VSS. In Marc Joye and Gregor Leander, editors, Advances in Cryptology
- EUROCRYPT 2024 - 43rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part V,
volume 14655 of Lecture Notes in Computer Science, pages 310–339. Springer, 2024. doi:
10.1007/978-3-031-58740-5_11.

9 Hagit Attiya and Jennifer L. Welch. Multi-valued connected consensus: A new perspective on
crusader agreement and adopt-commit. In Alysson Bessani, Xavier Défago, Junya Nakamura,
Koichi Wada, and Yukiko Yamauchi, editors, 27th International Conference on Principles
of Distributed Systems, OPODIS 2023, December 6-8, 2023, Tokyo, Japan, volume 286 of
LIPIcs, pages 6:1–6:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPICS.OPODIS.2023.6.

10 Zuzana Beerliova-Trubiniova and Martin Hirt. Simple and efficient perfectly-secure asyn-
chronous MPC. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 4833 LNCS:376–392, 2007.
doi:10.1007/978-3-540-76900-2_23.

11 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Janos Simon,
editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4,
1988, Chicago, Illinois, USA, pages 1–10. ACM, 1988. doi:10.1145/62212.62213.

DISC 2024

https://doi.org/10.1145/1095810.1095817
https://doi.org/10.1145/3519270.3538451
https://doi.org/10.4230/LIPICS.OPODIS.2017.25
https://doi.org/10.1145/3293611.3331612
http://www.usenix.org/events/osdi02/tech/adya.html
https://doi.org/10.1109/TDSC.2008.53
https://doi.org/10.1109/TDSC.2008.53
https://doi.org/10.1007/978-3-031-58740-5_11
https://doi.org/10.1007/978-3-031-58740-5_11
https://doi.org/10.4230/LIPICS.OPODIS.2023.6
https://doi.org/10.4230/LIPICS.OPODIS.2023.6
https://doi.org/10.1007/978-3-540-76900-2_23
https://doi.org/10.1145/62212.62213


14:20 Efficient Signature-Free Validated Agreement

12 Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit Optimal Distributed Consensus. In
Computer science: research and applications, pages 313–321. Springer, 1992.

13 Ethan Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. PhD
thesis, University of Guelph, 2016. URL: https://atrium.lib.uoguelph.ca/server/api/
core/bitstreams/0816af2c-5fd4-4d99-86d6-ced4eef2fb52/content.

14 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and Efficient
Asynchronous Broadcast Protocols. In Joe Kilian, editor, Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA,
August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer Science, pages
524–541. Springer, 2001. doi:10.1007/3-540-44647-8_31.

15 Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor Shoup, and
Dominic Williams. Internet computer consensus. In Alessia Milani and Philipp Woelfel,
editors, PODC ’22: ACM Symposium on Principles of Distributed Computing, Salerno, Italy,
July 25 - 29, 2022, pages 81–91. ACM, 2022. doi:10.1145/3519270.3538430.

16 Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance and Proactive Recovery.
ACM Transactions on Computer Systems, 20(4), 2002. doi:10.1145/571637.571640.

17 Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser, Rafail
Ostrovsky, and Vassilis Zikas. The hidden graph model: Communication locality and optimal
resiliency with adaptive faults. In ITCS 2015 - Proceedings of the 6th Innovations in Theoretical
Computer Science, pages 153–162, 2015. doi:10.1145/2688073.2688102.

18 Jinyuan Chen. Optimal error-free multi-valued byzantine agreement. In Seth Gilbert, editor,
35th International Symposium on Distributed Computing, DISC 2021, October 4-8, 2021,
Freiburg, Germany (Virtual Conference), volume 209 of LIPIcs, pages 17:1–17:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.DISC.2021.17.

19 Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic,
and Manuel Vidigueira. DARE to agree: Byzantine agreement with optimal resilience and
adaptive communication. In Ran Gelles, Dennis Olivetti, and Petr Kuznetsov, editors,
Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing, PODC
2024, Nantes, France, June 17-21, 2024, pages 145–156. ACM, 2024. doi:10.1145/3662158.
3662792.

20 Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic,
Manuel Vidigueira, and Igor Zablotchi. Error-free near-optimal validated agreement. CoRR,
abs/2403.08374, 2024. doi:10.48550/arXiv.2403.08374.

21 Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Anton Paramonov, and
Manuel Vidigueira. All byzantine agreement problems are expensive. In Ran Gelles, Dennis
Olivetti, and Petr Kuznetsov, editors, Proceedings of the 43rd ACM Symposium on Principles
of Distributed Computing, PODC 2024, Nantes, France, June 17-21, 2024, pages 157–169.
ACM, 2024. doi:10.1145/3662158.3662780.

22 Brian A. Coan and Jennifer L. Welch. Modular Construction of a Byzantine Agreement
Protocol with Optimal Message Bit Complexity. Inf. Comput., 97(1):61–85, 1992. doi:
10.1016/0890-5401(92)90004-Y.

23 Shir Cohen, Idit Keidar, and Alexander Spiegelman. Make every word count: Adaptive
byzantine agreement with fewer words. In Eshcar Hillel, Roberto Palmieri, and Etienne
Rivière, editors, 26th International Conference on Principles of Distributed Systems, OPODIS
2022, December 13-15, 2022, Brussels, Belgium, volume 253 of LIPIcs, pages 18:1–18:21. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.OPODIS.2022.18.

24 Miguel Correia. From Byzantine Consensus to Blockchain Consensus. In Essentials of
Blockchain Technology, pages 41–80. Chapman and Hall/CRC, 2019.

25 Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. DBFT: efficient leaderless
byzantine consensus and its application to blockchains. In 17th IEEE International Symposium
on Network Computing and Applications, NCA 2018, Cambridge, MA, USA, November 1-3,
2018, pages 1–8. IEEE, 2018. doi:10.1109/NCA.2018.8548057.

https://atrium.lib.uoguelph.ca/server/api/core/bitstreams/0816af2c-5fd4-4d99-86d6-ced4eef2fb52/content
https://atrium.lib.uoguelph.ca/server/api/core/bitstreams/0816af2c-5fd4-4d99-86d6-ced4eef2fb52/content
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1145/3519270.3538430
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/2688073.2688102
https://doi.org/10.4230/LIPIcs.DISC.2021.17
https://doi.org/10.1145/3662158.3662792
https://doi.org/10.1145/3662158.3662792
https://doi.org/10.48550/arXiv.2403.08374
https://doi.org/10.1145/3662158.3662780
https://doi.org/10.1016/0890-5401(92)90004-Y
https://doi.org/10.1016/0890-5401(92)90004-Y
https://doi.org/10.4230/LIPICS.OPODIS.2022.18
https://doi.org/10.1109/NCA.2018.8548057


P. Civit et al. 14:21

26 Carole Delporte-Gallet, Hugues Fauconnier, and Michel Raynal. On the weakest information
on failures to solve mutual exclusion and consensus in asynchronous crash-prone read/write
systems. J. Parallel Distributed Comput., 153:110–118, 2021. doi:10.1016/J.JPDC.2021.03.
015.

27 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement.
J. ACM, 32(1):191–204, 1985. doi:10.1145/2455.214112.

28 Danny Dolev, Rüdiger Reischuk, and H. Raymond Strong. Early stopping in byzantine
agreement. J. ACM, 37(4):720–741, 1990. doi:10.1145/96559.96565.

29 Juan Garay, Aggelos Kiayias, Rafail M. Ostrovsky, Giorgos Panagiotakos, and Vassilis
Zikas. Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work
Era. Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), 12106 LNCS:129–158, 2020. doi:
10.1007/978-3-030-45724-2_5.

30 Sanjam Garg, Aarushi Goel, and Abhishek Jain. The broadcast message complexity of secure
multiparty computation. In Steven D. Galbraith and Shiho Moriai, editors, Advances in
Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Application
of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings,
Part I, volume 11921 of Lecture Notes in Computer Science, pages 426–455. Springer, 2019.
doi:10.1007/978-3-030-34578-5_16.

31 Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun
Xiang. Jolteon and ditto: Network-adaptive efficient consensus with asynchronous fallback.
In Ittay Eyal and Juan A. Garay, editors, Financial Cryptography and Data Security -
26th International Conference, FC 2022, Grenada, May 2-6, 2022, Revised Selected Papers,
volume 13411 of Lecture Notes in Computer Science, pages 296–315. Springer, 2022. doi:
10.1007/978-3-031-18283-9_14.

32 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling Byzantine Agreements for Cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, pages 51–68, New York, NY, USA, 2017. Association
for Computing Machinery. doi:10.1145/3132747.3132757.

33 Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred V. Aho, editor, Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York,
USA, pages 218–229. ACM, 1987. doi:10.1145/28395.28420.

34 Vincent Gramoli, Zhenliang Lu, Qiang Tang, and Pouriya Zarbafian. Optimal asynchronous
byzantine consensus with fair separability. IACR Cryptol. ePrint Arch., page 545, 2024. URL:
https://eprint.iacr.org/2024/545.

35 Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine
consensus. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology -
CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes
in Computer Science, pages 451–480. Springer, 2020. doi:10.1007/978-3-030-56877-1_16.

36 Hannah Keller, Claudio Orlandi, Anat Paskin-Cherniavsky, and Divya Ravi. MPC with Low
Bottleneck-Complexity: Information-Theoretic Security and More. In 4th Conference on
Information-Theoretic Cryptography (ITC), volume 267, pages 1–21, Aarhus, Denmark, 2023.
doi:10.4230/LIPIcs.ITC.2023.11.

37 Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and Edmund L. Wong.
Zyzzyva: speculative byzantine fault tolerance. In Thomas C. Bressoud and M. Frans
Kaashoek, editors, Proceedings of the 21st ACM Symposium on Operating Systems Principles
2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007, pages 45–58. ACM,
2007. doi:10.1145/1294261.1294267.

38 Ramakrishna Kotla and Michael Dahlin. High throughput byzantine fault tolerance. In
2004 International Conference on Dependable Systems and Networks (DSN 2004), 28 June

DISC 2024

https://doi.org/10.1016/J.JPDC.2021.03.015
https://doi.org/10.1016/J.JPDC.2021.03.015
https://doi.org/10.1145/2455.214112
https://doi.org/10.1145/96559.96565
https://doi.org/10.1007/978-3-030-45724-2_5
https://doi.org/10.1007/978-3-030-45724-2_5
https://doi.org/10.1007/978-3-030-34578-5_16
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/28395.28420
https://eprint.iacr.org/2024/545
https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.4230/LIPIcs.ITC.2023.11
https://doi.org/10.1145/1294261.1294267


14:22 Efficient Signature-Free Validated Agreement

- 1 July 2004, Florence, Italy, Proceedings, pages 575–584. IEEE Computer Society, 2004.
doi:10.1109/DSN.2004.1311928.

39 Leslie Lamport. Paxos Made Simple. ACM SIGACT News (Distributed Computing Column)
32, 4 (Whole Number 121, December 2001), pages 51–58, 2001.

40 Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982. doi:10.1145/
357172.357176.

41 Leslie Lamport, Robert Shostak, and Marshall Pease. Concurrency: The works of leslie
lamport. Association for Computing Machinery, pages 203–226, 2019.

42 Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982. doi:10.1145/357172.357176.

43 Christoph Lenzen and Sahar Sheikholeslami. A recursive early-stopping phase king protocol.
In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM Symposium on Principles
of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages 60–69. ACM, 2022.
doi:10.1145/3519270.3538425.

44 Yuan Lu, Zhenliang Lu, and Qiang Tang. Bolt-dumbo transformer: Asynchronous consensus
as fast as the pipelined BFT. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages 2159–2173. ACM,
2022. doi:10.1145/3548606.3559346.

45 Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-MVBA: Optimal Multi-
Valued Validated Asynchronous Byzantine Agreement, Revisited. In Yuval Emek and Christian
Cachin, editors, PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual
Event, Italy, August 3-7, 2020, pages 129–138. ACM, 2020. doi:10.1145/3382734.3405707.

46 Loi Luu, Viswesh Narayanan, Kunal Baweja, Chaodong Zheng, Seth Gilbert, and Prateek
Saxena. SCP: A Computationally-Scalable Byzantine Consensus Protocol For Blockchains.
Cryptology ePrint Archive, 2015.

47 Florence Jessie MacWilliams and Neil James Alexander Sloane. The Theory of Error-Correcting
Codes, volume 16. Elsevier, 1977.

48 Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible byzantine fault tolerance. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, pages 1041–1053. ACM, 2019. doi:10.1145/3319535.
3354225.

49 Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl
Pomerance, editor, Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and
Applications of Cryptographic Techniques, Santa Barbara, California, USA, August 16-20,
1987, Proceedings, volume 293 of Lecture Notes in Computer Science, pages 369–378. Springer,
1987. doi:10.1007/3-540-48184-2_32.

50 Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance. In Yongdae Kim,
Jong Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 -
19, 2021, pages 1686–1699. ACM, 2021. doi:10.1145/3460120.3484554.

51 Atsuki Momose and Ling Ren. Optimal Communication Complexity of Authenticated Byzan-
tine Agreement. In Seth Gilbert, editor, 35th International Symposium on Distributed Com-
puting, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference), volume
209 of LIPIcs, pages 32:1–32:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.DISC.2021.32.

52 Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. Improved extension
protocols for byzantine broadcast and agreement. In Hagit Attiya, editor, 34th International
Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference,

https://doi.org/10.1109/DSN.2004.1311928
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/3519270.3538425
https://doi.org/10.1145/3548606.3559346
https://doi.org/10.1145/3382734.3405707
https://doi.org/10.1145/3319535.3354225
https://doi.org/10.1145/3319535.3354225
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1145/3460120.3484554
https://doi.org/10.4230/LIPIcs.DISC.2021.32


P. Civit et al. 14:23

volume 179 of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.DISC.2020.28.

53 Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of
the society for industrial and applied mathematics, 8(2):300–304, 1960.

54 Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Advances in Cryptology -
EUROCRYPT 2000, International Conference on the Theory and Application of Cryptographic
Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in
Computer Science, pages 207–220. Springer, 2000. doi:10.1007/3-540-45539-6_15.

55 Anping Song and Cenhao Zhou. Flexbft: A flexible and effective optimistic asynchronous bft
protocol. Applied Sciences, 14(4):1461, 2024.

56 Alexander Spiegelman. In search for an optimal authenticated byzantine agreement. arXiv
preprint arXiv:2002.06993, 2020.

57 T. K. Srikanth and Sam Toueg. Optimal clock synchronization. In Michael A. Malcolm and
H. Raymond Strong, editors, Proceedings of the Fourth Annual ACM Symposium on Principles
of Distributed Computing, Minaki, Ontario, Canada, August 5-7, 1985, pages 71–86. ACM,
1985. doi:10.1145/323596.323603.

58 T. K. Srikanth and Sam Toueg. Optimal clock synchronization. J. ACM, 34(3):626–645, 1987.
doi:10.1145/28869.28876.

59 Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and
Paulo Veríssimo. Efficient byzantine fault-tolerance. IEEE Trans. Computers, 62(1):16–30,
2013. doi:10.1109/TC.2011.221.

60 Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse. Dispers-
edledger: High-throughput byzantine consensus on variable bandwidth networks. In Amar
Phanishayee and Vyas Sekar, editors, 19th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2022, Renton, WA, USA, April 4-6, 2022, pages 493–512. USENIX
Association, 2022. URL: https://www.usenix.org/conference/nsdi22/presentation/yang.

61 You Zhou, Zongyang Zhang, Haibin Zhang, Sisi Duan, Bin Hu, Licheng Wang, and Jianwei
Liu. Dory: Asynchronous BFT with reduced communication and improved efficiency. IACR
Cryptol. ePrint Arch., page 1709, 2022. URL: https://eprint.iacr.org/2022/1709.

DISC 2024

https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1145/323596.323603
https://doi.org/10.1145/28869.28876
https://doi.org/10.1109/TC.2011.221
https://www.usenix.org/conference/nsdi22/presentation/yang
https://eprint.iacr.org/2022/1709




Convex Consensus with Asynchronous Fallback
Andrei Constantinescu #

ETH Zürich, Switzerland

Diana Ghinea #

ETH Zürich, Switzerland

Roger Wattenhofer #

ETH Zürich, Switzerland

Floris Westermann #

ETH Zürich, Switzerland

Abstract
Convex Consensus (CC) allows a set of parties to agree on a value v inside the convex hull of their
inputs with respect to a predefined abstract convexity notion, even in the presence of byzantine parties.
In this work, we focus on achieving CC in the best-of-both-worlds paradigm, i.e., simultaneously
tolerating at most ts corruptions if communication is synchronous, and at most ta ≤ ts corruptions
if it is asynchronous. Our protocol is randomized, which is a requirement under asynchrony, and we
prove that it achieves optimal resilience. In the process, we introduce communication primitives
tailored to the network-agnostic model. These are a deterministic primitive allowing parties to
obtain intersecting views (Gather), and a randomized primitive leading to identical views (Agreement
on a Core-Set). Our primitives provide stronger guarantees than previous counterparts, making
them of independent interest.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols

Keywords and phrases convex consensus, network-agnostic protocols, agreement on a core-set

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.15

Related Version Full Version: https://ia.cr/2023/1364

Acknowledgements We thank Julian Loss and the anonymous reviewers for their useful suggestions.

1 Introduction

Arranging a meeting place for a group of n people in a city is a common problem, as
determining a location that is convenient and accessible for everyone can be challenging.
While locations can be determined by their geographic coordinates, we need to prevent
agreement on the coordinates of a restricted area, e.g., some private property. Hence, it
may be more realistic to represent the city as a graph, with streets modeled as edges and
intersections as vertices. Participants are initially in different locations (i.e., vertices), and
they want to agree on a vertex for the meeting point using pair-wise communication channels.
Finding such a meeting point, while also considering that some of the participants may
choose not to follow the protocol, describes the Convex Consensus problem (CC).

The CC problem serves as a unifying framework for various agreement problems that deal
with different input spaces. Such input spaces may be continuous, such as RD, or discrete,
such as graphs and even lattices. Essentially, CC assumes a publicly available input space V

(this could be the set of locations) equipped with a convexity notion C (roughly meant to
formalize which meeting points are convenient with respect to the participants’ inputs). For
example, in the case of RD, the standard “straight-line” convexity notion can be considered.
In contrast, convexity notions for graphs may be defined in various ways: for example,
geodesic convexity, defined over shortest paths between vertices, or monophonic convexity,

© Andrei Constantinescu, Diana Ghinea, Roger Wattenhofer, and Floris Westermann;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 15; pp. 15:1–15:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aconstantine@ethz.ch
https://orcid.org/0009-0005-1708-9376
mailto:ghinead@ethz.ch
https://orcid.org/0000-0002-5294-9459
mailto:wattenhofer@ethz.ch
https://orcid.org/0000-0002-6339-3134
mailto:westermann.floris@gmail.com
https://orcid.org/0009-0008-8414-3653
https://doi.org/10.4230/LIPIcs.DISC.2024.15
https://ia.cr/2023/1364
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 Convex Consensus with Asynchronous Fallback

defined over minimal/chordless paths. For a given convexity notion, CC is concerned with
enabling parties to agree on a value in the convex hull of their inputs. This should be achieved
even if up to t of the parties are corrupted (byzantine) and may exhibit malicious behavior.

A natural question to ask is “For which values of t can CC be achieved?”. Prior work
provides an almost complete answer for the synchronous model, i.e., where the parties’ clocks
are synchronized and messages get delivered within a known amount of time ∆. In this
model, the solvability of CC depends on the structure of the input space: concretely, on the
space’s Helly number ω (e.g., D + 1 for RD with straight-line convexity). CC can be solved in
the synchronous model if t < n/ω, and this condition is also necessary for convex geometries
(a restricted class of convexity spaces) and for RD with straight-line convexity [33,37].

One may argue that the synchronous model’s assumptions are too strong: in practice, the
maximum delay ∆ will often be violated during times of increased network load or outages.
A well-established alternative is the asynchronous model. This only assumes that parties’
messages get delivered eventually, leading to protocols that are highly robust to adverse
network conditions. The solvability of CC in this model has only been partly characterized so
far: for convex geometries and RD with straight-line convexity, the condition t < n/(ω + 1)
is necessary [33,37]. This is, however, only known to be sufficient in the asynchronous model
for a relaxed version of CC which allows parties to agree up to some error (Approximate
Agreement, AA), and only on particular input spaces. We highlight that the asynchronous
model comes with an intrinsic limitation: even if the condition t < n/(ω + 1) were to be
proven sufficient for achieving asynchronous CC in all convexity spaces, there is a gap between
this threshold and the t < n/ω threshold sufficing for synchronous networks. That is, an
asynchronous CC protocol (which would have to be randomized, due to [18]) would achieve
its guarantees regardless of the network conditions, but at the expense of tolerating a lower
number of corruptions in comparison to synchronous alternatives.

This is where a third model steps in: the network-agnostic model, introduced by Blum,
Katz, and Loss [9], which aims to combine the advantages of both established models. This
model has gained significant popularity in recent years, and has covered problems such
as Byzantine Agreement [9, 15], AA on real and multidimensional values [20, 21], State-
Machine Replication [10] and Multi-Party Computation [6, 11, 15]. Concretely, given two
thresholds ta ≤ ts, a network-agnostic protocol should tolerate ts corruptions if the network
is synchronous and ta if it is asynchronous, without knowing which of the two happens to be
the case. We add that such a network-agnostic protocol with ta = 0 still provides superior
guarantees in comparison to a synchronous counterpart: it maintains its properties even if
the synchrony assumptions fail provided that no party is corrupted.

Our work will primarily investigate the necessary and sufficient conditions for achieving
CC for arbitrary convexity spaces in the network-agnostic model. We provide a complete
characterization, showing that the condition n > max(ω · ts, ω · ta + ts, 2 · ts + ta) is necessary
and sufficient in any convexity space with ω > 1. This condition, illustrated in Figure 1,
allows for a trade-off between the two expected optimal resilience bounds of the pure models
(which we additionally prove to be tight leading up to our main result). We add that ω = 1
refers to convexity spaces where some v ∈ V is contained in all non-empty convex sets,
allowing for trivial protocols (parties may simply output v).

1.1 Our contributions
Impossibility results. We first prove that the condition n > max(ω · ts, ω · ta + ts, 2 · ts + ta)
is necessary. We additionally generalize the aforementioned lower bounds from convex
geometries and RD to all convexity spaces, so that t < n/ω is required for the synchronous
case and t < n/(ω + 1) for the asynchronous one. For these proofs, we define adversarial
families, which will allow us to derive general scenario-based arguments [32].



A. Constantinescu, D. Ghinea, R. Wattenhofer, and F. Westermann 15:3

0 20 40 60 80 100
0

20

40

60

80

100

Synchronous threshold ts

A
sy

nc
hr

on
ou

s
th

re
sh

ol
d

t a

n = ω · ta + ts

n = 2 · ts + ta

(a) ω = 2.

0 20 40 60 80 100
0

20

40

60

80

100

Synchronous threshold ts

A
sy

nc
hr

on
ou

s
th

re
sh

ol
d

t a

n = ω · ta + ts

n = 2 · ts + ta

(b) ω = 3.

Figure 1 Our results on the feasibility of achieving CC resilient against ts corruptions if the
network is synchronous and ta ≤ ts corruptions if it is asynchronous. For a fixed value of n = 100,

the two plots depict in green the set of pairs (ts, ta) for which a protocol exists as percentages
of n: the condition n > max(ω · ts, ω · ta + ts, 2 · ts + ta). The two black lines correspond to the
point-wise optimal resilience thresholds n > ω · ts and n > (ω + 1) · ta required in the synchronous
and asynchronous models respectively. The condition n > max(ω · ts, ω · ta + ts, 2 · ts + ta) can be
understood as n > 2 · ts + ta for ω = 2 and n > max(ω · ts, ω · ta + ts) for ω ≥ 3. The two cases are
depicted above for ω = 2 and ω = 3.

Feasibility results. Afterwards, we show that the condition n > max(ω ·ts, ω ·ta+ts, 2·ts+ta)
is also sufficient: we give a protocol achieving CC when this condition holds. Together with
our impossibility results, this completes the landscape of feasibility for the purely synchronous,
purely asynchronous, and network-agnostic models. Our protocol assumes cryptographic
setup, namely digital signatures. Note that this is necessary to tolerate ts < n/ω corruptions
in the synchronous model for ω = 2, a fact which can be easily inferred from various
impossibility results (e.g., [23]). When ω ≥ 3, however, signatures are no longer required
(since ts < n/3 holds in that case), and we will briefly explain how they can be removed.
We also note that our protocol is randomized (which is needed [18]), but randomization
is restricted to Byzantine Agreement subprotocols [15]. The use of signatures is similarly
constrained to Reliable Broadcast and Byzantine Agreement subprotocols [15,30].

Network-agnostic communication primitives. The core of our CC protocol is a novel
network-agnostic implementation of Agreement on a Core-Set (ACS) [8], which may be of
independent interest. In essence, ACS allows parties to distribute their inputs and obtain
identical views. Our ACS protocol provides stronger guarantees than previous network-
agnostic variants [4, 10,11]. These stronger guarantees will be crucial for achieving CC: when
the network is synchronous, we enable the parties to obtain a common view that includes all
the honest parties’ inputs. Obtaining these properties for ACS when n > 2 · ts + ta requires
us to diverge from the outline of previous ACS constructions and to instead provide a novel
implementation relying on Gather (GTHR) [2, 13], a second primitive that we adapt to the
network-agnostic model. Roughly, GTHR enables parties to obtain intersecting views.

Prior works corrections. We need to note that our findings seemingly contradict an
impossibility result of [33] for general convexity spaces, which depends on the Carathéodory
number of the convexity space and not on its Helly number (in general, there is no relationship
between the two). Upon closer inspection, we exhibit an error in the proof of [33], meaning
that the correct bound is in terms of ω, and not the Carathéodory number.

DISC 2024



15:4 Convex Consensus with Asynchronous Fallback

As a secondary contribution, we identify a core issue in the asynchronous AA protocol
for chordal graphs with monophonic convexity of [33]. In the full version of our paper, we
describe this issue in detail, and we provide an alternative solution in the network-agnostic
model. The alternative protocol is obtained by adapting the AA protocol on cycle-free
(chordal) semilattices (i.e., a particular case of chordal graphs) of the same paper [33], while
incorporating insights from the protocol of [5] achieving wait-free AA on chordal graphs.

1.2 Related work
CC and AA in the pure synchronous and pure asynchronous models. To the best of
our knowledge, the problem of agreeing on a value in the honest inputs’ convex hull was
introduced for AA on R [16] (where ω = 2). When considering this problem in the synchronous
model, t < n/3 is tight when no cryptographic setup is allowed [16], and t < n/2 = n/ω is
tight with cryptographic setup [20,25]. In the asynchronous model, the optimal resilience
threshold for AA is t < n/3 and was proven in [1]. The more general setting of RD with
straight-line convexity (where ω = D + 1) was first considered in [27,37] (see also the journal
version [28]). Here, the bound t < n/(D + 2) is necessary and sufficient for asynchronous AA.
Along with the multidimensional variant of AA, Vaidya and Garg [37] have introduced the
CC problem on RD and showed that the condition t < n/(D + 1) is tight for achieving CC in
the synchronous model. Tseng and Vaidya [36] later presented an asynchronous variant of
CC resilient against crash failures with incorrect inputs, also on RD, where parties agree on
a polytope in the convex hull of the honest parties’ inputs as opposed to a single value.

We also note the works of [19,32], which focus of achieving agreement on an honest input.
This is a particular case of CC on a space with universe V where a subset’s convex hull is the
subset itself. Their necessary and sufficient conditions match the more general variants, as
the Helly number of this convexity space is ω =

∣∣V ∣∣: t < n/
∣∣V ∣∣ in the synchronous model [32],

and t < n/(
∣∣V ∣∣ + 1) in the asynchronous one [19].

Nowak and Rybicki [33] generalized the problems of CC and AA to abstract convexity
spaces. We partially answer an open question raised in [33] on whether there exists an
input convexity space for which the optimal resilience threshold for AA depends on the
Carathéodory number and not on the Helly number. Our tight conditions for CC imply
that, at least for randomized protocols, the asynchronous resilience threshold is actually
independent of the Carathéodory number and only depends on the Helly number instead. In
addition, we identify a core issue in the deterministic algorithm of [33] for asynchronous AA
on chordal graphs. A related line of work considers graph AA in the wait-free model (where
t < n of the parties involved may crash) and its variants, primarily focusing on characterizing
the families of graphs on which wait-free AA can be achieved [3, 5, 14,24,26].

CC and AA in the network-agnostic model. The problem of AA on real values has also been
considered in the network-agnostic model in [20], where the condition n > 2 · ts + ta has been
proven necessary and sufficient. For the RD variant of AA, the condition n > (D+1)·ts+ta has
been proven to be sufficient [21], but whether this condition is also necessary is still an open
problem. Our work will build upon and extend some of the techniques of [20,21]. Concretely,
our Gather protocol is obtained by making an adjustment to the network-agnostic Overlap
All-to-All Broadcast primitive of [20, 21], while incorporating insights from asynchronous
Gather protocols [2, 13]. In addition, we rely on similar insights on deriving safe areas in
the honest parties’ convex hulls to [21], and also of prior works in the asynchronous model
such as [1,27,33,37]. Previously known techniques and insights will be noted precisely in the
following sections. As a summary, our paper will diverge from [20,21] since: (i) we do not



A. Constantinescu, D. Ghinea, R. Wattenhofer, and F. Westermann 15:5

assume a particular input space: we consider abstract convexity spaces, and this requires
us to provide generalized variants of lower bounds and safe area calculations; (ii) we focus
on CC as opposed to AA, and achieving exact agreement requires us to design a stronger
communication primitive: ACS. We also need to note that our feasibility result defines the
first protocol in the network-agnostic model achieving an optimal resilience trade-off with
a non-linear boundary (see Figure 1b). This gives a hint (but not yet an answer) on the
question regarding necessary conditions in multidimensional AA left open in [21].

ACS in the network-agnostic model. As previously mentioned, the term ACS has been
present in network-agnostic literature, as a building block for State-Machine Replication [4,10]
and Multi-Party Computation [11]. We highlight an important distinction between prior
constructions and ours. First, prior ACS variants would only provide as output a set of
values, while our construction provides a common view defined as a set of value-party pairs.
Second, when running in the synchronous model, the ACS protocols of [4,10,11] only need to
ensure that pre-agreement is maintained: if all honest parties hold input v, the output set is
{v}. For our CC protocol, the following properties will be crucial: (i) parties agree on the
output set if the network is synchronous and ts of the parties are corrupted (even without
pre-agreement); (ii) roughly, each value’s multiplicity is reflected in the output set (hence
why the output set consists of value-party pairs); and, most importantly, (iii) if the network
is synchronous, all honest values are guaranteed to be included (with multiplicities) in the
parties’ common view. Our ACS implementation will hence focus on this stronger definition,
requiring us to diverge from the outline of previous ACS constructions for n > 2 · ts + ta.

The concurrent work of [22], addressing Atomic Broadcast, also proposes a network-
agnostic ACS implementation. While their protocol also relies on Gather and appears to
achieve agreement regardless of the type of network, our ACS protocol is strictly stronger, as
the protocol proposed by [22] provides the parties with a single value as output, and this
value may be proposed by a corrupted party. This would prevent CC, but is sufficient for
achieving Atomic Broadcast as in [22], since parties’ values are justified.

While our ACS definition is stronger than previous network-agnostic variants, the protocol
of [4] remains the state-of-art in terms of efficiency. The ACS protocol of [4] achieves an
expected communication complexity of O(n2 ·ℓ+n3 ·κ) bits, where κ is the security parameter,
and parties’ inputs are represented as ℓ-bit strings (assuming threshold signatures). Even
with threshold signatures, our protocol would incur an expected communication complexity
of O(n3 · ℓ + n4 · κ), where ℓ denotes the universe elements’ size in bits.

2 Preliminaries

In the following, given a non-negative integer k, write [k] for the set {1, 2, . . . , k}.

Model. Consider n parties denoted by P1, P2, . . . , Pn running a protocol in a fully-connected
network, where links model authenticated channels. A synchronous network ensures that
the parties’ clocks are perfectly synchronized and that each message is delivered within a
publicly known amount of time ∆. If any of these two guarantees fails, then the network
is asynchronous. We assume that the parties are not aware a priori of the type of network
the protocol is running in. In addition, we assume an adaptive adversary that may corrupt
at most ts parties if the network is synchronous, and at most ta parties if the network is
asynchronous. Corrupted parties permanently become byzantine, meaning that they can
deviate arbitrarily, even maliciously, from the protocol. Moreover, the adversary may control

DISC 2024



15:6 Convex Consensus with Asynchronous Fallback

the message delivery schedule, subject to the conditions of the network type. We will make
use of a public key infrastructure (PKI), and a secure signature scheme. For simplicity, we
assume that the signatures are perfectly unforgeable.

Abstract convexity spaces. Given a nonempty set V, also called the universe, an abstract
convexity space on V is a family C of subsets of V such that ∅, V ∈ C and C is closed under
arbitrary intersections: whenever A, B ∈ C, it also holds that A ∩ B ∈ C (and the infinite
analogue). Sets in C are regarded as convex sets. For instance, when V = RD, one possible C
consists of all sets satisfying the condition that the straight-line segment joining any two
points in the set is also included in the set. Note that this yields the standard convexity
notion on RD. However, this is not the only way to define a convexity space on RD that is
consistent with the definition’s requirements; e.g., take C to be the family of “box” subsets of
RD; i.e., subsets of the form I1 × . . . × ID, where (Ii)i∈[D] are closed intervals of the real line.

A central notion is that of convex hulls. In particular, the convex hull of any (not
necessarily convex) set S ⊆ V is the intersection ⟨S⟩ of all convex sets C ∈ C containing S,

which is indeed convex by closure under intersections. In RD under straight-line convexity,
hulls correspond to the usual notion of Euclidean convex hulls, while under “box”-convexity
they correspond to so-called “bounding boxes”; i.e., take the box spanning the region between
the infimum and the supremum along each axis. Note that the convex hull operator is
idempotent, i.e., ⟨⟨S⟩⟩ = ⟨S⟩. Moreover, note that a set is convex if and only if S = ⟨S⟩.

The Helly Number ω of a Convexity Space. The following seminal result in convexity
theory concerns RD with straight-line convexity.

▶ Theorem 1 (Helly’s Theorem). Consider a finite collection of convex sets in RD with
straight-line convexity. If every D + 1 of them intersect, then all of them intersect.

Helly’s Theorem implies that, for instance, any finite collection of disks in R2 with
triple-wise non-empty intersections has a non-empty intersection. Notice that the same would
not hold if D + 1 was replaced by D; e.g., one can draw three disks in R2 that pair-wise
intersect but have no point common to all three. One might now wonder: “What about box
convexity?” In that case, D + 1 can be replaced by 2. For instance, this means that any
finite collection of rectangles in R2 where any two intersect has a non-empty intersection,
in contrast to disks. This number, which is D + 1 for straight-line convexity and 2 for box
convexity, is known as the Helly number ω of the convexity space.

More generally, the Helly number ω of a convexity space C is the smallest number h

such that any finite collection of convex sets out of which any h intersect has a non-empty
intersection. It is useful to think in terms of the contrapositive: any finite collection of
convex sets that do not intersect has a subcollection consisting of (at most) h sets that do
not intersect. As a result, ω is equivalently the size of the largest collection of convex sets
with an empty intersection such that any of its proper subcollections have a non-empty
intersection. Notationally, say that an m-Helly family for C is a collection of m convex sets
C1, C2, . . . , Cm ∈ C such that their intersection is the empty set, but the intersection of any
m − 1 of them is non-empty; i.e., ∩m

j=1Cj = ∅ and ∩j ̸=iCj ≠ ∅ for any i ∈ [m]. The Helly
number ω of C is then the largest number h such that there exists an h-Helly family for C. We
will mostly work with this latter definition of the Helly number. Note that for some spaces,
there will exist arbitrarily large Helly families, in which case the Helly number is undefined.1

1 We do not concern ourselves with this case in the statement of our main results, but note that our
reasoning often still applies when ω is undefined, for instance when deriving impossibility results. For
the rest of this work, we assume that the spaces we consider have a well-defined Helly number ω.



A. Constantinescu, D. Ghinea, R. Wattenhofer, and F. Westermann 15:7

Convex agreement problems. A convex agreement problem is defined for a convexity space
C over a universe V ; e.g., RD with straight-line convexity, or a graph G = (V, E) with
monophonic convexity. Each party P starts with an input vP

in ∈ V and should produce an
output vP

out. Ideally, all outputs should match, and this common output should be in the
convex hull of the inputs. However, one has to consider the presence of byzantine parties.
Hence, an agreement problem is defined by a collection of properties taking this into account:
a validity condition, an agreement condition, and a termination condition. Write Vin and
Vout for the set of inputs vP

in and respectively outputs vP
out of the honest parties P .

A convex agreement problem has the following validity and agreement conditions:

Convex Validity : Vout ⊆ ⟨Vin⟩ (honest outputs are in the convex hull of honest inputs).
Exact Agreement: |Vout| = 1 (honest parties obtain the same output).

Finally, let us discuss the termination requirements of the protocol. There are two flavors,
one for deterministic protocols and one for randomized protocols, listed below:

Termination: all honest parties obtain outputs.
Probabilistic Termination: the probability that some honest party has not obtained output
after T time units tends to 0 as T → ∞.

We may then define CC as follows:

▶ Definition 2 (Convex Consensus). A protocol Π is a (ts, ta)-secure CC protocol if it achieves
Probabilistic Termination, Convex Validity, and Exact Agreement when up to ts parties are
corrupted if it runs in a synchronous network, and when up to ta parties are corrupted if
running in an asynchronous network.

3 Resilience Lower Bounds Using the Helly Number

In this section, we establish necessary conditions for achieving CC in the network-agnostic
model. Concretely, we show that each of the following conditions is needed: n > ω · ts,

n > 2 · ts + ta, and n > ω · ta + ts. Section 4 will show that these conditions are also sufficient.
We begin by showing that the conditions n > ω · t and n > (ω + 1) · t are necessary in the

synchronous and resp. asynchronous model, where ω is the Helly number of the convexity
space. These already imply that n > ω · ts and n > (ω + 1) · ta are required in the in the
network-agnostic model. Afterward, we move towards conditions that are only required in
the network-agnostic model. We note that a previously-known resilience bound [33, Theorem
13] given in terms of the Carathéodory number of the space is incompatible with our results:
in general, there is no relation between the Carathéodory number and the Helly number.
This bound turns out to be incorrect (detailed discussion in Appendix A).

Before formally showing our lower bounds, we introduce the notion of adversarial families,
which will enable us to give general scenario-based arguments [32]. Roughly, these are families
of pairwise-disjoint sets such that if the honest parties start with inputs from these sets, then
Convex Validity forces them to output values from these sets, breaking Exact Agreement.
The formal definition follows; see Figure 2 for an example.

▶ Definition 3. Consider a convexity space C with Helly number ω defined on a universe V.

Consider a family A = {A1, . . . , Am} consisting of m non-empty pairwise-disjoint convex sets
Ai ∈ C and write A = ∪A. Then, A is m-adversarial if Ai = ∩ℓ̸=i⟨A \ Aℓ⟩ for all i ∈ [m].2

2 This definition requires m > 1 to avoid taking the intersection of an empty collection of sets. However,

DISC 2024



15:8 Convex Consensus with Asynchronous Fallback

e0 e1

e2 e2

e1e0

e2

e1e0 e0 e1

e2

Figure 2 Consider R2 with straight-line convexity and the vectors e0, e1, e2 = (0, 0), (1, 0), (0, 1),
illustrated in the first figure. Define Ai = {ei} for i = 0, 1, 2 to be singleton sets for the previous (and
hence convex sets). Then, A = {A0, A1, A2} is a 3-adversarial family. To see why, first note that by
definition A = {e0, e1, e2}. By symmetry, it suffices to check the condition for i = 0; i.e., to show
that A0 = ⟨A \ A1⟩ ∩ ⟨A \ A2⟩. Simplifying, this amounts to A0 = ⟨{e0, e2}⟩ ∩ ⟨{e0, e1}⟩. The second
figure illustrates ⟨{e0, e2}⟩, the third illustrates ⟨{e0, e1}⟩, and the forth ⟨{e0, e2}⟩ ∩ ⟨{e0, e1}⟩, which
is precisely A0, as required. The illustrations come from [21].

Note that the pairwise-disjoint condition is equivalent to ∩m
ℓ=1⟨A \ Aℓ⟩ = ∅.3 We add that,

in the example of Figure 2, sets Ai are singletons, but requiring this would strictly decrease
the power of adversarial sets in general. The following technical lemma, and the two following
it, will be the main tools used to get impossibility results. The techniques used in its proof,
supplied in the full version of our paper, are similar in spirit to the proofs for RD in [28].

▶ Lemma 4. Let A = {A1, . . . , Am} be an m-adversarial family for convexity space C.

Assume n ≥ m and that, moreover, n ≤ m · t if the network is synchronous and n ≤ (m+1) · t
if the network is asynchronous. Then, any n-party protocol satisfying Convex Validity
and (Probabilistic) Termination has a terminating execution where there are honest parties
P1, . . . , Pm such that the output vi

out of party Pi satisfies vi
out ∈ Ai.

The following two technical lemmas give similar guarantees, but in the network-agnostic
model. The proof of the first is similar to that for R in [20], while that of the second is an
extension of the asynchronous part of Lemma 4. The proofs are included in the full version
of our paper.

▶ Lemma 5. Assume a convexity space C admitting a 2-adversarial family A = {A1, A2}.
Assume 2 ≤ n ≤ 2 · ts + ta. Let Π denote an arbitrary protocol achieving Convex Validity
and (Probabilistic) Termination for at most ts corruptions when the network is synchronous
and at most ta corruptions when it is asynchronous. Then, Π has a terminating execution
where the outputs v1

out and v2
out of two honest parties satisfy v1

out ∈ A1 and v2
out ∈ A2.

▶ Lemma 6. Let A = {A1, . . . , Am} be an m-adversarial family for convexity space C.

Assume that m ≤ n ≤ m · ta + ts. Then, any n-party protocol satisfying Convex Validity and
(Probabilistic) Termination for at most ts corruptions when the network is synchronous and
at most ta corruptions when the network is asynchronous has a terminating execution where
there are honest parties P1, . . . , Pm such that the output vi

out of party Pi satisfies vi
out ∈ Ai.

We now show a relationship between adversarial families and Helly families.

▶ Lemma 7. Consider a convexity space C, then an m-adversarial family exists if and only
if an m-Helly family exists. Hence, the size of the largest adversarial family for a convexity
space equals its Helly number ω.

for m = 1 all our results will hold if we assume that A = {A} is 1-adversarial for any convex set A ̸= ∅.
We will not discuss this technicality further and henceforth assume that m ≥ 1 is well-defined.

3 To see this, note that for i ̸= j we have Ai ∩ Aj = (∩ℓ̸=i⟨A \ Aℓ⟩) ∩ (∩ℓ ̸=j⟨A \ Aℓ⟩) = ∩m
ℓ=1⟨A \ Aℓ⟩.



A. Constantinescu, D. Ghinea, R. Wattenhofer, and F. Westermann 15:9

Proof. First, consider an adversarial family A = {A1, . . . , Am} for C and as usual write
A = ∪A. The family of sets ⟨A \ Ai⟩i∈[m] do not intersect, but any m−1 of them do, since for
any i we assumed that Ai = ∩ℓ̸=i⟨A \ Aℓ⟩ is non-empty, so it is an m-Helly family. Conversely,
consider an m-Helly family; i.e., convex sets C1, . . . , Cm ∈ C that do not intersect, but any
m − 1 of them do. Define the family of non-empty convex sets A = {A1, . . . , Am} where
Ai = ∩ℓ̸=iCℓ. Notice that for i ̸= j we have Ai ∩ Aj = ∩ℓ∈[m]Cℓ = ∅, so the sets are pairwise
disjoint. To show that A is an m-adversarial family, it remains to show that for all i it holds
that Ai = ∩ℓ̸=i⟨A \ Aℓ⟩. To see this, note that A \ Aℓ = ∪{A1, . . . , Aℓ−1, Aℓ+1, . . . , Am} and
that Aℓ′ ⊆ Cℓ for all ℓ′ ≠ ℓ, so A \ Aℓ ⊆ Cℓ. Since Cℓ is convex, this means that ⟨A \ Aℓ⟩ ⊆
⟨Cℓ⟩ = Cℓ. As a result, ∩ℓ̸=i⟨A \ Aℓ⟩ ⊆ ∩ℓ̸=iCℓ = Ai. To also show that Ai ⊆ ∩ℓ̸=i⟨A \ Aℓ⟩
just notice that Ai ⊆ A \ Aℓ ⊆ ⟨A \ Aℓ⟩ for all ℓ ̸= i. ◀

Note that a more restrictive definition of adversarial families where all the sets are
singletons would not suffice to prove the previous, as in some spaces no singletons are convex.

To access the full power of Lemmas 4 and 6, which require n to be at least the size of
the adversarial family, we would like that adversarial families of a certain size imply the
existence of adversarial families of all smaller sizes. We show this in the following lemma.

▶ Lemma 8. Given a convexity space, if there exists an m-Helly family, then there exist
m′-Helly families for any 1 ≤ m′ < m. The same holds if “Helly” is replaced by “adversarial.”

Proof. It suffices to consider m′ = m − 1. If C1, . . . , Cm is an m-Helly family, one can check
that C1, . . . , Cm−2, (Cm−1∩Cm) is an (m−1)-Helly family. For the latter, apply Lemma 7. ◀

We now leverage Lemmas 4, 7 and 8 to get the following result, generalizing those in [33]
by removing the strong requirement of a convex geometry.

▶ Theorem 9. Consider a convexity space C with Helly number ω. Assume n ≤ ω · t if the
network is synchronous and n ≤ (ω + 1) · t if the network is asynchronous. Then, there is no
n-party protocol satisfying Convex Validity and (Probabilistic) Termination such that the set
of outputs of the honest parties is guaranteed to have size at most min(n, ω) − 1.

Proof. Write m = min(n, ω). By Lemma 7, there is an ω-adversarial family for C. Since
m ≤ ω, using Lemma 8, let A = {A1, . . . , Am} be an m-adversarial family for C. Consider a
protocol Π satisfying Convex Validity and Termination. By Lemma 4, there is a terminating
execution of Π where the set of honest outputs contains {a1, . . . , am} where ai ∈ Ai. As sets
in A are pairwise disjoint, this set has cardinality m, implying the conclusion. ◀

By leveraging Lemmas 5, 6, 7 and 8, we similarly get the following result. The proof is
included in the full version of our paper.

▶ Theorem 10. Consider a convexity space C with Helly number ω ≥ 2. Assume 2 ≤ n ≤
2 · ts + ta or 2 ≤ n ≤ ω · ta + ts. Then, no n-party protocol satisfying Convex Validity,
(Probabilistic) Termination, and Exact Agreement can simultaneously tolerate at most ts

corruptions when the network is synchronous and at most ta when the network is asynchronous.

4 Achieving Optimal-Resilience Convex Consensus

We now describe a construction achieving CC in the network-agnostic model that matches
our previous resilience lower bounds. Concretely, we focus on proving the following theorem.

DISC 2024



15:10 Convex Consensus with Asynchronous Fallback

▶ Theorem 11. If ta ≤ ts and n > max(ω · ts, 2 · ts + ta, ω · ta + ts), there is a protocol
achieving (ts, ta)-secure CC assuming PKI. The protocol has expected round complexity O(1).
If ℓ denotes the universe elements’ size in bits and κ is the security parameter, its expected
communication complexity is O(n3 · ℓ + n4 · κ) bits. If threshold signatures are available, the
expected communication complexity reduces to O(n3 · ℓ + n3 · κ) bits.

To set up the intuition for our construction, we recall the outline of the synchronous
protocol for RD with straight-line convexity of [37]. The synchronous model offers powerful
communication primitives (i.e., Synchronous Broadcast [17]), enabling the parties to distribute
their inputs and obtain an identical view of the inputs. This view consists of a set of value-
sender pairs, out of which n − ts correspond to honest parties. Then, the parties derive a safe
area inside the honest inputs’ convex hull by intersecting the convex hulls of all subsets of
n − ts values received, as defined below. We extend the convex hull operator to value-sender
sets straightforwardly: ignore party identities and take the convex hull of the values.

▶ Definition 12 (Safe Area). Let M denote a set of value-sender pairs. For a given k,
safek(M) :=

⋂
M∈restrictk(M)⟨M⟩, where restrictk(M) := {M ⊆ M :

∣∣M ∣∣ =
∣∣M∣∣ − k}.

Specifically, if parties received the (same) set M of n − ts + k value-sender pairs, they
compute their safe area as safek(M). We will later show (in a more general form) that, since
n > ω · ts, the safe area obtained is non-empty. Therefore, any value in the common safe area
is valid. Hence, parties may output any such value chosen by some deterministic criterion.

Technical assumptions. Implementing such a protocol requires mild assumptions about C:
it should be possible to (i) store elements from V and to send them in messages; (ii) compute
and intersect convex hulls; (iii) deterministically select a point from the safe area. Only to
express communication complexity bounds, we will also need that |V | ≤ 2ℓ for some ℓ.

Identical views in asynchrony. Building towards our solution achieving network-agnostic
guarantees, we first identify the challenges posed by translating the outline above to the
purely asynchronous model (where ts = ta and n > (ω + 1) · ta). Given a primitive that
provides the parties with an identical view of n − ta value-sender pairs, CC can be achieved
in a similar manner: out of the set M of n − ta pairs agreed upon, at most ta are corrupted.
Then, honest parties derive the safe area safeta

(M) inside their inputs’ convex hull, and
afterwards take a deterministic decision to obtain the same output.

Achieving the required identical view deterministically is impossible in the asynchronous
model [18], but randomization allows for a simple solution by employing a primitive introduced
in [7]. This primitive archives Agreement on a Core-Set (ACS) when up to ta < n/3 of the
parties involved are corrupted, which suffices for our case of ω ≥ 2. Roughly speaking, an
ACS protocol assumes that each party holds a value meant to be distributed, and enables the
parties to obtain the same set M of n − ta value-sender pairs. By utilizing the (randomized)
ACS protocol presented in [8, Section 4], we achieve asynchronous CC with optimal resilience,
in constant expected number of rounds, proving the lower bound n > (ω + 1) · ta to be tight.

Exploiting the advantages of synchrony. While the standard definition of ACS provides
identical views when the network is asynchronous, the synchronous model still has a crucial
advantage that needs to be used to achieve higher resilience. Namely, the key insight on
why CC can be achieved up to ts < n/ω corruptions in the synchronous model, while
ta < n/(ω + 1) is necessary in the asynchronous one, is that the former ensures all honest
values are delivered. In contrast, in the asynchronous setting, ta corrupted parties may



A. Constantinescu, D. Ghinea, R. Wattenhofer, and F. Westermann 15:11

replace ta honest parties: the honest parties’ messages get delayed for sufficiently long, while
the ta corrupted parties follow the protocol correctly, but with inputs of their choice. To
match the condition n > max(ω · ts, 2 · ts + ta, ω · ta + ts) in the network-agnostic model,
we hence need an additional property in a synchronous network: all honest values must be
included in the output set. Consequently, we propose the following enriched definition:

▶ Definition 13 (Agreement on a Core-Set). Let Π be a protocol where every party P holds an
input vP and outputs a set of value-sender pairs MP . We consider the following properties:
Validity: Let P and P ′ be two honest parties. If (v′, P ′) ∈ MP , then v′ = vP ′ .
Consistency: If P and P ′ are honest, (v, P ′′) ∈ MP and (v′, P ′′) ∈ MP ′ , then v = v′.4
T -Output Size: If an honest party P outputs MP , then

∣∣MP

∣∣ ≥ n − T .
Honest Core: If an honest party P outputs MP , then (vP ′ , P ′) ∈ MP for every honest P ′.

Then, we say that Π is a (ts, ta)-secure ACS protocol if it achieves the following:
Validity, Consistency, Exact Agreement, Honest Core, Probabilistic Termination when
running in a synchronous network where at most ts parties are corrupted;
Validity, Consistency, Exact Agreement, ts-Output Size,5 Probabilistic Termination when
running in an asynchronous network where at most ta parties are corrupted.

Section 5 describes a protocol ΠACS realizing the theorem below (given PKI). We will
also describe a protocol for ta ≤ ts < n/3 without PKI, which is suitable for the case ω ≥ 3.

▶ Theorem 14. If n > 2 · ts + ta and ta ≤ ts, there is a (ts, ta)-secure ACS protocol ΠACS
(assuming PKI). The protocol has expected round complexity O(1). If ℓ denotes the universe
elements’ size in bits and κ is the security parameter, its expected communication complexity
is O(n3 · ℓ + n4 · κ) bits. If threshold signatures are available, the expected communication
complexity reduces to bits.

If parties distribute their values via ΠACS, they agree on a set M of n− ts +k value-sender
pairs. If the network is asynchronous, at most ta of these values are corrupted. In contrast,
if the network is synchronous, at most k of these values are corrupted due to Honest Core.
To cover both cases, parties locally compute their safe areas as S := safemax(k,ta)(M) and
deterministically decide on an output vout ∈ S. Note that, by definition, S is indeed inside
the honest inputs’ convex hull. In addition, since the input space has Helly number ω and
n > max(ω · ts, ω · ta + ts), the safe area can be shown to be non-empty, so such vout can be
chosen. The proof of this result, stated below, is contained in the full version of our paper.

▶ Lemma 15. Assume n > max(ω ·ts, ω ·ta +ts), and that M is a set of n−ts +k value-party
pairs, where 0 ≤ k ≤ ts. Then, safemax(k,ta)(M) ̸= ∅.

We may now conclude the section by providing the formal code of our CC protocol.

Protocol ΠCC

Code for party P with input vin

1: Join ΠACS with input vin. Upon obtaining output M:
2: k :=

∣∣M∣∣ − (n − ts); S := safemax(k,ta)(M).
3: Choose vout ∈ S according to a public, predetermined, deterministic rule. Output vout.

4 Note that this implies that each party appears at most once as a sender in MP .
5 This is intentional: we do not require the stronger property of ta-Output Size.

DISC 2024



15:12 Convex Consensus with Asynchronous Fallback

Proof of Theorem 11. ΠACS provides the parties with the same set M of n − ts + k value-
sender pairs, with 0 ≤ k ≤ ts. M contains at most max(k, ta) values from byzantine parties:
in a synchronous network, this holds due to ΠACS’s Honest Core property. Hence, there is
a subset MH ⊆ M of size

∣∣M∣∣ − max(k, ta) only containing honest inputs. By definition,
MH ∈ restrictmax(k,ta)(M), so S ⊆ ⟨MH⟩, i.e., honest parties obtain a safe area S that is
included in their inputs’ convex hull. Lemma 15 ensures that S is non-empty, and therefore
honest parties agree on the same value vout in the honest inputs’ convex hull. Consequently,
ΠCC is (ts, ta)-secure CC protocol. ◀

5 Agreement on a Core-Set

In this section, we describe the protocol realizing Theorem 14. We first focus on the easier case
ta ≤ ts < n/3: we begin by describing the asynchronous protocol of [8] (as presented in [29]),
which fulfills all properties outlined in Definition 13, except for Honest Core in a synchronous
network. We adapt this protocol to satisfy Honest Core as well, obtaining (ts, ta)-secure ACS
when ta ≤ ts < n/3. Note that our CC lower bound of n > max(ω · ts, 2 · ts + ta, ω · ta + ts)
implies ta ≤ ts < n/3 for ω ≥ 3, so the adapted protocol suffices if the latter is true. For
ω = 2, however, the adapted protocol is insufficient. Consequently, we then move on to the
case n > 2 · ts + ta, for which we present a novel construction.

We will utilize Reliable Broadcast (rBC) and Byzantine Agreement (BA) as building
blocks. We include their definitions in the network-agnostic model below.

▶ Definition 16 (Reliable Broadcast). Let Π denote a protocol where a designated party S (the
sender) holds a value vS, and every party P may a value output vP . Consider the following
properties:
Validity: If S is honest, and an honest party outputs vP , then vP = vS.
Consistency: If P and P ′ are honest and output vP and resp. vP ′ , then vP = vP ′ .
Honest Termination: If S is honest, all honest parties obtain outputs.
Conditional Termination: If an honest party P outputs, all honest parties obtain outputs.

We say that Π is a (ts, ta)-secure rBC protocol if it achieves Validity, Consistency, Honest
Termination, and Conditional Termination up to ts corruptions if it runs in a synchronous
network, and up to ta corruptions if it runs in an asynchronous network.

▶ Definition 17 (Byzantine Agreement). Let Π be a protocol where every party P holds a bit
as input and may output a bit, and consider the following property:
Weak Validity: If all honest parties hold input b, no honest party outputs b′ ̸= b.

Then, Π is a (ts, ta)-secure BA protocol if it achieves Weak Validity, Exact Agreement,
and Probabilistic Termination up to ts corruptions if it runs in a synchronous network, and
up to ta corruptions if it runs in an asynchronous network.

The asynchronous ACS protocol of [8]. We describe the protocol of [8], following the
variant presented in [29]. We denote this protocol by ΠaACS. We highlight once again that
ΠaACS is designed for the purely asynchronous model: it assumes a single threshold t < n/3
and seeks properties that hold under asynchrony with at most t corrupted parties. To use
this protocol in the hybrid model with ta ≤ ts < n/3, one can set t := ts. When this is done,
ΠaACS achieves all properties of being a (ts, ta)-secure ACS protocol as per Definition 13 (in
fact, even (ts, ts)-secure), with the exception of Honest Core under synchrony.

In ΠaACS, every party first distributes its input value via rBC. Concretely, this is done
using Bracha’s protocol [12], denoted by ΠarBC, which achieves (t, t)-secure rBC for t < n/3.
Due to asynchronous communication, ΠarBC only guarantees that parties receive a value if



A. Constantinescu, D. Ghinea, R. Wattenhofer, and F. Westermann 15:13

the sender is honest. As a result, at least n − t values eventually get delivered to all parties,
but these values might still be received at vastly different times, leading to inconsistent views
if parties were to output the first n − t values they received.

Then, to decide on a common output set, the parties will use BA to agree on which values
they received and should be included in the output set. We utilize the protocol ΠaBA of
Mostefaoui et al. [31], which achieves (t, t)-secure BA when t < n/3. There will be n parallel
invocations of ΠaBA – one for each party. When a party P receives a value v from P ′ via
ΠarBC, it joins the ΠaBA invocation corresponding to P ′ with input 1. Semantically, if the
ΠaBA invocation of a party P ′ returns output 1, then the value distributed by P ′ via ΠarBC
should be included in the output set. Note that, when this happens, the Weak Validity
property of ΠaBA ensures that at least one honest party P has joined the ΠaBA invocation for
party P ′ with input 1. That is, P has received a value v from P ′, and ΠarBC’s Conditional
Termination ensures that all honest parties eventually receive the same value v from P ′. In
simple terms, the value of P ′ is worth waiting for, and parties wait until they receive it before
completing the protocol.

Eventually, at least n − t invocations result in output 1 (suppose not, then, since at least
n − t honest values are eventually delivered to all honest parties, the honest parties will all
join at least n − t invocations of ΠaBA with input 1, guaranteeing that those invocations
terminate with output 1). To complete the protocol, we still need that all ΠaBA invocations
complete. Then, whenever some party P observes n − t invocations completing with output
1, it should join all remaining invocations with input 0. Hence, once all honest parties join all
ΠaBA invocations, all invocations are guaranteed to terminate. Upon observing that all ΠaBA
invocations have terminated, each party P outputs the set of (at least n − t) value-sender
pairs corresponding to the ΠaBA invocations that returned output 1 (after waiting to receive
any outstanding values through ΠarBC). This way, the protocol ensures that all honest parties
obtain an identical view, achieving all properties required by Definition 13 for asynchronous
networks. Note that the Validity property follows immediately from the guarantees of ΠarBC.

Adjustments for the network-agnostic model. We now return to the network-agnostic
model and adapt ΠaACS to achieve our ACS definition for the parameter range ta ≤ ts < n/3.
As previously established, ΠaACS already satisfies all properties required to be a (ts, ta)-secure
ACS protocol by setting t := ts, except for Honest Core in a synchronous network.

To see why the Honest Core property does not hold, consider a scenario where the network
is synchronous, and the ts corrupted parties follow the protocol correctly with inputs of
their choice. All messages are delivered immediately, except for the messages sent by ts of
the honest parties: these are delivered exactly after ∆ time. The remaining honest parties
complete the protocol before time ∆, and the values of ts honest parties are missing from
the output set. To prevent this, we impose a waiting time to ensure that, if the network is
synchronous, all honest parties’ messages are received. Running ΠarBC in the synchronous
model guarantees additional properties, established in [21]: when an honest party sends a
value via ΠarBC, all parties receive this output within carBC · ∆ time, where carBC := 3. Then,
to achieve Honest Core, we impose a waiting period of at least carBC · ∆ time before allowing
the parties to participate in ΠaBA invocations with input 0. This way, if the network is
synchronous, all honest parties join every honest party’s ΠaBA invocation with input 1, and
these invocations return 1. Hence, all honest parties’ values are included in the output set.

We include below the adapted ΠaACS, which achieves (ts, ta)-secure ACS for ta ≤ ts < n/3.
In fact, it achieves (ts, ts)-secure ACS: it is an asynchronous protocol with an added waiting
period to ensure the Honest Core property under synchrony. The protocol incurs expected
constant round complexity, and expected communication complexity O(n3 · ℓ), where ℓ

denotes the universe elements’ size. For the formal analysis, see the full version of our paper.

DISC 2024



15:14 Convex Consensus with Asynchronous Fallback

Adapted protocol ΠaACS [8, 29]

Code for party P with input v (ΠarBC and ΠaBA invocations use t := ts)

1: τstart := τnow

2: Send v to every party via ΠarBC.
3: When receiving a value v from P ′ via ΠarBC:
4: If τnow ≤ τstart + carBC · ∆ or less than n − ts invocations of ΠarBC returned 1:
5: Join the invocation of ΠaBA for P ′ with input 1.
6: When τnow > τstart + carBC · ∆ and at least n − ts of the ΠaBA invocations returned 1:
7: Join the remaining ΠaBA invocations with input 0.
8: When all ΠaBA invocations have terminated:
9: P := parties whose corresponding ΠaBA invocations have terminated with output 1.

10: When all invocations of ΠarBC having senders in P have terminated:
11: M := the set of pairs (v′, P ′), where P ′ ∈ P and v′ is the value P ′ sent via ΠarBC.
12: Output M.

Achieving ACS when n > 2 · ts + ta. Finally, we describe our solution for the general
case. We utilize building blocks designed specifically for this setting: the (ts, ta)-secure rBC
protocol ΠrBC of Momose and Ren [30], and the (ts, ta)-secure BA protocol ΠBA of Deligios,
Hirt and Liu-Zhang [15, Corollary 2]. We add that these protocols assume and need PKI.

While the ta ≤ ts < n/3 setting enabled a solution based on tweaks to previously known
protocols, the n > 2 · ts + ta case introduces different challenges. In particular, one detail we
omitted when presenting ΠaACS concerns protocol composability. Namely, Definition 17 of
BA protocols assumes that honest parties join the protocol simultaneously in a synchronous
network. In the outline of [8] and in ΠaACS, this is, in fact, not the case. However, when
ts = ta, this assumption is not strictly required because the asynchronous guarantees step
in whenever honest parties are unable to join simultaneously. In contrast, when ts > ta,
(ts, ta)-secure BA does not have to provide any guarantees in a synchronous network with ts

corruptions if honest parties are unable to join simultaneously. This is especially problematic
when ts ≥ n/3 because (ts, ts)-secure BA protocols do not exist. The Conditional Termination
property of ΠrBC is too weak to ensure that honest parties are ready to join the BA invocations
simultaneously when the network is synchronous – a challenge that we need to overcome.

Our goal is then to allow the parties to join each invocation of ΠBA at the same time
when the network is synchronous – this refers both to invocations where parties join with
input 1, and to invocations where parties join with input 0. We will do so by enabling
the parties to decide their input bit for each invocation of ΠBA independently of the other
invocations’ outcomes. On top of this property, we still need to guarantee ts-Output Size
when the network is asynchronous, which amounts to ensuring that at least n− ts invocations
of ΠBA return 1. Moreover, when the network is synchronous, the ΠBA invocations of honest
parties have to output 1 to ensure the Honest Core property.

To enable the honest parties to safely decide each input bit for the ΠBA invocations
independently, realizing the previous desiderata, we introduce a network-agnostic version of a
primitive known as Gather (GTHR) [2,13]. This is a slightly weaker, but deterministic variant
of ACS: GTHR relaxes Exact Agreement by only requiring that honest parties’ output sets
have at least n − ts values in common. Our definition of GTHR, provided below, additionally
requires the previous Honest Core property to hold under synchrony. Moreover, we require
that honest parties obtain outputs simultaneously if the network is synchronous.

▶ Definition 18 (Gather). Let Π be a protocol where every party P holds an input vP and may
output a set of value-sender pairs MP . We consider the following properties, additionally to
those in Definition 13.



A. Constantinescu, D. Ghinea, R. Wattenhofer, and F. Westermann 15:15

T -Common Core: If all honest parties obtain outputs, then
∣∣⋂

P honest MP

∣∣ ≥ n − T .
Simultaneous Termination: The honest parties obtain outputs simultaneously.

Then, we say that Π is a (ts, ta)-secure GTHR protocol if it achieves:
Validity, Consistency, Honest Core and Simultaneous Termination when running in a
synchronous setting where at most ts of the parties involved are corrupted;
Validity, Consistency, ts-Common Core and Termination when running in an asynchron-
ous setting where at most ta of the parties involved are corrupted.

In Appendix B, we provide a construction achieving our GTHR definition, as stated below.
This is obtained by adding one step to the network-agnostic Overlap All-to-All Broadcast
protocol of [20], while using insights from asynchronous variants of GTHR [2].

▶ Theorem 19. If n > 2 · ts + ta and ta ≤ ts, there is a (ts, ta)-secure GTHR protocol ΠGTHR
(assuming PKI). The protocol has round complexity O(1). If ℓ denotes the universe elements’
size in bits and κ is the security parameter, it achieves a communication complexity of
O(n3 · ℓ + n4 · κ) bits (can be reduced to O(n3 · ℓ + n3 · κ) with threshold signatures).

Then, our ACS protocol proceeds as follows: the parties distribute their inputs using
the ΠGTHR protocol realizing Theorem 19. When obtaining outputs MGTHR (potentially
different for different parties), each party P joins the n invocations of ΠBA. P inputs 1 in the
invocation for P ′ if MGTHR contains some value from P ′ and 0 otherwise. Note that, if the
network is synchronous, ΠGTHR provides Simultaneous Termination, hence honest parties join
ΠBA simultaneously, and therefore the guarantees of ΠBA now hold. Since the value-sender
pairs MGTHR obtained by the honest parties intersect in n − ts pairs, at least n − ts of the
ΠBA invocations result in output 1. In addition, if the network is synchronous, ΠGTHR’s
Honest Core ensures that every invocation corresponding to an honest party returns 1.

An important and subtle caveat in the above is that obtaining output 1 in the ΠBA
invocation for P ′ does not mean that all honest parties have received a value from P ′ via
ΠGTHR. Although ΠBA ensures that at least one honest party P has received a value from
P ′ via ΠGTHR, this may not be the case for all honest parties. To address this, we state an
additional property provided by our implementation of ΠGTHR: if parties wait for sufficiently
long even after obtaining outputs via ΠGTHR, they will (consistently) receive the missing
values as well. This is because, internally to ΠGTHR, parties distribute their inputs via ΠrBC.

▶ Observation 20. Let P and P ′ denote two honest parties, and let M and M′ denote their
internal message sets in ΠGTHR. If (v, P ′′) ∈ M, then, eventually, (v, P ′′) ∈ M′ as well.

We may now present our ACS protocol. We defer the analysis to Appendix C.

Protocol ΠACS

Code for party P with input v

1: Join ΠGTHR with input v. When receiving output MGTHR from ΠGTHR:
2: For each party P ′:
3: bP ′ := 1 if (v′, P ′) ∈ MGTHR for some v′ and 0 otherwise.
4: Join the ΠBA invocation for P ′ with input bP ′ .
5: When receiving v′ from P ′ via ΠrBC [initiated in ΠGTHR], add (v′, P ′) to MGTHR.
6: When obtaining outputs in all invocations of ΠBA:
7: P := the set of parties whose ΠBA invocations returned output 1.
8: When (v′, P ′) ∈ MGTHR for every P ′ ∈ P:
9: Output M := the set of pairs (v′, P ′) ∈ MGTHR with P ′ ∈ P.

DISC 2024



15:16 Convex Consensus with Asynchronous Fallback

6 Conclusions

We investigated the necessary and sufficient conditions for achieving CC in the network-
agnostic model, providing a necessary and sufficient condition for solvability. We have seen
that, for any convexity space with Helly number ω, achieving CC, or, more precisely, Convex
Hull Validity, (Probabilistic) Termination and Agreement on at most min(n, ω) − 1 values
requires n > ω · t in synchronous networks and n > (ω + 1) · t in asynchronous networks.
In the network-agnostic model, we have shown that n > max(ω · ts, ω · ta + ts, 2 · ts + ta)
is necessary and sufficient for achieving CC. To this end, we provided a (ts, ta)-secure CC
protocol ΠCC by making use of randomization, which can be seen to be necessary due to the
FLP result [18], and assuming PKI only for the particular case ω = 2 (where cryptographic
setup is needed when ts ≥ n/3 [23]).

In the process, we proposed two communication primitives for the network-agnostic model,
which may be of independent interest. These are variants of ACS and GTHR, which allow
each party to distribute its input so that parties obtain consistent views on the original inputs.
These stronger properties enabled us to ensure the synchronous resilience guarantees of CC
in the network-agnostic model. With its stronger guarantees, our ACS protocol can simplify
future works on network-agnostic secure Multi-Party Computation, where ACS protocols are
often employed during the input-sharing part of the protocol (for instance, [11] uses a less
general form of ACS).

References

1 Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience asynchronous approximate
agreement. In Teruo Higashino, editor, Principles of Distributed Systems, pages 229–239,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

2 Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin
Tomescu. Reaching consensus for asynchronous distributed key generation. In Proceedings of the
2021 ACM Symposium on Principles of Distributed Computing, PODC’21, pages 363–373, New
York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3465084.3467914.

3 Manuel Alcántara, Armando Castañeda, David Flores-Peñaloza, and Sergio Rajsbaum. The
topology of look-compute-move robot wait-free algorithms with hard termination. Distributed
Computing, 32(3):235–255, 2019. doi:10.1007/s00446-018-0345-3.

4 Andreea B. Alexandru, Erica Blum, Jonathan Katz, and Julian Loss. State machine replication
under changing network conditions. In Advances in Cryptology – ASIACRYPT 2022: 28th
International Conference on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, December 5–9, 2022, Proceedings, Part I, pages 681–710, Berlin, Heidelberg,
2023. Springer-Verlag. doi:10.1007/978-3-031-22963-3_23.

5 Dan Alistarh, Faith Ellen, and Joel Rybicki. Wait-free approximate agreement on graphs. In
Tomasz Jurdziński and Stefan Schmid, editors, Structural Information and Communication
Complexity, pages 87–105, Cham, 2021. Springer International Publishing. doi:10.1007/
978-3-030-79527-6_6.

6 Ananya Appan, Anirudh Chandramouli, and Ashish Choudhury. Perfectly-secure synchronous
mpc with asynchronous fallback guarantees. In Proceedings of the 2022 ACM Symposium on
Principles of Distributed Computing, PODC’22, pages 92–102, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3519270.3538417.

7 Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC
’93, pages 52–61, New York, NY, USA, 1993. Association for Computing Machinery. doi:
10.1145/167088.167109.

https://doi.org/10.1145/3465084.3467914
https://doi.org/10.1007/s00446-018-0345-3
https://doi.org/10.1007/978-3-031-22963-3_23
https://doi.org/10.1007/978-3-030-79527-6_6
https://doi.org/10.1007/978-3-030-79527-6_6
https://doi.org/10.1145/3519270.3538417
https://doi.org/10.1145/167088.167109
https://doi.org/10.1145/167088.167109


A. Constantinescu, D. Ghinea, R. Wattenhofer, and F. Westermann 15:17

8 Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with optimal
resilience (extended abstract). In Proceedings of the Thirteenth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’94, pages 183–192, New York, NY, USA, 1994.
Association for Computing Machinery. doi:10.1145/197917.198088.

9 Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with optimal
asynchronous fallback guarantees. In Theory of Cryptography, volume 11891 of Lecture
Notes in Computer Science, pages 131–150, Cham, 2019. Springer International Publishing.
doi:10.1007/978-3-030-36030-6_6.

10 Erica Blum, Jonathan Katz, and Julian Loss. Tardigrade: An atomic broadcast protocol
for arbitrary network conditions. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIAC-
RYPT 2021, Part II, volume 13091 of LNCS, pages 547–572. Springer, Heidelberg, December
2021. doi:10.1007/978-3-030-92075-3_19.

11 Erica Blum, Chen-Da Liu-Zhang, and Julian Loss. Always have a backup plan: Fully secure
synchronous mpc with asynchronous fallback. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology – CRYPTO 2020, pages 707–731, Cham, 2020. Springer
International Publishing. doi:10.1007/978-3-030-56880-1_25.

12 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987. doi:10.1016/0890-5401(87)90054-X.

13 Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC
’93, pages 42–51, New York, NY, USA, 1993. Association for Computing Machinery. doi:
10.1145/167088.167105.

14 Armando Castañeda, Sergio Rajsbaum, and Matthieu Roy. Convergence and covering on
graphs for wait-free robots. Journal of the Brazilian Computer Society, 24(1):1, January 2018.
doi:10.1186/s13173-017-0065-8.

15 Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang. Round-efficient byzantine agreement
and multi-party computation with asynchronous fallback. In Kobbi Nissim and Brent Waters,
editors, Theory of Cryptography, pages 623–653, Cham, 2021. Springer International Publishing.
doi:10.1007/978-3-030-90459-3_21.

16 Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl.
Reaching approximate agreement in the presence of faults. J. ACM, 33(3):499–516, May 1986.
doi:10.1145/5925.5931.

17 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983. doi:10.1137/0212045.

18 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985. doi:
10.1145/3149.214121.

19 Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong and differential
consensus. In Elizabeth Borowsky and Sergio Rajsbaum, editors, 22nd ACM PODC, pages
211–220. ACM, July 2003. doi:10.1145/872035.872066.

20 Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. Optimal synchronous approximate
agreement with asynchronous fallback. In Proceedings of the 2022 ACM Symposium on
Principles of Distributed Computing, PODC’22, pages 70–80, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3519270.3538442.

21 Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. Multidimensional approximate
agreement with asynchronous fallback. In Proceedings of the 35th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’23, pages 141–151, New York, NY, USA,
2023. Association for Computing Machinery. doi:10.1145/3558481.3591105.

22 Simon Holmgaard Kamp and Jesper Buus Nielsen. Byzantine agreement decomposed: Honest
majority asynchronous atomic broadcast from reliable broadcast. Cryptology ePrint Archive,
Paper 2023/1738, 2023. URL: https://eprint.iacr.org/2023/1738.

DISC 2024

https://doi.org/10.1145/197917.198088
https://doi.org/10.1007/978-3-030-36030-6_6
https://doi.org/10.1007/978-3-030-92075-3_19
https://doi.org/10.1007/978-3-030-56880-1_25
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1145/167088.167105
https://doi.org/10.1145/167088.167105
https://doi.org/10.1186/s13173-017-0065-8
https://doi.org/10.1007/978-3-030-90459-3_21
https://doi.org/10.1145/5925.5931
https://doi.org/10.1137/0212045
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/872035.872066
https://doi.org/10.1145/3519270.3538442
https://doi.org/10.1145/3558481.3591105
https://eprint.iacr.org/2023/1738


15:18 Convex Consensus with Asynchronous Fallback

23 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982. doi:10.1145/
357172.357176.

24 Jérémy Ledent. Brief announcement: Variants of approximate agreement on graphs and
simplicial complexes. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing, PODC’21, pages 427–430, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3465084.3467946.

25 Christoph Lenzen and Julian Loss. Optimal clock synchronization with signatures. In
Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC’22,
pages 440–449, New York, NY, USA, 2022. Association for Computing Machinery. doi:
10.1145/3519270.3538444.

26 Shihao Liu. The Impossibility of Approximate Agreement on a Larger Class of Graphs. In
Eshcar Hillel, Roberto Palmieri, and Etienne Rivière, editors, 26th International Conference
on Principles of Distributed Systems (OPODIS 2022), volume 253 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 22:1–22:20, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.OPODIS.2022.22.

27 Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in
byzantine asynchronous systems. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 391–400. ACM Press, June 2013. doi:10.1145/2488608.
2488657.

28 Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K Garg. Multidimensional
agreement in byzantine systems. Distributed Computing, 28(6):423–441, 2015. doi:10.1007/
S00446-014-0240-5.

29 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of
BFT protocols. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 31–42. ACM Press, October 2016.
doi:10.1145/2976749.2978399.

30 Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security, CCS
’21, pages 1686–1699, New York, NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3460120.3484554.

31 Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous
byzantine consensus with t < n/3 and o(n2) messages. In Proceedings of the 2014 ACM
Symposium on Principles of Distributed Computing, PODC ’14, pages 2–9, New York, NY,
USA, 2014. Association for Computing Machinery. doi:10.1145/2611462.2611468.

32 Gil Neiger. Distributed consensus revisited. Information Processing Letters, 49(4):195–201,
1994. doi:10.1016/0020-0190(94)90011-6.

33 Thomas Nowak and Joel Rybicki. Byzantine Approximate Agreement on Graphs. In Jukka
Suomela, editor, 33rd International Symposium on Distributed Computing (DISC 2019), volume
146 of Leibniz International Proceedings in Informatics (LIPIcs), pages 29:1–29:17, Dagstuhl,
Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
DISC.2019.29.

34 Thomas Nowak and Joel Rybicki. Byzantine approximate agreement on graphs, 2019. arXiv:
1908.02743.

35 Gerard Sierksma. Caratheodory and helly-numbers of convex-product-structures. Pacific
Journal of Mathematics, 61:275–282, 1975.

36 Lewis Tseng and Nitin H. Vaidya. Asynchronous convex hull consensus in the presence of
crash faults. In Magnús M. Halldórsson and Shlomi Dolev, editors, 33rd ACM PODC, pages
396–405. ACM, July 2014. doi:10.1145/2611462.2611470.

37 Nitin H. Vaidya and Vijay K. Garg. Byzantine vector consensus in complete graphs. In
Panagiota Fatourou and Gadi Taubenfeld, editors, 32nd ACM PODC, pages 65–73. ACM,
July 2013. doi:10.1145/2484239.2484256.

https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/3465084.3467946
https://doi.org/10.1145/3519270.3538444
https://doi.org/10.1145/3519270.3538444
https://doi.org/10.4230/LIPIcs.OPODIS.2022.22
https://doi.org/10.1145/2488608.2488657
https://doi.org/10.1145/2488608.2488657
https://doi.org/10.1007/S00446-014-0240-5
https://doi.org/10.1007/S00446-014-0240-5
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/3460120.3484554
https://doi.org/10.1145/2611462.2611468
https://doi.org/10.1016/0020-0190(94)90011-6
https://doi.org/10.4230/LIPIcs.DISC.2019.29
https://doi.org/10.4230/LIPIcs.DISC.2019.29
https://arxiv.org/abs/1908.02743
https://arxiv.org/abs/1908.02743
https://doi.org/10.1145/2611462.2611470
https://doi.org/10.1145/2484239.2484256


A. Constantinescu, D. Ghinea, R. Wattenhofer, and F. Westermann 15:19

Appendix

A Comparison with [33, Theorems 17 and 13]

In this section, we compare our impossibility results with the related [33, Theorems 17 and
13]. We find that our results generalize the aforementioned, with the exception of the first
part of [33, Theorems 13], to which our findings are orthogonal. However, we exhibit an
error in the proof of this part, rendering the result false in general.

To better understand these results, let us first introduce convex geometries. An abstract
convexity space C on universe V is a convex geometry if it additionally satisfies that, for all
convex sets C ⊊ V , there exists v ∈ V \ C such that C ∪ {v} is convex. This is a non-trivial
requirement; e.g., RD with straight-line convexity or box convexity is not a convex geometry.
An example of a convex geometry is a chordal graph endowed with monophonic convexity.
These notions are further discussed in the full version of our paper.

▶ Theorem 21 ([33, Theorem 17]). Let C be a convex geometry with Helly number ω. If
the network is synchronous and n ≤ ω · t, then no n-party protocol satisfies Convex Validity,
Termination and Exact agreement.

Contrasting this with Theorem 9, for the synchronous case our results generalize the
previous by removing the strong requirement on C to be a convex geometry and by adding
the fact that even agreement on at most min(n, ω) − 1 values is not possible.

Before continuing, we need to introduce a few more notions from convexity theory. One
relevant notion will be that of extreme points. Namely, given a non-necessarily convex set
S ⊆ V, the set ex(S) = {s ∈ S | ⟨S \ s⟩ ⊊ ⟨S⟩} is the set of points in S any of whose removal
would “shrink” the convex hull. Set S is called free if ⟨S⟩ = ex(S). Note that free sets are
necessarily convex, as ⟨S⟩ = ex(S) ⊆ S ⊆ ⟨S⟩, from which ⟨S⟩ = S. Equivalently, S is free if
and only if S is convex and S = ex(S).

▶ Theorem 22 ([33, Theorem 13]). Let C be a convexity space with Helly number ω and
Carathéodory number c. Assume the network is asynchronous and consider a protocol satisfying
Convex Validity and termination, then:
1. If n ≤ (c + 1) · t there is an execution where the honest outputs do not form a free set in

C.

2. If n ≤ (ω + 1) · t and C is a convex geometry, there is an execution where the set of honest
outputs either has size at least ω or is not a free set in C.

Contrasting with Theorem 9, for the asynchronous case, our results generalize Part 2 of
the above by once again removing the requirement on C to be a convex geometry and also
by no longer requiring the clause “or is not a free set in C.” Our result also replaces ω by
min(n, ω), which we believe is also implicitly meant in the original result, as when n < ω

the condition becomes vacuous, and a protocol where parties just output their own inputs
satisfies Convex Validity and termination in some convex geometries.

Part 1 of Theorem 22, on the other hand, is orthogonal to our results. In our attempt to
use adversarial families to potentially also recover Part 1, we have discovered an error in
the proof of this part, making the result false in general. To display the error, we need to
introduce one more notion: call a (not necessarily convex) subset I ⊆ V irredundant if there
is a point p ∈ ⟨I⟩ such that the hull of no proper subset of I contains p. The Carathéodory
number c of C is then the size of the largest such irredundant set I. Now, the proof of Part 1
hinges on the following technical lemma:

DISC 2024



15:20 Convex Consensus with Asynchronous Fallback

▶ Lemma 23 ([33, Lemma 15 of the full version [34]]). Let C be a convexity space and A

be an irredundant set such that |A| > 1. Then for any a ∈ A and y ∈ ⟨A⟩ \ A there exists
b ∈ A \ {a} such that y /∈ ⟨A \ {b}⟩.

Note that we have added the condition “A is irredundant” missing from the original
statement.6 The error in the proof is towards the end where, using the original notation, it is
stated that y /∈ ∂A = ⟨A⟩\B ⊆ ⟨A⟩\A implies that y /∈ ⟨A⟩\A, contradicting the hypothesis.
However, in general, if some sets satisfy S1 ⊆ S2 and y /∈ S1 it does not follow that y /∈ S2.

We next construct a convexity space where the lemma in fact fails for all irredundant sets A

and all a ∈ A. First, introduce some auxiliary notation: given two convexity spaces C1 and
C2 defined on universes V1 and V2 respectively, define C1 ⊕ C2 to be the convexity space on
universe V1 × V2 such that C1 ⊕ C2 = {C1 × C2 | C1 ∈ C1, C2 ∈ C2}. For the construction,
start with an arbitrary convexity space C on universe V and consider the convexity space
C′ = C ⊕ {∅, {0, 1}}. To build intuition for C′, notice that ⟨{(v, i)}⟩ = {(v, 0), (v, 1)} for any
v ∈ V and i ∈ {0, 1}. Assume A is an irredundant set for C′. Note that for no v ∈ V does A

contain both points (v, 0) and (v, 1), as otherwise it would be that ⟨A⟩ = ⟨A \ {(v, 1)}⟩, so A

would not be irredundant. Consider any a = (v, i) ∈ A and take y = (v, 1 − i) ∈ ⟨A⟩ \ A, then
for any b ∈ A \ {a} it holds that a ∈ A \ {b}, from which ⟨{a}⟩ = {(v, 0), (v, 1)} ⊆ ⟨A \ {b}⟩,
so y ∈ ⟨A \ {b}⟩, contradicting the statement of the lemma. Hence, we have constructed a
space for which the lemma fails for any irredundant set A and any a ∈ A, indicating that
any correct weakening of the lemma might sadly not be of much use in its current form.

We conclude by constructing a space whose Carathéodory number c is much larger
than its Helly number ω, showing that our possibility results are not consistent with Part
2 of Theorem 22. To do so, we will use the fact [35, Theorems 2.1 and 3.2] that given
convexity spaces C1 and C2 with Helly numbers ω1, ω2 and Carathéodory numbers c1, c2 the
space C1 ⊕ C2 has Helly number ω = max{ω1, ω2} and Carathéodory number c satisfying
c1 + c2 − 2 ≤ c ≤ c1 + c2. Consider the space C = R2 with straight-line convexity, whose Helly
and Carathéodory numbers are both 3. Then, the space Ck =

⊕k
ℓ=1 C has Helly number

ωk = 3 and Carathéodory number ck ≥ 3k − 2(k − 1) = k + 2. For this space, our possibility
results imply that, when the network is asynchronous, convex consensus be solved assuming
n > 4 · t, while Part 1 of Theorem 22 would imply that it can not be solved for n ≤ (k + 3) · t,

which are incompatible statements for k large enough.
The keen-eyed reader might note that [33,34] require the universe to be finite, which is not

the case for our counterexample. To also construct a counterexample with a finite universe,
we will use the same technique, replacing R2 with straight-line convexity by a finite convexity
space X . The requirements for our technique to apply are mild since increasing k keeps
the Helly number constant while strictly increasing the lower bound on the Carathéodory
number, provided the Carathéodory number of X is at least 3. Hence, for k sufficiently
large, the Carathéodory number of Ck =

⊕k
ℓ=1 C =

⊕k
ℓ=1 X will exceed its Helly number.7

It remains to construct a finite X with Carathéodory number at least 3. This is not at all
difficult: let the universe be four points A, B, C, D ∈ R2 such that A, B, C form an equilateral
triangle and D is the center of the triangle, and the convexity notion be inherited from R2

6 The proof of the lemma notes that if A is not irredundant the claim becomes vacuous, however, one
can actually consider R2 with straight-line convexity, A = {(±1, ±1)} and y = (0.5, 0.5), in which case
y ∈ ⟨A \ {a}⟩ for any a ∈ A. This issue is however only minor since the lemma is only invoked in the
proof of the subsequent [33, Lemma 16 of the full version [34]], where A is assumed to be irredundant.

7 Note that for finite X the Helly number is always well-defined.



A. Constantinescu, D. Ghinea, R. Wattenhofer, and F. Westermann 15:21

with straight-line convexity; i.e., ⟨{A, B, C}⟩ = {A, B, C, D}. This space has a Carathéodory
number of at least 3 because the set {A, B, C} is irredundant (in fact exactly 3 because
{A, B, C, D} is not irredundant).

B Gather

In the following, we describe our protocol ΠGTHR realizing Theorem 19, restated below.

▶ Theorem 19. If n > 2 · ts + ta and ta ≤ ts, there is a (ts, ta)-secure GTHR protocol ΠGTHR
(assuming PKI). The protocol has round complexity O(1). If ℓ denotes the universe elements’
size in bits and κ is the security parameter, it achieves a communication complexity of
O(n3 · ℓ + n4 · κ) bits (can be reduced to O(n3 · ℓ + n3 · κ) with threshold signatures).

As mentioned in Section 5, our protocol ΠGTHR adds one more step to the Overlap
All-to-All Broadcast (oBC) protocol of [20], which we denote by ΠoBC. We need to highlight
the difference between the definition of (ts, ta)-secure oBC presented in [20] and our definition
of (ts, ta)-secure GTHR: oBC does not require ts-Common Core. Instead, the oBC definition
of [20] requires the weaker property ts-Overlap:

T -Overlap: If two honest parties P and P ′ terminate, then
∣∣MP ∩ MP ′

∣∣ ≥ n − T .

Until we reach the additional step, the protocols ΠoBC and ΠGTHR are identical. ΠoBC
(and hence also ΠGTHR) heavily relies on the witness technique [1]. That is, in both protocols,
parties send their values via ΠrBC. Then, they report to each other which values they received.
When the values reported by a party P match the values received by a party P ′ via ΠrBC, P ′

marks P as a witness. In ΠoBC, parties are ready to terminate when (i) sufficient time has
passed for honest values to be received via ΠrBC in a synchronous network, ensuring Honest
Core; (ii) parties have gathered sufficient witnesses to ensure that every two honest parties
P and P ′ have a common witness P ⋆. This way, P and P ′ have received the same set of at
least n − ts values reported by P ⋆, and therefore the ts-Overlap property holds. To achieve
the superior guarantee ts-Common Core required by GTHR in the asynchronous model, we
will need a stronger termination condition as well.

Termination time in rBC. Before describing the protocol precisely, we need to include the
rBC definition of [21], which makes the termination time explicit.

▶ Definition 24 (Reliable Broadcast with explicit termination time). Let Π be a protocol where
a designated party S (the sender) holds a value vS, and every party P may output a value
vP . Consider the following properties:
Validity: If S is honest, and an honest party outputs vP , then vP = vS.
Consistency: If P and P ′ are honest and output vP and resp. vP ′ , then vP = vP ′ .
c-Honest Termination: If S is honest, parties obtain outputs eventually. In addition, if the
network is synchronous and the parties start executing the protocol at the same time τ , every
honest party obtains output by time τ + c · ∆.
c′-Conditional Termination: If an honest party P obtains output at time τ , then all honest
parties obtain outputs eventually. In addition, if the network is synchronous and the honest
parties start executing the protocol at the same time, then all honest parties obtain output by
time τ + c′ · ∆.

We say that Π is a (ts, ta, c, c′)-secure Reliable Broadcast protocol if it achieves Validity,
Consistency, c-Honest Termination, and c′-Conditional Termination even when ts of the
parties involved are corrupted if it runs in a synchronous network, and when up to ta

corruptions if it runs in an asynchronous network.

DISC 2024



15:22 Convex Consensus with Asynchronous Fallback

As mentioned in Section 5, we make use of the rBC protocol ΠrBC of Momose and Ren [30]
described in the theorem below. The guarantees regarding explicit termination time follow
from the analysis of [20].

▶ Theorem 25 (Momose and Ren [30]). Assume that n > 2 · ts + ta and ts ≥ ta. Then,
there is an n-party protocol achieving (ts, ta, crBC, c′

rBC)-secure rBC (assuming PKI), where
crBC := 3 and c′

rBC := 1. The protocol has round complexity O(1). If ℓ denotes the universe
elements’ size in bits and κ is the security parameter, it achieves a communication complexity
of O(n2 · ℓ + n3 · κ) bits. If, in addition, threshold signatures are available, the communication
complexity reduces to O(n2 · ℓ + n2 · κ).

Common steps of ΠoBC and ΠGTHR. We now describe the common steps of ΠoBC and
ΠGTHR more precisely. Parties distribute their inputs via ΠrBC. When a party receives
a value v from P via ΠrBC, it adds (v, P ) to a set of value-party (or value-sender) pairs
M. Additionally, it adds P to a set W0, representing level-zero witnesses. When at least
crBC · ∆ time has passed (meaning that, if the network is synchronous, every honest input
was received), and when

∣∣M∣∣ ≥ n − ts (since at most ts parties are corrupted), the parties
reliably broadcast their set of level-zero witnesses W0. Even after broadcasting W0, parties
may continue gathering level-zero witnesses. Then, if a party P receives a set of level-zero
witnesses W ′

0 from P ′ such that all values sent by parties in W ′
0 were also received by P

(W ′
0 ⊆ W0), P marks P ′ as a level-one witness by adding it to its set W1.

Once each honest party gathers n − ts level-one witnesses, we have the guarantee that
every pair of honest parties has a level-one witness in common. This means that every pair
of honest parties has received n − ts common values via ΠrBC. This is the point where ΠoBC
allows the parties to output the set of value-sender pairs obtained so far and terminate, as
(ts, ta)-secure oBC is achieved.

Additional step in ΠGTHR. In contrast, to achieve the stronger property ts-Common Core,
our GTHR protocol continues: following the insights from the asynchronous GTHR protocol
of [2], we obtain that, when n − ts honest parties hold sets W1 of size n − ts, then ts + 1
honest parties have a common level-one honest witness P ⋆. This will then enable us to
achieve the ts-Common Core property. Concretely, when party P gathers n − ts level-one
witnesses, it sends its set W1 to all the parties. P may continue marking parties as level-one
witnesses even after sending its set W1. When receiving a set W ′

1 from some party P ′ such
that W ′

1 ⊆ W1, P marks P ′ as a level-two witness by adding it to its set W2. Once P collects
n − ts level-two witnesses, it may output its set M. This ensures that P has marked at least
one of the parties that have reported sets W1 containing P ⋆ – and therefore P has marked
P ⋆ as a level-one witness as well. Hence, P has received the set W ⋆

0 sent by P ⋆, and therefore
all the values sent by the parties in W ⋆

0 have been included in P ’s set M. This argument
applies to every honest party, which ensures that the ts-Common Core property holds.

We include the formal code of ΠGTHR below. Due to space constraints, we defer the
analysis to the full version of our paper.



A. Constantinescu, D. Ghinea, R. Wattenhofer, and F. Westermann 15:23

Protocol ΠGTHR

Code for party P with input v

1: τstart := τnow; M := ∅; W0, W1, W2 := ∅.
2: Send v to every party via ΠrBC.
3: Whenever receiving a value v′ from P ′ via ΠrBC, add (v′, P ′) to M and P ′ to W0.
4: If τnow ≥ τstart + crBC · ∆ and

∣∣W0
∣∣ ≥ n − ts:

5: Send W0 to all parties via ΠrBC.
6: Whenever receiving W ′

0 from P ′ via ΠrBC such that
∣∣W ′

0
∣∣ ≥ n − ts:

7: When W ′
0 ⊆ W0, add P ′ to W1.

8: When τnow ≥ τstart + 2crBC · ∆ and
∣∣W1

∣∣ ≥ n − ts:
9: Send W1 to all parties.

10: Whenever receiving W ′
1 from P ′ such that

∣∣W ′
1
∣∣ ≥ n − ts:

11: When W ′
1 ⊆ W1, add P ′ to W2.

12: When τnow ≥ τstart + (2crBC + c′
rBC) · ∆ and

∣∣W2
∣∣ ≥ n − ts:

13: Output M.

C Analysis of ΠACS

We include the proof of Theorem 14, restated below.

▶ Theorem 14. If n > 2 · ts + ta and ta ≤ ts, there is a (ts, ta)-secure ACS protocol ΠACS
(assuming PKI). The protocol has expected round complexity O(1). If ℓ denotes the universe
elements’ size in bits and κ is the security parameter, its expected communication complexity
is O(n3 · ℓ + n4 · κ) bits. If threshold signatures are available, the expected communication
complexity reduces to bits.

Proof. In the following, we show that ΠACS achieves (ts, ta)-secure ACS when n > 2 · ts + ta.
First, the Validity and Consistency properties follow immediately from the Validity and

Consistency properties of ΠrBC and ΠGTHR. Next, ΠGTHR ensures that all honest parties
obtain sets MGTHR that intersect in at least n − ts values. In addition, if the network is
synchronous, these sets contain all honest values, and are obtained simultaneously.

Therefore, if the network is synchronous, all parties join the ΠBA invocations simultan-
eously, hence all properties that ΠBA ensures when running in a synchronous network hold.
It follows that all ΠBA invocations corresponding to honest parties result in output 1, and
hence all honest values are included in the output sets M, ensuring the Honest Core property.
Moreover, parties agree on the same bit for every corrupted party. If the output bit for
some corrupted party is 1, then at least one honest party has included this corrupted party’s
value in its set MGTHR. By Observation 20, eventually, all honest parties receive this value
as well. Therefore, all honest parties output the same set M, hence Exact Agreement and
Probabilistic Termination hold.

If the network is asynchronous, since ΠGTHR achieves Termination, all honest parties
eventually join all ΠBA invocations and hence agree on a bit for each party. ΠGTHR’s ts-
Common Core property ensures that there exist at least n − ts invocations of ΠBA in which
all honest parties input 1, and therefore output 1 in these invocations. For each invocation
returning 1, the Weak Validity property ensures that at least one honest party P has input
1, meaning that P has received the corresponding value via ΠGTHR. Observation 20 then
ensures that all parties eventually receive this value, and therefore all honest parties output
the same set M of at least n − ts value-sender pairs, hence Exact Agreement, ts-Output Size
and Probabilistic Termination hold. ◀

DISC 2024





A Simple Computability Theorem for Colorless
Tasks in Submodels of the Iterated Immediate
Snapshot
Yannis Coutouly
Aix Marseille University, France

Emmanuel Godard
Aix Marseille University, France

Abstract
The Iterated Immediate Snapshot model (IIS) is a central model in distributed computing. We
present our work in the message adversary setting. We consider general message adversaries whose
executions are arbitrary subsets of executions M of the IIS message adversary. We present a
complete and explicit characterization of solvable colorless tasks given any submodel of IIS.

Based upon the geometrization mapping geo introduced in [8] to investigate set-agreement in
general submodels, we give a simple necessary and sufficient condition for computability. The
geometrization geo associates to any execution a point in RN . A colorless task (I,O,∆) is solvable
under M if and only if there is a continuous function f : geo(skeln(I) × M) −→ |O| carried by ∆.

This necessary and sufficient condition for colorless tasks was already known for full models
like the Iterated Immediate Snapshot model [14, Th. 4.3.1] so our result is an extension of the
characterization to any arbitrary submodels. It also shows the notion of continuity that is relevant
for distributed computability of submodels is not the one from abstract simplicial complexes but the
standard one from RN . As an example of its effectiveness, we can now derive the characterization
of the computability of set-agreement on submodels from [8] by a direct application of the No-
Retraction theorem of standard topology textbook. We also give a new fully geometric proof of the
known characterization of computable colorless tasks for t−resilient layered snapshot model by using
cross-sections of fiber bundles, a standard tool in algebraic topology.

2012 ACM Subject Classification Theory of computation → Computability; Theory of computation
→ Distributed algorithms

Keywords and phrases topological methods, geometric simplicial complex, set-agreement

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.16

1 Introduction

Distributed computability is the general investigation of which tasks could be solved in which
distributed models. It is known since [12], [2] and [9] that some distributed tasks could have
no algorithmic solution valid in all scenarios. Following the seminal works of Herlihy and
Shavit [18], Borowsky and Gafni [5], Saks and Zaharoglou [28], using topological methods has
proved very fruitful for distributed computing and for distributed computability in particular.

A distributed model that is widely used is the Iterated Immediate Snapshot (IIS) model,
which is known to have the same task-computability power as the standard asynchronous read
write wait-free model. In the setting of message adversaries, we consider general submodels
M of the IIS model. These submodels correspond to arbitrary subsets of executions of IIS.
We work on a subclass of distributed tasks, the colorless tasks : intuitively, any process
can replace his input (resp. output) with the input (resp. output) of other processes while
still correctly solving the task. Many important tasks like Consensus, k−set agreement, are
colorless tasks. The ones needing to “break symmetry”, like Election or Renaming, are not.

© Yannis Coutouly and Emmanuel Godard;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 16; pp. 16:1–16:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2024.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 A Simple Computability Theorem for Colorless Tasks

1.1 Related Work in Distributed Computability for IIS and Submodels
Distributed computability is a long time subject in distributed computing and topological
methods are involved since introduced in [18, 28], see also the textbook [14] of Herlihy,
Kozlov and Rajsbaum. We focus on this section on the previous results directly linked to
our investigation, that is distributed computability for arbitrary submodels of the IIS model.

Models, Submodels and Message Adversaries. Topological methods have been first applied
to the wait-free model, to be extended to some computability equivalent layered models,
where these methods are more directly applicable. The Iterated Immediate Snapshot model
appears now as a central model for distributed computing, either as a shared memory model
or as a message adversary model.

We consider arbitrary subsets of executions of IIS, which is a setting that captures a
wide range of models. Numerous submodels of the IIS model have already been investigated,
they are usually called adversaries, see [14, Chap. 5] for results about colorless tasks for
specific adversaries. Another category of adversaries are the affine adversaries of Kuznetsov
and Rieutord [27, 22].

Our result is one of the few general results that can be applied to any submodel of the IIS
model, which subsumes all models cited above. In this line of research, there have been works
of Gafni, Kuznetsov and Manolescu in [10], and a recent extension by Attiya, Castañeda and
Nowak in [3], following the work of Godard and Perdereau [11] for only two processes. In [3],
a general computability theorem is presented for all submodels of the IIS model. Their results
address both colorless and colored tasks, it is expressed using special infinite complexes called
terminating subdivisions. This particular object capture non-uniform termination (to in part
deal with non-compact sub-models) with infinite simplicial complexes. Since in this article
we get rid of terminating subdivision we use the geometrization topology of [3].

Geometrization Topology. To include non-compact submodel we use the geometrization
topology introduced by Godard and Perdereau in [11] for only two processes. It was later
generalized by Coutouly and Godard in [8] to any number of processes in the case of
general submodels of the Iterated Immediate Snapshot model. The geometrization mapping
geo associates to any execution of IIS a point in RN . This induces a topology on IIS by
considering as open sets the pre-images of open sets of RN . In [8], Coutouly and Godard only
investigated the set-agreement task, not general colorless tasks. Moreover, the geometrization
topology is mostly used in a descriptive way, not as a topology per se. This means that the
geometrization topology is introduced in [8], but it is not actually used except as a way to
provide some intuition to the combinatorial descriptions of some classes of executions. The
main result of this paper, summarized in the following section, infers that there was actually
more than an intuition, since we directly use this topology on sub model of IIS to express
our computability results.

1.2 Our Contributions
A Generalized Computability Result. We build upon the geo mapping introduced by [8] and
use it to express a new and simple colorless computability characterization. The geo mapping
associates to any execution of IIS a point in RN by considering an encoding by geometrical
simplicial complexes. We adapt it to the colorless setting and a geometric universal colorless
algorithm is presented, that is coined the Colorless Chromatic Average algorithm. The
characterization is as follows in Theorem 11: a message adversaryM⊂ IISn solves a colorless
task (I,O,∆) if and only if there exists a continuous function f : geo(skeln(I)×M) −→ |O|
carried by ∆.



Y. Coutouly and E. Godard 16:3

This characterization was already known when M = IISn, see [14, Thm. 4.3.1] and note
that geo(I × IISn) = |I|. Our result is therefore a wide extension of this simple topological
characterization to any arbitrary submodel of the IIS model.

We discuss now the relevance of Theorem 11. The continuous function involved in this
Theorem is continuous in the classical sense, i.e. for the topology of RN . In [3], a very
general theorem is shown that relates computability to continuity of some function. However,
this continuity is defined for a well chosen, but quite abstract and involved, topology on the
set of executions. Here, thanks to the geometrization topology, we have basically to only deal
with the standard continuity of the functions of RN , which actually appears more convenient,
like in the Set-Agreement case, detailed below.

To compare to [3, Th 4.1] we focus less general task (only the colorless one) to remove the
need from terminating subdivision. Both article have result on general adversaries of the IIS
model. In this setting, a question of computability can be transformed to the existence of a
continuous function between two classical topological spaces. For instance, we can directly
use results from topology textbook as the No Retraction theorem [13, Cor. 2.15] to obtain a
characterization for the Set-Agreement task. We also give a fully topological proof of the
known characterization of the computable colorless tasks for the t−resilient layered snapshot
protocol model by using cross-sections of fiber bundles.

These applications and their associated simple proofs, fully justifies, in our opinion, the
move from abstract complexes to a fully geometric description of distributed systems by
geometric simplicial complexes embedded in the ambient topology of RN . That is, the
relevant simplicial complexes for distributed computability of colorless tasks are geometric
simplicial complexes, seen as subspaces of RN with its classical topology. It is known that
abstract simplicial complex and geometric simplicial complex coincide when the complexes
are of finite size. However, since dealing with general submodels, in particular so-called
non-compact models, implies to associate a complex of possibly infinite size to distributed
executions, we believe this is necessary.

Applications. As illustrations of our main computability theorem, we give new simple
topological proofs of two known results : the characterization of submodels for which set-
agreement is solvable (as already given in [8]) and the computability of colorless tasks against
adversary. Our application are simple in the sense that we only use textbook theorems for
“classical” topological spaces (like the standard Euclidian space RN or the standard ball Sn).

We investigate colorless tasks for so-called adversary models. These are sub-models of IIS
where the failures can be not homogeneous: there is an arbitrary list F of sets of processes
that can fail simultaneously, F is assumed to be inclusion closed.

A common example of adversary submodels is the t−faulty submodel which is a setting
where at most t processes will eventually crash. In our IIS setting, this corresponds to the
t−resilient layered snapshot protocol model. This is a well studied model, since [17] it is
known such model cannot solve the t−set agreement. Nowadays, we have a nice topological
understanding thanks to [15], a task is solvable in a t−resilient layered snapshot model if
and only there is a continuous map from |skelt(I)| → |O| carried by ∆. From this, it can
be deduced that t-resilient model cannot solve the k-set-Agreement task unless k > t. This
result was also obtained in [4] using an algorithmic construction. A nice overview can be
found in [21], and a comprehensive investigation in [14, Chap. 5]. We present here a new
topological proof of these results that exploits a new topological and geometric interpretation
of the reduction between models by using fiber bundles and cross sections, which are standard
notion of topological spaces.

DISC 2024



16:4 A Simple Computability Theorem for Colorless Tasks

2 Models of Computation and Definitions

2.1 Models of Computation
We introduce our notations. Let n ∈ N, we consider systems with n+ 1 processes. We denote
Πn = [0, .., n] the set of processes. Since sending a message is an asymmetric operation, we
will work with directed graphs. We use standard directed graph (or digraph) notations :
given G, V (G) is the set of vertices, A(G) ⊂ V (G)× V (G) is the set of arcs.

▶ Definition 1. We denote by Gn the set of directed graphs with vertices in Πn.
A dynamic graph G is a sequence G1, G2, · · · , Gr, · · · where Gr is a directed graph with

vertices in Πn. We also denote by G(r) the digraph Gr. A message adversary is a set of
dynamic graphs. Since that n will be mostly fixed through the paper, we use Π for the set of
processes and G for the set of graphs with vertices Π when there is no ambiguity.

Intuitively, the graph at position r of the sequence describes whether there will be, or not,
transmission of some messages sent at round r. A formal definition of an execution under a
dynamic graph will be given in Section 2.3. We will use the standard following notations in
order to describe more easily our message adversaries [25].

A dynamic graph is seen as a infinite word over the alphabet G.Given U ⊂ G, U∗ is the set
of all finite sequences of elements of U , Uω is the set of all infinite ones and U∞ = U∗ ∪ Uω.

Given G ∈ Gω, if G = HK, with H ∈ G∗,K ∈ Gω, we say that H is a prefix of G, and K
a suffix. Pref(G) denotes the set of prefixes of G. A message adversary of the form Uω,
with U ⊂ G, is called an oblivious adversary or an iterated adversary. A word in M⊂ Gω is
called a communication scenario (or scenario for short) of message adversary M. Given a
word H ∈ G∗, it is called a partial scenario and len(H) is the length of this word. The prefix
of G of length r is denoted G|r (not to be confused with G(r) which is the r-th letter of G,
it is the digraph at time r).

We show how standard fault environments are conveniently described in our frame-
work.Consider a synchronous system of two processes ◦ and • where at most one of the
processes can crash, the associated adversary is the following (using rational expression):
C1 = {◦↔•ω}∪{◦↔•}∗({◦←•ω, ◦→•ω}). In the system of two processes ◦ and • where, at each
round, only one message can be lost, the associated message adversary is {◦↔•, ◦←•, ◦→•}ω.

2.2 Iterated Immediate Snapshot Message Adversary
The previous example is IIS1, we now detail the main message adversary we consider.
Given a graph G, we denote by InG(a) = {b ∈ V (G) | (b, a) ∈ A(G)} the set of incoming
vertices of a in V (G). A graph G has the containment Property if for all a, b ∈ V (G),
InG(a) ⊂ InG(b) or InG(b) ⊂ InG(a). We say that a graph G has the Immediacy Property
if for all a, b, c ∈ V (G), (a, b), (b, c) ∈ A(G) implies that (a, c) ∈ A(G).

▶ Definition 2 ([14]). We set ImSn = {G ∈ Gn | G has the Immediacy and Containment
properties }. The Iterated Immediate Snapshot message adversary for n+ 1 processes is the
message adversary IISn = ImSωn .

The Iterated Immediate Snapshot model was first introduced as a (shared) memory
model and then has been shown to be equivalent to the above message adversary first as
tournaments and iterated tournaments [6, 1], then as this message adversary [14, 16]. See
also [26] for a survey of the reductions involved in these layered models.



Y. Coutouly and E. Godard 16:5

2.3 Execution of a Distributed Algorithm
Given a message adversary M and a set of initial configurations I, we define what is an
execution of a given algorithm A subject to M with initialization I. An execution is
constituted of an initialization step, and a (possibly infinite) sequence of rounds of messages
exchanges and corresponding local state updates. When the initialization is clear from the
context, we will use scenario and execution interchangeably.

An execution of an algorithm A under scenario w ∈ M and initialization ι ∈ I is the
following. This execution is denoted ι.w. First, ι affects the initial state to all processes of Π.
Then the system progresses in rounds. A round is decomposed in 3 steps : sending, receiving,
updating the local state. At round r ∈ N, messages are sent by the processes using the
SendAll() primitive. The fact that the corresponding receive actions, using the Receive()
primitive, will be successful depends on G = w(r), G is called the instant graph at round r.

Let p, q ∈ Π. The message sent by p is received by q on the condition that the arc
(p, q) ∈ A(G). Then, all processes update their state according to the received values and A.
Note that it is assumed that p always receives its own value, that is (p, p) ∈ A(G) for all p
and G. However, in examples, this might be implicit for clarity and brevity.

Let w ∈ M, ι ∈ I. Given u ∈ Pref(w), we denote by sp(ι.u) the state of process p at
the len(u)-th round of the algorithm A under scenario w with initialization ι. This means
that sp(ι.ε) = ι(p) represents the initial state of p in ι, where ε denotes the empty word.

3 Task Definition

We start by restating some standard definitions of combinatorial topology.

▶ Definition 3 (Abstract simplicial complex). [14, Def 3.2.1] Let V be a set, and C a collection
of finite subsets of V . C is an abstract simplicial complex on V if
1. ∀σ ∈ C, ∀τ ⊆ σ, we have τ ∈ C;
2. ∀v ∈ V, {v} ∈ C.

An element of V is a vertex of C and V (C) denotes the set of vertices of C. A set σ ∈ C
is a simplex where dim σ is the number of vertices in σ minus one. We say that σ is a facet
if there is no other simplex that contains σ. If C1 ⊆ C2 then we say that C1 is a subcomplex
of C2, a complex is pure if all facets have the same dimension. The pair (C1, χC1) is a
chromatic complex if C1 is a complex and the function χC1 : V (C1)→ Π has the property
that ∀σ ∈ C1, ∀v1, v2 ∈ V (σ), v1 ̸= v2 ⇔ χC1(v1) ̸= χC1(v2).

The border of a simplex σ, is ∂(σ) = {τ ∈ σ|dim(τ) = dim(σ) − 1}. A ℓ-skeleton of
C1 is the collection of the simplices of dimension equal or less than ℓ, we write skelℓ(C1).
The star of a simplex σ ∈ C1 is St(σ,C1) =

⋃
τ∈C1,σ⊆τ τ , the extended star is St∗(σ,C1) =⋃

v∈σ St(v, C1).

▶ Definition 4 (Simplical map). [14, Def 3.2.2] Let C1, C2 be two simplicial complexes, a
simplicial map is a map Φ : V (C1)→ V (C2) such that ∀σ ∈ C1,Φ(σ) ∈ C2.

▶ Definition 5 (Carrier map). [14, Def 3.4.1] Let C1, C2 be two simplicial complexes, a carrier
map Φ : C1 → 2C2 is a mapping such that ∀σ, τ ∈ C1, and σ ⊆ τ imply Φ(σ) ⊆ Φ(τ).

In addition, a carrier map Φ : C1 → 2C2 is rigid when ∀σ ∈ C1, dim(σ) = d,Φ(σ) is
a pure complex of dimension d. A simplicial map φ : C1 → C2 is carried by Φ if ∀σ ∈
C1, φ(σ) ∈ Φ(σ). A carrier map is chromatic if it is rigid and ∀σ ∈ C1, χC1(σ) = χC2(φ(σ))
where χC2(φ(σ)) = {χC2(v)|v ∈ V (φ(σ))}. We say that Vin is the domain of input values
and Vout the domain of output values.

DISC 2024



16:6 A Simple Computability Theorem for Colorless Tasks

▶ Definition 6 (Colorless Task). [14, Def 4.2.1] A colorless task is a triple (I,O,∆) where :
I is the input complex, where each simplex is a subset of Vin,
O is the output complex, where each simplex is a subset of Vout,
∆ : I → 2O is a carrier map that encodes the specification of the task.

In [14, Chap 4.1], the notion of colorless protocol is presented both operationally and
combinatorially. We will give the corresponding geometric version in Algorithm 1.

▶ Definition 7. An algorithm A solves a colorless task (I,O,∆) for the message adversary
M if for any ι ∈ I, any scenario w ∈M, there exist u a prefix of w such that the state of
the system {s0(ι.u), . . . , sn(ι.u)} = out satisfies the specification of the task, ie out ∈ ∆(ι).

4 Geometric Definition of Simplicial Complexes

4.1 Standard Definitions
In this paper, we actually handle simplicial complexes as geometric complexes, so we present
the standard definitions of simplicial complexes in the geometric setting [24]. We fix N ∈ N.
We note B(x, r) = {y ∈ X|d(x, y) ≤ r} with x ∈ RN , r ∈ R and d(x, y) the Euclidean
distance on RN .

▶ Definition 8 (Geometric Simplex). Let n ∈ N. A finite set σ = {x0, . . . , xn} ⊂ RN is called
a simplex of dimension n if the vectors {x1 − x0, . . . , xn − x0} are linearly independent.

We denote by |σ| the convex hull of σ and Int(σ) is the interior of |σ|. We denote Sn
“the” simplex of dimension n : through this paper we assume a fixed embedding in RN for
Sn = (x∗

0, . . . , x
∗
n). We will also assume that its diameter diam(Sn) is 1. We usually associate

χ such that χ(x∗
i ) = i, to get the chromatic simplex Sn.

▶ Definition 9 ([24]). A simplicial complex is a collection C of simplices such that :
(a) If σ ∈ C and σ′ ⊂ σ, then σ′ ∈ C,
(b) If σ, τ ∈ C and |σ| ∩ |τ | ̸= ∅ then there exists σ′ ∈ C such that

|σ| ∩ |τ | = |σ′|,
σ′ ⊂ σ, σ′ ⊂ τ.

We denote ≀C≀ = ⋃
S∈C
|S|, this is the geometrization of C. Note that the geometrization

here should not be confused with the standard geometric realization. They are the same at
the set level but not at the topological level. A discussion in Appendix A providesx more
information on this subject. Since the difference only appears for infinite complexes, we will
still denote |σ| the convex hull of a simplex σ, instead of ≀σ≀.

We use the same terminology as for abstract complexes, with some additionals concepts.
Let A and B be simplicial complexes. A map f : V (A) → V (B) defines a simplicial map
if it preserves the simplices, i.e. for each simplex σ of A, the image f(σ) is a simplex
of B. By linear combination of the barycentric coordinates, f extends to the barycentric
map ≀f ≀ : ≀A≀ → ≀B≀. This can be done by taking any simplex σ = {x0, . . . , xn} of A.
Since any y ∈ |σ| is obtained as y =

∑n
i=0 ti.xi with ti ∈ [0, 1] and

∑n
i=0 ti = 1, we set

≀f ≀(y) =
∑n
i=0 ti.f(xi).

For any geometric chromatic simplex σ = (v0, v1, . . . , vn) (ie with a fixed order on the
set of vertices), we have an unique affine map called the characteristic map φσ : |Sn| → |σ|
taking the ith vertex of Sn to vi. This is indeed the barycentric map of the simplicial map
taking the ith vertex of Sn to vi.



Y. Coutouly and E. Godard 16:7

Let X ⊂ RN , a function f : X → |C2| respects a carrier map ∆ : C1 → 2C2 with X ⊆ ≀C1≀,
if ∀σ ∈ C1, f(|σ| ∩X) ⊆ ∆(σ). The open star of σ ∈ C1 : St◦(σ,C1) =

⋃
τ∈C1,σ⊆τ Int(τ).

▶ Definition 10 (Subdivision). [14, Def 3.6.1] Let C1, C2 be two geometric simplicial complexes.
We say that C2 is a subdivision of C1 if : ≀C1≀ = ≀C2≀, and each simplex of C1 is the union
of finitely many simplices of C2.

4.2 Geometric Encoding of Iterated Immediate Snapshots
Configurations

Here we present the mapping geo that links points of RN and executions of the Iterated
Immediate Snapshot model. Since this has been introduced in [8], this is only sketched here.
The reader can refer to Appendix B for all the technical details in the setting of this paper.

There are two equivalent ways to define geo. It can be seen as the limit value of running
a specific algorithm, called the Chromatic Average algorithm. Or, for a given execution w, it
can be seen as the limit of iterating the Standard Chromatic Subdivision along the simplices
corresponding to the successive instant graphs w(r). The only difference with [8], is that we
have to adapt to the setting of colorless algorithms by introducing the Reduced Chromatic
Average algorithm. But the ideas and proof techniques are in essence the same as [8].

Algorithm 1 The reduced version of Chromatic Average Algorithm for process i with
initial value x∗

i ∈ RN .

1 x← x∗
i ;

2 Loop forever
3 SendAll(x);
4 V ←Receive() // set of all received values including its own;
5 d← sizeof(V )− 1 // the process received d values, excluding its own ;
6 x = 1

2d+1x+
∑
y∈V \{x}

2
2d+1y;

7 EndLoop

We consider Algorithm 1, which is an adaptation of the Chromatic Average algorithm
of [8]. As proved in [8] and in Appendix B, it is possible to show that the values x of all
processes converge to the same limit geo(w) for any execution w ∈ IISn. It is related to the
known fact that the standard chromatic subdivision is mesh-shrinking [14].

4.3 A Topology for IISn

We present the geometrization topology on the set of execution of IIS as introduced in [8].
It is the topology induced by geo−1 from the standard topology in RN .

The geometrization topology is defined on IISn by considering as open sets the sets
geo−1(Ω) where Ω is an open set of RN . A collection of sets can define a topology when any
union of sets of the collection is in the collection, and when any finite intersection of sets of
the collection is in the collection. This is straightforward for a collection of inverse images of
a collection that satisfies these properties. Note this also makes geo continuous by definition.

By considering the definition of geo from the iterations of the Standard Chromatic
subdivision, we also have geo(IISn) = |Sn|. Now, we want to associate a geometric point
to any execution w ∈ IISn with a specific initial configuration ι. Hence, we extend the
construction on the simplex Sn to any simplicial complex I in the following way: ∀ι ∈ I, ∀w ∈
M, geo(ι, w) = φι(geo(w)), where φι is the characteristic map of ι, mapping Sdim(ι) to ι.
We define geo(I ×M) =

⋃
w∈M,σ∈I φσ(geo(w)). This construction into the set of execution

allow us to associate to any message adversary M⊆ IIS a topological space in RN .

DISC 2024



16:8 A Simple Computability Theorem for Colorless Tasks

5 A Generalisation of the Asynchronous Computability Theorem

The main result of this paper is an extension to any submodel of IIS of the result [14, Thm.
4.3.1] about computability of colorless tasks in IIS. Our proof follows the same line as [14]
with adaptation of some key tools. We first express the main result.

▶ Theorem 11 (Colorless-GACT). Let (I,O,∆) be a colorless task. This is solvable on
M⊆ IISn if and only if there is a continuous function f : geo(skelnI ×M)→ |O| carried
by ∆.

The rest of this section is a long proof of the main result. We prove this equivalence in
four inductive steps starting from the right hand side of the above theorem. We only give
here the outline of the proof, that is the properties we want to prove equivalent. All proper
definitions stated here will be introduced along the way :
1. A continuous function f : geo(I×M)→ |O| satisfies an η-star condition for some function

η.
2. From this η-star condition, we construct a IIS-terminating subdivision and a semi-

simplicial approximation of f
3. This semi-simplicial approximation of f yield an algorithm solving the task (I,O,∆)
4. An algorithmic solution forM implies the existence of a continuous map geo(I×M)→ |O|

For the rest of this section, n is fixed, we note I instead of skelnI. We also fix X ⊆ RN .
We will set X = geo(I ×M) in the end. Let O be a finite simplicial complex.

5.1 From continuous function to η-star condition

We adapt the notion of star-condition.

▶ Definition 12 (Star Condition for η). Let η : X −→]0,+∞[ and let f : X → |O|, f satisfies
the star condition for η if ∀x ∈ X, ∃v ∈ V (O), f(B(x, η(x)) ∩X) ⊆ St◦(v).

We also say f satisfies the η−star condition when we have a given η for the star condition
above. See Figure 3 in Appendix D for an illustration.

▶ Proposition 13. Let f : X → |O| a continuous function. Then there is η : X −→]0,+∞[
such that f satisfies the η-star condition.

Proof. We recall the standard definition of continuity : ∀x ∈ X, ∀ϵ > 0, ∃δϵ(x) > 0 such
that ∀x0, x0 ∈ B(x, δϵ(x)) ⇒ f(x0) ∈ B(f(x), ϵ). Let y ∈ |O| and σy ∈ O the simplex of
minimal dimension such that y ∈ |σy|. Let ϵ(y) = d(y, |O| \St◦(σy)). We know that ϵ(y) ̸= 0
because y ∈ St◦(σy), which is an open space. From there, the η-star condition is obtained
with η(x) = δϵ(f(x))(x) since f(B(x, η(x)) ∩X) ⊆ B(f(x), ϵ(f(x))) ⊆ St◦(σf(x)). ◀

5.2 From η-star condition to semi-simplicial approximation

We say that a simplicial complex is compatible with a subspace X if it covers X entirely
with every simplex needed for such a cover.

▶ Definition 14 (Complex compatible with a subspace). Let X ⊆ RN and C a simplicial
complex. We say that C is compatible with X if X ⊆ ≀C≀, and for all facet σ of C, |σ|∩X ̸= ∅.



Y. Coutouly and E. Godard 16:9

We use the notion of terminating subdivisions, that were introduced in [10, 3]. Here we
present a more complete and explicit definition, this is needed since we are in the geometric
context. The intuition behind this construction is that we want to associate a complex with
the set of executions of a given algorithm on M. As the termination of this algorithm could
be not uniform (even with a fixed initial configuration), the associated complex may be of
infinite size. Since a subdivision of a simplex cannot be infinite, we have to define an adapted
construction from the iterated application of the Standard Chromatic subdivision.

Given a complex C, let C(T ) =
⋃
σ∈C,V (σ)⊆T σ with T ⊆ V (C) to represent the subcom-

plex of C formed by the vertices in T . Moreover, JOIN(C1, C2) = {|σ ∪ τ ||σ ∈ C1, τ ∈ C2}
is the usual join of simplices [19]. We define EChr as the following operator, given C and
T ⊆ V (C). Intuitively, the vertex marked as terminated are in T . We note U = V (C) \ T .
The operator EChr subdivides with the standard chromatic subdivision the facets that are
fully in U , does not modify the ones that are fully in T and subdivides in an adequate way
the facets in between.

EChr(T,C) = (
⋃
σ∈C

Chr σ(U)) ∪ (
⋃
σ∈C

JOIN(Chr σ(U), σ(T )) (1)

▶ Definition 15 (IIS-Terminating subdivision). Let I a simplicial complex. The sequences
C0, C1, . . . (collection of simplices) and T0, T1, . . . (collection of increasing set of vertices)
form a IIS-terminating subdivision of I, if we have for all i ∈ N :
1. C0 = I, T0 = ∅
2. Ci+1 ⊆ EChr(Ti, Ci)
3. Ti ⊆ V (Ci)
We say that

⋃
Ci(Ti) is an IIS-terminating subdivision complex. This is actually a simplicial

complex, as proved in Appendix C.

A simplicial approximation is a standard topological construct that is the basis of the proof
technique of the similar computability theorem in [14, Th 4.3.1]. A simplicial approximation
is a simplicial function that approximates (in some sense) a function where the domain and
the co-domain are simplicial complexes. We have to adapt this definition since here we only
have that the co-domain as a simplicial complex.

▶ Definition 16 (semi-simplicial approximation). Let f : X → |O| a function. The function
ψ : V (C)→ V (O) is a semi-simplicial approximation for f if C a IIS-terminating subdivision
compatible with X, and ψ is a simplicial map such that ∀σ ∈ C, f(St◦(σ) ∩X) ⊆ St◦(ψ(σ)).

In order to construct an IIS-terminating subdivision of I compatible with X, we need
a predicate to “set in a terminating state”. Let η : X −→]0,+∞[, C a simplicial complex
and v ∈ V (C), we define Pη(v, C) = {∃x ∈ X, | |St(v, C)| ⊆ B(x, η(x))}. Let C0 = I the
simplicial complex to subdivide, U0 = V (C0), T0 = ∅. For all i ∈ N we set :
1. Di+1 = EChr(Ti, Ci)
2. Ci+1 = {σ ∈ Di+1| |σ| ∩X ̸= ∅ and σ is a facet of Di+1}
3. Ti+1 = {v ∈ V (Ci+1)|Pη(v, Ci+1)}

The final complex is Cη =
⋃
i∈N Ci(Ti). In Figure 1 the vertices marked in red are the

ones in Ti. On the left, the subdivided simplex is the one without vertices in red. On the
right, some simplices are added with a JOIN operation. Then the simplices in blue and in
dotted lines are the ones that will be removed at step 2, since they do not intersect X.

▶ Proposition 17. Cη is a simplicial complex.

Proof. We have Di is a simplicial complex. In Ci, removing facets of Di still yields a
simplicial complex. ◀

DISC 2024



16:10 A Simple Computability Theorem for Colorless Tasks

X X

Figure 1 Construction of the IIS-Terminating Subdivision compatible with a space X.

▶ Proposition 18. The subdivision Cη is compatible with X.

Proof. For the inclusion property, ∀x ∈ X, since x ∈ |C0|, ∀r ∈ N, ∃σr ∈ Cr such that
x ∈ |σr|. The subdivision operator Chr is mesh-shrinking, this means that ∃r0 ∈ N, ∀v ∈
V (σr0),mesh(St(v, Cr0)) < η(x). Then St(v, Cr0) ⊆ B(x, η(x)), which means that all vertex
of σr0 are in Tr0 hence σr0 is in Cη so x ∈ ≀Cη≀ and X ⊆ ≀Cη≀. Since we only remove facet
σ ∈ Cη such that |σ|∩X = ∅ in the second step of the construction we have the compatibility
of Cη with X ◀

We can now construct a semi-simplicial approximation with Cη.

▶ Proposition 19. Let η : X −→]0,+∞[ and let f : X → |O| a function that satisfies the
η-star condition, then f has a semi-simplicial approximation ψη : V (Cη)→ V (O).

Proof. Let Cη be the IIS-terminating subdivision of I defined above from η. Let σ a simplex
of Cη, v a vertex of V (σ), Since Pη(v, Cη) is satisfied, ∃xv ∈ X such that |St(v, Cη)| ⊆
B(xv, η(x)). By the η-star property we have that ∃yv ∈ V (O), f(B(xv, η(xv)) ∩ X) ⊆
St◦(yv,O). Let ψη(v) = yv. Let’s prove that ψη is indeed a semi-simplicial approximation.

We know that ∀σ ∈ Cη, ∀v ∈ V (σ),Pη(v, Cη) is true, then we have that
:

⋂
v∈V (σ) |St(v, Cη)| ⊆

⋂
v∈V (σ) B(xv, η(xv)). The η-star condition gives that⋂

v∈V (σ) f(B(xv, η(xv))) ⊆ St◦(yv,O). By noticing that St◦(v, Cη) ⊆ |St(v, Cη)|, we can
combine theses inclusions and obtain that :

⋂
v∈V (σ) f(St◦(v, Cη)) ⊆

⋂
v∈V (σ) St

◦(yv,O)
since

⋂
v∈V (σ) St(v) = St(σ).

This can be rewritten as : f(St◦(σ,Cη)) ⊆
⋂
v∈V (σ) St

◦(ψη(v),O), which is the property of
the definition 16. Furthermore, because Cη is compatible with X we have that ∃x ∈ X,x ∈ |σ|.
Since |σ| ⊆ |St(σ)| which implies f(x) ∈ |ψη(σ)| then

⋂
v∈V (σ) St

◦(ψη(v),O) is non-empty
therefore ψη(σ) is a simplex, the function ψη is simplicial. ◀

We need to prove that the semi-simplicial approximation ψη : V (Cη) → V (O) of f is
carried by the carrier map of f .

▶ Lemma 20 (semi-simplicial approximation and carrier map). Let η : X −→]0,+∞[ and
let f : X → |O| a continuous function that respects ∆ : I → 2O a carrier map. Then the
semi-simplicial approximation ψη : Cη → O of f respects also ∆.

Proof. Let σ ∈ Cη, with σ = {v0, v1 . . . vk}, ψη(σ) = {y0, y1, . . . yk} and {x0, x1, . . . xk} a
points of X such that |St(vi)| ⊆ B(xi, η(xi)). Also, we have that f(|σ|) ⊆ |∆(σ)| because f
respects ∆ and by construction of Cη, f(B(xi, η(xi))) ⊆ St◦(yi). By way of contradiction,
assume that ψη(vi) /∈ ∆(σ), by the Pη property we have that xi covers |St(vi)|. When we
apply the function f , we obtain that f(|σ|) ⊆ f(B(xi, η(xi)) ∩X) ⊆ St◦(ψη(vi)). We can
remark that ψη(vi) /∈ ∆(σ) ⇒ St◦(ψη(vi)) ⊈ ∆(σ). We can conclude that f(σ) ⊈ ∆(σ),
which contradicts our hypothesis. ◀



Y. Coutouly and E. Godard 16:11

5.3 From semi-simplicial approximation to an algorithm
Now we show that a semi-simplicial approximation can be used to define an algorithm.

▶ Proposition 21. Let f : geo(I ×M)→ |O| a continuous function which respects a carrier
∆ then the task (I,O,∆) is solvable by an algorithm in M.

We define the following Algorithm 2 from the Chromatic Averaging Algorithm and using
Cη and ψη, xp is the initial position of p in the complex I.

Algorithm 2 Aψη : algorithm derived from ψη : Cη → O.

1 x← xp;
2 i← 0;
3 while x /∈ Ti do
4 i← i+ 1;
5 SendAll(x);
6 V ←Receive() // set of all received values including its own;
7 d← sizeof(V )− 1 // the process received d values, excluding its own ;
8 x = 1

2d+1x+
∑
y∈V \{x}

2
2d+1y;

9 end
10 return ψη(x);

▶ Proposition 22. The Algorithm Aψη terminates for all executions in I ×M.

Proof. We set X = geo(I×M) and the corresponding Cη is compatible with X which implies
that X ⊆ ≀Cη≀. Then ∀w ∈ I ×M, geo(w) ∈ X. We can deduce that ∃σ ∈ Cη, geo(w) ∈ |σ|.
By construction of Cη, ∃i ∈ N such that x ∈ Ti, hence every processes terminate. ◀

▶ Proposition 23. Algorithm Aψη respects the specification described by ∆

Proof. The decision is given by ψη, a semi-simplicial approximation of f that respects ∆. ◀

5.4 From an algorithm to a continuous function
We conclude this proof by constructing a continuous function from a given algorithm. We
will need to normalize this algorithm first. In the colorless setting, a normalized algorithm is
an algorithm where when a process sees any decision value, it decides instantly one of these
values. If an algorithm is correct, its normalized version is also correct for this colorless task.

▶ Proposition 24. Let A a normalized algorithm for solving the task (I,O,∆) in the submodel
M then there exists a continuous function f : geo(skeln(I)×M)→ |O| that respects ∆.

Proof. An algorithm solving a task (I,O,∆) provides a decision function φA : Y → V (O),
where Y ⊂ |skeln(I| (Y is the set of vertices of Chrr(I), for all r). We use this decision
function φA to construct a IIS-terminating subdivision. Let C0, C1, C2, . . . be a sequence of
complexes and T0, T1, T2, . . . a sequence of vertices of these complexes. We fix T0 = ∅ and
C0 = I which immediately satisfies the condition 1). A vertex is added in Ti if the algorithm
decide on the couple (Process, V iew) at the round i. Since every decision of process are
permanent we have the properties 3) and 4) of IIS-terminating subdivision. At the round
i of the algorithm we construct the complex Ci using the EChr operator, this operation
corresponds to one round of IIS while allowing non-uniform termination and compatibility

DISC 2024



16:12 A Simple Computability Theorem for Colorless Tasks

with M. If we take CA =
⋃
i∈N Ci(Ti), this correspond to the set of processes that will

terminate in our algorithm and yields a IIS-terminating subdivision. Furthermore, CA is
compatible with X, because φA is a decision function on every execution of I ×M then
we have that X ⊆ CA. Also, if σ ∈ CA, |σ| ∩X = ∅ then this means that we decide on a
execution that is not in M, which is outside of our algorithm scope. Hence CA is compatible
with X. Since every vertex in V (CA) correspond to an execution in I ×M, from φA we
obtain a simplicial function φ : V (CA)→ V (O) that respect ∆.

Then we have that φ(St(v, CA)) ⊆ St(φ(v),O). We can now classically extend the
simplicial function φ to a function φC : ≀CA≀→ |O| by linear extension on the barycentric
coordinates. This extension guaranties that φC respects ∆ : φC(|σ|) ⊆ |∆(σ)| since
φ(σ) ∈ ∆(σ). We need to prove the continuity1 of φC : ∀x ∈ ≀CA≀, ∃σ ∈ CA, x ∈ |σ|, ∃r ∈
N, V (σ) ⊆ Tr and V (σ) ⊈ Tr−1. Then if x ∈ Int(σ) the continuity can be obtained directly
because the barycentric extension is always continuous on a given simplex. If x ∈ ∂(σ) then
because the algorithm is normalized we have that ∀v ∈ V (σ), St(v, Cr+1(Tr+1)) = St(v, Cr+1).
Since this a finite simplicial complex we obtain the continuity with a barycentric extension. ◀

6 Application to Set-Agreement

We give here a direct, and therefore simpler than [8], proof for general set-agreement
computability. For all n ∈ N, the set-agreement problem is defined by the following properties
[23]. Given initial init values in [0, n], each process outputs a value such that

Agreement the size of the set of output values is at most n,
Validity the output values are initial values of some processes,
Termination All processes terminates.

▶ Theorem 25 ([8]). It is possible to solve Set-Agreement on M⊂ IISn iff geo(M) ̸= |Sn|.

Proof. We denote by (Isa,Osa,∆sa) the colorless task for set-agreement. We have skelnIsa =
Sn. For the necessary condition, we first get from Thm. 11 that there exists a continuous
function from geo(Sn ×M), i.e. a continuous function from geo(M) to |Osa|. Osa is ∂Sn,
the boundary of Sn. The No Retraction theorem [13, Cor. 2.15] states that there is no
continuous function from |Sn| to |∂Sn|. This means that geo(M) cannot be equal to |Sn|.

In the reverse direction, if geo(M) ⊊ |Sn|, we note x0 a point in |§n| that is not in
geo(M). We can construct in a standard way a continuous function from geo(M) to |∂Sn|
by using x0 as a base point to “project” points x of geo(M) onto |∂Sn| : the image of x
is the intersection of the half-line x0x with |∂Sn| (in the special case where x0 ∈ |∂Sn|, we
project on the complex obtained by removing from ∂Sn the simplexes that contains x0) . ◀

This characterization is quite expected, it is known the No-Retraction theorem is the
topological obstruction for solving set-agreement in models such as the Iterated Immediate
Snapshot model. We underline that this proof is way simpler that the proof of Coutouly and
Godard in [8], that used Sperner and König lemmas in very involved ways. We underline that
having at least one missing point from |Sn|, ie a hole in geo(Isa ×M), does not mean that
M is Gωn minus one execution. Since geo is not injective, many executions could be removed,
that is all executions that maps to some x0. These pre-images are called geo−classes, they
are fully described in [8]. Some geo−classes are of infinite size when n ≥ 2.

1 we emphasize that the underlying topology here is not that of standard geometric realizations of
complexes, therefore being simplicial does not imply the linear extension to be continuous in the sense
we have to prove here.



Y. Coutouly and E. Godard 16:13

7 Application to Adversaries Submodels

An adversary, in the sense of [14, Chap. 5.4], is a message adversary where the executions
are exactly defined by the set of possible simultaneous failures.

Formally, we say that a process p is influencing a time t a process q, if there is a sequence
of messages starting at time t from p that eventually reaches q. Finally, given w ∈ IISn, we
denote by Q(w) the set of processes that are influencing infinitely many times in w all the
other processes. In IISn, this set is always non empty. In the message adversary setting,
the set of “failed” processes is the set Π \Q(w). An adversary A is defined by a set F (A)
of subsets of Π that is inclusion-closed. The set of corresponding executions is denoted as
MA = {w ∈ IISn|∃P ∈ F (A), Q(w) = Π \ P}. A well investigated case is the adversary Rt,
given t ≤ n, where F (Rt) is the set of subsets of size at most t. It is the t−resilient layered
immediate snapshot protocol submodel.

As in [14, Chap. 5.4], we define a core as a minimal set of processes that will not all fail
in any execution. For the t−resilient layered snapshot protocol model, a core is any subset
of size t + 1. Even if processes are independent of the set of input values in the colorless
setting, we will be able to assign a set of input value to any core C. Hence, we choose a core
C = {p0, . . . pc} of size c+ 1 and we will construct an application π∗

c : I ×MA → |skelcI|.
Let G a graph of ImSn, given a set of vertices C, we denote by G[C] the subgraph

induced by C, that is V (G[C]) = C and E(G[C]) = E(G)∩ (C×C). We extend this notation
to executions, ∀w ∈ IISn,, with w = G1, G2, . . . , we set w[C] = G1[C], G2[C], . . . .

The function π∗
c is constructed by applying this reduction for a chosen Cw to every

execution of MA. We fix an order on the processes. We set Cw to be the set Π \ Q(w)
together with the q lowest processes of Q(w), where q = c+ 1− |Π \Q(w)|. The set Cw is
always of size c+ 1 and is therefore not in F (A). Finally, we set π∗(w) = geo(w[Cw]).

▶ Proposition 26. The function π∗
c : I ×MA → |skelcI| has the following properties :

1. it is continuous and surjective,
2. ∀w,w′ ∈MA, geo(w) = geo(w′)⇒ π∗

c (w) = π∗
c (w′)

Proof. The property (1) is directly obtained by construction. For the second property, first
we remark that geo(w) = geo(w′) implies Q(w) = Q(w′). Indeed, consider p ∈ Π, such that
p ∈ Q(w). The process p cannot distinguish w from w′ otherwise all other processes will
eventually distinguish the executions. It means that the set of processes that influence p
infinitely many times is the same in both executions. By definition, this set includes Q(w′) in
the execution w′. Since p is influencing infinitely many times all processes in w, and influence
is transitive, we have Q(w′) ⊂ Q(w). Symmetrically, we get Q(w) ⊂ Q(w′).

Therefore Cw = Cw′ . We conclude by a simple case by case analysis from the different
cases where geo(w) = geo(w′) as given in [8, Th. 25]. ◀

So we can also define a function π : geo(I ×MA)→ |skelcI| by setting π(x) = π∗
c (w),

where w is any element of geo−1(x). We will now show that a restriction of π actually enjoys
a very interesting topological property. First, we give a standard definition.

▶ Definition 27 (Fiber Bundle [13]). Let E,B, F topological spaces. (E,B, π, F ) is a fiber
bundle with base B and fiber F if π : E → B is a continuous surjection such that for every
x ∈ B, there is an open neighborhood U ⊆ B of x such that there is a homeomorphism
φ : π−1(U)→ U × F , and U × F is the product space in such a way that π agrees with the
projection proj onto the first factor, i.e. π|π−1(U) = φ ◦ proj.

DISC 2024



16:14 A Simple Computability Theorem for Colorless Tasks

One example of a classic example of fiber bundle is in Appendix E. We say that a run
w ∈MA is special if w has a suffix w′ (after step j) where all the instant graphs have their
sources in Q(w) and for all i ≥ j G(i) is such that the arcs between Q(w) ∩ Cw and its
complement Q(w) \ Cw are all from Q(w) ∩ Cw when i is even, and to Q(w) ∩ Cw when i is
odd. We denote SpeA the set of special runs of MA.

▶ Proposition 28. The function π : E −→ skelc(I) is a fiber bundle with E = geo(SpeA),
B = skelc(I) and F = Sn−c−1.

Proof. For any point x ∈ |skelcI|, there is a special run w in MA such that geo(w) = x.
Indeed, given C a core of size c + 1 with c + 1 different initial values, it is possible to
complement the execution w∗ ∈ IISC such that π(geo(w∗)) = x in a special way : after the
step j∗ where only processes in Q(w∗) influence all others in C, in instant graph Gi, i ≥ j∗,
processes from Π \ C have an arc to processes in C \ Q(w∗) and arcs between Π \ C and
Q(w∗) alternate direction if i is even or odd. The arcs between processes of Π \ C can be
any pattern from ImSΠ\C . This means that the restriction of π on E is surjective.

Now we focus on the neighborhood condition. As previously, we consider x ∈ |skelcI|,
and the corresponding w∗ and j∗. We set U to be the neighbourhood of x where executions
share the prefix of w∗ up to step j∗. In the previous section, we have said that we can
define w by complementing w∗ choosing any pattern in ImSΠ\C . We remark that there is
actually no other way to complement w∗ to get a special execution. So the fiber π−1(x) is
homeomorphic to geo(IISΠ\C), that is exactly Sn−c−1. ◀

Concluding, from the main theorem, a colorless task (I,O,∆) is solvable on MA if and
only if there exists a continuous function f : geo(I ×MA) −→ |O| carried by ∆. We will
show that this is equivalent to the existence of a continuous function g : |skelcI| −→ |O|
carried by ∆ so we can get an alternative and fully topological proof of the following.

▶ Theorem 29 ([14, Th.5.4.3]). A colorless task (I,O,∆) is solvable onMA for an adversary
A with a core of size c if and only if there exists a continuous function g : |skelcI| −→ |O|
carried by ∆.

Proof. We show that the existence of f is equivalent to the existence of g. We assume c < n

otherwise the statement are equal and g is f . We start with the easy direction, assuming there
exists g a continuous function g : |skelcI| −→ |O| carried by ∆. For a given facet S of skelnI,
since c < n, there exists x1 ∈ |S| such that x1 /∈ geo(S×MA), it is therefore possible to have
a retract from |S| \ {x1} onto |Skeln−1(S)|. We can repeat this until reaching |Skelc(S)|.
We consider µ the composition of this sequence of retracts of |Skeln(I)| \ {x1, x2, ...} onto
|skelcS|. We set f = g ◦ µ. Such f is continuous by composition. Since this is a retract, µ is
the identity on |skelcS| and f is carried by ∆.

Now, we assume that we have a continuous function f : geo(I ×MA) −→ |O| carried
by ∆. We would like to define g = f ◦ s where s would be a kind of right inverse for π as
defined above. In order to show that, we will use the fact that π is a fiber bundle for E and
B = |skelcI|. In the context of fiber bundles, what we are looking for is called a (cross)
section s, that is, a continuous function s : B −→ E such that π ◦ s = IdB . Cross-sections do
not always exist, however since the fiber F is Sd, we get that there is indeed a section s, see
e.g. [7, Cor. 7.13], as a corollary of Whitehead Obstruction theorem. Since f is continuous, g
is also continuous. By construction of π, g is also carried by ∆ on skelcI since f also is. ◀

We have this immediate corollary for the t−resilient layered snapshot protocol model Rt.

▶ Corollary 30. Let t ≤ n. A colorless task (I,O,∆) is solvable on Rt if and only if there
exists a continuous function g : |skeltI| −→ |O| carried by ∆.



Y. Coutouly and E. Godard 16:15

8 Conclusion

In this work, we have presented a simple characterization of computability of colorless tasks
for any submodels of the IIS model. We believe that this theorem will have many applications,
from simpler proof of known results to new characterisation of some colorless tasks. Note also
that it is possible to extend the presented technique to submodels of models corresponding
to mesh-shrinking subdivisions (like the barycentric subdivision), we underline it would
change the definition of geo, therefore this would not mean that a colorless task would be
solvable for the same submodels. Together with the kind of classical topology approaches
that we have shown to be effective in the two applications suggest that this work opens many
perpespective to investigate computability in more general distributed models.

Since we are actually using the geometrization topology in this paper, we complement
the remarks from [8] by some important points about this topology. In a topological space,
a neighbourhood for point x is an open set containing x. The set of neighbourhoods
of x is denoted Nx. A topological space is said to satisfy the T0 separation axiom if
x ̸= y =⇒ Nx ̸= Ny. When Nx = Ny, we say that x and y are not (topology) distinguishable.

Since the topology we are building upon for ≀IISn≀ is the one induced by the standard
space RN , which satisfies T0, via the geo−1 mapping, it is straightforward to see that non-
distinguishable sets are exactly the geo-equivalence classes that are not singletons, since any
neighbourhood of w in the geometrization topology will be a neighbourhood of w′, when
geo(w) = geo(w′). A description of theses geo-equivalence classes can be found in [8], and it is
shown that there always exists non-singleton classes. By construction, the topology on IISn
is therefore not T0. However, if we quotient this space by the classes of indistinguishability,
which is called the Kolmogorov quotient, we obtain a topological space homeomorphic to
|Sn|. So up to Kolmogorov quotient, the topology introduced here for investigating colorless
tasks on IISn can be considered classical.

We are also looking forward to address colored tasks by an extension of these results.
Since it is known that a statement like Thm. 11 is not strong enough for some non-coloured
task, there needs to have some additional conditions in the theorem statement. Another line
of research would be to characterize, in a topological way, the colored tasks that admit a
characterization à la Thm. 11, related to a better understanding of the relationship between
the set of executions seen as a topological space with the geometrization topology, which is
quite simple, and seen as a topological space with the general topology of [3].

References

1 Yehuda Afek and Eli Gafni. Asynchrony from Synchrony, pages 225–239. Number 7730 in
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013.

2 Dana Angluin. Local and global properties in networks of processors (extended abstract). In
Raymond E. Miller, Seymour Ginsburg, Walter A. Burkhard, and Richard J. Lipton, editors,
Proceedings of the 12th Annual ACM Symposium on Theory of Computing, April 28-30, 1980,
Los Angeles, California, USA, pages 82–93. ACM, 1980. doi:10.1145/800141.804655.

3 Hagit Attiya, Armando Castañeda, and Thomas Nowak. Topological characterization of task
solvability in general models of computation. In Rotem Oshman, editor, Proceedings of the
37th International Symposium on Distributed Computing (DISC’23), volume 281 of LIPICS.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. To appear. doi:10.4230/LIPICS.
DISC.2023.5.

4 E. Borowsky, E. Gafni, N. Lynch, and S. Rajsbaum. The BG distributed simulation algorithm.
Distributed Computing, 14(3):127–146, 2001. doi:10.1007/PL00008933.

DISC 2024

https://doi.org/10.1145/800141.804655
https://doi.org/10.4230/LIPICS.DISC.2023.5
https://doi.org/10.4230/LIPICS.DISC.2023.5
https://doi.org/10.1007/PL00008933


16:16 A Simple Computability Theorem for Colorless Tasks

5 Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for t-resilient asyn-
chronous computations. In STOC ’93: Proceedings of the twenty-fifth annual ACM sym-
posium on Theory of computing, pages 91–100, New York, NY, USA, 1993. ACM Press.
doi:10.1145/167088.167119.

6 Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned characterization of
wait-free computation (extended abstract). In Proceedings of the Sixteenth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’97, pages 189–198. ACM, 1997.
doi:10.1145/259380.259439.

7 Ralph L Cohen. Bundles, homotopy, and manifolds. Lecture notes – Standford University,
2023.

8 Yannis Coutouly and Emmanuel Godard. A topology by geometrization for sub-iterated
immediate snapshot message adversaries and applications to set-agreement. In Rotem Oshman,
editor, Proceedings of the 37th International Symposium on Distributed Computing (DISC’23),
volume 281 of LIPICS. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. To appear.
doi:10.4230/LIPICS.DISC.2023.15.

9 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

10 Eli Gafni, Petr Kuznetsov, and Ciprian Manolescu. A generalized asynchronous computability
theorem. In Magnús M. Halldórsson and Shlomi Dolev, editors, ACM Symposium on Principles
of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014, pages 222–231. ACM,
2014. doi:10.1145/2611462.2611477.

11 Emmanuel Godard and Eloi Perdereau. Back to the coordinated attack problem. Math. Struct.
Comput. Sci., 30(10):1089–1113, 2020. doi:10.1017/S0960129521000037.

12 Jim Gray. Notes on data base operating systems. In Operating Systems, An Advanced Course,
pages 393–481, London, UK, 1978. Springer-Verlag. doi:10.1007/3-540-08755-9_9.

13 Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
14 Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through

Combinatorial Topology. Morgan Kaufmann, 2013.
15 Maurice Herlihy and Sergio Rajsbaum. The topology of shared-memory adversaries. In

Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed
computing, PODC ’10, pages 105–113. Association for Computing Machinery, 2010. doi:
10.1145/1835698.1835724.

16 Maurice Herlihy, Sergio Rajsbaum, and Michel Raynal. Computability in distributed computing:
A tutorial. SIGACT News, 43(3):88–110, 2012. doi:10.1145/2421096.2421118.

17 Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for t-resilient
tasks. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego,
CA, USA, pages 111–120. ACM, 1993. doi:10.1145/167088.167125.

18 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.
ACM, 46(6):858–923, 1999. doi:10.1145/331524.331529.

19 Dmitry N. Kozlov. Combinatorial Algebraic Topology, volume 21 of Algorithms and computation
in mathematics. Springer, 2008. doi:10.1007/978-3-540-71962-5.

20 Dmitry N. Kozlov. Chromatic subdivision of a simplicial complex. Homology Homotopy Appl.,
14(2):197–209, 2012. URL: http://projecteuclid.org/euclid.hha/1355321488.

21 Petr Kuznetsov. Understanding non-uniform failure models. Bull. EATCS, 106:53–77, 2012.
URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/80.

22 Petr Kuznetsov, Thibault Rieutord, and Yuan He. An asynchronous computability theorem
for fair adversaries. In Calvin Newport and Idit Keidar, editors, Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom,
July 23-27, 2018, pages 387–396. ACM, 2018. URL: https://dl.acm.org/citation.cfm?id=
3212765.

https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/259380.259439
https://doi.org/10.4230/LIPICS.DISC.2023.15
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/2611462.2611477
https://doi.org/10.1017/S0960129521000037
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1145/1835698.1835724
https://doi.org/10.1145/1835698.1835724
https://doi.org/10.1145/2421096.2421118
https://doi.org/10.1145/167088.167125
https://doi.org/10.1145/331524.331529
https://doi.org/10.1007/978-3-540-71962-5
http://projecteuclid.org/euclid.hha/1355321488
http://eatcs.org/beatcs/index.php/beatcs/article/view/80
https://dl.acm.org/citation.cfm?id=3212765
https://dl.acm.org/citation.cfm?id=3212765


Y. Coutouly and E. Godard 16:17

23 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1996.

24 James R. Munkres. Elements Of Algebraic Topology. Addison Wesley Publishing Company,
1984.

25 J.E. Pin and D. Perrin. Infinite Words, volume 141 of Pure and Applied Mathematics. Elsevier,
2004.

26 Sergio Rajsbaum. Iterated shared memory models. In Alejandro López-Ortiz, editor, LATIN
2010: Theoretical Informatics, pages 407–416, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. doi:10.1007/978-3-642-12200-2_36.

27 Thibault Rieutord. Combinatorial characterization of asynchronous distributed computability.
(Caractérisation combinatoire de la calculabilité distribuée asynchrone). PhD thesis, University
of Paris-Saclay, France, 2018. URL: https://tel.archives-ouvertes.fr/tel-02938080.

28 M. Saks and F. Zaharoglou. "wait-free k-set agreement is impossible: The topology of public
knowledge. SIAM J. on Computing, 29:1449–1483, 2000. doi:10.1137/S0097539796307698.

A A Counter-Example about Geometric Realizations

We remind the reader that the geometrization of C, denoted ≀C≀, that is the union of the
convex hulls |σ| of the simplices σ of C, is endowed with the standard topology from RN .

This should not be confused with the geometric realization, that is endowed of what is
called a weak topology.

In this section, we provide an example of a simplicial complex whodse topology as a
geometric realization is different from the topology it has as geometrization, that is in the
ambient RN space. That means that there exists infinite complex for which the topological
spaces ≀C≀ and |C| are not necessarily homeomorphic. This is actually quite well known, see
e.g. [19]. This example can actually be translated exactly to the distributed executions that
exhibit an error from [10] in [11, Sect. 5.1].

The example is given with N = 1 but that can be generalized to any N . We consider
C = {0} ∪ {[ 1

r+1 ,
1
r ] | r ∈ N∗}.

We denote |C| the topological space of C defined as a geometric realization. The closed
sets of |C| are the sets F such that F ∩S is closed (in R) for all S ∈ C, see [24]. Therefore |C|
has two connected components. We have F =]0, 1] is closed in |C| since F∩[ 1

r+1 ,
1
r ] = [ 1

r+1 ,
1
r ],

hence is closed for all r. Moreover, F ∩ {0} = ∅ which is also closed in R. We also have
that {0} is closed in |C|, so C can be covered by two disjoint closed sets, it is therefore not
connected.

On the other end, at the set level, ≀C≀ is exactly [0, 1]. So within the standard ambient
topology of R, ≀C≀ is connected.

Since they do not have the same number of connected components, the two spaces ≀C≀
and |C| cannot be homeomorphic.

This type of problem can happend in many distributed situation, as in [11] :let M1 =
IIS \ {{◦↔•, ◦←•ω}, {◦→•, ◦←•ω}} andM2 = IIS \ {◦→•, ◦←•ω} to remark that only M1
can solve the binary consensus task.

B The Standard Chromatic Subdivision

Here we present the standard chromatic subdivision, [14] and [19], as a geometric complex.
We start with chromatic subdivisions.

DISC 2024

https://doi.org/10.1007/978-3-642-12200-2_36
https://tel.archives-ouvertes.fr/tel-02938080
https://doi.org/10.1137/S0097539796307698


16:18 A Simple Computability Theorem for Colorless Tasks

x•

x◦
x•=ζ{x•}(x•)

ζ{x◦,x•,x•}(x•)

ζ{x◦,x•}(x•) ζ{x◦,x•}(x◦)

(a) Encoding of the pair (process,view) to a point.

G

µG(S2)

(b) Association between an instant graph of ImS2
(top) and a simplex of Chr(S2) is illustrated.

Figure 2 Construction of Chr(S2) as a geometric encoding for IIS2.

▶ Definition 31 (Chromatic Subdivision). Given (S,P) a chromatic simplex, a chromatic
subdivision of S is a chromatic simplicial complex (C,PC) such that

C is a subdivision of S ( i.e. ≀C≀ = |S|),
∀x ∈ V (S),PC(x) = P(x).

Note that it is not necessary to assume V (S) ⊂ V (C) here, since the vertices of the
simplex S being extremal points, they are necessarily in V (C).

We start by defining some geometric transformations of simplices (here seen as sets of
points). The choice of the coefficients will be justified later.

▶ Definition 32. Consider a simplex V = (y0, . . . , yd) of size d+ 1 in RN . We define the
function ζV : V −→ RN by, for all i ∈ [0, d]

ζV (yi) = 1
2d+ 1yi +

∑
j ̸=i

2
2d+ 1yj

We now define directly in a geometric way the standard chromatic subdivision of simplex
(S,P), where S = (x0, x1, . . . , xn) and P(xi) = i.

The chromatic subdivision Chr(S) for the chromatic simplex S = (x0, . . . , xn) is a
simplicial complex defined by the set of vertices V (Chr(S)) = {ζV (xi) | i ∈ [0, n], V ⊂
V (S), xi ∈ V }.

From the previous definition, for each pair (i, V ), i ∈ [0, n] and V ⊂ V (S) with i ∈ V ,
there is an associated vertex x = ζV (xi) of Chr(S), and conversely each vertex has an
associated pair. The color of (i, V ) is i. The set V is called the view. We define Φ the
following presentation of a vertex x, Φ(x) = (P(x), Vx) where P(x) = i and Vx = V .

The simplices of Chr(S) are the set of d+ 1 points {ζV0(xi0), · · · , ζVd
(xid)} where

there exists a permutation π on [0, d] such that Vπ(0) ⊆ · · · ⊆ Vπ(d),
If ij ∈ P(Vℓ) then Vj ⊂ Vℓ.

In Fig. 2, we present the construction for Chr(S2). For convenience, we associate
◦, •, • to the processes 0, 1, 2 respectively. In Fig. 2a, we consider the triangle x◦, x•, x•
in R2, with x◦ = (0, 0), x• = (1, 0), x• = ( 1

2 ,
√

3
2 ). We have that ζ{x◦,x•}(x•) = ( 1

3 , 0),
ζ{x◦,x•}(x◦) = ( 2

3 , 0) and ζ{x◦,x•,x•}(x•) = ( 1
2 ,

√
3

10 ). The relation between instant graph G

(top) and simplex
{

( 2
3 , 0), (1, 0), ( 1

2 ,
√

3
10 )

}
(grey area in Fig. 2b) is detailed in the section 4.2.



Y. Coutouly and E. Godard 16:19

In the following, we will be interested in iterations of Chr(Sn,P). The last property of
the definition of chromatic subdivision means with we can drop the C index in the coloring
of complex C and use P to denote the coloring at all steps. From its special role, it is called
the process color and we sometimes drop P in Chr(S,P) using in the following Chr(S) for
all simplices S of iterations of Chr(Sn).

In [20], Kozlov showed how the standard chromatic subdivision complex relates to
Schlegel diagrams (special projections of cross-polytopes), and used this relation to prove the
standard chromatic subdivision was actually a subdivision. In [14, section 3.6.3], a general
embedding in Rn parameterized by ϵ ∈ R is given for the standard chromatic subdivision.
The geometrization here is done choosing ϵ = d

2d+1 in order to have “well balanced” drawings.

B.1 Colorless Algorithms in the Iterated Immediate Snapshots Model

It is well known, see [14, Chap. 3&4, Def. 3.6.3], that each maximal simplex S =
{ζV0(xi0), · · · , ζVn

(xin)} from the chromatic subdivision of Sn can be associated with a
graph of ImSn denoted Θ(S). In [8], a suitable geometric encoding of the standard chromatic
subdivision has been given, this is also detailed here.We can transpose the previous geometric
presentation with an averaging algorithm called the Chromatic Average Algorithm, presented
in Algorithm 1, in a way that encode the IIS model. It was first introduced in [8], here we
present the colorless adaptation where only the set of values that is received is taken into
account. That is, if two processes send the same value (i.e. they are associated to the same
point in RN ), this is considered only once in the averaging. Since it still use the formula of
31 this yield again the standard chromatic subdivision.

Executing one round of the loop in Chromatic Average for instant graph G, the state of
process i is x′

i = ζVi
(x∗
i ), where Vi is the view of i on this round, that is the set of (j, xj) it

has received. It use the instant graph of the IIS model that are encoding in the following
way : We have V (Θ(S)) = Πn = [0, n] and set Θ(ζVj

(xij )) = P(xij ). The arcs are defined
using the representation Φ of points, A(Θ(S)) = {(i, j) | i ̸= j, Vi ⊆ Vj}. The mapping θ will
denote Θ−1. Then Θ({ζV0(x∗

0), · · · , ζVn
(x∗
n)}) = G. See eg. in Fig. 2a in the Appendix B.

Adjacency for a given i corresponds to the smallest subset containing xi. This one round
transformation for the canonical Sn can actually be done for any simplex S of dimension n

of RN .
By iterating, the chromatic subdivisions Chrr(Sn) are given by the global state under

all possible r rounds of the Chromatic Average Algorithm. Finite rounds give the Iterated
Chromatic Subdivision (hence the name). This is an algorithm that is not meant to terminate
(like the full information protocol). The executions of this algorithm are used below to define
a topology on IISn.

For G ∈ ImSn, we denote µG(S) the geometric simplex that is the image of S by one
round the Chromatic average algorithm under instant graph G.

To start defining this topology we need to define the function geo. Let w ∈ IISn,
w = G1G2 · · · . For the prefix of w of size r, S a simplex of dimension n, we define
geo(w|r)(S) = µGr

◦ µGr−1 ◦ · · · ◦ µG1(S). Finally, we set geo(w) = lim
r−→∞

geo(w|r)

The Chromatic Average algorithm is therefore the geometric counterpart to the Full
Information Protocol that is associated with Chr [14]. In particular, any algorithm can be
presented as the Chromatic Average together with a terminating condition and a decision
function of x.

DISC 2024



16:20 A Simple Computability Theorem for Colorless Tasks

C Proof that an IIS-terminating subdivision is a simplicial complex

We will use the following lemma to prove that an IIS-terminating subdivision is a simplicial
complex. Note that since we are in the geometric setting, this is not as straightforward as in
the abstract setting. We need to carefully check that everything “glues” nicely.

▶ Lemma 33. Let σ a simplex with vertices partitioned in two disjoints set U and T . Then
the collection JOIN(Chr(σ(U)), σ(T )) is a simplicial complex.

Proof. Let τ = Chr σ(U) it’s a simplicial complex. We have that |σ(U)| = |τ | ⊆ |σ|. Let
α = JOIN(τ, σ(T )), the facets of α are the facets of τ in union with the facets of σ(T ). All
off these simplices are closed by inclusion which implies the first property of Def 9. For
the intersection property of 9, we take β1, β2 ∈ α such that |β1| ∩ |β2| = |β3| and |β3| ̸= ∅,
τi = {v ∈ V (βi)|v ∈ |τ |}. If V (β3) ⊆ T then β3 remain unchanged. If V (β3) = V (τi) then
because Chr is a subdivision β3 is a simplicial complex. Else V (β3) is partitioned in V (τ) and
T (σ), since τi is a subdivision, JOIN(τi, σ(T )) is a simplicial complex. Moreover, |τi| ⊆ |σ|
and |σ(T )| ⊆ |σ|, hence β3 is a simplicial complex. All of this gives that JOIN(τ, σ(T )) is
indeed a simplicial complex. ◀

▶ Proposition 34. C =
⋃
Ci(Ti) is a simplicial complex.

For convenience of the reader, we rewrite here the definition of EChr :
EChr(Ti, Ci) = (

⋃
σ∈Ci

Chr σ(Ui)) ∪ (
⋃
σ∈Ci

JOIN(Chr σ(Ui), σ(Ti)).

Proof. We start be proving that for all i ∈ N, the objects Ci and Ci(Ti) are simplicial
complexes.

The first step constructs Ci+1, it is a union of two operations. The first one
(
⋃
σ∈Ci

Chr(σ(Ui))) takes simplices and apply a mesh-shrinking subdivision, which by def-
inition yields a simplicial complex. The second one (

⋃
σ∈Ci

JOIN(V (Chr σ(Ui), Tσ) is an
union of JOIN on a partition of vertices of a simplex, which by lemma 33 yield again a
simplicial complex. We have to prove now that all of this simplices “glues back together
nicely”. Let σ1, σ2 ∈ Ci such that |σ1| ∩ |σ2| ̸= ∅, then by induction we know that Ci is a
simplicial complex then ∃|σ3| ∈ Ci, |σ1| ∩ |σ2| = |σ3|. We can make a disjunction of case the
vertices of σ3 to prove that the simplices are intersecting correctly.
1. If V (σ3) ⊆ Ti then the simplex σ3 is not modified in Ci+1
2. If V (σ3) ⊆ Ui, the subdivision Chr restricted to α is the same if we look from σ or τ ,

hence we keep the property of simplicial complexes in Ci+1.
3. if V (σ3) = V (σ3(Ti)) ∪ V (σ3(Ui)) with V (σ3) ∩ Ti ̸= ∅ and V (σ3) ∩ Ui ̸= ∅. Then by the

two later cases, we know that σ3(Ti) and σ3(Ui) preserve the simplicial complex. After
that we are doing a JOIN between vertices in the same simplex σ3 which by lemma 33
yield a simplicial complex.

We can deduce from those 3 cases that Ci+1 is indeed a simplicial complex, which means
that C is also a simplicial complex. ◀

D Additional figure

In Fig. 3 we have x ∈ X, B(x, η(x)) is in green. We apply the function f and because it
satisfies the η-star condition we can exhibit vx ∈ O such that f(B(x, η(x) ∩X) ⊆ St◦(vx),
St◦(vx)) is colored in light blue.

The figure 4 outline the relation between the main object of the proof of the proposition 28.



Y. Coutouly and E. Godard 16:21

X

x

O

f

vy
vx

Figure 3 An η-star condition representation.

SpeA
geo

E

SkelcI

ππ−1

Figure 4 Illustration of proof 28.

E Example of simple fiber bundle and link to distributed system

We acknoledge that fiber bundle might not be a well know mathematical object for some
reader, in this section we attempt to adress this difficulty.

One good example of fiber bundle is a Möbius strip. It can be seen as a fiber bundle with
a cirlce as B and segment as fiber F . With E the möbius strip, the function π : E → B is
a projection of the segment into the base. It is easy to check that for small portion of the
circle there is an homeomorphism to a slice of the möbius strip.

DISC 2024



16:22 A Simple Computability Theorem for Colorless Tasks

Figure 5 A Möbius Strip.



Breaking Through the Ω(n)-Space Barrier:
Population Protocols Decide Double-Exponential
Thresholds
Philipp Czerner # Ñ

Department of Informatics, TU München, Germany

Abstract
Population protocols are a model of distributed computation in which finite-state agents interact
randomly in pairs. A protocol decides for any initial configuration whether it satisfies a fixed
property, specified as a predicate on the set of configurations. A family of protocols deciding
predicates φn is succinct if it uses O(|φn|) states, where φn is encoded as quantifier-free Presburger
formula with coefficients in binary. (All predicates decidable by population protocols can be
encoded in this manner.) While it is known that succinct protocols exist for all predicates, it
is open whether protocols with o(|φn|) states exist for any family of predicates φn. We answer
this affirmatively, by constructing protocols with O(log |φn|) states for some family of threshold
predicates φn(x) ⇔ x ≥ kn, with k1, k2, ... ∈ N. (In other words, protocols with O(n) states that
decide x ≥ k for a k ≥ 22n

.) This matches a known lower bound. Moreover, our construction for
threshold predicates is the first that is not 1-aware, and it is almost self-stabilising.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Distributed computing, population protocols, state complexity

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.17

Related Version Full Version: https://arxiv.org/abs/2204.02115 [18]

Funding Philipp Czerner : This work was supported by an ERC Advanced Grant (787367: PaVeS)
and by the Research Training Network of the Deutsche Forschungsgemeinschaft (DFG) (378803395:
ConVeY).

1 Introduction

Population protocols are a distributed model of computation where a large number of
indistinguishable finite-state agents interact randomly in pairs. The goal of the computation
is to decide whether an initial configuration satisfies a given property. The model was
introduced in 2004 by Angluin et al. [4, 5] to model mobile sensor networks with limited
computational capabilities (see e.g. [28, 22]). It is also closely related to the model of chemical
reaction networks, in which agents, representing discrete molecules, interact stochastically [17].

A protocol is a finite set of transition rules according to which agents interact, but it can
be executed on an infinite family of initial configurations. Agents decide collectively whether
the initial configuration fulfils some (global) property by stable consensus; each agent holds
an opinion about the output and may freely change it, but eventually all agents agree.

An example of a property decidable by population protocols is majority: initially all
agents are in one of two states, x and y, and they try to decide whether x has at least as
many agents as y. This property may be expressed by the predicate φ(x, y) ⇔ x ≥ y.

In a seminal paper, Angluin et al. [7] proved that the predicates that can be decided
by population protocols correspond precisely to the properties expressible in Presburger
arithmetic, the first-order theory of addition.

© Philipp Czerner;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 17; pp. 17:1–17:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:czerner@in.tum.de
https://nicze.de/philipp
https://orcid.org/0000-0002-1786-9592
https://doi.org/10.4230/LIPIcs.DISC.2024.17
https://arxiv.org/abs/2204.02115
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


17:2 Population Protocols Decide Double-Exponential Thresholds

To execute a population protocol, the scheduler picks two agents uniformly at random
and executes a pairwise transition on these agents. These two agents interact and may
change states. The number of agents does not change during the computation. It will be
denoted m throughout this paper.

Population protocols are often extended with a leader – an auxiliary agent not part of the
input, which can assist the computation. It is known that this does not increase the expressive
power of the model, i.e. it can still decide precisely the predicates expressible in Presburger
arithmetic. However, it is known that leaders enable an exponential speed-up [6, 1] in terms
of the time that is needed to come to a consensus.

Space complexity. Many constructions in the literature need a large number of states.
We estimate, for example, that the protocols of [6] need tens of thousands of states. This
is a major obstacle to implementing these protocols in chemical reactions, as every state
corresponds to a chemical compound.

This motivates the study of space complexity, the minimal number of states necessary
for a population protocol to decide a given predicate. Predicates are usually encoded as
quantifier-free Presburger formulae with coefficients in binary. For example, the predicates
φn(x) ⇔ x ≥ 2n have length |φn| ∈ Θ(n). Formally we define space(φ) as the smallest
number of states of any protocol deciding φ, and spaceL(φ) as the analogous function for
protocols with a leader. Clearly, space(φ)L ≤ space(φ).

The original construction in [4] showed space(φ) ∈ O(2|φ|) – impractically large. For
the family of threshold predicates τn(x) ⇔ x ≥ n Blondin, Esparza and Jaax [14] prove
space(τn) ∈ O(|τn|), i.e. they have polynomial space complexity. For several years it was open
whether similarly succinct protocols exist for every predicate. This was answered positively
in [13], showing space(φ) ∈ O(poly(|φ|)) for all φ.

Is it possible to do much better? For most predicates it is not; based on a simple counting
argument one can show that for every family φn with |φn| ∈ O(n) there is an infinite
subfamily (φ′

n)n ⊆ (φn)n with spaceL(φ′
n) ∈ Ω(|φn|1/4−ε), for any ε > 0 [14].

This covers threshold predicates and many other natural families of protocols (e.g.
φn(x) ⇔ x ≡ 0 (mod n) or φn(x, y) ⇔ x ≥ ny). But it is not an impenetrable barrier, even
for the case of threshold protocols: it does not rule out constructions that work for infinitely
many (but not all) thresholds and use only, say, logarithmically many states. Indeed, if
leaders are allowed this is known to be possible: [14] shows spaceL(τ ′

n) ∈ O(log|τ ′
n|) for some

subfamily τ ′
n of threshold predicates.

Recently, general lower bounds have been obtained, showing space(τn) ∈ Ω(log1−ε|τn|)
for all ε > 0 [19, 20]. The same bound (up to ε = 1/2) holds even if the model is extended
with leaders [24].

For leaderless population protocols, these results leave an exponential gap. In this paper
we settle that question and show that, contrary to prevailing opinion, space(τ ′

n) ∈ O(log|τ ′
n|)

for some subfamily τ ′
n of threshold predicates. In other words, we construct the first family of

leaderless population protocols that decide double-exponential thresholds and break through
the polynomial barrier.

Robustness. Since population protocols model computations where large numbers of agents
interact, it is desirable that protocols deal robustly with noise. In a chemical reaction, for
example, there can be trace amounts of unwanted molecules. So the initial configuration of
the protocol would have the form CI + CN , where CI is the “intended” initial configuration,
containing only agents in the designated initial states, and CN is a “noise” configuration,
which can contain agents in arbitrary states.



P. Czerner 17:3

Table 1 Prior results on the state complexity of threshold predicates φ(x) ⇔ x ≥ k, for k ∈ N.
Upper bounds need only hold for infinitely many k. We elide exponentially dominated factors from
lower bounds.

year result type ordinary with leaders

2018 Blondin, Esparza, Jaax [14] construction O(|φ|) O(log|φ|)
2021 Czerner, Esparza [19] impossibility Ω(log log|φ|) Ω(ack−1|φ|)
2021 Czerner, Esparza, Leroux [20] impossibility Ω(log|φ|)
2022 Leroux [24] impossibility Ω(log|φ|)
2024 this paper construction O(log|φ|)

For threshold predicates, specifically, we want to decide whether |CI | + |CN | exceeds
some threshold k ∈ N, under some reasonable restrictions to CI , CN . However, all known
threshold protocols fail even for the case |CN | = 1. Is it possible to do better?

If CN can be chosen arbitrarily, then the protocol has to work correctly for all input
configurations. This property is known as self-stabilisation, and it has also been investigated
in the context of population protocols [8, 16, 15]. However, it can only be achieved in
extensions of the model (e.g. on specific communication graphs, or with a non-constant
number of states). This is easy to see in the case of threshold predicates: if any configuration
is stably accepting, then any smaller configuration is stably accepting as well. In particular,
there is a stably accepting configuration with k − 1 agents.

While full self-stabilisation is impossible, in this paper we show that one can come
remarkably close. We prove that our construction is almost self-stabilising, meaning that it
computes the correct output for all CI , CN with |CI | ≥ n, where n is the number of states
of the protocol. We do not constraint CN at all. Since n ∈ O(log log k) in our protocol,
this means that one can take an arbitrary configuration CN one wishes to count, add a tiny
amount of agents to the initial state, and the protocol will compute the correct output.

Related work. We consider the space complexity of families of protocols, each of which
decides a different predicate. In another line of research, one considers a family of protocols
for the same predicate, where each protocol is specialised for a fixed population size m.

In the original model of population protocols (which is also the model of this paper), the
set of states is fixed, and the same protocol can be used for an arbitrary number of agents.
Relaxing this requirement has opened up a fruitful avenue of research; here, the number of
states depends on m (e.g. the protocol has O(log m) states, or even O(log log m) states). In
this model, faster protocols can be achieved [3, 26, 27].

It has also led to space-efficient, fast protocols, which stabilise within O(polylog m)
parallel time, using a state-space that grows only slowly with the number of agents, e.g.
O(polylog m) states [1, 12, 2, 10, 9, 11, 21]. These protocols have focused on the majority
predicate. Moreover, lower bounds and results on time-space tradeoffs have been developed
in this model [1, 2].

2 Main result

We construct population protocols (without leaders) for an infinite family of threshold
predicates φn(x) ⇔ x ≥ kn, with k1, ... ∈ N, proving an O(log|φn|) upper bound on their
state complexity. This closes the final gap in the state complexity of threshold predicates.

DISC 2024



17:4 Population Protocols Decide Double-Exponential Thresholds

As in prior work, our result is not a construction for arbitrary thresholds k, only for an
infinite family of them. It is, therefore, easier to formally state by fixing the number of states
n and specifying the largest threshold k that can be decided by a protocol with n states.

▶ Theorem 1. For every n ∈ N there is a population protocol with O(n) states deciding the
predicate φ(x) ⇔ x ≥ k for some k ≥ 22n .

Proof. This will follow from theorems 3 and 5. ◀

The result is surprising, as prevailing opinion was that the existing constructions are
optimal. This was based on the following:

It is intuitive that population protocols with leaders have an advantage. In particular,
one can draw a parallel to time complexity, where an exponential gap is proven: for some
predicates protocols with leaders have O(polylog m) parallel time, while all leaderless
protocols have Ω(m) parallel time.
The O(log log k)-state construction from [14] crucially depends on having leaders.
The technique to show the Ω(log log k) lower bound could, for the most part, also be used
for a Ω(log k) bound. Only the use of Rackoff’s theorem, a general result for Petri nets,
does not extend.
There is a conditional impossibility result, showing that Ω(log k) states are necessary for
leaderless 1-aware protocols. [14] (Essentially, protocols where some agent knows at some
point that the threshold has been exceeded.) All prior constructions are 1-aware.

Regarding the last point, our protocol evades the mentioned conditional impossibility
result by being the first construction that is not 1-aware. Intuitively, our protocol only
accepts provisionally and continues to check that no invariant has been violated. Based on
this, we also obtain the following robustness guarantee:

▶ Theorem 2. The protocols of Theorem 1 are almost self-stabilising.

Overview. We build on the technique of Lipton [25], which describes a double-exponential
counting routine in vector addition systems. Implementing this technique requires the use of
procedure calls; our first contribution are population programs, a model in which population
protocols can be constructed by writing structured programs, in Section 4. Every such
program can be converted into an equivalent population protocol.

However, population programs provide weaker guarantees than the model of parallel
programs used in [25]. Both models access registers with values in N. In a parallel program
these are initialised to 0, while in a population program all registers start with arbitrary
values. This limitation is essential for our conversion into population protocols.

A straightforward implementation is, therefore, impossible. Instead, we have to adapt
the technique to work with arbitrary initial configurations. Our second contribution, and the
main technical difficulty of this result, is extending the original technique with error-checking
routines to work in our model. We use a detect-restart loop, which determines whether
the initial configuration is “bad” and, if so, restarts with a new initial configuration. The
stochastic behaviour of population protocols ensures that a “good” initial configuration is
reached eventually. Standard techniques could be used to avoid restarts with high probability
and achieve an optimal running time, but this is beyond the scope of this paper.

A high level overview of both the original technique as well as our error-checking strategy
is given in Section 5. We then give a detailed description of our construction in Section 6.



P. Czerner 17:5

To get population protocols, we need to convert from population programs. We split this
into two parts. First, we use standard techniques to lower population programs to population
machines, an assembly-like programming language. In a second step we simulate arbitrary
population machines by population protocols. This conversion is described in Section 7.

Finally, we introduce the notion of being almost self-stabilising in Section 8, and prove
that our construction has this property.

To start out, Section 3 introduces the necessary mathematical notation and formally
defines population protocols as well as the notion of stable computation.

3 Preliminaries

Multisets. We assume 0 ∈ N. For a finite set Q we write NQ to denote the set of multisets
containing elements in Q. For such a multiset C ∈ NQ, we write C(S) :=

∑
q∈S C(q) to

denote the total number of elements in some S ⊆ Q, and set |C| := C(Q). Given two
multisets C, C ′ ∈ NQ we write C ≤ C ′ if C(q) ≤ C ′(q) for all q ∈ Q, and we write C + C ′

and C − C ′ for the componentwise sum and difference (the latter only if C ≥ C ′). Abusing
notation slightly, we use an element q ∈ Q to represent the multiset C containing exactly q,
i.e. C(q) = 1 and C(r) = 0 for r ̸= q.

Stable computation. We are going to give a general definition of stable computation not
limited to population protocols, so that we can later reuse it for population programs and
population machines. Let C denote a set of configurations and → a left-total binary relation
on C (i.e. for every C ∈ C there is a C ′ ∈ C with C → C ′). Further, we assume some notion
of output, i.e. some configurations have an output b ∈ {true, false} (but not necessarily all).

A sequence τ = (Ci)i∈N with Ci ∈ C is a run if Ci → Ci+1 for all i ∈ N. We say that τ

stabilises to b, for b ∈ {true, false}, if there is an i s.t. Cj has output b for every j ≥ i. A run
τ is fair if ∩i≥0{Ci, Ci+1, ...} is closed under →, i.e. every configuration that can be reached
infinitely often is.

Population protocols. A population protocol is a tuple PP = (Q, δ, I, O), where
Q is a finite set of states,
δ ⊆ Q4 is a set of transitions,

I ⊆ Q is a set of input states, and
O ⊆ Q is a set of accepting states.

We write transitions as (q, r 7→ q′, r′), for q, r, q′, r′ ∈ Q. A configuration of PP is a
multiset C ∈ NQ with |C| > 0. A configuration C is initial if C(q) = 0 for q /∈ I (one might
also say C ∈ NI instead). It has output true if C(q) = 0 for q /∈ O, and output false if
C(q) = 0 for q ∈ O. For two configurations C, C ′ we write C → C ′ if C = C ′ or if there is a
transition (q, r 7→ q′, r′) ∈ δ s.t. C ≥ q + r and C ′ = C − q − r + q′ + r′.

Let φ : NI → {true, false} denote a predicate. We say that PP decides φ, if every fair run
starting at an initial configuration C ∈ NI stabilises to φ(C), where fair run and stabilisation
are defined as above.

4 Population Programs

We introduce population programs, which allows us to specify population protocols using
structured programs. An example is shown in Figure 1.

Formally, a population program is a tuple P = (Q, Proc), where Q is a finite set of registers
and Proc is a list of procedures. Each procedure has a name and consists of (possibly nested)
while-loops, if-statements and instructions. These are described in detail below.

DISC 2024



17:6 Population Protocols Decide Double-Exponential Thresholds

1: procedure Main
2: OF := false
3: while ¬Test(4) do
4: Clean
5: OF := true
6: while ¬Test(7) do
7: Clean
8: OF := false
9: while true do

10: Clean

1: procedure Test(i)
2: for j = 1, ..., i do
3: if detect x > 0 then
4: x 7→ y

5: else
6: return false
7: return true

1: procedure Clean
2: if detect z > 0 then
3: restart
4: swap x, y

5: while detect y > 0 do
6: y 7→ x

Figure 1 A population program for φ(x) ⇔ 4 ≤ x < 7 using registers x, y, z. Main is run initially
and decides the predicate, Test(i) tries to move i units from x to y and reports whether it succeeded,
and Clean checks whether z is empty and moves some number of units from y to x. If Clean detects
an agent in z, it restarts the computation. As every run calls Clean infinitely often, this serves to
reject initial configurations where z is nonzero; eventually the protocol will be restarted with z = 0.
This is an illustrative example and some simplifications are possible. E.g. the instruction (swap x, y)
in Clean is superfluous; additionally, instead of checking z > 0 one could omit that register entirely.

Primitives. Each register x ∈ Q can take values in N. Only three operations on these
registers are supported.

The move instruction (x 7→ y), for x, y ∈ Q, decreases the value of x by one, and increases
the value of y by one. We also say that it moves one unit from x to y. If x is empty, i.e.
its value is zero, the programs hangs and makes no further progress
The nondeterministic nonzero-check (detect x > 0), for x ∈ Q, nondeterministically
returns either false or whether x > 0. In other words, if it does return true, it certifies that
x is nonzero. If it returns false, however, no information has been gained. We consider
only fair runs, so if x is nonzero the check cannot return false infinitely often.
A swap (swap x, y) exchanges the values of the two registers x, y. This primitive is not
necessary, but it simplifies the implementation.

Loops and branches. Population programs use while-loops and if-statements, which function
as one would expect.

We also use for-loops. These, however, are just a macro and expand into multiple copies
of their body. For example, in the program in Figure 1 the for-loop in Test expands into i

copies of the contained if-statement.

Procedures. Our model has procedure calls, but no recursion. Procedures have no argu-
ments, but we may have parameterised copies of a procedure. The program in Figure 1, for
example, has four procedures: Main, Clean, Test(4), and Test(7).

Procedure calls must be acyclic. It is thus not possible for a procedure to call itself, and
the size of the call stack remains bounded. We remark that one could inline every procedure
call. The main reason to make use of procedures at all is succinctness: if our program
contains too many instructions, the resulting population protocol has too many states.

Procedures may return a single boolean value, and procedure calls can be used as
expressions in conditions of while- or if-statements.

Output flag. There is an output flag OF , which can be modified only via the instructions
OF := true and OF := false. (These are special instructions; it is not possible to assign
values to registers.) The output flag determines the output of the computation.



P. Czerner 17:7

Initialisation and restarts. The only guarantee on the initial configuration is that execution
starts at Main. In particular, all registers may have arbitrary values.

There is one final kind of instruction: restart. As the name suggests, it restarts the
computation. It does so by nondeterministically picking any initial configuration s.t. the sum
of all registers does not change.

Size. The size of P is defined as |Q| + L + S, where L is the number of instructions and
S is the swap-size. The latter is defined as the number of pairs (x, y) ∈ Q2 for which it is
syntactically possible for x to swap with y via any sequence of swaps. 1 For example, in
Figure 1 the swap-size is two: (x, y), (y, x) can be swapped, but e.g. (x, z) cannot. If we add
a (swap y, z) instruction at any point, then (x, z) can be swapped (transitively), and the
swap-size would be 6.

Configurations and Computation. A configuration of P is a tuple D = (C, OF , σ), where
C ∈ NQ is the register configuration, OF ∈ {true, false} is the value of the output flag, and
σ ∈ (Proc × N)∗ is the call stack, storing names and currently executed instructions of
called procedures. (E.g. σ = ((Main, 3), (Test(4), 1)) when Test is first called in Figure 1.) A
configuration is initial if σ = ((Main, 1)) and it has output OF . For two configurations D, D′

we write D → D′ if D can move to D′ after executing one instruction.
Using the general notion of stable computation defined in Section 3, we say that P

decides a predicate φ(x), for k ∈ N, if every run started at an initial configuration (C, OF , σ)
stabilises to φ(|C|). Note that this definition limits population programs to decide only
unary predicates.

Notation. When analysing population programs it often suffices to consider only the register
configuration Let C, C ′ ∈ NQ, b ∈ {false, true} and let f ∈ Proc denote a procedure. We
consider the possible outcomes when executing f in a configuration with registers C. Note
that the program is nondeterministic, so multiple outcomes are possible. If f may return b

with register configuration C ′, we write C, f → C ′, b. For procedures not returning a value,
we use C, f → C ′ instead. If f may initiate a restart, we write C, f → restart. If f may
hang or not terminate, we write C, f → ⊥. Finally, we define post(C, f) := {S : C, f → S}.

5 High-level Overview

We give an intuitive explanation of our construction. This section has two parts. As
mentioned, we use the technique of Lipton [25] to count to 22n using 4n registers. We will
give a brief explanation of the original technique in Section 5.1. Readers might also find the
restatement of Liptons proof in [23] instructive – the Petri net programs introduced therein
are closer to our approach, and more similar to models used in the recent Petri net literature.

A straightforward application of the above technique only works if some guarantees
are provided for the initial configuration (e.g. that the 4n registers used are empty, while
an additional register holds all input agents). No such guarantees are given in our model.
Instead, we have to deal with adversarial initialisation, i.e. the notion that registers hold
arbitrary values in the initial configuration. Section 5.2 describes the problems that arise, as
well as our strategies for dealing with them.

1 Unfortunately, without restrictions we would convert swaps to population protocols with a quadratic
blow-up in states, so we introduce this technical notion to quantify the overhead.

DISC 2024



17:8 Population Protocols Decide Double-Exponential Thresholds

5.1 Double-exponential counting

The biggest limitation of population programs is their inability to detect absence of agents.
This is reflected in the (detect x > 0) primitive; it may return true and thereby certify that
x is nonzero, but it may always return false, regardless of whether x = 0 actually holds. In
particular, it is impossible to implement a zero-check.

However, Lipton observes that if we have two registers x, x and ensure that the invariant
x + x = k holds, for some fixed k ∈ N, then x = 0 is equivalent to x ≥ k. Crucially, it is
possible to certify the latter property; if we have a procedure for checking x ≥ k, we can run
both checks (x > 0 and x ≥ k) in a loop until one of them succeeds. Therefore, we may treat
x as k-bounded register with deterministic zero-checks.

This seems to present a chicken-and-egg problem: to implement this register we require a
procedure for x ≥ k, but checking such a threshold is already the overall goal of the program.
Lipton solves this by implementing a bootstrapping sequence. For small k, e.g. k = 2, one
can easily implement the required x ≥ k check. We use that as subroutine for two k-bounded
registers, x and y. Using the deterministic zero-checks, x and y can together simulate a
single k2-bounded register with deterministic zero-check; this then leads to a procedure for
checking z ≥ k2 (for some other register z).

Lipton iterates this construction n times. We have n levels of registers, with four registers
xi, yi, xi, yi on each level i ∈ {1, ..., n}. For each level we have a constant Ni ∈ N and ensure
that xi + xi = yi + yi = Ni holds. These constants grow by repeated squaring, so e.g. N1 = 2
and Ni+1 = N2

i . Clearly, Nn = 22n . (Our actual construction uses slightly different Ni.)
We have not yet broached the topic of initialising these registers s.t. the necessary invariants

hold. For our purposes, having a separate initialisation step is superfluous. Instead, we check
whether the invariants hold in the initial configuration and restart (nondeterministically
choosing a new initial configuration) if they do not.

5.2 Error detection

Our model provides only weak guarantees. In particular, we must deal with adversarial
initialisation, meaning that the initial configuration can assign arbitrary values to any register.
This is not limited to a designated set of initial registers; all registers used in the computation
are affected.

Let us first discuss how the above construction behaves if its invariants are violated. As
above, let x, x denote registers for which we want to keep the invariant x + x = k, for some
k ∈ N. If instead x + x > k, the “zero-check” described above is still guaranteed to terminate,
as either x > 0 or x ≥ k must hold. However, it might falsely return x = 0 when it is not.
The procedure we use above, to combine two k-bounded counter to simulate a k2-bounded
counter, exhibits erratic behaviour under these circumstances. When we try to use it to
count to k2 we might instead only count to some lower value k′ < k2, even k′ ∈ O(k).

If the invariant is violated in the other direction, i.e. x + x < k holds, we can never detect
x = 0 and will instead run into an infinite loop.

The latter case is more problematic, as detecting it would require detecting absence. For
the former, we can ensure that we check x + x ≥ k + 1 infinitely often; if x + x > k, this
check will eventually return true and we can initiate a restart. For the x + x > k case the
crucial insight is that we cannot detect it, but we can exclude it: we issue a single check
x + x ≥ k in the beginning. If it fails, we restart immediately.



P. Czerner 17:9

A simplified model. In the full construction, we have many levels of registers that rely on
each other. Instead, we first consider a simplified model here to explain the main ideas.

In our simplified model there is only a single register xi per level i ∈ {1, ..., n} as well as
one “level n + 1” register R. For i ∈ {1, ..., n} we are given subroutines Check(xi ≥ Ni) and
Check(xi > Ni) which we use to check thresholds; however, they are only guaranteed to
work if x1 = N1, x2 = N2, ..., xi−1 = Ni−1 hold.

Our goal is to decide the threshold predicate m ≥
∑

i Ni, where m :=
∑

i xi + R is the
sum of all registers. For each possible value of m we pick one initial configuration Cm and
design our procedure s.t.

every initial configuration different from Cm will cause a restart, and
if started on Cm it is possible that the procedure enters a state where it cannot restart.

The structure of Cm is simple: we pick the largest i s.t. we can set xj := Nj for j ≤ i and
put the remaining units into xi+1 (or R, if i = n). The procedure works as follows:
1. We nondeterministically guess i ∈ {0, ..., n}.
2. We run Check(xj ≥ Nj) for all j ∈ {1, ..., i}. If one of these checks fails, we restart.
3. According to i = n we set the output flag to true or false.
4. To verify that we are in Cm, we check the following infinitely often. For j ∈ {1, ..., i} we run

Check(xj > Nj) and restart if it succeeds. If i < n we also restart if Check(xi+1 ≥ Ni+1)
or one of xi+2, ..., xn, R is nonempty.

Clearly, when started in Cm and i is guessed correctly, it is possible for step 2 to succeed,
and it is impossible for step 4 to restart. If i is too large, step 2 cannot work, and if i is
too small step 4 will detect xi+1 ≥ Ni+1. So the procedure will restart until the right i is
guessed and step 4 is reached.

Consider an initial configuration C ̸= Cm, |C| = m. There are two cases: either there is
a k with C(xk) < Cm(xk), or some k has C(xk) > Cm(xk). Pick a minimal such k.

In the former case, step 2 can only pass if i < k, but then one of xi+2, ..., xn, R is nonempty
and step 4 will eventually restart.

The latter case is more problematic. Step 2 can pass regardless of i (for i > k the
precondition of Check is not met). In step 4, either i < k and then xi+1 ≥ Ni+1 or one of
xi+2, ..., xn, R is nonempty, or i ≥ k and one of the checks Check(xj > Nj) will eventually
restart, for j = k.

This would be what we are looking for, but note that we implicitly made assumptions
about the behaviour of Check when called without its precondition being met. We need
two things: all calls to Check terminate and they do not change the values of any register.
The second is the simpler one to deal with: later, we will have multiple registers per level
and our procedures only need to move agents between registers of the same level. This keeps
the sum of registers of one level constant, this weaker property suffices for correctness.

Ensuring that all calls terminate is more difficult. It runs into the problem discussed
above, where a zero-check might not terminate if the invariant of its register is violated. In
this simplified model it corresponds to the case xi < Ni.

However, we note that Check(xi ≥ Ni) and Check(xi > Ni) are only called if
(x1, ..., xi−1) ≥lex (N1, ..., Ni−1), where ≥lex denotes lexicographical ordering. So if the
precondition is violated, there must be a j < i with (x1, ..., xj−1) = (N1, ..., Nj−1) and
xj > Nj . This can be detected within the execution of Check by calling itself recursively.
In this manner, we can implement Check in a way that avoids infinite loops as long as the
weaker precondition (x1, ..., xi−1) ≥lex (N1, ..., Ni−1) holds.

DISC 2024



17:10 Population Protocols Decide Double-Exponential Thresholds

Our actual construction follows the above closely; of course, instead of a single register
per level we have four, making the necessary invariants more complicated. Additional issues
arise when implementing Check, as registers cannot be detected erroneous while in use.
Certain subroutines must hence take care to ensure termination, even when the registers
they use are not working properly.

6 A Succinct Population Program

In this section, we construct a population program P = (Q, Proc) to prove the following:

▶ Theorem 3. Let n ∈ N. There exists a population program deciding φ(x) ⇔ x ≥ k with
size O(n), for some k ≥ 22n−1 .

Full proofs and formal definitions of this section can be found in the full version of the
paper [18].

We use registers Q := Q1 ∪ ... ∪ Qn ∪ {R}, where Qi := {xi, yi, xi, yi} are level i registers
and R is a level n + 1 register. For convenience, we identify x with x for any register x.

Types of Configurations. As explained in the previous section, x and x are supposed to
sum to a constant Ni, for a level i register x ∈ {xi, yi}, which we define via N1 := 1 and
Ni+1 := (Ni + 1)2. If this invariant holds, we can use x, x to simulate a Ni-bounded register,
which has value x.

We cannot guarantee that this invariant always holds, so our program must deal with
configurations that deviate from this. For this purpose, we classify configurations based on
which registers fulfil the invariant, and based on the type of deviation.

A configuration C ∈ NQ is i-proper, if the invariant holds on levels 1, ..., i, and their
simulated registers have value 0. This is a precondition for most routines. Sometimes we
relax the latter requirement on the level i registers; C is weakly i-proper if it is (i − 1)-proper
and the invariant holds on level i.

If C is (i − 1)-proper and not i-proper, then there are essentially two possibilities. Either
C ≤ C ′ for some i-proper C ′ and we call C i-low, or C(x) ≥ C ′ for a weakly i-proper C ′

and we call C i-high. Note that it is possible that C is neither i-low nor i-high – these
configurations are easy to exclude and play only a minor role. We can mostly ensure that
i-low configurations do not occur, but procedures must provide guarantees when run on
i-high configurations.

Finally, we say that C is i-empty if all registers on levels i, ..., n + 1 are empty.

x1 x1 y1 y1 ... xi−1 xi−1 yi−1 yi−1 xi xi yi yi ...

i-proper 0 N1 0 N1 ... 0 Ni−1 0 Ni−1 0 Ni 0 Ni ...
weakly i-proper 0 N1 0 N1 ... 0 Ni−1 0 Ni−1 3 Ni − 3 Ni − 7 7 ...
i-low 0 N1 0 N1 ... 0 Ni−1 0 Ni−1 0 Ni − 3 0 Ni ...
i-high 0 N1 0 N1 ... 0 Ni−1 0 Ni−1 3 Ni 7 Ni − 5 ...
i-empty 2 4 8 3 ... 5 3 0 7 0 0 0 0 ...

Figure 2 Example configurations exhibiting the different types.

Summary. We use the following procedures.
Main. Computation starts by executing this procedure, and Main ultimately decides the
predicate φ(x) ⇔ x ≥ 2

∑n
i=1 Ni.



P. Czerner 17:11

Algorithm AssertEmpty.

Parameter: i ∈ {1, ..., n + 1}
Effect: If i-empty, do nothing, else it may re-

start
1: procedure AssertEmpty.(i) [i ≤ n]
2: AssertEmpty(i + 1)
3: for x ∈ Qi do
4: if detect x > 0 then
5: restart
6: procedure AssertEmpty.(i) [i = n+1]
7: if detect R > 0 then
8: restart

Algorithm AssertProper.

Parameter: i ∈ {1, ..., n}
Effect: If i-proper or i-low, do nothing, else

it may restart.
1: procedure AssertProper.(i)
2: AssertProper(i − 1)
3: for x ∈ {xi, yi} do
4: if detect x > 0 then
5: restart
6: Large(x)
7: if detect x > 0 then
8: restart

Algorithm Zero Check whether a register is
equal to 0.

Parameter: x ∈ {xi, xi, yi, yi}
Output: whether x = 0

1: procedure Zero(x)
2: while true do
3: AssertProper(i − 1)
4: if detect x > 0 then
5: return false
6: if Large(x) then
7: return true

Algorithm IncrPair Decrement a two-digit,
base β := Ni + 1 register.

Parameter: x ∈ {xi, xi}, y ∈ {yi, yi}
Effect: βx + y (mod β2) decreases by 1

1: procedure IncrPair(x, y)
2: if Zero(y) then
3: swap y, y

4: if Zero(x) then
5: swap x, x

6: else x 7→ x

7: else y 7→ y

AssertEmpty.. Check whether a configuration is i-empty and initiate a restart if not.
AssertProper.. Check whether a configuration is i-proper or i-low, initiate a restart if not.
Large. Nondeterministically check whether a register x ∈ Qi is at least Ni.
Zero. Perform a deterministic zero-check on a register x ∈ Qi.
IncrPair. As described in Section 5.1, we use two level i registers (which are Ni bounded) to
simulate an Ni+1-bounded register. This procedure implements the increment operation
for the simulated register.

Procedures AssertEmpty., AssertProper.. The procedure AssertEmpty. is supposed to de-
termine whether a configuration is i-empty, which can easily be done by checking whether
the relevant registers are nonempty.

Similarly, AssertProper. is used to ensure that the current configuration is not i-high. If
it is, it may initiate a restart. We remark that calls to AssertProper.(0) have no effect and
can simply be omitted.

Procedure Zero. This procedure implements a deterministic zero-check, as long as the
register configuration is weakly i-proper. To ensure termination, AssertProper. is called
within the loop.

DISC 2024



17:12 Population Protocols Decide Double-Exponential Thresholds

Algorithm Large Nondeterministically check whether a register is maximal.
Parameter: x ∈ {xi, xi, yi, yi}, x ̸= y

Output: if x ≥ Ni return true and swap
units of x − Ni and x; or return false

1: procedure Large(x) [for i = 1]
2: if detect x > 0 then
3: x 7→ x

4: swap x, x

5: return true
6: else
7: return false

8: procedure Large(x) [for i > 1]
9: if ¬Zero(xi−1) ∨ ¬Zero(yi−1) then

10: restart
11: while true do
12: CheckProper(i − 2)
13: if detect x > 0 then
14: x 7→ x

15: IncrPair(xi−1, yi−1)
16: if Zero(xi−1) ∧ Zero(yi−1) then
17: swap x, x

18: return true
19: else
20: if Zero(xi−1) ∧ Zero(yi−1) then
21: return false
22: if detect x > 0 then
23: x 7→ x

24: IncrPair(xi−1, yi−1)

Procedure IncrPair. This is a helper procedure to increment the “virtual”, Ni+1-bounded
counter simulated by x and y. It works by first incrementing the second digit, i.e. y. If an
overflow occurs, x is incremented as well. It is also be used to decrement the counter, by
running it on x and y.

As we show later, IncrPair is “reversible” under only the weak assumption that the configur-
ation C ∈ NQ is i-high. More precisely, C, IncrPair(x, y) → C ′ implies C ′, IncrPair(x, y) → C.
Using this, we can show that Large, which calls IncrPair in a loop, terminates.

Procedure Large. This is the last of the subroutines, and the most involved one. The
goal is to determine whether x ≥ Ni, by using the registers of level i − 1 to simulate a
“virtual” Ni-bounded register. To ensure termination, we use a “random” walk, which
nondeterministically moves either up or down. More concretely, at each step either x is
found nonempty, one unit is moved to x and the virtual register is incremented, or conversely
x is nonempty, one unit moved to x, and the virtual register decremented. If the virtual
register reaches 0 from above, Large had no effect and returns false. Once the virtual register
overflows, a total of Ni units have been moved. These are put back into x by swapping x

and x and true is returned.
As mentioned above, IncrPair is reversible even under weak assumptions. This ensures

that the random walk terminates, as it can always retrace its prior steps to go back to its
starting point.

Procedure Main. Finally, we put things together to arrive at the complete program. The
implementation is very close to the steps described in Section 5.2 in the simplified model,
but instead of guessing an i we iterate through the possibilities.

As mentioned before, Main considers a small set of initial configurations “good” and may
stabilise. The following lemma formalises this.

▶ Lemma 4. Main, run on register configuration C ∈ NQ, can only restart or stabilise, and
(a) it may stabilise to false if C is j-low and (j + 1)-empty, for some j ∈ {1, ..., n},
(b) it may stabilise to true if C is n-proper, and
(c) it always restarts otherwise.



P. Czerner 17:13

Algorithm Main Decide whether there are at least 2
∑

i
Ni agents.

1: procedure Main
2: OF := false
3: for i = 1, ..., n do
4: while ¬Large(xi) ∨ ¬Large(yi) do
5: AssertProper(i)
6: AssertEmpty(i + 1)
7: OF := true
8: while true do
9: AssertProper(n)

7 Converting Population Programs into Protocols

In the previous section we constructed succinct population programs for the threshold
predicate. We now justify our model and prove that we can convert population programs
into population protocols, keeping the number of states low. We do this in two steps; first we
introduce population machines, which are a low-level representation of population programs,
then we convert these into population protocols. This results in the following theorem:

▶ Theorem 5. If a population program deciding φ with size n exists, then there is a population
protocol deciding φ′(x) ⇔ φ(x − i) ∧ x ≥ i with O(n) states, for an i ∈ O(n).

Population machines are introduced in Section 7.1, they serve to provide a simplified
model. Converting population programs into machines is straightforward and uses standard
techniques, similar to how one would convert a structured program to use only goto-statements.
We will describe this in Section 7.2. The conversion to population protocols is finally described
in Section 7.3. Here, we only highlight the key ideas of the conversion. The details can be
found in the full version of the paper [18].

7.1 Formal Model
▶ Definition 6. A population machine is a tuple A = (Q, F, F , I), where Q is a finite set of
registers, F a finite set of pointers, F = (Fi)i∈F a list of pointer domains, each of which
is a nonempty finite set, and I = (I1, ..., IL) is a sequence of instructions, with L ∈ N.
Additionally, OF , CF , IP ∈ F , FOF = FCF = {false, true} and FIP = {1, .., L}. For x ∈ Q ∪
{□} we also require Vx ∈ F , and x ∈ FVx

⊆ Q. The size of A is |Q|+ |F |+
∑

X∈F |FX |+ |I|.
Let x, y ∈ Q, x ̸= y, X, Y ∈ F , i ∈ {1, ..., L} and f : FY → FX . There are three types of

instructions: Ii = (x 7→ y), Ii = (detect x > 0), or Ii = (X := f(Y )).

A population machine has a number of registers, as usual, and a number of pointers.
While each register can take any value in N, a pointer is associated with a finite set of values
it may assume. There are three special pointers: the output flag OF , which we have already
seen in population programs and is used to indicate the result of the computation, the
condition flag CF used to implement branches, and the instruction pointer IP, storing the
index of the next instruction to execute. To implement swap instructions we use a register
map; the pointer Vx, for a register x ∈ Q, stores the register x is actually referring to. (V□ is
a temporary pointer for swapping.) The model allows for arbitrary additional pointers, we
will use a one per procedure to store the return address.

There are only three kinds of instructions: (x 7→ y) and (detect x > 0) are present
in population programs as well and have the same meaning here. (With the slight caveat
that x and y are first transformed according to the register map. The instructions do not

DISC 2024



17:14 Population Protocols Decide Double-Exponential Thresholds

operate on the actual registers x, y, but on the registers pointed to by Vx and Vy.) The third,
(X := f(Y )) is a general-purpose instruction for pointers. It can change IP and will be used
to implement control flow constructs.

A precise definition of the semantics can be found in the full version of the paper [18].

7.2 From Population Programs to Machines
Population machines do not have high-level constructs such as loops or procedures, but these
can be implemented as macros using standard techniques. We show only an example here, a
detailed description of the conversion can be found in the full version of the paper [18].

procedure Main
while detect x > 0 do

x 7→ y

swap x, y

⇝

1: detect x > 0
2: IP :=

{ 5 if CF
3 else

3: x 7→ y

4: IP := 1
5: V□ := Vx

6: Vx := Vy

7: Vy := V□

Figure 3 Conversion to a population machine.

Control-flow, i.e. if, while and procedure calls are implemented via direct assignment to
IP, the instruction pointer, as in lines 2 and 4 above. The statements (detect x > 0) and
(x 7→ y) are translated one-to-one, but note that in the population machine their operands
are first translated via the register map. For example, (detect x > 0) in line 1 checks
whether the register pointed to by Vx is nonzero. Correspondingly, swap statements result
in direct modifications to the register map: lines 5-7 swap the pointers Vx and Vy (and leave
the registers they point to unchanged).

7.3 Conversion to Population Protocols
In this section, we only present a simplified version of our construction. In particular, we
make use of multiway transitions to have more than two agents interact at a time. Our actual
construction, described in the full version of the paper [18], avoids them and the associated
overhead.

Let A = (Q, F, F , I) denote a population machine. To convert this into a population
protocol, we use two types of agents: register agents to store the values of the registers, and
pointer agents to store the pointers. For a register we have many identical agents, and the
value of the register corresponds to the total number of those agents. They use states Q. For
each pointer we use a unique agent, storing the value of the pointer in its state; they use
states {Xv : X ∈ F, v ∈ FX}.

Let X1, ..., X|F | denote some enumeration of F with X|F | = IP, and let vi denote the
initial value of Xi. We use X1 as initial state of the protocol. To goal is to have a unique
agent for each pointer, so we implement a simple leader election. We use ∗ as wildcard.

X∗
i , X∗

i 7→ Xvi
i , X

vi+1
i+1 IP∗, IP∗ 7→ Xv1

1 , x

with i ∈ {1, ..., |F | − 1}. If two agents store the value of a single pointer, they eventually
meet and one of them is moved to another state. When this happens, the computation is



P. Czerner 17:15

restarted – but note that the values of the registers are not reset. Eventually, the protocol
will thus reach a configuration with exactly one agent in Xvi

i , for each i, and the remaining
agents in Q.

Starting from this configuration, the instructions can be executed. We illustrate the
mapping from instructions to transitions in the following example:

1: x 7→ y

2: detect x > 0
3: IP :=

{ 1 if CF
4 else

4: OF := ¬CF

⇝

IP1, V v
x , V w

y , v 7→ IP2, V v
x , V w

y , w for v, w ∈ Q

IP2, CF∗, V v
x , v 7→ IP3, CF true, V v

x , v for v ∈ Q

IP2, CF∗, V v
x , w 7→ IP3, CF false, V v

x , w for w ̸= v

IP3, CF true 7→ IP1, CF true

IP3, CF false 7→ IP4, CF false

IP4, OF∗, CF true 7→ IP5, OF false, CF true

IP4, OF∗, CF false 7→ IP5, OF true, CF false

Figure 4 Converting instructions into transitions.

For example, in line 1 we want to move one agent from x to y and set the instruction
pointer to 2 (from 1). Recall that the registers map to states of the population protocol via
the register map, stored in pointers Vx, where x ∈ Q is a register. We thus have the following
agents initiating the transition:

IP1; the agents storing the instruction pointer currently stores the value 1,
V v

x ; the register x ∈ Q is currently mapped to state v ∈ Q,
v; an agent in state v, i.e. representing one unit in register x,
V w

y ; register y is mapped to state w.
The transition then moves v to state w, and increments the instruction pointer.

The above protocol does not come to a consensus. For this to happen, we use a standard
output broadcast: we add a single bit to all states. In this bit an agent stores its current
opinion. When any agent meets the pointer agent of the output flag OF , the former will
assume the opinion of the latter. Eventually, the value of the output flag has stabilised and
will propagate throughout the entire population, at which point a consensus has formed.

8 Robustness of Threshold Protocols

A major motivation behind the construction of succinct protocols for threshold predicates is
the application to chemical reactions. In this, as in other environments, computations must
be able to deal with errors. Prior research has considered self-stabilising protocols [8, 16, 15].
Such a protocol must converge to a desired output regardless of the input configuration.
However, it is easy to see that no population protocol for e.g. a threshold predicate can
be self-stabilising (and prior research has thus focused on investigating extensions of the
population protocol model).

In our definition of population programs, the program cannot rely on any guarantees
about its input configuration, so they are self-stabilising by definition. However, when we
convert to population protocols, we retain only a slightly weaker property, defined as follows:

▶ Definition 7. Let PP = (Q, δ, I, O) denote a population protocol deciding φ with |I| = 1.
We say that PP is almost self-stabilising, if every fair run starting at a configuration C ∈ NQ

with C(I) ≥ |Q| stabilises to φ(|C|).

DISC 2024



17:16 Population Protocols Decide Double-Exponential Thresholds

So the initial configuration can be almost arbitrary, but it must contain a small number
of agents in the initial state. In many contexts, this is a mild restriction. In a chemical
reaction, for example, the number of agents (i.e. the number of molecules) is many orders of
magnitude larger than the number of states (i.e. the number of species of molecules).

In particular, this is also much stronger than any prior construction. All known protocols
for threshold predicates are 1-aware [14], and can thus be made to accept by placing a single
agent in an accepting state.

▶ Theorem 2. The protocols of Theorem 1 are almost self-stabilising.

9 Conclusions

We have shown an O(log log n) upper bound on the state complexity of threshold predicates
for leaderless population protocols, closing the last remaining gap. Our result is based on
a new model, population programs, which enable the specification of leaderless population
protocols using structured programs.

As defined, our model of population programs can only decide unary predicates and it
seems impossible to decide even quite simple remainder predicates (e.g. “is the total number
of agents even”). Is this a fundamental limitation, or simply a shortcoming of our specific
choices? We tend towards the latter, and hope that other very succinct constructions for
leaderless population protocols can make use of a similar approach.

Our construction is almost self-stabilising, which shows that it is possible to construct
protocols that are quite robust against addition of agents in arbitrary states. A natural next
step would be to investigate the removal of agents: can a protocol provide guarantees in the
case that a small number of agents disappear during the computation?

Threshold predicates can be considered the most important family for the study of space
complexity, as they are the simplest way of encoding a number into the protocol. The precise
space complexity of other classes of predicates, however, is still mostly open. The existing
results generalise somewhat; the construction presented in this paper, for example, can also
be used to decide φ(x) ⇔ x = k for k ≥ 22n with O(n) states. As mentioned, there also exist
succinct constructions for arbitrary predicates, but – to the extent of our knowledge – it is
still open whether, for example, φ(x) ⇔ x = 0 (mod k) can be decided for k ≥ 22n , both
with and without leaders.

References

1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-
space trade-offs in population protocols. In Philip N. Klein, editor, Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19, pages 2560–2579. SIAM, 2017. doi:10.1137/1.
9781611974782.169.

2 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population
protocols. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018,
pages 2221–2239. SIAM, 2018. doi:10.1137/1.9781611975031.144.

3 Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast and exact majority in population
protocols. In Chryssis Georgiou and Paul G. Spirakis, editors, Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,
Spain, July 21 - 23, 2015, pages 47–56. ACM, 2015. doi:10.1145/2767386.2767429.

https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611975031.144
https://doi.org/10.1145/2767386.2767429


P. Czerner 17:17

4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. In PODC, pages 290–299. ACM, 2004.
doi:10.1145/1011767.1011810.

5 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Comput., 18(4):235–253, 2006.
doi:10.1007/S00446-005-0138-3.

6 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols
with a leader. Distributed Comput., 21(3):183–199, 2008. doi:10.1007/S00446-008-0067-Z.

7 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Comput., 20(4):279–304, 2007. doi:10.1007/
S00446-007-0040-2.

8 Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. Self-stabilizing population
protocols. In James H. Anderson, Giuseppe Prencipe, and Roger Wattenhofer, editors,
Principles of Distributed Systems, 9th International Conference, OPODIS 2005, Pisa, Italy,
December 12-14, 2005, Revised Selected Papers, volume 3974 of Lecture Notes in Computer
Science, pages 103–117. Springer, 2005. doi:10.1007/11795490_10.

9 Stav Ben-Nun, Tsvi Kopelowitz, Matan Kraus, and Ely Porat. An O(log3/2 n) parallel time
population protocol for majority with O(log n) states. In Yuval Emek and Christian Cachin,
editors, PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event,
Italy, August 3-7, 2020, pages 191–199. ACM, 2020. doi:10.1145/3382734.3405747.

10 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. A population protocol for exact majority with o(log5/3 n) stabilization time and
theta(log n) states. In Ulrich Schmid and Josef Widder, editors, 32nd International Symposium
on Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume
121 of LIPIcs, pages 10:1–10:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.DISC.2018.10.

11 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. Time-space trade-offs in population protocols for the majority problem. Distributed
Comput., 34(2):91–111, 2021. doi:10.1007/s00446-020-00385-0.

12 Andreas Bilke, Colin Cooper, Robert Elsässer, and Tomasz Radzik. Population protocols for
leader election and exact majority with o(logˆ2 n) states and o(logˆ2 n) convergence time.
CoRR, abs/1705.01146, 2017. arXiv:1705.01146.

13 Michael Blondin, Javier Esparza, Blaise Genest, Martin Helfrich, and Stefan Jaax. Succinct
population protocols for Presburger arithmetic. In STACS, volume 154 of LIPIcs, pages
40:1–40:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.
STACS.2020.40.

14 Michael Blondin, Javier Esparza, and Stefan Jaax. Large flocks of small birds: On the minimal
size of population protocols. In STACS, volume 96 of LIPIcs, pages 16:1–16:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.STACS.2018.16.

15 Janna Burman, Ho-Lin Chen, Hsueh-Ping Chen, David Doty, Thomas Nowak, Eric E. Severson,
and Chuan Xu. Time-optimal self-stabilizing leader election in population protocols. In Avery
Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium
on Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021, pages 33–44.
ACM, 2021. doi:10.1145/3465084.3467898.

16 Shukai Cai, Taisuke Izumi, and Koichi Wada. How to prove impossibility under global fairness:
On space complexity of self-stabilizing leader election on a population protocol model. Theory
Comput. Syst., 50(3):433–445, 2012. doi:10.1007/s00224-011-9313-z.

17 Ho-Lin Chen, Rachel Cummings, David Doty, and David Soloveichik. Speed faults in
computation by chemical reaction networks. Distributed Comput., 30(5):373–390, 2017.
doi:10.1007/s00446-015-0255-6.

18 Philipp Czerner. Breaking through the ω(n)-space barrier: Population protocols decide
double-exponential thresholds, 2024. arXiv:2204.02115.

DISC 2024

https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1007/S00446-005-0138-3
https://doi.org/10.1007/S00446-008-0067-Z
https://doi.org/10.1007/S00446-007-0040-2
https://doi.org/10.1007/S00446-007-0040-2
https://doi.org/10.1007/11795490_10
https://doi.org/10.1145/3382734.3405747
https://doi.org/10.4230/LIPIcs.DISC.2018.10
https://doi.org/10.1007/s00446-020-00385-0
https://arxiv.org/abs/1705.01146
https://doi.org/10.4230/LIPICS.STACS.2020.40
https://doi.org/10.4230/LIPICS.STACS.2020.40
https://doi.org/10.4230/LIPICS.STACS.2018.16
https://doi.org/10.1145/3465084.3467898
https://doi.org/10.1007/s00224-011-9313-z
https://doi.org/10.1007/s00446-015-0255-6
https://arxiv.org/abs/2204.02115


17:18 Population Protocols Decide Double-Exponential Thresholds

19 Philipp Czerner and Javier Esparza. Lower bounds on the state complexity of population
protocols. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21:
ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,
2021, pages 45–54. ACM, 2021. doi:10.1145/3465084.3467912.

20 Philipp Czerner, Javier Esparza, and Jérôme Leroux. Lower bounds on the state complexity
of population protocols. CoRR, 2021. doi:10.48550/arXiv.2102.11619.

21 David Doty, Mahsa Eftekhari, Leszek Gasieniec, Eric E. Severson, Przemyslaw Uznanski,
and Grzegorz Stachowiak. A time and space optimal stable population protocol solving
exact majority. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1044–1055. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00104.

22 Moez Draief and Milan Vojnovic. Convergence speed of binary interval consensus. SIAM J.
Control. Optim., 50(3):1087–1109, 2012. doi:10.1137/110823018.

23 Javier Esparza. Decidability and complexity of petri net problems - an introduction. In
Wolfgang Reisig and Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, the volumes are based on the Advanced Course on Petri Nets, held in
Dagstuhl, September 1996, volume 1491 of Lecture Notes in Computer Science, pages 374–428.
Springer, 1996. doi:10.1007/3-540-65306-6_20.

24 Jérôme Leroux. State complexity of protocols with leaders. In Alessia Milani and Philipp
Woelfel, editors, PODC ’22: ACM Symposium on Principles of Distributed Computing, Salerno,
Italy, July 25 - 29, 2022, pages 257–264. ACM, 2022. doi:10.1145/3519270.3538421.

25 Richard J. Lipton. The reachability problem requires exponential space. Technical report, Yale
University, Dept. of CS, 1976. URL: http://www.cs.yale.edu/publications/techreports/
tr63.pdf.

26 Yves Mocquard, Emmanuelle Anceaume, James Aspnes, Yann Busnel, and Bruno Sericola.
Counting with population protocols. In D. R. Avresky and Yann Busnel, editors, 14th IEEE
International Symposium on Network Computing and Applications, NCA 2015, Cambridge,
MA, USA, September 28-30, 2015, pages 35–42. IEEE Computer Society, 2015. doi:10.1109/
NCA.2015.35.

27 Yves Mocquard, Emmanuelle Anceaume, and Bruno Sericola. Optimal proportion computation
with population protocols. In Alessandro Pellegrini, Aris Gkoulalas-Divanis, Pierangelo
di Sanzo, and Dimiter R. Avresky, editors, 15th IEEE International Symposium on Network
Computing and Applications, NCA 2016, Cambridge, Boston, MA, USA, October 31 - November
2, 2016, pages 216–223. IEEE Computer Society, 2016. doi:10.1109/NCA.2016.7778621.

28 Etienne Perron, Dinkar Vasudevan, and Milan Vojnovic. Using three states for binary
consensus on complete graphs. In INFOCOM 2009. 28th IEEE International Conference on
Computer Communications, Joint Conference of the IEEE Computer and Communications
Societies, 19-25 April 2009, Rio de Janeiro, Brazil, pages 2527–2535. IEEE, 2009. doi:
10.1109/INFCOM.2009.5062181.

https://doi.org/10.1145/3465084.3467912
https://doi.org/10.48550/arXiv.2102.11619
https://doi.org/10.1109/FOCS52979.2021.00104
https://doi.org/10.1109/FOCS52979.2021.00104
https://doi.org/10.1137/110823018
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1145/3519270.3538421
http://www.cs.yale.edu/publications/techreports/tr63.pdf
http://www.cs.yale.edu/publications/techreports/tr63.pdf
https://doi.org/10.1109/NCA.2015.35
https://doi.org/10.1109/NCA.2015.35
https://doi.org/10.1109/NCA.2016.7778621
https://doi.org/10.1109/INFCOM.2009.5062181
https://doi.org/10.1109/INFCOM.2009.5062181


On the Limits of Information Spread by
Memory-Less Agents
Niccolò D’Archivio #

COATI, INRIA d’Université Côte d’Azur, Sophia-Antipolis, France

Robin Vacus #

Bocconi Institute for Data Science and Analytics, Bocconi University, Milan, Italy

Abstract
We address the self-stabilizing bit-dissemination problem, designed to capture the challenges of
spreading information and reaching consensus among entities with minimal cognitive and communic-
ation capacities. Specifically, a group of n agents is required to adopt the correct opinion, initially
held by a single informed individual, choosing from two possible opinions. In order to make decisions,
agents are restricted to observing the opinions of a few randomly sampled agents, and lack the ability
to communicate further and to identify the informed individual. Additionally, agents cannot retain
any information from one round to the next. According to a recent publication by Becchetti et al. in
SODA (2024), a logarithmic convergence time without memory is achievable in the parallel setting
(where agents are updated simultaneously), as long as the number of samples is at least Ω(

√
n log n).

However, determining the minimal sample size for an efficient protocol to exist remains a challenging
open question. As a preliminary step towards an answer, we establish the first lower bound for this
problem in the parallel setting. Specifically, we demonstrate that it is impossible for any memory-less
protocol with constant sample size, to converge with high probability in less than an almost-linear
number of rounds. This lower bound holds even when agents are aware of both the exact value
of n and their own opinion, and encompasses various simple existing dynamics designed to achieve
consensus. Beyond the bit-dissemination problem, our result sheds light on the convergence time of
the “minority” dynamics, the counterpart of the well-known majority rule, whose chaotic behavior is
yet to be fully understood despite the apparent simplicity of the algorithm.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains;
Theory of computation → Distributed algorithms

Keywords and phrases Opinion Dynamics, Consensus Protocols, Collective Animal Behavior, Lower
Bound

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.18

Related Version Full Version: https://arxiv.org/abs/2402.11553

Funding Niccolò D’Archivio: This work has been supported by the AID INRIA-DGA project
n°2023000872 “BioSwarm”.

Acknowledgements The authors would like to thank Andrea Clementi for his feedback, and Amos
Korman for helpful comments and coming up with the minority dynamics. Thanks also to Luca
Trevisan for preliminary discussions, and for everything else.

1 Introduction

Exploring the computational power and limits of well-chosen models – ones that are simple
enough for analytical tractability, and yet relevant to specific biological scenarios – can lead to
insightful conclusion about the functioning of biological distributed systems [1, 18, 16, 20, 11].
In line with this approach, we consider the bit-dissemination problem, introduced in [9] in
order to evaluate the possibility to solve two fundamental problems concurrently: reaching
agreement efficiently, while ensuring that an information possessed initially by a single

© Niccolò D’Archivio and Robin Vacus;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 18; pp. 18:1–18:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:niccolo.darchivio@inria.fr
https://orcid.org/0009-0005-9491-2928
mailto:robin.vacus@gmail.com
https://orcid.org/0000-0002-7368-4912
https://doi.org/10.4230/LIPIcs.DISC.2024.18
https://arxiv.org/abs/2402.11553
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 On the Limits of Information Spread by Memory-Less Agents

individual is propagated to the whole group. In order to fit biological scenarios, the problem
features extremely constrained communications. Agents engage in random interactions with
just a few individuals at a time, as in the PULL model. Furthermore, they can only disclose
their current decision and no other information, following an assumption introduced in [23]
to model situations in which individuals do not actively communicate [14].

In this paper, we further restrict attention to memory-less entities lacking the ability to
perform computations over extended periods of time; or at least not in a sufficiently reliable
manner. In particular, this assumption precludes the possibility to maintain clocks and
counters, or to estimate the tendency of the dynamics. Biological ensembles for which it is
plausible include ant colonies [17], slime molds, cells and bacteria [24] or even plants [29].

Although it is always hard to rule out the possibility that species make use of memory
(especially in the case of social insects), this modeling choice remains applicable even without
presupposing specific cognitive abilities, as many species often stick to simple behavioral rules
when attempting to reach a consensus, such as quorum sensing [28] or alignment rules [30].
Furthermore, our goal is not to focus on one truly realistic model, but rather to find out
what are the minimal requirements to perform certain tasks.

Informal description of the problem

More precisely, we consider a group of n agents holding binary opinions. One of the agents,
referred to as the source, knows what opinion is “correct” and remains with it at all times.
Execution proceeds in discrete rounds. We assume that agents have no memory of what
happened in previous rounds, besides their current opinion. In the parallel setting, all
non-source agents are activated simultaneously in every round, while in the sequential setting,
only one non-source agent, selected uniformly at random, is activated. Upon activation, a
non-source agent i samples a set S consisting of ℓ other agents drawn uniformly at random
(with replacement1). Then, based only on the opinions of the agents in S and on its own
opinion, Agent i may choose to adopt a new opinion. In particular, Agent i does not know
whether or not S contains the source. A protocol is successful if every non-source agent
eventually adopts the correct opinion and remains with it forever. Finally, a protocol must
converge independently of the initial opinions of the agents (including the correct opinion),
which can be thought of as being chosen by an adversary.

Previous works

The main parameters of the problems are the activation pattern (which may be parallel
or sequential) and the sample size ℓ. To compare protocols across various settings, we are
typically interested in their convergence time, i.e., the total number of activations required
to reach consensus w.r.t. the correct opinion. Here, we will express the convergence time in
terms of parallel rounds: one parallel round is made up of n activations, which corresponds
to 1 round in the parallel setting and n rounds in the sequential setting (although the two
settings are not equivalent).

The bit-dissemination problem without memory was first studied in [5], in the sequential
setting, where nearly matching lower and upper bounds are given. On the one hand, the
authors show that no protocol can converge in less than Ω(n) parallel rounds in expectation,
regardless of the sample size. On the other hand, they show that the well-known Voter

1 Note that when ℓ ≪ n, sampling with and without replacement are essentially equivalent, and we choose
the former for the sake of convenience.



N. D’Archivio and R. Vacus 18:3

dynamics (Algorithm 1 in Appendix A) achieves consensus in O(n log2 n) parallel rounds
with high probability. Since the Voter dynamics only needs the sample size to be 1, these
results imply that ℓ is not a critical parameter in the sequential setting.

Later, the authors of [7] show that the aforementioned lower bound does not hold
in the parallel setting. In fact, they show that the minority dynamics (Algorithm 2 in
Appendix A) converges in O(log2 n) parallel rounds w.h.p., as long as the sample size is at
least Ω(

√
n log n). This finding reveals that the best convergence times achievable in the

sequential versus parallel settings differ by an exponential factor. The bit-dissemination
problem is all the more interesting to study as it is one of the most natural ones exhibiting
this property.

Part of the explanation behind this curious phenomenon is that the stochastic processes
involved are of different mathematical natures, in one setting compared to the other. In
the sequential setting, the number of agents with opinion 1 may only vary by at most one
unit in every round, since only one agent is activated at a time. Therefore, independently
of the protocol being operated, the evolution of the system can always be described by a
“birth-death” chain, i.e., a Markov chain whose underlying graph is a path of size n. In
fact, all proofs in [5] heavily rely on this observation. In contrast, in the parallel setting,
the process may jump from any configuration to any other – albeit with extremely small
probability. On the one hand, this characteristic allows for fast convergence. For instance,
qualitatively speaking, the minority dynamics succeeds by first reaching a configuration
in which an appropriate proportion of the agents hold the wrong opinion; after what all
non-source agents, perceiving the same minority, simultaneously adopt the correct opinion.
On the other hand, it complicates the analysis of any protocol in the parallel setting, and
even more so the task of deriving lower bounds. Following on from these works, we are
ultimately interested in the following question:

Is there any protocol achieving a poly-logarithmic convergence time in the parallel setting,
when the sample size is o(

√
n)?

Based on the findings in [7], the minority dynamics is a natural candidate for this task.
Despite its extreme simplicity, the conditions under which it is able to converge quickly have
not been identified. While the analysis in [7] relies on a sample size of at least Ω(

√
n log n), the

authors do not provide a lower bound for this parameter, nor do they justify informally why
this quantity is necessary. Therefore, we also consider the following independent question.

What is the minimal sample size for which the minority dynamics
converges in poly-logarithmic time?

As a first step towards answering these questions, we focus on the case that the sample
size ℓ is constant, or in other words, independent of n. Beyond analytical tractability, several
reasons motivate this assumption. First, many existing opinion dynamics that have been
traditionally studied in the context of consensus are defined with a small (fixed) number of
samples [6]. This is the case for the Voter dynamics and majority dynamics, but also for the
undecided states dynamics, as well as all population protocols [2], in which agents interact
by pairs. In addition, protocols relying on a sample size that increases with n implicitly
require the agents to have some knowledge about the size of the population, which is often
undesirable or unrealistic in distributed systems. Finally, real biological entities are most
likely interacting with few of their conspecifics even when they are part of a larger group.
As an illustration, it has been shown empirically that the movement of any bird in a flock
depends mostly on its 6 or 7 closest neighbors, regardless of how many individuals are present
in the vicinity [3, 8], while other works point at a similar phenomenon in fishes [22].

DISC 2024



18:4 On the Limits of Information Spread by Memory-Less Agents

1.1 Problem Definition
We consider a finite set I = {1, . . . , n} of agents. Let X

(i)
t ∈ {0, 1} be the opinion of Agent i

in round t. We assume that Agent 1 is the source and holds the correct opinion throughout
the execution. Denoting the sample size by ℓ (independent of n), a protocol P is defined as
a family of functions

g[b]
n : {0, . . . , ℓ} → [0, 1].

For a given population size n, an opinion b, and a sample of opinions containing k ’1’ out
of ℓ, g

[b]
n (k) gives the probability that an agent adopts opinion 1 in the next round when

operating the corresponding protocol. Specifically, the process is obtained by performing the
following two steps for every agent i simultaneously, in every round t:
1. A vector S

(i)
t ∈ Iℓ of size ℓ is sampled uniformly at random (u.a.r.) (the same agent may

appear several times in S
(i)
t , and i may appear in it as well).

2. Writing k
(i)
t to denote the number of agents with opinion 1 in S

(i)
t , Agent i updates its

opinion according to

X
(i)
t+1 ← 1 with probability g

[
X

(i)
t

]
n (k(i)

t ), 0 otherwise.

For the sake of clarity, we note a few important consequences of this definition.
Non-source agents do not know where the opinions that they observe come from. In
particular, they do not know if S

(i)
t contains the source.

Non-source agents do not have identifiers, or in other words, all of them must run exactly
the same update rule. They are also not aware of the round number (indices are used for
analysis purposes only).
However, non-source agents are aware of their current opinion, as well as the exact value
of n.
Besides their opinion, non-source agents have no memory, in the sense that their behavior
cannot depend on any information from previous rounds.

Since agents have no memory besides their opinion, and no identifiers, the configuration of
the system in round t can be described simply by a pair (z, Xt), where z ∈ {0, 1} denotes
the correct opinion, and Xt ∈ {0, . . . , n} denotes the number of agents with opinion 1. For
a given n ∈ N, and an initial configuration C = (z, X0), we define the convergence time
of protocol P as the first round for which all agents have adopted the correct opinion and
remain with it forever, that is:

τn(P, C) := inf{t ≥ 0, for every s ≥ t, Xs = n · z}.

Given a sequence of events {An}n∈N, we say that “An happens with high probability (w.h.p.)”
if P(An) = 1− 1/nΩ(1).

1.2 Our Results
We show that, when the sample size is bounded, any protocol that does not have access to
memory needs almost-linear time to solve the bit-dissemination problem.

▶ Theorem 1. Assume that the sample size ℓ is constant. For every protocol P, there exists
a sequence of initial configuration Cn such that for every ε > 0, the convergence time of P is
greater than n1−ε w.h.p.:

P
[
τn(P, Cn) < n1−ε

]
= 1

nΩ(1) .



N. D’Archivio and R. Vacus 18:5

To the best of our knowledge, this is the first non-trivial lower-bound for this problem in the
parallel setting. The proof of Theorem 1 is presented in Section 4, and uses a general result
on Markov chains, described in Section 3, as a black box. It consists in studying a kind of
“characteristic” function, defined as

Fn(p) := −p +
ℓ∑

k=0

(
ℓ

k

)
pk(1− p)ℓ−k

(
p g[1]

n (k) + (1− p) g[0]
n (k)

)
. (1)

The sum in Equation (1) corresponds to the probability that a non-source agent, taken
uniformly at random, adopts opinion 1, given that the current proportion of agents with
opinion 1 is p. Informally, Fn(p) measures the “bias” of a protocol P towards opinion 1, or
in other words:

IE
(

Xt+1

n
| Xt = xt

)
≈ xt

n
+ Fn

(xt

n

)
(see Proposition 5 for a more accurate statement). As a consequence, the sign of the function
at p provides information on the trend of the dynamics when the proportion of agents with
opinion 1 is p; moreover, roots correspond to fixed points of the dynamics (either stable or
unstable).

Similar functions have already been defined in the literature, where they are typically
used to obtain two types of results. On the one hand, they can be used to identify phase
transitions [12, 13]. For example, when such characteristic function depends on a parameter α,
there might be a critical value α⋆ at which a new root appears. In that case, the behavior
of the dynamics below and above α⋆ can be significantly different. On the other hand, if a
characteristic function has a constant sign over a large interval (and under some additional
conditions), the dynamics cannot easily travel in the opposite direction, which can be
exploited to obtain lower bounds on the convergence time [12].

In this paper, we use function Fn yet in another way. Specifically, we leverage the fact
that a bound on the sample size ℓ implies a bound on the degree of Fn, and therefore a bound
on the number of roots within the interval [0, 1]. Then, we consider a well-chosen interval
of constant length between two roots of Fn, and employ the aforementioned argument to
obtain a lower bound: if Fn is negative on this interval, i.e., P tends to make the proportion
of 1-opinions decrease, we show that the process will be slow to reach consensus every time
the correct opinion is 1. Conversely, if it is positive, we show that fast convergence fails
whenever the correct opinion is 0.

In terms of the dependency on n, we show that our lower bound is nearly tight (up to a
sub-polynomial factor) by adapting a well-known result to our setting. Its proof does not
introduce any novel argument and is deferred to Appendix C.

▶ Theorem 2. Consider the Voter dynamics Pvoter, with sample size ℓ = 1. For every
sequence of initial configuration Cn, the convergence time of Pvoter is less than 2n log n

w.h.p.:

P
[
τn(P, Cn) ≤ 2n log n

]
≥ 1− 1

n2 .

When it comes to parameter ℓ, a gap remains between our lower bound and the upper bound
in [7], where it is shown that the minority dynamics solves the problem in O(log2 n) rounds
w.h.p. when ℓ is at least Ω(

√
n log n).

Unfortunately, we believe that our techniques cannot be used to extend the lower bound
to a higher value of ℓ. Indeed, if ℓ = Ω(log n), it is already possible for a protocol to converge
in just one round w.h.p. from configurations that are arbitrarily far away from the consensus.

DISC 2024



18:6 On the Limits of Information Spread by Memory-Less Agents

This observation destroys any hope of restricting the analysis to a small interval of the
configuration space. In contrast, this phenomenon does not happen w.h.p. in our setting (see
Proposition 4). However, we have no good reason to think that Θ(

√
n log n) is the smallest

value of ℓ allowing for an efficient protocol (such as the minority dynamics) – this is left as
an open problem.

1.3 Other Related Works
The bit-dissemination problem was also studied under the assumption that agents can use
a moderate amount of memory. An efficient protocol is identified in [23], and achieves
consensus in O(polylog n) parallel rounds with high probability. It relies on agents being able
to memorize log log n bits of information from one round to the next and requires a sample
size logarithmic in n. Other candidates are mentioned in [9] but are not analysed. The
authors of [15] show that the problem can be solved in the context of population protocols
with a memory of only constant size. Importantly however, population protocols do not
fit the framework of passive communications. Specifically, interaction rules in this model
depend on the exact states of the agents, and not just on their binary opinion.

The bit-dissemination problem is a specific case of the majority bit-dissemination problem,
introduced in [9] and also addressed in [15]. In this variant, the number of source agents is
arbitrarily large, and they may have conflicting preferences. The opinions of sources must
not necessarily be in line with their preferences, and they can participate to the protocol
in the same way as regular agents. The correct opinion is defined as the most widespread
preference among sources. On the one hand, an efficient solution can be derived from the
results in [15, 4], but require active communications, and relies on memory. On the other
hand, the authors of [23] show that the majority bit-dissemination problem is impossible
with passive communications.

More generally, many works within the opinion dynamics literature investigate the
influence of the presence of “stubborn” or “biased” agents on the behaviour of the system.
Typically, these works focus on a single arbitrary process, mainly the Voter dynamics [27,
31, 19, 26, 25], and to the best of our knowledge, do not establish general lower bounds.
In contrast, our goal is to better understand the difficulty of spreading information as an
algorithmic problem; therefore, we do not want to rule out any imaginable protocol within
the constraints of our setting. Furthermore, they often investigate different questions, such
as the impact of the number of sources or they position in the network on the convergence
time, or assume that sources may have conflicting opinions.

2 Preliminaries

In this section, we make a few general observations that we will use later in our analysis. We
assume that ℓ is a constant w.r.t. n.

Conditioning on Agent i sampling exactly k times the opinion “1”, for every k ∈ {0, . . . , ℓ},
we obtain that

P
(

X
(i)
t+1 = 1 | Xt = xt, X

(i)
t = b

)
=

ℓ∑
k=0

(
ℓ

k

)(xt

n

)k (
1− xt

n

)ℓ−k

g[b]
n (k). (2)

After convergence has happened, i.e., Xt ∈ {0, n}, this probability must be equal to 0 or 1
respectively so that a consensus is maintained. This imposes a constraint on any protocol
attempting to solve the bit-dissemination problem, which can be formalized as follows.



N. D’Archivio and R. Vacus 18:7

▶ Proposition 3. Any protocol P solving the bit-dissemination problem must satisfy g
[0]
n (0) = 0

and g
[1]
n (ℓ) = 1.

Proof. Consider the case that the correct opinion z = 0. If Xt = 0 for some round t, then
each agent has opinion 0, and receives exactly 0 samples equal to ’1’. Following the protocol,
all agents adopt opinion 1 in the next round w.p. g

[0]
n (0) independently of each-other. If

g
[0]
n (0) > 0, then

P (Xt+1 = 0 | Xt = 0) =
∏
i≥2

P
(

X
(i)
t+1 = 0 | Xt = 0

)
=
(

1− g[0]
n (0)

)n−1
< 1.

Therefore, inf{t ≥ 0, for every s ≥ t, Xs = 0} = +∞ almost surely, and the protocol cannot
solve the bit-dissemination problem in the sense of Section 1.1. By symmetry, we obtain the
other statement about g

[1]
n (ℓ), which concludes the proof of Proposition 3. ◀

Accordingly, we will always assume that g
[0]
n (0) = 0 and g

[1]
n (ℓ) = 1. Using this assumption,

we can show a general upper bound on the fraction of agents with opinion 0 that can change
opinion in a single time step.

▶ Proposition 4. Let c ∈ (0, 1) and consider a protocol P solving the bit-dissemination
problem. There is a constant y = y(c, ℓ) ∈ (c, 1) s.t. for every n large enough, and xt ≤ c n,

P (Xt+1 ≤ y n | Xt = xt) ≥ 1− exp
(
−2 n−1/2

)
.

Proof. Let t ∈ N, and xt ≤ cn. By Equation (2), and since we assumed g
[0]
n (0) = 0,

P
(

X
(i)
t+1 = 0 | Xt = xt, X

(i)
t = 0

)
= 1−

ℓ∑
k=0

(
ℓ

k

)(xt

n

)k (
1− xt

n

)ℓ−k

g[0]
n (k)

=
ℓ∑

k=0

(
ℓ

k

)(xt

n

)k (
1− xt

n

)ℓ−k (
1− g[0]

n (k)
)

≥
(

1− xt

n

)ℓ

≥ (1− c)ℓ.

Let Y be the number of agents with opinion 0 in round t, that keep opinion 0 in round t + 1
(conditioning on Xt = xt). By assumption, n−Xt ≥ (1− c)n, so the last equation implies
the following domination2:

Y ⪰ Binomial
(
(1− c)n, (1− c)ℓ

)
:= Z.

Let a = a(c, ℓ) := (1− c)ℓ+1, so that IE (Z) = an. Let a′ := a− n−1/4. For n large enough,
we have a′ > a/2. By Hoeffding’s bound, we have

P
(

Z ≤ an

2

)
≤ P (Z ≤ a′n) = P

(
Z ≤ IE(Z)− n3/4

)
≤ exp

(
−2n1/2

)
.

Finally, setting y = y(c, ℓ) := max(1− a/2, c) (so that y ∈ (c, 1)), we obtain

P (Xt+1 ≥ y n | Xt = xt) ≤ P
(

Y ≤ an

2

)
≤ P

(
Z ≤ an

2

)
≤ exp

(
−2 n1/2

)
,

which concludes the proof of Proposition 4. ◀

2 Given two real-valued random variables X and Y , we say that X is stochastically dominated by Y , and
write X ⪯ Y , if for every x ∈ R, P(X > x) ≤ P(Y > x).

DISC 2024



18:8 On the Limits of Information Spread by Memory-Less Agents

Finally, the following proposition justifies the informal claim made in Section 1.2 according
to which the function Fn, defined in Equation (1), represents the “bias” of the corresponding
protocol towards opinion 1.

▶ Proposition 5. For every protocol P, and every xt ∈ [n],

IE (Xt+1 | Xt = xt) ≤ xt + n Fn

(xt

n

)
+ 1, (3)

IE (Xt+1 | Xt = xt) ≥ xt + n Fn

(xt

n

)
− 1. (4)

Proof. For a non-source agent i ∈ I \ {1}, an opinion b ∈ {0, 1}, and any p ∈ [0, 1], let

Pb := P
(

X
(i)
t+1 = 1 | Xt = np, X

(i)
t = b

)
=

ℓ∑
k=0

(
ℓ

k

)
pk(1− p)ℓ−kg[b]

n (k),

where the second equality is a restatement of Equation (2). Note that by definition of Fn,

Fn(p) = p P1 + (1− p)P0 − p. (5)

Denoting by z the correct opinion, one can check that there are Xt − z non-source agents
with opinion 1 in round t, and n−Xt − (1− z) non-source agents with opinion 0. Hence,

IE (Xt+1 | Xt = np) = z + (np− z)P1 +
(
n− np− (1− z)

)
P0

= n
(
pP1 + (1− p)P0

)
+ z(1− P1)− (1− z)P0

= np + n Fn(p) + z(1− P1)− (1− z)P0. (by Equation (5))

Note that for any source opinion z ∈ {0, 1}, since P0, P1 ∈ [0, 1], we have

−1 ≤ z(1− P1)− (1− z)P0 ≤ +1,

from which Equations (3) and (4) follow by taking p := xt/n. ◀

3 An Intermediate Result on Markov Chains

In this section, we present a result that we will use later as a black box (with a1, a2, a3 ∈ [0, 1]).
Informally, the theorem says that if a Markov chain is a super-martingale over an interval of
values, and given that it cannot skip the interval entirely, then the time required to cross the
interval is at least the time needed by a martingale to escape it.

▶ Theorem 6. Let {Xt}t∈N be a Markov chain on Z and ε > 0. If there are a1 < a2 < a3 ∈ R
s.t.

(i) for every xt ∈ {⌈a1 n⌉, ..., ⌊a3 n⌋}, IE(Xt+1 | Xt = xt) ≤ xt + 1,
(ii) for every xt < a1 n, P(Xt+1 > a2 n | Xt = xt) = exp

(
−nΩ(1)),

(iii) P(|Xt+1 − IE (Xt+1 | Xt) | > n1/2+ε/4) < 2 exp
(
−2nε/2),

then for X0 = a2+a3
2 · n and n large enough, we have w.h.p.

inf{t ∈ N, Xt ≥ a3 n} ≥ n1−ε.

Proof. Let T = n1−ϵ. Let Yt := Xt − t. We will consider the Doob decomposition of Yt: for
every t ≥ 1, let

A0 := 0 and for all t > 0, At :=
t∑

k=1

[
IE (Yk | Yk−1)− Yk−1

]
,

M0 := Y0 and for all t > 0, Mt := Y0 +
t∑

k=1

[
Yk − IE (Yk | Yk−1)

]
.



N. D’Archivio and R. Vacus 18:9

Figure 1 Sketch of the proof of Theorem 6. (a) By assumption (ii), with high probability,
Yt cannot jump from below a1 n − t to above a2 n − t in a single step, let alone a2 n. (b) In
Claim 7, we use assumption (i) and the properties of the Doob’s decomposition to show that, if
a1 n − t ≤ Yt ≤ Mt, then Yt cannot jump above Mt in a single step. (c) In Claim 8, we use the
Azuma-Hoeffding inequality to show that Mt remains in the interval [a2 n + T, a3 n − T ] for at least
T rounds w.h.p. Overall, (a) (b) and (c) implies that Yt must remain below a3 n − T for at least T

rounds w.h.p., yielding the desired conclusion.

With this definition, one can check that Yt = Mt + At, and that {Mt}t∈N is a martingale.
The main ideas of the proof are depicted on Figure 1.

First, we show that by construction and Assumption (i), Yt can never “jump over” Mt in
one round, as long as it starts from the interval {a1n− t, . . . , a3n− t}.

▷ Claim 7. For every t ∈ N,

Mt ≥ Yt and Yt ∈ {a1n− t, . . . , a3n− t} =⇒ Mt+1 ≥ Yt+1.

Proof. Let yt ∈ {a1n− t, . . . , a3n− t} and mt ≥ yt, and consider the event

E :=
{

Yt = yt∩Mt = mt

}
.

We have

IE (Yt+1 | Yt = yt) = IE (Xt+1 − (t + 1) | Xt = yt + t)
= IE (Xt+1 | Xt = yt + t)− (t + 1)
≤ (yt + t + 1)− (t + 1) (by (i))
= yt.

Therefore,

(At+1 −At | E) =
(

IE (Yt+1 | Yt)− Yt | E
)

= IE (Yt+1 | Yt = yt)− yt ≤ 0.

Since mt ≥ yt, this implies

(At+1 | E) ≤ (At | E) = (Yt −Mt | E) = yt −mt ≤ 0,

and thus,

(Yt+1 | E) = (Mt+1 + At+1 | E) ≤ (Mt+1 | E) ,

which concludes the proof of Claim 7. ◁

DISC 2024



18:10 On the Limits of Information Spread by Memory-Less Agents

Now, using Azuma’s inequality and Assumptions (ii) and (iii), we establish high probability
bounds on the martingale Mt.

▷ Claim 8. With high probability, for every t ≤ T , a2 n + T < Mt < a3 n− T .

Proof. By construction, and since Xt and Yt only differ by a deterministic quantity,

Mt+1 −Mt = Yt+1 − IE (Yt+1 | Yt) = Xt+1 − IE (Xt+1 | Xt) .

By assumption (iii) in the statement, this implies

P
(
|Mt+1 −Mt| > n

1
2 + ε

4

)
≤ 2 exp

(
−2 n

ε
2
)

.

By the union bound,

P
(
∃s ≤ t, |Ms+1 −Ms| > n

1
2 + ε

4

)
≤ 2 t exp

(
−2 n

ε
2
)

.

Let α = (a3 − a2)/4, so that

M0 + α n = X0 + α n = a2 + a3

2 n + α n = a3 n− α n, and M0 − α n = a2 n + α n. (6)

By the Azuma-Hoeffding inequality applied to {Mt}t∈N, we then have for every t ≤ T ,

P (|Mt −M0| > αn) ≤ 2 exp
(
− α2n2

2 t n1+ ε
2

)
+ 2 t exp

(
−2 n

ε
2
)

≤ 2 exp
(
− α2n2

2 T n1+ ε
2

)
+ 2 T exp

(
−2 n

ε
2
)

(since t ≤ T )

= 2 exp
(
−α2

2 · n
ε
2

)
+ 2 T exp

(
−2 n

ε
2
)

. (since T = n1−ε)

By the union bound,

P (∃t ≤ T, |Mt −M0| > αn) ≤ 2T exp
(
−α2

2 · n
ε
2

)
+ 2 T 2 exp

(
−2 n

ε
2
)

= o(n−2). (7)

Finally, note that for n large enough, T = n1−ϵ < α n, and hence,

P (∃t ≤ T, Mt /∈ {a2 n + T, . . . , a3 n− T})
≤ P (∃t ≤ T, Mt /∈ {a2 n + α n, . . . , a3 n− α n})
= P (∃t ≤ T, |Mt −M0| > α n) (by Equation (6))
= o(n−2), (by Equation (7))

which concludes the proof of Claim 8. ◁

Next, we use Claim 7 and Claim 8 and Assumption (ii) of the theorem to show that Yt

can never jump over Mt, with high probability.

▷ Claim 9. With high probability, for every t ≤ T , Mt ≥ Yt.

Proof. We will be conditioning on the two following events:

E1 := {∀t ≤ T, Yt ≤ a1 n− t =⇒ Yt+1 ≤ a2 n− t} ,

E2 := {∀t ≤ T, a2 n + T < Mt < a3 n− T} .



N. D’Archivio and R. Vacus 18:11

Note that E2 happen w.h.p. as a consequence of Claim 8. Moreover,

P(E1) = 1− P

(
T⋃

t=0
{Yt ≤ a1 n− t}∩ {Yt+1 > a2 n− t}

)

= 1− P

(
T⋃

t=0
{Xt ≤ a1 n}∩ {Xt+1 > a2 n}

)

≥ 1−
T∑

t=0
P
(
Xt ≤ a1 n ∩ Xt+1 > a2 n

)
(by the union bound)

≥ 1−
T∑

t=0
P (Xt+1 > a2 n | Xt ≤ a1 n)

≥ 1− T exp
(
−nΩ(1)

)
(by assumption (ii))

≥ 1− o(n−2). (since T = n1−ε)

Hence, E1 also happens w.h.p., and so does E1∩ E2. To conclude the proof, we will show
that

E1∩E2 =⇒ ∀t ≤ T, Mt ≥ Yt. (8)

We will proceed by induction on t. By definition, we have M0 = Y0. Now, let t < T , and
consider the case that E1 and E2 hold, and that Mt ≥ Yt.

If Yt < a1 n− t, we have

Yt+1 ≤
(E1)

a2 n− t ≤ a2 n + T <
(E2)

Mt+1.

Otherwise, by induction hypothesis and E2, we have a1 n−t ≤ Yt ≤Mt < a3n−T < a3n−t.
In this case, Mt+1 ≥ Yt+1 follows as a consequence of Claim 7.

By induction, we deduce that Equation (8) holds, which concludes the proof of Claim 9. ◁

Finally, we are ready to conclude. By Claim 9, with high probability, for every t ≤ T ,
Xt ≤Mt + t. Therefore,

inf{t ∈ N, Xt > a3n} ≥ inf{t ∈ N, Mt > a3n− t} w.h.p.

Moreover, by Claim 8,

inf{t ∈ N, Mt > a3n− t} > T w.h.p.,

which gives the desired result. ◁

By symmetry, the following result can be deduced directly from Theorem 6.

▶ Corollary 10. Let {Xt} be a Markov chain on Z and ε > 0. If there are a1 < a2 < a3 ∈ R
s.t.

(i) for every xt ∈ {⌈a1 n⌉, ..., ⌊a3 n⌋}, IE(Xt+1 | Xt = xt) ≥ xt − 1,
(ii) for every xt > a3 n, P(Xt+1 < a2 n | Xt = xt) = exp(−nΩ(1)),
(iii) P(|Xt+1 − IE (Xt+1 | Xt) | > n1/2+ε/4) < 2 exp

(
−2nε/2),

then for X0 = a1+a2
2 · n and for n large enough, we have w.h.p.

inf{t ∈ N, Xt ≤ a1 n} ≥ n1−ε.

Proof. It is easy to check that if the assumptions of Corollary 10 hold for {Xt}t∈N and
some constants a1 < a2 < a3, then the assumptions of Theorem 6 hold w.r.t. {−Xt}t∈N and
−a3 < −a2 < −a1 respectively – and the conclusion follows. ◀

DISC 2024



18:12 On the Limits of Information Spread by Memory-Less Agents

4 The Main Proof

4.1 The Voter Dynamics
First, we focus on the Voter dynamics (Algorithm 1) and show that it satisfies the lower
bound stated in Theorem 1, which we will prove in its full generality in Section 4.2. We start
by observing that for gvoter defined in Equation (13), and by definition in Equation (1),

F voter
n (p) = −p +

ℓ∑
k=0

(
ℓ

k

)
pk(1− p)ℓ−k · k

ℓ
= −p + p = 0.

Then, we conclude by applying the following result. Due to space constraints, its proof is
deferred to Appendix D.
▶ Lemma 11. Consider a protocol P satisfying Fn = 0 for every n large enough. There
exists a sequence of configurations {Cn} such that for every ϵ > 0, with high probability,

τn(P, Cn) > n1−ε.

4.2 General Case
Our main result (Theorem 1) will follow as a consequence of Theorem 12 below.
▶ Theorem 12. For every ε > 0 and every protocol P, there exists an infinite set S ⊆ N
and a sequence of configurations {Cn} such that for every n ∈ S,

P
(
τn(P, Cn) > n1−ε

)
≥ 1− 1

nΩ(1) .

In other words, the convergence time of P restricted to S is greater than n1−ε w.h.p.
Proof. Recall the definition of Fn in Equation (1). If there is N ∈ N s.t. for every n ≥ N ,
Fn = 0, then we can conclude by applying Lemma 11. Otherwise, there is an infinite
set S0 ⊆ N s.t. for every n ∈ S0, Fn ̸= 0, which we will assume from now on.

By definition in Equation (1), Fn is a polynomial of degree at most ℓ + 1. For n ∈ S0,
let dn be the number of roots of Fn in the interval [0, 1] (counted with multiplicity). By
Proposition 3, g

[0]
n (0) = 0 and g

[1]
n (ℓ) = 1, so Fn(0) = Fn(1) = 0, and thus dn ∈ {2, . . . , ℓ + 1}.

Since dn can only adopt finitely many values, there exists d ∈ {2, . . . , ℓ + 1} and an infinite
set S1 ⊆ S0 s.t. for every n ∈ S1, dn = d.

For n ∈ S1, let 0 = r
(1)
n ≤ . . . ≤ r

(d)
n = 1 be the roots of Fn within the interval [0, 1],

with multiplicity, in increasing order. The sequence
{

(r(1)
n , . . . , r

(d)
n )
}

n∈S1
is bounded in

Rd by definition. Hence, by the Bolzano-Weierstrass theorem, there exists a converging
sub-sequence of

{
(r(1)

n , . . . , r
(d)
n )
}

n∈S1
; i.e., there are 0 = r

(1)
∞ ≤ . . . ≤ r

(d)
∞ = 1 together with

an infinite set S2 ⊆ S1 s.t. for every k ∈ [d],

lim
n→+∞

n∈S2

r(k)
n = r(k)

∞ . (9)

Let k0 := min{k ∈ [d], r
(k)
∞ = 1}. Note that k0 ≥ 2 (since r

(1)
∞ = 0) and by definition,

r
(k0−1)
∞ < 1 = r

(k0)
∞ . Moreover, for every n ∈ S2, Fn is non-zero and has constant sign

on (r(k0−1)
n , r

(k0)
n ). Therefore, there exists an infinite set S3 ⊆ S2 s.t.

1. either ∀n ∈ S3, Fn < 0 on (r(k0−1)
n , r

(k0)
n ),

2. or ∀n ∈ S3, Fn > 0 on (r(k0−1)
n , r

(k0)
n ).

In the remainder of the proof, we will analyse these two cases separately. The reader is
strongly encouraged to consult Figure 2 and 3 respectively for a clearer understanding of the
argument.



N. D’Archivio and R. Vacus 18:13

Figure 2 Illustration of the arguments for Case 1. We consider a configuration in which the
correct opinion is 1. Constant a1 is fixed arbitrarily in the interval (r(k0−1)

∞ , 1) Then, a2 is chosen
according to Proposition 4 to ensure that Xt cannot jump from below a1 n to above a2 n. Finally,
a3 is set anywhere in the interval (a2, 1]. By assumption, Fn < 0 on [a1, a3], and we can eventually
apply Theorem 6.

Case 1

Let a1 ∈ (r(k0−1)
∞ , 1). Let a2 = a2(a1, ℓ) ∈ (a1, 1) given by Proposition 4, s.t. for n large

enough,

for every xt ≤ a1 n, P(Xt+1 ≤ a2 n | Xt = xt) ≥ 1− exp(−2 n−1/2).

Let a3 ∈ (a2, 1). By Equation (9), for n large enough, r
(k0−1)
n < a1 and r

(k0)
n > a3. We now

wish to use Theorem 6, with a1, a2, a3 as we just defined. Let us check that every assumption
holds:

For every xt ∈ {a1 n, . . . , a3 n}, we have xt/n ∈ [a1, a3] ⊂ [r(k0−1)
n , r

(k0)
n ], and so

Fn(xt/n) < 0 by assumption. Therefore, Equation (3) gives

IE (Xt+1 | Xt = xt) ≤ xt + n Fn

(xt

n

)
+ 1 < xt + 1, (10)

so assumption (i) in the statement of Theorem 6 holds.
Assumption (ii) holds by Proposition 4.
Finally, assumption (iii) follows from Hoeffding’s bound: conditioning on Xt, Xt+1 is the
sum of n Bernoulli random variables, then the result follow choosing δ = n1/2+ε/4.

Assuming that the source has opinion z = 1, we apply Theorem 6, which implies the existence
of an initial configuration Cn s.t. the convergence time is bounded w.h.p.:

τn(g, Cn) = inf{t ∈ N, Xt = n} ≥ inf{t ∈ N, Xt ≥ a3 n} ≥ n1−ε.

Case 2

Let a1, a2, a3 ∈ (r(k0−1)
∞ , 1), with r

(k0−1)
∞ < a1 < a2 < a3 < 1. First, we show that by

taking n large enough, we can have Fn be arbitrarily close to 0 on the interval [r(k0)
n , 1].

▷ Claim 13. For every δ > 0, for n large enough: r
(k0)
n > (1+a3)/2, and for every p ∈ [r(k0)

n , 1],
Fn(p) > −δ.

Proof. Let δ > 0 and n ∈ S2. Since Fn has bounded coefficients and degree d, and since
Fn(r(k0)

n ) = Fn(1) = 0, by Claim 17 in Appendix D we obtain the existence of C0 s.t.

for every p ∈ [r(k0)
n , 1], |Fn(p)| < C0 · (1− r(k0)

n ). (11)

DISC 2024



18:14 On the Limits of Information Spread by Memory-Less Agents

Figure 3 Illustration of the arguments for Case 2. We consider a configuration in which
the correct opinion is 0. Constants a1, a2 and a3 are chosen arbitrarily in the interval (r(k0−1)

∞ , 1).
By assumption, Fn > 0 on [a1, a3]. Moreover, once a2 and a3 are fixed, we give a lower-bound on Fn

on the interval [r(k0)
n , 1], by letting r

(k0)
n be sufficiently close to 1, in order to ensure that Xt cannot

jump from above a3 n to below a2 n. Eventually, we are able to apply Corollary 10.

By Equation (9) and by definition of k0, r
(k0)
n tends to 1 as n goes to +∞. If n is large

enough,

r(k0)
n > max

{
1− δ

C0
,

1 + a3

2

}
. (12)

By Equation (11), this implies that |Fn(p)| < δ on [r(k0)
n , 1], which, together with Equa-

tion (12), concludes the proof of Claim 13. ◁

Now, we use the previous result to establish a lower bound on p + Fn(p) when p ≥ a1.

▷ Claim 14. For n large enough,
for every p ∈ [a1, a3], p + Fn(p) > p.
for every p ∈ [a3, 1], p + Fn(p) > a3.

Proof. For p ∈ [a1, r
(k0)
n ), Fn(p) > 0 by assumption. Therefore:

for every p ∈ [a1, a3], p + Fn(p) > p.
for every p ∈ [a3, r

(k0)
n ), p + Fn(p) > p ≥ a3.

All is left to prove is that p + Fn(p) > a3 on [r(k0)
n , 1]. Let δ = (1− a3)/2, and let n be large

enough for Claim 13 to hold w.r.t. δ. For every p ∈ [r(k0)
n , 1], we have

p + Fn(p) > r(k0)
n − δ (by Claim 13 and definition of p)

= a3 +
(

1− a3

2 − δ

)
+
(

r(k0)
n − 1 + a3

2

)
> a3, (by Claim 13 and definition of δ)

which concludes the proof of Claim 14. ◁

Finally, similarly to the first case, we use Corollary 10 to conclude. Again, we start by
checking that all assumptions hold. Let n be large enough for Claim 14 to hold.

For every xt ∈ {a1 n, . . . , a3 n}, we have xt/n + Fn(xt/n) > xt/n by Claim 14. Therefore,
Equation (4) rewrites

IE (Xt+1 | Xt = xt) ≥ xt + n Fn

(xt

n

)
− 1 ≥ xt − 1,

so assumption (i) in the statement of Corollary 10 holds.



N. D’Archivio and R. Vacus 18:15

For every xt ∈ {a3 n, . . . , n}, we have xt/n + Fn(xt/n) > a3 by Claim 14. Therefore,
Equation (4) rewrites

IE (Xt+1 | Xt = xt) ≥ xt + n Fn

(xt

n

)
− 1 ≥ a3 n− 1.

Therefore, by Hoeffding’s bound,

P (Xt+1 < a2 n | Xt = xt) ≥ P
(

Xt+1 < IE (Xt+1)− a3 − a2

2 n | Xt = xt

)
≤ exp

(
−2
(

a3 − a2

2

)2
n

)
,

and so assumption (ii) holds.
Finally, assumption (iii) follows from Hoeffding’s bound, as in the first case.

Assuming that the source has opinion z = 0, we apply Corollary 10, which implies the
existence of an initial configuration Cn s.t. the convergence time is bounded:

τn(g, Cn) = inf{t ∈ N, Xt = 0} ≥ inf{t ∈ N, Xt ≤ a1n} ≥ n1−ε. ◀

5 Discussion and Future Works

In this paper, we explore the minimal requirements for simultaneously reaching consensus and
propagating information in a distributed system. We consider memory-less and anonymous
agents, which update their opinion synchronously after observing the opinions of a few other
agents sampled uniformly at random, and whose goal is to converge on the correct opinion
held by a single “source” individual. In addition, we adopt the self-stabilizing framework,
which in a memory-less setting, means that convergence must happen for any possible
initialization of the opinions of the agents (including the source). Under this model, we
show that to obtain a convergence time better than n1−ϵ, the number ℓ of samples obtained
by each agent in every round must necessarily tend towards infinity as n increases. Our
result extends the range of values of ℓ for which the performance of the “minority” dynamics
(Algorithm 2) is characterized. Our technique, which consists in translating the sample size
into the degree of a well-chosen polynomial, and then inspecting its roots, is simple yet
quite novel (to the best of our knowledge), and may be used to show similar results in other
settings.

Our ultimate goal is to fully characterize the complexity of the bit-dissemination problem
in the parallel setting and in the absence of memory, as a function of the sample size.
Regarding values of ℓ allowing poly-logarithmic convergence time, there is still a large gap
between our lower bound ℓ = Ω(1) and the upper bound ℓ = O(

√
n log n) mentioned in [7].

Closing or narrowing this gap, even specifically for the minority dynamics, would be of
appreciable interest in our opinion.

Another natural continuation would be to generalize our result to protocols using a
constant amount of memory. If feasible, the resulting lower bound would still be compatible
with the algorithm of [23], which requires Ω(log log n) bits of memory.

References
1 Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama Barkai, and Ziv Bar-Joseph.

A biological solution to a fundamental distributed computing problem. Science, 331(6014):183–
185, January 2011. doi:10.1126/science.1193210.

DISC 2024

https://doi.org/10.1126/science.1193210


18:16 On the Limits of Information Spread by Memory-Less Agents

2 James Aspnes and Eric Ruppert. An introduction to population protocols. In Benoît
Garbinato, Hugo Miranda, and Luís Rodrigues, editors, Middleware for Network Eccentric
and Mobile Applications, pages 97–120. Springer, Berlin, Heidelberg, 2009. doi:10.1007/
978-3-540-89707-1_5.

3 M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte,
A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic. Interaction ruling animal
collective behavior depends on topological rather than metric distance: Evidence from a field
study. Proceedings of the National Academy of Sciences of the United States of America,
105(4):1232–1237, January 2008. doi:10.1073/pnas.0711437105.

4 Paul Bastide, George Giakkoupis, and Hayk Saribekyan. Self-stabilizing clock synchronization
with 1-bit messages. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), Proceedings, pages 2154–2173. Society for Industrial and Applied Mathematics,
January 2021. doi:10.1137/1.9781611976465.129.

5 Luca Becchetti, Andrea Clementi, Amos Korman, Francesco Pasquale, Luca Trevisan, and
Robin Vacus. On the role of memory in robust opinion dynamics. In Edith Elkind, editor,
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence,
IJCAI-23, volume 1, pages 29–37, Macao, August 2023. International Joint Conferences on
Artificial Intelligence Organization. doi:10.24963/ijcai.2023/4.

6 Luca Becchetti, Andrea Clementi, and Emanuele Natale. Consensus dynamics: An overview.
ACM SIGACT News, 51(1):58–104, March 2020. doi:10.1145/3388392.3388403.

7 Luca Becchetti, Andrea Clementi, Francesco Pasquale, Luca Trevisan, Robin Vacus, and
Isabella Ziccardi. The minority dynamics and the power of synchronicity. In Proceedings
of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings,
pages 4155–4176. Society for Industrial and Applied Mathematics, Alexandria, Virginia, U.S.,
January 2024. doi:10.1137/1.9781611977912.144.

8 William Bialek, Andrea Cavagna, Irene Giardina, Thierry Mora, Edmondo Silvestri, Massimili-
ano Viale, and Aleksandra M. Walczak. Statistical mechanics for natural flocks of birds.
Proceedings of the National Academy of Sciences, 109(13):4786–4791, March 2012. doi:
10.1073/pnas.1118633109.

9 Lucas Boczkowski, Amos Korman, and Emanuele Natale. Minimizing message size in stochastic
communication patterns: Fast self-stabilizing protocols with 3 bits. In Proceedings of the
2017 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings, pages
2540–2559. Society for Industrial and Applied Mathematics, January 2017. doi:10.1137/1.
9781611974782.168.

10 Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: A survey.
Internet Mathematics, 3(1):79–127, January 2006. doi:10.1080/15427951.2006.10129115.

11 Andrea Clementi, Francesco d’Amore, George Giakkoupis, and Emanuele Natale. Search
via parallel Lévy walks on z2. In Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, PODC’21, pages 81–91, New York, NY, USA, July 2021. Association
for Computing Machinery. doi:10.1145/3465084.3467921.

12 Emilio Cruciani, Hlafo Alfie Mimun, Matteo Quattropani, and Sara Rizzo. Phase transitions
of the k-majority dynamics in a biased communication model. In Proceedings of the 22nd
International Conference on Distributed Computing and Networking, ICDCN ’21, pages
146–155, New York, NY, USA, January 2021. Association for Computing Machinery. doi:
10.1145/3427796.3427811.

13 Emilio Cruciani, Emanuele Natale, André Nusser, and Giacomo Scornavacca. Phase transition
of the 2-Choices dynamics on core–periphery networks. Distributed Computing, 34(3):207–225,
June 2021. doi:10.1007/s00446-021-00396-5.

14 Étienne Danchin, Luc-Alain Giraldeau, Thomas J. Valone, and Richard H. Wagner. Public
information: From nosy neighbors to cultural evolution. Science, 305(5683):487–491, July
2004. doi:10.1126/science.1098254.

https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1073/pnas.0711437105
https://doi.org/10.1137/1.9781611976465.129
https://doi.org/10.24963/ijcai.2023/4
https://doi.org/10.1145/3388392.3388403
https://doi.org/10.1137/1.9781611977912.144
https://doi.org/10.1073/pnas.1118633109
https://doi.org/10.1073/pnas.1118633109
https://doi.org/10.1137/1.9781611974782.168
https://doi.org/10.1137/1.9781611974782.168
https://doi.org/10.1080/15427951.2006.10129115
https://doi.org/10.1145/3465084.3467921
https://doi.org/10.1145/3427796.3427811
https://doi.org/10.1145/3427796.3427811
https://doi.org/10.1007/s00446-021-00396-5
https://doi.org/10.1126/science.1098254


N. D’Archivio and R. Vacus 18:17

15 Bartłomiej Dudek and Adrian Kosowski. Universal protocols for information dissemination
using emergent signals. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, pages 87–99, New York, NY, USA, June 2018. Association
for Computing Machinery. doi:10.1145/3188745.3188818.

16 Yuval Emek and Roger Wattenhofer. Stone age distributed computing. In Proceedings
of the 2013 ACM Symposium on Principles of Distributed Computing, PODC ’13, pages
137–146, New York, NY, USA, July 2013. Association for Computing Machinery. doi:
10.1145/2484239.2484244.

17 Ofer Feinerman and Amos Korman. Individual versus collective cognition in social insects.
Journal of Experimental Biology, 220(1):73–82, January 2017. doi:10.1242/jeb.143891.

18 Ofer Feinerman, Amos Korman, Zvi Lotker, and Jean-Sebastien Sereni. Collaborative search on
the plane without communication. In Proceedings of the 2012 ACM Symposium on Principles
of Distributed Computing, PODC ’12, pages 77–86, New York, NY, USA, July 2012. Association
for Computing Machinery. doi:10.1145/2332432.2332444.

19 Mikaela Irene D. Fudolig and Jose Perico H. Esguerra. Analytic treatment of consensus
achievement in the single-type zealotry voter model. Physica A: Statistical Mechanics and its
Applications, 413:626–634, November 2014. doi:10.1016/j.physa.2014.07.033.

20 Mohsen Ghaffari, Cameron Musco, Tsvetomira Radeva, and Nancy Lynch. Distributed
house-hunting in ant colonies. In Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing, PODC ’15, pages 57–66, New York, NY, USA, July 2015. Association
for Computing Machinery. doi:10.1145/2767386.2767426.

21 Yehuda Hassin and David Peleg. Distributed probabilistic polling and applications to
proportionate agreement. Information and Computation, 171(2):248–268, December 2001.
doi:10.1006/inco.2001.3088.

22 Yael Katz, Kolbjørn Tunstrøm, Christos C. Ioannou, Cristián Huepe, and Iain D. Couzin.
Inferring the structure and dynamics of interactions in schooling fish. Proceedings of the
National Academy of Sciences, 108(46):18720–18725, November 2011. doi:10.1073/pnas.
1107583108.

23 Amos Korman and Robin Vacus. Early adapting to trends: Self-stabilizing information spread
using passive communication. In Proceedings of the 2022 ACM Symposium on Principles of
Distributed Computing, PODC’22, pages 235–245, New York, NY, USA, July 2022. Association
for Computing Machinery. doi:10.1145/3519270.3538415.

24 Melissa B. Miller and Bonnie L. Bassler. Quorum sensing in bacteria. Annual Review of
Microbiology, 55(1):165–199, 2001. doi:10.1146/annurev.micro.55.1.165.

25 V. Moeinifar and S. Gündüç. Zealots’ effect on opinion dynamics in complex networks.
Mathematical Modeling and Computing, 8(2):pp. 203, Wed, 05/05/2021 - 17:53.

26 Arpan Mukhopadhyay, Ravi R. Mazumdar, and Rahul Roy. Binary opinion dynamics with
biased agents and agents with different degrees of stubbornness. In 2016 28th International
Teletraffic Congress (ITC 28), pages 261–269, Würzburg, Germany, September 2016. IEEE.
doi:10.1109/ITC-28.2016.143.

27 V. Sood and S. Redner. Voter model on heterogeneous graphs. Physical Review Letters,
94(17):178701, May 2005. doi:10.1103/PhysRevLett.94.178701.

28 David J. T. Sumpter, Jens Krause, Richard James, Iain D. Couzin, and Ashley J. W. Ward.
Consensus decision making by fish. Current Biology, 18(22):1773–1777, November 2008.
doi:10.1016/j.cub.2008.09.064.

29 Anthony Trewavas. Plant intelligence: Mindless mastery. Nature, 415(6874):841–841, February
2002. doi:10.1038/415841a.

30 Tamás Vicsek and Anna Zafeiris. Collective motion. Physics Reports, 517(3):71–140, August
2012. doi:10.1016/j.physrep.2012.03.004.

31 Ercan Yildiz, Asuman Ozdaglar, Daron Acemoglu, Amin Saberi, and Anna Scaglione. Binary
opinion dynamics with stubborn agents. ACM Transactions on Economics and Computation,
1(4):19:1–19:30, December 2013. doi:10.1145/2538508.

DISC 2024

https://doi.org/10.1145/3188745.3188818
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.1242/jeb.143891
https://doi.org/10.1145/2332432.2332444
https://doi.org/10.1016/j.physa.2014.07.033
https://doi.org/10.1145/2767386.2767426
https://doi.org/10.1006/inco.2001.3088
https://doi.org/10.1073/pnas.1107583108
https://doi.org/10.1073/pnas.1107583108
https://doi.org/10.1145/3519270.3538415
https://doi.org/10.1146/annurev.micro.55.1.165
https://doi.org/10.1109/ITC-28.2016.143
https://doi.org/10.1103/PhysRevLett.94.178701
https://doi.org/10.1016/j.cub.2008.09.064
https://doi.org/10.1038/415841a
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1145/2538508


18:18 On the Limits of Information Spread by Memory-Less Agents

A Well-known Dynamics

In this section, we define two important dynamics. Algorithms 1 and 2 below only describe
the behaviour of non-source agents, since the source never changes its opinion.

Algorithm 1 Voter dynamics.
Input: An opinion sample S of

size ℓ.
X

(i)
t+1 ← a random opinion in S

(Since S is already sampled
uniformly at random, this protocol
yields the same dynamics
regardless of the value of ℓ, and is
usually defined with ℓ = 1).

Algorithm 2 Minority dynamics [7].
Input: An opinion sample S of

size ℓ.
if all opinions in S are equal to x

then
X

(i)
t+1 ← x

else
X

(i)
t+1 ← minority opinion in S

(breaking ties randomly).

In terms of our definition, the Voter dynamics writes

g[0]
n (k) = g[1]

n (k) =: gvoter(k) = k

ℓ
, for every k ∈ {0, . . . , ℓ}. (13)

Similarly, given that ties are broken u.a.r., the Minority dynamics is given by

g[0]
n (k) = g[1]

n (k) =: gminority(k) =


1 if k = ℓ or 0 < k < ℓ

2 ,
1
2 if k = ℓ

2 ,

0 if k = 0 or ℓ
2 < k < ℓ.

(14)

B Probabilistic Tools

▶ Theorem 15 (Hoeffding’s bound). Let X1, . . . , Xn be i.i.d. random variables taking values
in {0, 1}, let X =

∑n
i=1 Xi and µ = IE(X) = nP(X1 = 1). Then it holds for all δ > 0 that

P (X ≤ µ− δ) ,P (X ≥ µ + δ) ≤ exp
(
−2δ2

n

)
.

The following version of Azuma’s inequality, which accounts for the possibility that the
martingale makes a large jump with a small probability, appears in [10, Section 8, p.34].

▶ Theorem 16 (Azuma-Hoeffding inequality). Let (Xt)t∈N be a martingale, and let T ∈ N. If
there is p > 0 and c1, . . . , cT such that

P (∃t ≤ T, Xt −Xt−1 > ct) ≤ p,

then for every δ > 0,

P (|XT −X0| > δ) ≤ 2 exp
(
− δ2

2
∑T

t=1 c2
t

)
+ p.

C Upper Bound for the Voter Dynamics

The following proof involves only classical arguments (see, for instance, [31] and [21, Sec-
tion 2.4]). We nonetheless present it here for the sake of completeness.



N. D’Archivio and R. Vacus 18:19

Proof of Theorem 2. The reader who is not already familiar with the idea is strongly
encouraged to refer to Figure 4 for an illustration.

Without loss of generality, we consider the Voter dynamics with ℓ = 1. In this case, the
sample S

(i)
t of a non-source agent i ̸= 1 in round t is simply an element of the set I = {1, . . . , n}

of all agents, drawn uniformly at random. In the case of the source, for the sake of the
argument, we let S

(1)
t = 1 for every t ∈ N, i.e., we consider that the source agent applies the

Voter rule but always samples itself.
Now, let us fix an horizon T . We will proceed by examining n random walks {W (i)

T −t}t≤T ,
defined on the same randomness, but for which the time flows backward. Specifically, for
every i ∈ I, let W

(i)
T = i, i.e., every random walk “starts” at a different position. Moreover,

for t < T , let

W
(i)
t := S

(
W

(i)
t+1

)
t .

In other words, if a random walk is in position j in round t + 1, and if Agent j samples i in
round t, then the random walk “moves” to i in round t. Note that by definition, if a random
walk moves to position 1 in round t, it will remain in position 1 for all remaining rounds:

W
(i)
t = 1 =⇒ ∀s ∈ {1, . . . , t}, W (i)

s = 1. (15)

Moreover, if the random walk indexed by i ends up in position 1 (in round 1), it implies that
the agent of index W

(i)
t holds the correct opinion in round t:

W
(i)
1 = 1 =⇒ X

(
W

(i)
t

)
t = z. (16)

To show that, we can simply proceed by induction on t, using the definition of the random
walks. Equation (15) and Equation (16) together implies that if the random walks indexed
by i ever moves to position 1, then Agent i has the correct opinion in round T :

∃t ≤ T, W
(i)
t = 1 =⇒ X

(i)
T = z. (17)

Therefore, for every i ̸= 1,

P
(

X
(i)
T ̸= z

)
≤ P

(
∀t ≤ T, W

(i)
t ̸= 1

)
(by Equation (17))

≤
T −1∏
t=0

P
(

S

(
W

(i)
t+1

)
t ̸= 1 |W (i)

t+1 ̸= 1
)

(by the chain rule)

=
(

1− 1
n

)T

. (uniform and independent samples)

Note that this bound holds trivially for i = 1. Therefore, by the union bound,

P
(
∀i ∈ I, X

(i)
T = z

)
= 1−P

(
∃i ∈ I, X

(i)
T ̸= z

)
≥ 1−

∑
i∈I

P
(

X
(i)
T ̸= z

)
≥ 1−n

(
1− 1

n

)T

.

Taking T = 2n log n, for n large enough,(
1− 1

n

)2n log n

= exp (2n log n log (1− 1/n)) ≤ exp (−2 log n) = 1
n2 ,

which concludes the proof of Theorem 2. ◀

DISC 2024



18:20 On the Limits of Information Spread by Memory-Less Agents

Figure 4 Depiction of the dual process behind the proof of Theorem 2. The color of the
circle in row t, column i, corresponds to the opinion of Agent i in round t: it is black if X

(i)
t = 1, and

white otherwise. An arrow is drawn from (i, t+1) to (j, t) if S
(i)
t = j, i.e., if Agent i observes Agent j

in round t (and thus adopts their opinion in round t + 1). Red circles depict the locations of n

coalescing random walks going backward in time, and initially present at every location. Random
walks at a location i > 1 make a move using the same randomness as the samples, while the source
acts like a sink. If all random walks have coalesced in less than T rounds, it implies that the opinion
of each agent in round T comes from the source, and thus that the dynamics has reached consensus
on the correct opinion.

D Missing Proofs

▷ Claim 17. For every M, d, there exists C0 = C0(M, d) > 0 s.t. for every polynomial P

of degree d and coefficients bounded by M , every a, b ∈ [0, 1] with P (a) = P (b) = 0, and
every x ∈ [a, b], P (x) < C0 · (b− a).

Proof. Since P has degree d and coefficients bounded by M , there exists C = C(M, d) s.t.
|P ′(x)| < C on [0, 1]. Therefore, for every x ∈ [a, (a + b)/2], we have

|P (x)| = |P (x)− P (a)| < C · (x− a) < C · b− a

2 .

Similarly, for every x ∈ [(a + b)/2, b], we have

|P (x)| = |P (b)− P (x)| < C · (b− x) < C · b− a

2 .

Taking C0 = C/2 concludes the proof of Claim 17. ◁

Proof of Lemma 11. Let ε > 0. We want to apply Theorem 6 with a1 = 1/4, a2 = 1/2,
a3 = 3/4. If the three hypotheses hold, we have for the initial configuration Cn := (z =
1, X0 = a2 n+a3 n

2 ),

τn (P, Cn) ≥ inf{t ∈ N, Xt > a3n} ≥ n1−ε.

Now, let us show that the hypotheses hold:



N. D’Archivio and R. Vacus 18:21

Proving (i). Since Fn = 0 for n large enough, we have by Proposition 5 that IE(Xt+1 |
Xt = xt) ≤ xt + 1.
Proving (iii). Conditioning on Xt, Xt+1 is a sum of n independent Bernoulli random
variables. Therefore, we can use Hoeffding’s bound to obtain

P(|Xt+1 − IE (Xt+1 | Xt) | > n1/2+ε/4) < 2 exp
(
−2nε/2

)
,

which establishes (iii).
Proving (ii). If xt < a1 n and n is large enough, (ii) follows again from Hoeffding’s
bound:

P(Xt+1 > a2n | Xt = xt) ≤ P(Xt+1 > n1/2+1/4 + IE (Xt+1 | Xt = xt) | Xt = xt)

< 2 exp
(
−2n1/2

)
,

which establishes (ii) and concludes the proof of Lemma 11. ◀

DISC 2024





Parallel Set Cover and Hypergraph Matching
via Uniform Random Sampling
Laxman Dhulipala #

Google Research, New York, NY, USA

Michael Dinitz #

Johns Hopkins University, Baltimore, MD, USA

Jakub Łącki #

Google Research, New York, NY, USA

Slobodan Mitrović #

UC Davis, CA, USA

Abstract
The SetCover problem has been extensively studied in many different models of computation,
including parallel and distributed settings. From an approximation point of view, there are two
standard guarantees: an O(log ∆)-approximation (where ∆ is the maximum set size) and an
O(f)-approximation (where f is the maximum number of sets containing any given element).

In this paper, we introduce a new, surprisingly simple, model-independent approach to solving
SetCover in unweighted graphs. We obtain multiple improved algorithms in the MPC and CRCW
PRAM models. First, in the MPC model with sublinear space per machine, our algorithms can
compute an O(f) approximation to SetCover in Ô(

√
log ∆ + log f) rounds1 and a O(log ∆)

approximation in O(log3/2 n) rounds. Moreover, in the PRAM model, we give a O(f) approximate
algorithm using linear work and O(log n) depth. All these bounds improve the existing round
complexity/depth bounds by a logΩ(1) n factor.

Moreover, our approach leads to many other new algorithms, including improved algorithms for
the HypergraphMatching problem in the MPC model, as well as simpler SetCover algorithms
that match the existing bounds.

2012 ACM Subject Classification Theory of computation → Massively parallel algorithms; Theory
of computation → Shared memory algorithms; Theory of computation → MapReduce algorithms

Keywords and phrases approximate maximum matching, set cover, hypergraph matching, PRAM,
massively parallel computation

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.19

Related Version Full Version: https://arxiv.org/abs/2408.13362

Funding Michael Dinitz : Supported in part by NSF awards CCF-1909111 and CCF-2228995.
Slobodan Mitrović : Supported by the Google Research Scholar and NSF Faculty Early Career
Development Program No. 2340048.

1 Introduction

There is perhaps no more central and important problem in the area of approximation
algorithms than SetCover. It has been a testbed for various algorithmic techniques
that have become central in the field: greedy algorithms, deterministic and randomized
rounding, primal-dual, dual fitting, etc. Due to its importance, ubiquity, and the fact that
many different algorithmic techniques can be used, it is widely considered a “textbook
problem” and, for example, has been used to illustrate the very basics of approximation

1 We use the Ô(x) notation to suppress poly log x and poly log log n terms.

© Laxman Dhulipala, Michael Dinitz, Jakub Łącki, and Slobodan Mitrović;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 19; pp. 19:1–19:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:laxmandhulipala@gmail.com
mailto:mdinitz@cs.jhu.edu
https://orcid.org/0000-0002-2632-966X
mailto:jlacki@google.com
https://orcid.org/0000-0001-9347-0041
mailto:smitrovic@ucdavis.edu
https://doi.org/10.4230/LIPIcs.DISC.2024.19
https://arxiv.org/abs/2408.13362
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


19:2 Parallel Set Cover and Hypergraph Matching

algorithms [38, Chapter 1]. There are essentially two standard approximation bounds, both
of which can be achieved through a number of different algorithms: an f -approximation,
where f is the frequency (the maximum number of sets containing any given element), and
an H∆ = O(log ∆)-approximation, where ∆ is the maximum set size and Hk is the k’th
harmonic number.2

Unsurprisingly, SetCover has also received significant attention in parallel and dis-
tributed models of computation. However, the simple sequential algorithms for SetCover
are not “obviously” parallelizable, so new algorithms have been developed for these models.
These lines of work range from classical complexity-theoretic models (e.g., showing that it can
be approximated well in NC [7]), classical parallel models such as PRAMs [7, 34, 9], classical
distributed models such as LOCAL [29, 28], and modern models such as MapReduce and
Massively Parallel Computation (MPC) [36, 3]. Much of this work has been model-focused
rather than model-independent, and ideas and techniques from one model can only sometimes
be transferred to a different model.

In this paper, we introduce a new, simple, and model-independent technique for solving
unweighted SetCover in parallel settings. Our technique, which involves careful independent
random sampling of either the sets or elements, yields both a (1 + ϵ)f -approximation and a
(1+ϵ)H∆-approximation and can be efficiently instantiated in multiple models of computation,
including the MPC and PRAM models. Moreover, it can also be extended to solve the
approximate HypergraphMatching problem in unweighted graphs. By applying our
technique, we obtain efficient algorithms for SetCover and HypergraphMatching in
MPC and PRAM models, which either improve upon or (essentially) match state-of-the-art
algorithms for the problems. Importantly, our technique provides a unified and model-
independent approach across HypergraphMatching and two variants of SetCover, and
can be efficiently implemented in two fundamental models of parallel computation.

Our algorithms are obtained by parallelizing two classic f - and O(log ∆)-approximate
SetCover algorithms. The f -approximate algorithm repeatedly picks an uncovered element
and adds all sets containing it to the solution. The O(log ∆)-approximate in each step simply
adds to the solution the set that covers the largest number of uncovered points.

Even though our parallelization of these algorithms is surprisingly direct, to the best of
our knowledge, it has not been analyzed prior to our work. At a high level, our algorithms
perform independent random sampling to find a collection of sets to be added to the solution,
remove all covered elements from the instance, and then repeat. By combining the random
sampling-based approach with modern techniques in parallel algorithms, we are able to give
state-of-the-art bounds.

1.1 Our Contribution
We now present the main contributions of the paper. We study the unweighted version
of SetCover. To formulate the bounds we obtain, we assume the SetCover problem
is represented by a bipartite graph, in which vertices on one side represent the sets, and
vertices on the other side represent elements to be covered. Edges connect elements with all
sets that they belong to. We use ∆ to denote the maximum degree of a vertex representing
a set, and f to denote the maximum degree of a vertex representing an element. We use n

to denote the number of vertices in the graph (equal to the number of sets plus the number
of elements) and m to denote the number of edges (the total size of all sets).

2 This result is often given as an O(log n)-approximation since ∆ ≤ n, but H∆ is a technically stronger
bound.



L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:3

Table 1 Round complexity of SetCover algorithms in the Massively Parallel Computation
model. We use n to denote the number of vertices in the graph (which is equal to the number of
sets plus the number of elements) and m to denote the number of edges (the total size of all sets).
δ ∈ (0, 1) is a constant. In [22] ϕ ∈ (0, 1] is any value satisfying m ≤ n1+ϕ and c < ϕ controls the
amount of space per machine. We use ‡ to denote that a bound holds with high probability.

Ref. Space/Machine Total Space Approx. Factor Det. Round Complexity

[9] O(nδ) O(m) (1 + ϵ)H∆ No O(log2 n)‡

Here O(nδ) Õ(m) (1 + ϵ)H∆
‡ No Ô(log ∆ ·

√
log f)‡

Here O(nδ) Õ(m) (1 + ϵ)f‡ No Ô(
√

log ∆)‡

[6] O(nδ) O(m) f + ϵ Yes O(log ∆/ log log ∆)
[16] O(nδ) O(m) (1 + ϵ)f Yes O(log(f∆)/ log log(f∆))

[3] Õ(n) Õ(m) O(log n)‡ No O(log n)‡

Here Õ(n) Õ(m) (1 + ϵ)H∆
‡ No O(log ∆)‡

[22] O(fn1+c) O(m) f No O((ϕ/c)2)

We start by presenting our results in the Massively Parallel Computation (MPC) model [25,
20, 4, 1]. MPC computation proceeds in synchronous rounds over M machines. We assume
that the input to the computation is partitioned arbitrarily across all machines in the first
round. Each machine has a local space of η bits. In one round of computation, a machine first
performs computation on its local data. Then, the machines can communicate by sending
messages: each machine can send messages to any other machine. The messages sent in one
round are delivered at the beginning of the next round. Hence, within a round, the machines,
given the messages received in this round, work entirely independently. Importantly, the
total size of the messages sent or received by a machine in a given round is at most η bits.

In the context of graph algorithms, there are three main regimes of MPC defined with
respect to the relation of the available space on each machine η to the number of vertices of
the graph n. In the super-linear regime, η = n1+c for a constant 0 < c < 1. The nearly-linear
regime requires η = n poly log n. Finally, the most restrictive and challenging sub-linear
regime requires η = nc. In all the regimes, we require that the total space of all machines is
only a poly log n factor larger than what is required to store the input.

In our definition of the SetCover problem, the number of vertices is the number of
sets plus the number of elements. We note that some SetCover algorithms in the linear
space regime (both prior and ours) only require space near-linear in the number of sets plus
sublinear in the number of elements, but we use a single parameter for simplicity.

SetCover in MPC

Our first result is a set of improved MPC algorithms for SetCover.

▶ Result 1. Let ϵ ∈ (0, 1/2) be a constant. Denote by f the maximum number of sets an
element appears in, and by ∆ the largest set size. Then, SetCover can be solved in MPC
with the following guarantees:

(1+ ϵ)H∆-approximation in Ô
(
poly(1/ϵ) · log ∆ ·

√
log f

)
rounds in the sub-linear regime,

(1 + ϵ)H∆-approximation in O(log ∆) rounds in the nearly-linear regime,
(1 + ϵ)f-approximation in Ô

(
poly(1/ϵ) ·

(√
log ∆ + log f

))
rounds in the sub-linear

regime.
The algorithms use Õ(m) total space, and the round complexities hold with high probability.

DISC 2024



19:4 Parallel Set Cover and Hypergraph Matching

Table 2 Parallel cost bounds (work and depth) of f -approximate SetCover algorithms in the
CRCW PRAM. m denotes the sum of the sizes of all sets (or the number of edges in the bipartite
representation of SetCover), n denotes the number of elements, f denotes the maximum number
of sets any element is contained in, and ϵ ∈ (0, 1/2) is an arbitrary constant. We use ∗ to denote
that a bound holds in expectation, and ‡ to denote that a bound holds with high probability.

Ref. Approx. Factor Det. Work Depth Notes

[27] (1 + ϵ)f Yes O(fm) O(f log2 n)
[28] 2 No O(m)∗ O(log n)‡ For weighted instances with f = 2.
Here (1 + ϵ)f∗ No O(m) O(log n)

Before our work, the best-known round complexity for the (1 + ϵ)H∆ SetCover in
the sub-linear regime was O(log ∆ · log f); this complexity is implicit in [7]. Our algorithm
improves this bound by a

√
log f factor. In the nearly-linear space regime, it is possible to

achieve O(log n)-approximation in O(log n) rounds by building on [3]. It is unclear how to
transfer this approach to the sub-linear regime. We improve the approximation ratio to H∆,
which is better, especially when ∆≪ n.

In terms of (1 + ϵ)f -approximation, the most efficient SetCover algorithm in MPC
follows by essentially a direct adaption of the Congest/Local O(log ∆/ log log ∆) round
algorithms in [6, 16] to MPC. Hence, for f ≤ 2O(

√
log n), our work improves the MPC round

complexity nearly quadratically.

SetCover in PRAM

Since our main algorithmic ideas are model-independent, they also readily translate to the
PRAM setting, giving a new result for (1 + ϵ)f -approximate SetCover that improves over
the state-of-the-art, and a streamlined (1 + ϵ)H∆-approximation algorithm for SetCover [9].

▶ Result 2. Let ϵ ∈ (0, 1/2) be an absolute constant. Let f be the maximum number of sets
an element appears in, and let ∆ be the largest set size. Then, SetCover can be solved in
CRCW PRAM with the following guarantees:

(1 + ϵ)f -approx. in expectation with deterministic O(n + m) work and O(log n) depth.
(1+ ϵ)H∆-approx. in expectation with deterministic O(n+m) work and O(log2 n log log n)
depth.

In the context of (1 + ϵ)f -approximation, our result improves the state-of-the-art [27]
total work by f while depth is improved by an f log n factor. For (1 + ϵ)H∆-approximation,
our result obtaining deterministic O(log2 n log log n) depth and providing the approximation
guarantee in expectation should be compared to the state-of-the-art PRAM algorithm of
Blelloch, Peng, and Tangwongsan [9], which provides a depth guarantee in expectation
and a worst-case guarantee for the approximation ratio. While the expected depth bound
reported in [9] is O(log3 n), we believe it can be improved to O(log2 log log n) using some of
the implementation ideas in our PRAM algorithm (see the full version for more discussion).
A more detailed comparison between the prior and our results in PRAM is given in Table 2.3

3 Our algorithms provide approximation in expectation. Nevertheless, this can be lifted to “with high
probability” guarantees by executing O(log n/ϵ) independent instances of our algorithm and using the
smallest set cover. It incurs an extra O(log n/ϵ) factor in the total work while not affecting the depth
asymptotically.



L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:5

HypergraphMatching in MPC

Finally, we also obtain an improved MPC algorithm for finding hypergraph matchings, i.e.,
for finding matchings in graphs where an edge is incident to (at most) h vertices.

▶ Result 3. Let ϵ ∈ (0, 1/2) be an absolute constant. There is an MPC algorithm that,
in expectation, computes a (1 − ϵ)/h approximate maximum matching in a rank h hyper-
graph in the sub-linear space regime. This algorithm succeeds with high probability, runs in
Ô

(
poly(1/ϵ) ·

(
h4 + h ·

√
log ∆

))
MPC rounds and uses a total space of Õ (m).

Prior work [21] shows how to solve HypergraphMatching in rank h hypergraphs in
O(log n) rounds in the nearly-linear space regime. So, for h ∈ O(1), Result 3 improves
quadratically over the known upper bound and, in addition, extends to the sub-linear space
regime at the cost of slightly worsening the approximation ratio. For simple graphs, i.e.,
when h = 2, the work [19] already provides Õ(

√
log ∆) round complexity algorithm for

computing Θ(1)-approximate, and also maximal, matching. Nevertheless, our approach is
arguably simpler than the one in [19] and, as such, lands gracefully into the MPC world.

1.2 Further Related Work
SetCover in the MPC Model

Both SetCover and VertexCover, i.e., SetCover with f = 2, have been extensively
studied in the MPC model. Stergiou and Tsioutsiouliklis [36] studied the SetCover problem
in MapReduce and provided an empirical evaluation. Their main algorithm is based on
bucketing sets to within a (1 + ϵ) factor with respect to the set sizes and then processing all
the sets within the same bucket on one machine. Their algorithm, when translated to the
MPC model, runs in O(log ∆) iterations, but does not come with a bound on the required
space per machine, which in the worst case can be linear in the input size.

Harvey, Liaw, and Liu [22] studied weighted VertexCover and SetCover in the MPC
model and obtained results for both f and (1 + ϵ)H∆-approximation. Their results exhibit a
tradeoff between the round complexity and the space per machine. For f -approximation, they
gave a O((ϕ/c)2) round algorithm with space per machine O(fn1+c) by applying filtering [30]
to a primal dual algorithm. When the space per machine is nearly-linear, i.e., c = O(1/ log n),
this approach results in O(ϕ2 log2 n) rounds, which is quadratically slower than our algorithm.

Bateni, Esfandiari, and Mirrokni [3] developed a MapReduce algorithm for the k-cover
problem that uses Õ(n) space per machine. In this problem, one is given an integer k

and is asked to choose a family of at most k sets that cover as many elements as possible.
The problem, since it is a submodular maximization under cardinality constraint, admits
a Θ(1)-approximation. Their algorithm can be turned into an O(log n)-approximate one
for SetCover that uses O(log n) MPC rounds as follows. Assume that k is the minimum
number of sets that covers all the elements; this assumption can be removed by making
O(log n/ϵ) guesses of the form k = (1 + ϵ)i. Then, each time [3] is invoked, it covers a
constant fraction of the elements. So, repeating that process O(log n) times covers all the
elements using O(k · log n) many sets. Our result provides tighter approximation and, when
∆≪ n, also lower round complexity.

Since k-cover is a submodular maximization problem, the work [32] yields O(log n) MPC
round complexity and O(log n) approximation for SetCover. In the context of k-cover or
SetCover, it is worth noting that the algorithm of [32] sends Θ(

√
nk) sets to a machine. It

is unclear whether all those sets can be compressed to fit in O(n) or smaller memory.

DISC 2024



19:6 Parallel Set Cover and Hypergraph Matching

Ghaffari and Uitto [19] developed a Õ(
√

log ∆) round complexity algorithm for Ver-
texCover in the sub-linear space regime. They first compute a maximal independent set,
which is then used to obtain a maximal matching in the corresponding line graph. Finally,
by outputting the endpoints of the edges in that maximal matchings, the authors provide a
2-approximate VertexCover. Our algorithm has a matching round complexity while, at
the same time, it is arguably simpler. For both f -approximation and H∆-approximation, we
are unaware of any MPC algorithms that run in the sub-linear space regime. However, we
note that the PRAM algorithm of Blelloch, Peng, and Tangwongsan [9] can be simulated in
this setting to obtain a round complexity of O(log2 n) with O(m) total space.

f -Approximate SetCover in PRAM

The first f -approximation algorithms for SetCover in the sequential setting are due to
Hochbaum [23]. In the unweighted case, we can sequentially obtain an f -approximation in
O(m) work by picking any element, adding all of ≤ f sets containing it to the cover, and
removing all newly covered elements. For parallel algorithms aiming for f -approximation,
Khuller, Vishkin, and Young [27] gave the first parallel (1 + ϵ)f -approximation for weighted
SetCover that runs in O(fm log(1/ϵ)) work and O(f log2 n log(1/ϵ)) depth. Their method
uses a deterministic primal-dual approach that in each iteration raises the dual values p(e)
on every uncovered element e until the primal solution, which is obtained by rounding every
set s where

∑
e∈s p(e) ≥ (1 − ϵ)w(s), is a valid set cover. Their work analysis bounds the

total number of times an element is processed across all O(f log n) iterations by m, giving a
total work of O(f ·m), which is not work-efficient. Their algorithm also has depth linear in
f , which means that the number of iterations of their algorithm can be as large as O(log2 n)
for f ≤ log n, and the depth therefore as large as O(log3 n).

For weighted VertexCover, Koufogiannakis and Young [28] gave an elegant 2-approxima-
tion that runs in O(m) work in expectation and O(log n) depth. They generalize their
algorithm to work for f -approximate weighted SetCover in the distributed setting using
Linial-Saks decomposition [33]; however, this does not imply an NC or RNC algorithm when
f > 2.4

Unlike the deterministic (1 + ϵ)f -approximation of Khuller et al. [27], our algorithm is
randomized and produces a set cover with the same approximation guarantees in expectation.
By contrast, our algorithm is easy to understand, analyze (with Lemma 3 as a given) and
argue correctness. Our algorithm is well suited for implementation and has small constant
factors, since every element set or element and their incident edges are processed exactly
once when the element is sampled or when the set is chosen. We note that our algorithm
also implies that (1 + ϵ)f -approximate SetCover is in RNC1 for any f ; the work of [27]
only implies this result for f = O(1).

Matching and HypergraphMatching in the Massively Parallel Computation Model

The study of approximate matchings in MPC was initiated by Lattanzi et al. [30], who
developed an O(1) round algorithm for finding a maximal matching when the space per
machine is n1+µ, for any constant µ > 0. In the linear space regime, a line of work [14, 17, 2, 5]

4 NC contains all problems that admit log-space uniform circuits of polynomial size and poly-logarithmic
depth and is the primary complexity class of interest when designing parallel algorithms. RNC extends
NC by allowing the circuit access to randomness. By known simulation results [26], polynomial work
and poly-logarithmic depth (randomized) PRAM algorithms also imply membership in NC (RNC).



L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:7

culminated in O(log log n) MPC round complexity. In the sublinear space regime, Ghaffari
and Uitto [19] developed a method that finds a maximal matching in Õ(

√
log n) rounds.

When each machine has at least O(nr) space, Hanguir and Stein [21] show how to find a
maximal matching in r-hypergraph in O(log n) MPC rounds. Their approach follows the
filtering idea developed in [30]. Our work does not only provide nearly quadratically lower
round complexity compared to [21], but it also extends to the sub-linear space regime.

H∆-approximate SetCover in PRAM

Sequentially, H∆-approximate SetCover can be solved in O(n + m) work by repeatedly
selecting the set incident to the largest number of uncovered elements. The first parallel
approximation algorithm for SetCover was due to Berger, Rompel and Shor [7], who gave
a (1 + ϵ)H∆-approximation that runs in O(m log5 n) work and O(log5 n) depth whp. Their
algorithm buckets the sets based on their sizes into O(log ∆) buckets. It then runs O(log f)
subphases, where the j-th subphase ensures that all elements have degrees at most (1 + ϵ)j

(the subphases are run in decreasing order). Each subphase performs O(log n) steps that
work by either selecting sets that cover a constant fraction of certain large edges or otherwise
independently sampling the remaining sets with probability (1 + ϵ)−j . Our approach also
uses independent sampling but does not require handling two cases separately. As a result,
our approach can be implemented efficiently by fixing the random choices upfront (see
Section 3.1). Subsequent work by Rajagopalan and Vazirani [34] improved the work and
depth, obtaining a parallel primal-dual algorithm with O(m log3 n) work and O(log3 n) depth
with high probability, but a weaker approximation guarantee of 2(1 + ϵ)H∆.

More recently, Blelloch, Peng and Tangwongsan [9] revisited parallel approximate Set-
Cover with the goal of designing work-efficient algorithms. Their algorithm achieves a
(1 + ϵ)H∆-approximation in O(m) expected work and O(log3 n) depth with high probability
on the CRCW PRAM. They propose a general primitive inspired by the approach of [34]
called a Maximal Nearly-Independent Set (MaNIS), which, given a collection of sets chooses a
subset of them while ensuring that the chosen sets are (1) nearly independent and thus do not
have significant overlap, and (2) maximal, so that any unchosen sets have significant overlap
with chosen ones. Blelloch, Simhadri, and Tangwongsan [10] later studied the algorithm in
the Parallel Cache Oblivious model, and provided an efficient parallel implementation.

Compared to this prior work, we obtain a streamlined (1 + ϵ)H∆-approximate algorithm
that shares some ideas with the previously discussed algorithms. We also bucket the sets by
size, and like [34, 9] each round finds a subset of sets with low overlap; the main difference
is that our method is arguably simpler. Our algorithm is also potentially very efficient in
practice, since after we fix the randomness up-front (see Section 3.1), we process every set in a
bucket exactly once, unlike other implementations of MaNIS which can process a set within
a bucket potentially many times [15]. Overall, our algorithm is work-efficient and runs in
O(log2 n log log n) depth on the CRCW PRAM. Although this is an improvement over known
depth bounds for PRAM algorithms, one can obtain similar bounds (in expectation) for the
algorithm of [9] by applying similar PRAM techniques.We also note that both algorithms
achieve O(log3 n) depth in the binary-forking model [8], and no parallel H∆-approximate
algorithms exist with o(log3 n) depth in this model. Experimentally comparing our algorithm
with existing implementations of [9] is an interesting direction for future work.

DISC 2024



19:8 Parallel Set Cover and Hypergraph Matching

1.3 Outline
The rest of the paper is organized as follows. In Section 2 we introduce notation that we
use in the paper. Section 3 contains a technical overview of our results. In particular, it
describes our algorithms and outlines how they can be analyzed and efficiently implemented
in the MPC and PRAM models. Then, in Section 4 we provide the approximation analysis of
our basic algorithms. Finally, in Appendix A we provide the formal analysis of the random
process which we use to model our algorithms. Due to space constraints, the remaining
details, including the detailed descriptions of the MPC and PRAM algorithms are deferred
to the full version of this paper.

2 Preliminaries

In the SetCover problem, we have a collection of elements T and a family of sets S, which
we can use to cover elements of T . We represent an instance of the problem with a bipartite
graph G = ((S ∪ T ), E), where st ∈ E if and only if element t belongs to the set s. For
a vertex x ∈ S ∪ T we use N(x) to denote the set of its neighbors. Since G is bipartite,
x ∈ S implies N(x) ⊆ T and x ∈ T implies N(x) ⊆ S. In particular, for x ∈ S, |N(x)| is the
size of the set x.5 We use ∆ to denote the maximum set size (i.e., the maximum degree of
any vertex in S) and f to denote the largest number of sets that contain any element (the
maximum degree of any vertex in T ). Note that some of our algorithms modify the input
graphs along the way, but we assume ∆ and f to be constant and refer to the corresponding
quantities in the input graph.

The VertexCover problem is defined as follows. The input is an undirected graph
G = (V, E) and the goal is to find the smallest set C ⊆ E such that each edge has at least
one endpoint in C. We note that this problem is equivalent to the SetCover problem in
which each element belongs to exactly 2 sets, except that the graph representing an instance
is constructed a bit differently.

In the HypergraphMatching problem, the input is a hypergraph G consisting of a set
of vertices V and a set of edges E. Each edge is a nonempty subset of V . The rank of a
hypergraph G is the maximum size of any edge. In the HypergraphMatching problem
the goal is to find a subset M ⊆ E which contains pairwise disjoint edges and has maximum
possible size. As opposed to SetCover, this is a maximization problem, and thus we say
that the solution M to the HypergraphMatching problem is α-approximate, for α ∈ (0, 1],
when |M | ≥ α · |OPT|, where OPT is an optimal solution to the HypergraphMatching
problem. The Matching problem is the HypergraphMatching problem in simple graphs,
i.e., in graphs with all edges of size 2.

Notation. We use Õ(x) to hide logarithmic factor in x, i.e., Õ(x) denotes O(x · poly log x).
Throughout this paper, we use n to refer to the number of vertices and m to refer to the
number of edges of an input graph. When it is stated that a guarantee holds “with high
probability”, or whp for short, it means that it holds with probability 1− 1/nc, where c is a
constant. In our proofs with whp guarantees, c can be made arbitrarily large by paying a
constant factor in the round, space, total work, or depth complexity. Hence, we often omit
the exact value of c.

5 Technically, |x| is also the size of the set x. However, in our algorithms, we repeatedly remove some
elements from T (together with their incident edges), and so we use |N(x)| to make it clear that we
refer to the current size of the set.



L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:9

Probability tools. In our analysis, we extensively apply the following well-known tool from
probability.

▶ Theorem 1 (Chernoff bound). Let X1, . . . , Xk be independent random variables taking
values in [0, 1]. Let X

def=
∑k

i=1 Xi and µ
def= E[X]. Then,

(A) For any δ ∈ [0, 1] it holds Pr [X ≤ (1− δ)µ] ≤ exp
(
−δ2µ/2

)
.

(B) For any δ ∈ [0, 1] it holds Pr [X ≥ (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
.

Work-Depth Model. We study our algorithms in the shared-memory setting using the
concurrent-read concurrent-write (CRCW) parallel random access machine model (PRAM).
We state our results in terms of their work and depth. The work of a PRAM algorithm is
equal to the total number of operations required, and the depth is equal to the number of
time steps required [24]. Algorithms with work W and depth D can be scheduled to run in
W/P + O(D) time [24, 11] on a P processor machine. The main goal in parallel algorithm
design is to obtain work-efficient algorithms with low (ideally poly-logarithmic) depth. A
work-efficient algorithm asymptotically requires the same work as the fastest sequential
algorithm. Since the number of processors, P , is still relatively small on modern multicore
machines, minimizing W by designing work-efficient algorithms is critical in practice. Our
algorithms make use of several PRAM primitives, including parallel prefix sum [24], parallel
integer sort [35], and approximate prefix sums [23].

3 Technical Overview

In this section we demonstrate the main ideas behind our results. We start by presenting our
sequential algorithms for the SetCover problem. For any set X and probability p ∈ [0, 1]
we write Sample(X, p) to denote a procedure that returns a random subsample of X in
which each element of X is included independently with probability p. Our algorithms work
by repeatedly sampling sets or elements independently using a sequence of probabilities pi,
which is defined as follows for any ϵ > 0.

b
def= ⌈log(2 + 2ϵ)/ϵ⌉ (1)

pi
def= (1 + ϵ)−⌈i/b⌉ for any i ∈ N. (2)

Throughout the paper, we use log to denote the natural logarithm function. We can now
present our algorithms for SetCover, which are given as Algorithm 1 and Algorithm 2.

Algorithm 1 is a natural parallelization of the sequential f -approximate algorithm. Instead
of picking one element at a time, we sample multiple elements at random and add to the
solution the sets containing them. The sampling probability is slowly increased in each
step (or, more precisely, every O(1/ϵ) steps). Algorithm 2 in turn parallelizes the O(log ∆)
approximate algorithm. The outer loop iterates over different set sizes (rounded to the power
of 1 + ϵ) starting from the largest ones. For a fixed set size, the inner loop adds to the
solution a uniformly random sample of sets, again slowly increasing the sampling probability.

We start by analyzing Algorithm 1. Clearly, the algorithm runs in O(log n) iterations.
Iteration i samples each element independently with probability pi and adds all sets covering
the sampled elements to the solution. Then, all chosen sets and elements that became
covered are removed. Crucially, the sampling probability in the first step is at most (1 +
ϵ)−⌈log1+ϵ(∆/ϵ)⌉ ≤ ϵ/∆, which implies that the expected number of elements sampled within
each set is at most ϵ. Moreover, the sampling probability increases very slowly, as it increases
by a 1 + ϵ factor every b steps.

DISC 2024



19:10 Parallel Set Cover and Hypergraph Matching

Algorithm 1 (1 + ϵ)f -approximate algorithm for SetCover.

1: function SetCover(G, ϵ) ▷ G = (S ∪ T, E)
2: C ← ∅
3: for i = b⌈log1+ϵ(∆/ϵ)⌉ down to 0 do
4: D ← Sample(T, pi)
5: C ← C ∪N(D)
6: Remove from G all sets in N(D) and all elements they cover
7: return C

Algorithm 2 (1 + ϵ)H∆-approximate algorithm for SetCover.

1: function SetCover(G, ϵ) ▷ G = (S ∪ T, E)
2: C ← ∅
3: for j = ⌊log1+ϵ ∆⌋ down to 0 do
4: for i = b⌈log1+ϵ(f/ϵ)⌉ down to 0 do
5: D ← Sample({s ∈ S | |N(s)| ≥ (1 + ϵ)j}, pi)
6: C ← C ∪D

7: Remove from G all sets in D and all elements they cover
8: return C

Let us now present the main ideas behind the analysis of the approximation ratio of
the algorithm. For simplicity of presentation, let us consider the case when each element
is contained in exactly two sets (which implies f = 2). In other words, we consider the
VertexCover problem. Specifically, since the degree of each vertex of T is 2, we can dissolve
vertices of T (equivalently, contract each such vertex into its arbitrary neighbor) and obtain a
graph H = (V, E) (where V = S) on which we would like to solve the VertexCover problem.
We note that the solution and analysis of Algorithm 1 for VertexCover generalizes easily
to the case of arbitrary f .

If we translate Algorithm 1 to an algorithm running on H, we see that it repeatedly
samples a set of edges of H, and for each sampled edge e adds both endpoints of e to the
solution, and removes both endpoints of e from H together with their incident edges. In
order to prove the approximation guarantee, we show the following.

▶ Lemma 2. Let D be the subset of T picked across all iterations of Algorithm 1. For each
vertex v, E[degD(v))] ≤ 1 + O(ϵ).

Here degD(v) denotes the number of elements of D contained in v. We prove this lemma
formally in Section 4 (see Lemma 6).

Notice that when an element x ∈ T is sampled to D in Algorithm 1, all the sets containing
x are added to C. So if w sampled elements belong to the same set, then the algorithm
could add Θ(wf) many sets, although only one of the sets suffices to cover all the w sampled
elements. Intuitively, Lemma 2 states that the value of w is at most 1 + O(ϵ) in expectation,
which we turn into an approximation guarantee in Lemma 7.

To prove Lemma 2, we model the sampling process in the algorithm as follows. Fix a
vertex v ∈ V . Let A be the set of edges incident to v in G. Algorithm 1 runs a sequence
of b⌈log1+ϵ(∆/ϵ)⌉ + 1 steps, indexed by b⌈log1+ϵ(∆/ϵ)⌉, . . . , 0. Note that the step indices
are decreasing. Moreover, ∆ ≥ |A|, since ∆ is the maximum vertex degree in G. In step i,
each element of A is sampled independently with probability pi. As soon as at least one
element of A is sampled, v is added to the cover. When this happens all elements of A are



L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:11

deleted and the random process stops. Moreover, even if no element of A is sampled, due to
other random choices of the algorithm some elements of A may get deleted. In particular,
when a neighbor w of v is added to the set cover, the edge wv is deleted from A. Hence, it is
possible that all elements of A are deleted before any of them is sampled.

To analyze this we introduce the following set sampling process, henceforth denoted as
SSP, which gives a more abstract version of the above sampling. The analysis of this process
forms our core sampling lemma, which will be useful not just for Lemma 2 but to analyze all
of our algorithms. Let A be a fixed set and k be an integer. The process proceeds in k + 1
steps indexed k, k−1, . . . , 0 and constructs a family of sets A = Ak ⊇ Ak−1 ⊇ · · · ⊇ A1 ⊇ A0
as well as a family Rk, . . . , R0, such that Ri ⊆ Ai. In each step i (k ≥ i ≥ 0) we first
construct a set Ai. We have that Ak = A, and for i ∈ [0, k) the set Ai ⊆ Ai+1 is constructed
by a (possibly randomized) adversary, who is aware of the sets Aj and Rj for j > i. In our
analysis of SSP, the goal is to argue that certain guarantees hold regardless of what the
adversary does. After the adversary constructs Ai, we sample Ri = Sample(Ai, pi).

We note that we assume that the updates are adversarial to simplify the overall proof.
This makes our claims about SSP more robust, and analyzing SSP with an adversary does
not introduce significant complications.

For i ∈ [0, k], we define ni
def= |Ai|. Whenever we apply SSP we have that k ≥

b⌈log1+ϵ(nk/ϵ)⌉, and for simplicity we make this assumption part of the construction. Note
that this condition simply ensures that the initial sampling probability is at most ϵ/nk.
Finally, we let z be the maximum index such that Rz ̸= ∅. We stress that the SSP steps
are indexed in decreasing order, and hence z is the index of the first step such that Rz is
nonempty. If all Ri are empty, we set z = −1 and assume R−1 = ∅. We say that z is the
step when the SSP stops.

Observe that in order to analyze the properties of the set of sampled edges in Algorithm 1,
it suffices to analyze the properties of the set Rz. Our main lemma analyzing SSP is given
below. It captures the single property of SSP which suffices to prove the approximation
ratio of both Algorithm 1 and Algorithm 2. In particular, it directly implies Lemma 2.

▶ Lemma 3. Consider the SSP using any adversary and ϵ > 0. Then, E[|Rz|] ≤ 1 + 4ϵ.

Let us now describe the intuition behind the proof of Lemma 3. To simplify presentation,
let us assume that the sets A0, . . . , Ak are fixed upfront (i.e., before any set Ri is sampled).
We show in Observation 11 that if we are interested in analyzing the properties of Rz, this
can be assumed without loss of generality. Observe that as long as the process executes steps
where pi · ni ≤ ϵ, the desired property holds. Indeed, with this assumption we have that
E[|Ri| | Ri ̸= ∅] ≤ 1 + ϵ. This is because even if one element is sampled, the expected size of
the sample among all remaining elements is at most ϵ (for a formal proof, see Claim 16).

In order to complete the proof, we show that reaching a step where pi · ni ≫ ϵ is unlikely.
Specifically, the value of pi · ni can increase very slowly in consecutive steps, as pi increases
only by (1 + ϵ) factor every b steps, and ni can only decrease. By picking a large enough
value of b, we can ensure that the process most likely stops before pj · nj becomes large,
i.e., the expected value of pz · nz is O(ϵ). Indeed, in each step where pi · ni ≥ ϵ, the process
stops with probability Ω(ϵ). Hence, if we repeat such a step roughly 1/ϵ times (which can be
achieved by tweaking b), the process will stop with constant probability (independent of ϵ).
In the end we fix b, such that the probability of pi · ni increasing by a factor of 1 + ϵ is at
most 1/(2 + 2ϵ). As a result, thanks to a geometric sum argument, the expected value of
pz · nz is O(ϵ), which implies Lemma 3.

DISC 2024



19:12 Parallel Set Cover and Hypergraph Matching

Algorithm 3 (1 + ϵ)f -approximate algorithm for SetCover.

1: function SetCover(G, ϵ) ▷ G = (S ∪ T, E)
2: C ← ∅
3: k ← b⌈log1+ϵ(∆/ϵ)⌉
4: Bi ← ∅ for all i ∈ [0, k]
5: for each element t ∈ T do
6: Sample Xt ∈ [0, k], where P (Xt = i) = p̃i and add t to BXt

7: for i = k down to 0 do
8: D ← all elements of Bi which are not marked
9: C ← C ∪N(D)

10: Remove from G all sets in N(D) and mark all elements they cover
11: return C

3.1 Fixing the Random Choices Upfront

In order to obtain efficient implementations of our algorithms, we reformulate them into
equivalent versions where the sampling happens upfront. Specifically, consider the main loop
of Algorithm 1. Observe that each element is sampled at most once across all iterations, since
as soon as an element is sampled it is removed from further consideration. A similar property
holds for each set across all iterations of the inner for loop of Algorithm 2. Moreover, in both
cases, the probability of being sampled in a given iteration is fixed upfront and independent
of the algorithm’s actions in prior iterations. It follows easily that we can make these
per-element or per-set random choices upfront. Specifically, let k = b⌈log1+ϵ(∆/ϵ)⌉. Then,
Algorithm 1 executes k + 1 iterations indexed k, k − 1, . . . , 0. We can randomly partition the
input elements into k + 1 buckets Bk, . . . , B0 using a properly chosen distribution and then
in iteration i consider the elements of Bi which have not been previously removed as the
sample to be used in this iteration.

Observe that since p0 = 1 (see Equation (2)), each element that is not removed before
the last step is sampled. Specifically, let p̃0, . . . , p̃k be a probability distribution such that
p̃i = pi ·

∏k
j=i+1(1− pj). Observe that p̃i is the probability that an element should be put

into bucket Bi.
Algorithm 3 shows a version of Algorithm 1 in which the random choices are made upfront.

It should be clear that Algorithms 1 and 3 produce the same output. Moreover, an analogous
transformation can be applied to the inner loop of Algorithm 2. The benefit of making the
random choices upfront is twofold. In the MPC model, we use the sampling to simulate
r iterations of the algorithms in O(log r) MPC rounds. The efficiency of this simulation
crucially relies on the fact that we only need to consider the edges sampled within the phase
and we can determine (a superset of) these edges upfront.

In the PRAM model, the upfront sampling allow us to obtain an improved work bound:
instead of tossing a coin for each element separately in each iteration, we can bucket the
elements initially and then consider each element in exactly one iteration. In order to bucket
the elements efficiently we can use the following lemma.

▶ Lemma 4 ([37]). Let r0, r1, . . . , rk be a sequence of nonnegative real numbers which
sum up to 1. Let X → [0, k] be a discrete random variable, such that for each i ∈ [k],
P (X = i) = ri. Then, there exists an algorithm which, after preprocessing in O(k) time, can
generate independent samples of X in O(1) time.



L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:13

3.2 MPC Algorithms

Simulating Algorithm 3 in the sub-linear MPC model is a relatively straightforward application
of the graph exponentiation technique [31, 19, 18, 13, 12]. For simplicity, let us again consider
the VertexCover problem. We will show how to simulate r = O(

√
log n) iterations of

the for loop in only O(log r) = O(log log n) MPC rounds. Let us call these r iterations
of the algorithm a phase. We first observe that to execute a phase we only need to know
edges in the buckets corresponding to the iterations within the phase. Let us denote by Gr

the graph consisting of all such edges. Moreover, let p be the sampling probability used
in the first iteration of the phase. The crucial observation is that the maximum degree
in Gr is 2Õ(

√
log n) with high probability. This can be proven in three steps. First, we

show that by the start of the phase the maximum degree in the original graph G drops
to O(1/p · log n) with high probability. Indeed, for any vertex v with a higher degree the
algorithm samples an edge incident to v with high probability, which causes v to be removed.
Second, we observe that the sampling probability increases to at most p · 2O(

√
log n) within

the phase, and so the expected number of edges incident to any vertex of Gr is at most
O(1/p · log n) · p · 2O(

√
log n) = 2Õ(

√
log n). Third, we apply a Chernoff bound.

At this point, it suffices to observe that running r iterations of the algorithm can be
achieved by computing for each vertex v of Gr a subgraph Sv consisting of all vertices at
distance O(r) from v and then running the algorithm separately on each Sv. In other words,
running r iterations of the algorithm is a O(r) round Local algorithm. Computing Sr can be
done using graph exponentiation in log r = O(log log n) MPC rounds using 2O(

√
log n)·r = nα

space per machine and n1+α total space, where α > 0 is an arbitrary constant.
The space requirement can also be reduced to Õ(m). We now sketch the high-level

ideas behind this improvement. We leverage the fact that if we sample each edge of an
m-edge graph independently with probability p, then only O(p ·m) vertices have an incident
sampled edge, and we can ignore all the remaining vertices when running our algorithm.
Hence, we only need to run the algorithm for O(p · m) vertices and thus have at least
S = m/O(p ·m) = Ω(1/p) available space per vertex, even if we assume that the total space
is O(m). As argued above, with space per vertex S, we can simulate roughly

√
log S steps

of the algorithm. In each of these steps, the sampling probability increases by a constant
factor, so overall, it increases by a factor of 2Ω(

√
log S) across the

√
log S steps that we

simulate. After repeating this simulation t =
√

log S = O(
√

log ∆) times, the sampling
probability increases by a factor of at least 2Ω(t·

√
log S) = 2Ω(log S) = SΩ(1). Overall, after

roughly O(
√

log ∆) repetitions the space per vertex reduces from S to S1−Ω(1). Similarly,
the sampling probability increases from p to p1+Ω(1). Hence, it suffices to repeat this overall
process log log ∆ times to simulate all O(log ∆) steps.

3.3 PRAM algorithms

Algorithm 3 also almost immediately yields a work-efficient algorithm with O(log n) depth in
the CRCW PRAM. Obtaining a work-efficient and low-depth implementation of Algorithm 2
is only a little more involved. One challenge is that the set sizes change as elements get
covered. Since we run O(log n) steps per round, we can afford to exactly compute the sizes
at the start of a round, but cannot afford to do so on every step without incurring an
additional O(log n) factor in the depth. We first use the randomness fixing idea described
in Section 3.1 to identify the step in the algorithm when a set will be sampled. Then, in
every step, for the sets sampled in this step, we approximate the set sizes up to a (1 + δ)

DISC 2024



19:14 Parallel Set Cover and Hypergraph Matching

Algorithm 4 Algorithm for HypergraphMatching.

1: function HypergraphMatching(G, ϵ) ▷ G = (V, E)
2: ∆← the maximum degree in G

3: C ← ∅
4: for i = b⌈log1+ϵ(∆/ϵ)⌉ down to 0 do
5: D ← Sample(E(G), pi)
6: C ← C ∪D

7: Remove from G all endpoints of edges in D

8: return edges independent in C

factor, which can be done deterministically and work-efficiently in O(log log n) depth and use
these estimates in our implementation of Algorithm 2. The resulting algorithm still obtains
a (1 + ϵ)H∆-approximation in expectation while deterministically ensuring work efficiency
and O(log2 n log log n) depth.

3.4 HypergraphMatching in MPC

We show that our techniques for solving SetCover can be further applied to solve approxi-
mate HypergraphMatching. For the purpose of this high-level overview we consider the
special case of approximate Matching in simple graphs, i.e., hypergraphs in which each
edge has exactly 2 endpoints. Generalizing our approach to arbitrary hypergraphs does
not require any additional ideas. Our algorithm for HypergraphMatching is shown as
Algorithm 4, and works similarly to Algorithm 1. Specifically, if we consider the simple
graph setting and the VertexCover problem, Algorithm 1 samples a set of edges of the
graph and then returns the set of endpoints of these edges as the solution. Algorithm 4 also
samples a set of edges, but the difference is in how it computes the final solution. Namely, it
returns all sampled edges which are independent, i.e., not adjacent to any other sampled
edge. Clearly, the set of edges returned this way forms a valid matching. To argue about its
cardinality, we show that the number of edges that are returned is a constant factor of all
edges that have been sampled. To this end, we show a second fact about the SSP, which
says that any sampled element is not sampled by itself with only small constant probability.

▶ Lemma 5. Let a ∈ Ak and let ϵ ≤ 1/2. Then P (|Rz| > 1 | a ∈ Rz) ≤ 6ϵ.

The high-level idea behind the proof of Lemma 5 is similar to the proof of Lemma 2:
in the steps where the expected number of sampled elements is ≤ ϵ, the property follows
in a relatively straightforward way. Moreover, we are unlikely to reach any step where
the expected number of sampled elements is considerably larger, and so to complete the
proof we also apply a geometric sum-based argument. With the above Lemma, the analysis
of Algorithm 4 becomes straightforward and shows that the approximation ratio of the
algorithm is 1−h·6ϵ

h (see Lemma 10), where h is the rank of the hypergraph.
Algorithm 4 can be seen as a simplification of the “warm-up” algorithm of [19], which

alternates between sampling edges incident to high-degree vertices and peeling high-degree
vertices. Our algorithm simply samples from all edges and does not peel vertices. This
makes the proof of the approximation ratio trickier since there is less structure to leverage.
However, the simplification results in a straightforward application of round compression
and enables extending the algorithm to hypergraphs.



L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:15

minimize
∑
s∈S

xs

subject to
∑
s∋t

xs ≥ 1 for t ∈ T

xs ≥ 0 for s ∈ S

maximize
∑
t∈T

yt

subject to
∑
t∈s

yt ≤ 1 for s ∈ S

yt ≥ 0 for t ∈ T

Figure 1 LP relaxation of the SetCover LP (left) and its dual (right).

4 Approximation Analysis of the Algorithms

In this section, we analyze the approximation ratio and analysis of our algorithms. We note
that the correctness of all algorithms is essentially immediate. Specifically, in Algorithm 1
and Algorithm 2 we only remove an element when it is covered, and in the last iteration of
the inner for loop in both algorithms (which in Algorithm 1 is the only loop) the sampling
probability is 1, so we add all remaining sets (in Algorithm 2, limited to the large enough
size) to the solution. Similarly, Algorithm 4 clearly outputs a valid matching, thanks to the
final filtering step in the return statement.

▶ Lemma 6. Let D̄ be the union of all elements picked in all iterations of Algorithm 1. For
each set s ∈ S we have E[|s ∩ D̄|] ≤ 1 + 4ϵ.

Proof. This follows from Lemma 3 applied to the set s. ◀

▶ Lemma 7. Algorithm 1, called with e′ = ϵ/4, computes an (1 + ϵ)f -approximate solution
to SetCover.

Proof. The key property that we utilize in the analysis is stated in Lemma 6. The proof is a
relatively simple generalization of the dual fitting analysis of the standard f -approximate
SetCover algorithm. The generalization needs to capture two aspects: the fact that the
property stated in Lemma 6 holds only in expectation and allows for a slack of 4ϵ.

We use the relaxation of the SetCover IP and its dual given in Figure 1. Let D̄ be the
union of all elements picked in all iterations of Algorithm 1. We construct a dual solution
that corresponds to D̄ as follows. First, for each t ∈ D̄, we set ȳt = 1/(1 + 4ϵ), and for t ̸∈ D̄

we set ȳt = 0. Recall that Algorithm 1 returns a solution of size |C|. For any run of the
algorithm we have |C| ≤ f

∑
t∈T ȳt(1 + 4ϵ).

We now define a set dual of variables by setting yt = E[ȳt] for each t ∈ T . This set forms
a feasible dual solution, since for every s ∈ S we have∑

t∈s

yt =
∑
t∈s

E[ȳt] = E[|s ∩ D̄|/(1 + 4ϵ)] ≤ 1,

where in the last inequality we used Lemma 6. Moreover, we have

E[|C|] ≤ f ·
∑
t∈T

yt(1 + 4ϵ),

which implies that the solution’s expected size is at most f(1+4ϵ) times larger than a feasible
dual solution. Hence, the lemma follows from weak LP duality. ◀

Now let us consider Algorithm 2.

DISC 2024



19:16 Parallel Set Cover and Hypergraph Matching

▶ Lemma 8. Algorithm 2 adds sets to the solution in batches. When a batch of sets D is
added to the solution we have that (a) the residual size of each set in D is at most (1 + ϵ)
smaller than the maximum residual size of any set at that moment, and (b) for each newly
covered element t, the expected number of sets in a batch that cover it is at most (1 + 4ϵ).

Proof. Observe that for i = 0 and the current value of j, each of the remaining sets of size
(1 + ϵ)j or more is included in D. By applying this observation inductively, we see that each
iteration of the outer loops starts with the maximum set size being less than (1 + ϵ)j+1 and
results in all sets of size at least (1 + ϵ)j being either added to the solution or removed from
the graph. This implies claim (a). Claim (b) follows directly from Lemma 3. ◀

To bound the approximation guarantee of Algorithm 2, we show the following, which,
similarly to the proof of Lemma 7, uses a dual-fitting analysis.

▶ Lemma 9. Any algorithm that computes a valid SetCover solution and satisfies the
property of Lemma 8, computes an (1 + ϵ)(1 + 4ϵ)H∆-approximate (in expectation) solution
to SetCover.

▶ Lemma 10. Algorithm 4 ran on a rank h hypergraph in expectation computes a 1−h·6ϵ
h

approximate matching.

Proof. Let G = (V, E) be input to Algorithm 4, and let C ′ be the set C after the execution
of the for-loop. Observe that V (C ′) is a vertex cover of G: all the edges not covered by the
time we reach i = 0 are included in D and, so, in C.

We want also to lower-bound the size of independent edges in C ′. Fix an edge e and
consider a vertex v ∈ e. Once e is included in C, all the endpoints of e are removed from G.
Hence, if e is not independent in C ′, then it is the case because, in the same iteration, an
edge e′ adjacent to e is also included in D. To upper-bound the probability of e′ and e being
included in D, we use Lemma 5. How do we use Lemma 5 in the context of Algorithm 4?
For a fixed vertex v, Ai is the set of edges incident to v at the i-th iteration of the for-loop
of Algorithm 4. In particular, the set Ak = A defined in Appendix A equals all the edges of
the input graph G containing v.

By Lemma 5, the probability of v being incident to more than one sampled edge is
at most 6ϵ. Thus, by union bound, e and an edge adjacent to e are included in D with
probability at most h · 6ϵ. Therefore, with probability 1− h · 6ϵ at least, a fixed edge in C ′ is
independent. This implies that in expectation |C ′|(1− h · 6ϵ) edges in C ′ are independent
and, so, Algorithm 4 outputs a matching that in expectation has size at least |C ′|(1− h · 6ϵ).
Since there is a vertex cover of size |V (C ′)| ≤ h|C ′| at most, it implies that Algorithm 4 in
expectation produces a 1−h·6ϵ

h -approximate maximum matching. ◀

References
1 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel

algorithms for geometric graph problems. In ACM Symposium on Theory of Computing
(STOC), pages 574–583, 2014. doi:10.1145/2591796.2591805.

2 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni, and Cliff
Stein. Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1616–1635. SIAM, 2019.
doi:10.1137/1.9781611975482.98.

3 MohammadHossein Bateni, Hossein Esfandiari, and Vahab Mirrokni. Optimal distributed
submodular optimization via sketching. In ACM International Conference on Knowledge
Discovery & Data Mining (KDD), pages 1138–1147, 2018. doi:10.1145/3219819.3220081.

https://doi.org/10.1145/2591796.2591805
https://doi.org/10.1137/1.9781611975482.98
https://doi.org/10.1145/3219819.3220081


L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:17

4 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. Journal of the ACM (JACM), 64(6):1–58, 2017. doi:10.1145/3125644.

5 Soheil Behnezhad, Mohammad Taghi Hajiaghayi, and David G Harris. Exponentially faster
massively parallel maximal matching. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 1637–1649. IEEE, 2019.

6 Ran Ben Basat, Guy Even, Ken-ichi Kawarabayashi, and Gregory Schwartzman. Optimal
distributed covering algorithms. In ACM Symposium on Principles of Distributed Computing
(PODC), pages 104–106, 2019. doi:10.1145/3293611.3331577.

7 Bonnie Berger, John Rompel, and Peter W Shor. Efficient NC algorithms for set cover
with applications to learning and geometry. Journal of Computer and System Sciences,
49(3):454–477, 1994. doi:10.1016/S0022-0000(05)80068-6.

8 Guy E Blelloch, Jeremy T Fineman, Yan Gu, and Yihan Sun. Optimal parallel algorithms in
the binary-forking model. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 89–102, 2020. doi:10.1145/3350755.3400227.

9 Guy E Blelloch, Richard Peng, and Kanat Tangwongsan. Linear-work greedy parallel approxi-
mate set cover and variants. In Proceedings of the twenty-third annual ACM symposium on Par-
allelism in algorithms and architectures, pages 23–32, 2011. doi:10.1145/1989493.1989497.

10 Guy E Blelloch, Harsha Vardhan Simhadri, and Kanat Tangwongsan. Parallel and i/o efficient
set covering algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 82–90, 2012. doi:10.1145/2312005.2312024.

11 Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations by work
stealing. Journal of the ACM (JACM), 46(5):720–748, 1999. doi:10.1145/324133.324234.

12 Sebastian Brandt, Manuela Fischer, and Jara Uitto. Breaking the linear-memory barrier in
MPC: Fast MIS on trees with strongly sublinear memory. Theoretical Computer Science,
849:22–34, 2021. doi:10.1016/J.TCS.2020.10.007.

13 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The com-
plexity of (δ+ 1) coloring in congested clique, massively parallel computation, and centralized
local computation. In ACM Symposium on Principles of Distributed Computing (PODC),
pages 471–480, 2019. doi:10.1145/3293611.3331607.

14 Artur Czumaj, Jakub Łącki, Aleksander Mądry, Slobodan Mitrović, Krzysztof Onak, and
Piotr Sankowski. Round compression for parallel matching algorithms. In ACM Symposium
on Theory of Computing (STOC), pages 471–484, 2018.

15 Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A framework for parallel graph
algorithms using work-efficient bucketing. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 293–304, 2017. doi:10.1145/3087556.3087580.

16 Guy Even, Mohsen Ghaffari, and Moti Medina. Distributed set cover approximation: primal-
dual with optimal locality. In International Symposium on Distributed Computing (DISC).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

17 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and Ronitt Ru-
binfeld. Improved massively parallel computation algorithms for MIS, matching, and vertex
cover. In ACM Symposium on Principles of Distributed Computing, pages 129–138, 2018.
doi:10.1145/3212734.3212743.

18 Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. Improved parallel algorithms for
density-based network clustering. In International Conference on Machine Learning (ICML),
pages 2201–2210. PMLR, 2019. URL: http://proceedings.mlr.press/v97/ghaffari19a.
html.

19 Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications in mas-
sively parallel computation and centralized local computation. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1636–1653. SIAM, 2019. doi:10.1137/1.9781611975482.
99.

DISC 2024

https://doi.org/10.1145/3125644
https://doi.org/10.1145/3293611.3331577
https://doi.org/10.1016/S0022-0000(05)80068-6
https://doi.org/10.1145/3350755.3400227
https://doi.org/10.1145/1989493.1989497
https://doi.org/10.1145/2312005.2312024
https://doi.org/10.1145/324133.324234
https://doi.org/10.1016/J.TCS.2020.10.007
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1145/3087556.3087580
https://doi.org/10.1145/3212734.3212743
http://proceedings.mlr.press/v97/ghaffari19a.html
http://proceedings.mlr.press/v97/ghaffari19a.html
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1137/1.9781611975482.99


19:18 Parallel Set Cover and Hypergraph Matching

20 Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation
in the mapreduce framework. In International Symposium on Algorithms and Computation,
pages 374–383. Springer, 2011. doi:10.1007/978-3-642-25591-5_39.

21 Oussama Hanguir and Clifford Stein. Distributed algorithms for matching in hypergraphs. In
Workshop on Approximation and Online Algorithms (WAOA), pages 30–46. Springer, 2021.

22 Nicholas JA Harvey, Christopher Liaw, and Paul Liu. Greedy and local ratio algorithms in
the mapreduce model. In Proceedings of the 30th on Symposium on Parallelism in Algorithms
and Architectures, pages 43–52, 2018.

23 Dorit S Hochbaum. Approximation algorithms for the set covering and vertex cover problems.
SIAM Journal on Computing, 11(3):555–556, 1982. doi:10.1137/0211045.

24 Joseph JáJá. An Introduction to Parallel Algorithms. Addison Wesley Longman Publishing
Co., Inc., USA, 1992.

25 Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapreduce.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 938–948. SIAM, 2010.
doi:10.1137/1.9781611973075.76.

26 Richard M Karp and Vijaya Ramachandran. A survey of parallel algorithms for shared-memory
machines, 1988.

27 Samir Khuller, Uzi Vishkin, and Neal Young. A primal-dual parallel approximation technique
applied to weighted set and vertex covers. Journal of Algorithms, 17(2):280–289, 1994.
doi:10.1006/JAGM.1994.1036.

28 Christos Koufogiannakis and Neal E Young. Distributed algorithms for covering, packing
and maximum weighted matching. Distributed Computing, 24:45–63, 2011. doi:10.1007/
S00446-011-0127-7.

29 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being near-sighted.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006.

30 Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a
method for solving graph problems in mapreduce. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 85–94, 2011. doi:10.1145/1989493.1989505.

31 Christoph Lenzen and Roger Wattenhofer. Brief announcement: Exponential speed-up of local
algorithms using non-local communication. In ACM Symposium on Principles of Distributed
Computing (PODC), pages 295–296, 2010. doi:10.1145/1835698.1835772.

32 Paul Liu and Jan Vondrak. Submodular optimization in the mapreduce model. In 2nd
Symposium on Simplicity in Algorithms (SOSA 2019). Schloss-Dagstuhl-Leibniz Zentrum für
Informatik, 2019.

33 Alessandro Panconesi and Aravind Srinivasan. On the complexity of distributed network
decomposition. Journal of Algorithms, 20(2):356–374, 1996. doi:10.1006/JAGM.1996.0017.

34 Sridhar Rajagopalan and Vijay V Vazirani. Primal-dual RNC approximation algorithms for
set cover and covering integer programs. SIAM Journal on Computing, 28(2):525–540, 1998.
doi:10.1137/S0097539793260763.

35 Sanguthevar Rajasekaran and John H Reif. Optimal and sublogarithmic time randomized
parallel sorting algorithms. SIAM Journal on Computing, 18(3):594–607, 1989. doi:10.1137/
0218041.

36 Stergios Stergiou and Kostas Tsioutsiouliklis. Set cover at web scale. In ACM International
Conference on Knowledge Discovery & Data Mining (KDD), pages 1125–1133, 2015. doi:
10.1145/2783258.2783315.

37 Alastair J Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronics Letters, 8(10):127–128, 1974.

38 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, USA, 1st edition, 2011.

https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1137/0211045
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1006/JAGM.1994.1036
https://doi.org/10.1007/S00446-011-0127-7
https://doi.org/10.1007/S00446-011-0127-7
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1145/1835698.1835772
https://doi.org/10.1006/JAGM.1996.0017
https://doi.org/10.1137/S0097539793260763
https://doi.org/10.1137/0218041
https://doi.org/10.1137/0218041
https://doi.org/10.1145/2783258.2783315
https://doi.org/10.1145/2783258.2783315


L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:19

A Analysis of the Set Sampling Process

In this section we prove two properties of the SSP, which are key in analyzing our algorithms.
Recall the set sampling process SSP: initially Ak = A, and Rk is obtained by including each
element of Ak independently with probability pk. Then, for every i from k − 1 down to 0,
an adversary chooses Ai ⊆ Ai+1 (possibly with randomization) and then Ri is obtained by
including every element of Ai independently with probability pi.

Note two things about this process. First, the adversary can be randomized. Second, the
adversary can be adaptive: its choice of Ai can depend on Aj and Rj for j > i. Recall that
after running this process, z is the largest index such that Rz is nonempty. Our goal in this
section is to prove the following lemma:

▶ Lemma 3. Consider the SSP using any adversary and ϵ > 0. Then, E[|Rz|] ≤ 1 + 4ϵ.

To get some intuition for why Lemma 3 might be true, observe that the sampling
probability pi increases very slowly; specifically, it increases by a (1 + ϵ) factor every b steps.
So the algorithm gets many chances at each (low) probability to obtain a non-empty Ri, and
so it is not very likely to get more than 1 element in Rz.

To prove this lemma, we start with a simple but extremely useful observation: we may
assume without loss of generality that the adversary is nonadaptive: its choice of Ai does not
depend on Rj for j > i (it can still depend on Aj for j > i). In other words, a nonadaptive
adversary must pick the entire sequence of Ai’s before seeing the results of any of the Ri’s.
Moreover, we may assume that the adversary is deterministic.

▶ Observation 11. Without loss of generality, the adversary is nonadaptive and deterministic,
i.e., it is a single fixed sequence Ak, Ak−1, . . . , A0.

Proof. We begin by showing that the adversary is nonadaptive without loss of generality.
To see this, suppose there is some adaptive adversary P . Then let P ′ be the nonadaptive
adversary obtained by simply running P under the assumption that every Ri = ∅. Clearly,
this gives a (possibly randomized) sequence Ak, Ak−1, . . . , A0 without needing to see the
Ri’s, and so is nonadaptive. Clearly, P and P ′ behave identically until z − 1, i.e., until just
after the first time that some Ri is nonempty (since P ′ is just P under the assumption that
all Ri’s are empty). But indices z − 1 down to 0 make no difference in Lemma 3! Hence if
Lemma 3 holds for nonadaptive adversaries, it also holds for adaptive adversaries.

So we assume that the adversary is nonadaptive, i.e., the adversarial choice is simply a
distribution over sequences Ak, Ak−1, . . . , A0. This means that the expectation in Lemma 3 is
taken over both the adversary’s random choices and the randomness from sampling the Ri’s
once the Ai’s are fixed. These are intermixed for an adaptive adversary but for a nonadaptive
adversary, which we may assume WLOG, we can separate these out by first choosing the
random Ai’s and then subsampling to get the Ri’s. So we want to prove that

EAk,...,A0 [ERk,...R0 [|Rz|]] ≤ 1 + 4ϵ.

Suppose we could prove Lemma 3 for a deterministic nonadaptive adversary, i.e., for a fixed
Ak, Ak−1, . . . , A0. In other words, suppose that ERk,...,R0 |Rz| ≤ 1 + 4ϵ for all sequences
Ak, Ak−1, . . . , A0. Then clearly

EAk,...,A0 [ERk,...R0 [|Rz|]] ≤ EAk,...,A0 [1 + 4ϵ] = 1 + 4ϵ.

Thus if we can prove Lemma 3 against a nonadaptive deterministic adversary, we have
proved Lemma 3 against an adaptive and randomized adversary, as desired. ◀

DISC 2024



19:20 Parallel Set Cover and Hypergraph Matching

So from now on, we may assume that the family Ak, Ak−1, . . . , A0 is fixed. Note that in
this setting, the sets Ri are independent of each other; this holds as the sets Ai are fixed,
and the randomness used to obtain Ri is independent of the randomness used to sample
other Rj sets. Before proving Lemma 3, we first show several auxiliary observations (all of
which are in the setting where Ak, Ak−1, . . . , A0 are fixed).

Our first observation is that for the first b rounds of the SSP, the expected number of
sampled elements is small.

▶ Observation 12. Assume that k ≥ b⌈log1+ϵ(nk/ϵ)⌉. Then, for each j ∈ (k−b, k], pj ·nj ≤ ϵ.

Proof. We have

⌈j/b⌉ = ⌈k/b⌉ ≥ log1+ϵ(nk/ϵ),

which gives

pj · nj = (1 + ϵ)−⌈j/b⌉ · nj ≤ (1 + ϵ)− log1+ϵ(nk/ϵ) · nk = ϵ. ◀

We can also show that probabilities and the expected number of sampled elements do
not increase much in any consecutive b steps.

▶ Observation 13. For each i ∈ [0, k), and any j ∈ [i + 1, i + b], pi ≤ (1 + ϵ)pj and
pi · ni ≤ (1 + ϵ)pj · nj.

Proof. This first claim follows from the definition of pi. The second claim additionally uses
the fact that n0, . . . , nk is a non-decreasing sequence. ◀

This observation now allows us to show that if we have a relatively large expected number
of elements in Ri, then the probability that we have not yet sampled any elements in Rj for
j > i is notably smaller than the probability that we haven’t sampled any elements in Rj for
j > i + b.

▶ Lemma 14. Assume that pi ·ni ≥ ϵ(1 + ϵ) for some i ∈ [0, k− b]. Then, P (z ≤ i) ≤ P (z ≤
i + b)/(2 + 2ϵ).

Proof. Denote by Ej the event that Rj = ∅. Recall that z is the maximum index such that
Rz ≠ ∅. Observe that the event that z ≤ x is equivalent to

⋂
j>x Ej and the individual

events Ej are independent. Hence P (z ≤ i) = P (z ≤ i + b) ·
∏i+b

j=i+1 P (Ej). To complete the
proof we will show that

∏i+b
j=i+1 P (Ej) ≤ 1/(2 + 2ϵ).

By Observation 13, we have that for j ∈ [i + 1, . . . , b], (1 + ϵ)pj · nj ≥ pi · ni ≥ ϵ(1 + ϵ),
which implies pj · nj ≥ ϵ. Hence,

P (Ej) = (1− pj)nj ≤ e−pj ·nj ≤ e−ϵ.

By using the above, we get

i+b∏
j=i+1

P (Ej) ≤ e−b·ϵ = e−⌈log(2(1+ϵ))/ϵ⌉ϵ ≤ e− log(2(1+ϵ)) = 1
2 + 2ϵ

which finishes the proof. ◀

This now allows us to give an absolute bound on the probability that we have not sampled
any elements before we sample Rj , assuming that we have a pretty high probability of
sampling an element in Rj .



L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:21

▶ Lemma 15. Let j ∈ [0, k] be such that pj ·nj ≥ ϵ(1 + ϵ)c for a nonnegative integer c. Then
P (z ≤ j) ≤ (2 + 2ϵ)−c.

Proof. We prove the claim using induction on c. For c = 0, (2 + 2ϵ)−c is 1, and the claim is
trivially true.

Now, fix c ≥ 1. By Observation 12, we have that j ≤ k − b, and so we apply Lemma 14
to obtain P (z ≤ j) ≤ P (z ≤ j + b)/(2 + 2ϵ). Hence, to complete the proof, it suffices to show
P (z ≤ j + b) ≤ (2 + 2ϵ)−c+1.

We achieve that by applying the induction hypothesis to j′ = j + b. Indeed, by Observa-
tion 13, pj′ · nj′ ≥ ϵ(1 + ϵ)c−1, and so the assumptions of the inductive hypothesis hold. As
a result, we obtain P (z ≤ j + b) = P (z ≤ j′) ≤ (2 + 2ϵ)−c+1, as required. ◀

Before finally proving Lemma 3, we first show two more useful claims.

▷ Claim 16. For each i ∈ [0, k], it holds that E[|Ri| | Ri ̸= ∅] ≤ 1 + pi · ni.

Proof. We have

E[|Ri| | Ri ̸= ∅] = E[|Ri|]
P (Ri ̸= ∅) = pi · ni

1 − (1 − pi)ni
≤ pi · ni

1 − 1
epi·ni

≤ pi · ni

1 − 1
1+pi·ni

= pi · ni
pi·ni

1+pi·ni

= 1+pi ·ni.

Note that in the first inequality we used the fact that 1− pi ≤ e−pi , while in the second we
used epi·ni ≥ 1 + pi · ni. ◁

▷ Claim 17. Recall that z is the maximum index such that Rz ̸= ∅. It holds that
E[|Rz|] ≤ 1 + E[pz · nz].

Proof. Denote by Xi the event that Rj = ∅ for all j ∈ [i + 1, k]. Note that z = i is the
intersection of events Ri ̸= ∅ and Xi.

E[|Rz|] =
k∑

i=0

E[|Ri| | z = i] · P (z = i)

=
k∑

i=0

E[|Ri| | Ri ̸= ∅ ∩ Xi] · P (z = i) =
k∑

i=0

E[|Ri| | Ri ̸= ∅] · P (z = i)

≤
k∑

i=0

(1 + pi · ni) · P (z = i) =
k∑

i=0

P (z = i) +
k∑

i=0

pi · ni · P (z = i) = 1 + E[pz · nz],

where the final inequality is from Claim 16. We used the fact that E[|Ri| | Ri ≠ ∅ ∩Xi] =
E[|Ri| | Ri ̸= ∅], which follows from the fact that Ri is independent from Xi. ◁

We are now ready to prove Lemma 3.

Proof of Lemma 3. We know from Observation 11 that without loss of generality, the
sequence Ak, Ak−1, . . . , A0 is fixed. By Claim 17 it suffices to show that E[pz · nz] ≤ 4ϵ. Let
us define X := pz · nz to shorten notation.

E[X] ≤ P (X < ϵ) · ϵ +
∞∑

c=0
P

(
X ∈

[
ϵ(1 + ϵ)c, ϵ(1 + ϵ)c+1))

· ϵ(1 + ϵ)c+1

≤ ϵ +
∞∑

c=0
P (X ≥ ϵ(1 + ϵ)c) · ϵ(1 + ϵ)c+1

≤ ϵ +
∞∑

c=0
2−c(1 + ϵ)−c · ϵ(1 + ϵ)c+1

≤ ϵ(1 + 2(1 + ϵ)) ≤ 4ϵ.

DISC 2024



19:22 Parallel Set Cover and Hypergraph Matching

Note that we used the bound on P (X ≥ ϵ(1 + ϵ)c) ≤ (2 + 2ϵ)−c which follows directly from
Lemma 15. ◀

A.1 Probability of the Sampled Element Being Not Unique
We use the following lemma to analyze our HypergraphMatching algorithm. Specifically, it
upper bounds the probability that an edge is sampled in Algorithm 4, but not included in the
final matching. In the proof of Lemma 10, we specify how to map our HypergraphMatching
algorithm to the setup in this section.

▶ Lemma 5. Let a ∈ Ak and let ϵ ≤ 1/2. Then P (|Rz| > 1 | a ∈ Rz) ≤ 6ϵ.

Proof. As for the previous proof in this section, first assume that the sets A0, . . . , Ak are
fixed.

Our goal is to upper bound

P (|Rz| > 1 | a ∈ Rz) = P (|Rz| > 1 ∩ a ∈ Rz)
P (a ∈ Rz) (3)

Let ma = min{i ∈ [0, k] | a ∈ Ai} be the index of the last step before a is removed from
the sets A0, . . . , Ak. We obtain:

P (|Rz| > 1 ∩ a ∈ Rz) =
k∑

i=ma

P (z = i ∩ |Ri| > 1 ∩ a ∈ Ri)

=
k∑

i=ma

P (z ≤ i ∩ |Ri| > 1 ∩ a ∈ Ri) since a ∈ Ri implies z ≥ i

=
k∑

i=ma

P (z ≤ i)P (|Ri| > 1 ∩ a ∈ Ri) z≤i is equivalent to Rj =∅ for all j>i

these events are independent of Ri

Observe that the event |Ri| > 1∩ a ∈ Ri happens when a is sampled and at least one out
of the remaining ni − 1 elements of Ai are sampled. Hence,

P (|Ri| > 1 ∩ a ∈ Ri) = pi · (1− (1− pi)ni−1) ≤ pi · (1− (1− pi · (ni − 1))) ≤ p2
i · ni,

and so we finally obtain P (|Rz| > 1 ∩ a ∈ Rz) ≤
∑k

i=ma
P (z ≤ i)p2

i · ni. For the first
inequality above, we used Bernoulli’s inequality which states that (1 + x)r ≥ 1 + rx for every
integer r ≥ 1 and a real number x ≥ −1. Analogous reasoning allows us to show a similar
identity for the denominator:

P (a ∈ Rz) =
k∑

i=ma

P (z ≤ i)P (a ∈ Ri) =
k∑

i=ma

P (z ≤ i)pi

Hence we can upper bound Equation (3) as follows

P (|Rz| > 1 | a ∈ Rz) ≤
∑k

i=ma
P (z ≤ i)P (a ∈ Ai)p2

i · ni∑k
i=ma

P (z ≤ i)P (a ∈ Ai)pi

. (4)

▷ Claim 18. Let I = {i ∈ [ma, k] | pi ·ni < ϵ(1 + ϵ)} be a set of indices. Then
∑k

i=ma
P (z ≤

i)p2
i · ni ≤ 2/(1− ϵ)

∑
i∈I P (z ≤ i)p2

i · ni



L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:23

Proof. Consider the sum
k∑

i=ma

P (z ≤ i)p2
i · ni.

We are going to charge the summands indexed by [ma, k] \ I to the summands indexed by I.
Formally, the charging is defined by a function f : [ma, k]→ [ma, k]. We define f(i) to be
the smallest index j ∈ {i, i + b, i + 2b, . . .} such that j ∈ I, that is pj · nj < ϵ(1 + ϵ). We note
that f(i) is well-defined since by Observation 12 we have that (k − b, k] ⊆ I.

Now we charge each summand i to f(i) ∈ I and show that the total charge of each
summand in I increases by at most a constant factor. Let us now fix any j ∈ I and consider
the sum

∑
i∈f−1(j) P (z ≤ i)p2

i ·ni. Let h := |f−1(j)|. Then f−1(j) = {j, j−b, . . . , j−(h−1)b}.
We now show that the summands in the considered sum are geometrically decreasing (if we
consider the indices in decreasing order). Indeed, consider x ∈ f−1(j) \ {j}. We are now
going to use the following facts.

By Lemma 14 we have P (z ≤ x) ≤ P (z ≤ x + b)/(2 + 2ϵ).
By Observation 13, px · nx ≤ (1 + ϵ)px+b · nx+b.
By Observation 13, px ≤ (1 + ϵ)px+b.

These three facts together imply that for any x ∈ f−1(j) \ {j}

P (z ≤ x)p2
x · nx ≤ (1 + ϵ)/2 · P (z ≤ x + b)p2

x+b · nx+b.

Hence, the summands in f−1(j) can be arranged into a sequence in which the largest element
is the summand corresponding to j, and each subsequent summand is at least a factor of
(1+ϵ)/2 smaller. As a result, the total charge of the summand j is 1/(1−(1+ϵ)/2) = 2/(1−ϵ).

◁

Using the above claim, we upper bound Equation (4).∑k

i=ma
P (z ≤ i)p2

i · ni∑k

i=ma
P (z ≤ i)pi

≤
2 ·

∑
i∈I

P (z ≤ i)p2
i · ni

(1 − ϵ) ·
∑

i∈I
P (z ≤ i)pi

<
2 · ϵ(1 + ϵ) ·

∑
i∈I

P (z ≤ i)pi

(1 − ϵ) ·
∑

i∈I
P (z ≤ i)pi

≤ 6ϵ.

The proofs are stated while assuming that the sets A0, . . . , Ak are fixed. As given by
Observation 11, this assumption can be made without loss of generality. ◀

DISC 2024





The Computational Power of Discrete Chemical
Reaction Networks with Bounded Executions
David Doty # Ñ

Computer Science, University of California – Davis, CA, USA

Ben Heckmann #

CIT, Technical University of Munich, Germany
Computer Science, University of California – Davis, CA, USA

Abstract
Chemical reaction networks (CRNs) model systems where molecules interact according to a finite set
of reactions such as A + B → C, representing that if a molecule of A and B collide, they disappear
and a molecule of C is produced. CRNs can compute Boolean-valued predicates ϕ : Nd → {0, 1} and
integer-valued functions f : Nd → N; for instance X1 + X2 → Y computes the function min(x1, x2),
since starting with xi copies of Xi, eventually min(x1, x2) copies of Y are produced.

We study the computational power of execution bounded CRNs, in which only a finite number
of reactions can occur from the initial configuration (e.g., ruling out reversible reactions such as
A⇌B). The power and composability of such CRNs depend crucially on some other modeling
choices that do not affect the computational power of CRNs with unbounded executions, namely
whether an initial leader is present, and whether (for predicates) all species are required to “vote”
for the Boolean output. If the CRN starts with an initial leader, and can allow only the leader to
vote, then all semilinear predicates and functions can be stably computed in O(n log n) parallel time
by execution bounded CRNs.

However, if no initial leader is allowed, all species vote, and the CRN is “non-collapsing” (does
not shrink from initially large to final O(1) size configurations), then execution bounded CRNs are
severely limited, able to compute only eventually constant predicates. A key tool is a characterization
of execution bounded CRNs as precisely those with a nonnegative linear potential function that is
strictly decreased by every reaction [6].

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases chemical reaction networks, population protocols, stable computation

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.20

Related Version Full Version: https://arxiv.org/abs/2405.08649

Funding David Doty: NSF awards 2211793, 1900931, 1844976, and DoE EXPRESS award
SC0024467.
Ben Heckmann: NSF award 1844976.

1 Introduction

Chemical reaction networks (CRNs) are a fundamental tool for understanding and designing
molecular systems. By abstracting chemical reactions into a set of finite, rule-based transfor-
mations, CRNs allow us to model the behavior of complex chemical systems. For instance,
the CRN with a single reaction 2X → Y , produces one Y every time two X molecules
randomly react together, effectively calculating the function f(x) = ⌊x/2⌋ if the initial count
of X is interpreted as the input and the eventual count of Y as the output. A commonly
studied special case of CRNs is the population protocol model of distributed computing [3], in
which each reaction has exactly two reactants and two products, e.g., A+B → C +D. This
model assumes idealized conditions where reactions can proceed indefinitely, constrained
only by the availability of reactants in the well-mixed solution.

© David Doty and Ben Heckmann;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 20; pp. 20:1–20:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:doty@ucdavis.edu
https://web.cs.ucdavis.edu/~doty/
https://orcid.org/0000-0002-3922-172X
mailto:ben.heckmann@tum.de
https://doi.org/10.4230/LIPIcs.DISC.2024.20
https://arxiv.org/abs/2405.08649
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 Execution Bounded Chemical Reaction Networks

Precisely the semilinear predicates ϕ : Nd → {0, 1} [1] and functions f : Nd → N [5] can
be computed stably, roughly meaning that the output is correct no matter the order in which
reactions happen. In population protocols or other CRNs with a finite reachable configuration
space, this means that the output is correct with probability 1 under a stochastic scheduler
that picks the next molecules to react at random. However, existing constructions to compute
semilinear predicates and functions use CRNs with unbounded executions, meaning that it
is possible to execute infinitely many reactions from the initial configuration. CRNs with
bounded executions have several advantages. With an absolute guarantee on how many
reactions will happen before the CRN terminates, wet-lab implementations need only supply
a bounded amount of fuel to power the reactions. Such CRNs are simpler to reason about:
each reaction brings it “closer” to the answer. They also lead to a simpler definition of stable
computation than is typically employed: an execution bounded CRN stably computes a
predicate/function if it gets the correct answer after sufficiently many reactions.

To study this topic, we study networks that must eventually reach a configuration where no
further reactions can occur, regardless of the sequence of reactions executed. This restriction
is nontrivial because the techniques of [5, 7] rely on reversible reactions (leading to unbounded
executions) catalyzed by species we expect to be depleted once a computational step has
terminated. This trick seems to add computational power to our system by undoing certain
reactions as long as a specific species is present. Consider the following CRN computing
f(x1, x2, x3) = min (x1 − x2, x3). The input values xi are given by the counts of Xi, and the
output by the count of Z molecules in the stable state:

X1 → Y (1)
X2 + Y → ∅ (2)
Y +X3 → Z (3)
Z +X2 → X2 +X3 + Y (4)

Reactions (1) and (2) compute x1 − x2, storing the result in the count of Y . Next, reaction
(3) can be applied exactly min(y, x3) times. But since the order of reactions is a stochastic
process, we might consume copies of Y in (3), before all of x2 is subtracted from it. Therefore,
we add reaction (4), using X2 as a catalyst to undo reaction (3) as long as copies of X2 are
present, indicating that the first step of computation has not terminated. However, this
means the above CRN does not have bounded exectutions, since reactions (3) and (4) can
be alternated in an infinite execution. A similar technique is used in [5], where semilinear
sets are understood as a finite union of linear sets, shown to be computable in parallel by
CRNs. A reversible, catalyzed reaction finally converts the output of one of the CRNs to the
global output. Among other questions, we explore how the constructions of [5] and [7] can
be modified to provide equal computational power while guaranteeing bounded execution.

The paper is organized as follows. Section 3 defines execution boundedness (Definition 3.1).
We introduce alternative characterizations of the class for use in later proofs, such as the
lack of self-covering execution paths. Section 4 and 5 contain the main positive results
of the paper and provide the concrete constructions used to decide semilinear sets and
functions using execution bounded CRNs whose initial configurations contain a single leader.
Section 6 discusses the limitations of execution bounded CRNs, introducing the concept of
a “linear potential function” as a core characterization of these systems. We demonstrate
that entirely execution bounded CRNs that are leaderless and non-collapsing (such as all
population protocols), can only stably decide trivial semilinear predicates: the eventually
constant predicates (Definition 6.6).



D. Doty and B. Heckmann 20:3

2 Preliminaries

We use established notation from [5, 7] and stable computation definitions from [3] for
(discrete) chemical reaction networks.

2.1 Notation
Let N denote the nonnegative integers. For any finite set Λ, we write NΛ to mean the set
of functions f : Λ → N. Equivalently, NΛ can be interpreted as the set of vectors indexed
by the elements of Λ, and so c ∈ NΛ specifies nonnegative integer counts for all elements
of Λ. c(i) denotes the i-th coordinate of c, and if c is indexed by elements of Λ, then c(Y )
denotes the count of species Y ∈ Λ. We sometimes use multiset notation for such vectors,
e.g., {A, 3C} for the vector (1, 0, 3), assuming there are three species A,B,C. If Σ ⊆ Λ, then
i ↾ Σ denotes restriction of i to Σ.

For two vectors x,y ∈ Rk, we write x ≧ y to denote that x(i) ≥ y(i) for all 1 ≤ i ≤ k,
x ≥ y to denote that x ≧ y but x ̸= y, and x > y to denote that x(i) > y(i) for all 1 ≤ i ≤ k.
In the case that y = 0, we say that x is nonnegative, semipositive, and positive, respectively.
Similarly define ≦,≤, <.

For a matrix or vector x, define ∥x∥ = ∥x∥1 =
∑

i |x(i)|, i ranges over all the entries of x.

2.2 Chemical Reaction Networks
A chemical reaction network (CRN) is a pair C = (Λ, R), where Λ is a finite set of chemical
species, and R is a finite set of reactions over Λ, where each reaction is a pair (r,p) ∈ NΛ ×NΛ

indicating the reactants r and products p. A population protocol [1] is a CRN in which all
reactions (r,p) obey ∥r∥ = ∥p∥ = 2. (Note that CRNs, including population protocols, do
not assume any underlying “communication graph” and model a well-mixed system in which
each equal-sized of molecules is as likely to collide and react as any other.) We write reactions
such as A + 2B→A + 3C to represent the reaction ({A, 2B}, {A, 3C}). A configuration
c ∈ NΛ of a CRN assigns integer counts to every species S ∈ Λ. When convenient, we use the
notation {n1S1, n2S2, . . . , nkSk} to describe a configuration c with ni ∈ N copies of species
Si, i.e., c(Si) = ni, and any species that is not listed is assumed to have a zero count. If
some configuration c is understood from context, for a species S, we write #S to denote
c(S). A reaction (r,p) is said to be applicable in configuration c if r ≦ c. If the reaction
(r,p) is applicable, applying it results in configuration c′ = c − r + p, and we write c → c′.

An execution E is a finite or infinite sequence of one or more configurations E =
(c0, c1, c2, . . .) such that, for all i ∈ {1, . . . , |E| − 1}, ci−1 → ci and ci−1 ≠ ci. x ⇒P y
denotes that P is finite, starts at x, and ends at y. In this case we say y is reachable from x.
Let reach(x) = {y | x ⇒ y}. Note that the reachability relation is additive: if x ⇒ y, then
for all c ∈ NΛ, x + c ⇒ y + c.

For a CRN C = (Λ, R) where |Λ| = n and |R| = m, define the n × m stoichiometric
matrix M of C as follows. The species are ordered S1, . . . , Sn, and the reactions are ordered
(r1,p1), . . . , (rm,pm), and Mij = pj(Si) − rj(Si). In other words, Mij is the net amount of
Si produced when executing the j’th reaction. For instance, if the CRN has two reactions

S1 →S2 + 2S3 and 3S2 + S3 →S1 + S2 + S3, then M =

−1 1
1 −2
2 0

 .

DISC 2024



20:4 Execution Bounded Chemical Reaction Networks

▶ Remark 2.1. Let u ∈ NR. Then the vector Mu ∈ ZΛ represents the change in species
counts that results from applying reactions by amounts described in u. In the above example,
if u = (2, 1), then Mu = (−1, 0, 4), meaning that executing the first reaction twice (u(1) = 2)
and the second reaction once (u(2) = 1) causes S1 to decrease by 1, S2 to stay the same,
and S3 to increase by 4.

2.3 Stable computation with CRNs
To capture the result of computations done by a CRN, we generalize the definitions to include
information about how to interpret the final configuration after letting the CRN run until
the result cannot change anymore (characterized below as stable computation). Computation
primarily involves two classes of functions: 1. evaluating predicates ϕ : Nk → {0, 1} to
determine properties of the input, and 2. executing general functions that map an input
configuration to an output, denoted as f : Nk → N.

The definitions below reference input species Σ ⊆ Λ and an initial context s ∈ NΛ\Σ. If
s = 0 we say that CRN is leaderless. The initial context may be any constant multiset of
species, though in practice it tends to be a single “leader” molecule. Furthermore, other
initial contexts such as {2A, 3B} could be produced from a single leader L via a reaction
L → 2A+ 3B, so we may assume without loss of generality that the initial context, if it is
nonzero, is simply a single leader. In both cases, we say i ∈ NΛ is a valid initial configuration
if i = s + x, where x(S) = 0 for all S ∈ Λ \ Σ; i.e., i is the initial context plus only input
species.

A chemical reaction decider (CRD) is a tuple D = (Λ, R,Σ,Υ1,Υ0, s), where (Λ, R) is a
CRN, Σ ⊆ Λ is the set of input species, Υ1 ⊆ Λ is the set of yes voters, and Υ0 ⊆ Λ is the
set of no voters, such that Υ1 ∩ Υ0 = ∅, and s ∈ NΛ\Σ is the initial context. If Υ1 ∪ Υ0 = Λ,
we say the CRD is all-voting. We define a global output partial function Φ : NΛ 99K {0, 1} as
follows. Φ(c) is undefined if either c = 0, or if there exist S0 ∈ Υ0 and S1 ∈ Υ1 such that
c (S0) > 0 and c (S1) > 0. In other words, we require a unanimous vote as our output. We
say c is stable if, for all c′ such that c ⇒ c′, Φ(c) = Φ(c′). We say a CRD D stably decides
the predicate ψ : NΣ → {0, 1} if, for any valid initial configuration i ∈ NΛ, letting i0 = i ↾ Σ,
for all configurations c ∈ NΛ, i ⇒ c implies c ⇒ c′ such that c′ is stable and Φ (c′) = ψ (i0).
We associate to a predicate ψ the set A = ψ−1(1) of inputs on which ψ outputs 1, so we can
equivalently say the CRD stably decides the set A.

A chemical reaction computer (CRC) is a tuple C = (Λ, R,Σ, Y, s), where (Λ, R) is a
CRN, Σ ⊂ Λ is the set of input species, Y ∈ Λ\Σ is the output species, and s ∈ NΛ\Σ is the
initial context. A configuration o ∈ NΛ is stable if, for every c such that o ⇒ c,o(Y ) = c(Y ),
i.e. the output can never change again. We say that C stably computes a function f : Nk → N
if for any valid initial configuration i ∈ NΣ and any c ∈ NΛ, i ⇒ c implies c ⇒ o such that o
is stable and f(i ↾ Σ) = o(Y ).

2.4 Time model
The following model of stochastic chemical kinetics is widely used in quantitative biology and
other fields dealing with chemical reactions between species present in small counts [8]. It
ascribes probabilities to execution sequences, and also defines the time of reactions, allowing
us to study the computational complexity of the CRN computation in Sections 4 and 5. If
the volume is defined to be the total number of molecules, then the time model is essentially
equivalent to the notion of parallel time studied in population protocols [2]. In this paper,
the rate constants of all reactions are 1, and we define the kinetic model with this assumption.
A reaction is unimolecular if it has one reactant and bimolecular if it has two reactants. We
use no higher-order reactions in this paper.



D. Doty and B. Heckmann 20:5

The kinetics of a CRN is described by a continuous-time Markov process as follows. Given
a fixed volume v > 0, the propensity of a unimolecular reaction α : X → . . . in configuration
c is ρ(c, α) = c(X). The propensity of a bimolecular reaction α : X + Y → . . ., where
X ̸= Y , is ρ(c, α) = c(X)c(Y )

v . The propensity of a bimolecular reaction α : X +X → . . . is
ρ(c, α) = 1

2
c(X)(c(X)−1)

v . The propensity function determines the evolution of the system as
follows. The time until the next reaction occurs is an exponential random variable with rate
ρ(c) =

∑
α∈R ρ(c, α) (note that ρ(c) = 0 if no reactions are applicable to c). The probability

that next reaction will be a particular αnext is ρ(c,αnext)
ρ(c) .

The kinetic model is based on the physical assumption of well-mixedness that is valid in a
dilute solution. Thus, we assume the finite density constraint, which stipulates that a volume
required to execute a CRN must be proportional to the maximum molecular count obtained
during execution [12]. In other words, the total concentration (molecular count per volume)
is bounded. This realistically constrains the speed of the computation achievable by CRNs.

For a CRD or CRC stably computing a predicate/function, the stabilization time is the
function t : N → N defined for all n ∈ N as t(n) = the worst-case expected time to reach
from any valid initial configuration of size n to a stable configuration.

2.5 Semilinear sets, predicates, functions
▶ Definition 2.2. A set L ⊆ Nd is linear if there are vectors b,p1, . . . ,pk such that
L = {b + n1p1 + · · · + nkpk | n1, . . . , nk ∈ N}. A set is semilinear if it is a finite union
of linear sets. A predicate ϕ : Nd → {0, 1} is semilinear if the set ϕ−1(1) is semilinear. A
function f : Nd → N is semilinear if its graph {(x, y) ∈ Nd+1 | f(x) = y} is semilinear.

The following is a known characterization of the computational power of CRNs [3, 4].

▶ Theorem 2.3 ([3, 4]). A predicate/function is stably computable by a CRD/CRC if and
only if it is semilinear.

▶ Definition 2.4. T ⊆ Nd is a threshold set is if there are constants c, w1, . . . , wd ∈ Z such
that T = {x ∈ Nd | w1x(1) + · · · + wdx(d) ≤ c}. M ⊆ Nd is a mod set if there are constants
c,m,w1, . . . , wd ∈ N such that M = {x ∈ Nd | w1x(1) + · · · + wdx(d) ≡ c mod m}.

The following well-known characterization of semilinear sets is useful.

▶ Theorem 2.5 ([9]). A set is semilinear if and only if it is a Boolean combination (union,
intersection, complement) of threshold and mod sets.

3 Execution bounded chemical reaction networks

In this section, we define execution bounded CRNs and state an alternate characterization of
the definition.

▶ Definition 3.1. A CRN C is execution bounded from configuration x if all executions
E = (x, . . .) starting at x are finite. A CRD or CRC C is execution bounded if it is execution
bounded from every valid initial configuration. C is entirely execution bounded if it is
execution bounded from every configuration.

This is a distinct concept from the notion of “bounded” CRNs studied by Rackoff [11]
(studied under the equivalent formalism of vector addition systems). That paper defines a
CRN to be bounded from a configuration x if |reach(x)| is finite (and shows that the decision
problem of determining whether this is true is EXPSPACE-complete.) We use the term
execution bounded to avoid confusion with this concept.

DISC 2024



20:6 Execution Bounded Chemical Reaction Networks

We first observe an equivalent characterization of execution bounded that will be useful
in the negative results of Section 6.

▶ Definition 3.2. A execution E = (x1,x2, . . . ) is self-covering if for some i < j, xi ≦ xj.
It is strictly self-covering if xi ≤ xj. We also refer to these as (strict) self-covering paths.1

▶ Lemma 3.3. A CRN is execution bounded from x if and only if there is no self-covering
path from x.

4 Execution bounded CRDs stably decide all semilinear sets

In this section, we will show that execution bounded CRDs have the same computational
power as unrestricted CRDs. The following is the main result of this section.

▶ Theorem 4.1. Exactly the semilinear sets are stably decidable by execution bounded CRDs.
Furthermore, each can be stably decided with expected stabilization time Θ(n log n).

Since semilinear sets are Boolean combinations of mod and threshold predicates, we
prove this theorem by showing that execution bounded CRDs can decide mod and threshold
sets individually as well as any Boolean combination in the following lemmas. To ensure
execution boundedness in the last step, we require the following property.

▶ Definition 4.2. Let D be a CRD with voting species Υ. We say D is single-voting if for
any valid initial configuration i ∈ NΣ and any c ∈ NΛ s.t. i ⇒ c,

∑
V ∈Υ c(V ) = 1, i.e.,

exactly one voter is present in every reachable configuration.

Lemmas 4.3 and 4.4 are proven in the full version of this paper.

▶ Lemma 4.3. Every mod set M =
{

(x1, . . . , xd) |
∑d

i=1 wixi ≡ c mod m
}

is stably decidable
by an execution bounded, single-voting CRD with expected stabilization time Θ(n log n).

We design a CRD D with exactly one leader present at all times, cycling through m

“states” while consuming the input and accepting on state c. Let Σ = {X1, . . . , Xd} be the
set of input species and start with only one L0 leader, i.e. set the initial context s(L0) = 1
and s(S) = 0 for all other species. For each i ∈ {1, . . . , d}, j ∈ {0, . . . ,m − 1} add the
following reaction: Xi + Lj → Lj+wi mod m. Let only Lc vote yes and all other species no,
i.e. Υ = {Lc}. For any valid initial configuration, D reaches a stable configuration which
votes yes if and only if the input is in the mod set, and no otherwise.

▶ Lemma 4.4. Every threshold set T =
{

(x1, . . . , xd) |
∑d

i=1 wixi ≥ t
}

is stably decidable
by an execution bounded, single-voting CRD with expected stabilization time Θ(n log n).

We design a CRD D which multiplies the input molecules according to their weight and
consumes positive and negative units alternatingly using a single leader. Once no more
reaction is applicable, the leader’s state will indicate whether or not there are positive units
left and the threshold is met. Let Σ = {X1, . . . , Xd} be the set of input species and Υ = {LY }

1 Rackoff [11] uses the term “self-covering” to mean what we call strictly self-covering here, and points out
that Karp and Miller [10] showed that |reach(x)| is infinite if and only if there is a strictly self-covering
path from x. The distinction between these concepts is illustrated by the CRN A⇌B. From any
configuration x, reach(x) is finite (|reach(x)| = x(A)+x(B)+1), and there is no strict self-covering path.
However, from (say) {A}, there is a (nonstrict) self-covering path {A} ⇒ {B} ⇒ {A}, and by repeating,
this CRN has an infinite cycling execution within its finite configuration space reach({A}) = {{A}, {B}}.



D. Doty and B. Heckmann 20:7

the yes voter. We first add reactions to multiply the input species by their respective weights.
For all i ∈ {1, . . . , d}, add the reaction:

Xi →


wiP if wi > 0
−wiN if wi < 0
∅ otherwise

(5)

P and N represent “positive” and “negative” units respectively. Now add reactions to
consume P and N alternatingly using a leader until we run out of one species:

LY +N → LN (6)
LN + P → LY (7)

Finally, initialize the CRD with one LY and the threshold number t copies of P (or −tN
if t is negative), i.e. s(LY ) = 1, s(P ) = t if t > 0, or s(N) = −t if t < 0, and s(S) = 0 for
all other species. For any valid initial configuration, D reaches a stable configuration which
votes yes if and only if the weighted sum of inputs is above the threshold, and no otherwise.

▶ Lemma 4.5. If sets X1, X2 ⊆ Nd are stably decided by some execution bounded, single-
voting CRD, then so are X1 ∪X2, X1 ∩X2, and X1 with expected stabilization time O(n log n).

Proof. To stably decide X1, swap the yes and no voters.
For ∪ and ∩, consider a construction where we decide both sets separately and record

both of their votes in a new voter species. For this, we allow the set of all voters to be a
strict subset of all species. We first add reactions to duplicate our input with reactions of
the form

Xi → Xi,1 +Xi,2 (8)

by two separate CRDs. Subsequently, we add reactions to record the separate votes in one
of four new voter species: VNN , VNY , VY N , VY Y . The first and second CRN determine the
first and second subscript respectively. For b ∈ {Y,N} and if Sb, Tb are voters of C1 and C2
respectively, add the reactions:

Sb + Vb? → Sb + Vb? (9)
Tb + V?b → Tb + V?b (10)

Above, the ? subscript is shorthand for “any bit”; e.g. if N1 is the no voter of the first CRD,
we would add two reactions N1 + LY N → N1 + LNN and N1 + LY Y → N1 + LNY . We let
the yes voters be: Υ = {VNY , VY N , VY Y } to stably decide X1 ∪X2 or Υ = {VY Y } to stably
decide X1 ∩X2.

Reaction (8) will complete in O(log n) time and is clearly execution bounded since the
input Xi is finite and not produced in any reaction. Consequently, two separate CRNs run
in Θ(n log n) time as shown in Lemma 4.3 and Lemma 4.4. After stabilization of the parallel
CRNs, we expect reaction (9) and (10) to happen exactly once. Each molecule involved is a
leader and has count 1 in volume n. This leads to a rate of λ = 1·1

n , so the expected time for
one reaction to happen is O(n). It is important to note that reactions (9) and (10) do not
result in unbounded executions due to the unanimous vote in parallel CRDs. In both mod
sets and threshold sets, the leader changes its vote a maximum of |i| times, with only ever
one leader present at any time. Again, we start with only one Vbb voter present initially and
no reaction changes the count of voters, making our construction single-voting. ◀

DISC 2024



20:8 Execution Bounded Chemical Reaction Networks

Since semilinear predicates are exactly Boolean combinations of threshold and mod
predicates, Lemmas 4.3–4.5 imply Theorem 4.1.

We can also prove the same result for all-voting CRDs. Note, however, that such CRDs
cannot be “composed” using the constructions of Lemma 4.5 and Theorem 5.4, which crucially
relied on the assumption that the CRDs being used as “subroutines” are single-voting.

▶ Theorem 4.6. Every semilinear set is stably decidable by an execution bounded, all-voting
CRD, with expected stabilization time O(n log n).

5 Execution bounded CRCs stably compute all semilinear functions

In this section we shift focus from computing Boolean-valued predicates ϕ : Nd → {0, 1}
to integer-valued functions f : Nd → N, showing that execution bounded CRCs can stably
compute the same class of functions (semilinear) as unrestricted CRCs.

Similar to [5, 7], we compute semilinear functions by decomposing them into “affine
pieces”, which we will show can be computed by execution bounded CRNs and combined by
using semilinear predicates to decide which linear function to apply for a given input.2

We say a partial function f : Nk 99K N is affine if there exist vectors a ∈ Qk, c ∈ Nk with
x−c ≥ 0 and nonnegative integer b ∈ N such that f(x) = a⊤(x−c)+b. For a partial function
f we write dom f for the domain of f , the set of inputs for which f is defined. This definition
of affine function may appear contrived, but the main utility of the definition is that it satisfies
Lemma 5.3. For convenience, we can ensure to only work with integer valued molecule counts
by multiplying by 1

d after the dot product, where d may be taken to be the least common
multiple of the denominators of the rational coefficients in the original definition such that
ni = d · a(i): f(x) = b+

∑k
i=1 a(i)(x(i) − c(i)) ⇐⇒ f(x) = b+ 1

d

∑k
i=1 ni(x(i) − c(i)).

We say that a partial function f̂ : Nk → N2 is a diff-representation of f if dom f = dom f̂

and, for all x ∈ dom f , if (yP , yC) = f̂(x), then f(x) = yP − yC , and yP = O(f(x)). In other
words, f̂ represents f as the difference of its two outputs yP and yC , with the larger output
yP possibly being larger than the original function’s output, but at most a multiplicative
constant larger [7].

▶ Lemma 5.1. Let f : Nk → N be an affine partial function. Then there is a diff-
representation f̂ : Nk −→ N2 of f and an execution bounded CRC that monotonically
stably computes f̂ in expected stabilization time O(n).

Proof. Define a CRC C with input species Σ = {X1, . . . , Xk} and output species Γ =
{Y P , Y C}. We need to ensure that after stabilizing, y = #Y P − #Y C

To account for the b offset, start with b copies of Y P .
For the ci offset, we must reduce the number of Xi by ci. Since the result will be used in

the next reaction, we want to produce a new species X ′
i and require X ′

i to not be consumed
during the computation. We achieve this by adding reactions that let Xi consume itself ci

times (keeping track with a subscript) and converting Xi to X ′
i once ci has been reached.

For the sake of notation below, assume input species Xi is actually named Xi,1. For each
i ∈ {1, . . . , k} and m, p ∈ {1, . . . , ci}, if m+ p ≤ ci, add the reaction

Xi,m +Xi,p → Xi,m+p (11)

2 While this proof generalizes to multivariate output functions as in [5, 7], to simplify notation we focus
on single output functions. Multi-valued functions f : Nd → Nl can be equivalently thought of as l
separate single output functions fi : Nd → N, which can be computed in parallel by independent CRCs.



D. Doty and B. Heckmann 20:9

If m+ p > ci, add the reaction

Xi,m +Xi,p → Xi,ci + (m+ p− ci)X ′
i (12)

Runtime: In volume n, the rate of reactions (11) and (12) would be λ ≈ (xi)2

n (xi molecules
have the chance to react with any of the xi − 1 others), so the expected time for the next
reaction is n

(xi)2 . The expected time for the whole process is
∑xi

i=1
n
i2 = n

∑xi

i=1
1
i2 = O(n).

Further, the reactions are execution bounded since both strictly decrease the number of their
reactants and exactly xi − 1 reactions will happen.

To account for the ni/d coefficient, we multiply by ni, then divide by d using similar
reactions as for the subtraction. To multiply by ni, add the following reaction for each
i ∈ {1, . . . , k}:

X ′
i →

{
niD

P
1 , if ni > 0

(−ni)DC
1 , if ni < 0

(13)

For each m, p ∈ {1, . . . , d− 1}, if m+ p ≤ d− 1, add the reactions

DP
m +DP

p → DP
m+p (14)

DC
m +DC

p → DC
m+p (15)

If m+ p ≥ d, add the reactions

DP
m +DP

p → DP
m+p−d + Y P (16)

DC
m +DC

p → DC
m+p−d + Y C (17)

Reactions (13) complete in expected time O(log n), while (16) and (17) complete in O(n) by
a similar analysis as for the first two reactions. As for execution boundedness, (13) is only
applicable once for every X ′

i; all other reactions start with a number of reactants which are a
constant factor of X ′

i and decrease the count of their reactants by one in each reaction. ◀

We require the following result due to Chen, Doty, Soloveichik [5], guaranteeing that any
semilinear function can be built from affine partial functions.

▶ Lemma 5.2 ([5]). Let f : Nd → N be a semilinear function. Then there is a finite set{
f1 : Nd → N, . . . , fm : Nd → N

}
of affine partial functions, where each dom fi is a linear

set, such that, for each x ∈ Nd, if fi(x) is defined, then f(x) = fi(x), and
⋃m

i=1 dom fi = Nd.

We strengthen Lemma 5.2 to show we may assume each dom fi is disjoint from the others.
This is needed not only to prove Theorem 5.4, but to correct the proof of Lemma 4.4 in [5],
which implicitly assumed the domains are disjoint.

▶ Lemma 5.3. Let f : Nd → N be a semilinear function. Then there is a finite set{
f1 : Nd → N, . . . , fm : Nd → N

}
of affine partial functions, where each dom fi is a linear

set, and dom fi ∩ dom fj = ∅ for all i ̸= j, such that, for each x ∈ Nd, if fi(x) is defined,
then f(x) = fi(x), and

⋃m
i=1 dom fi = Nd.

The next theorem shows that semilinear functions can be computed by execution bounded
CRCs in expected time O(n log n).

▶ Theorem 5.4. Let f : Nd → N be a semilinear function. Then there is an execution
bounded CRC that stably computes f with expected stabilization time O(n log n).

DISC 2024



20:10 Execution Bounded Chemical Reaction Networks

Proof. We employ the same construction of [5] with minor alterations. A CRC with input
species Σ = {X1, . . . , Xd} and output species Γ = {Y }. By Lemma 5.3, we decompose
our semilinear function into partial affine functions (with linear, disjoint domains), which
can be computed in parallel by Lemma 5.1. Further, we decide which function to use by
computing the predicate ϕi = “x ∈ dom fi” (Theorem 4.1). We interpret each Ŷ P

i and Ŷ C
i

as an “inactive” version of “active” output species Y P
i and Y C

i . Let LY
i , L

N
i be the yes and

no voters respectively voting whether x lies in the domain of i-th partial function. Now, we
convert the function result of the applicable partial affine function to the global output by
adding the following reactions for each i ∈ {1, . . . ,m}.

LY
i + Ŷ P

i → LY
i + Y P

i + Y (18)
LN

i + Y P
i → LN

i +Mi (19)

Mi + Y → Ŷ P
i (20)

Reaction (18) produces an output copy of species Y and (19) and (20) reverse the first reaction
using only bimolecular reactions. Both are catalyzed by the vote of the i-th predicate result.
Also add reactions

LY
i + Ŷ C

i → LY
i + Y C

i (21)

LN
i + Y C

i → LN
i + Ŷ C

i (22)

and

Y P
i + Y C

i → K (23)
K + Y → ∅ (24)

Reactions (21) and (22) activate and deactivate the “negative” output values and reactions
(23) and (24) allow two active partial outputs to cancel out and consume the excess Y in
the process. When the input is in the domain of function i, exactly one copy of LY

i will
be present, otherwise one copy of LN

i . Since we know that the predicate computation is
execution bounded and produces at most one voter, the catalytic reaction will also happen
at most as often as the leader changes its vote. Therefore, it is also execution bounded.

The underlying CRNs computing the predicates and functions have expected stabilization
time O(n log n). Once they have stabilized, the slowest reactions described above are those
where a leader (LY

i or LN
i ) must convert all outputs, which also takes expected time O(n log n)

by a coupon collector argument. ◀

6 Limitations of execution bounded CRNs

The main positive results of the paper (Theorems 4.1 and 5.4) rely on the assumption that
valid initial configurations have a single leader (in particular, they are execution bounded only
from configurations with a single leader, but not from arbitrary configurations). Theorem 4.6
shows that we may assume the CRD deciding a semilinear set is all-voting. However, for the
“constructive” results Lemma 4.5 and Theorem 5.4, which compose the output of a CRD D
with downstream computation, using D as a “subroutine” to stably compute a more complex
set/function, the constructions crucially use the assumption that D is single-voting (i.e., only
the leader of D votes) to argue the resulting composed CRN is execution bounded. In this
section we show these assumptions are necessary, proving that execution bounded CRNs
without those constraints are severely limited in their computational abilities.



D. Doty and B. Heckmann 20:11

We use a result of Czerner, Guttenberg, Helfrich, and Esparza [6], showing that entirely
execution bounded CRNs (from every configuration) can be characterized by a simpler
property of having a “linear potential function” that essentially measures how close the CRN
is to reaching a terminal configuration. We use this characterization to prove that entirely
execution bounded CRNs can stably decide only limited semilinear predicates (eventually
constant, Definition 6.6), assuming all species vote, and that molecular counts cannot decrease
to O(1) in stable configurations (see Definition 6.4).

6.1 Linear potential functions
We define a linear potential function of a CRN to be a nonnegative linear function of
configurations that each reaction strictly decreases.

▶ Definition 6.1. A linear potential function Φ : RΛ
≥0 → R≥0 for a CRN is a nonnegative

linear function, such that for each reaction (r,p), Φ(p) − Φ(r) < 0.

Note that for a configuration x, since Φ(x) =
∑

S∈Λ vSx(S) ≥ 0, it must be nondecreasing
in each species, i.e., all coefficients vS must be nonnegative (though some are permitted to
be 0). Intuitively, we can think of Φ as assigning a nonnegative “mass” to each species (the
mass of S is vS), such that each reaction removes a positive amount of mass from the system.
Note also that since Φ is linear, the above is equivalent to requiring that Φ(p − r) < 0, if we
extend Φ to a linear function Φ : RΛ → R on vectors with negative elements.

A CRN may or may not have a linear potential function. Although it is not straightforward
to “syntactically check” a CRN to see if has a linear potential function, it is efficiently decidable:
a CRN has a linear potential function if and only if the following system of linear inequalities
has a solution (which can be solved in polynomial time using linear programming techniques;
the variables to solve for are the vS for each S ∈ Λ), where the i’th reaction has reactants ri

and products pi, and species S ∈ Λ has mass vS ≥ 0: (∀i)
∑

S∈Λ[pi(S) − ri(S)]vS < 0. For
example, for the reactions A+A→B+C and B+B→A, for each reaction to strictly decrease
the potential function Φ(x) = vAx(A) + vBx(B) + vCx(C), Φ must satisfy 2vA > vB + vC

and 2vB > vA. In this case, vA = 1, vB = 1, vC = 0 works.
▶ Remark 6.2. A system of linear inequalities with rational coefficients has a real solution if
and only if it has a rational solution. For any homogeneous system (where all inequalities
are comparing to 0), any positive scalar multiple of a solution is also a solution. By clearing
denominators, a system has a rational solution if and only if it has an integer solution. Thus,
one can equivalently define a linear potential function to be a function Φ(x) =

∑
S∈Λ vSx(S)

such that each vS ∈ N, i.e., we may assume Φ : NΛ → N. In particular, since Φ is decreased
by each reaction, it is decreased by at least 1.

The following theorem due to Czerner, Guttenberg, Helfrich, and Esparza, is crucial to
proving limitations on execution bounded CRNs such as Theorem 6.5 and Theorem 6.7.

▶ Theorem 6.3 ([6]). A CRN has a linear potential function if and only if it is entirely
execution bounded.

6.2 Impossibility of stably deciding majority and parity
In this section, we prove Theorem 6.5, which is a special case of our main negative result,
Theorem 6.7. We give a self-contained proof of Theorem 6.5 because it is simpler and serves
as an intuitive warmup to some of the key ideas used in proving Theorem 6.7, without the
complexities of dealing with arbitrary semilinear sets.

DISC 2024



20:12 Execution Bounded Chemical Reaction Networks

Theorem 6.5 shows a limitation on the computational power of entirely execution bounded,
all-voting CRNs, but it requires an additional constraint on the CRN for the result to hold
(and we later give counterexamples showing that this extra hypothesis is provably necessary),
described in the following definition.

▶ Definition 6.4. Let D be a CRD. The output size of D is the function s : N → N defined
s(n) = minx,y{∥y∥ | x ⇒ y, ∥x∥ = n,x is a valid initial configuration,y is stable}, the size
of the smallest stable configuration reachable from any valid initial configuration of size n. A
CRD is non-collapsing if limn→∞ s(n) = ∞.

Put another way, D is collapsing if there is a constant c such that, from infinitely many
initial configurations x, D can reach a stable configuration of size at most c. All population
protocols are non-collapsing, since every reaction preserves the configuration size.

▶ Theorem 6.5. No non-collapsing, all-voting, entirely execution bounded CRD can stably
decide the majority predicate [X1 ≥ X2?] or the parity predicate [X ≡ 1 mod 2?].

Proof. Let D = (Λ, R,Σ,ΥY,ΥN, s) be a CRD obeying the stated conditions, and suppose
for the sake of contradiction that D stably decides the majority predicate (so Σ = {X1, X2}).

We consider the sequence of stable configurations a1,b1,a2,b2, . . . defined as follows.
Let a1 be a stable configuration reachable from initial configuration s + {X1, X2}; since the
correct answer is yes, all species present in a1 vote yes. Now add a single copy of X2. By
additivity, the configuration a1 + {X2} is reachable from s + {X1, 2X2}, for which the correct
answer in this case is no. Thus, since D stably decides majority, from a1 + {X2}, a stable
“no” configuration is reachable; call this b1. Now add a single X1. Since the correct answer
is yes, from b1 + {X1} a stable “yes” configuration is reachable, call it a2.

Continuing in this way, we have a sequence of stable configurations a1,b1,a2,b2, . . .

where all species in ai vote yes and all species in bi vote no. Since D is non-collapsing, the size
of the configurations ai and bi increases without bound as i → ∞. (Possibly ∥ai+1∥ < ∥ai∥,
i.e., the size is not necessarily monotonically increasing, but for all sufficiently large j > i,
we have ∥aj∥ > ∥ai∥.) Since all species vote, for some constant δ > 0, to get from ai + {X2}
to bi, at least δ∥ai∥ reactions must occur. This is because all species in ai must be removed
since they vote yes, and each reaction removes at most O(1) molecules. (Concretely, let
δ = 1/max(r,p)∈R ∥r∥ − ∥p∥, i.e., 1 over the most net molecules consumed in any reaction.)
Similarly, to get from bi + {X1} to ai+1, at least δ∥bi∥ reactions must occur.

Since D is entirely execution bounded, by Theorem 6.3, D has a linear potential function
Φ(x) = v ·x, where v ≥ 0. Adding a single X2 to ai increases Φ by the constant v(X2). Since
∥ai∥ grows without bound, the number of reactions to get from ai + {X2} to bi increases
without bound as i → ∞, and since each reaction strictly decreases Φ by at least 1, the total
change in Φ that results from adding X2 and then going from ai + {X2} to bi is unbounded
in i, so unboundedly negative for sufficiently large i (negative once i is large enough that
δ∥ai∥ ≥ v(X2) + 2). Similarly, adding a single X1 to bi and going from bi + {X1} to ai+1,
the resulting total change in Φ is unbounded and (for large enough i) negative.

Φ starts this process at the constant Φ(s + {X1, X2}). Before ∥ai∥ and ∥bi∥ are large
enough that δ∥ai∥ ≥ v(X2) + 2 and δ∥bi∥ ≥ v(X1) + 2 (i.e., large enough that the net
change in Φ is negative resulting from adding a single input and going to the next stable
configuration), Φ could increase, if Φ({X1}) (resp. Φ({X2})) is larger than the net decrease
in Φ due to following reactions to get from ai + {X2} to bi (resp. from bi + {X1} to ai).



D. Doty and B. Heckmann 20:13

However, since D is non-collapsing, this can only happen for a constant number of i
(so Φ never reaches more than a constant above its initial value Φ(s + {X1, X2})), after
which Φ strictly decreases after each round of this process. At some point in this process, D
will not be able to reach all the way to the next ai or bi without Φ becoming negative, a
contradiction.

The argument for parity is similar, but instead of alternating adding X1 then X2, in each
round we always add one more X to flip the correct answer. ◀

Theorem 6.5 is false without the non-collapsing hypothesis. The following collapsing,
leaderless (but all-voting and entirely execution bounded) CRD stably decides majority:
Species X1, x1 vote yes, while X2, x2 vote no:

X1 +X2 →x1 + x2

X1 + x2 →X1

X2 + x1 →X2

x1 + x2 →x1

It has bounded executions from every configuration: min(#X1,#X2) of the first reaction
can occur, and the other reactions decrease molecular count, so are limited by the total
configuration size. However, it is collapsing since, for any n, there exists an input of size n that
reaches a stable configuration of size 1. Theorem 6.5 is similarly false without the all-voting
hypothesis; for each of the reactions with one product above, add another non-voting product
W . This converts the CRD to be non-collapsing but not all-voting. Of course, the execution
bounded hypothesis is also necessary: the original population protocols paper [1] showed that
all-voting, non-collapsing, leaderless population protocols can stably decide all semilinear
predicates.

The following collapsing, all-voting, leaderless (but entirely execution bounded) CRD
stably decides parity. Let the input species be named X1. Species X1 votes yes, X0 votes no:

X1 +X1 →X0

X1 +X0 →X1

X0 +X0 →X0

6.3 Impossibility of stably deciding not eventually constant predicates
We now present our main negative result, Theorem 6.7, which generalizes Theorem 6.5 to
show that such CRNs can stably decide only very limited (eventually constant) predicates.

▶ Definition 6.6. Let ϕ : Nd → {0, 1} be a predicate. We say ϕ is eventually constant if
there is n0 ∈ N such that ϕ is constant on Nd

≥n0
=

{
x ∈ Nd | (∀i ∈ {1, . . . , d}) x(i) ≥ n0

}
,

i.e., either ϕ−1(0) ∩ Nd
≥n0

= ∅ or ϕ−1(1) ∩ Nd
≥n0

= ∅.

In other words, although ϕ may have an infinite number of each output, “sufficiently far from
the boundary of the positive orthant” (where all coordinates exceed n0), only one output
appears. A complete proof appears in the full version of this paper.

▶ Theorem 6.7. If a non-collapsing, all-voting, entirely execution bounded CRD stably
decides a predicate ϕ, then ϕ is eventually constant.

Proof sketch. This proof is similar to that of Theorem 6.5. In that proof, we repeatedly
add a “constant amount of additional input {X2} or {X1}, which flips the output”. For more
general semilinear, but not eventually constant, predicates, we dig into the structure of the

DISC 2024



20:14 Execution Bounded Chemical Reaction Networks

semilinear set to find a sequence of constant-size vectors representing additional inputs that
flip the correct output. Any predicate that is not eventually constant has infinitely many yes
inputs and infinitely many no inputs, but in general they could be increasingly far apart:
e.g., ϕ(x) = 1 if and only if 2n ≤ ∥x∥ < 2n+1 for even n. For the potential function argument
to work, each subsequent input needs to be at most a constant larger than the previous.

But if ϕ is semilinear (and not eventually constant) then we can show that there is a
sequence of increasing inputs x0 ≤ x1 ≤ x2 ≤ . . . , each a constant distance from the next
(∥xj+1 − xj∥ = O(1)), flipping the output (ϕ(xj) ̸= ϕ(xj+1)). Roughly, this is true for one
of two reasons. Using Theorem 2.5, ϕ is a Boolean combination of threshold and mod sets.
Either the mod sets are not combined to be trivially ∅ or Nd, in which case we can find
some vector v that, followed infinitely far from some starting point x0 (so xi = x0 + iv)
periodically hits both yes inputs (ϕ(xj) = 1) and no inputs (ϕ(xj) = 0). Otherwise, the mod
sets can be removed and simplify the Boolean combination to only threshold sets, in which
case the infinite sequence x0,x1, . . . can be obtained by moving along a threshold hyperplane
that separates yes from no inputs. ◀

The statement of Theorem 6.5 does not mention the concept of a leader, but it would
typically apply to leaderless CRDs. A CRD may be execution bounded from configurations
with a single leader, but not execution bounded when multiple leaders are present (preventing
the use of Theorem 6.3, which requires the CRD to be execution bounded from all configura-
tions). For example, in Lemma 4.5, reaction (9) occurs finitely many times if the leader/voter
SY or SN has count 1. However, if SY and SN can be present simultaneously (e.g., if we start
with two leaders), then the reactions SY + VNN →SY + VY N and SN + VY N →SN + VNN

can flip between VNN and VY N infinitely often in an unbounded execution.
If the CRN is leaderless, however, we have the following, which says that if it is execution

bounded from valid initial configurations, then it is execution bounded from all configurations.

▶ Lemma 6.8. If a leaderless CRD or CRC is execution bounded, then it is entirely execution
bounded.

Proof sketch. Since C is leaderless, the sum of two valid initial configurations is also valid.
Thus if we can produce some species from a valid initial configuration, we can produce
arbitrarily large counts of all species by adding up sufficiently many initial configurations.
This means that for any configuration x, from any sufficiently large valid initial configuration
i, some y ≧ x is reachable from i. But if C is execution bounded from i, since i ⇒ y, it
must also be execution bounded from y, thus also from x since by additivity any reactions
applicable to x are also applicable to y. ◀

Lemma 6.8 lets us replace “entirely execution bounded” in Theorem 6.7 with “leaderless
and execution bounded”:

▶ Corollary 6.9. If a non-collapsing, all-voting, leaderless, execution bounded CRD stably
decides a predicate ϕ, then ϕ is eventually constant.

In particular, since the original model of population protocols [1] defined them as leaderless
and all-voting – and since population protocols are non-collapsing – we have the following.

▶ Corollary 6.10. If an execution bounded population protocol stably decides a predicate ϕ,
then ϕ is eventually constant.



D. Doty and B. Heckmann 20:15

7 Conclusion

A key question remains open: Can execution bounded CRNs compute semilinear functions
and predicates within polylogarithmic time? Angluin, Aspnes and Eisenstat [2] introduced a
fast population protocol that simulates a register machine with high probability, and can be
made probability 1 with semilinear predicates. However, this construction seems inherently
unbounded in executions.

References
1 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J Fischer, and René Peralta. Computation

in networks of passively mobile finite-state sensors. In PODC 2004: Proceedings of the twenty-
third annual ACM symposium on Principles of distributed computing, pages 290–299, 2004.
doi:10.1145/1011767.1011810.

2 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population
protocols with a leader. Distributed Computing, 21(3):183–199, September 2008. doi:
10.1007/S00446-008-0067-Z.

3 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, 2007. doi:10.1007/
S00446-007-0040-2.

4 Ho-Lin Chen, David Doty, Wyatt Reeves, and David Soloveichik. Rate-independent com-
putation in continuous chemical reaction networks. Journal of the ACM, 70(3), May 2023.
doi:10.1145/3590776.

5 Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with
chemical reaction networks. Natural Computing, 13(4):517–534, 2014. Preliminary version
appeared in DNA 2012. doi:10.1007/s11047-013-9393-6.

6 Philipp Czerner, Roland Guttenberg, Martin Helfrich, and Javier Esparza. Fast and succinct
population protocols for Presburger arithmetic. Journal of Computer and System Sciences,
140:103481, 2024. doi:10.1016/J.JCSS.2023.103481.

7 David Doty and Monir Hajiaghayi. Leaderless deterministic chemical reaction networks.
Natural Computing, 14(2):213–223, 2015. Preliminary version appeared in DNA 2013. doi:
10.1007/S11047-014-9435-8.

8 Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of
Physical Chemistry, 81(25):2340–2361, 1977.

9 S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas, and languages. Pacific
Journal of Mathematics, 16(2):285–296, 1966.

10 Richard M Karp and Raymond E Miller. Parallel program schemata. Journal of Computer
and system Sciences, 3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.

11 Charles Rackoff. The covering and boundedness problems for vector addition systems. Theo-
retical Computer Science, 6(2):223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

12 David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with
finite stochastic chemical reaction networks. Natural Computing, 7(4):615–633, 2008. doi:
10.1007/s11047-008-9067-y.

DISC 2024

https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1007/S00446-008-0067-Z
https://doi.org/10.1007/S00446-008-0067-Z
https://doi.org/10.1007/S00446-007-0040-2
https://doi.org/10.1007/S00446-007-0040-2
https://doi.org/10.1145/3590776
https://doi.org/10.1007/s11047-013-9393-6
https://doi.org/10.1016/J.JCSS.2023.103481
https://doi.org/10.1007/S11047-014-9435-8
https://doi.org/10.1007/S11047-014-9435-8
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1007/s11047-008-9067-y
https://doi.org/10.1007/s11047-008-9067-y




Broadcast and Consensus in Stochastic Dynamic
Networks with Byzantine Nodes and Adversarial
Edges
Antoine El-Hayek #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Monika Henzinger
Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Stefan Schmid
TU Berlin, Germany
Fraunhofer SIT, Berlin, Germany

Abstract
Broadcast and Consensus are most fundamental tasks in distributed computing. These tasks are
particularly challenging in dynamic networks where communication across the network links may be
unreliable, e.g., due to mobility or failures. Over the last years, researchers have derived several
impossibility results and high time complexity lower bounds for these tasks. Specifically for the
setting where in each round of communication the adversary is allowed to choose one rooted tree
along which the information is disseminated, there is a lower as well as an upper bound that is linear
in the number n of nodes for Broadcast and for n ≥ 3 the adversary can guarantee that Consensus
never happens. This setting is called the oblivious message adversary for rooted trees. Also note
that if the adversary is allowed to choose a graph that does not contain a rooted tree, then it can
guarantee that Broadcast and Consensus will never happen.

However, such deterministic adversarial models may be overly pessimistic, as many processes in
real-world settings are stochastic in nature rather than worst-case.

This paper studies Broadcast on stochastic dynamic networks and shows that the situation is
very different to the deterministic case. In particular, we show that if information dissemination
occurs along random rooted trees and directed Erdős–Rényi graphs, Broadcast completes in O(log n)
rounds of communication with high probability. The fundamental insight in our analysis is that key
variables are mutually independent.

We then study two adversarial models, (a) one with Byzantine nodes and (b) one where an
adversary controls the edges. (a) Our techniques without Byzantine nodes are general enough so
that they can be extended to Byzantine nodes. (b) In the spirit of smoothed analysis, we introduce
the notion of randomized oblivious message adversary, where in each round, an adversary picks
k ≤ 2n/3 edges to appear in the communication network, and then a graph (e.g. rooted tree or
directed Erdős–Rényi graph) is chosen uniformly at random among the set of all such graphs that
include these edges. We show that Broadcast completes in a finite number of rounds, which is, e.g.,
O(k + log n) rounds in rooted trees.

We then extend these results to All-to-All Broadcast, and Consensus, and give lower bounds
that show that most of our upper bounds are tight.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Networks →
Network algorithms

Keywords and phrases Broadcast, Smoothed Analysis, Stochastic Networks, Dynamic Networks

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.21

Related Version Full Version: arXiv:2302.11988v2

Funding Antoine El-Hayek: This project has received funding from the Austrian Science Fund
(FWF) grant DOI 10.55776/P33775 with additional funding from the netidee SCIENCE Stiftung,
2020–2024.

© Antoine El-Hayek, Monika Henzinger, and Stefan Schmid;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antoine.el-hayek@univie.ac.at
https://orcid.org/0000-0003-4268-7368
https://orcid.org/0000-0002-5008-6530
https://orcid.org/0000-0002-7798-1711
https://doi.org/10.4230/LIPIcs.DISC.2024.21
https://arxiv.org/abs/2302.11988v2
https://www.doi.org/10.55776/P33775
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


21:2 Broadcast and Consensus in Stochastic Dynamic Networks

Monika Henzinger : This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (MoDynStruct,
No. 101019564) and the Austrian Science Fund (FWF) grant DOI 10.55776/Z422, grant DOI
10.55776/I5982, and grant DOI 10.55776/P33775 with additional funding from the netidee SCIENCE
Stiftung, 2020–2024.
Stefan Schmid: This project has received funding from the German Research Foundation (DFG),
SPP 2378 (project ReNO), 2023-2027.

1 Introduction

Broadcast and Consensus are two of most fundamental operations in distributed computing
which, in large-scale systems, typically have to be performed over a network. These networks
are likely to be dynamic and change over time due, e.g., to link failures, interference, or
mobility. Understanding how information disseminates in such dynamic networks is hence
important for developing and analyzing efficient distributed systems.

Over the last years, researchers have derived several important insights into information
dissemination in dynamic networks. A natural and popular model assumes an oblivious1

message adversary which controls the information flow between a set of n nodes, by dropping
an arbitrary set of messages sent by some nodes in each round [7]. Specifically, the adversary
is defined by a set of directed communication graphs, one per round, whose edges determine
which node can successfully send a message to which other node in a given round. Based
on this set of graphs, the oblivious message adversary chooses a sequence of graphs over
time, one per round with repetitions allowed, in such a way that the time complexity of the
information dissemination task at hand is maximized. This model is appealing because it is
conceptually simple and still provides a highly dynamic network model: The set of allowed
graphs can be arbitrary, and the nodes that can communicate with one another can vary
greatly from one round to the next. It is, thus, well-suited for settings where significant
transient message loss occurs, such as in wireless networks. As information dissemination
is faster on dense networks, most literature studies oblivious message adversaries on sparse
networks, in particular, on rooted trees [16, 30, 7, 21, 22]. In fact, it is easy to see that
rooted trees are a minimal necessary requirement for a successful Broadcast and Consensus:
if an adversary may choose a graph that does not contain a rooted tree, then it may forever
prevent the dissemination of a piece of information.

Unfortunately, information dissemination can be slow in trees: Broadcast can take time
linear in the number of nodes under the oblivious message adversary [16, 30], even for
constant-height trees (as we show in the full version); and Consensus can even take super-
polynomial time until termination, if it completes at all [7, 21]. Although this is bad news, one
may argue that while the deterministic adversary model is useful in malicious environments,
in real-word applications, the dynamics of communication networks is often more stochastic
in nature. Accordingly, the worst-case model considered in existing literature may be overly
conservative.

This motivates us, in this paper, to study information dissemination, and in particular
Broadcast and Consensus tasks, in a scenario where the communication network is stochastic.
Initially, we study a purely stochastic scenario where in each round, the communication
network is chosen uniformly at random among all rooted trees. We then study several

1 Note that the term oblivious here refers to the property that nodes are oblivious to who their neighbors
are. However, our adversary is actually adaptive.

https://www.doi.org/10.55776/Z422
https://www.doi.org/10.55776/I5982
https://www.doi.org/10.55776/I5982
https://www.doi.org/10.55776/P33775


A. El-Hayek, M. Henzinger, and S. Schmid 21:3

fundamental extensions of this model where the adversary has some limited control. In
a first extension, we consider the case where some nodes (up to 2n

3 ) may be Byzantine,
that is, they may deviate arbitrarily from the protocol (and stop forwarding messages, for
example). In a second extension, in the spirit of smoothed analysis, we study a setting where
an adversary has some limited control over the communication network; we call this adversary
the randomized oblivious message adversary. More specifically, we study the setting where
first a worst-case adversary chooses k directed edges in the dynamic n-node network for some
fixed k with 0 ≤ k < 2n

3 − 12, and then a rooted tree is chosen uniformly at random among
the set of all rooted trees that include these edges.

We show that Broadcast completes within time O(log n) with high probability. We then
show that this result even holds with Byzantine nodes. Under our randomized oblivious
message adversary, Broadcast completes in O(k + log n) time with high probability.

It is useful to put our model into perspective with the SI (Susceptible-Infectious) model in
epidemics [13]: while in the SI model interactions occur on a network that equals a clique, our
model revolves around trees which are chosen by an adversary. This tree structure renders
the analytical understanding of the information dissemination process harder, due to the
lack of independence between the edges in the network in a particular round. A key insight
from our paper is that we can prove the independence of a key variable, namely the increase
in the number of “informed” nodes, which is crucial for our analysis. Our proof further relies
on stochastic dominance, which makes it robust to the specific adversarial objective, and
applies to any adversary definition (e.g., whether it aims to maximize the minimum or the
expected number of rounds until the process completes).

We then extend our study to adversaries which are not limited to trees. In particular,
we are interested in how the time complexity of Broadcast and Consensus depends on the
density of the network. To this end, we consider directed Erdős–Rényi graphs, a directed
version of the classic and well-studied random graphs. This graph family is parameterized
by the number of edges m and hence allows us to shed light on the impact of the density.
Specifically in this model, in each round the network is formed by sampling m edges. We
again study two extensions: in the first extension some nodes behave as Byzantine nodes,
while in the second extension, up to k ≤ m edges are chosen by an adversary, and then the
remaining edges are sampled. While results for this model can be found in some cases where
m is chosen so that the graph is an expander w.h.p. in each round by using the results from
Augustine et al [2], in the case where m is small, our results are novel.

We show that all our results extend to multiple other problems, namely All-to-All
Broadcast, Byzantine Consensus and Reliable Broadcast.

1.1 Model

Let n be the number of nodes, and let each node have a unique identifier from [n]. Time
proceeds in a sequence of rounds t = 1, 2, . . . , such that in each round t the communication
network is chosen according to one of the models defined below. In each round, every honest
node sends a message to all of its out-neighbors before receiving one from its in-neighbor.
There is no message size restriction. We will study the following models of communication:

2 We can relax this condition to k ≤ (1 − ϵ)n for a fixed parameter ϵ, which results in a multiplicative
factor of 1

ϵ in the running time.

DISC 2024



21:4 Broadcast and Consensus in Stochastic Dynamic Networks

Uniformly Random Trees

In the Uniformly Random Trees model, let Tn be the set of all directed rooted trees on n

nodes (where all edges are pointed away from the root). In each round, the communication
network is chosen uniformly at random among graphs in Tn, independently from other rounds.
All nodes are honest.

Uniformly Random Trees with Byzantine Nodes

In the Uniformly Random Trees with Byzantine Nodes model, in each round, the commu-
nication network is chosen uniformly at random among graphs in Tn, independently from
other rounds. We have n − f honest nodes, and f nodes are Byzantine, that is, they might
behave arbitrarily (and even coordinate to make the protocol fail). We assume access to
cryptographic tools that allow nodes to sign and encrypt messages. We restrict f ≤ 2n

3 − 1.

Uniformly Random Trees with Adversarial Edges

In the Uniformly Random Trees with Adversarial Edges model, in each round, the commu-
nication network is chosen as follows: A randomized oblivious message adversary chooses
k directed edges, then a graph is chosen uniformly at random among all graphs in Tn that
include those k edges, and the choise is independent from other rounds. All nodes are honest.
We restrict k ≤ 2n

3 − 1.

Directed Erdős–Rényi graphs

In the directed Erdős–Rényi graphs model, let m ∈ [n2]. In each round, the communication
network is chosen by uniformly sampling without replacement m edges out of the possible
n2 edges of the graph, independently from other rounds. All nodes are honest.

Directed Erdős–Rényi graphs with Byzantine Nodes

In the directed Erdős–Rényi graphs with Byzantine nodes model, let m ∈ [n2]. In each round,
the communication network is chosen by uniformly sampling without replacement m edges
out of the possible n2 edges of the graph, independently from other rounds. We have n − k

honest nodes, and k nodes are Byzantine, that is, they might behave arbitrarily (and even
coordinate to make the protocol fail). We assume access to cryptographic tools that allow
nodes to sign and encrypt messages. We restrict k < 2n

3 .

Directed Erdős–Rényi graphs with Adversarial Edges

In the directed Erdős–Rényi graphs with Adversarial Edges model, let 0 ≤ k ≤ m ≤ n2.
In each round, the communication network is chosen as follows: A randomized oblivious
message adversary chooses k edges, m − k edges are sampled without replacement out of the
remaining n2 − k edges. All nodes are honest. We restrict k < 3

4 n2.



A. El-Hayek, M. Henzinger, and S. Schmid 21:5

In those models, we will study the following problems:

Broadcast

For the Broadcast3 problem, we start by giving a message to one (honest) node. Each honest
node that received the message will replicate it as many times as needed, and start forwarding
it to its neighbors4. Then Broadcast completes when the message has been forwarded to all
other nodes.

All-to-All Broadcast

In the All-to-All Broadcast problem, we start by giving a distinct message to each node.
Each honest node that received a message will replicate it as many times as needed, and
start forwarding it as well. Then All-to-All Broadcast completes when each honest node
receives a copy of every message. In each round, each honest node forwards all the messages
it has received in previous rounds to all its out-neighbors.

Consensus

In the Consensus problem, we start by giving a value vp ∈ {0, 1} to each node p, and
Consensus completes when each honest node decided on a value in {0, 1}. This should satisfy
the following conditions:

Agreement: No two honest nodes decide differently.
Termination: Every honest node eventually decides.
Validity: The value the honest nodes agree on should be one of the input values vp.

1.2 Our Results
We study Broadcast in the above mentioned models, then apply those results to All-to-All
broadcast and Consensus. We prove the following theorems:

▶ Theorem 1. For any c ≥ 1 and n ≥ 5, Broadcast on Uniformly Random Trees completes
within 32 · c · ln n rounds with probability p > 1 − 1

nc .

We also show that these results are asymptotically tight. Indeed, we cannot hope for a
similar probability for a number of rounds that is o(ln n):

▶ Theorem 2. If n ≥ 2, then the probability that Broadcast (and All-to-All Broadcast) on
Uniformly Random Trees fails to complete within log n rounds is at least 1

4 .

We have similar results for all the combinations of model and problem, which we summarize
in Table 1.

Applications

Our results have some interesting applications. In an idea similar to Ghaffari, Kuhn and
Su’s work [23], All-to-All Broadcast allows us, e.g., to implement algorithms that run on a
clique in a synchronous setting in our sparser graphs. Indeed, if All-to-All Broadcast needs

3 The Broadcast problem can also be seen as computing the dynamic eccentricity of the source node.
Other flavors of Broadcast have also been studied under the name dynamic radius [20].

4 This is known as “flooding” or “rumor passing”

DISC 2024



21:6 Broadcast and Consensus in Stochastic Dynamic Networks

Broadcast All-to-All Broadcast Consensus
Uniformly
Random O(c · log n), q ≤ n−c O(c · log n), q ≤ n1−c O(c · log n), q ≤ n−c

Trees (URT) Ω(log n) Ω(log n)
URT with
Byzantine O(c · log n), q ≤ n−c O(c · log n), q ≤ n1−c O(f · c · log n), q ≤ n−c

Nodes Ω(log n) Ω(log n)
URT with

Adversarial O(c · (log n + k)), q ≤ n−c O(c · (log n + k)), q ≤ n1−c O(c · (log n + k)), q ≤ n−c

Edges Ω(log n + k) Ω(log n + k)
Directed O

(⌈
c

m/n

⌉
log n

)
,q ≤ n−c log n O

(⌈
c

m/n

⌉
log n

)
, q ≤ n1−c log n O

(⌈
c

m/n

⌉
log n

)
, q ≤ n−c log n

Erdős–Rényi O
(

c log n
log(1+ m

n
)

)
if m

n
≥ ln n O

(
c log n

log(1+ m
n

)

)
if m

n
≥ ln n O

(
c log n

log(1+ m
n

)

)
if m

n
≥ ln n

with q ≤ n−c log n with q ≤ n1−c log n with q ≤ n−c log n

graphs (DER) Ω
(

log n
log(1+m/n)

)
Ω

(
log n

log(1+m/n)

)
DER with
Byzantine O

(⌈
c

m/n

⌉
log n

)
, q ≤ n−c log n O

(⌈
c

m/n

⌉
log n

)
, q ≤ n1−c log n O

(
f ·

⌈
c

m/n

⌉
log n

)
, q ≤ n−c log n

Nodes Ω
(

log n
log(1+m/n)

)
Ω

(
log n

log(1+m/n)

)
DER with O

(⌈
c·(n2−k)
(m−k)n

⌉
log n

)
O

(⌈
c·(n2−k)
(m−k)n

⌉
log n

)
O

(⌈
c·(n2−k)
(m−k)n

⌉
log n

)
Adversarial with q ≤ n−c log n with q ≤ n1−c log n with q ≤ n−c log n

Edges Ω
(

log n
log(1+m/n)

)
Ω

(
log n

log(1+m/n)

)
Figure 1 Our main results, where c > 0 is any constant and q is the failure probability.

R rounds to complete with high probability, then each round of communication of a clique
can be simulated by R rounds of Uniformly Random Trees with high probability. Essentially,
if an algorithm runs in T rounds, with T ≤ nc−1, in a clique network, we can implement
it with high probability in R · T rounds in the Uniformly Random Trees network, which
is essentially a logarithmic overhead. In particular, in the Uniformly Random Trees with
Byzantine Nodes model, we have:

▶ Theorem 3. Let A be a distributed synchronous algorithm that runs on a static clique
in T rounds, where T ≤ αnx for some constant α, x ∈ R+, and has a probability of success
p. Assume A is robust to f Byzantine nodes, and f ≤ 2

3 n − 1. Then, assuming standard
cryptographic tools5, there exists a distributed algorithm A′ that runs on Uniformly Random
Trees in T · 144 · log n · c rounds, and has a probability of success p′ ≥ p(1 − αn1+x−c), for
any c ≥ 1 + x. Moreover, A′ is robust to f Byzantine nodes.

In particular, we can apply known results on reliable Broadcast and Byzantine Consensus
to show the following results:

▶ Corollary 4. For any c ≥ 1, and f ≤ 2
3 n − 1, in the Uniformly Random Trees with

f Byzantine nodes, there exists an algorithm for Reliable Broadcast, that is robust to f

Byzantine nodes, that runs in (f + 1) · 144 · c · log n rounds, and succeeds with probability
p ≥ 1 − n2−c.

▶ Corollary 5. For any c ≥ 1 and f < n
3 , in the Uniformly Random Trees with f Byzantine

nodes, there exists an algorithm for Byzantine Consensus, that is robust to f Byzantine nodes,
that runs in 3(f + 1) · 144 · c · log n rounds, and succeeds with probability p ≥ 1 − 2n2−c.

Throughout the paper, the filtration of the process is denoted as {Ft}t∈N, that is, Ft is
the amount of information available after timestep t.

5 Specifically, our approach requires authenticated messages. Encryption may also be needed, only if the
protocol A is vulnerable to eavesdropping. Both can be implemented using standard cryptographic
tools.



A. El-Hayek, M. Henzinger, and S. Schmid 21:7

Organization

The paper is organized as follows. First, we review related work in Section 2. Then, due
to space restrictions, we only give a technical overview in Section 3, as further details can
be found in the full version of the paper. In this overview we first discuss a new result on
the number of rooted trees containing a certain set of edges, then discuss how we analyzed
information dissemination in random trees first, and finally in directed Erdős–Rényi graphs.

2 Related Work

Information dissemination in general and Broadcasting and Consensus in particular are
fundamental topics in distributed computing. In contrast to this paper, most classic literature
on network Broadcast as well as on related tasks such as gossiping and Consensus, considers
a static setting, e.g., where in each round each node can send information to one neighbor [24,
19].

Especially the Byzantine setting has received much attention in the literature. Important
results include Dolev and Strong [12] on reliable Broadcast which is robust to f Byzantine
nodes, and runs in T = f + 1 rounds, or Berman, Garay and Perry [3] on King’s algorithm
that solves reliable Broadcast, is robust to f Byzantine nodes, and runs in T = 3(f + 1)
rounds. To just name a few.

In terms of dynamic networks, Kuhn, Lynch and Oshman [25] explore the all-to-all
data dissemination problem (gossiping) in an undirected setting, where nodes do not know
beforehand the total number of nodes and must decide on that number. Dutta, Pandurangan,
Rajaraman, Sun and Viola [14] generalize the model to when not all nodes need to forward
their message, but only k tokens must be forwarded. Augustine, Pandurangan, Robinson
and Upfal [2] show that if the graph is an expander in every round, broadcast is complete
within O(log n) rounds, even if a small enough constant fraction of nodes get churned in each
round. Ahmadi, Kuhn, Kutten, Molla and Pandurangan [1] study the message complexity of
Broadcast also in an undirected dynamic setting, where the adversary pays up a cost for
changing the network.

In dynamic networks, the oblivious message adversary is a commonly considered model,
especially for Broadcast and Consensus problems, first introduced by Charron-Bost and
Schiper [5]. The Broadcast problem under oblivious message adversaries has been studied
for many years. A first key result for this problem was the n log n upper bound by Zeiner,
Schwarz, and Schmid [30] who also gave a

⌈ 3n−1
2

⌉
− 2 lower bound. Another important result

is by Függer, Nowak, and Winkler [20] who presented an O(log log n) upper bound if the
adversary can only choose nonsplit graphs; combined with the result of Charron-Bost, Függer,
and Nowak [4] that states that one can simulate n − 1 rounds of rooted trees with a round of
a nonsplit graph, this gives the previous O(n log log n) upper bound for Broadcasting on trees.
Dobrev and Vrto [10, 9] give specific results when the adversary is restricted to hypercubic
and tori graphs with some missing edges. El-Hayek, Henzinger, and Schmid [15, 16] recently
settled the question about the asymptotic time complexity of Broadcast by giving a tight O(n)
upper bound, also showing the upper bound still holds in more general models. Regarding
Consensus, Coulouma, Godard and Peters in [7] presented a general characterization on which
dynamic graphs Consensus is solvable, based on Broadcastability. Winkler, Rincon Galeana,
Paz, Schmid, and Schmid [21] recently presented an explicit decision procedure to determine
if Consensus is possible under a given adversary, enabling a time complexity analysis of
Consensus under oblivious message adversaries, both for a centralized decision procedure as
well as for solving distributed Consensus. They also showed that reaching Consensus under
an oblivious message adversary can take exponentially longer than Broadcasting.

DISC 2024



21:8 Broadcast and Consensus in Stochastic Dynamic Networks

In contrast to the above works, in this paper we study a more randomized message
adversary, considering a stochastic model where adversarial graphs are partially chosen
uniformly at random. While a randomized perspective on dynamic networks is natural and
has been considered in many different settings already, existing works on random dynamic
communication networks, e.g., on the radio network model [17], on rumor spreading [6], as
well as on epidemics [13], do not consider oblivious message adversaries. Note, however,
that the information dissemination considered in this paper is similar to the SI model for
virus propagation, with results having implications in both directions [18]. For example,
Doerr and Fouz [11] introduced an information dissemination protocol inspired by epidemics.
More generally, randomized information dissemination protocols can be well-understood
from an epidemiological point-of-view, and are very similar to the SI model which has been
very extensively studied. In contrast to the typical SI models considered in the literature
[28], however, our model in this paper revolves around tree communication structures which
introduce additional technical challenges. Furthermore, existing literature often provides
results in expectation, while we in this paper provide tail bounds.

Many papers have tried to bridge the gap between the deterministic and random case,
using smoothed analysis. In [27], Meir, Paz and Schwartzman study the broadcast problem in
noisy networks, under different definitions on noise. In particular, if in each round the graph
given by the adversary is replaced by a graph chosen uniformly at random among graphs at
hamming distance at most k from the original graph, in the case where the adversary can
suggest any connected graph, then Broadcast is reduced from n rounds to O(min{n, n

√
log n

k })
rounds, in the case of an adaptive adversary. If the adversary is oblivious, then Dinitz,
Fineman, Gilbert and Newport [8] showed that it is further reduced to O(n2/3/k1/3 × log n).

3 Technical Overview

Our paper contains a conceptional contribution, namely the extension of the notion of
oblivious message adversary in a natural way to a randomized setting that limits the power of
the adversary, as well as two technical contributions. We explained already the conceptional
contribution in the introduction, and we sketch in this section now the main technical
contributions of our paper. They are of graph theoretical as well as algorithmic nature. (1)
On the graph theoretic side, we show a new result on the number of rooted trees that satisfy
a certain property. (2) On the algorithmic side we show how to use this result to give an
upper bound on the number of rounds for the models introduced in the introduction. Note
that we study both the conventional as well as the Byzantine setting, where faulty nodes
can stop forwarding, send wrong messages, and even coordinate to make the protocol fail.
However, we assume access to cryptographic tools so that is used by each node to sign its
messages. Thus, when receiving a message, nodes can be confident about the sender of each
message and its content.

3.1 Counting rooted trees

Given a graph consisting of n vertices together with a directed rooted forest F of e edges on
them, Pitman [29] showed in 1999 that there are nn−1−e many directed rooted trees over
these vertices that contain F . While useful, this result is not sufficient for our purposes as
we need to count the number of trees with a given node v as root.



A. El-Hayek, M. Henzinger, and S. Schmid 21:9

Thus, we show the following extended result:

▶ Theorem 6. Let us be given a directed rooted forest F on n vertices, let v ∈ [n] be the
root of a component in F , and f be the number of vertices of that component (note that we
can have f = 1 if v is an isolated vertex). Then the number of directed rooted trees T on n

vertices, such that F is contained in T , and such that v is the root of T , is fnn−2−|E|.

Note that our result implies the prior result.
To show our result, we develop techniques which differ significantly from Pitman’s proof.

Indeed, Pitman relies on the symmetry of the vertices in the rooted tree. However, for
our result, the symmetry is broken as one vertex is different from the other with the new
requirement that it is the root. We hence make use of another type of symmetry in the trees
in our analysis that is based on group actions.

We first ignore the orientations of the edges in F and find the set AF of all undirected
trees that contain F . We can compute the cardinality of that set with a result by Lu, Mohr
and Székely [26]. We then root each of those trees at v. This will give a direction to every
edge that might or might not agree with its direction in F . We now want to partition AF

into subsets such that all subsets have the same size and only one tree from each subset has
edges that agree with the direction of F . The number we are looking for is then the number
of subsets, which is the ratio between the cardinality of AF and the size of the subsets.

To create the subsets, we introduce a specific group tailored to F , and an action of that
group on AF . It is known that the set of all orbits of the action partition AF , and we show
that exactly one element in each orbit has edges in the same direction as F . To see unicity,
we take an element T of AF that has edges in the same direction as F , and take an element
T ′ ≠ T in its orbit, that is there exists a nontrivial group element g such that T ′ is obtained
from T by applying the action of g to T . We show that this action must change the direction
of at least one edge of F , and thus T ′ does not have edges in the same direction as F . For
existence, we show that for every T ∈ AF , we can find a group element g such that, if applied
to T , yields a tree that has edges in the same direction as F . We then show how to compute
the size of each orbit. This allows us to deduce the number of orbits, which equals the
number of trees that we want to count.

3.2 Analysis of the information dissemination
The main technical challenge is to analyze Broadcast in uniformly random trees (URTs) and
in directed Erdős–Rényi graphs (DERs). Our techniques for both types of graphs are general
and can be extended to adversarial settings, i.e. Byzantine nodes or adversarial edges, as
well as to all-to-all Broadcast and Consensus. We only discuss Broadcast in this overview
and give the technical details for all models in the subsequent sections.

Random Trees

Our analysis for URTs proceeds in steps. (A) First we analyze the uniformly random tree
model, i.e., the model where the adversary controls none of the edges. (B) Second we allow
adversarial, i.e., Byzantine, nodes in the uniformly random tree model. (C) Third we analyze
the randomized oblivious message adversary with parameter k.

We next sketch the main challenges and how to overcome them. We use n to denote the
number of nodes, It, resp. St to denote the set of informed, resp. uninformed nodes after
round t, and set Nt = |It|.

DISC 2024



21:10 Broadcast and Consensus in Stochastic Dynamic Networks

(A) When choosing a rooted tree T uniformly at random, there is a high dependence
between the events that indicate whether an edge belongs to T or not. Assume that nodes 1,
2, and 3 as well as the edges (1,2) and (2,3) belong to T . Then the edge (1,3) cannot belong
to T . Still, we are able to show that for every node i ∈ St the probability that it is informed
in round t is Nt/n, independently of whether other nodes are informed or not in round t,
using the tree counting results discussed before, i.e., ∆t := Nt+1 − Nt follows a binomial
distribution with parameters (n − Nt, Nt/n):

▶ Lemma 7. For any t > 0, conditioned on Nt Nt+1 − Nt follows a binomial distribution
with parameters

(
n − Nt,

Nt

n

)
.

Thus, in expectation, ∆t is (n − Nt)Nt/n. Now assume for the moment that each round
would perform according to its expectation. Then as long as Nt ≤ n/2, (n−Nt)Nt/n ≥ Nt/2,
i.e., the number of informed nodes increases by a multiplicative factor of at least 3/2
in each round and, thus, there are O(log n) many rounds. As soon as Nt > n/2 then
(n − Nt)Nt/n ≥ (n − Nt)/2, i.e., the distance between the maximum number n and the
current number Nt of informed nodes is halved, and, thus, there are at most O(log n) many
rounds.

However, Nt will not increase in every round according to its expectation. Thus, to make
this intuition formal we define a random variable Xt for each round t with X0 = 1 that
increases by (n − Xt)Xt/n if ∆t is at least by its expected value (such a round is called an
increasing round) and Xt remains unchanged otherwise. It follows from the definition of Xt

that it increases monotonically, never reaches n, and always lower bounds Nt. The number
of increasing rounds needed for Xt to reach a value larger than n − 1 is at most 2 ln n, by a
similar argument to the one above. It remains to show that Xt increases frequently. We show
that the probability that Xt increases in a round is larger than 1/4, as the binomial variable
∆t has a probability larger than 1/4 to be at least at its expectation. Then, Hoeffding’s
inequality for binomial distributions shows that with probability at least 1 − n−c there are
more than 2 ln n increasing rounds within the first 32c ln n rounds giving the desired upper
bound:

▶ Theorem 1. For any c ≥ 1 and n ≥ 5, Broadcast on Uniformly Random Trees completes
within 32 · c · ln n rounds with probability p > 1 − 1

nc .

We also show that the bound is asymptotically tight by proving that with constant
probability at least log n rounds are needed. To do so let Zt := Xut

, where ut is the
number of increasing rounds up to round t. Thus, intuitively Zt is Xt with non-increasing
rounds omitted. We first show inductively that E[Nt] ≤ Zt. The intuitive reason is that
initially Z0 = N0 = E[Nt] and, inductively, in each round Zt increases by at least as much
as E[Nt]. Then we show by induction that Zt = n(1 − (n − 1/n))2t , which implies that
Zlog n = n(1 − (n − 1/n))n ≤ n(1 − 1/4) = 3n/4. Thus, E[Nlog n] ≤ 3n/4 and the lower bound
follows by applying Markov’s inequality:

▶ Theorem 2. If n ≥ 2, then the probability that Broadcast (and All-to-All Broadcast) on
Uniformly Random Trees fails to complete within log n rounds is at least 1

4 .

(B) We extend the above model by allowing f < 2n/3 Byzantine nodes that might forward
wrong or no messages, and that can coordinate to make the protocol fail. The process that
chooses the communication network, i.e., the random tree, does not know which nodes are
Byzantine and, thus, they are part of the network as before, i.e., the tree still consists of
n nodes. Furthermore, we assume access to cryptographic tools so that every node can be



A. El-Hayek, M. Henzinger, and S. Schmid 21:11

Figure 2 Shaded nodes are informed nodes. The adversary will choose the right tree over the left
tree.

confident about the sender of each message and its content. Here the goal is to inform all
n − f honest nodes, i.e., it does not matter whether the Byzantine nodes are informed or not.
Almost the same argument as for (A) shows that Nt+1 − Nt follows a binomial distribution
with parameters (n − f − Nt, Nt/n) and also the rest of the analysis, including the lower
bound go through.

▶ Theorem 8. For any c ≥ 1, and f ≤ 2
3 n − 1, Broadcast on Uniformly Random Trees with

f Byzantine nodes completes within 144 · c · log n rounds with probability p > 1 − 1
nc .

(C) In the uniformly random trees with adversarial edges model an adversary chooses first
up to k directed edges and then a random tree containing these edges is selected. As before
we want to show that the probability that an uninformed node i is informed in round t is
independent from other uninformed nodes being informed. This, however, is only true if the
adversary uses a specific optimal strategy. For an example where the probabilities are not
independent, consider a graph with 4 nodes, 2 informed and 2 uninformed. If the adversary
introduces an edge from each uninformed node to a different informed node, then for each
uninformed node the probability that it is informed in the tree of this round is 1/4. However,
the probability that both uninformed nodes are informed in the tree of this round is zero,
as only one random edge can be added, which will cause at most one uninformed node to
become informed.

(C1) Thus, we first determine the optimal strategy for the adversary: Recall that the
adversary wants to maximize the number of rounds. As we show, this implies that a greedy
strategy, where the adversary minimizes the increase of Nt in each round t, is an optimal
strategy for the adversary. To do so, we use a coupling argument comparing the number of
informed nodes of the greedy strategy to a non-greedy strategy and showing that a greedy
strategy informs all n nodes no later than a non-greedy strategy.

▶ Lemma 9 (Distribution Domination). Let t be a round. Let E1, E2 be two sets of edges
the adversaries could choose for round t. Let N

(1)
t (resp. I

(1)
t ) be the number (resp. set) of

informed nodes after round t if E1 is chosen, and N
(2)
t (resp. I

(2)
t ) if E2 is chosen. Then

if P(N (1)
t ≥ m) ≥ P(N (2)

t ≥ m) for every m ∈ N (that is, if N
(1)
t stochastically dominates

N
(2)
t ), then choosing E2 is a better strategy for the adversary than choosing E1.

Next we analyze what edges are selected by a greedy strategy using three steps: (a) As
an edge from an informed node to an uninformed node causes the uninformed node to be
informed, the greedy strategy will never put such an edge. Thus, the adversary will only
construct trees that do not contain such edges, which we call non-increasing trees. This is
illustrated in Figure 2.

(b) We show that there is no advantage for the adversary to choose multiple trees. To
show this we use a carefully chosen merge operation between any two non-increasing trees
that guarantees that the resulting tree is non-increasing together with our new counting
theorem for rooted trees. Thus, we can assume that the greedy strategy that is chosen always
chooses just one non-increasing rooted tree, which we call U . This is illustrated in Figure 3.

DISC 2024



21:12 Broadcast and Consensus in Stochastic Dynamic Networks

Figure 3 Merging examples. The adversary will always choose the right option over the left one.

Figure 4 The best strategy for the adversary A, with k = 6. Shaded nodes are informed nodes.
In the top example, nodes 5, 6, 7, 8, 9 and 10 are safe from being informed, whereas node 1 can still
be informed. In the bottom example, nodes 5, 6, 7, 8, and 9 are safe, whereas node 1 can still be
informed. However, node 1 is safe from being informed by node 10.

(c) We then argue that U should contain as many uniformed nodes as possible. The basic
intuition is that if an uninformed node is the child of another uninformed node, it cannot
become informed in this round, i.e., it is “protected”. Given k edges, the adversary “protects”
as many uninformed nodes as possible by building U from min(|St|, k + 1) uninformed and
max(k + 1 − |St|, 0) informed nodes. The fact that U is also non-increasing implies that the
root of U is an uninformed node. This gives the optimal strategy, illustrated in Figure 4.
We show all the above steps using stochastic dominance.

(C2) Finally we show that with this specific optimal strategy, the adversary can only
force O(k + log n) many rounds with high probability. It follows that with high probability,
the adversary cannot achieve more rounds with any other - optimal or non-optimal - strategy.
To do so, we break the rounds into phases: (i) The first phase consists of all rounds where
|Sk| ≥ k +1. In this case, the adversary forms one tree with k +1 uninformed nodes and there
are |Sk|− k − 1 = n−Nt −k − 1 additional uniformed singleton nodes, as well as Nt informed
singleton nodes in the forest. Thus, we can apply exactly the same argument as in (A) to
show that Nt+1 − Nt follows a binomial distribution with parameters (n − k − Nt, Nt/n). (ii)
The second phase consists of all rounds where |Sk| ≤ k. Thus U consists of all uninformed
nodes and at least one informed node. Thus, Nt+1 − Nt can increase by at most 1, namely if
the root s of U receives a parent in the tree, and, using our new counting theorem for rooted
trees, we show that the probability of that is (Nt − (k + 1 − |St|))/n = (n − k − 1)/n, i.e.
Nt+1 − Nt is a binomial distribution with parameters (1, (n − k − 1)/n). Using Hoeffding’s
inequality for binomial distributions similar to (A) we then show the result:

▶ Theorem 10. If the adversary controls k edges in each round, for k ≤ 2
3 n − 1, then for

any c ≥ 1, with probability p ≥ 1 − n−c, Broadcast completes within O(k + log n) rounds.



A. El-Hayek, M. Henzinger, and S. Schmid 21:13

Directed Erdős–Rényi graphs

Directed Erdős–Rényi graphs consist of m edges chosen uniformly at random among the n2

potential edges. Intuitively they have less structure than uniformly random trees, which
makes the analysis of Broadcast simpler. We present the main ideas below. Note that we
also analyze Byzantine nodes and adversarial edges in that model, but omit these extensions
in this overview.

Sampling a directed Erdős–Rényi graph is equivalent to choosing m edges without re-
placement from the set of all possible edges. We call that Scheme 1. Then we observe,
using a coupling argument, that Scheme 1 requires no more rounds than Scheme 2, where
in each round m edges are chosen with replacement. Finally, to analyze Scheme 2, we
basically partition the sequence of rounds of Scheme 2 into 2 ⌈(log n)/2⌉ phases, such
that for each of the first ⌈(log n)/2⌉ phases the number of informed nodes doubles in
each phase and for each of the last ⌈(log n)/2⌉ phases the number of uninformed nodes
halves in each phase. Note that Broadcast completes after the last phase. Using Hoeffd-
ing’s inequality for binomial distributions we show that phase i for 1 ≤ i ≤ ⌈log n/2⌉
requires with high probability at most O(max{log n, 2i−1}n/2i−1) sampled edges, and, thus,
O(

⌈
max{log n, 2i−1}/(2i−1m/n)

⌉
) rounds, and for ⌈log n/2⌉ + 1 ≤ i ≤ 2 ⌈log n/2⌉ phase i

requires with high probability at most O(max{log n, 2j−2}n/2j−1) sampled edges with with
j := 2 ⌈log n/2⌉ − i, and, thus, O(

⌈
max{log n, 2j−1}/(2j−1m/n)

⌉
) rounds. Summed over all

phases this shows that with high probability O(⌈n/m⌉ log n) rounds suffice for Scheme 2 to
reach Broadcast. Note that the analysis extends to the setting when the graph in each round
contains at least m edges. We also show that a lower bound that implies that this upper
bound is tight for m ≤ n. We also give somewhat different analysis where the number of
informed resp. uninformed nodes does not double, but increases by (1 + m/n) that is tight
for m ≥ n ln n. Our results can thus be summarized by the following theorems:

▶ Theorem 11. For any c ≥ 1, in scheme 2, and therefore scheme 1, Broadcast completes
within O

(⌈
cn
m

⌉
log n

)
rounds with probability p ≥ 1 − n−c log n.

▶ Theorem 12. For any c ≥ 1 and m ∈ [n2] such that m/n ≥ ln n, in scheme 2 and in scheme
1, Broadcast completes within O

(
c·log n

log(1+m/n)

)
rounds with probability p ≥ 1 − n−c log n.

▶ Theorem 13. In scheme 1, and thus in scheme 2, Broadcast fails to complete within
log(n)−1

log(1+m/n) rounds with probability at least 1
2 .

References
1 Mohamad Ahmadi, Fabian Kuhn, Shay Kutten, Anisur Rahaman Molla, and Gopal Panduran-

gan. The communication cost of information spreading in dynamic networks. In 39th IEEE
International Conference on Distributed Computing Systems, ICDCS 2019, Dallas, TX, USA,
July 7-10, 2019, pages 368–378. IEEE, 2019. doi:10.1109/ICDCS.2019.00044.

2 John Augustine, Gopal Pandurangan, Peter Robinson, and Eli Upfal. Towards robust and
efficient computation in dynamic peer-to-peer networks. In Yuval Rabani, editor, Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 551–569. SIAM, 2012. doi:10.1137/1.9781611973099.47.

3 Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards optimal distributed consensus
(extended abstract). In 30th Annual Symposium on Foundations of Computer Science, Research
Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages 410–415. IEEE
Computer Society, 1989. doi:10.1109/SFCS.1989.63511.

DISC 2024

https://doi.org/10.1109/ICDCS.2019.00044
https://doi.org/10.1137/1.9781611973099.47
https://doi.org/10.1109/SFCS.1989.63511


21:14 Broadcast and Consensus in Stochastic Dynamic Networks

4 Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak. Approximate consensus
in highly dynamic networks: The role of averaging algorithms. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 528–539.
Springer, 2015. doi:10.1007/978-3-662-47666-6_42.

5 Bernadette Charron-Bost and André Schiper. The heard-of model: computing in dis-
tributed systems with benign faults. Distributed Comput., 22(1):49–71, 2009. doi:10.1007/
s00446-009-0084-6.

6 Andrea E. F. Clementi, Pierluigi Crescenzi, Carola Doerr, Pierre Fraigniaud, Francesco
Pasquale, and Riccardo Silvestri. Rumor spreading in random evolving graphs. Random Struct.
Algorithms, 48(2):290–312, 2016. doi:10.1002/rsa.20586.

7 Étienne Coulouma, Emmanuel Godard, and Joseph G. Peters. A characterization of oblivious
message adversaries for which consensus is solvable. Theor. Comput. Sci., 584:80–90, 2015.
doi:10.1016/j.tcs.2015.01.024.

8 Michael Dinitz, Jeremy T. Fineman, Seth Gilbert, and Calvin Newport. Smoothed analysis
of information spreading in dynamic networks. In Christian Scheideler, editor, 36th Inter-
national Symposium on Distributed Computing, DISC 2022, October 25-27, 2022, Augusta,
Georgia, USA, volume 246 of LIPIcs, pages 18:1–18:22. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022. doi:10.4230/LIPICS.DISC.2022.18.

9 Stefan Dobrev and Imrich Vrto. Optimal broadcasting in hypercubes with dynamic faults.
Inf. Process. Lett., 71(2):81–85, 1999. doi:10.1016/S0020-0190(99)00093-9.

10 Stefan Dobrev and Imrich Vrto. Optimal broadcasting in tori with dynamic faults. Parallel
Process. Lett., 12(1):17–22, 2002. doi:10.1142/S0129626402000781.

11 Benjamin Doerr and Mahmoud Fouz. Asymptotically optimal randomized rumor spreading.
In International Colloquium on Automata, Languages, and Programming (ICALP), pages
502–513. Springer, 2011. doi:10.1007/978-3-642-22012-8_40.

12 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM J. Comput., 12(4):656–666, 1983. doi:10.1137/0212045.

13 Rick Durrett and Dong Yao. Susceptible–infected epidemics on evolving graphs. Electronic
Journal of Probability, 27:1–66, 2022.

14 Chinmoy Dutta, Gopal Pandurangan, Rajmohan Rajaraman, Zhifeng Sun, and Emanuele Viola.
On the complexity of information spreading in dynamic networks. In Sanjeev Khanna, editor,
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 717–736. SIAM, 2013.
doi:10.1137/1.9781611973105.52.

15 Antoine El-Hayek, Monika Henzinger, and Stefan Schmid. Brief announcement: Broadcasting
time in dynamic rooted trees is linear. In Proc. ACM Symposium on Principles of Distributed
Computing (PODC), 2022.

16 Antoine El-Hayek, Monika Henzinger, and Stefan Schmid. Asymptotically tight bounds on
the time complexity of broadcast and its variants in dynamic networks. In 14th Innovations
in Theoretical Computer Science (ITCS), 2023.

17 Faith Ellen, Barun Gorain, Avery Miller, and Andrzej Pelc. Constant-length labeling schemes
for deterministic radio broadcast. ACM Trans. Parallel Comput., 8(3):14:1–14:17, 2021.
doi:10.1145/3470633.

18 Patrick T Eugster, Rachid Guerraoui, A-M Kermarrec, and Laurent Massoulié. Epidemic
information dissemination in distributed systems. Computer, 37(5):60–67, 2004. doi:10.1109/
MC.2004.1297243.

19 Pierre Fraigniaud and Emmanuel Lazard. Methods and problems of communication in usual
networks. Discret. Appl. Math., 53(1-3):79–133, 1994. doi:10.1016/0166-218X(94)90180-5.

https://doi.org/10.1007/978-3-662-47666-6_42
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1002/rsa.20586
https://doi.org/10.1016/j.tcs.2015.01.024
https://doi.org/10.4230/LIPICS.DISC.2022.18
https://doi.org/10.1016/S0020-0190(99)00093-9
https://doi.org/10.1142/S0129626402000781
https://doi.org/10.1007/978-3-642-22012-8_40
https://doi.org/10.1137/0212045
https://doi.org/10.1137/1.9781611973105.52
https://doi.org/10.1145/3470633
https://doi.org/10.1109/MC.2004.1297243
https://doi.org/10.1109/MC.2004.1297243
https://doi.org/10.1016/0166-218X(94)90180-5


A. El-Hayek, M. Henzinger, and S. Schmid 21:15

20 Matthias Függer, Thomas Nowak, and Kyrill Winkler. On the radius of nonsplit graphs and
information dissemination in dynamic networks. Discret. Appl. Math., 282:257–264, 2020.
doi:10.1016/j.dam.2020.02.013.

21 Hugo Rincon Galeana, Ami Paz, Stefan Schmid, Ulrich Schmid, and Kyrill Winkler. The
time complexity of consensus under oblivious message adversaries. In 14th Innovations in
Theoretical Computer Science (ITCS), 2023.

22 Hugo Rincon Galeana, Ulrich Schmid, Kyrill Winkler, Ami Paz, and Stefan Schmid. Topolog-
ical characterization of consensus solvability in directed dynamic networks. arXiv preprint
arXiv:2304.02316, 2023. doi:10.48550/arXiv.2304.02316.

23 Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed MST and routing in almost
mixing time. In Elad Michael Schiller and Alexander A. Schwarzmann, editors, Proceedings of
the ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC,
USA, July 25-27, 2017, pages 131–140. ACM, 2017. doi:10.1145/3087801.3087827.

24 Juraj Hromkovič, Ralf Klasing, Burkhard Monien, and Regine Peine. Dissemination of
information in interconnection networks (broadcasting & gossiping). In Combinatorial network
theory, pages 125–212. Springer, 1996.

25 Fabian Kuhn, Nancy A. Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 513–522.
ACM, 2010. doi:10.1145/1806689.1806760.

26 Linyuan Lu, Austin Mohr, and László Székely. Quest for negative dependency graphs. In
Recent Advances in Harmonic Analysis and Applications, pages 243–258. Springer, 2012.

27 Uri Meir, Ami Paz, and Gregory Schwartzman. Models of smoothing in dynamic networks. In
Hagit Attiya, editor, 34th International Symposium on Distributed Computing, DISC 2020,
October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 36:1–36:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.DISC.2020.36.

28 James D Murray et al. Mathematical biology i: an introduction, 2002.
29 Jim Pitman. Coalescent random forests. Journal of Combinatorial Theory, Series A, 85(2):165–

193, 1999.
30 Martin Zeiner, Manfred Schwarz, and Ulrich Schmid. On linear-time data dissemination in

dynamic rooted trees. Discret. Appl. Math., 255:307–319, 2019. doi:10.1016/j.dam.2018.08.
015.

DISC 2024

https://doi.org/10.1016/j.dam.2020.02.013
https://doi.org/10.48550/arXiv.2304.02316
https://doi.org/10.1145/3087801.3087827
https://doi.org/10.1145/1806689.1806760
https://doi.org/10.4230/LIPICS.DISC.2020.36
https://doi.org/10.1016/j.dam.2018.08.015
https://doi.org/10.1016/j.dam.2018.08.015




On the Power of Graphical Reconfigurable Circuits
Yuval Emek #

Technion - Israel Institute of Technology, Haifa, Israel

Yuval Gil #

Technion - Israel Institute of Technology, Haifa, Israel

Noga Harlev #

Technion - Israel Institute of Technology, Haifa, Israel

Abstract
We introduce the graphical reconfigurable circuits (GRC) model as an abstraction for distributed graph
algorithms whose communication scheme is based on local mechanisms that collectively construct long-
range reconfigurable channels (this is an extension to general graphs of a distributed computational
model recently introduced by Feldmann et al. (JCB 2022) for hexagonal grids). The crux of the
GRC model lies in its modest assumptions: (1) the individual nodes are computationally weak,
with state space bounded independently of any global graph parameter; and (2) the reconfigurable
communication channels are highly restrictive, only carrying information-less signals (a.k.a. beeps).
Despite these modest assumptions, we prove that GRC algorithms can solve many important
distributed tasks efficiently, i.e., in polylogarithmic time. On the negative side, we establish various
runtime lower bounds, proving that for other tasks, GRC algorithms (if they exist) are doomed to
be slow.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases graphical reconfigurable circuits, bounded uniformity, beeping

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.22

Related Version Full Version: https://arxiv.org/pdf/2408.10761 [6]

1 Introduction

The reconfigurable circuits model was introduced recently by Feldmann et al. [7] and studied
further by Padalkin et al. [14, 13]. It extends the popular geometric amoebot model for
(synchronous) distributed algorithms running in the hexagonal grid by providing them with
an opportunity to form long-range communication channels. This is done by means of a
distributed mechanism that allows each node to bind together a subset of its incident edges
(which can be thought of as installing internal “wires” between the corresponding ports); the
long-range channels, a.k.a. circuits, are then formed by taking the transitive closure of these
local bindings (see Sec. 1.1 for details). The circuits serve as beeping channels, enabling their
participating nodes to communicate via information-less signals. The crux of the model is
that the distributed mechanism that controls the circuit formation is invoked in every round
(of the synchronous execution) so that the circuits can be reconfigured.

In contrast to the original geometric amoebot model which is tailored specifically to
planarly embedded (hexagonal) grids, the reconfigurable circuits model can be naturally
generalized to arbitrary graph topologies. The starting point of the current paper is the
formulation of such a generalization that we refer to as the graphical reconfigurable circuits
(GRC) model (formally defined in Sec. 1.1).

An important feature of the GRC model is that it is uniform: the actions of each node v in
the (general) communication graph G are dictated by a (possibly randomized) state machine
whose description is fully determined by the degree of v (and the local input provided to v if
there is such an input), independently of any global parameter of G [2]. A clear advantage of

© Yuval Emek, Yuval Gil, and Noga Harlev;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 22; pp. 22:1–22:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yemek@technion.ac.il
https://orcid.org/0000-0002-3123-3451
mailto:yuval.gil@campus.technion.ac.il
https://orcid.org/0009-0007-7762-3029
mailto:snogazur@campus.technion.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2024.22
https://arxiv.org/pdf/2408.10761
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


22:2 On the Power of Graphical Reconfigurable Circuits

uniform algorithms is that they can be deployed in a “one size fits all” fashion, without any
global knowledge of the graph on which they run. We further require that the aforementioned
state machines admit a finite description, which means, in particular, that the state space
of the state machines are bounded independently of any global graph parameter. This
requirement is an obvious necessary condition for practical implementations; we subsequently
refer to uniform distributed algorithms subject to this requirement as boundedly uniform.

Combining the bounded uniformity with the light demands of the beeping communication
scheme, demands which are known to be easy to meet in practice [4, 8], we conclude
that the GRC model provides an abstraction for distributed (arbitrary topology) graph
algorithms that can be implemented over devices with slim computation and communication
capabilities. In particular, the GRC model may open the gate for a rigorous investigation of
distributed algorithms operating in (natural or artificial) biological cellular networks whose
communication mechanism is based on bioelectric signaling, known to be the basis for long
range (low latency) communication in such networks.

The main technical contribution of this paper is the design of GRC algorithms for various
classic distributed tasks that terminate in polylogarithmic time. Some of these tasks (e.g.,
the construction of a minimum spanning tree) are inherently global and are known to be
subject to congestion bottlenecks, thus demonstrating that despite their limited computation
and communication power, GRC algorithms can overcome both “locality” and “bandwidth”
barriers. In fact, as far as we know, these are the first distributed algorithms that solve such
tasks in polylogarithmic time under any boundedly uniform model.

While GRC algorithms can bypass the congestion bottlenecks of some distributed tasks,
other tasks turn out to be much harder: We prove that under certain conditions, runtime
lower bound constructions, developed originally for the CONGEST model [15], can be
translated, almost directly, to the GRC model, thus establishing runtime lower bounds for a
wide class of tasks.

1.1 The GRC Model
In the current section, we introduce the distributed computational model used throughout
this paper, referred to as the graphical reconfigurable circuits (GRC) model. A GRC algorithm
Alg runs over a (finite simple) undirected graph G = (V, E) so that each node v ∈ V is
associated with its own copy of a (possibly randomized) state machine defined by Alg; for
clarity of the exposition, we often address node v and the state machine that dictates v’s
actions as the same entity (our intention will be clear from the context).

We adopt the port numbering convention [2, 10] stating that from the perspective of a
node v ∈ V , each edge e ∈ E(v) is identified by a unique port number taken from the set
{1, . . . , deg(v)}.1 Every edge e ∈ E is associated with k pins, where k ∈ Z>0 is a constant
determined by the algorithm designer;2 these pins are represented as pairs of the form
p = (e, i) for i ∈ [k]. Let P = E × [k] denote the set of all pins. For a node v ∈ V , let
P(v) = E(v) × [k] denote the set of pins associated with the edges incident on v. The GRC
model is defined so that for each pin p = (e, i) ∈ P(v), node v is aware of the (local) port

1 Given an edge subset F ⊆ E and a node v ∈ V , we denote the set of edges in F incident on v by
F (v) = {e ∈ F | e ∋ v} and the degree of v by deg(v) = |E(v)|.

2 For the (asymptotic) upper bounds established in the current paper, it is actually sufficient to use k = 1
pins per edge. However, this is not true in general (see, e.g., [7, Sections 3.4 and 4.4]) and regardless,
using multiple (yet, O(1)) pins per edge often facilitates the algorithm’s exposition. In any case, we do
not make an effort to optimize the value of k.



Y. Emek, Y. Gil, and N. Harlev 22:3

a
a

b
b

c

c

d

e

f

f
g

h

q

q

p

r

Figure 1 The circuits formed on a communication graph by the local node decisions. The graph
includes 4 nodes, depicted by the black cycles, and 4 edges (not shown explicitly in the figure), each
one of them is associated with k = 2 pins, depicted by the straight lines. The local pin partitions
are presented by the lower-case letters. These local pin partitions result in forming three circuits,
consisting of the red (solid) pins, the blue (dashed) pins, and the green (dotted) pin.

number of edge e as well as the (global) index i ∈ [k]. In particular, the other endpoint
of edge e agrees with v on the index i of pin p although the two nodes may identify e by
different port numbers.

The execution of algorithm Alg advances in synchronous rounds. Each round t = 0, 1, . . .

is associated with a partition Ct of the pin set P into non-empty pairwise disjoint parts,
called circuits. The partition C0 is defined so that each pin forms its own singleton circuit;
for t ≥ 1, the partition Ct is determined by the nodes according to a distributed mechanism
explained soon.

For a round t ≥ 0, a node v ∈ V is said to partake in a circuit C ∈ Ct if P(v) ∩ C ≠ ∅.
Let Ct(v) = {C ∈ Ct | P(v) ∩ C ̸= ∅} denote the set of circuits in which node v partakes.

The communication scheme of the GRC model is defined on top of the circuits so that
each circuit C ∈ Ct serves (during round t) as a beeping channel [4] for the nodes that partake
in C. Before getting into the specifics of this communication scheme, let us explain how the
partition Ct is formed based on the actions of the nodes in round t − 1.

Fix some round t ≥ 1. Towards the end of round t − 1, each node v ∈ V decides on a
partition Rt(v) of P(v), referred to as the local pin partition of v. Let Lt be the symmetric
binary relation over P defined so that pins p = (e, i) and p′ = (e′, i′) are related under Lt

(i.e., (p, p′), (p′, p) ∈ Lt) if and only if there exists a node v ∈ V (incident on both e and e′)
such that p and p′ belong to the same part of Rt(v). Let tc(Lt) be the reflexive transitive
closure of Lt, which is, by definition, an equivalence relation over P. The circuits in Ct are
taken to be the equivalence classes of tc(Lt). See Figure 1 for an illustration.3

3 As presented by Feldmann et al. [7], the physical interpretation of the abstract circuit forming process
is that each node v internally “wires” all pins belonging to the same part R ∈ Rt(v) to each other, thus
ensuring that a signal transmitted over one pin in R is disseminated to all pins in R (and through them,
to the entire circuit that contains R).

DISC 2024



22:4 On the Power of Graphical Reconfigurable Circuits

We are now ready to formally define the operation of each node v ∈ V in round t = 0, 1, . . .

This includes the following three steps, where we denote the state of v in round t by St(v):
(1) Node v decides (possibly in a probabilistic fashion), based on St(v), on a pin subset
Bt(v) ⊆ P(v) and beeps – namely, emits an information-less signal – on every pin in Bt(v);
we say that v beeps on a circuit C ∈ Ct(v) if v beeps on (at least) one of the pins in C.
(2) For each pin p ∈ P(v), node v obtains a bit of information revealing whether at least one
node beeps (in the current round) on the (unique) circuit C ∈ Ct to which p belongs.
(3) Node v decides (possibly in a probabilistic fashion), based on St(v) and the information
obtained in step (2), on the next state St+1(v) and the next local pin partition Rt+1(v).
We emphasize that for each circuit C ∈ Ct(v) and pin p ∈ P(v) ∩ C, node v can distinguish,
based on the information obtained in step (2) for p, between the scenario in which zero nodes
beep on C and the scenario in which a positive number of nodes beep on C, however, node
v cannot tell how large this positive number is. In fact, if v itself decides (in step (1)) to
beep on pin p, then v does not obtain any meaningful information from p in step (2) (in the
beeping model terminology [1], this is referred to as lacking “sender collision detection”).4

An important feature of the GRC model is that Alg is required to be boundedly uniform,
namely, the number of states in the state machine associated with a node v ∈ V , as well as
the description of the transition functions that determine the next state St+1(v) and the
next local pin partition Rt+1(v), are finite and fully determined by the local parameters of
v, independently of any global parameter of the graph G on which Alg runs. These local
parameters include the degree deg(v) of v and, depending on the specific task, any local
input provided to v at the beginning of the execution (e.g., the weights of the edges incident
on v).5 In particular, node v does not “know” (and generally, cannot encode) the number
n = |V | of nodes, the number m = |E| of edges, the maximum degree ∆ = maxv∈V deg(v),
or the diameter D = maxu,v∈V dG(u, v).6 Notice that the uniformity in n means that the
nodes are also anonymous, i.e., they do not (and cannot) have unique identifiers.

The primary performance measure applied to our algorithms is their runtime defined to
be the number of rounds until termination. When the algorithm is randomized, its runtime
may be a random variable, in which case we aim towards bounding it whp.7

Relation to CONGEST. An adversity faced by GRC algorithms is the limited amount of
information that can be sent/received by each node in a single round. Such limitations lie
at the heart of the popular CONGEST [15] model that operates in synchronous message
passing rounds, using messages of size B, where the typical choices for B are B = O(1),
B = Θ(log n), or B = polylog(n) (by definition, the uniform version of CONGEST adopts the
former choice). An important point of similarity between the two models is that per round,
both CONGEST and GRC algorithms can communicate Õ(s) bits of information over a cut of

4 The reader may wonder why the decisions made in step (1) and the information obtained in step (2)
are centered on the pins in P(v), rather than on the circuits in Ct(v). The reason is that node v is not
necessarily aware of the partition induced on P(v) by Ct(v) (i.e., the exact assignment of the pins in
P(v) to the circuits in Ct(v)); indeed, the latter partition depends on the local pin partitions Rt(u) of
other nodes u ∈ V , some of which may be far away from v. For example, in Figure 1, the local pin
partition of the rightmost node separates between its two incident pins; nevertheless, both pins belong
to the same (red) circuit due to local pin partitions decided upon in the other side of the graph.

5 To maintain strict uniformity, we adhere to the convention that numerical values included in the local
inputs (e.g., edge weights) are encoded as bitstrings without “leading zeros”, thus ensuring that the
length of such a bitstring by itself does not reveal any global information.

6 The notation dG(u, v) denotes the distance (in hops) between nodes u and v in G.
7 An event A holds with high probability (whp) if P(A) ≥ 1 − n−c for an arbitrarily large constant c.



Y. Emek, Y. Gil, and N. Harlev 22:5

Table 1 Our runtime upper bounds. The corresponding GRC algorithms are randomized and
their correctness and runtime guarantees hold whp; the one exception is the spanner construction,
where the number of edges is bounded in expectation.

task runtime

construction minimum spanning tree (integral edge weights ∈ [1, W ]) O(log(n) · log(n + W ))

(2κ − 1)-spanner with O(n1+(1+ε)/κ) edges in expectation O(κ + log n)

verification
minimum spanning tree (integral edge weights ∈ [1, W ]) O(log(n) · log(n + W ))
simple path, connectivity, (s, t)-connectivity, connected span-
ning subgraph, cut, (s, t)-cut, Hamiltonian cycle, e-cycle
containment, edge on all (s, t)-paths

O(log n)

size s.8 As explained in Sec. 3, from the perspective of message exchange per se (regardless of
local computation), T CONGEST rounds can be simulated by O(log n + T · B) GRC rounds
whp, so, ignoring the additive logarithmic term, GRC algorithms are at least as strong as
the boundedly uniform version of CONGEST algorithms. In fact, they are strictly stronger:
the crux of GRC algorithms is that they enjoy the advantage of reconfigurable long-range
communication channels (though highly restrictive ones); this advantage materializes in some
of the GRC algorithms developed in the sequel whose runtime is significantly smaller than
their corresponding (not necessarily uniform) CONGEST lower bounds.

1.2 Our Contribution

The main takeaway from this paper is that many important distributed tasks admit highly
efficient GRC algorithms – see Table 1. Notice that with the exception of the sparse spanner
construction, all tasks mentioned in Table 1 admit Ω̃(

√
n + D) runtime lower bounds under

the (not necessarily uniform) CONGEST model [17, 16], demonstrating that reconfigurable
beeping channels are a powerful tool even for boundedly uniform algorithms.

The polylogarithmic runtime upper bounds presented in Table 1 imply that the Ω̃(
√

n+D)
CONGEST lower bounds for the corresponding tasks fail to transfer to the GRC model (refer
to the full version [6] for further discussion of this “failed transfer”). CONGEST lower bounds
for other distributed tasks on the other hand do transfer, almost directly, to GRC. Indeed,
we develop a generic translation, from CONGEST runtime lower bounds to GRC runtime
lower bounds, which applies to a large class of CONGEST lower bound constructions.

1.3 Paper’s Outline

The remainder of this paper is organized as follows. We start in Sec. 2 with a discussion of
the main technical challenges encountered towards establishing our results and the ideas used
to overcome them. Sec. 3 introduces some preliminary definitions, as well as several basic
procedures used in the later technical sections. The GRC algorithms promised in Table 1 for
the tasks of constructing a minimum spanning tree and a spanner are presented and analyzed
in Sec. 4 and 5, respectively. (Throughout, missing proofs and constructions are deferred to
the full version [6].)

8 The asymptotic notations Õ(·) and Ω̃(·) hide polylog(n) expressions.

DISC 2024



22:6 On the Power of Graphical Reconfigurable Circuits

2 Technical Overview

In this section, we discuss the different challenges that arise in our constructions and present
a brief overview of the technical ideas used to overcome these challenges; see Sec. 4 and 5 for
the full details.

Minimum Spanning Tree. The minimum spanning tree (MST) construction follows the
structure of Boruvka’s classic algorithm [3]. The algorithm maintains a partition of the
node set into clusters that correspond to the connected components of the subgraph induced
by the edges which were already selected for the MST. It operates in phases, where the
main algorithmic task in a phase is to identify a lightest outgoing edge for each cluster. The
clusters are then merged over the identified edges, adding those edges to the output edge set.

If the edge weights are distinct, then no cycles are formed by the cluster merging process
and Boruvka’s algorithm is guaranteed to return an MST of the original graph. This well
known fact is utilized by the existing distributed implementations of Boruvka’s algorithm
that typically use the unique node IDs to “enforce” distinct edge weights.

Unfortunately, obtaining distinct edge weights under our boundedly uniform model is
hopeless. This means that the set L of lightest outgoing edges (of all clusters) cannot be
safely added to the output edge set without the risk of forming cycles, thus forcing us to
come up with an alternative mechanism. The key technical idea here is a procedure that runs
in each phase independently and constructs (whp) a total order T over the set L. Following
that, we identify a T -minimal outgoing edge for each cluster and perform the cluster merger
over the identified edges. As we prove in Sec. 4, selecting the T -minimal outgoing edges
ensures that no cycles are formed, resulting in a valid MST. Notice that for this argument to
work, it is crucial that T is defined globally over all edges in L which is ensured by a careful
design of the aforementioned procedure.

Spanner. The spanner construction is based on the elegant random shifts method of [12].
Particularly, the idea is similar to the distributed algorithm of [9] that uses random shifts to
obtain a (2κ − 1)-spanner of expected size O(n1+1/κ). The heart of the random shift method
is a probabilistic clustering process based on a random variable δv drawn independently by
each node v ∈ V . Specifically, in [9], each node v ∈ V samples δv from the capped geometric
distribution (see Sec. 3 for a definition) with parameters p = 1 − n−1/κ and r = κ − 1. The
main challenge of adapting the algorithm to the boundedly uniform GRC model lies in the
fact that the nodes are unable to sample from a distribution whose parameters depend on n.
Nevertheless, we present a sampling procedure that allows each node v ∈ V to sample δv from
a distribution that is sufficiently close to the aforementioned capped geometric distribution.

As we prove in Sec. 5, the sampling procedure allows us to construct a spanner with
nearly the same properties as those of [9]. More concretely, we extend and adapt the analysis
of [9] to show that our algorithm constructs a spanner with stretch 2κ − 1 whp, and size
O(n1+(1+ε)/κ) in expectation, where ε > 0 is a constant parameter that can be made desirably
small.

3 Preliminaries

Graph Theoretic Definitions. Consider a connected graph G = (V, E). Given an edge-
weight function w : E → R, a minimum spanning tree (MST) of G with respect to w is
an edge subset T ⊆ E such that (V, T ) is a spanning tree of G that minimizes the weight
w(T ) =

∑
e∈T w(e).



Y. Emek, Y. Gil, and N. Harlev 22:7

For an edge subset H ⊆ E, let dH(u, v) denote the distance in the graph (V, H) between
two nodes u, v ∈ V . For an integer σ > 0, we say that H ⊆ E is a σ-spanner of G if
dH(u, v) ≤ σ · dG(u, v) for all u, v ∈ V . Equivalently, H is a σ-spanner if and only if
dH(u, v) ≤ σ for every edge (u, v) ∈ E. The stretch of H is defined as the smallest value σ

for which H is a σ-spanner.
The parts of a partition P of the node set V are often referred to as clusters. We say that

clusters S and S′, S ̸= S′, are neighboring clusters if there exists an edge (v, v′) ∈ E such
that v ∈ S and v′ ∈ S′. In this case, we say that edge (v, v′) bridges the clusters S and S′,
and more broadly, refer to (v, v′) as a bridging edge of P . We say that an edge (u, v) ∈ E is
an outgoing edge of cluster S if u ∈ S and v /∈ S. For a cluster S, let ∂S ⊆ E denote the set
of edges outgoing from S.

Capped Geometric Distribution. For parameters p ∈ [0, 1] and r ∈ Z>0, the capped
geometric distribution, denoted by GeomCap(p, r), is defined by taking P[GeomCap(p, r) = i]
to be p(1 − p)i if i ∈ {0, . . . , r − 1}; (1 − p)r if i = r; and 0 otherwise. Intuitively, the
distribution relates to r Bernoulli experiments indexed by 0, . . . , r − 1, each with success
probability p. A random variable sampled from the capped geometric distribution represents
the index of the first successful experiment, whereas it is equal to r if all experiments fail.
The capped geometric distribution admits a memoryless property for the values 0 ≤ i ≤ r − 1.
In particular, a useful identity that follows is P[X = i | X ≥ i] = P[X = 0] = p for a random
variable X ∼ GeomCap(p, r) and an index 0 ≤ i ≤ r − 1.

3.1 Auxiliary Procedures
Global Circuits. The algorithms presented in this paper utilize a global circuit, i.e., a circuit
in which every node v ∈ V partakes. A global circuit can be constructed in round t ≥ 0 as
follows. For some index 1 ≤ i ≤ k, every node v ∈ V partitions its pin set in round t such
that E(v) × {i} ∈ Rt(v).

Procedure CountingToLogn. We next present a procedure referred to as CountingToLogn,
whose runtime is Θ(log n) rounds whp. While the uniformity in n prevents the nodes from
counting log n rounds individually, the duration of this procedure can indicate to the nodes
that whp, Θ(log n) rounds have passed. The nodes first construct a global circuit, as described
above. Throughout the procedure, the nodes maintain a node set M ⊆ V of competitors,
where initially M = V . In each round, each competitor v ∈ M tosses a fair coin and beeps
through the global circuit if the coin lands heads. If the coin lands tails, v removes itself
from M . The procedure terminates when no competitor beeps through the global circuit.

We show the following useful property regarding the runtime of the described procedure.

▶ Lemma 3.1. For an integer r > 0, consider 2r − 1 independent executions of
CountingToLogn and let τ be the median runtime of these executions (i.e., the r-th fastest
runtime). For any constant 0 < ρ < 1, it holds that P[(1 − ρ) log n ≤ τ ≤ (1 + ρ) log n] ≥
1 − 2n−ρr.

Simulating a Message-Passing Network. In a message-passing network, in each round,
every pair of neighboring nodes may exchange single bit messages with each other (cf. the
CONGEST(1) model [15]). One can simulate a message-passing network in the GRC model
using relatively standard techniques as cast in the following theorem.

DISC 2024



22:8 On the Power of Graphical Reconfigurable Circuits

▶ Theorem 3.2. Let Alg be a GRC algorithm where additionally, in each round, each node
is able to exchange 1-bit messages with its neighbors. If the runtime of Alg is T , then it
can be transformed into an algorithm Alg′ in the GRC model (without messages between
neighbors) with a runtime of O(log n) + 4T whp.

For simplicity of presentation, we subsequently utilize Thm. 3.2 and describe our al-
gorithms as if the nodes can exchange 1-bit messages with their neighbors in each round.

Leader Election. In the leader election task, the goal is for a single node in a given node set
I ⊆ V to be selected as a leader, whereas all other nodes of I are selected to be non-leaders.
Leader election is used as a procedure in some of our algorithms. To that end, we use a
leader election algorithm presented by Feldmann et al. [7] in the context of reconfigurable
circuits in the geometric amoebot model. We note that this leader election algorithm only
uses a global circuit (as described above) and thus can be applied as-is in the GRC model.
Hence, the following theorem is established.

▶ Theorem 3.3 ([7]). The leader election task can be solved within O(log n) rounds whp.

Outgoing Edge Detection. Consider a graph G = (V, E) and let H ⊆ E be a subset of
edges such that each node v ∈ V knows the set of incident edges H(v). Define a partition
of V into clusters according to the connected components of (V, H). The objective of this
procedure is for each node v ∈ V to determine for each neighbor u ∈ N(v), whether u

belongs to the same cluster as v. To that end, the nodes first construct a circuit for each
cluster. This is done by each node v ∈ V including the pin subset H(v) × {i} as part of its
local pin partition for some i ∈ [k] (i is the same for all nodes). Then, each cluster elects a
leader utilizing the leader election algorithm mentioned above. The selected leader of each
cluster tosses Θ(log n) bits and beeps them through the cluster’s circuit, one at a time (a
beep represents 1 and silence represents 0). Since the nodes cannot count Θ(log n) rounds,
Proc. CountingToLogn is executed in parallel through a global circuit for (a sufficiently large)
c > 1 times, indicating to the clusters’ leaders how long to continue with the bit tossing
process. Every node v ∈ V sends every bit received through its cluster’s circuit in a direct
message to all its neighbors (messages between neighbors are executed by means of the
simulation method described in Sec. 3.1). For every incident edge e ∈ E(v), node v checks if
the bit received differs from the bit sent. If so, e is classified by v as an outgoing edge.

▶ Lemma 3.4. In the outgoing edge detection procedure, every edge e = (u, v) ∈ E is
classified correctly whp by both u and v.

▶ Lemma 3.5. The outgoing edge detection procedure takes Θ(log n) rounds whp.

4 A Fast Minimum Spanning Tree Algorithm

In this section, we present a randomized MST algorithm that operates in the GRC model.
As common in the distributed setting, we assume the edge-weights are integers from the set
{1, . . . , W } for some positive integer W . Each node v ∈ V initially knows only the weights
of edges in E(v). In particular, as dictated by the GRC model, node v does not know the
value of W or any other information about W .

Our algorithm can be seen as an adaptation of Boruvka’s classical MST algorithm [3] to
the GRC model. Throughout its execution, Boruvka’s algorithm maintains an edge set T

and a cluster partition defined such that each cluster is a connected component of (V, T ).



Y. Emek, Y. Gil, and N. Harlev 22:9

Initially, T = ∅ (and each node is a cluster). At each iteration of the algorithm, each cluster S

adds a lightest outgoing edge e∗ = arg mine∈∂S
{w(e)} to T . This means that S merges with

the neighboring cluster S′ that is incident on e∗. It is well-known that if the edge weights
are unique, then Boruvka’s algorithm computes an MST of G. Notice that in our case, edge
weights are not necessarily unique, so we construct a symmetry-breaking mechanism based
on a total order of the lightest outgoing edges as explained later on.

The algorithm begins with an empty set of tree edges and operates in phases. The goal
of each phase is to add tree edges similarly to Boruvka’s algorithm. Let Ti ⊆ E denote the
tree edges at the end of phase i ≥ 0. As in Boruvka’s algorithm, the connected components
of (V, Ti) are defined to be the clusters at the beginning of phase i + 1. The nodes construct
a designated circuit for each cluster formed during the algorithm. Additionally, the nodes
communicate through a global circuit and exchange messages with their neighbors using the
methods described in Sec. 3. The operation of each phase is divided into the following stages.

Outgoing Edge Detection. The purpose of this stage is to allow the nodes to identify which
of their incident edges is an outgoing edge. To that end, the nodes execute the outgoing
edge detection procedure described in Sec. 3.1. When the procedure terminates, each node
detecting an outgoing edge beeps through the global circuit. The algorithm terminates if no
node beeps in this round through the global circuit. Otherwise, the nodes advance to the
next stage. Denote by Out(v) the set of edges classified as outgoing by node v ∈ V .

Lightest Edge Detection. In this stage, each cluster searches for its lightest outgoing edges.
Fix some cluster S. At the beginning of this stage, every node v ∈ S such that Out(v) ̸= ∅
marks a single edge e ∈ Out(v) with weight w(e) = mine′∈Out(v) w(e′) as a candidate. The
comparison between weights of the candidate edges incident on the nodes of S is done in two
steps.

First, the nodes compare the lengths of the candidate edge weights (i.e., the number of
bits in the edge-weight representation). Consider a node v ∈ S incident on a candidate edge
e, and let ℓv = ⌊log w(e)⌋ + 1 be the length of w(e). Node v counts ℓv − 1 rounds. If v hears
a beep on the cluster’s circuit during those ℓv − 1 rounds, then v unmarks e as a candidate.
Otherwise, v beeps through the cluster’s circuit in round ℓv and keeps e as a candidate edge.
Following the first step, all remaining candidate edges of S have weights of the same length.
In the second step, the weights of the candidate edges of S are compared bit by bit, starting
from the most significant bit. Let v ∈ S be a node that still has an incident candidate edge
e. The second step runs for ℓv rounds indexed by j = 1, . . . , ℓv. In round j, if e is still a
candidate, then v beeps through the cluster’s circuit if and only if the j-th most significant
bit of w(e) is 0. If v did not beep but heard a beep through the cluster’s circuit, it unmarks
e as a candidate edge. Notice that at the end of the second step, only the lightest edges that
were classified as outgoing remain candidates.

In parallel, v beeps through the global circuit at every round of the stage in which e

is still a candidate. Once v finishes the stage (either because e was marked as a lightest
outgoing edge or e was unmarked as a candidate), it stops beeping through the global circuit.
The stage terminates when no beep is transmitted through the global circuit.

Single Edge Selection. At this point, only the edges marked as lightest outgoing edges of
each cluster remained candidates. However, there may be more than one candidate edge for
some clusters. The goal of this stage is to select a single edge for each cluster while avoiding
the formation of a cycle in the output edge set (as we will show in the analysis). To that

DISC 2024



22:10 On the Power of Graphical Reconfigurable Circuits

end, every node v ∈ V with an incident candidate edge (u, v) informs u that (u, v) is still a
candidate. Then, each of u and v draws a random bit denoted by u.bit and v.bit, respectively.
Node u sends u.bit to v and v calculates the bitwise XOR of u.bit and v.bit. Node v beeps
through the cluster’s circuit if the XOR result is 1. If node v does not beep for edge e but
hears a beep through the cluster’s circuit, it unmarks e as a candidate. Notice that if (u, v) is
lightest with regard to u’s cluster as well, then the same operation is performed also by u using
the same drawn bits. This edge selection process is done in parallel to Proc. CountingToLogn
over the global circuit, executed (a sufficiently large) c > 1 times. The nodes continue to
draw bits for their incident candidate edges as long as Proc. CountingToLogn continues. If a
node v ∈ V has an incident candidate edge e = (u, v) at the end of this stage, then it informs
u, and both endpoints mark e as a tree edge.

Updating the Local Pin Partition. Every node v ∈ V sets its local pin partition to include
the pin subset T (v) × {j} for some j ∈ [k], where T (v) is the set of edges incident on v that
were marked as tree edges (either in the current or a prior phase). Observe that this local
pin partition by the nodes constructs a circuit for every cluster.

The output of the algorithm is the set of all tree edges.

4.1 Analysis
In this section, we prove the correctness and analyze the runtime of the MST algorithm
presented above, establishing the following theorem.

▶ Theorem 4.1. The algorithm constructs an MST of G whp and runs in O(log n·log(n+W ))
rounds whp.

Recall that Ti ⊆ E is the set of tree edges at the end of phase i = 0, 1, . . . and let i∗ be
the last phase of the algorithm. Let qi be the number of clusters maintained by the algorithm
at the beginning of phase i, that is, the number of connected components in (V, Ti).

▶ Lemma 4.2. Consider a phase 0 ≤ i ≤ i∗. If qi = 1, then the algorithm terminates in
phase i whp; otherwise, qi+1 ≤ 1

2 qi whp.

Notice that since the algorithm starts with n clusters, Lem. 4.2 implies the following
corollary.

▶ Corollary 4.3. The algorithm terminates after i∗ = O(log n) phases whp. Moreover, the
subgraph (V, Ti∗) is connected whp.

Denote by Di ⊆ E the set of edges that are candidates for some (at least one) cluster at
the end of the single edge selection stage of phase i (to be marked as tree edges).

▶ Lemma 4.4. The subgraph (V, Ti∗) is a spanning tree of G whp.

Proof. By Cor. 4.3, (V, Ti∗) is connected whp. So, it is left to show that (V, Ti∗) is a forest
whp. We prove by induction over the phases that (V, Ti) is a forest whp for all 0 ≤ i ≤ i∗.
Cor. 4.3 also guarantees that there are O(log n) phases whp; hence the statement follows by
applying union bound over the phases.

For the base of the induction, notice that T0 = ∅, and thus (V, T0) is a forest. Now,
suppose that (V, Ti) is a forest for some 0 ≤ i < i∗. We show that (V, Ti+1) = (V, Ti ∪ Di)
is a forest whp. For every edge e ∈ Di, let Bi(e) be the integer obtained from the binary



Y. Emek, Y. Gil, and N. Harlev 22:11

representation of the bit sequence drawn for e by its endpoints (i.e., the sequence of XORed
bits) in the single edge selection stage of phase i. Define the binary relation ≺i for every two
edges e, e′ ∈ Di as:

e ≺i e′ ⇐⇒ w(e) < w(e′) ∨ (w(e) = w(e′) ∧ Bi(e) > Bi(e′)) .

Notice that by repeating the CountingToLogn for a sufficiently large number of times, we get
that the Bi(·) values are unique whp. By the construction of the single edge selection stage,
this means that each cluster selects exactly one outgoing edge whp – the lightest outgoing
edge which is minimal with respect to ≺i. To complete our proof, we show that if the Bi(·)
values are unique and (V, Ti) is a forest, then (V, Ti+1) = (V, Ti ∪ Di) is a forest.

Assume by contradiction that there exists at least one cycle in (V, Ti ∪ Di) and let Y be
a simple cycle in (V, Ti ∪ Di). By the induction hypothesis we know that (V, Ti) is a forest,
therefore Y ∩ Di ≠ ∅. Let e ∈ Y ∩ Di be the (unique) largest edge (with respect to ≺i) of
Y ∩ Di, and let S be the cluster that selected e. Observe that since (V, Ti) is a forest and
Y is a cycle, there exists another edge e′ ∈ Y ∩ Di − {e} which is an outgoing edge of S.
However, by the choice of e, we know that e′ ≺i e, in contradiction to the selection of e

by S. ◀

The following lemma asserts the correctness of our MST algorithm.

▶ Lemma 4.5. The graph (V, Ti∗) is an MST of G whp.

Proof. By Lem. 4.4, the graph (V, Ti∗) is a spanning tree of G whp. The proof of Lem. 4.4
shows that every cluster selects a single lightest outgoing edge in each phase whp. The
statement then follows from the correctness of Boruvka’s algorithm [3]. ◀

It remains to analyze the runtime of the algorithm.

▶ Lemma 4.6. The MST algorithm runs in O(log n · log(n + W )) rounds whp.

Proof. By Corollary 4.3, the algorithm runs for O(log n) phases whp. We are left to
bound the runtime of each phase. Every execution of the leader election algorithm and
Proc. CountingToLogn takes O(log n) rounds whp. Hence, the outgoing edge detection and
single edge selection stages each take O(log n) rounds whp. The lightest edge detection
stage completes in O(log W ) rounds, and updating the local pin partition does not require
any communication. Therefore, every phase of the algorithm completes in O(log n + log W )
rounds whp. Overall, we get a runtime bound of O(log n(log n + log W )) = O(log n ·
log(n · W )) = O(log n · log(n + W )) rounds whp, where the last equality hods because
log(n · W ) = log n + log W = O(log(n + W )). ◀

5 A Sparse Spanner Algorithm

In this section, we present a randomized spanner algorithm that operates in the GRC model.
Given a parameter κ ∈ Z>0 and a constant 0 < ε < 1, the algorithm constructs a spanner
with a stretch of (2κ − 1) whp and O(n1+(1+ε)/κ) edges in expectation. More concretely, we
prove the following theorem.

▶ Theorem 5.1. There exists an algorithm in the GRC model that computes a set H ⊆ E

of edges such that H is a (2κ − 1)-spanner whp, and E[|H|] = O(n1+ 1+ε
κ ). The runtime of

the algorithm is O(κ + log n) rounds whp, and the memory space used by each node v ∈ V is
O(deg(v) + κ).

DISC 2024



22:12 On the Power of Graphical Reconfigurable Circuits

In the full version [6], we present a modification of our algorithm to accommodate a
memory space of only O(deg(v) + log κ) for each node v ∈ V , at the cost of a slightly slower
O(κ log n)-round algorithm. We now describe the algorithm stated in Thm. 5.1.

The algorithm is based on the random shift concept introduced by Miller et al. in [12]
and studied further in various works (see, e.g., [11, 5, 9]). We now give a high-level overview
of a spanner construction algorithm based on the random shift approach (see [9] for the full
details).

The algorithm starts with each node v ∈ V sampling a value δv ∼ GeomCap(1−n−1/κ, κ−
1) (see Sec. 3 for the capped geometric distribution definition). Then, the nodes conceptually
add a virtual node s. Each node v ∈ V adds an edge (s, v) of weight w(s, v) = κ − δv to
form the graph G′, where all other edges are assigned a unit weight. Following that, the
nodes construct a shortest path tree T rooted at s. The nodes of G are partitioned into
clusters defined by the connected components of T after removing s and its incident edges.
To construct the spanner H, the nodes first add the (non-virtual) edges of T . Then, the
nodes add edges to H such that for each edge (u, v) ∈ E − T , at least one of the following
is satisfied: (1) H contains exactly one edge between u and a node in v’s cluster; or (2)
H contains exactly one edge between v and a node in u’s cluster. As discussed in [9], the
constructed edge-set H is a (2κ − 1)-spanner of expected size O(n1+1/κ).

Our algorithm works in three stages as described below.

Sampling Procedure. Recall that the algorithm of [9] begins with each node v ∈ V sampling
δv ∼ GeomCap(1 − n−1/κ, κ − 1). Note that sampling from GeomCap(1 − n−1/κ, κ − 1)
requires the nodes to know the value of n, which is not possible in the GRC model. Hence,
we devise a designated sampling procedure for each node v ∈ V .

Let us first present the intuition behind the sampling procedure. The idea is for each
node v ∈ V to simulate κ − 1 experiments, each with success probability close to 1 −
n−1/κ, and compute δv accordingly. To achieve such success probability without knowing
n, Proc. CountingToLogn is utilized. In order to enhance the proximity to 1 − n−1/κ,
Proc. CountingToLogn is executed numerous times in parallel, and δv is computed based on
the run with median runtime.

For ease of presentation, we describe the sampling procedure in two stages. First, a
sub-procedure referred to as the basic scheme is described. We later explain how this basic
scheme is used in the sampling procedure. The basic scheme runs during an execution of
Proc. CountingToLogn. For each node v ∈ V , let bv = (bv[0], . . . , bv[κ − 2]) be a vector
of κ − 1 bits initialized to bv = (0, . . . , 0). The purpose of entry bv[j] is to represent the
success/failure of the i-th experiment for each 0 ≤ j ≤ κ − 2. Let ε′ be the largest value such
that 1/(1 − ε′) is an integer and ε′ ≤ ε/(2 + ε). In each round j such that j mod κ ̸= 0, each
node v draws 1/(1 − ε′) bits uniformly at random and sets bv[(j − 1) mod κ] = 1 if any of
those bits are 1.

In the sampling procedure, the nodes perform c′ = 2 · ⌈c/ε′⌉ − 1 executions of the basic
scheme, where c > 0 is a constant. Let us index these executions by i = 0, . . . , c′ −1. Starting
from the execution indexed 0, the rounds of the executions are done alternately, i.e., a
round of the run indexed by i is followed by a round of the run indexed by (i + 1) mod c′.
Accordingly, each node v ∈ V maintains c′ vectors, b0

v, . . . , bc′−1
v , each of size κ − 1 bits,

such that bi
v is the vector maintained by v during the i-th execution of the basic scheme.

Additionally, v maintains a counter initialized to 0, whose goal is to count the executions
that terminated. Whenever an execution terminates, the counter is increased by 1. Following
the termination, during the rounds that are associated with that execution, the nodes do



Y. Emek, Y. Gil, and N. Harlev 22:13

nothing. The nodes halt the executions when the counter reaches ⌈c/ε′⌉ (notice that the
counter is updated in the same manner for all nodes, thus they halt at the same time). Let ĩ

denote the index of the execution in which the counter reached ⌈c/ε′⌉. Observe that this is
the ⌈c/ε′⌉-th fastest execution, i.e., the execution with median runtime. Each node v ∈ V

defines δv to be the smallest index 0 ≤ j ≤ κ − 2 for which bĩ
v[j] = 1 if such an index exists,

or δv = κ − 1 otherwise.

Partition Into Clusters. Let G′ be the graph formed by adding a virtual node s and edge
(s, v) of weight w(s, v) = κ − δv for every v ∈ V . To compute the cluster partition, the nodes
first construct a shortest path tree T rooted at s. The idea is simple: If w(s, v) = 1, then v

sends a message to all its neighbors and marks itself as the center of its cluster. Otherwise,
assume first that v receives a message in at least one of the rounds 2, . . . , w(s, v) − 1 and let
2 ≤ i < w(s, v) − 1 be the first such round. After receiving a message in round i, node v

(arbitrarily) chooses a neighbor u that sent v a message in that round and adds the edge
(u, v) into T . Then, in round i + 1, node v sends a message to all neighbors from which
it did not receive a message in round i. Otherwise, if v does not receive a message after
w(s, v) − 1 rounds, then in round w(s, v) node v sends a message to all its neighbors and sets
itself as the center of its cluster. Notice that after at most κ rounds, T is a shortest path
tree rooted at s. The edges of T are added to the spanner H. The clusters are defined to be
the connected components of (V, T ) (i.e., the connected components formed by removing s

and its incident edges). The nodes then construct a circuit for each cluster (similarly to the
MST algorithm of Sec. 4). Observe that by design, each cluster has exactly one center. Note
that every message sent in each round of this stage is of size one bit.

Addition of Bridging Edges. The construction of H is completed by the following procedure
whose goal is to augment H with some of the edges that bridge between clusters. This is done
by each cluster randomly drawing an ID. Then, each node v ∈ V identifies its neighboring
clusters with smaller IDs and adds a single edge to each such cluster into H.

Formally, each node v ∈ V maintains a set Seq(v) initialized to be N(v), and a set
Ssml(v) initialized to be ∅. Additionally, throughout the execution, v maintains a partition
of Ssml(v) into subsets according to the (randomly drawn) cluster IDs. The nodes engage in
a process that runs in parallel to 4c + 7 iterations of Proc. CountingToLogn. In each round
of this process, every cluster center tosses a coin and communicates the outcome through
the cluster’s circuit to all the nodes in its cluster. Then, every node v ∈ V sends a message
with the coin toss received from its cluster’s center to all neighbors. Let Seq

i (v) be the set
Seq(v) at the beginning of round i. For each u ∈ Seq

i (v), if u and v sent the same bit, then u

stays in Seq(v); otherwise, u is removed. Additionally, if u’s bit is smaller than v’s, then u

is added to Ssml(v). The partition of the nodes in Ssml(v) is defined so that u and u′ are
in the same subset by the end of round i if and only if they were in the same subset at the
beginning of round i and sent the same bit in round i. Let s1, . . . , sq be the partition of
Ssml(v) at the end of the process. For each j ∈ [q], node v (arbitrarily) selects a single node
u ∈ sj and adds the edge (u, v) into H.

This completes the construction of H. We now turn to analyzing the algorithm.

5.1 Analysis
This section is dedicated to proving Thm. 5.1. To that end, we start with a structural lemma
about the capped geometric distribution.

DISC 2024



22:14 On the Power of Graphical Reconfigurable Circuits

▶ Lemma 5.2. For arbitrary values q1, . . . , qn and for X1, . . . , Xn ∼ GeomCap(ϕ, κ − 1),
define M = maxi∈[n]{Xi − qi}. For the set I = {i | Xi < κ − 1 ∧ Xi − qi ∈ {M − 1, M}},
it holds that E[|I|] ≤ 2

1−ϕ .

Recall that in the sampling procedure of our algorithm, the value δv is computed for each
node v ∈ V based on the ĩ-th execution of the basic scheme, i.e., the execution that admits
the median runtime. Particularly, within that execution, δv is defined as the first successful
experiment out of 0, . . . , κ − 2; or κ − 1 if all experiments failed. Let ϕ be the success
probability of each such experiment and notice that ϕ itself is a random variable that depends
on the execution’s length. Define A to be the event that 1 − n−1/κ ≤ ϕ ≤ 1 − n−(1+ε)/κ. We
prove the following lemma.

▶ Lemma 5.3. P[A] ≥ 1 − 2n−c.

We now consider the bridging edges addition stage of the algorithm. Let B denote the event
that for every edge (u, v) ∈ E − T , at least one of the following is satisfied: (1) H contains
exactly one edge between u and a node in v’s cluster; or (2) H contains exactly one edge
between v and a node in u’s cluster. We state the following.

▶ Lemma 5.4. P[B] ≥ 1 − 3n−c.

For each node v ∈ V , let Mv = maxu∈V {δu − dG(u, v)} and R(v) = {u ∈ V | Mv − 1 ≤
δu − dG(u, v) ≤ Mv}. We obtain the following observation.

▶ Observation 5.5. Consider an edge (u, v) ∈ H such that u and v belong to clusters centered
at nodes u′ and v′, respectively. Then, u′ ∈ R(v) or v′ ∈ R(u).

We are now prepared to bound the expected number of edges in the spanner.

▶ Lemma 5.6. E[|H|] ≤ 2n1+(1+ε)/κ + n1+1/κ + 1.

Proof. By the law of total expectation,

E[|H|] = E[|H| | A ∧ B] · P[A ∧ B] + E[|H| | ¬A ∨ ¬B] · P[¬A ∨ ¬B] .

Combining Lem. 5.3 with Lem. 5.4, we get P[¬A∨¬B] ≤ 5n−c, and since E[|H| | ¬A∨¬B] ≤
m < n2, it follows that

E[|H|] ≤ E[|H| | A ∧ B] · P[A ∧ B] + n2 · 5n−c ≤ E[|H| | A ∧ B] + 1 ,

where the final inequality holds for, e.g., c ≥ 3. Therefore, we are left to bound the term
E[|H| | A ∧ B].

Obs. 5.5 implies that the sum
∑

v∈V |R(v)| accounts for every edge in H at least once,
i.e.,

∑
v∈V |R(v)| ≥ |H|. Fix some node v ∈ V , we seek to bound E[|R(v)|]. Partition the

set R(v) into R1(v) = {u ∈ R(v) | δu = κ − 1} and R2(v) = R(v) − R1(v). Notice that the
events δu = κ − 1 and B are independent. Thus, we get

E[|R1(v)| | A ∧ B] ≤ n · P[δu = κ − 1 | A ∧ B] = n · P[δu = κ − 1 | A] .

Observe that E[|R1(v)|] ≤ n · P[δu = κ − 1] = n(1 − ϕ)κ−1, and recall that if event A occurs,
then ϕ ≥ 1 − n−1/κ. Hence, it follows that

n · P[δu = κ − 1 | A] = n(1 − ϕ)κ−1 ≤ n · n(−1/κ)·(κ−1) = n1/κ .



Y. Emek, Y. Gil, and N. Harlev 22:15

As for R2, applying Lem. 5.2, we get E[|R2(v)|] ≤ 2/(1 − ϕ). Once again, we condition on A

and B to get

E[|R2(v)| | A ∧ B] = E[|R2(v)| | A] ≤ 2/n−(1+ε)/κ = 2n(1+ε)/κ .

Overall, we conclude that

E[|H|] ≤ n · E[R(v)] ≤ n · E[|R1(v)| | A ∧ B] + n · E[|R2(v)| | A ∧ B] + 1

≤ 2n1+(1+ε)/κ + n1+1/κ + 1 . ◀

Next, we bound the stretch of H.

▶ Lemma 5.7. H is a (2κ − 1)-spanner whp.

Proof. We now argue that if event B occurs, then H has stretch 2κ − 1, which implies
the stated claim due to Lem. 5.4. To see that, consider an edge (u, v) ∈ E. Observe
that the diameter within each cluster is at most 2κ − 2. This is because every node
is at distance at most κ − 1 from its cluster’s center. Hence, if u and v belong to the
same cluster, then dH(u, v) ≤ 2κ − 2. Otherwise, if event B occurs, then either there
is an edge (ũ, v) ∈ H between v and a node ũ in u’s cluster, or an edge (u, ṽ) ∈ H

between u and a node ṽ in v’s cluster. Assume w.l.o.g. that (ũ, v) ∈ H. It follows that
dH(u, v) ≤ dH(u, ũ) + dH(ũ, v) ≤ 1 + 2κ − 2 = 2κ − 1. ◀

This concludes the analysis of our algorithm.

References
1 Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard Haeupler, and Fabian

Kuhn. Beeping a maximal independent set. Distributed Comput., 26(4):195–208, 2013.
doi:10.1007/S00446-012-0175-7.

2 Dana Angluin. Local and global properties in networks of processors (extended abstract). In
Raymond E. Miller, Seymour Ginsburg, Walter A. Burkhard, and Richard J. Lipton, editors,
Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC), pages
82–93. ACM, 1980. doi:10.1145/800141.804655.

3 Otakar Boruvka. Contribution to the solution of a problem of economical construction of
electrical networks. Elektronickỳ Obzor, 15:153–154, 1926.

4 Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In Nancy A.
Lynch and Alexander A. Shvartsman, editors, Distributed Computing, 24th International
Symposium, DISC 2010, Cambridge, MA, USA, September 13-15, 2010. Proceedings, volume
6343 of Lecture Notes in Computer Science, pages 148–162. Springer, 2010. doi:10.1007/
978-3-642-15763-9_15.

5 Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners
and emulators. ACM Trans. Algorithms, 15(1):4:1–4:29, 2019. doi:10.1145/3274651.

6 Yuval Emek, Yuval Gil, and Noga Harlev. On the power of graphical reconfigurable circuits,
2024. arXiv:2408.10761.

7 Michael Feldmann, Andreas Padalkin, Christian Scheideler, and Shlomi Dolev. Coordinating
amoebots via reconfigurable circuits. Journal of Computational Biology, 29(4):317–343, 2022.
doi:10.1089/CMB.2021.0363.

8 Roland Flury and Roger Wattenhofer. Slotted programming for sensor networks. In Tarek F.
Abdelzaher, Thiemo Voigt, and Adam Wolisz, editors, Proceedings of the 9th International
Conference on Information Processing in Sensor Networks, IPSN 2010, April 12-16, 2010,
Stockholm, Sweden, pages 24–34. ACM, 2010. doi:10.1145/1791212.1791216.

DISC 2024

https://doi.org/10.1007/S00446-012-0175-7
https://doi.org/10.1145/800141.804655
https://doi.org/10.1007/978-3-642-15763-9_15
https://doi.org/10.1007/978-3-642-15763-9_15
https://doi.org/10.1145/3274651
https://arxiv.org/abs/2408.10761
https://doi.org/10.1089/CMB.2021.0363
https://doi.org/10.1145/1791212.1791216


22:16 On the Power of Graphical Reconfigurable Circuits

9 Sebastian Forster, Martin Grösbacher, and Tijn de Vos. An improved random shift algorithm
for spanners and low diameter decompositions. In Quentin Bramas, Vincent Gramoli, and
Alessia Milani, editors, 25th International Conference on Principles of Distributed Systems,
OPODIS 2021, December 13-15, 2021, Strasbourg, France, volume 217 of LIPIcs, pages 16:1–
16:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.OPODIS.
2021.16.

10 Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju, Tuomo Lempiäinen,
Kerkko Luosto, Jukka Suomela, and Jonni Virtema. Weak models of distributed com-
puting, with connections to modal logic. Distributed Comput., 28(1):31–53, 2015. doi:
10.1007/S00446-013-0202-3.

11 Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algorithms
for spanners and hopsets. In Guy E. Blelloch and Kunal Agrawal, editors, Proceedings of the 27th
ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland,
OR, USA, June 13-15, 2015, pages 192–201. ACM, 2015. doi:10.1145/2755573.2755574.

12 Gary L. Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using random
shifts. In Guy E. Blelloch and Berthold Vöcking, editors, 25th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’13, Montreal, QC, Canada - July 23 - 25, 2013, pages
196–203. ACM, 2013. doi:10.1145/2486159.2486180.

13 Andreas Padalkin and Christian Scheideler. Polylogarithmic time algorithms for shortest path
forests in programmable matter. In ACM Symposium on Principles of Distributed Computing
(PODC), 2024. To appear.

14 Andreas Padalkin, Christian Scheideler, and Daniel Warner. The structural power of reconfig-
urable circuits in the amoebot model. In Thomas E. Ouldridge and Shelley F. J. Wickham,
editors, 28th International Conference on DNA Computing and Molecular Programming, DNA
28, August 8-12, 2022, University of New Mexico, Albuquerque, New Mexico, USA, volume
238 of LIPIcs, pages 8:1–8:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPICS.DNA.28.8.

15 David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.
16 David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of

distributed minimum-weight spanning tree construction. SIAM J. Comput., 30(5):1427–1442,
2000. doi:10.1137/S0097539700369740.

17 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM J. Comput., 41(5):1235–1265, 2012. doi:10.1137/
11085178X.

https://doi.org/10.4230/LIPICS.OPODIS.2021.16
https://doi.org/10.4230/LIPICS.OPODIS.2021.16
https://doi.org/10.1007/S00446-013-0202-3
https://doi.org/10.1007/S00446-013-0202-3
https://doi.org/10.1145/2755573.2755574
https://doi.org/10.1145/2486159.2486180
https://doi.org/10.4230/LIPICS.DNA.28.8
https://doi.org/10.1137/S0097539700369740
https://doi.org/10.1137/11085178X
https://doi.org/10.1137/11085178X


Lock-Free Augmented Trees
Panagiota Fatourou #

FORTH ICS, Heraklion, Greece
University of Crete, Heraklion, Greece

Eric Ruppert #

York University, Toronto, Canada

Abstract
Augmenting an existing sequential data structure with extra information to support greater func-
tionality is a widely used technique. For example, search trees are augmented to build sequential
data structures like order-statistic trees, interval trees, tango trees, link/cut trees and many others.
We study how to design concurrent augmented tree data structures. We present a new, general
technique that can augment a lock-free tree to add any new fields to each tree node, provided the
new fields’ values can be computed from information in the node and its children. This enables the
design of lock-free, linearizable analogues of a wide variety of classical augmented data structures.

As a first example, we give a wait-free trie that stores a set S of elements drawn from {0, . . . , N−1}
and supports linearizable order-statistic queries such as finding the kth smallest element of S. Updates
and queries take O(log N) steps. We also apply our technique to a lock-free binary search tree
(BST), where changes to the structure of the tree make the linearization argument more challenging.
Our augmented BST supports order statistic queries in O(h) steps on a tree of height h. The
augmentation does not affect the asymptotic step complexity of the updates. As an added bonus,
our technique supports arbitrary multi-point queries (such as range queries) with the same step
complexity as they would have in the corresponding sequential data structure. For both our trie and
BST, we give an alternative augmentation to improve searches and order-statistic queries to run in
O(log |S|) steps (at the cost of increasing step complexity of updates by a factor of O(log |S|)).

2012 ACM Subject Classification Theory of computation → Concurrent algorithms; Theory of
computation → Data structures design and analysis

Keywords and phrases shared-memory, data structure, tree, binary search tree, augmentation,
linearizable, lock-free, order statistic, snapshot

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.23

Related Version Full Version: https://arxiv.org/abs/2405.10506 [24]

Funding This research was supported by the Hellenic Foundation for Research and Innovation (HFRI)
under the “Second Call for HFRI Research Projects to support Faculty Members and Researchers”
(project name: PERSIST, project number: 3684) and the Natural Sciences and Engineering Research
Council of Canada.

Acknowledgements We thank the anonymous reviewers for their comments.

1 Introduction

Augmentation is a fundamental technique to add functionality to sequential data structures
and to make them more efficient, particularly for queries. Augmentation is sufficiently
important to warrant a chapter in the algorithms textbook of Cormen et al. [18], which
illustrates the technique with the most well-known example of augmenting a binary search
tree (BST) so that each node stores the size of the subtree rooted at it. This adds support for
many order-statistic queries, including finding the j-th smallest element in the BST or the
rank of a given element, in sub-linear time. In a balanced BST, these queries take logarithmic
time whereas a traversal of an unaugmented BST would take linear time to answer them.

© Panagiota Fatourou and Eric Ruppert;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 23; pp. 23:1–23:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:faturu@ics.forth.gr
https://orcid.org/0000-0002-6265-6895
mailto:ruppert@eecs.yorku.ca
https://orcid.org/0000-0001-5613-8701
https://doi.org/10.4230/LIPIcs.DISC.2024.23
https://arxiv.org/abs/2405.10506
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Lock-Free Augmented Trees

Key
0 1 1 1

21

3

00 01 10 11

0 1

0 1 0 1

(a) Non-concurrent
static trie for the set
S = {1, 2, 3}.

Root

0 0 0 0

00

0

Leaf
0 1 2 3

(b) Initialization of concurrent trie.

1

Leaf

Root

0 1 2 3

0 1 1 1

2

3

(c) Concurrent trie for the set S =
{1, 2, 3}.

Figure 1 Examples of the trie data structure when U = {0, 1, 2, 3}, where each node is augmented
with a field that stores the number of elements in the subtree. Nodes are shown as squares, Versions
are shown as circles containing their sum fields.

More generally, each node of a (sequential) tree data structure can be augmented with
any number of additional fields that are useful for various applications, provided that the
new fields of a node can be computed using information in that node and its children. When
applied to many standard trees, such as balanced or unbalanced BSTs, tries or B-trees,
the augmentation does not affect the asymptotic time for simple updates, like insertions or
deletions, but it can facilitate many other efficient operations. For example, a balanced BST
can be augmented for a RangeSum query that computes the sum of all keys within a given
range in logarithmic time by adding a field to each node that stores the sum of keys in the
node’s subtree. (The sum can be replaced by any associative aggregation operator, such as
minimum, maximum or product.) Similarly, a BST of key-value pairs can be augmented to
aggregate the values associated with keys in a given range: each node should store the sum
of values in its subtree. One can also filter values, for example to obtain the aggregate of all
odd values within a range. More sophisticated augmentations can also be used. For instance,
an interval tree stores a set of intervals in a balanced BST sorted by the left endpoints, where
each node is augmented to store the maximum right endpoint of any interval in the node’s
subtree, so that one can determine whether any interval in the BST includes a given point
in logarithmic time [18]. There are many other types of augmented trees, including one
representing piecewise constant functions [12; 13, Section 4.5], measure trees [26], priority
search trees [33] and segment trees [9, 10]. Section 3.5 gives another novel example of how to
use tree augmentation. Augmented trees are also used as a building block for many other
sequential data structures such as link/cut trees [41] and tango trees [19]. These structures
have many applications in graph algorithms, computational geometry and databases.

We consider how to augment concurrent tree data structures. The resulting data structures
are linearizable and lock-free and use single-word compare-and-swap (CAS) instructions.
The technique we introduce is very general: as in the sequential setting, it can handle any
augmentation to a lock-free tree data structure where the new fields can be computed using
the data stored in the node and its children. Thus, it can be used to provide efficient, lock-free
shared implementations of many of the sequential data structures mentioned above. Our
augmentation does not affect the asymptotic step complexity (i.e., number of steps taken) of
update operations. Moreover, we provide a way for queries to obtain a snapshot of the data
structure so that they can simply execute the sequential code to answer the query.

For ease of presentation, in Section 3, we first illustrate the technique applied to a simple
data structure that represents a dynamically-changing set S of keys drawn from the universe
U = {0, . . . , N − 1}. The basic data structure is a static binary trie of height log2 N , where



P. Fatourou and E. Ruppert 23:3

each key of U is assigned a leaf. To add support for order-statistic queries, each node stores
the number of elements of S in its subtree. See Figure 1a for an example. Our technique
mirrors this tree of nodes by a tree of Version objects, which store the mutable fields of the
augmentation (see Figure 1c). Insertions and deletions of elements modify the appropriate
leaf of the tree (and its Version), and then cooperatively propagate any changes to the Version
objects stored in ancestors of that leaf until reaching the root. This cooperative approach
ensures updates perform a constant number of steps at each node along this path, taking
O(log N) steps in total. Our algorithm never changes fields of Version objects, including
their child pointers. Thus, reading the root node’s Version object provides a “snapshot” of
the entire Version tree, which a query can then explore at its leisure, knowing that it will not
be changed by any concurrent updates. Thus, any query operation that follows pointers from
the root can be performed exactly as in a sequential version of the data structure, using the
same number of steps. For example, order-statistic queries can be answered using O(log N)
steps, and the size of S can be found in O(1) steps. All operations are wait-free.

In Section 4, we describe how to apply the technique to a BST. This has additional
complications because the structure of the tree changes as keys are inserted or deleted. We
augment the lock-free BST of Ellen et al. [21], which has amortized step complexity O(h + c)
per operation, where h is the height of the tree and c is the point contention (i.e., the
maximum number of updates running at any point in time). Our augmentation does not
affect this asymptotic step complexity of the lock-free update operations, and wait-free queries
can again be performed using the same number of steps as in a sequential implementation.

In an augmented tree, each insertion or deletion must typically modify many tree nodes.
For example, an insertion in an order-statistic tree must increment the size field in all
ancestors of the inserted node. In the concurrent setting, we must ensure that all of these
changes appear to take place atomically, so that queries operate correctly. It is generally very
difficult to design lock-free data structures where many modifications must appear atomic.
Our proposed technique addresses this challenge in a rather simple way. However, the full
proofs of correctness are fairly challenging.

Our approach yields a query to find the number of keys in a lock-free tree in O(1) steps. A
previous, more general method for adding a size query to any dynamic set [38] is substantially
more complicated, and their size queries take Ω(P ) steps in a system of P processes.

Whether augmentation of the tree is needed or not, our technique also provides a simple
way of taking a snapshot of the tree to answer queries that must examine multiple locations
in the tree, such as a range query. Thus, in addition to supporting augmentation, our
technique provides an alternative to other recent work on providing linearizable range queries
on concurrent trees [4, 7, 14, 17, 23] or more general snapshots [36, 37, 44]. Ordinarily, our
snapshots can be discarded when the query completes, but they can also be used to maintain
past versions of the data structure. Many of these other approaches use multiversioning
and require complex schemes for unlinking old, obsolete versions from the data structure to
facilitate garbage collection (e.g., [8, 45]). The simplicity of our approach avoids this.

2 Related Work

There is very little previous work on concurrent augmented trees. This year, Kokorin et
al. [32] described a wait-free BST supporting order-statistic queries and range queries. They
use a FIFO queue for each tree node. Before reading or writing a node, an operation must
join the node’s queue and help each operation ahead of it in the queue by performing that
operation’s access to the node and, if necessary, adding the operation to the queue of the

DISC 2024



23:4 Lock-Free Augmented Trees

node’s child (or children). This adds Ω(Ph) to the worst-case step complexity per operation
when there are P processes accessing a tree of height h. To handle order-statistic queries,
each node stores the size of its subtree. While queueing at the root, an update operation
must determine whether it will ultimately succeed (by searching down to a leaf, and checking
the queue of pending updates at each node along the way), so that it knows whether to
modify the size field of nodes as it traverses them. This top-down approach does not seem
to generalize to other augmentations where new fields are generally computed bottom-up
because the values of the fields of a node usually depend on the values in the node’s children.

Independently of this work, Sela and Petrank [39] recently gave a lock-based implement-
ation of an augmented BST. Their approach is restricted to augmentations that compute
aggregate functions based on an Abelian group operator (such as sum or product, but not max
or min), whereas ours handles arbitrary augmentations. Their approach requires substantial
coordination between concurrent operations. Updates are announced, and each query must
then take into account information from all ongoing updates with timestamps earlier than
its own, using a multiversioning system similar to [23,44] that maintains version lists at each
tree node. In both variants of their algorithm, queries and updates each take at least Ω(Ph)
steps in the worst case when P processes access a tree of height h. Moreover, an update
must hold a lock on the nodes where it is performing an insert or delete while it performs
Ω(Ph) steps to update aggregated values.

Sun, Ferizovic and Blelloch [42] discuss augmented trees in a parallel setting, but their
focus is on processes sharing the work of a single expensive operation (like a large range
query or unioning two trees), whereas our goal is to support multiple concurrent operations.

Independently of this work, Ko [31] used a binary trie structure to add support for
predecessor queries to a lock-free data structure for a set drawn from the universe U =
{0, 1, . . . , N − 1}. However, his trie design is quite different from the one we give in Section 3.
It supports searches in O(1) steps, while the amortized step complexity for updates and
predecessor queries is O(c2 + log N), where c is a measure of contention. Thus, searches are
faster, but other operations are slower than in our trie. Moreover, Ko’s approach does not
appear to generalize to other order-statistic queries or other types of augmentations.

The cooperative approach we use to propagate operations up to the root of the tree
originates in the universal construction of Afek, Dauber and Touitou [1]. It has been used to
build a variety of lock-free data structures [5, 22,29,34]. All of these applied the technique
to a tournament tree with one leaf per process. A process adds an operation at its leaf,
and processes move up the tree gathering larger batches of operations until the batch is
applied to the data structure at the root of the tournament tree. Here, we instead apply
the approach directly to the tree data structure itself to build larger and larger pieces of the
updated tree until we reach the root, at which time we have constructed a new version of
the data structure (without destroying any previous versions).

Jayanti [28] used the technique of [1] to implement an array A[1..n] where processes can
update an array element and query the value of some fixed function f(A[1], . . . , A[n]), if f

can be represented as an evaluation tree similar to a circuit (where leaves are elements of the
array, each internal node represents some function of its children and the root represents f).
Updates cooperatively propagate changes up the tree so that a query can read f ’s value
from the root. Our trie has some similarities, but is much more general: instead of simply
computing a function value, we construct a copy of the data structure that can be used for
more complex queries. Our BST implementation goes further to remove the restriction that
the shape of the tree being used for the propagation is fixed.



P. Fatourou and E. Ruppert 23:5

Another technique that cooperatively builds trees bottom-up appears in Chandra, Jayanti
and Tan’s construction [16] of closed objects (where the effect of any pair of operations is
equivalent to another operation). They build trees that represent batches of operations to
keep track of the sequence of all operations applied to the closed object being implemented.
In contrast, we directly build a representation of the implemented tree data structure.

Our work is on augmenting tree data structures with additional fields to support additional
functionality. The main challenge is to make changes to several nodes required by an insert
or delete appear atomic. As a byproduct, our technique for doing this also allows processes
to take a snapshot of the tree, which can be used to answer arbitrary queries on the state of
the tree. For example, it can be used on a BST to find all keys in a given range. A number
of recent papers [11, 23, 36, 37, 44] use some form of multiversioning to add the ability to
take a snapshot of the state of a concurrent data structure (but without addressing the
problem of augmentation). Our approach applies only to trees, whereas some of the other
work can be applied to arbitrary data structures, but we do get more efficient queries: a
query in our scheme has the same step complexity as the corresponding query in a sequential
implementation, whereas a query that runs on top of other multi-versioning schemes, such as
that of [44], can take additional steps for every update to the tree that is concurrent with the
query. Our approach is more akin to that of functional updates to the data structure that
leave old versions accessible, as in the work on classical persistent data structures [20], but the
novelty here is that the new versions are built cooperatively by many concurrent operations.

3 Augmented Static Trie

In this section, we illustrate our augmentation technique for a simple data structure that
represents a set S of keys drawn from the universe U = {0, 1, . . . , N − 1}. For simplicity,
assume N is a power of 2. A simple, classical data structure for S is a bit vector B[0..N − 1],
where B[i] = 1 if and only if i ∈ S. Even in a concurrent setting, update operations (insertions
and deletions of keys) can be accomplished by a single CAS instruction and searches for a
key by a single read instruction.

Now, suppose we wish to support the following order-statistic queries.
Select(k) returns the kth smallest element in S.
Rank(x) returns the number of elements in S smaller than or equal to x.
Predecessor(x) returns the largest element in S that is smaller than x.
Successor(x) returns the smallest element in S that is larger than x.
Minimum and Maximum return the smallest and largest element in S, respectively.
RangeCount(x1, x2) returns the number of elements in S between x1 and x2.
Size returns |S|, the number of elements in the set S.

In the non-concurrent setting we can build a binary tree of height log2 N whose leaves
correspond to the elements of the bit vector, as shown in Figure 1a. We augment each node
x with a sum field to store the sum of the bits in x’s descendant leaves, i.e., the number of
elements of S in the subtree rooted at x. For a leaf, the sum field is simply the bit that
indicates if that leaf’s key is present in S. The sum field of an internal node can be computed
as the sum of its children’s sum fields. It is straightforward to see that Size queries can then
be answered in O(1) steps and the other order-statistic queries can be answered in O(log N)
steps. We call this data structure a static trie because the path to the leaf for i ∈ U is
dictated by the bits of the binary representation of i, as in a binary trie [25; 30, Section
6.3]: starting from the root, go left when the next bit is 0, or right when the next bit is 1.
Although the trie’s shape is static, it represents a dynamically changing set S.

DISC 2024



23:6 Lock-Free Augmented Trees

3.1 Wait-Free Implementation
The challenge of making the augmented trie concurrent is that each insertion or deletion,
after setting the bit in the appropriate leaf, must update the sum fields of all ancestors of
that leaf. All of these updates must appear to take place atomically. To achieve this, we
use a modular design that separates the structure of the tree (which is immutable) from the
mutable sum fields of the nodes. This modularity means the same approach can be used to
augment various kinds of lock-free trees.

We use Node objects to represent the tree structure. Each Node has a version field, which
stores a pointer to a Version object that contains the current value of the Node’s sum field.
A Version object v associated with a node x also stores pointers left and right to the Version
objects that were associated with x’s children at the time when v was created. This way, the
Version objects form a Version tree whose shape mirrors the tree of Nodes. See Figure 1b.
Query operations are carried out entirely within this Version tree. To simplify queries, fields
of Versions are immutable, so that when a query reads the root Node’s version, it obtains a
snapshot of the entire Version tree that it can later explore by following child pointers.

To see how updates work, consider an Insert(3) operation, starting from the initial state
of the trie shown in Figure 1b. It must increment the sum field of the leaf for key 3 and of
each Node along the path from that leaf to the root. Since Versions’ fields are immutable,
whenever we wish to change the data in the Version associated with a Node x, we create a
new Version initialized with the new sum value for the Node, together with the pointers to
the two Versions of x’s children from which x’s sum field was computed. Then, we use a
CAS to attempt to swing the pointer in x.version to the new Version. If the Insert(3) runs
by itself, it would make the sequence of changes shown in Figure 4 as it works its way up
the tree. The Insert is linearized when the root Node’s version field is changed (Figure 4c).
Prior to that linearization point, any query operation reading the root’s version field gets a
pointer to the root of the initial Version tree; after it, a query operation gets a pointer to
a Version tree that reflects all the changes required by the Insert. A Delete(k) operation is
handled similarly by decrementing the sum field at each Node along the path from k’s leaf
Node to the root.

Now, consider concurrent updates. Each update operation must ensure that the root’s
version pointer is updated to reflect the effect of the update. We avoid the performance
bottleneck that this could create by having update operations cooperatively update Versions.
At each Node x along the leaf-to-root path, the update reads the version field from both of
x’s children, creates a new Version for x based on the information in the children’s Versions,
and attempts to install a pointer to it in x.version using a CAS. Following the terminology
of [28], we call this procedure a refresh. This approach is cooperative, since a refresh of Node
x by one update will propagate information from all updates that have reached either child
of x to x. If an update’s first refresh on x fails, it performs a second refresh. This is called a
double refresh of x. We shall show that attempting a refresh twice at each Node suffices: if
both of the CAS steps in an update’s double refresh on a Node x fail, it is guaranteed that
some other process has propagated the update’s information to x.

Figure 2 describes the fields of our objects. Figure 3 provides pseudocode for the
implementation. It is substantially simpler than previous lock-free tree data structures for
sets, even though it includes augmentation and provides atomic snapshots. In our code, if
ptr is a pointer to an object O, ptr .f denotes field f of O. A shared pointer Root points to
the root Node of the binary tree with N leaves. To expedite access to the leaves, we use an
array Leaf [0..N − 1], where Leaf [k] points to the leaf Node for key k.



P. Fatourou and E. Ruppert 23:7

1: type Node ▷ used to store nodes of static trie structure
2: Node* left, right ▷ immutable pointers to children Nodes
3: Node* parent ▷ immutable pointer to parent Node
4: Version* version ▷ mutable pointer to current Version

5: type Version ▷ used to store a Node’s augmented data
6: Version* left, right ▷ immutable pointers to children Versions
7: int sum ▷ immutable sum of descendant leaves’ bits

Figure 2 Object types used in wait-free trie data structure.

A Refresh(x) reads the version field of x and its two children, creates a new Version for
x based on information in the children’s Versions, and then attempts to CAS the new Version
into x.version. To handle different augmentations, one must only change the way Refresh
computes the new fields. Propagate(x) performs a double Refresh at each node along the
path from x to the root.

An Insert(k) first checks if the key k is already present in the set at line 15. If not, it uses
a CAS at line 18 to change the leaf’s Version object to a new Version object with sum field
equal to 1. If the CAS succeeds, the Insert will return true to indicate a successful insertion.
If the key k is already present when the read at line 14 is performed or if the CAS fails
(meaning that some concurrent operation has already inserted k), the Insert will return false.
In all cases, the Insert calls Propagate before returning to ensure that the information in the
leaf’s Version is propagated all the way to the root.

The Delete(k) operation is very similar to an insertion, except that the operation attempts
to switch the sum field of Leaf [k] from 1 to 0.

Find and Select are given as examples of query operations. They first take a snapshot
of the Version tree by reading Root.version on line 41 or 47 and then execute the query’s
standard sequential code on that tree. Other queries can be done similarly. In particular, to
ensure linearizability, queries should access the tree only via Root.version, not through the
Leaf array.

3.2 Correctness
A detailed proof of correctness appears in [24]; we sketch it here. We first look at the
structure of Version trees. Let Ux be the sequence of keys from the universe U that are
represented in the subtree rooted at Node x of the tree, in the order they appear from left to
right. In particular, URoot = ⟨0, 1, . . . , N − 1⟩. It can be shown by induction on the height of
the Node x, that the Version tree rooted at x.version is a perfect binary tree with |Ux| leaves.
Recall that the fields of Version objects are immutable, so the proof must only consider lines
17, 25 and 33, which create new Version objects. The induction step can be easily proved
because of the way the Version tree for x is constructed at line 33 by combining the Version
trees for x’s children. Line 33 also ensures that we maintain as an invariant that,

for every internal Version v, v.sum = v.left.sum + v.right.sum. (1)

Since leaf Versions contain 0 or 1 (according to lines 17 and 25), v.sum stores the sum of the
bits stored in leaves of the subtree rooted at v.

The key goal of the correctness proof is to define linearization points for the update oper-
ations (insertions and deletions) so that, at all times, the Version tree rooted at Root.version
accurately reflects all update operations linearized so far. Then, we linearize each query

DISC 2024



23:8 Lock-Free Augmented Trees

8: Initialization (refer to Figure 1b):
9: Node* Root ← root of a perfect binary tree of Nodes with N leaves.

10: For each Node x, x.version points to a new Version with fields sum ← 0, left ← x.left.version
11: and right ← x.right.version.
12: Node* Leaf [0..N − 1] contains pointers to the leaf Nodes of the binary tree.

13: Insert(int k) : Boolean ▷ Add k to S; return true iff k was not already in S

14: old ← Leaf [k].version
15: result ← (old.sum = 0)
16: if result then
17: new ← new Version with sum ← 1, left ← Nil, and right ← Nil
18: result ← CAS(Leaf [k].version, old, new)
19: Propagate(Leaf [k].parent)
20: return result

21: Delete(int k) : Boolean ▷ Remove k from S; return true iff k was in S

22: old ← Leaf [k].version
23: result ← (old.sum = 1)
24: if result then
25: new ← new Version with sum ← 0, left ← Nil and right ← Nil
26: result ← CAS(Leaf [k].version, old, new)
27: Propagate(Leaf [k].parent)
28: return result

29: Refresh(Node* x) : Boolean ▷ Try to propagate information to x from its children
30: old ← x.version
31: vL ← x.left.version
32: vR ← x.right.version
33: new ← new Version with left ← vL, right ← vR, sum ← vL.sum + vR.sum
34: return CAS(x.version, old, new)

35: Propagate(Node* x) ▷ Propagate updates from x’s children up to root
36: while x is not Nil do
37: if not Refresh(x) then
38: Refresh(x) ▷ Do a second Refresh if first one fails
39: x← x.parent

40: Find(Key k) : Boolean ▷ Check if key k is in S

41: v ← Root.version ▷ Start at the root
42: for i← 1.. log2 N do ▷ Traverse path to leaf of Version tree
43: if ith bit of binary representation of k is 0 then v ← v.left
44: else v ← v.right
45: return (v.sum = 1)

46: Select(j) : int ▷ Return the jth smallest element in S

47: v ← Root.version ▷ Start at the root
48: i← 1 ▷ Keep track of breadth-first index of v in tree
49: if v.sum < j then return Nil ▷ No such element in S
50: else
51: while v.left ̸= Nil do
52: if v.left.sum ≥ j then ▷ Required element is in left subtree
53: v ← v.left
54: i← 2i

55: else ▷ Required element is in right subtree
56: v ← v.right
57: i← 2i + 1
58: j ← j − v.left.sum ▷ Adjust rank of element being searched for
59: return i−N ▷ Convert breadth-first index to value

Figure 3 Implementation of wait-free augmented trie.



P. Fatourou and E. Ruppert 23:9

10 0 0 0

00

0

0 1 2 3
Leaf

Root

(a) After the CAS on line 18 up-
dates the version of the rightmost
leaf Node.

1

10 0 0 0

00

0

0 1 2 3
Leaf

Root

(b) After the CAS on line 34 up-
dates the right child of the root
Node in the first iteration of the
loop in Propagate.

1

1

10 0 0 0

00

0

0 1 2 3
Leaf

Root

(c) After the CAS on line 34 up-
dates the root Node in the second
iteration of the loop in Propagate.

Figure 4 Key steps of an Insert(3) into the initially empty set shown in Figure 1b.

operation at the time it reads Root.version to take a snapshot of the Version tree. This will
ensure that the result returned by the query is consistent with the state of the represented
set S at the query’s linearization point.

We consider an execution in which processes perform operations on the trie. An execution
is formalized as an alternating sequence of configurations and steps C0, s1, C1, s2, . . ., where
each configuration Ci describes the state of the shared memory and the local state of each
process, and each si is a step by some process that takes the system from configuration Ci−1
to Ci. A step is either a shared-memory access or a local step that affects only the process’s
local state. C0 is the initial configuration described in lines 8–12.

Our goal is to define a linearization point (at a step of the execution) of each update
operation so that for each configuration C, the Version tree rooted at Root.version is the
trie that would result by sequentially performing all the operations that are linearized before
C in their linearization order. Thus, the linearization point of an update operation should
be the moment when the effect of the update has been propagated to the root Node, so that
it becomes visible to queries. To define these linearization points precisely, we define the
arrival point of an update operation on a key k at each Node along the path from the leaf
Node representing k up to the root Node. Intuitively, the arrival point of the update at
Node x is the moment when the effect of the update is reflected in the Version tree rooted at
x.version. Then, the linearization point is simply the arrival point of the update at Root.
We must ensure these linearization points are well defined by showing that the double-refresh
technique propagates each update all the way up to Root before the update terminates.

Definition 1, below, formally defines the arrival point of each Insert(k) or Delete(k)
operation at Node x, where k ∈ Ux using induction from the bottom of the tree to the top.
If an Insert(k) sees that k is already in a leaf Node at line 14, or if a Delete(k) sees that k

is not present in a leaf Node at line 22, the arrival point of the operation is at that line.
Otherwise the update performs a CAS on the leaf at line 18 or 26. If the CAS succeeds, the
CAS is the update’s arrival point at that leaf. Otherwise, we put the arrival point of the
update at the leaf at a time when k’s presence or absence would cause the update to fail.
An update’s arrival point at an internal Node is the first successful CAS by a Refresh that
previously read the child after the update’s arrival point at that child.

▶ Definition 1. We first define the arrival point of an Insert(k) or Delete(k) operation op at
Leaf[k].
1. If op performs a successful CAS at line 18 or 26, then the arrival point of op is that CAS.
2. If op performs an unsuccessful CAS at line 18 or 26, then the arrival point of op is the

first successful CAS on Leaf[k].version after op read the old value of Leaf[k].version at
line 14 or 22. (Such a CAS must exist; otherwise op’s CAS would have succeeded.)

DISC 2024



23:10 Lock-Free Augmented Trees

c2

c1

R1 R2 34303430

30R

Figure 5 Calls to Refresh in proof that
a double refresh successfully propagates
updates to a Node from its children. The
horizontal axis represents time, and boxes
indicate the interval between a routine’s
invocation and its response. Numbers
refer to line numbers in the pseudocode.
An arrow s1 → s2 indicates step s1 must
precede step s2.

6,4

5,1 6,1

6,2

7,1

6,3

5,1

7,1

3,1

7,15,2

3,1

Figure 6 Augmenting the trie with red-black trees
(RBTs) to speed up queries. N = 8 and S = {3, 5, 6, 7}.
Squares are trie Nodes. Ovals are RBT nodes. Each
RBT node has child pointers, and stores a key and a size

field that represents the number of keys in the subtree.
Black dots represent RBT nodes with sum 0.

3. If op is an Insert that reads a Version with sum = 1 from Leaf[k].version on line 14 or op

is a Delete that reads a Version with sum = 0 from Leaf[k].version on line 22, then the
arrival point of op is op’s read at line 14 or 22, respectively.

If multiple operations’ arrival points at a leaf Node are at the same successful CAS, we order
them: first the operation that did the successful CAS, then all the other operations (ordered
arbitrarily).

Next, we define the arrival point of an Insert(k) or Delete(k) op at an internal Node x

with k ∈ Ux.
4. If k ∈ Ux.left, the arrival point of op is the first successful CAS on x.version at line 34 of

a Refresh that read x.left.version at line 31 after the arrival point of op at x.left.
5. If k ∈ Ux.right, the arrival point of op is the first successful CAS on x.version at line 34

of a Refresh that read x.right.version at line 32 after the arrival point of op at x.right.
If multiple operations’ arrival points at an internal Node are at the same successful CAS, we
order them as follows: first the operations on keys in Ux.left in the order they arrived at x.left
and then the operations on keys in Ux.right in the order they arrived at x.right.

For example, consider the Insert(3) depicted in Figure 4. Its arrival point at the leaf
Node for key 3 is the CAS that updates that leaf’s version field, shown in Figure 4a. Its
arrival point at the parent of this leaf is the CAS that updates the data structure as shown
in Figure 4b. Its arrival point at the root is the CAS that updates the Root.version as shown
in Figure 4c.

It follows easily from Definition 1 that arrival points of an update operation op are after
op begins. If op terminates, we must also show that it has an arrival point at the root Node
before it terminates. Recall that after op’s arrival point at a leaf, op calls Propagate, which
does a double Refresh at each Node along the path from that leaf to the root. We show by
induction that the double refresh at each node x along the path ensures op has an arrival
point at x. The induction step follows immediately from Parts 4 and 5 of Definition 1 if
one of op’s calls to Refresh(x) performs a successful CAS. So, suppose both of x’s calls R1
and R2 to Refresh(x) fail their CAS. Then for each Ri, there must be a successful CAS ci on
x.version between Ri’s read of x.version on line 30 and its CAS on line 34, as depicted in
Figure 5. Although c1 may store outdated information, the Refresh that performs c2 must
have read information from x’s children after c1, which is enough to ensure that op has an
arrival point at x, by Parts 4 and 5 of Definition 1.



P. Fatourou and E. Ruppert 23:11

Our next goal is to prove a key invariant that, for each configuration C and Node x, the
Version tree rooted at x.version accurately reflects all of the updates whose arrival points at
x are prior to C. In other words, it is a trie structure (similar to the one shown in Figure 1a)
that would result from performing all of those updates in the order of their arrival points at
x. As a corollary, when we take x to be the root Node, we see that the Version tree rooted at
Root.version has a 1 in the leaf for key k if and only if k is in the set obtained by sequentially
performing the linearized operations in order. Correctness of all query operations follows
from this fact and the invariant (1).

We sketch the proof of the key invariant. We make the argument separately for each
key k ∈ Ux. We define Ops(C, x, k) to be the sequence of update operations on key k whose
arrival points at x precede configuration C, in the order of their arrival points. We must
show that, in each configuration C, the leaf corresponding to key k in the subtree rooted at
x.version contains a 1 if and only if Ops(C, x, k) ends with an Insert(k).

If x is the leaf for key k, we consider each step that can add arrival points at x. First,
consider a CAS that flips the bit stored in x.version. If the CAS sets the bit to 1, it follows
from Part 1 and Part 2 of Definition 1 that it is the arrival point of one or more Insert(k)
operations, which preserves the invariant. Similarly, a CAS that sets the bit to 0 is the arrival
point of one or more Delete(k) operations, which preserves the invariant. If the step is an
Insert(k)’s read of x.version when it has value 1 or a Delete(k)’s read of x.version when it
has value 0, it also preserves the invariant.

If x is an internal Node, the fact that the invariant holds at x can be proved inductively.
The claim at x follows from the assumption that it holds at the children of x, since the
invariant is phrased in terms of a single key and the sets of keys represented in the two
subtrees of x are disjoint.

Finally, we prove that operations that arrive at a leaf are propagated up the tree in an
orderly way, so that they arrive at the root in the same order. This is useful for showing
that the update operations return results consistent with their linearization order.

3.3 Complexity and Optimizations
Insert and Delete take O(log N) steps. Searches and the order-statistic queries listed at the
beginning of Section 3 take O(log N) steps and are read-only. Size queries can be answered in
O(1) steps by simply returning Root.version.sum. We could also augment the data structure
so that each node stores the minimum element in its subtree to answer Minimum queries
in O(1) steps. A range query that returns R elements can be done in O(R(log N

R + 1))
steps, since it visits at most R locations in the top log R levels of the Version tree and in
the rest of the tree it visits O(log N − log R) locations per returned element, for a total of
O(R(log N − log R + 1)) locations. All operations are wait-free.

We assume a safe garbage collector, such as the one provided by Java, which deallocates
objects only when they are no longer reachable. We now give a very pessimistic worst-case
bound on the space used by objects that are still reachable. For each Node x, up to O(log N)
different Versions belonging to x could be in the Version trees of each of x’s ancestors. Thus,
the space used by all objects reachable by following pointers from Root is O(N log N). In
addition, any old ongoing queries could have an old snapshot of a Version tree.

The Node tree is static and complete, so it can be represented using an array Tree[1..2N−1]
of pointers to Versions, where Tree[1] is the root, and the children of the internal Node Tree[i]
are Tree[2i] and Tree[2i + 1] [30, p. 144]. This saves the space needed for the Leaf array and
parent and child pointers, since we can navigate the tree by index arithmetic rather than
following pointers.

DISC 2024



23:12 Lock-Free Augmented Trees

3.4 Variants and Other Applications
Generalizing our implementation to d-ary trees is straightforward for any d ≥ 2. The number
of CAS instructions per update would be reduced to 2 logd N , but the number of reads (and
local work) per update would increase to Θ(d logd N). Order-statistic queries could run in
Θ(log2 N) steps if each node stores prefix sums and uses binary search.

Instead of storing a set of keys S ⊆ U , a straightforward variant of our data structure
can store a set of key-value pairs, where each record has a unique key drawn from U . Instead
of storing just one bit, a leaf’s Version object would also store the associated value. A
Replace(k, v) operation that replaces the value associated with key k with a new value v

would update the appropriate leaf’s version field and call Propagate. If several Replace(k, ∗)
operations try to update a leaf concurrently, one’s CAS will succeed and the others will fail,
and we can assign them all arrival points at the leaf at the time of the successful CAS, with
the failed operations preceding the successful one.

Our approach can also provide lock-free multisets of keys drawn from U . Instead of
storing a bit, the leaf for key k stores a Version whose sum field is the number of copies of k

in the multiset. With CAS instructions, operations can be made lock-free if each Insert(k)
or Delete(k) repeatedly tries to install a new Version k’s leaf with its sum field incremented
or decremented and then calls Propagate. If the leaf’s sum field can be updated with a
fetch&add, the updates can be made wait-free.

We described how to augment the trie with a sum field to facilitate efficient order-statistic
queries. However, the method can be used for any augmentation where the values of a node’s
additional fields can be computed from information in the node and its children, by modifying
line 33 to compute the new fields. Section 1 mentions some of the many applications where
this can be applied.

Without any modification, our trie supports multipoint queries, like range searches that
return all keys in a given range, since reading Root.version yields a snapshot of the trie. In
fact, our technique has more efficient queries than some recent papers discussed in Section 2
that provide multipoint queries: in our approach, queries take the same number of steps as
in a sequential implementation.

3.5 Improving Query Step Complexity to O(log |S|)

The step complexity of order-statistic queries on the set S can be improved from O(log N)
to O(log |S|). To do this, we simply use a different augmentation. The version field of each
Node x stores a pointer to the root of a red-black tree (RBT) that represents all the elements
in the subtree of Nodes rooted at x. See Figure 6 for an example. A Refresh(x) updates
x.version by reading the RBTs stored in x.left.version and x.right.version, joining them into
one RBT (without destroying the smaller RBTs) and then using a CAS to store the root of
the joined RBT in x.version. The algorithm to Join two RBTs in logarithmic time, provided
that all elements in one are smaller than all elements in the other, is in Tarjan’s textbook [43].
To avoid destroying the smaller RBTs when performing a Join, one can use the path-copying
technique of Driscoll et al. [20]. (Path copying has proved useful for a number of concurrent
data structures, e.g., [3, 5, 6, 34].) For complete pseudocode, see [24].

Each RBT node also has a size field storing the number of elements in the subtree rooted
at that node. A query reads Root.version to get a snapshot of a RBT containing all elements
in the dynamic set. Order-statistic queries are answered in O(log |S|) steps using the size
fields of the RBT.



P. Fatourou and E. Ruppert 23:13

β

B

C

D

α α

β

B

C D

DD

α

B
Insert(C) Delete(C)

B

α

Figure 7 How updates modify a leaf-oriented BST. Here, α and β represent arbitrary subtrees.

There is a tradeoff: the step complexity of updates increases to O(log N log n̂), where n̂

denotes a bound on the maximum size the set S could have under any possible linearization
of the update operations. This holds because a Join of two RBTs must be performed at each
of log N Nodes of the Node tree during Propagate. The elements in a RBT constructed by a
Refresh on a non-root Node may never all be in the set simultaneously, so we must argue
that the size of each such RBT is O(n̂). Consider a Join(T1, T2) during a call R to Refresh(x).
Without loss of generality, assume |T1| ≥ |T2|. Let α′ be the prefix of the execution up to the
time R reads T1 from x.left.version. Suppose we modify α′ by delaying R’s read of x.version
until just before R reads x.left.version, and then appending to the execution all the steps
needed to complete the Propagate that called R. This will ensure that all remaining CAS
steps of the Propagate succeed and T1 will be a subtree of the tree stored in Root.version.
Thus, there must be some way to linearize α′ so that all elements in T1 are simultaneously
in the represented set (since the modified execution is linearizable), so |T1| ≤ n̂. Thus, the
size of the RBT that R builds is |T1| + |T2| ≤ 2|T1| ≤ 2n̂.

4 Augmented Binary Search Tree

In this section, we illustrate our technique by augmenting a binary search tree (BST) that
represents a set S of elements drawn from an arbitrary (ordered) universe U . We describe
the augmentation for order-statistic queries, but as explained above, the same approach can
be used for many other applications. In constrast to the augmented trie of Section 3, the
step and space complexity of our augmented BST depend on |S| rather than |U |.

4.1 Basic Lock-free BST
We base our augmented BST on the lock-free BST of Ellen et al. [21], so we first give a brief
overview of how this BST works. The BST is leaf-oriented: keys of S are stored in the leaves;
keys in internal nodes serve only to direct searches to the leaves. The BST property requires
that all keys in the left subtree of a node x are smaller than x’s key and all keys in the right
subtree of x are greater than or equal to x’s key. The tree nodes maintain child pointers, but
not parent pointers. To simplify updates, the BST is initialized with three sentinel nodes:
an internal node and two leaves containing dummy keys ∞1 and ∞2, which are considered
greater than any actual key in U and are never deleted. A shared Root pointer points to the
root node of the tree, which never changes.

An Insert or Delete operation starts at the root and searches for the leaf at which to apply
its update. Updates are accomplished by simple modifications to the tree structure as shown
in Figure 7. To coordinate concurrent updates to the same part of the tree, updates must flag
a node before modifying one of its child pointers and remove the flag when the modification
is done. Before removing an internal node from the tree, the operation must permanently

DISC 2024



23:14 Lock-Free Augmented Trees

flag it. Since only one operation can flag a node at a time, flagging a node is analogous to
locking it. To ensure lock-free progress, an update that needs to flag a node that is already
flagged for another update first helps the other update to complete and then tries again to
perform its operation. When retrying, the update does not begin all over from the top of the
tree; the update keeps track of the sequence of nodes it visited on a thread-local stack so
that it can backtrack a few steps up the tree by popping the stack until reaching a node that
is not permanently flagged for deletion, and then searches onward from there for the location
to retry its update. Each update is linearized at the moment one of the changes shown in
Figure 7 is made to the tree, either by the operation itself or by a helper.

The tree satisfies the BST property at all times. We define the search path for a key k

at some configuration C to be the path that a sequential search for k would take if it were
executed without interruption in C. Searches in the lock-free BST ignore flags and simply
follow child pointers until reaching a leaf. A search for k may pass through nodes that get
removed by concurrent updates, but it was proved in [21] that each Node the search visits
was on the search path for k (and by the way we linearize updates, it was thus also in the
set represented by the BST) at some time during the search. A search that reaches a leaf ℓ

is linearized when that leaf was on the search path for k.

4.2 Lock-free Augmentation
We now describe how to augment the lock-free BST of [21] with additional fields for each
node, provided the fields can be computed from information in the node and its children.
We again use the sum field, which supports efficient order-statistic queries, as an illustrative
example. As in Section 3.1, we add to each tree Node x a new version field that stores a
pointer to a tree of Version objects. This Version tree’s leaves form a snapshot of the portion
of S stored in the subtree rooted at x. In particular, the leaves of the Version tree stored
in Root.version form a snapshot of the entire set S. Each Version v stores a sum field and
pointers to the Versions of x’s children that were used to compute v’s sum. Each Version
associated with Node x also stores a copy of x’s key to direct searches through the Version
trees. Version trees will always satisfy the BST property, and the sum field of each Version
v stores the number of keys in leaf descendants of v. See Figure 9 on page 20 for a formal
description of the Node and Version object types. See Figure 8a for the initial state of the
BST, including the sentinel Nodes. Pseudocode for the implementation is in Appendix A.

An Insert or Delete first runs the algorithm from [21] to modify the Node tree as shown
in Figure 7. Figures 8b and 8c show the effects of the modification when Versions are also
present. Then, the update calls Propagate to modify the sum fields of the Versions of all
Nodes along the path from the location where the key was inserted or deleted to the root.
As in Section 3.1, an update operation’s changes to the sum field of all these Nodes become
visible at the same time, and we linearize the update at that time. If an Insert(k) reaches a
leaf Node that already contains k, before returning false, it also calls Propagate to ensure
that the operation that inserted the other copy of key k has been propagated to the Root

(and therefore linearized). Similarly, a Delete(k) that reaches a leaf Node and finds that k is
absent from S also calls Propagate before returning false.

The Propagate routine is similar to the one in Section 3.1. As mentioned in Section 4.1,
each update uses a thread-local stack to store the Nodes that it visits on the way from Root

to the location where the update must be performed, so Propagate can simply pop these
Nodes off the stack and perform a double Refresh on each of them. Some of these Nodes may
have been removed from the Node tree by other Delete operations that are concurrent with
the update, but there is no harm in applying a double Refresh to those deleted Nodes.



P. Fatourou and E. Ruppert 23:15

Root ∞2 ∞2, 0

∞1 ∞1, 0 ∞2, 0∞2

(a) Initialization of
augmented BST with
sentinel Nodes.

p

A, 4D D, 1A A, 4

B B, 5

D D, 1C C, 1

D D, 2

ℓ′

D D, 1A

B B, 5p

ℓ

Insert(C)

ℓ

new

newLeaf

(b) Addition of new Nodes and Versions for an Insert. In this example, the
subtree rooted at A has four leaves. The data structure is shown after the
three new Nodes have been added to the Node tree, but before the change
has been propagated to Node B’s Version.

p A A, 4A A, 4

Delete(C)

D D, 4

gp B B, 8

C E E, 3C, 1 sibℓ

pD D, 4

gp B B, 8

C E E, 3C, 1 sibℓ

(c) Change to the Node tree for a Delete. The subtrees rooted at A and E have four and three leaves,
respectively. The data structure is shown after the Nodes C and D have been removed from the Node
tree, but before the change has been propagated to Node B’s Version.

Figure 8 Augmented BST data structure. Nodes are shown as squares and Version objects as
ovals with key and sum fields shown.

As in Section 3.1, each Refresh on a Node x reads the Versions of x’s children and
combines the information in them to create a new Version for x, and then attempts to CAS
a pointer to that new Version into x.version. There is one difference in the Refresh routine:
because x’s child pointers may be changed by concurrent updates, Refresh reads x’s child
pointer, reads that child’s version field, and then reads x’s child pointer again. If the child
pointer has changed, Refresh does the reads again, until it gets a consistent view of the child
pointer and the version field of that child. (It may be that this re-reading could be avoided,
but it simplifies the proof of correctness.)

A query operation first reads Root.version to get the root of a Version tree. This
Version tree is an immutable BST (with sum fields) whose leaves form a snapshot of the keys
in S at the time Root.version is read. The query is linearized at this read. The standard,
sequential algorithm for an order-statistic query can be run on that Version tree. To ensure
linearizability, searches are performed like other queries. This also makes searches wait-free,
unlike the original BST of [21], where searches can starve. Complex queries, like range
queries, can access any subset of Nodes in the snapshot. Our technique provides snapshots in
a simpler way than [23] (later generalized by [44] to any CAS-based data structure), which
keeps a list of previous timestamped versions of each child pointer. Our approach makes
queries more efficient since they do not have to search back through version lists for an
old version with a particular timestamp. It also avoids many of the problems of garbage
collection, since old Versions are automatically disconnected from our data structure when a
new Version replaces it. Unlike [23], our approach does not provide a snapshot of the Node
tree: the shape of the Version tree may not match the shape of the Node tree at any time.
Instead, our approach provides a snapshot of the set of elements represented by the tree.

Pseudocode for the augmented BST appears in Appendix A and a sketch of the correctness
proof is in Appendix B. For a detailed correctness proof, see [24].

DISC 2024



23:16 Lock-Free Augmented Trees

4.3 Complexity

The amortized step complexity per operation on the unaugmented BST is O(h + c), where h

is the height of the Node tree and c is point contention [21]. Since we have not made any
change to the way the Node tree is handled, we must just count the additional steps required
for the augmentation. We argue that the amortized step complexity to perform a Propagate
is also O(h + c). The number of iterations of the loop in Propagate is bounded by the number
of elements pushed on to the stack by the update, which in turn is bounded by the step
complexity of the update in the original algorithm of [21]. Recall that a Refresh may have to
reread child pointers repeatedly until it gets a consistent view of the child pointer and the
child’s version field. Rereading is necessary only if the child pointer changes between two
successive reads. Thus, there are at most c re-reads caused by each change to a child pointer
(namely by those Refresh operations running when the change happens). Moreover, there
is at most one child pointer change for each update operation. Thus, the amortized step
complexity per update operation remains O(h + c). Since queries begin by taking a snapshot
of the Version tree, queries are wait-free and take the same number of steps that they would
in the sequential setting. For example, searches and order-statistic queries take O(h) steps.

4.4 Extensions

The variants of the trie described in Section 3.4 apply equally to the BST.
The approach of Section 3.5 can be applied to our BST in exactly the same way so that,

even though the Node tree is unbalanced, Root.version points to a balanced Version tree
containing the elements of the set. This facilitates queries that can be done in the same
number of steps as in a sequential augmented balanced BST. For example, order-statistic
queries can all be answered in O(log n) steps where n is the size of the set. This does, however,
increase the amortized step complexity for update operations, which can be bounded using
the argument of Section 3.5 by O((h + c) log n̂), where n̂ is a bound on the size of the set
under any possible linearization of the execution.

5 Future Work

Our technique can provide lock-free implementations of many tree data structures based on
augmented trees supporting insertions, deletions, and arbitrarily complex queries.

Although we base our augmented BST on [21], we believe our technique could also be
applied to the similar lock-free BST design of Natarajan, Ramachandran and Mittal [35] or
other concurrent trees. It would be interesting to apply it to a node-oriented tree such as [27],
a balanced tree such as the lock-free chromatic BST of [15] or to a self-balancing concurrent
tree such as the CB Tree [2]. In particular, the latter two would require ensuring the Propagate
routine works correctly with rotations used to rebalance the tree. The technique may also be
applicable to trees that use other coordination mechanisms, such as locks (e.g., [35]).

Could our technique be extended to obtain lock-free implementations of sequential
augmented data structures that require more complex updates (such as the insertion of a
pair of keys)? In the sequential setting, examples of such data structures include link/cut
trees [41] and segment trees [9, 10]. Shafiei [40] described a mechanism for making multiple
changes to a tree appear atomic, but it would require additional work to find a suitable way
to generalize our Propagate routine with her approach.



P. Fatourou and E. Ruppert 23:17

References
1 Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-free made fast. In Proc. 27th ACM

Symposium on Theory of Computing, pages 538–547, New York, NY, USA, 1995. doi:
10.1145/225058.225271.

2 Yehuda Afek, Haim Kaplan, Boris Korenfeld, Adam Morrison, and Robert Endre Tarjan. The
CB tree: a practical concurrent self-adjusting search tree. Distributed Computing, 27(6):393–
417, 2014. doi:10.1007/S00446-014-0229-0.

3 Vitaly Aksenov, Trevor Brown, Alexander Fedorov, and Ilya Kokorin. Poster: Unexpected
scaling in path copying trees. In Proc. 28th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, pages 438–440, 2023. doi:10.1145/3572848.3577512.

4 Maya Arbel-Raviv and Trevor Brown. Harnessing epoch-based reclamation for efficient range
queries. In Proc. 23rd ACM Symposium on Principles and Practice of Parallel Programming,
pages 14–27, 2018. doi:10.1145/3178487.3178489.

5 Shalom Asbell and Eric Ruppert. A wait-free deque with polylogarithmic step complexity.
In Proc. 27th International Conference on Principles of Distributed Systems, volume 286 of
LIPIcs, pages 17:1–17:22, 2023. doi:10.4230/LIPICS.OPODIS.2023.17.

6 Benyamin Bashari and Philipp Woelfel. An efficient adaptive partial snapshot implementation.
In Proc. ACM Symposium on Principles of Distributed Computing, pages 545–555, 2021.
doi:10.1145/3465084.3467939.

7 Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar Hillel, Idit
Keidar, and Moshe Sulamy. Kiwi: A key-value map for scalable real-time analytics. ACM
Trans. Parallel Comput., 7(3):16:1–16:28, June 2020. doi:10.1145/3399718.

8 Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert, Yihan Sun, and
Yuanhao Wei. Space and time bounded multiversion garbage collection. In Proc. 35th
International Symposium on Distributed Computing, volume 209 of LIPIcs, pages 12:1–12:20,
2021. doi:10.4230/LIPICS.DISC.2021.12.

9 J. L. Bentley. Solutions to Klee’s rectangle problems. Technical report, Carnegie-Mellon
University, Pittsburgh, PA, 1977.

10 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.

11 Guy E. Blelloch and Yuanhao Wei. VERLIB: concurrent versioned pointers. In Proc. 29th
ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming,
pages 200–214, 2024. doi:10.1145/3627535.3638501.

12 Prosenjit Bose, Marc J. van Kreveld, Anil Maheshwari, Pat Morin, and Jason Morrison.
Translating a regular grid over a point set. Computational Geometry, 25(1–2):21–34, 2003.
doi:10.1016/S0925-7721(02)00128-1.

13 Peter Brass. Advanced Data Structures. Cambridge University Press, 2008.
14 Trevor Brown and Hillel Avni. Range queries in non-blocking k-ary search trees. In Proc. 16th

International Conference on Principles of Distributed Systems, volume 7702 of LNCS, pages
31–45, 2012. doi:10.1007/978-3-642-35476-2_3.

15 Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees.
In Proc. 19th ACM Symposium on Principles and Practice of Parallel Programming, pages
329–342, 2014. doi:10.1145/2555243.2555267.

16 Tushar Deepak Chandra, Prasad Jayanti, and King Tan. A polylog time wait-free construction
for closed objects. In Proc. 17th ACM Symposium on Principles of Distributed Computing,
pages 287–296, 1998. doi:10.1145/277697.277753.

17 Bapi Chatterjee. Lock-free linearizable 1-dimensional range queries. In Proc. 18th International
Conference on Distributed Computing and Networking, pages 9:1–9:10, 2017. doi:10.1145/
3007748.3007771.

18 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, chapter 17, pages 480–496. MIT Press, fourth edition, 2022.

DISC 2024

https://doi.org/10.1145/225058.225271
https://doi.org/10.1145/225058.225271
https://doi.org/10.1007/S00446-014-0229-0
https://doi.org/10.1145/3572848.3577512
https://doi.org/10.1145/3178487.3178489
https://doi.org/10.4230/LIPICS.OPODIS.2023.17
https://doi.org/10.1145/3465084.3467939
https://doi.org/10.1145/3399718
https://doi.org/10.4230/LIPICS.DISC.2021.12
https://doi.org/10.1145/3627535.3638501
https://doi.org/10.1016/S0925-7721(02)00128-1
https://doi.org/10.1007/978-3-642-35476-2_3
https://doi.org/10.1145/2555243.2555267
https://doi.org/10.1145/277697.277753
https://doi.org/10.1145/3007748.3007771
https://doi.org/10.1145/3007748.3007771


23:18 Lock-Free Augmented Trees

19 Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pătras,cu. Dynamic optimality–almost.
SIAM Journal on Computing, 37(1):240–251, 2007. doi:10.1137/S0097539705447347.

20 James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data
structures persistent. Journal of Computer and System Sciences, 38(1):86–124, 1989. doi:
10.1016/0022-0000(89)90034-2.

21 Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. The amortized complexity
of non-blocking binary search trees. In Proc. 33rd ACM Symposium on Principles of Distributed
Computing, pages 332–340, 2014. Full version available online from https://users.ics.forth.
gr/~faturu/BSTproof.pdf. doi:10.1145/2611462.2611486.

22 Panagiota Fatourou and Nikolaos D. Kallimanis. The RedBlue family of universal constructions.
Distributed Computing, 33(6):485–513, 2020. doi:10.1007/S00446-020-00370-7.

23 Panagiota Fatourou, Elias Papavasileiou, and Eric Ruppert. Persistent non-blocking binary
search trees supporting wait-free range queries. In Proc. 31st ACM Symposium on Parallelism
in Algorithms and Architectures, pages 275–286, 2019. doi:10.1145/3323165.3323197.

24 Panagiota Fatourou and Eric Ruppert. Lock-free augmented trees. Full version available from
https://arxiv.org/abs/2405.10506, May 2024. doi:10.48550/arXiv.2405.10506.

25 Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960. doi:
10.1145/367390.367400.

26 Gaston H. Gonnet, J. Ian Munro, and Derick Wood. Direct dynamic structures for some line
segment problems. Computer Vision, Graphics and Image Processing, 23(2):178–186, 1983.
doi:10.1016/0734-189X(83)90111-1.

27 Shane V. Howley and Jeremy Jones. A non-blocking internal binary search tree. In Proc.
24th ACM Symposium on Parallelism in Algorithms and Architectures, pages 161–171, 2012.
doi:10.1145/2312005.2312036.

28 Prasad Jayanti. f -arrays: implementation and applications. In Proc. 21st ACM Symposium
on Principles of Distributed Computing, pages 270–279. ACM, 2002. doi:10.1145/571825.
571875.

29 Prasad Jayanti and Srdjan Petrovic. Logarithmic-time single deleter, multiple inserter wait-
free queues and stacks. In Proc. 25th International Conference on Foundations of Software
Technology and Theoretical Computer Science, volume 3821 of LNCS, pages 408–419, 2005.
doi:10.1007/11590156_33.

30 Donald E. Knuth. The Art of Computer Programming, Volume 3. Addison-Wesley, second
edition, 1998.

31 Jeremy Ko. A lock-free binary trie. In Proc. 44th IEEE International Conference on Distributed
Computing Systems, 2024. To appear. Preliminary version available from https://arxiv.org/
abs/2405.06208. doi:10.48550/arXiv.2405.06208.

32 Ilya Kokorin, Victor Yudov, Vitaly Aksenov, and Dan Alistarh. Wait-free trees with
asymptotically-efficient range queries. In Proc. IEEE International Parallel and Distrib-
uted Processing Symposium, pages 169–179, 2024. doi:10.1109/IPDPS57955.2024.00023.

33 Edward M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257–276,
1985. doi:10.1137/0214021.

34 Hossein Naderibeni and Eric Ruppert. A wait-free queue with polylogarithmic step com-
plexity. Distributed Computing, 2024. Published online August, 2024. doi:10.1007/
s00446-024-00471-7.

35 Aravind Natarajan, Arunmoezhi Ramachandran, and Neeraj Mittal. FEAST: a lightweight
lock-free concurrent binary search tree. ACM Transactions on Parallel Computing, 7(2), May
2020. doi:10.1145/3391438.

36 Jacob Nelson-Slivon, Ahmed Hassan, and Roberto Palmieri. Bundling linked data structures
for linearizable range queries. In Proc. ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 368–384, 2022. doi:10.1145/3503221.3508412.

37 Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Martin Odersky. Concurrent
tries with efficient non-blocking snapshots. In Proc. 17th ACM SIGPLAN Symposium on

https://doi.org/10.1137/S0097539705447347
https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1016/0022-0000(89)90034-2
https://users.ics.forth.gr/~faturu/BSTproof.pdf
https://users.ics.forth.gr/~faturu/BSTproof.pdf
https://doi.org/10.1145/2611462.2611486
https://doi.org/10.1007/S00446-020-00370-7
https://doi.org/10.1145/3323165.3323197
https://arxiv.org/abs/2405.10506
https://doi.org/10.48550/arXiv.2405.10506
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/367390.367400
https://doi.org/10.1016/0734-189X(83)90111-1
https://doi.org/10.1145/2312005.2312036
https://doi.org/10.1145/571825.571875
https://doi.org/10.1145/571825.571875
https://doi.org/10.1007/11590156_33
https://arxiv.org/abs/2405.06208
https://arxiv.org/abs/2405.06208
https://doi.org/10.48550/arXiv.2405.06208
https://doi.org/10.1109/IPDPS57955.2024.00023
https://doi.org/10.1137/0214021
https://doi.org/10.1007/s00446-024-00471-7
https://doi.org/10.1007/s00446-024-00471-7
https://doi.org/10.1145/3391438
https://doi.org/10.1145/3503221.3508412


P. Fatourou and E. Ruppert 23:19

Principles and Practice of Parallel Programming, pages 151–160, 2012. doi:10.1145/2145816.
2145836.

38 Gal Sela and Erez Petrank. Concurrent size. Proc. of the ACM on Programming Languages,
6(OOPSLA2):345–372, 2022. doi:10.1145/3563300.

39 Gal Sela and Erez Petrank. Concurrent aggregate queries. Manuscript available from https:
//arxiv.org/abs/2405.07434, May 2024. doi:10.48550/arXiv.2405.07434.

40 Niloufar Shafiei. Non-blocking Patricia tries with replace operations. Distributed Computing,
32(5):423–442, 2019. doi:10.1007/S00446-019-00347-1.

41 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, June 1983. doi:10.1145/800076.802464.

42 Yihan Sun, Daniel Ferizovic, and Guy E. Blelloch. PAM: parallel augmented maps. In Proc.
23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
290–304, 2018. doi:10.1145/3178487.3178509.

43 Robert Endre Tarjan. Data Structures and Network Algorithms, chapter 4.2, pages 45–57.
SIAM, Philadelphia, USA, 1983. doi:10.1137/1.9781611970265.

44 Yuanhao Wei, Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert, and
Yihan Sun. Constant-time snapshots with applications to concurrent data structures. In Proc.
ACM Symposium on Principles and Practice of Parallel Programming, pages 31–46, 2021.
doi:10.1145/3437801.3441602.

45 Yuanhao Wei, Guy E. Blelloch, Panagiota Fatourou, and Eric Ruppert. Practically and
theoretically efficient garbage collection for multiversioning. In Proc. 28th ACM Annual
Symposium on Principles and Practice of Parallel Programming, pages 66–78, 2023. doi:
10.1145/3572848.3577508.

A Pseudocode for Lock-Free Augmented BST

Here, we give more details about how to augment the lock-free BST of Ellen et al. [21].
Type definitions are given in Figure 9. High-level pseudocode for Insert and Delete is in
Figure 10. These are mostly the same as in [21], except for the addition of calls to Propagate
and the creation of Version objects used to initialize the version fields of Nodes created by
Insert. Consequently, we do not give all the details of these routines; see [21] for the detailed
pseudocode. The new routines for handling Versions and example queries are in Figure 11.

An Insert(k) searches for k in the BST of Nodes and arrives at a leaf Node ℓ containing
some key k′. If k′ = k, the value k is already in the BST, so the Insert does not need to
modify the tree and will eventually return false. Otherwise, the Insert attempts to replace the
leaf ℓ by a new internal Node whose key is max(k, k′) with two new leaf children whose keys
are min(k, k′) and max(k, k′). There are also some additional steps required to coordinate
updates to the same part of the tree, and those steps may cause the attempt to fail, in which
case the Insert tries again by backtracking up the tree and then searching down the tree for
the correct place to try inserting the node again. The details of the inter-process coordination
are not important to the augmentation. Before attempting to add the three new Nodes to the
tree, the Insert creates a new Version object for each of them with fields filled in as shown in
Figure 8b. To facilitate backtracking after an unsuccessful attempt, the Insert keeps track of
the sequence of internal Nodes visited on the way to the location to perform the insertion in
a thread-local stack. When an attempt of the Insert succeeds, it calls Propagate on the newly
inserted internal Node and returns true. Propagate uses the thread’s local stack to revisit
the Nodes along the path from the root to the insertion location in reverse order, performing
a double Refresh on each Node, as in Section 3. If the Insert terminates after finding the key
is already present in a leaf Node, it calls Propagate on that leaf Node, to ensure that the
operation that inserted that leaf Node has been linearized, and then returns false.

DISC 2024

https://doi.org/10.1145/2145816.2145836
https://doi.org/10.1145/2145816.2145836
https://doi.org/10.1145/3563300
https://arxiv.org/abs/2405.07434
https://arxiv.org/abs/2405.07434
https://doi.org/10.48550/arXiv.2405.07434
https://doi.org/10.1007/S00446-019-00347-1
https://doi.org/10.1145/800076.802464
https://doi.org/10.1145/3178487.3178509
https://doi.org/10.1137/1.9781611970265
https://doi.org/10.1145/3437801.3441602
https://doi.org/10.1145/3572848.3577508
https://doi.org/10.1145/3572848.3577508


23:20 Lock-Free Augmented Trees

100: type Node ▷ used to store nodes of static trie structure
101: U key ▷ immutable key of Node
102: Node* left, right ▷ mutable pointers to children Nodes
103: Version* version ▷ mutable pointer to current Version
104: Info* info ▷ for coordinating updates; irrelevant to augmentation

105: type Version ▷ used to store a Node’s augmented data
106: U key ▷ immutable key of Node this Version belongs to
107: Version* left, right ▷ immutable pointers to children Versions
108: int sum ▷ immutable sum of descendant leaves’ bits

Figure 9 Object types used in lock-free augmented BST data structure.

A Delete(k) has a very similar structure. It first searches for k in the BST of Nodes and
arrives at a leaf Node ℓ. If ℓ does not contain k, then the Delete does not need to modify the
tree and returns false after calling Propagate. Otherwise, the Delete uses a CAS to attempt
to remove both ℓ and its parent from the tree. (See Figure 8c.) Again, there are some
additional steps required to coordinate updates to the same part of the tree, which may cause
the Delete’s attempt to fail and retry, but the details are irrelevant to the augmentation.
When an attempt of the Delete succeeds, it calls Propagate to perform a double refresh along
a path to the root, starting from the internal Node whose child pointer is changed (i.e., the
Node that was formerly the grandparent of the deleted leaf ℓ) and returns true.

Refresh(x) is similar to the routine in Figure 3. Because the structure of the BST’s Node
tree can change, the repeat loops ensure that the Refresh gets a consistent view of x’s child
pointer and the contents of that child’s version field. The other difference is that line 161
stores x.key in the key field of the new Version. The Propagate routine is identical to the
one given in Figure 3, except that we cannot use parent pointers on line 165. Instead, an
update operation stores the sequence of Nodes that it traversed from the root to reach a
node x and then does a double Refresh on each of them in reverse order (from x to the root).

A query operation is performed on a snapshot of the Version tree obtained by reading
Root.version. This includes the Find operation, which simply performs a search on the
Version tree as it would in a sequential BST. As an additional bonus, our Find operation is
wait-free, unlike the original lock-free BST [21], where Find operations may starve.

B Sketch of Proof of Correctness for Augmented BST

A detailed proof of linearizability for the augmented BST is in [24]. We sketch it here. As in
Section 3.2, we define arrival points of update operations at a Node to indicate when the
updates have been propagated to that Node. We linearize updates at their arrival point at the
root, and queries when they obtain a snapshot of the Version tree by reading Root.version.
As in [21], sentinel Nodes as shown in Figure 8a ensure that the root Node never changes.

We again use two main claims: (1) every update operation has an arrival point at the root
during the operation, and (2) in every configuration C, the Version tree rooted at a Node x

is a legal (augmented) BST containing the set that would result from sequentially performing
all operations that have arrival points at x at or before C, in the order of their arrival points.
Claim (1) implies the linearization respects the real-time order of operations. Applying Claim
(2) to the root shows that queries return results consistent with the linearization.

Although this high-level plan for the proof is similar to Section 3.2, updates’ changes
to the Node tree introduce some challenges. Firstly, we must ensure that updates are not
“lost” if concurrent updates remove the Nodes to which they have propagated. This involves



P. Fatourou and E. Ruppert 23:21

109: Initialize the data structure as shown in Figure 8a, where Root is a shared pointer

110: Insert(Key k) : Boolean
111: let stack be an empty thread-local stack
112: push Root on to stack
113: loop
114: do a BST search for k from top Node on stack, pushing visited internal Nodes on stack
115: let ℓ be the leaf reached by the search
116: if ℓ.key = k then
117: Propagate(stack)
118: return false ▷ k is already in the tree
119: let p be the top Node p on stack ▷ p was ℓ’s parent during the search
120: let new be a new internal Node whose children are a new leaf Node with key k and a
121: new Leaf with ℓ’s key. Each of the three new Nodes has a pointer to a new Version
122: object with the same key as the Node. The leaf Versions have sum 1 (or 0 if the key
123: is ∞1 or ∞2) and new.sum = new.left.sum + new.right.sum. (See Figure 8b.)
124: attempt to change p’s child from ℓ to new using CAS
125: if attempt fails then ▷ another update caused failure
126: help complete the update that caused the attempt to fail
127: backtrack by popping stack until a node that is not marked for deletion is popped,
128: helping complete the deletion of each marked Node that is popped
129: else ▷ new was successfully added to tree
130: Propagate(stack)
131: return true

132: Delete(Key k) : Boolean
133: let stack be an empty thread-local stack
134: push Root on to stack
135: loop
136: do a BST search for k from top Node on stack, pushing visited internal Nodes on stack
137: let ℓ be the leaf reached by the search
138: if ℓ.key ̸= k then
139: Propagate(stack)
140: return false ▷ k is not in the tree
141: pop Node p from stack ▷ p was ℓ’s parent during the search
142: let gp be the top Node on stack ▷ gp was p’s parent during the search
143: attempt to change gp’s child from p to ℓ’s sibling using CAS
144: if attempt fails then ▷ another update caused failure
145: help complete the update that caused the attempt to fail
146: backtrack by popping stack until a node that is not marked for deletion is popped,
147: helping complete the deletion of each marked Node that is popped
148: else ▷ deletion removed k’s Node from tree
149: Propagate(stack)
150: return true

Figure 10 Pseudocode for augmented BST. The code for updates is given at a high level. For
details, see [21]. Changes to Insert and Delete to support augmentation is shaded.

DISC 2024



23:22 Lock-Free Augmented Trees

151: Refresh(Node* x) : Boolean ▷ Try to propagate information to x from its children
152: old ← x.version
153: repeat ▷ Get a consistent view of x.left and x.left.version
154: xL ← x.left
155: vL ← xL.version
156: until x.left = xL

157: repeat ▷ Get a consistent view of x.right and x.right.version
158: xR ← x.right
159: vR ← xR.version
160: until x.right = xR

161: new ← new Version with key ← x.key, left ← vL, right ← vR, sum ← vL.sum + vR.sum
162: return CAS(x.version, old, new)

163: Propagate(Stack* stack) ▷ Propagate updates starting at top Node on stack
164: while stack is not empty do
165: pop Node x off of stack
166: if not Refresh(x) then
167: Refresh(x) ▷ Do a second Refresh if first one fails

168: Find(k) : Boolean ▷ Returns true if k is in the set, or false otherwise
169: v ← Root.version
170: while v.left ̸= Nil do ▷ Standard BST search in version tree
171: if k < v.key then v ← v.left
172: else v ← v.right
173: return (v.key = k)

174: Select(j) : U ▷ Returns set’s jth smallest element
175: v ← Root.version
176: if j > v.sum then ▷ Return Nil if size of set is less than j

177: return Nil
178: repeat ▷ Loop invariant: desired element is jth in v’s subtree
179: if j ≤ v.left.sum then
180: v ← v.left
181: else
182: j ← j − v.left.sum
183: v ← v.right
184: until v is a leaf
185: return v.key

186: Size : int ▷ Returns number of elements in the set
187: return Root.version.sum

Figure 11 Pseudocode augmented BST, continued. We include Find, Select and Size as three
examples of queries that use the augmentation.



P. Fatourou and E. Ruppert 23:23

transferring arrival points from the removed Node x to another Node x′, and this requires
proving a number of claims about the arrival points that can be present at x and x′ to ensure
that transferring arrival points from x to x′ does not change the set of keys that should
be stored in the Version tree of x′. Secondly, in the original, unaugmented BST of [21],
an Insert(k) that reaches a leaf that already contains k returns false, but that leaf may no
longer be in the tree when the Insert reaches it, so the linearization point of the Insert is
retroactively chosen to be some time during the Insert when that leaf was present in the tree.
We must do something similar in choosing the arrival point of failed updates at a leaf.

We describe the arrival points (which in turn defines the linearization) and sketch some
of the key arguments about them. For a configuration C, let TC be the Node tree in
configuration C: this is the tree of all Nodes reachable from Root by following child pointers.
Since our augmentation does not affect the way the Node tree is handled, it follows from [21]
that TC is always a BST. The search path for key k in C is the root-to-leaf path in TC that a
BST search for key k would traverse. The following intuition guides our definition of arrival
points: the arrival point of an update operation op on key k at a Node x should be the first
time when both (a) x is on the search path for k and (b) the effect of op is reflected in the
Version tree rooted at x.version. We also ensure that, for any configuration C, the Nodes at
which an operation has arrival points defined will be a suffix of the search path for k in C.

A successful Insert(k), shown in Figure 8b, replaces a leaf ℓ containing some key k′ by
a new internal Node new with two children, newLeaf containing k, and ℓ′, which is a new
copy of ℓ. The CAS step that makes this change is the arrival point of the Insert(k) at new
and newLeaf , since these Nodes’ Version trees are initialized to contain a leaf with key k.
There may also be many operations that had arrival points at ℓ before ℓ is replaced by ℓ′

in the Node tree. For example, there may be an Insert(k′′) followed by a Delete(k′′) if ℓ is
the end of the search path for k′′. If these operations have not propagated to the root, we
must ensure that this happens, so that they are linearized: we do not want to lose the arrival
points of these operations when ℓ is removed from the Node tree. So, we transfer all arrival
points of update operations at ℓ to new and the appropriate child of new (depending on
whether the key of the update is less than new.key or not).

Similarly, when a Delete(k) changes the Node tree as shown in Figure 8c, each operation
with an arrival point at the deleted leaf ℓ (and the Delete(k) itself) is assigned an arrival
point at ℓ’s sibling sib, and at all of sib’s descendants on the search path for the operation’s
key. That operation’s key cannot appear in the Version trees of any of those Nodes, so the
Version trees of those Nodes correctly reflect the fact that the key has been deleted.

As mentioned above, if an Insert(k) returns false because it finds a leaf ℓ containing k

in the tree, [21] proved ℓ was on the search path for k in some configuration C during the
Insert. Since augmentation has no effect on updates’ accesses to the Node, this is still true
for the augmented BST. We choose C as the arrival point of the Insert at that leaf. Deletes
that return false are handled similarly.

When a Refresh updates the version field of a Node x, we assign arrival points to all
update operations that had arrival points at x’s children before the Refresh read the version
fields of those children, as in Section 3.2. This indicates that those operations have now
propagated to x, and the Version tree in x.version reflects those updates.

We use the definition of arrival points to prove that each update operation’s arrival point
at the root is between the update’s invocation and response. In particular, this reasoning
has to argue that no operation gets “lost” as it is being propagated to the root if concurrent
deletions remove Nodes to which it has been propagated. Recall that Propagate calls a double
Refresh on every Node in the update operation’s local stack, which remembers all of the

DISC 2024



23:24 Lock-Free Augmented Trees

internal Nodes visited to reach the leaf ℓ where the update occurs. We use the fact from [21]
that Nodes can be removed from the path that leads from the root to ℓ, but no new Nodes
can ever be added to it. (It is fairly easy to see that the changes to the Node tree shown in
Figure 7 cannot add a new ancestor to ℓ.) Thus, Propagate calls a double Refresh on every
ancestor of ℓ to propagate the update all the way to the root Node.

The main invariant says that in every configuration C and in each Node x ∈ TC , the leaves
of the Version tree stored in x.version contain exactly those keys that would be obtained by
sequentially performing the operations with arrival points at x at or before C, in the order of
their arrival points. Proving this is complicated by the fact that the Node tree changes and
arrival points are shifted from one Node to another. We make the argument by focusing on
one key k at a time, and showing that k is in the Version tree if and only if the last operation
on key k in the sequential execution is an Insert. Moreover, the boolean responses these
operations will return are consistent with this sequential ordering. Applying this invariant to
the root shows updates return responses consistent with the linearization ordering.

Unlike the trie in Section 3, the subtree rooted at Node x may have a different shape than
the Version tree rooted at x.version, if updates have changed the Node tree since x.version
was stored. However, for any configuration C and any Node x ∈ TC , the keys of update
operations with arrival points at Nodes in the left (or right) subtree of x are less than x.key
(or greater than or equal to x.key, respectively). Together with the main invariant mentioned
above, this allows us to prove that all Version trees are legal BSTs. The correctness of the
augmentation fields is trivial, since these fields are correct when an internal Version is created,
and its fields are immutable. Hence, queries’ results are consistent with the linearization.



Decentralized Distributed Graph Coloring II:
Degree+1-Coloring Virtual Graphs
Maxime Flin # Ñ

Reykjavík University, Iceland

Magnús M. Halldórsson #

Reykjavík University, Iceland

Alexandre Nolin # Ñ

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract
Graph coloring is fundamental to distributed computing. We give the first general treatment of
the coloring of virtual graphs, where the graph H to be colored is locally embedded within the
communication graph G. Besides generalizing classical distributed graph coloring (where H = G),
this captures other previously studied settings, including cluster graphs and power graphs.

We find that the complexity of coloring a virtual graph depends linearly on the edge congestion
of its embedding. The main question of interest is how fast we can color virtual graphs of constant
congestion. We find that, surprisingly, these graphs can be colored nearly as fast as ordinary graphs.
Namely, we give a O(log4 log n)-round algorithm for the deg+1-coloring problem, where each node
is assigned more colors than its degree.

This can be viewed as a case where a distributed graph problem can be solved even when the
operation of each node is decentralized.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Mathematics
of computing → Graph coloring

Keywords and phrases Graph Coloring, Distributed Algorithms, Virtual Graphs, Congestion,
Dilation

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.24

Related Version Full Version: https://arxiv.org/abs/2408.11041 [21]

Funding Maxime Flin: Icelandic Research Fund (grant 2310015).
Magnús M. Halldórsson: Icelandic Research Fund (grant 217965).

1 Introduction

We give the first full treatment of distributed graph coloring under bandwidth constraints.
Namely, we treat the general case when the input graph H differs from the communication
graph G. Previously, the problem was studied for cases when H = G (e.g., [54, 7, 41])
or when H has a particular layout in G (e.g., H = L(G) [4, 43], H = G2 [39, 40, 19], or
H = Gk [8]).

Most distributed graph algorithms assume that the input graph H is equivalent to the
communication network infrastructure G. In the LOCAL model, this is often without loss
of generality, as simulating a round of LOCAL on H while communicating on G = (VG, EG)
without bandwidth restriction is trivial as long as adjacent vertices in H are O(1)-hops
away in G. When we restrict message size, however, naive simulation is prohibitively
inefficient. The delivery of individual messages to each neighbor of a node can slow down
the algorithm by a factor proportional to degrees, which might be as high as n = |VH |.
Handling cases where H ̸= G is an overarching issue in the design of CONGEST algorithms
(e.g., in [34, 30, 33, 60, 29, 22, 36, 59, 28]) that is salient when using a CONGEST algorithm

© Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 24; pp. 24:1–24:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maximef@ru.is
https://maxime-flin.github.io/
https://orcid.org/0009-0005-2693-0470
mailto:mmh@ru.is
https://orcid.org/0000-0002-5774-8437
mailto:alexandre.nolin@cispa.de
https://www.irif.fr/~nolin/
https://orcid.org/0000-0002-3952-0586
https://doi.org/10.4230/LIPIcs.DISC.2024.24
https://arxiv.org/abs/2408.11041
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs

as a subroutine (e.g., local rounding [15] used in [28]) or when modifying the input graph
(e.g., contracting edges [33, 22]). We attempt to study how bandwidth constraints affect
distributed algorithms solving problems on graphs whose description is itself distributed on a
communication network. In this paper, we focus on symmetry breaking and thus ask:

How efficiently can H be colored when distributed on a network G?

Coloring problems are of fundamental importance to distributed graph algorithms. In
fact, in its seminal paper [52], Linial studied the locality of 3-coloring cycles. A long line of
work [52, 54, 61, 7, 45, 10, 60] showed that ∆ + 1-coloring could be achieved in poly(log log n)
rounds of LOCAL. Further work extended the result to local list sizes [42], and small messages
[29, 41, 44]. We extend these results to embedded graphs in nearly the same number of
rounds while using local color lists (in a slightly weaker sense than in [42]).

1.1 Virtual Graphs
Before answering our research question, we clarify the meaning of embedding a graph H into
a network G. We give here a high-level definition and expound on the formal definitions
in Section 2. For clarity, we refer to H = (VH , EH) as the input or virtual graph while
G = (VG, EG) is the communication network. We call elements of VH vertices or nodes while
elements of VG are machines; elements of EH are edges or conflicts while elements of EG are
links.

We set the definition of embedded virtual graphs forth by specifying which machine
knows about which vertex and edge of H . Each vertex v ∈ VH is mapped to a set V (v) ⊆ VG
of machines such that vertices u, v ∈ H are adjacent (in H) only if their support intersect,
i.e., V (v) ∩ V (u) ̸= ∅. We also assume that each support V (v) is equipped with a spanning
tree T (v) (called support tree) that can be used to perform aggregation. We assume that
machines w ∈ VG know about all the supports they belong to – the set of v such that
V (v) ∋ w – as well as which support tree their adjacent links belong to. Each edge uv ∈ EH
is mapped to a machine w ∈ V (u) ∩ V (v) in the intersection of the two nodes’ supports,
which knows about the existence of that edge. Figure 1 exemplifies such an embedding.

G
H

Figure 1 A virtual graph H (on the left) embedded on a network G (on the right). On this example,
there is a unique choice of support trees; they have congestion c = 1 and dilation d = 3.

It is convenient to design algorithms for H as a sequence of (virtual) rounds with the
same three-step structure1: first, broadcast a message to all vertices on the support; second,
machines at intersections of supports perform local computations; third, converge-cast the

1 we emphasize, however, that algorithms are not limited to this scheme and can communicate on the
network more cleverly.



M. Flin, M. M. Halldórsson, and A. Nolin 24:3

result of these computations on the support trees. Naturally, the efficiency of any such
algorithm is limited by (1) the diameter of the support trees and (2) the number of trees
using the same edge. We call the former the dilation and the latter the congestion. In some
cases, most of the effort is in computing a good embedding, meaning with small enough
dilation and congestion. For instance, in [22], the struggle is in finding no(1)-congestion
embeddings for various sparsifiers. In this paper, besides direct applications, we assume the
embedding is given as part of the input.

Last but not least, we allow H to be a multi-graph (without self-loops) to capture the fact
that supports can intersect in multiple places. For instance, in Figure 1, the central vertex
is adjacent to the bottom vertex through two paths in the network. While distinguishing
between the number of incident edges and adjacent vertices is not always necessary, it is
crucial for graph coloring, especially when – like in this paper – the number of colors used by
each vertex depends on its degree.

1.2 Our Contributions

Our conceptual contribution is an explicit formalization of the notion of virtual graphs that
captures the aforementioned examples. We show that the key parameters of congestion c
and the dilation d essentially capture the hardness of the coloring problem. On one hand,
they limit the efficiency of any deg +1-coloring algorithm:

▶ Theorem 1. Any constant-error algorithm for 3-coloring a 2-regular virtual graph
H embedded on a network with bandwidth b, congestion c, and dilation d, requires
Ω( c

b + d · log∗ n) rounds in the worst-case.

We emphasize that the lower bound applies to algorithms working for any given embedding.
It applies to all such algorithms, and not just those following the three-step process described
in Section 1.1.

Conversely, we provide a nearly optimal upper bound for coloring virtual graphs. Applied
to the CONGEST model – when H = G – its complexity nearly matches the state-of-the-art
O(log3 log n) round complexity of [41, 44].

▶ Theorem 2. Let H be a virtual graph on network G with |VG| = n machines, bandwidth
b = O(log n), congestion c ⩽ n and dilation d. There exists an algorithm to deg +1-color
H in O(cd · log4 log n) rounds. More precisely, at the end of the algorithm, each vertex
v ∈ VH has a color φ(v) ∈ {1, 2, . . . , deg(v) + 1} where deg(v) is the number of edges
incident to v in H.

A key reason for considering the deg +1-coloring problem is that we forgo using some
frequently assumed global knowledge – here, the maximum degree ∆. This is the source of
substantial technical challenges, sketched in Section 1.3. That virtual nodes can be connected
with multiplicity breaks several classic arguments, hence requires novel ideas to reach the
usual goals of providing nodes with excess colors, and classifying them according to their
potential in that respect. Our adaptation of the Ghaffari-Kuhn algorithm (see the full version
[21, Section 7]) to our distributed paradigm might be of independent interest.

DISC 2024



24:4 Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs

1.3 Technical Overview
The Lower Bound. We prove lower bounds on the congestion and dilation separately. Since
a o(d log∗ n) round algorithm for coloring virtual graphs implies a o(log∗ n) round LOCAL
algorithm for coloring cycles, the lower bound on the dilation follows from [52, 57]. To
prove the lower bound on the congestion, we provide a probability distribution on gadgets
(a 2-regular 16-vertex graph) where vertices are partitioned between two sets VA and VB.
The gadget is such that if Alice (respectively Bob) knows all vertices and edges incident
to VA (respectively VB), then for Alice and Bob to assign colors to their vertices such that
the coloring is proper, they must communicate Ω(1) bits. A classic direct sum argument
shows that solving k independent copies of this communication problem requires Ω(k) bits of
communication. Finally, we embed the coloring problem on a graph where Alice’s vertices
are separated from Bob’s through a bridge, causing congestion to be c = k.

The Upper Bound: Inaccurate Degrees. The main challenge for coloring virtual graphs is
that vertices do not have direct access to their list of available colors (or palette). Previous
work [40, 19] demonstrated that it was not necessary if vertices could instead estimate
certain local density parameters. While in [39, 19, 20] these density parameters were defined
in term of ∆ – the globally known maximum degree – in this paper, we assume no such
global knowledge and aim to use local list sizes; hence, we require a different notion of local
sparsity/density. We adapt our definition of embedding to encompass each vertex’s local
view of its degree. Concretely, we color a multi-graph H where each vertex uses one more
color than it has incident edges. We call a vertex inaccurate if its number of incident edges
is a constant factor larger than its number of adjacent neighbors. Inaccurate vertices require
special treatment, for they can skew estimates of local sparsity. Since we use a number of
colors dependent on the number of incident edges while each neighbor blocks at most one
color, inaccurate vertices are always guaranteed to have an abundance of free colors. After
detecting them, we defer coloring inaccurate vertices to the very end of the algorithm.

The Upper Bound: Providing Enough Colors. Every sublogarithmic randomized coloring
algorithm [45, 10, 42] has three phases. First, they compute a partial coloring where each
vertex has either low degree or many excess colors compared to its uncolored number of
neighbors. Second, they use randomization and symmetry-breaking techniques to take
advantage of this excess and color high-degree vertices ultrafast. Third, low-degree vertices
are handled fast due to their low degree. In [45, 10, 42], the algorithm produces excess colors
by a single-round randomized color trial. When vertices cannot access their palette [3, 19, 18],
they resort to approximations that require generating more excess colors in the densest
regions on the graph. We follow the same general approach with some major modifications.
First, the use of local-list size partially breaks the analysis of slack generation from [41]
(and the one of [42] cannot be implemented fast on virtual graphs). Our main technical
contribution is to provide sufficient assumptions for a color trial algorithm to generate enough
excess colors even when vertices can have small lists (Lemma 11, see [21, Section 5] of the
full version). In general, these added assumptions introduce substantial modifications to the
accounting of colors throughout the algorithm (see [21, Section 6.1] of the full version).

The Upper Bound: Low-Degree Vertices. Contrary to previous work [40, 19], all high-
degree – larger than some poly(log n) – vertices are colored with high probability (rather
than reducing uncolored degrees to O(log n)). This implies that, for low-degree vertices,
colors can be represented using O(log deg) = O(log log n) bits. The algorithm for coloring



M. Flin, M. M. Halldórsson, and A. Nolin 24:5

low-degree nodes follows the shattering framework of [7]. First, vertices try random colors
for O(log log n) rounds. This reduces the uncolored parts of the graph to poly(log n)-sized
components. Since nodes do not know their palette, we provide an algorithm for sampling
colors likely-enough to succeed. Then, uncolored vertices learn a list of uncolored-degree+1
colors from their palette with an algorithm similar to a binary search. Finally, we simulate the
deterministic algorithm of [35] efficiently and complete the coloring. Our main contributions
– our algorithms for sampling colors and learning palettes – can be found in Sections 7.1 and
7.2 of the full version [21], respectively.

1.4 Related Work

Distributed coloring has been intensively studied. See, e.g., [52, 6, 61, 7, 46, 24, 45, 10, 56,
39, 35, 41, 42, 25] and references therein. The focus is usually on simple graphs, where
the degree refers to the number of neighbors. The state-of-the-art LOCAL algorithm for
degree+1-coloring (in terms of n only) is the Õ(log2 log n)-round algorithm obtained by
plugging the Õ(log2 n)-round deterministic algorithm of [27] into the shattering framework of
[42]. In CONGEST, authors of [44] show how to implement shattering with small messages;
hence, using the O(log3 n)-round deterministic algorithm of [35], the resulting complexity is
O(log3 log n). Besides degrees being defined slightly differently, results of [42, 35, 27] are also
more general in the sense that vertices can use any list of degree+1-colors (not necessarily
{1, 2, . . . , deg(v) + 1}). Handling less constrained lists of colors in virtual graphs appears
out of reach of current techniques; in fact, the problem has yet to be tackled in the simpler
settings of cluster graphs and power graphs.

Virtual Graphs. Virtual graphs are ubiquitous in distributed graph algorithms and we make
no attempt to be exhaustive. They refer to cases where the input graph differs from the
communication network, though the formalism varies by use case. Here, we list occurrences
of greatest relevance.
1. Many algorithms modify the input graph – e.g., by contracting an edge or removing

a vertex and adding an edge between each neighbor – throughout the execution. This
happens, e.g., in [33, 22]. In such cases, the algorithms embed the modified graph into
the network while ensuring low congestion. Authors of [30, 59, 2] show that under some
assumptions on the graph (e.g., planarity or excluded minor) then low-congestion shortcuts
can be found efficiently, leading to drastic improvements on the round complexity.

2. Recent network decomposition algorithms [60, 29, 28] compute clusters – i.e., sets of
vertices – by growing increasingly large sets of vertices. Hence, computations are held
through the three-step aggregation process described in Section 1.1. That is, these
algorithms are computing sequences of virtual graphs (including support trees) with
poly(log n) dilation and congestion.

3. Finally, the local rounding framework introduced in [16] and perfected in [15] runs a
defective-coloring subroutine on virtual graphs. They describe d2-multigraphs, a special
case of virtual graphs used to implement their algorithm in CONGEST. They care for
parallel edges since they compute a coloring, like us. Besides, their rounding algorithm has
been used by network decomposition algorithms [28, 27] and thus had to be implemented
on virtual graphs.

Our formalism for virtual graph captures all mentioned examples (with & without congestion,
with & without parallel edges).

DISC 2024



24:6 Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs

Scheduling & Routing. Congestion and dilation are natural parameters in routing problems,
where they measure the maximum overlap and length of the delivery paths of a set of packets.
Scheduling, in this context, refers to organizing the packets’ delivery along their paths, taking
into account congestion constraints. Naive scheduling leads to a O(cd) delivery time, which
can be hard to improve upon distributedly. Asymptotically optimal Θ(c + d) schedules exist
and can be computed efficiently given global knowledge of the paths [49, 50].

The routing literature is expansive and growing to this day [48, 51, 26, 32, 38]. While
parallel delivery of information is crucial to our virtual graph algorithms, our problems
are quite distinct from typical routing questions, as we usually aggregate and broadcast
information rather than deliver it from a single source to a single target. In particular, we
often change the information during its delivery. Even for our more complex tasks, a naive
scheduling in O(cd) remains possible. We leave open the question of whether the O(cd)
dependency can be improved to O(c + d) (see Problem 3 in Section 5 for more).

Power Graphs. Recently, there has been a growing interest in bandwidth-efficient algorithms
for power graphs [39, 40, 5, 55, 19, 8]. Theorem 2 improves on previous work about distance-2
coloring [39, 40, 19] by handling a more general problem (see Section 2.1), by reducing the
number of colors used by each vertex to its pseudo-degree (rather than, say, using ∆2 + 1
colors which depends on a global parameter), and by improving the runtime by several
O(log log n) factors.

Other Models. The Congested Clique [53] can be viewed as a virtual graph model on
the opposite end of the spectrum, where the communication graph is a clique. It has a
O(1)-round deterministic algorithm for deg +1-list-coloring [11], building on similar results
for ∆ + 1-coloring [9, 12].

Sibling Paper. In a sibling paper [20], we treat cluster graphs, a particular type of virtual
graphs, focusing on high-degree graphs. We give a O(log∗ n)-round algorithm for ∆ + 1-
coloring cluster graphs when ∆ = Ω(log21 n). A key technical contribution is coloring so-called
put-aside sets in extremely dense subgraphs, which we build on in this paper. That paper
introduces essential primitives that apply to general virtual graphs, particularly operations
on the communication backbone, including broadcast, aggregation, and palette queries. It
also contains a fingerprinting technique for approximating the sizes of neighborhoods.

1.5 Outline of Paper
In the next section, we describe the modeling of virtual graphs and show how they capture
two important settings. We present the main ideas behind the lower bound in Section 3.
The high-level view of the algorithm is given in Section 4.3 along with key definitions, before
describing some open questions in Section 5.

The detailed descriptions of various parts of the algorithm are deferred to the full version
of this paper [21]. In [21, Section 5] we give a result on slack generation, generalizing previous
arguments to deg + 1-colorings (of both sparse and dense nodes). The coloring of different
parts of the graph is split into several sections: the dense-but-not-too-dense part in [21,
Section 6], the low-degree nodes in [21, Section 7], while the extremely-dense are in [21,
Appendix C] as it builds heavily on the sibling paper [20]. The details of the lower bound are
in [21, Appendix D]. Further appendices feature various algorithmic steps that are non-trivial
adaptations or modifications of previous work, including almost-clique decomposition in [21,
Appendix F].



M. Flin, M. M. Halldórsson, and A. Nolin 24:7

1.6 Preliminaries
Mathematical Notation. For an integer t ⩾ 1, let [t] def= {1, 2, . . . , t}. For a function
f : X → Y, when X ⊆ X , we write f(X) def= {f(x) : x ∈ X}; and when Y ⊆ Y, we write
f−1(Y ) def= {x ∈ X : f(x) ∈ Y }. We abuse notation and write f−1(y) def= f−1({y}). For
X ⊆ X , we write f|X : X → Y for the restriction of f to X. Throughout the paper, we hide
overhead due to congestion c and dilation d by writing Ô(f) for O(cd · f).

Graphs & Multi-Graphs. A multi-graph H = (VH , EH) is defined by a set of vertices VH
and sets EH(u, v) describing all edges between u and v (and EH(u, v) = ∅ if u and v are not
adjacent). When each set EH(u, v) contains at most one edge (H has no parallel edges), we
say the graph is simple. The neighbors of v in H are NH(v) def= {u ∈ VH : EH(u, v) ̸= ∅}.
The pseudo-degree of v in H is deg(v;H) def=

∑
u∈VH

|EH(u, v)|, its number of incident
edges. Its degree counts its neighbors |NH(v)|. When H is clear from context, we drop the
subscript and write N(v) = NH(v) and deg(v) = deg(v;H). An unordered pair {u, v} ⊆ VH
is called an anti-edge or non-edge if EH(u, v) = ∅.

Colorings. For any integer q ⩾ 1, a partial q-coloring is a function φ : VH → [q] ∪ {⊥}
where ⊥ means “not colored”. The domain domφ

def= {v ∈ VH : φ(v) ̸= ⊥} of φ is the set
of colored nodes. A coloring φ is total when all nodes are colored, i.e., domφ = VH ; and
we say it is proper if ⊥ ∈ φ({u, v}) or φ(v) ̸= φ(u) whenever EH(u, v) ̸= ∅. We write
that ψ ⪰ φ when a partial coloring ψ extends φ: for all v ∈ domφ, we have ψ(v) = φ(v).
The uncolored degree |Nφ(v)| def= |N(v) \ domφ| of v with respect to φ is the number of
uncolored neighbors of v. The uncolored pseudo-degree degφ(v) of v with respect to φ
counts its number of incident edges to uncolored neighbors. The palette of v with respect to
a coloring φ is Lφ(v) = [deg(v) + 1] \ φ(N(v)), the set of colors we can use to extend φ at v.

2 Virtual Graphs

In distributed algorithmics, we consider communication graphs or networks G = (VG, EG)
where elements of VG are machines that communicate by sending messages on incident links
– unordered pairs of EG – simultaneously in synchronous rounds. We assume machine v ∈ VG
is provided a O(log |VG|)-bits unique identifiers IDv to break symmetry. For randomized
algorithms, they can also access local random bits. Messages are limited to b bits, where
b is called the bandwidth of the network. Unless stated explicitly, it is assumed that
b = Θ(log |VG|).

We define our notion of virtual graphs formally. We shall always refer to the conflict
graph by H and to the communication graph by G. Vertices/nodes and edges refer only to
elements of H, while machines and links are used for G.

▶ Definition 3 (Virtual Graph). Let G = (VG, EG) be a simple graph. A virtual graph on G

is a multi-graph H = (VH , EH) where each vertex v ∈ VH is mapped to a set V (v) ⊆ VG of
machines called the support of v. Whenever two nodes are adjacent in H their supports
intersect, i.e., if EH(u, v) ̸= ∅ then V (u) ∩ V (v) ̸= ∅. Each machine w ∈ VG knows the set
V −1(w) of vertices whose supports contains it.

When bandwidth is not an issue, we can work directly with the representation of
Definition 3. We can compute a breadth-first spanning tree T (v) ⊆ EG on each support V (v)
for distributing information, and then simulate a local algorithm on this support structure.
With bandwidth constraints, we need to be more careful.

DISC 2024



24:8 Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs

▶ Definition 4 (Embedded Virtual Graph). Let H be a virtual graph on G such that |VH | ⩽
poly(|VG|). Suppose that (1) for each vertex v ∈ VH , there is a tree T (v) ⊆ EG spanning
V (v); and (2) for each edge e ∈ EH(u, v) there is a machine m(e) ∈ V (u) ∩ V (v). We call
T (v) the support tree of v and m(e) the machine handling edge e. Each machine w

knows the set of edges m−1(w) it handles as well as, for each incident link {w,w′} ∈ EG,
the set T−1(ww′) of support trees it belongs to.

Given support trees, it is convenient to design our algorithms as a sequence of rounds
each consisting of a three-step process: broadcast, local computation on edges, followed
by converge-cast. We use two parameters to quantify the overhead cost of aggregation on
support trees. The congestion c of H is the maximum number of trees using the same link.
The dilation d is the maximum height of a tree T (v) in G. Formally,

c def= max
e∈EG

|T−1(e)| and d def= max
v∈VH

(
max
u∈T (v)

distT (v)(v, u)
)
. (1)

Congestion and dilation are natural bottlenecks for virtual graphs. In Theorem 1, we show
that Ω(c/b + d log∗ n) rounds are needed for our coloring task given b bandwidth in the
communication graph. Conversely, Theorem 2 shows that coloring in O(cd · log4 log n) rounds
is feasible for any embedding.

▶ Remark 5. A few remarks are in order.
1. The degrees in H can be computed as deg(v) =

∑
w∈T (v) |m−1(w)| by aggregation on

support trees, which is why we ask that edges have designated handlers. Counting exactly
the number of distinct neighbors for all vertices appears to be challenging (i.e., requires
Ω̃(|NH(v)|) rounds).

2. By running a BFS from a single source (or from multiple sources but in disjoint subgraphs),
we can count the exact the number of neighbors the source has. However, running this
algorithm from multiple vertices creates congestion proportional to that number of
vertices.

3. It is, per se, easy to compute low-diameter support trees for all vertices, e.g., by BFS,
but a poor selection of edges could easily lead to high congestion. It is an open question
if trees of both low diameter and congestion can be computed efficiently (see Section 5).

2.1 Implications

Our framework captures several models and problems studied in the distributed graph
literature. We review them quickly.

It is helpful to see the communication network G = (VG, EG) through its subdivision
graph: the bipartite graph SG = (VG, EG, {{u, e} : u ∈ e ∈ EG}) with machines on the left,
links on the right, and a link between v ∈ VG and e ∈ EG if and only if v is an endpoint
of e. Simulating a round of communication on SG takes one round of communication of G
(conversely, one round on G takes two rounds of SG). Defining our virtual graphs on SG
rather than G allows us to put conflict on links. We call the links of SG half-links. 2

2 A common alternative representation is to stipulate that edges are between vertices with adjacent
supports, i.e., uv ∈ EH implies that ∃w ∈ V (v), x ∈ V (u) s.t. wx ∈ EG. If we extend each support V (v)
in G to include also the incident link nodes in SG, then two supports in SG intersect whenever they are
adjacent in G. Hence, our formulation encompasses this variant.



M. Flin, M. M. Halldórsson, and A. Nolin 24:9

2.1.1 Application 1: Cluster Graphs
A cluster graph C on a communication graph G = (VG, EG) is a graph where vertices
are disjoint sets Cx ⊆ VG called clusters with a designated machine leader(x) ∈ Cx. Each
cluster Cx induces a connected graph of small diameter in G. Two clusters are adjacent
if and only if they are connected by a link. A round of communication on H consists of
1) broadcasting a b-bit message from leader(x) to all machines in Cx, 2) communication
on inter-cluster links, and 3) aggregate a poly log n-bit message (e.g., a sum or a min) to
leader(x). They appear in several places, from maximum flow algorithms [33, 22] to network
decomposition [60, 29].

Clearly, cluster graphs are captured by our definition of virtual graphs: for Cx ∈ VH , let
V (Cx) be Cx plus the half-links going out of Cx and T (Cx) be a BFS tree spanning V (Cx).
Theorem 2 implies we can color cluster graphs fast:

▶ Corollary 6. Cluster graphs can be deg +1-colored, w.h.p., in O(d · log4 log n) CONGEST
rounds where d is the maximum (strong) diameter of a cluster, i.e., of H[Cx] over all Cx.

In [20], we show that ∆ + 1-coloring high-degree cluster graphs (where ∆ ⩽ poly(log n))
can be done in O(log∗ n) rounds. Corollary 6 is the first non-trivial distributed algorithm for
degree+1-coloring cluster graphs.

2.1.2 Application 2: Coloring Power Graphs
For some integer t ⩾ 1, the t-th power graph of G is the graph Gt on vertices VG where
there is an edge {u, v} when distG(u, v) ⩽ t. A distance-t coloring of G is a coloring of
Gt. Concretely, it is a coloring where nodes receive colors different from the ones in their
t-hop neighborhood. Our framework provides a unified view of distance-t colorings: the same
algorithm provides fast algorithms for all values of t ⩾ 1.

▶ Lemma 7. Let t ⩾ 1 and G = (VG, EG) be a graph with maximum (distance-1) degree
∆. We can define a virtual graph H = (VH , EH) on the subdivision graph SG of G such that
VH = VG and a deg +1-coloring of H is a ∆t + 1-coloring of Gt. Moreover, the congestion
is c = O(∆⌊ t−1

2 ⌋), the dilation is d = t, and the embedding is computable in O(tc) rounds.

Proof. For each node v ∈ VG, its support tree T (v) in G is set to be the t-hop BFS tree in
the subdivision graph SG rooted at v. For any pair u, v ∈ VH , the edge set EH(u, v) = ∅ if
and only if distG(u, v) > t. Otherwise, EH(u, v) contains an edge for each simple uv-paths in
T (u) ∪T (v) in G. As there are at most

∑t−1
i=1 ∆(∆ − 1)i ⩽ ∆t simple paths of length at most

t starting from v in G. Hence, each vertex is incident to at most ∆t edges in H. Thus, any
deg +1-coloring on H is a distance-t coloring of G with ∆t + 1 colors and from the definition
of edges in H, a proper coloring on H is also proper on Gt.

The bound on the dilation is immediate. To verify the congestion on a half-link ev,
observe that there are at most ∆⌊ t−1

2 ⌋ nodes (of G) that are within distance t of v in SG,
and therefore at most that many support trees using that half-link.

We map each simple uv-path in T (u) ∪ T (v) to its middle machine in SG. It is unique,
as SG is bipartite and u, v are on the same side. Each machine w ∈ T (u) ∩ T (v) knows its
distances to u in T (u) and to v in T (v), and thereby knows if it is the middle machine. To
compute the embedding, we have each machine learn its distance-t neighborhood in SG, with
the distance it has to each machine in it. This is done as follows: initially, each machine v
prepares a message (IDv, 1), which it sends to its ∆ direct neighbors in G. Then, for each
positive integer i ⩽ ⌊ t−1

2 ⌋, each machine sends a message of the form (IDu, i+ 1) to its direct

DISC 2024



24:10 Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs

neighbors for each message (IDu, i) it has received, of which there are at most ∆i. Sending
all messages for a fixed i takes O(∆⌊ t−1

2 ⌋) = O(c) rounds, hence a total O(tc) complexity. At
the end of this process, each machine v knows to which support trees T (u) it belongs, and
for each simple path of length at most t in SG between two nodes u, u′ s.t. v ∈ T (u) ∩ T (u′),
v knows whether it is its midpoint and should thus handle the edge. ◀

For any t ⩾ 1, Theorem 2 and Lemma 7 imply that there is a distributed algorithm
communicating on SG with O(log n) bandwidth that computes a ∆t + 1-coloring of Gt. Since
a round of communication on SG can be simulated in one round of communication on G, it
shows the following corollary.

▶ Corollary 8. For any t ⩾ 1, there is a randomized CONGEST algorithm for ∆t+1-coloring
Gt that runs in O(t∆⌊(t−1)/2⌋ log4 log n) rounds w.h.p.

Furthermore, the specific structure of power graphs allows for broadcast and aggregation
over support trees to be done in only O(∆⌊(t−1)/2⌋) = O(c + d) rounds instead of O(cd) =
O(t∆⌊(t−1)/2⌋). The runtime in Corollary 8 can be improved to O(∆⌊(t−1)/2⌋ log4 log n) as a
result.

It is not too difficult to see that – by a reduction to set disjointness – verifying an arbitrary
(or random) distance-t coloring needs Ω̃(∆⌊ t−1

2 ⌋) rounds in CONGEST [23]. However, no
super-constant lower bounds are known for computing distance-t colorings in CONGEST
when t ⩾ 3 and ∆ ≫ log n.

3 Lower Bounds: Overview

In this section, we sketch the main ideas behind our lower bound. We show the following
theorem:

▶ Theorem 1. Any constant-error algorithm for 3-coloring a 2-regular virtual graph H

embedded on a network with bandwidth b, congestion c, and dilation d, requires Ω( c
b +d · log∗ n)

rounds in the worst-case.

This implies as immediate corollary the same lower bound for the more general problem
of deg +1-coloring virtual graphs. The single statement is actually the concatenation of two
independent lower bounds, one relative to congestion and bandwidth, and the other relative
to dilation.

The dilation lower bound is straightforward, following directly from the seminal Ω(log∗ n)
lower bounds on 3-coloring [52, 57]. We refer readers to Appendix D.2 of the full version [21].

As the congestion lower bound makes lengthy use of technical tooling from communication
complexity literature largely unrelated to the rest of the paper, we defer most details to
Appendix D of the full version [21]. Here, we chiefly describe the virtual graphs used for our
lower bound and give intuition behind the complexity of coloring them.

Proof Structure of the Congestion Lower Bound. The congestion-related part of our lower
bound is obtained through a reduction from communication complexity. Our overall proof
plan is as follows:

We introduce a 2-player communication complexity task in which said players must
coordinate to 3-color a 16-node 2-regular graph. Each player only knows the edges
incident to half of the vertices and is in charge of outputting half of the coloring.
We show that this task is nontrivial, and in particular, that it has Ω(1) information
complexity, a complexity measure which lower bounds communication complexity.



M. Flin, M. M. Halldórsson, and A. Nolin 24:11

From known direct-sum results on information complexity, we get that solving c/8
independent copies of the task has information complexity Ω(c).
We introduce a virtual graph of congestion c and constant dilation in which we embed
c/8 instances of the task, i.e., deg +1-coloring the virtual graph solves the c/8 instances.
We observe: any T -round algorithm for deg +1-coloring virtual graphs over communication
graphs with congestion c given bandwidth b implies a O(Tb) communication complexity
algorithm for solving c/8 copies of the nontrivial task.
We conclude: the round complexity T of any such distributed algorithm for deg +1-coloring
must necessarily be at least Ω(c/b).

The Communication Complexity Gadget. We define the communication complexity task
we use in Definition 9. While this definition is a generalization with an arbitrary even number
of nodes on both sides, for our purposes, we will only use the gadget with the parameter k
set to k = 4, i.e., with 8 nodes on Alice and Bob’s sides. See Figure 2 for a illustration of our
gadget.

▶ Definition 9 (Matching 3-coloring task). In the M3COLk task, a 4k-node graph is initially
uncolored. Its nodes are split into two equal parts – left and right – given to Alice and Bob.
Alice and Bob receive a perfect matching over their respective sets of 2k nodes. For each
i ∈ [2k], the ith left node is connected to the ith right node. At the end of the communication
protocol, Alice must output a color in {1, 2, 3} for each left node, and Bob must do the same
for the right nodes, such that the coloring is valid with respect to the graph received as input.

vR,1

vR,8

vL,1

vL,8

vR,1

vR,8

vL,1

vL,8

vR,1

vR,8

vL,1

vL,8

Figure 2 Three possible inputs to the communication complexity task.

The crux of the argument is to show that the M3COL4 task cannot be solved without
communication. This can be intuitively seen by noticing that there can be at most 3 nodes
on which Alice always outputs the same color regardless of her input matching (same on
Bob’s side). Indeed, as there are only 3 colors, a fourth node with a fixed color means that
two nodes would receive the same color on Alice’s side regardless of her matching. This
implies an error when said two nodes are connected in Alice’s matching. Generalizing this
idea to randomized algorithms allows us to show that an algorithm without communication
necessarily makes an error with some constant probability 3 .

▶ Lemma 10. Any zero communication protocol for M3COL4 fails with probability at least
1

196 over the uniform input distribution.

Embedding the Gadget. Embedding the gadgets into a virtual graph is then done with the
following communication network: we consider two stars (depth-1 trees) with c leaves; we
connect the two stars by a single link between their roots wL,com and wR,com. The support
of each node on the left is made of an edge of the left star with the central edge, while the

3 This intuition also explains why we take gadgets with 8 nodes on each side and not less: a smaller
gadget would be solvable without communication by fixing the color of (up to) 3 nodes on each side.

DISC 2024



24:12 Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs

vL,1

vL,8

vR,1

vR,8

wL,com wR,com

V (vL,1)

Figure 3 Examples of a virtual graph H with a single gadget (left), a communication network G

(middle) in which H can be embedded, and the support of the top left virtual node (right).

support of each node on the right is just an edge in the right star. wL,com handles the edges
in the left matching, while wR,com handles the edges of the right matching as well as the
edges between the left and right sides of the virtual graph. See Figure 3 for an illustration.

The proof of Lemma 10, with its implication for the information complexity of the task,
and ultimately, our Ω(c/b) lower bound for 3-coloring graphs of degree 2 (Theorem 1), are
all deferred to Appendix D.1 of the full version [21].

4 Coloring Algorithm

The goal of this section is to present the main technical ideas behind Theorem 2.

▶ Theorem 2. Let H be a virtual graph on network G with |VG| = n machines, bandwidth
b = O(log n), congestion c ⩽ n and dilation d. There exists an algorithm to deg +1-color H
in O(cd · log4 log n) rounds. More precisely, at the end of the algorithm, each vertex v ∈ VH
has a color φ(v) ∈ {1, 2, . . . , deg(v) + 1} where deg(v) is the number of edges incident to v
in H.

We give necessary definitions and self-contained statements of each of the main steps of
our algorithm. First, we discuss the concept of slack and present the means by which we
measure and produce it. We then introduce a version of the sparse-dense decomposition
tailored to our needs. Finally, we describe the main steps of our algorithm. For more details
on individual steps of the algorithm, we refer readers to the full version of this paper [21].

4.1 Slack
Intuitively, the slack measures how easily a vertex gets colored. More formally, it is used to
bound from below the number of colors available to a vertex when its neighbors are trying
to get colored. There are several types of slack that occur.

Savings. Whenever a neighbor uses a color that is either outside v’s palette or the same
color as another neighbor, then v saves a color. Under a given partial coloring φ, this is
quantified by the savings slack of v from coloring φ:

ξφ(v, S) def= |S ∩ domφ| − |φ(S) ∩ [deg(v) + 1]| (2)

We write ξφ(v) for ξφ(v,N(v)).

Redundancy. In degree+1-coloring (unlike ∆ + 1-coloring), slack can also occur when v has
a shortage of neighbors with a high enough degree. We measure this with the redundancy
of v defined as

ρv
def= max

t⩽|N(v)|/12
|NH(v)| − t− |{u ∈ N(v) : deg(u) + 1 > t}| . (3)

In other words, there is a t ⩽ |N(v)|/12 such that, even if all high-degree neighbors (larger
than t) use different colors, at least ρv colors remain available to v.



M. Flin, M. M. Halldórsson, and A. Nolin 24:13

Inaccuracy. The difference between the palette size and the number of neighbors is the
inaccuracy of the node:

δv = deg(v) − |NH(v)| . (4)

In our setting, this is caused by parallel edges. A vertex with δv > δ is called δ-inaccurate
and δ-accurate otherwise.

Permanent & Temporary slack. The aforementioned forms of slack (savings, redundancy,
and inaccuracy) are permanent, meaning that they do not decrease as we extend the
coloring. Another way to provide slack to a vertex is by keeping some of its uncolored
neighbors inactive. This artificially reduces degrees – thus contention – without reducing the
number of available colors, thereby providing slack. This is called temporary slack as it
perishes when we eventually color the inactive neighbors.

Slack Generation. While redundancy and inaccuracies do not depend on the coloring,
vertices get savings only if we manage to same-color its neighbors. We show in [21, Section
5] that a classic one-round algorithm of “trying a random color” creates enough slack for
deg+1-colorings. This generalizes results for ∆ + 1-coloring [58, 14, 41]. It also generalizes a
method of [1, Lemma 4.10] for deg+1-coloring that applies to the sparse and uneven nodes
(assuming deg(v) = |NH(v)|). SlackGeneration creates color savings probabilistically. The
savings expected from a random color trial are measured by the unevenness and sparsity,
which we now define.

The savings we expect due to high-degree neighbors using colors beyond deg(v) + 1 is
captured by the unevenness of v. Within a subgraph induced by a set S ⊆ VH , it is defined
as

ηv(S) def=
∑
u∈S

[deg(u) + 1] \ [deg(v) + 1]
[deg(u) + 1] =

∑
u∈S

(deg(u) − deg(v))+

deg(u) + 1 . (5)

We write ηv = ηv(N(v)) for succinctness. A vertex such that ηv > η is called η-uneven and
η-balanced otherwise.

The savings we expect from colors reused by multiple neighbors is quantified by the
sparsity of v. The sparsity of v is defined as

ζv
def= 1

|NH(v)|

(
|NH(v)|

2

)
− 1

2
∑

u∈NH (v)

|NH(u) ∩NH(v)|

 . (6)

Note that 1
2

∑
u∈NH (v)|NH(u) ∩NH(v)| counts the number of edges in NH(v) without multi-

plicity, even if H is not simple. Hence ζv · |NH(v)| counts the number of edges missing in
NH(v), without multiplicity. A vertex such that ζv > ζ is called ζ-sparse and ζ-dense
otherwise.

▶ Lemma 11 (Slack Generation). Let Vsg ⊆ VH and let φsg be the coloring produced by
running Algorithm 2 in H[Vsg] avoiding colors ⩽ r. Let v ∈ Vsg be a node satisfying
deg(v) ⩽ 3|NH(v)|/2, |N(v) \ Vsg| < (ζv + ηv)/4, ζv ⩾ 48r, and ρv ⩽ (ζv + ηv)/12. Then

ξφsg(v) ⩾ γ11 · (ζv + ηv) with probability 1 − exp(−Θ(ζv + ηv))

DISC 2024



24:14 Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs

4.2 Almost-Clique Decomposition
In Lemma 12, we describe a structural decomposition partitioning vertices according to their
ability to receive slack and of which type. All sub-logarithmic distributed coloring algorithms
[45, 10, 42, 20] use such a decomposition. We adapt [1] to account for inaccuracies in degrees
(Property 2). Lemma 12 partitions vertices into high- and low-degree vertices based on the
threshold ∆low = Θ

(
log21 n

)
. Each requires a different approach and, in particular, we do not

need to argue that low-degree vertices receive slack. We prove Lemma 12 in [21, Appendix
F] to preserve the flow of the paper.

▶ Lemma 12. There exists an algorithm that, for any multi-graph H = (VH , EH) and
ε ∈ (0, 1/100), computes in Ô(1/ε6) rounds an ε-almost-clique decomposition: a partition
VH = Vlow ∪ Vhigh and Vhigh = Vin ∪ V⋆ ∪ Vdense such that
1. each v ∈ Vlow has deg(v) ⩽ 2∆low and v ∈ Vhigh has deg(v) ⩾ ∆low;
2. each v ∈ Vin is Ω(ε3|N(v)|)-inaccurate and each v ∈ Vhigh \Vin has deg(v) ⩽ (1+ε3)|N(v)|;
3. each v ∈ V⋆ has ζv + ηv + |N(v) ∩ Vin| ⩾ γ12 · deg(v) for a constant γ12 = γ12(ε) ∈ (0, 1);
4. Vdense is partitioned into ε-almost-cliques: sets K ⊆ Vhigh such that

a. |NH(v) ∩K| ⩾ (1 − ε)|K|, for each v ∈ K,
b. deg(v) ⩽ (1 + ε)|K|, for each v ∈ K, and
c. |NH(v) \K| ⩽ Oε(ζv + ηv + |N(v) ∩ Vin|).

Let ∆K
def= maxv∈K deg(v). From Lemma 12, it holds for each almost-clique K that

(1 − ε)|K| ⩽ ∆K ⩽ (1 + ε)|K|, and that for every v ∈ K, deg(v) ⩾ (1 − 2ε)∆K . Every
pair of vertices in K has (1 − 2ε)|K| neighbors in common in K, and hence H[K] has
(strong-)diameter at most two.

For v ∈ Vdense, let Kv denote the almost-clique containing v. We denote by Av =
Kv \NH(v) its anti-neighborhood and by av = |Kv| − deg(v,H ∩Kv) its pseudo-anti-
degree. We call Ev = NH(v) \ Kv the external-neighborhood and ev = deg(v,H \ Kv)
its pseudo-external-degree. Importantly, pseudo-external and pseudo-anti-degrees count
multiplicities of edges in the conflict graph. We split the contribution to δv (Equation (4))
between external and internal neighbors:

δv = δev + δav , where δev
def= ev − |Ev| and δav

def= |Av| − av . (7)

For almost-cliqueK, we denote average values by aK =
∑
v∈K av/|K| and eK =

∑
v∈K ev/|K|.

4.3 The High-Level Algorithm
We can now describe the main steps of our algorithm. At high level, we compute the
decomposition of Lemma 12, run slack generation in Vsg = Vhigh \ (Vcabal ∪ Vin) and color each
part of the decomposition in a precise order. Necessary conditions and guarantees for each
step of Algorithm 1 are given in the corresponding propositions.

Parameters. Let C1 be some large universal constant. Let us set the following parameters

ε = 1/2000 , ℓ = C1 · log1.2 n , and r = C1 · log1.1 n , (8)

where ℓ is chosen to asymptotically dominate Θ(log1.1 n), which is the minimum palette
size for MultiColor Trial, and r sets the number of reserved colors. We call colors from
[r] = {1, 2, . . . , r} reserved because we use them exclusively for multicolor trials. Let
Vlow, Vin, V⋆, Vdense be an ε-almost-clique decomposition of the high-degree vertices. We define

Kcabal = {K : eK < ℓ} , Vcabal = {v ∈ Vdense : Kv ∈ Kcabal} and Vsg = Vhigh\(Vcabal∪Vin) .



M. Flin, M. M. Halldórsson, and A. Nolin 24:15

Algorithm 1 The deg +1-coloring algorithm.

1 ComputeACD (Lemma 12)
2 SlackGeneration in Vsg = Vhigh \ (Vcabal ∪ Vin) without using colors [r] (Lemma 11)
3 ColoringVstar without using colors [r] (Proposition 13)
4 ColoringNonCabals (Proposition 14)
5 ColoringCabals (Proposition 15)
6 ColoringInaccurate (Proposition 16)
7 ColoringLowDegree (Proposition 17)

After running Slack Generation in Vsg, w.h.p., all the vertices in V⋆ have enough slack
to get colored by MultiColor Trial. Proposition 13 achieves this coloring with additional
post-conditions necessary for coloring non-cabals (Proposition 14). In words, we extend
the coloring φsg produced by slack generation such that V⋆ is totally colored, the coloring
in VH \ V⋆ coincides with φsg and reserved colors are not used (not even in V⋆). Proof of
Proposition 13 is given in [21, Section 4].

▶ Proposition 13 (Coloring V⋆). Suppose φsg is the coloring produced by slack generation.
In Ô(log∗ n) rounds, we compute φ ⪰ φsg such that, w.h.p., we have V⋆ ⊆ domφ, φ|VH \V⋆

=
φsg|VH \V⋆

and φ(VH) ∩ [r] = ∅.

Non-cabal dense vertices are colored by Algorithm 3 in [21, Section 6]. They are colored
immediately after coloring V⋆, and the conditions needed for Proposition 14 follow from
those guaranteed by Proposition 13. The algorithm combines primitives from various recent
randomized coloring algorithms [42, 17, 19] (and [20]), all needing non-trivial adaptation to
the current setting. Instead of applying MultiColor Trials directly after the synchronized
color trial, we use the slower O(log log n)-round Slice Color algorithm of [19] to find an
orientation where nodes have O(log n) uncolored out-neighbors. This allows us to use a fixed
number of only r = Θ(log1.1 n) reserved colors in the final application of MultiColor Trials,
simplifying the (already intricate) treatment. Finally, a significant effort is needed to add
up all sources of slack and show that dense vertices always have enough colors in the clique
palette (see [21, Section 6.1]).

▶ Proposition 14 (Coloring Non-Cabals). Suppose φ is a coloring such that domφ ⊆ Vsg,
φ|Vdense = φsg|Vdense

and φ(VH) ∩ [r] = ∅. In Ô(log log n · log∗ n) rounds, we color all vertices
in Vdense \ Vcabal.

Cabals are colored by Algorithm 4 in [21, Appendix C]. The approach to color Vcabal is
similar to Proposition 14 except for two major differences. First, vertices do not receive slack
from slack generation, so we instead resort to put-aside sets [42]. Second, coloring put-aside
sets requires a different approach that was developed in [20].

▶ Proposition 15 (Coloring Cabals). Suppose φ is a coloring such that Vcabal ∩ domφ = ∅.
Then, there exists a Ô(log log n · log∗ n)-round algorithm coloring all nodes in Vcabal with high
probability.

The inaccurate nodes have enough slack regardless of the coloring (Equation (4)) and are
easily colored at the end in the same way as V⋆.

▶ Proposition 16 (Coloring Inaccurate Nodes). We can color all vertices in Vin in Ô(log∗ n)
rounds.

DISC 2024



24:16 Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs

Proof Sketch. The inaccuracy means that each vertex v in Vin has Ω(ε3 deg(v)) colors
available in [deg(v) + 1] under any (possibly partial) coloring. Like for V⋆, we color Vin
with O(ε−12 log ε−1) = O(1) iterations of Random Color Trial and O(log∗ n) iterations of
MultiColor Trial where C(v) = [deg(v) + 1] and γ = Θ(ε3). ◀

Low-degree nodes are colored in [21, Section 7].

▶ Proposition 17 (Coloring Low-Degree Nodes). Suppose φ is a coloring such that Vhigh =
VH \ Vlow = domφ. In Ô(log4 log n) rounds, we compute a total coloring of H.

Proof of Theorem 2. By Lemma 12, we compute the ε-almost-clique decomposition in
Ô(1/ε6) = Ô(1) rounds. Running Slack Generation takes Ô(1) rounds (see Algorithm 2).
By Propositions 13–15, we extend the coloring to all vertices of Vhigh in Ô(log log n · log∗ n)
rounds. By Proposition 17, low-degree vertices are colored in Ô(log4 log n) rounds. Overall,
the round complexity is dominated by the coloring of low-degree vertices. ◀

5 Open Problems

The most natural immediate question following our work is:

▶ Problem 1. Can we color virtual graphs in cd · poly(log log n) rounds using lists
{1, 2, . . . , |NH(v)| + 1} for each v ∈ VH?

The issue is with dense vertices whose anti-degree is hard to approximate accurately. In
[20], we show that it is possible to ∆ + 1-color in Ô(log∗ n) rounds when ∆ = maxv |NH(v)|
is the maximum number of neighbors (and ∆ ≫ log21 n). However, whether the technique
used to approximate anti-degrees can be generalized to |N(v)| + 1-coloring is unclear. Using
MultiColor Trials, it is possible to (1 + ε)|NH(v)|-color in cd · poly(log log n) rounds.

▶ Problem 2. When is it possible to compute low-congestion support trees efficiently?

We assumed that a support tree was given in G for each node of H (or could be easily
deduced, as in the case of distance-2 coloring). It is easy, per se, to find some support
tree for each node, e.g., by BFS, but this could significantly affect the congestion. It is
known [30, 37, 47, 31] that for some families of graph, one can compute embeddings with
low congestion. Conversely, for some problems (such as MST), on general graphs Ω(

√
n)

congestion is unavoidable [13]. It is a highly interesting question whether low-congestion
support trees could be computed efficiently for local problems.

▶ Problem 3. Can we color virtual graphs in O((c + d) poly(log log n)) rounds?

Throughout the paper, our main goal was showing that coloring can be achieved in
poly(log log n) rounds of broadcast and aggregation over the supports of the virtual nodes.
We mostly ignored the runtime of these broadcast and aggregation operations, known to be
achievable in O(cd) rounds, and requiring Ω(c + d). The naive runtime is already optimal
in some restricted cases (when c ∈ O(1) or d ∈ O(1)), but not in general. While O(c + d)
schedules are known to exist for standard packet routing (with fixed paths), our problem
is a proper generalization of the usual routing scenario. We also need schedules that are
distributedly computable. Problem 3 asks whether our subroutines can be performed faster,
possibly also pipelined, certainly an exciting open question. It is essentially an independent
scheduling question, despite its implications for the main results of our paper.



M. Flin, M. M. Halldórsson, and A. Nolin 24:17

▶ Problem 4. Can we ∆O(t)-color Gt in O(∆⌊(t−1)/2⌋−Ω(1) poly log n) rounds of CONGEST?

We showed that the complexity of coloring needs to grow linearly with the congestion, but
this was only shown existentially for a specific class of instances. Can this dependence on
congestion be avoided? In particular, the complexity of distance-3 coloring is a major open
question, where congestion is necessarily linear in ∆.

References

1 Noga Alon and Sepehr Assadi. Palette sparsification beyond (∆ + 1) vertex coloring. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM), volume 176 of LIPIcs, pages 6:1–6:22. LZI, 2020. doi:10.4230/
LIPICS.APPROX/RANDOM.2020.6.

2 Ioannis Anagnostides, Christoph Lenzen, Bernhard Haeupler, Goran Zuzic, and Themis
Gouleakis. Almost universally optimal distributed Laplacian solvers via low-congestion
shortcuts. Distributed Computing, 36(4):475–499, 2023. doi:10.1007/S00446-023-00454-0.

3 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆+1) vertex coloring.
In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
767–786, 2019. Full version at arXiv:1807.08886. doi:10.1137/1.9781611975482.48.

4 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed edge coloring
in time polylogarithmic in ∆. In the Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), pages 15–25. ACM, 2022. doi:10.1145/3519270.3538440.

5 Reuven Bar-Yehuda, Keren Censor-Hillel, Yannic Maus, Shreyas Pai, and Sriram V Pemmaraju.
Distributed approximation on power graphs. In the Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC), pages 501–510, 2020. doi:10.1145/3382734.
3405750.

6 Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals
and Recent Developments. Morgan & Claypool Publishers, 2013. doi:10.2200/
S00520ED1V01Y201307DCT011.

7 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. Journal of the ACM, 63(3):20:1–20:45, 2016. doi:10.1145/
2903137.

8 Leonid Barenboim and Uri Goldenberg. Speedup of distributed algorithms for power graphs
in the CONGEST model. Technical report, arXiv, 2023. doi:10.48550/arXiv.2305.04358.

9 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
complexity of (∆ + 1) coloring in congested clique, massively parallel computation, and
centralized local computation. In the Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), pages 471–480, 2019. Full version at arXiv:1808.08419.

10 Yi-Jun Chang, Wenzheng Li, and Seth Pettie. Distributed (∆ + 1)-coloring via ultrafast graph
shattering. SIAM Journal of Computing, 49(3):497–539, 2020. doi:10.1137/19M1249527.

11 Sam Coy, Artur Czumaj, Peter Davies, and Gopinath Mishra. Optimal (degree+1)-coloring in
congested clique. In the Proceedings of the International Colloquium on Automata, Languages,
and Programming (ICALP), volume 261 of LIPIcs, pages 46:1–46:20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ICALP.2023.46.

12 Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-round
coloring in congested clique and MPC. SIAM J. Comput., 50(5):1603–1626, 2021. doi:
10.1137/20M1366502.

13 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of
distributed approximation. In the Proceedings of the ACM Symposium on Theory of Computing
(STOC), pages 363–372, 2011. doi:10.1145/1993636.1993686.

DISC 2024

https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2020.6
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2020.6
https://doi.org/10.1007/S00446-023-00454-0
https://arxiv.org/abs/1807.08886
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.1145/3519270.3538440
https://doi.org/10.1145/3382734.3405750
https://doi.org/10.1145/3382734.3405750
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.1145/2903137
https://doi.org/10.1145/2903137
https://doi.org/10.48550/arXiv.2305.04358
https://arxiv.org/abs/1808.08419
https://doi.org/10.1137/19M1249527
https://doi.org/10.4230/LIPICS.ICALP.2023.46
https://doi.org/10.1137/20M1366502
https://doi.org/10.1137/20M1366502
https://doi.org/10.1145/1993636.1993686


24:18 Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs

14 Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2∆ − 1)-edge-coloring is much easier than
maximal matching in the distributed setting. In the Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 355–370, 2015. doi:10.1137/1.9781611973730.26.

15 Salwa Faour, Mohsen Ghaffari, Christoph Grunau, Fabian Kuhn, and Václav Rozhon. Local
distributed rounding: Generalized to MIS, matching, set cover, and beyond. In the Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 4409–4447. SIAM, 2023.
doi:10.1137/1.9781611977554.CH168.

16 Manuela Fischer. Improved deterministic distributed matching via rounding. In the Proceedings
of the International Symposium on Distributed Computing (DISC), volume 91 of LIPIcs, pages
17:1–17:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
DISC.2017.17.

17 Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn, and Alexandre Nolin.
Coloring fast with broadcasts. In the Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 455–465. ACM, 2023. doi:10.1145/3558481.
3591095.

18 Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn, and Alexandre Nolin.
A distributed palette sparsification theorem. In the Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2024.

19 Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin. Fast coloring despite congested
relays. In the Proceedings of the International Symposium on Distributed Computing (DISC),
2023. doi:10.4230/LIPICS.DISC.2023.19.

20 Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin. Decentralized distributed
graph coloring: Cluster graphs. Technical report, arXiv, May 2024. In submission. doi:
10.48550/arXiv.2405.07725.

21 Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin. Decentralized distributed graph
coloring II: degree+1-coloring virtual graphs. Technical report, arXiv, 2024. Full version of
this paper. doi:10.48550/arXiv.2408.11041.

22 Sebastian Forster, Gramoz Goranci, Yang P. Liu, Richard Peng, Xiaorui Sun, and Mingquan Ye.
Minor sparsifiers and the distributed laplacian paradigm. In the Proceedings of the Symposium
on Foundations of Computer Science (FOCS), 2021. doi:10.1109/FOCS52979.2021.00099.

23 Pierre Fraigniaud, Magnús M. Halldórsson, and Alexandre Nolin. Distributed testing of
distance-k colorings. In the Proceedings of the International Colloquium on Structural Inform-
ation and Communication Complexity (SIROCCO), 2020. doi:10.1007/978-3-030-54921-3_
16.

24 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local Conflict Coloring. In the
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 625–634,
2016. doi:10.1109/FOCS.2016.73.

25 Marc Fuchs and Fabian Kuhn. List defective colorings: Distributed algorithms and applications.
In the Proceedings of the International Symposium on Distributed Computing (DISC), LIPIcs,
2023. doi:10.4230/LIPICS.DISC.2023.22.

26 Mohsen Ghaffari. Near-optimal scheduling of distributed algorithms. In the Proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC), pages 3–12, 2015.
doi:10.1145/2767386.2767417.

27 Mohsen Ghaffari and Christoph Grunau. Faster deterministic distributed MIS and approximate
matching. In the Proceedings of the ACM Symposium on Theory of Computing (STOC), pages
1777–1790. ACM, 2023. doi:10.1145/3564246.3585243.

28 Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler, Saeed Ilchi, and Václav Rozhon.
Improved distributed network decomposition, hitting sets, and spanners, via derandomization.
In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2532–2566. SIAM, 2023. doi:10.1137/1.9781611977554.CH97.

https://doi.org/10.1137/1.9781611973730.26
https://doi.org/10.1137/1.9781611977554.CH168
https://doi.org/10.4230/LIPIcs.DISC.2017.17
https://doi.org/10.4230/LIPIcs.DISC.2017.17
https://doi.org/10.1145/3558481.3591095
https://doi.org/10.1145/3558481.3591095
https://doi.org/10.4230/LIPICS.DISC.2023.19
https://doi.org/10.48550/arXiv.2405.07725
https://doi.org/10.48550/arXiv.2405.07725
https://doi.org/10.48550/arXiv.2408.11041
https://doi.org/10.1109/FOCS52979.2021.00099
https://doi.org/10.1007/978-3-030-54921-3_16
https://doi.org/10.1007/978-3-030-54921-3_16
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.4230/LIPICS.DISC.2023.22
https://doi.org/10.1145/2767386.2767417
https://doi.org/10.1145/3564246.3585243
https://doi.org/10.1137/1.9781611977554.CH97


M. Flin, M. M. Halldórsson, and A. Nolin 24:19

29 Mohsen Ghaffari, Christoph Grunau, and Václav Rozhoň. Improved deterministic network
decomposition. In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2021. arXiv:2007.08253.

30 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II: Low-
congestion shortcuts, MST, and Min-Cut. In the Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 202–219. SIAM, 2016. doi:10.1137/1.9781611974331.
CH16.

31 Mohsen Ghaffari and Bernhard Haeupler. Low-congestion shortcuts for graphs excluding dense
minors. In the Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), pages 213–221. ACM, 2021. doi:10.1145/3465084.3467935.

32 Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic. Hop-constrained oblivious routing. In
the Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 1208–1220.
ACM, 2021. doi:10.1145/3406325.3451098.

33 Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-
Shamir. Near-optimal distributed maximum flow. SIAM J. Comput., 47(6):2078–2117, 2018.
doi:10.1137/17M113277X.

34 Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In Inter-
national Symposium on Distributed Computing, pages 1–15. Springer, 2013. doi:10.1007/
978-3-642-41527-2_1.

35 Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster,
and without network decomposition. In the Proceedings of the Symposium on Foundations
of Computer Science (FOCS), pages 1009–1020. IEEE, 2021. doi:10.1109/FOCS52979.2021.
00101.

36 Mohsen Ghaffari and Goran Zuzic. Universally-optimal distributed exact min-cut. In the
Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages
281–291. ACM, 2022. doi:10.1145/3519270.3538429.

37 Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Low-congestion shortcuts without
embedding. In the Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), pages 451–460. ACM, 2016. doi:10.1145/2933057.2933112.

38 Bernhard Haeupler, Shyamal Patel, Antti Roeyskoe, Cliff Stein, and Goran Zuzic. Polylog-
competitive deterministic local routing and scheduling. CoRR, abs/2403.07410, 2024. doi:
10.48550/arXiv.2403.07410.

39 Magnús M. Halldórsson, Fabian Kuhn, and Yannic Maus. Distance-2 coloring in the CONGEST
model. In the Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), pages 233–242, 2020. doi:10.1145/3382734.3405706.

40 Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Alexandre Nolin. Coloring fast
without learning your neighbors’ colors. In the Proceedings of the International Symposium on
Distributed Computing (DISC), pages 39:1–39:17, 2020. doi:10.4230/LIPIcs.DISC.2020.39.

41 Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. Efficient randomized
distributed coloring in CONGEST. In the Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages 1180–1193. ACM, 2021. Full version at arXiv:2105.04700.

42 Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. Near-optimal
distributed degree+1 coloring. In the Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages 450–463. ACM, 2022. doi:10.1145/3519935.3520023.

43 Magnús M. Halldórsson and Alexandre Nolin. Superfast coloring in CONGEST via efficient
color sampling. Theor. Comput. Sci., 948:113711, 2023. doi:10.1016/J.TCS.2023.113711.

44 Magnús M. Halldórsson, Alexandre Nolin, and Tigran Tonoyan. Overcoming congestion in
distributed coloring. In the Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 26–36. ACM, 2022. doi:10.1145/3519270.3538438.

45 David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (∆ + 1)-coloring in
sublogarithmic rounds. Journal of the ACM, 65:19:1–19:21, 2018. doi:10.1145/3178120.

DISC 2024

https://arxiv.org/abs/2007.08253
https://doi.org/10.1137/1.9781611974331.CH16
https://doi.org/10.1137/1.9781611974331.CH16
https://doi.org/10.1145/3465084.3467935
https://doi.org/10.1145/3406325.3451098
https://doi.org/10.1137/17M113277X
https://doi.org/10.1007/978-3-642-41527-2_1
https://doi.org/10.1007/978-3-642-41527-2_1
https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.1145/3519270.3538429
https://doi.org/10.1145/2933057.2933112
https://doi.org/10.48550/arXiv.2403.07410
https://doi.org/10.48550/arXiv.2403.07410
https://doi.org/10.1145/3382734.3405706
https://doi.org/10.4230/LIPIcs.DISC.2020.39
https://arxiv.org/abs/2105.04700
https://doi.org/10.1145/3519935.3520023
https://doi.org/10.1016/J.TCS.2023.113711
https://doi.org/10.1145/3519270.3538438
https://doi.org/10.1145/3178120


24:20 Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs

46 D. Hefetz, Y. Maus, F. Kuhn, and A. Steger. A polynomial lower bound for distributed graph
coloring in a weak LOCAL model. In the Proceedings of the International Symposium on
Distributed Computing (DISC), pages 99–113, 2016.

47 Shimon Kogan and Merav Parter. Low-congestion shortcuts in constant diameter graphs. In
the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC),
pages 203–211. ACM, 2021. doi:10.1145/3465084.3467927.

48 Frank Thomson Leighton, Bruce M. Maggs, Abhiram G. Ranade, and Satish Rao. Randomized
routing and sorting on fixed-connection networks. J. Algorithms, 17(1):157–205, 1994. doi:
10.1006/JAGM.1994.1030.

49 Frank Thomson Leighton, Bruce M. Maggs, and Satish Rao. Packet routing and job-shop
scheduling in O(congestion + dilation) steps. Combinatorica, 14(2):167–186, 1994. doi:
10.1007/BF01215349.

50 Frank Thomson Leighton, Bruce M. Maggs, and Andréa W. Richa. Fast algorithms for
finding O(congestion + dilation) packet routing schedules. Combinatorica, 19(3):375–401,
1999. doi:10.1007/S004930050061.

51 Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In the
Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages
42–50. ACM, 2013. doi:10.1145/2484239.2501983.

52 Nati Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193–
201, 1992. doi:10.1137/0221015.

53 Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for constant diameter
graphs. Distributed Computing, 18(6):453–460, 2006. doi:10.1007/S00446-005-0127-6.

54 M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal
on Computing, 15:1036–1053, 1986. doi:10.1137/0215074.

55 Yannic Maus, Saku Peltonen, and Jara Uitto. Distributed symmetry breaking on power graphs
via sparsification. In the Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 157–167. ACM, 2023. doi:10.1145/3583668.3594579.

56 Yannic Maus and Tigran Tonoyan. Local conflict coloring revisited: Linial for lists. In
the Proceedings of the International Symposium on Distributed Computing (DISC), pages
16:1–16:18, 2020. doi:10.4230/LIPIcs.DISC.2020.16.

57 Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM J. on Comp.,
24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

58 Bruce A. Reed. ω, ∆, and χ. J. Graph Theory, 27(4):177–212, 1998. doi:10.1002/(SICI)
1097-0118(199804)27:4<177::AID-JGT1>3.0.CO;2-K.

59 Václav Rozhon, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li. Undirected
(1+ε)-shortest paths via minor-aggregates: near-optimal deterministic parallel and distributed
algorithms. In the Proceedings of the ACM Symposium on Theory of Computing (STOC),
pages 478–487, 2022. doi:10.1145/3519935.3520074.

60 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposi-
tion and distributed derandomization. In the Proceedings of the ACM Symposium on Theory
of Computing (STOC), pages 350–363, 2020.

61 Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry
breaking. In the Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), pages 257–266. ACM, 2010. doi:10.1145/1835698.1835760.

A Color Trials

We state here some classical symmetry breaking algorithms with additional assumptions for
virtual graphs. The main difference with LOCAL or CONGEST version of these algorithm is
that vertices sample in color space C(v) instead of their palette.

https://doi.org/10.1145/3465084.3467927
https://doi.org/10.1006/JAGM.1994.1030
https://doi.org/10.1006/JAGM.1994.1030
https://doi.org/10.1007/BF01215349
https://doi.org/10.1007/BF01215349
https://doi.org/10.1007/S004930050061
https://doi.org/10.1145/2484239.2501983
https://doi.org/10.1137/0221015
https://doi.org/10.1007/S00446-005-0127-6
https://doi.org/10.1137/0215074
https://doi.org/10.1145/3583668.3594579
https://doi.org/10.4230/LIPIcs.DISC.2020.16
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1002/(SICI)1097-0118(199804)27:4<177::AID-JGT1>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1097-0118(199804)27:4<177::AID-JGT1>3.0.CO;2-K
https://doi.org/10.1145/3519935.3520074
https://doi.org/10.1145/1835698.1835760


M. Flin, M. M. Halldórsson, and A. Nolin 24:21

▶ Lemma 18 (Random Color Trial). Let γ ∈ (0, 1) be universal constants known to all nodes.
Let φ be a coloring, S ⊆ V \ domφ a set of uncolored nodes, and sets C(v) ⊆ [deg(v) + 1] for
each v ∈ S such that
1. v can sample a uniform color in C(v) in O(1) rounds,
2. |C(v)| ⩾ Θ(γ−1 log n),
3. |Lφ(v) ∩ C(v)| ⩾ γ|C(v)|, and
4. |Lφ(v) ∩ C(v)| ⩾ γ|Nφ(v) ∩ S|.
Let ψ ⪰ φ be the coloring produced by TryColor. Then, w.h.p., each w ∈ VH has uncolored
degree in S

|Nψ(w) ∩ S| ⩽ max
{

(1 − γ4/64)|Nφ(w) ∩ S|, Θ(γ−4 log n)
}
.

The algorithm ends after Ô(1) rounds and ψ(v) ∈ C(v) for all v /∈ domφ.

The MultiColorTrial in Lemma 19 is adapted from [43] to sample colors from a restricted
known color space.

▶ Lemma 19 (MultiColorTrial, adapted from [43]). Let φ be a (partial) coloring of H,
S ⊆ VH \ domφ, and C(v) ⊆ [deg(v) + 1] be a color space for each node. Suppose that there
exists some constant γ > 0 known to all nodes such that
1. C(v) is known to all machines in V (v); and
2. |Lφ(v) ∩ C(v)| − |Nφ(v) ∩ S| ⩾ max{2|Nφ(v) ∩ S|,Θ(log1.1 n)} + γ|C(v)|.

Then, there exists an algorithm computing a coloring ψ ⪰ φ such that, w.h.p., all nodes of S
are colored and ψ(v) ∈ C(v) for each v ∈ S. The algorithm runs in Ô(γ−1 log∗ n) rounds.

B Pseudo-Code

Algorithm 2 SlackGeneration.

1 Each v ∈ Vsg joins V active w.p. pg = 1/20.
2 Each v ∈ V active samples c(v) ∈ {r + 1, r + 2, . . . , deg(v) + 1} uniformly at random.
3 Let φsg(v) = c(v) if v ∈ V active and c(v) /∈ c(N+

H (v)). Otherwise, set φsg(v) = ⊥.

Algorithm 3 ColoringNonCabals.

Input: A coloring φ such as described in Proposition 14
Output: A coloring ψ ⪰ φ such that Vdense \ Vcabal = domψ

1 ColorfulMatching when aK ⩾ Ω(log n) // Let φcm be the coloring produced
2 ColoringOutliers with C(v) = [r + 1, deg(v) + 1]
3 SynchronizedColorTrial
4 TryColor for O(1) rounds with C(v) = Lφ(Kv) ∩ [r + 1, deg(v) + 1]
5 SliceColor with C(v) = Lφ(Kv) ∩ [r + 1, deg(v) + 1]

Let L1, . . . ,LO(log logn) be the layers produced by SliceColor.
6 for i = O(log log n) to 1 do
7 MultiColorTrial with C(v) = [r] in Li

DISC 2024



24:22 Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs

Algorithm 4 Cabals.

Let r′ def= 150ℓ, where ℓ = C1 log1.2 n is as described in Equation (8).
1 ColorfulMatching.
2 ColoringOutliers with C(v) = [deg(v) + 1] \ [r′].
3 ComputePutAside PK ⊆ IK .
4 SynchronizedColorTrial with SK = K \ (domφ ∪ PK)
5 SliceColor with C(v) = [deg(v) + 1] \ [r′]

Let L1, . . . ,LO(log logn) be the layers produced by SliceColor
6 for i = O(log log n) to 1 do
7 MultiColorTrial with C(v) = [r′] in Li

8 ColorPutAsideSets



Distributed Model Checking on Graphs of Bounded
Treedepth
Fedor V. Fomin #

University of Bergen, Norway

Pierre Fraigniaud #

IRIF, Université Paris Cité and CNRS, Paris, France

Pedro Montealegre #

Universidad Adolfo Ibañez, Santiago, Chile

Ivan Rapaport #

Universidad de Chile, Santiago, Chile

Ioan Todinca #

LIFO, Université d’Orléans, France
INSA Centre-Val de Loire, Orléans, France

Abstract
We establish that every monadic second-order logic (MSO) formula on graphs with bounded treedepth
is decidable in a constant number of rounds within the CONGEST model. To our knowledge, this
marks the first meta-theorem regarding distributed model-checking. Various optimization problems
on graphs are expressible in MSO. Examples include determining whether a graph G has a clique
of size k, whether it admits a coloring with k colors, whether it contains a graph H as a subgraph
or minor, or whether terminal vertices in G could be connected via vertex-disjoint paths. Our
meta-theorem significantly enhances the work of Bousquet et al. [PODC 2022], which was focused
on distributed certification of MSO on graphs with bounded treedepth. Moreover, our results can be
extended to solving optimization and counting problems expressible in MSO, in graphs of bounded
treedepth.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Verification by model checking

Keywords and phrases proof-labeling schemes, local computing, CONGEST model

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.25

Related Version Full Version: https://arxiv.org/abs/2405.03321 [28]

Funding Fedor V. Fomin: the research leading to these results has received funding from the
Research Council of Norway via the project BWCA (grant no. 314528).
Pierre Fraigniaud: partially supported by the ANR projects DUCAT (ANR-20-CE48-0006), and
QuData (ANR-18-CE47-0010).
Pedro Montealegre: P.M. has received funding from FONDECYT 1230599.
Ivan Rapaport: I.R. has received funding from FB210005, BASAL funds for centers of excellence
from ANID- Chile, and FONDECYT 1220142.

1 Introduction

Distributed decision [12, 30, 31] and distributed certification [32, 43, 51] are two comple-
mentary fields of distributed computing, closely associated with distributed fault-tolerant
computing [3, 19, 50]. Both fields are addressing the problem of checking whether a dis-
tributed system is in a legal state with respect to a given specification, or not. We examine
this problem in the classical context of distributed computing in networks, under the standard

© Fedor V. Fomin, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 25; pp. 25:1–25:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Fedor.Fomin@uib.no
https://orcid.org/0000-0003-1955-4612
mailto:pierre.fraigniaud@irif.fr
https://orcid.org/0000-0003-4534-4803
mailto:p.montealegre@uai.cl
https://orcid.org/0000-0002-2508-5907
mailto:rapaport@dim.uchile.cl
https://orcid.org/0000-0002-2969-5083
mailto:Ioan.Todinca@univ-orleans.fr
https://orcid.org/0000-0002-3466-859X
https://doi.org/10.4230/LIPIcs.DISC.2024.25
https://arxiv.org/abs/2405.03321
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


25:2 Distributed Model Checking on Graphs of Bounded Treedepth

CONGEST model [60]. Recall that this model assumes networks modeled as simple connected
n-node graphs, in which every node is provided with an identifier on O(log n) bits that is
unique in the network. Computation proceeds synchronously as a sequence of rounds. At
each round, every node sends a message to each of its neighbors in the graph, receives the
messages sent by its neighbors, and performs some individual computation. A crucial point
is that messages are restricted to be of size O(log n) bits. While this suffices to transmit
an identifier, or a constant number of identifiers, transmitting large messages may require
multiple rounds, typically Θ(k/ log n) rounds for k-bit messages.

Distributed Decision

Given a boolean predicate Π on graphs, e.g., whether the graph is H-free for some fixed
graph H , a decision algorithm for Π takes as input a graph G = (V,E), and outputs whether
G satisfies Π or not. Specifically, every node v receives as input its identifier id(v), and, after
a certain number of rounds of communication with its neighbors, it outputs accept or reject,
under the constraint that G satisfies Π if and only if the output of each of the nodes v ∈ V

is accept. In other words,

G |= Π ⇐⇒ ∀v ∈ V (G), output(v) = accept.

Some predicates are easy to decide locally, i.e., in a constant number of rounds. A canonical
example is checking whether the (connected) graph G is regular, for which one round suffices.
However, other predicates cannot be checked locally, with canonical example checking whether
there is a unique node of degree 3 in the network. Indeed, checking this property requires
Ω(n) rounds in networks of diameter Θ(n), as two nodes of degree 3 may be at arbitrarily
large distances in the graph. Another example of a difficult problem is checking whether
the graph is C4-free, i.e., does not contain a 4-cycle as a subgraph, which requires Ω̃(

√
n)

rounds [13]. One way to circumvent the difficulty of local checkability, i.e., to address graph
predicates requiring a large number of rounds for being decided, is to consider distributed
certification.

Distributed Certification

A certification scheme for a boolean predicate Π is a pair prover-verifier (see [19] for more
details). The prover is a centralized, computationally unbounded, non-trustable oracle. Given
a graph G = (V,E), the prover assigns a certificate c(v) ∈ {0, 1}⋆ to each node v ∈ V . These
certificates are forged by the prover using the complete knowledge of the graph G. The
verifier is a distributed 1-round algorithm. Each node v takes as sole input its identifier id(v)
and its certificate c(v). In particular, for distributed decisions, v is unaware of the graph G.
Every node v just exchanges once its identifier and certificate with its neighbors, and then it
must output accept or reject.

The certification scheme is correct if the following two conditions hold. The completeness
condition states that if G satisfies Π, then the oracle can provide the nodes with certificates
that they all accept. The soundness condition says that if G does not satisfy Π, then no
matter the certificates assigned by the oracle to the nodes, at least one of them rejects. That
is, the role of the verifier is to check that the collection of certificates assigned to the nodes
by the prover is indeed a global proof that the graph satisfies the predicate. In other words,

G |= Π ⇐⇒ ∃c : V (G) → {0, 1}⋆ : ∀v ∈ V (G), output(v) = accept.



F. V. Fomin, P. Fraigniaud, P. Montealegre, I. Rapaport, and I. Todinca 25:3

The main measure of complexity of a certification scheme is the maximum size of the
certificates assigned by the prover to the nodes on legal instances, i.e., for graphs G satisfying
the given predicate. Ideally, to be implemented in a single round under the CONGEST model,
the certificates should be of size O(log n) bits. Interestingly, many graph properties can
be certified with such short certificates, including acyclicity [51], planarity [25], bounded
genus [17, 26], etc. On the other hand, basic graph properties require large certificates,
including diameter 2 vs. 3 (requiring Ω̃(n)-bit certificates [8]), non-3-colorability (requiring
Ω̃(n2)-bit certificates [43]), C4-freeness (requiring Ω̃(

√
n)-bit certificates [13]), etc. The

following question was thus raised, under different formulations (see, e.g., [20]): What are
the graph properties that admit certification schemes with O(log n)-bit certificates, or, to the
least, certificates of polylogarithmic size? Answering this question requires formalizing the
notion of “graph predicate”.

Monadic Second-Order Logic
Recall that, in the first-order logic (FO) of graphs, a graph property is expressed as a
quantified logical sentence whose variables represent vertices, with predicates for equality
(=) and adjacency (adj). An FO formula is therefore constructed according to the following
set of rules, where x and y are vertices, and φ and ψ are FO formulas:

x = y | adj(x, y) | φ ∨ ψ | φ ∧ ψ | ¬φ | ∃xφ | ∀xφ.

As an example, triangle-freeness can be formulated as

φ = ¬∃x1∃x2∃x3
(
adj(x1, x2) ∧ adj(x2, x3) ∧ adj(x3, x1)

)
.

The formula above assumes simple graphs (i.e., no loops nor multiple edges). If the graphs
may have loops, then one should add the predicate ¬(xi = xj) to the formula for every i ̸= j.

The monadic second-order logic (MSO) extends FO by allowing quantification on sets
of vertices and edges, with the incidence predicate inc(v, e) indicating whether vertex v

is incident to edge e, and the membership (∈) predicate. For instance, acyclicity can be
formulated as

φ = ¬∃X ̸= ∅ ∀x ∈ X ∃y1 ∈ X ∃y2 ∈ X
(
¬(y1 = y2) ∧ adj(x, y1) ∧ adj(x, y2)

)
.

Note that X ̸= ∅ can merely be written as ∃x ∈ X. Note also that acyclicity cannot be
expressed in FO as the length of the potential cycle is unbounded, from which it follows that
one cannot quantify on vertices only for expressing acyclicity, because one does not know
how many vertices should be considered. On the other hand, since FO can express properties
such as C4-freeness, which, as mentioned before, requires certificates on Ω̃(

√
n) bits, there

is no hope of establishing a meta-theorem about FO regarding compact certification in all
graphs. Nevertheless, a breakthrough in the theory of distributed certification was recently
obtained by Bousquet, Feuilloley, and Pierron [20], who showed that every MSO predicate
admits a distributed certification scheme with O(log n)-bit certificates in the family of graphs
with bounded treedepth.

Algorithmic Meta-Theorems
A vibrant line of research in sequential computing is the development of algorithmic meta-
theorems. According to Grohe and Kreutzer [45], algorithmic meta-theorems assert that
certain families of algorithmic problems, typically defined by some logical and combinatorial

DISC 2024



25:4 Distributed Model Checking on Graphs of Bounded Treedepth

conditions, can be solved efficiently under some suitable definition of this term. Such theorems
play an essential role in the theory of algorithms as they reveal a profound interplay between
algorithms, logic, and combinatorics. One of the most celebrated examples of a meta-theorem
is Courcelle’s theorem, which asserts that graph properties definable in MSO are decidable
in linear time on graphs of bounded treewidth [10]. For an introduction to this fascinating
research area, we refer to the surveys by Kreutzer [52] and Grohe [44].

Bousquet, Feuilloley, and Pierron in [20] introduced the exploration of algorithmic meta-
theorems in distributed computing. Their primary result in this direction is that any MSO
formula can be locally certified on graphs with bounded treedepth using a logarithmic
number of bits per node, which represents the golden standard in certification. This
theorem has numerous consequences for certification – for more details, we refer to [20].
Notably, the FO property C4-freeness, and the MSO property non-3-colorability, which both
necessitate certificates of polynomial size in general, can be certified with just O(log n)-bit
certificates in graphs of bounded treedepth. Bousquet et al.’s result has been extended to
more comprehensive classes of graphs, including graphs excluding a small minor [6], as well
as graphs of bounded treewidth, and graphs of bounded cliquewidth. However, this extension
comes at the cost of slightly larger certificates, of O(log2 n) bits, as seen in [34] and [33],
respectively.

With significant advances in developing meta-theorems for distributed certification, there’s
a notable absence of similar results for distributed decision. It prompts a natural question:
could such results be obtained for the round-complexity of CONGEST? More concretely,
the fundamental inquiry that remains unaddressed by Bousquet et al.’s paper, and by the
subsequent works regarding distributed certification of MSO predicates is:

Question. What is the round-complexity in CONGEST of deciding MSO formulas in
graphs of bounded treedepth?

A first step in answering this question was proposed in [59] where it is stated that, in any
graph class of treedepth at most d, for every fixed connected graph H, H-freeness can be
decided in O(1) rounds in CONGEST. In this paper, we offer a comprehensive answer to the
question. To elucidate our results, we first need to define the treedepth of a graph.

Treedepth

For any non-negative integer d, a (connected) graph G has treedepth at most d if there exists
a rooted tree T spanning the vertices of G, with depth at most d, such that, for every edge
{u, v} in G, u is an ancestor of v in T , or v is an ancestor of u in T , see Fig. 1. The treedepth
of a graph G, denoted by td(G), is the smallest d for which such a tree exists.

The class of graphs with bounded treedepth, i.e., of treedepth d for some fixed d ≥ 0, has
strong connections with minor-closed families of graphs. Specifically, for any family F of
graphs closed under taking graph minors, the graphs in F have bounded treedepth if and only
if F does not include all the paths [58]. Similarly, the graphs with bounded treedepth have a
finite set of forbidden induced subgraphs, and any property of graphs monotonic with respect
to induced subgraphs can be tested in polynomial time on graphs of bounded treedepth [58].
Computing the treedepth of a graph is NP-hard, but since treedepth is monotonic under
graph minors, it is fixed-parameter tractable (FPT) [36]. Last but not least, MSO and FO
have the same expressive power in graph classes of bounded treedepth [14].



F. V. Fomin, P. Fraigniaud, P. Montealegre, I. Rapaport, and I. Todinca 25:5

2

1

0

5

6

3

4

7

8

9

9

2

1

0

5

6

3

4

7

8

<latexit sha1_base64="TC0EmnMTOTFOVRfQqcCRa+TK09Y=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKLzwFPegxinlAEsLspDcZMju7zMwKYckfePGgiFf/yJt/4yTZgyYWNBRV3XR3+bHg2rjut5NbWl5ZXcuvFzY2t7Z3irt7dR0limGNRSJSTZ9qFFxizXAjsBkrpKEvsOEPbyZ+4wmV5pF8NKMYOyHtSx5wRo2VHm6vusWSW3anIIvEy0gJMlS7xa92L2JJiNIwQbVueW5sOilVhjOB40I70RhTNqR9bFkqaYi6k04vHZMjq/RIEClb0pCp+nsipaHWo9C3nSE1Az3vTcT/vFZigstOymWcGJRstihIBDERmbxNelwhM2JkCWWK21sJG1BFmbHhFGwI3vzLi6R+UvbOy2f3p6XKdRZHHg7gEI7BgwuowB1UoQYMAniGV3hzhs6L8+58zFpzTjazD3/gfP4AHFeNGQ==</latexit>

G :

Figure 1 Embedding of a graph G into a tree T of depth 6.

1.1 Our Results
We prove that, for every MSO formula φ, there is an algorithm A that, for every n-node
graph G, decides whether G |= φ in O(22td(G)) rounds in the CONGEST model. That is, the
round-complexity of A depends only on the treedepth of the input graph, and on the MSO
formula, i.e., it does not depend on the size n of the graph. Thus A performs a constant
number of rounds in any class of graphs with bounded treedepth. In particular, deciding
non-3-colorability can be done in O(1) rounds in graphs of bounded treedepth, in contrast to
general graphs, for which deciding non-3-colorability requires a polynomial number of rounds
by [43].

Our meta-theorem is essentially the best that one may hope regarding distributed model
checking MSO formulas in a constant number of rounds in CONGEST. Indeed, the FO
predicate “there is at least one vertex of degree > 2” requires Ω(n) rounds to be checked
in this class. Hence our theorem cannot be extended to graphs of bounded treewidth or
bounded cliquewidth, actually not even to bounded pathwidth, and not even to the class
P ∪ B where P is the set of all paths, and B is the set of all graphs composed of a path to
which is attached a claw at one of its endpoints.

We also consider distributed model checking of labeled graphs. For instance, one can
check whether a given set of vertices is a feedback vertex set, i.e., whether the graph obtained
by removing this set of vertices is acyclic. For such a predicate, it is sufficient to add a unary
predicate to the logical structure used to mark the nodes, say mark(x) = true means that
vertex x is in the set. Using this unary predicate, φ can express the fact that there are no
cycles in G passing only trough nodes x for which mark(x) = false. As another example, the
fact that a graph is properly 2-colored can be expressed using two unary boolean predicates
red and blue, as

φ =
(

∀x
(
red(x)∨blue(x)

))
∧

(
∀x, y ¬

(
adj(x, y)∧

(
(red(x)∧red(y))∨(blue(x)∧blue(y)

)))
.

Since we also deal with MSO, we can also label edges. For instance, one can check whether a
given set of edges forms a spanning tree. Indeed, it is sufficient to introduce a unary predicate
used to mark the edges: mark(e) = true means that edge e is in the set. As for feedback
vertex set, using this unary predicate, φ can express the fact that the set of marked edges is
a spanning tree (i.e., every node is incident to at least one marked edge, and any two vertices
are connected by a path of marked edges). We show that deciding MSO formulas on labeled
graphs of bounded treedepth can be done in O(1) rounds in the CONGEST model.

More generally, we also consider the optimization variants of decision problems expressible
in MSO on graphs of bounded treedepth. For instance, an independent set can be expressed
as an MSO formula with a free variable S, such as φ(S) = ∀x ∈ S ∀y ∈ S ¬adj(x, y). Then,

DISC 2024



25:6 Distributed Model Checking on Graphs of Bounded Treedepth

maxφ, i.e., maximum independent set, consists in, given any graph G = (V,E), finding the
largest set S ⊆ V such that G |= φ(S). We show that, for every MSO formula φ(S) with
free variable S ⊆ V or S ⊆ E, there is an algorithm for graphs of bounded treedepth solving
maxφ (and minφ) in a constant number of rounds in the CONGEST model. This constant is
of the form O(g(td(G), φ)) for some function g. Thanks to the expressive power of MSO, our
results yield algorithms with a constant number of rounds in the CONGEST model on graphs
of bounded treedepth for numerous popular optimization problems including minimum vertex
cover, minimum feedback vertex set, minimum dominating set, maximum independent set,
maximum induced forest, maximum clique, maximum matching, minimum spanning tree,
Hamiltonian cycle, cubic subgraph, planar subgraph, Eulerian subgraph, Steiner tree, disjoint
paths, min-cut, minor and topological minor containment, rural postman, k-colorability,
edge k-colorability, partition into k cliques, and covering by k cliques. We also extend our
results to counting problems, such as counting triangles or perfect matchings. Due to space
restriction we only present in details in this article the distributed model checking result,
for unlabeled graphs. For the optimization and counting variants, and the general case of
labeled graphs, we refer to the full paper [28].

Finally, we briefly discuss some applications of our results to much larger classes of graphs,
namely graphs of bounded expansion (see [58] for an extended introduction). Graphs of
bounded expansion include planar graphs, and more generally, all classes of graphs defined
from excluding minor. It was shown [59] that, for every class G of graphs with bounded
expansion, and every positive integer p, there is an algorithms performing in O(log n) rounds
under the CONGEST model that partitions the vertex set V of any graph G = (V,E) ∈ G into
f(p) parts V1, . . . , Vf(p) such that every collection Vi1 , . . . , Viq

of at most p parts, 1 ≤ q ≤ p,
{i1, . . . , iq} ⊆ {1, . . . , f(p)}, induces a (not necessarily connected) subgraph of G with
treedepth at most p. The function f solely depends on the considered class G of bounded
expansion. The vertex partitioning V1, . . . , Vf(p) is called a low treedepth decomposition
with parameter p. Plugging in our techniques into this framework, we show that, for every
connected graph H, H-freeness can be decided in O(log n) rounds under the CONGEST
model in any class of graphs with bounded expansion. This result was claimed in [59] with
no proofs. We provide that claim with a complete formal proof.

1.2 Other Related Work
The quest for efficient (sublinear) algorithms for solving classical graph problems in the
CONGEST model dates back to the seminal paper by Garay, Kutten and Peleg [38], where an
algorithm for constructing an MST was designed. Since then, a long series of problems have
been addressed, such as connectivity decomposition [7], tree embeddings [41] k-dominating
set [53], stiener trees [54], min-cut [40, 56], max-flow [39], shortest path [47, 55], among others.
Additionally, algorithms tailored to specific classes of networks have also been developed:
DFS for planar graphs [42], MST for bounded genus graphs [46], MIS for networks excluding
a fixed minor [9], etc.

Distributed certification is a very vivid topic, and many results have appeared since the
survey [21]. A handful of recent papers considered approximate variants of the problem,
a la property testing [15, 16, 22]. In particular, it was shown that every monotone (i.e.,
closed under taking subgraphs) and summable (i.e., stable by disjoint union) property Π
has a compact approximate certification scheme in any proper minor-closed graph class [18].
Other recent contributions dealt with augmenting the power of the verifier in certification
schemes, which includes tradeoffs between the size of the certificates and the number of
rounds of the verification protocol [24], randomized verifiers [35], quantum verifiers [29],



F. V. Fomin, P. Fraigniaud, P. Montealegre, I. Rapaport, and I. Todinca 25:7

and several hierarchies of certification mechanisms, including games between a prover and
a disprover [1, 23], interactive protocols [11, 49, 57], and even zero-knowledge distributed
certification [2], and distributed quantum interactive protocols [37].

2 Treedepth and treewidth

Throughout the paper, trees (or forests) are considered as rooted. The depth of a tree is the
number of vertices of a longest path from the root to a leaf. The depth of a forest is the
maximum depth among its trees. Let us recall the definition of the treedepth. The interested
reader can refer to the book of Nešetřil and Ossona de Mendez [58] for further insights.

▶ Definition 1 (treedepth). The treedepth of a graph G = (V,E) is the minimum depth of
a forest T = (V, F ) on the same vertex set as G, such that, for any edge {u, v} of G, one
of the endpoints is an ancestor of the other in the forest T . Such a forest T is also called
elimination forest of G.

Observe that if G is connected then the forest T in the definition above is actually a
tree. Also, Definition 1 does not require the forest T to be a subgraph of G. The following
statement is an alternative, equivalent definition for treedepth. This recursive definition
implicitly provides a recursive construction of an elimination tree.

▶ Lemma 2 ([58]). The treedepth of a graph G is:

td(G) =


1 if G has a unique vertex,
1 + minv∈V (G) td(G− v) if G is connected,
max{td(C) | C is a connected component of G} otherwise.

On the other hand, tree decompositions and treewidth of graphs were introduced by Robertson
and Seymour [61].

▶ Definition 3 (treewidth). A tree decomposition of a graph G = (V,E) is a pair (T,B)
where T = (I, F ) is a tree, and B = {Bi, i ∈ I} is a collection of subsets of vertices of G,
called bags, such that the following conditions hold:

For every vertex of G, there exists some bag containing this vertex;
For every edge e of G there is some bag containing both endpoints of e;
For every v ∈ V , the set {i ∈ I : v ∈ Bi} of bags containing v forms a connected subgraph
of T .

The width of a tree decomposition is the maximum size of a bag, minus one. The treewidth
of a graph G, denoted by tw(G), is the smallest width of a tree decomposition of G.

It is known [58] that the treedepth of a graph is at least its treewidth. Given an elimination
tree T of a graph G, we can define a canonical tree decomposition associated to this same
tree, such that the width of the decomposition corresponds to the depth of T , minus one.
The following lemma is a straightforward consequence of the definitions of elimination trees
and of tree decompositions.

▶ Lemma 4 (canonical tree decomposition). Let T = (V, F ) be an elimination tree of depth d
of a graph G = (V,E). Let us associate to each node u of T a bag B(u) containing u and all
the ancestors of u in T . Then T = (V, F ), and the corresponding set of bags (Bu)u∈V , form
a tree-decomposition of G, of width d− 1.

DISC 2024



25:8 Distributed Model Checking on Graphs of Bounded Treedepth

For instance, the treedepth of an n-vertex path Pn is exactly ⌈log(n+ 1)⌉ (see, e.g., [58]).
The treedepth of a graph does not increase when we delete some of its edges or vertices. Thus
graphs of treedepth d have no paths on 2d vertices. This observation yields the following
lemma.

▶ Lemma 5. Let T = (V, F ) be an elimination tree of a graph G = (V,E) with F ⊆ E. Then
the depth of T is at most 2td(G).

Proof. Let d = td(G). Assume, for the purpose of contradiction, that T has depth larger
than 2d. It follows that the longest path P in T from its root to a leaf contains at
least 2d vertices. The path P is also a path in G, so the treedepth of P is at most the
treedepth of G, i.e., at most d. This is a contradiction with the fact that, for n-node paths,
td(Pn) = ⌈log(n+ 1)⌉. ◀

3 Tree decompositions and w-terminal recursive graphs

Courcelle’s theorem [10] states that any property expressible in MSO can be decided in linear
(sequential) time on graphs of bounded treewidth. We use an alternative proof of Courcelle’s
theorem, by Borie, Parker, and Tovey [5]. Indeed, this proof provides us with an explicit
dynamic programming strategy, which will be used in our distributed protocol.

Graphs of bounded treewidth can also be defined recursively, based on a graph grammar.
Let w be a positive integer. A w-terminal graph is a triple (V,W,E) where G = (V,E) is a
graph, and W ⊆ V is a totally ordered set of at most w distinguished vertices. Vertices of W
are called the terminals of the graph, and we denote by τ(G) the number of its terminals.
As the terminal set W is totally ordered, we can refer to the rth terminal, for 1 ≤ r ≤ w.
Moreover, since vertices are given distinct identifiers in CONGEST, one can view W as
ordered by these identifiers.

The class of w-terminal recursive graphs is defined, starting from w-terminal base graphs,
by a sequence of compositions, or gluings. A w-terminal base graph is a w-terminal graph
of the form (V,W,E) with W = V . A composition f acts on two1 w-terminal graphs, and
produces a new w-terminal graph, as follows (see Figure 2 for an example2, for w = 2).

The graph G = f(G1, G2) is obtained by, first, making disjoint copies of the two graphs
G1 and G2, and, second, “gluing” together some terminals of G1 and G2. In the gluing
operation, each terminal of G1 is identified with at most one terminal of G2. Formally, the
gluing performed by f is represented by a matrix m(f) having τ(G) ≤ w rows, and two
columns, with integer entries in {0, . . . , τ(G)}. At row r of the matrix, mr,c(f) indicates
which terminal of each graph Gc, c ∈ {1, 2} is identified to the rth terminal of graph G.
If mr,c(f) = 0, then no terminal of Gc is identified to terminal r of G (in particular, if
mr,1(f) = mr,2(f) = 0, then the rth terminal of G is a new vertex; Nevertheless, this
situation will not occur in our construction). Every terminal of Gc is identified to at most
one terminal of G, i.e., each non-zero value in {1, . . . , τ(Gc)} appears at most once in the
column c of m(f).

A simple but crucial observation is that the number of possible different matrices, and
hence of different composition operations f , is bounded by a function of w. Indeed the size
of each matrix is at most 2w, and each entry of the matrix is an integer between 0 and w.

1 The definition of [5] considers composition operations of arbitrary arity, i.e., they consider gluing on
three or more graphs simultaneously, and they also consider a special gluing, on a single graph which
allows to “forget” some terminals. Technically, all these operations can be replaced by operations of
arity 2, and we only use arity 2 for the sake of simplifying the presentation.

2 The figure is borrowed from [33] with the agreement of the authors.



F. V. Fomin, P. Fraigniaud, P. Montealegre, I. Rapaport, and I. Todinca 25:9

f(·, ·)

f(·, ·)

a b
1
c

2
d

a
1
b

2
c

1
a

2
b

1
b

2
c

1
c

2
d

m(f) =
(

2 1
0 2

)

Figure 2 Paths as 2-terminal recursive graphs.

Figure 3 Tree-decompositions: graphs Gu, G=i
u and G≤i

u .

The class of w-terminal recursive graphs is exactly the class of graphs of treewidth at
most w − 1 (see, e.g., Theorem 40 in [4]).

Let us briefly describe how a tree-decomposition of width w − 1 of a graph G can be
transformed into a description of G as a w-terminal recursive graph. This construction
will be crucial for efficiently deciding MSO properties of graph G. Let T = (I, F ) be a
tree-decomposition of G = (V,E) with bags of size at most w. The terminals correspond to
the root bag. For every node u of T , we use the following notations, depicted in Figure 3:

Tu is the subtree of T rooted at u;
Bu is the bag of node u, and Gbase

u = (G[Bu], Bu) is the w-terminal recursive base graph
induced by bag Bu;
Vu is the union of all bags of Tu, and Gu = (G[Vu], Bu) is the w-terminal graph induced
by Vu, with Bu as set of terminals.

Let us now show that Gu is indeed a w-terminal recursive graph. This is clear when u is
a leaf, since, in this case, Gu = Gbase

u is a base graph. Assume that u is not a leaf, and let
v1, . . . , vq be the children of node u in T . The ordering of the children is arbitrary, but fixed.
Let us introduce two new families of w-terminal recursive graphs as follows. Both are having
Bu as set of terminals, and, for every i ∈ {1 . . . , q}:

G=i
u = G[Bu ∪ Vvi

], and
G≤i

u = G[Bu ∪ Vv1 ∪ · · · ∪ Vvi
].

DISC 2024



25:10 Distributed Model Checking on Graphs of Bounded Treedepth

Observe that G=i
u is obtained by gluing Gvi

with the base graph Gbase
u . More precisely,

G=i
u = f(Bvi

,Bu)(Gvi , G
base
u ), (1)

where the gluing operation f(Bvi , Bu) glues the terminals of Bvi ∩Bu of Gvi to the corre-
sponding terminals of Bu, and the new set of terminals is Bu. Also, for all i ∈ {1, . . . , q − 1},
G≤i+1

u is obtained by gluing G≤i
u and G=i+1

u using the gluing function f(Bu,Bu) (which is the
identity function on |Bu| terminals), that is:

G≤i+1
u = f(Bu,Bu)(G≤i

u , G=i+1
u ). (2)

By construction, we get Gu = G≤q
u .

4 MSO logic and Courcelle’s theorem

Recall that, using monadic second-order (MSO) logic formulas on graphs, we can express
graph properties such as “G is not 3-colorable” or “G contains no triangles”. In order to
solve optimization problems, we also consider MSO formulas with a free variable. That is,
we consider formulas of the form φ(S) where S is a set of vertices, or a set of edges. The
corresponding optimization problem aims at finding a set S with maximum (or minimum,
depending on the context) size satisfying G |= φ(S). We may even assume that the vertices,
or edges of the input graph G = (V,E) have polynomial weights, that is the weight assignment
w : V ∪ E → Z satisfies that, for every x ∈ V ∪ E, w(x) can be encoded with O(log n) bits.
The problem maxφ then consists in computing the set S with maximum weight satisfying
G |= φ(S). In this framework we can express problems like maximum (weighted) independent
set, minimum (weighted) dominating set, or minimum-weight spanning tree (MST).

4.1 Regular Predicates, Homorphism Classes, and Composition
To start, let us first consider closed formulae only, i.e., with no free variable, and formulas
with just one free (edge or vertex) set variable. (Further extensions are discussed in Section 6,
with applications to labeled graphs and counting.) Using closed formulae, we can refer
to graph predicates P(G), and, using formulas with free variables, we can refer to graph
predicates P(G,X), where X denotes a subset of vertices or a subset of edges of G. For each
possible assignment of X with corresponding values, P is either true or false.

Any composition operation f over two w-terminal recursive graphs G1 = (V1,W1, E1),
and G2 = (V2,W2, E2) naturally extends to a composition over pairs (G1, X1), and (G2, X2).
If G = f(G1, G2), we denote by ◦f the composition over pairs. More precisely,

◦f

(
(G1, X1), (G2, X2)

)
= (G,X),

the operation being valid only under some specific conditions. Let us consider the case when
X1 and X2 are vertex-set variables. For each terminal t of G, if terminals from both G1 and
G2 were mapped to t, say, terminals t1 ∈ W1 and t2 ∈ W2, then either t1 ∈ X1 and t2 ∈ X2,
or t1 ̸∈ X1 and t2 ̸∈ X2. The set X is interpreted as the union of X1 and X2, by identifying
pairs of terminal vertices t1 ∈ X1 and t2 ∈ X2 that have been mapped on a same terminal
of G. For edge-sets, the set X can also be seen as the union of two sets X1 and X2, up to
gluing the vertices specified by f . We refer to [5] for a description of the gluing operation,
and of the interpretation of the values of the variables.

▶ Definition 6 (regular predicate). A graph predicate P(G,X) is regular if, for any value w,
we can associate to w

a finite set C of homomorphism classes,



F. V. Fomin, P. Fraigniaud, P. Montealegre, I. Rapaport, and I. Todinca 25:11

an homomorphism function h, assigning to each w-terminal recursive graph G, and to
any subset X of vertices or edges of G, a class h(G,X) ∈ C, and
an update function ⊙f : C × C → C for each composition operation f ,

such that:
1. If h(G1, X1) = h(G2, X2) then P(G1, X1) = P(G2, X2);
2. For any two w-terminal recursive graphs G1 and G2, and any two sets X1 and X2,

h
(

◦f

(
(G1, X1), (G2, X2)

))
= ⊙f

(
h(G1, X1), h(G2, X2)

)
.

A class c ∈ C is said to be an accepting class if there exists (G,X) such that h(G,X) = c,
and P(G,X) is true. By definition, the predicate P holds for every (G′, X ′) such that
h(G′, X ′) = c. A non accepting class c is called a rejecting class. The same definitions applies
to predicates P(G), with no free variables.

Remark. Without loss of generality, we may assume that, in Definition 6, the class c =
h(G,X) with G = (V,W,E) encodes the intersection of X with G[W ]. Indeed, since W is of
constant size, if X is a vertex-set, then we can add the set of all the ranks of the elements in
Xj ∩W , with respect to the totally ordered set W , to the class c. And if Xj is an edge-set,
then we can store each edge of Xj contained in G[W ] as the pair of ranks of its endpoints.
In particular, we can assume that we are given a function Selected(c,W ) which, given a class
c, and a set of terminals W , returns the unique intersection of X with the vertices, or the
edges, of G[W ].

▶ Theorem 7 ([5]). Any predicate P(G,X) expressible by an MSO formula φ(X) is regular.
Moreover, given the formula φ(X) and a parameter w, one can compute the set of classes C, the
update functions ⊙f over all possible composition operations f , as well as the homomorphism
classes h(G,X) for all base graphs G, and all possible values of variable X. (The same holds
for predicates P(G) corresponding to closed formulas φ.)

Let us emphasize that the width parameter w, and the formula φ in Theorem 7 are
constants. Thereofore, the set of homomorphism classes C is of constant size, and can be
computed, as well as functions ⊙f and homomorphism classes of base graphs, in constant
time. This constant just depends on w and on φ.

4.2 Sequential Model-Checking and optimization
We have all ingredients to describe the sequential model-checking algorithm on graphs of
bounded treewidth, that we will later use for designing our distributed protocol. In a nutshell,
the algorithm proceeds by dynamic programming, from the leaves of the decomposition-tree
to the root. When considering a node u, the program deals with the graph Gu induced
by all bags in the subtree rooted at u, which is viewed as a w-terminal recursive graph
with labels Bu. The program computes the homomorphism class of h(Gu) using merely the
homomorphism classes of its children, the bags of its children, and the subgraph of G induced
by the bag of u.

▶ Lemma 8 (bottom-up decision). Let P(G) be a regular predicate on graphs, corresponding
to a formula φ with no free variables. Let G be a graph, and let T = (I, F ) be a tree-
decomposition of G with bags {Bu | u ∈ I}. Let u be a node of the tree decomposition, with
children v1, . . . , vq for q ≥ 0. The homomorphism class of h(Gu) can be computed using only
Gbase

u , the values of Bvi
and h(Gvi

) for all i ∈ {1, . . . , q}.

DISC 2024



25:12 Distributed Model Checking on Graphs of Bounded Treedepth

Proof. Observe that h(Gbase
u ) can be computed directly by Theorem 7. In particular this

settles the case when u is a leaf. If u is an internal node, then, for each i = 1, . . . , q, we
can compute h(G=i

u ) using Bvi
, Bu, h(Gvi

) and h(Gbase
u ) as follows. By Equation 1, we have

G=i
u = f(Bvi

,Bu)(Gvi , G
base
u ). Since Bvi and Bu are known, one can construct the function

f(Bvi
,Bu), and, thanks to Theorem 7, one can retrieve the function ⊙f(Bvi

,Bu) . By Definition 6,
h(G=i

u ) = ⊙f(Bvi
,Bu)(h(Gvi

), h(Gbase
u )). Since the parameters on the right-hand side of the

equality are known, one can compute h(G=i
u ).

Let us now show how to compute the values h(G≤i
u ). For i = 1, G≤1

u = G=1
u , and thus

h(G≤1
u ) = h(G=1

u ). For every i ≥ 2, one can compute h(G≤i
u ) using Bu, h(G≤i−1

u ), and
h(G=i

u ). Indeed, by Equation 2, G≤i
u = f(Bu,Bu)(G≤i−1

u , G=i
u ), so again we have h(G≤i

u ) =
⊙f(Bu,Bu)(h(G≤i−1

u ), h(G=i
u )), and all parameters on the right-hand side have been computed

previously.
Eventually, since Gu = G≤q

u , we get h(Gu) = h(G≤q
u ). ◀

Algorithm 1 simultaneously presents the model-checking of regular predicates on graphs,
and the optimization protocol for predicates on graphs and sets.

For the decision problem, we simply compute bottom-up, for each node u, the class of
h(Gu) using Lemma 8. At the root r, the algorithm accepts if h(Gr) is an accepting class.

Algorithm 1 Sequential decision for regular property P on graph G.

Require: tree decomposition T = (VE , FT ) of width w − 1 of G ; formula φ and the
corresponding homomorphism classes C, homomorphism function h on base graphs,
composition functions ⊙f ▷ See Theorem 7

1: Bottom-up phase on tree T , computes h(Gu) for each node u :
2: for each node u of T from the bottom to the root do
3: let v1, . . . , vq be the children of u in T ▷ These nodes have been treated before u
4: Compute h(Gu) from Gbase

u , Bvi
and h(Gvi

), 1 ≤ i ≤ q using Lemma 8
5: end for

6: Decision at the root r :
7: Return true if h(Gr) is an accepting class, otherwise return false.

A similar result can be obtained for regular predicates P(G,X), over (polynomially
weighted) graphs and vertex sets. In order to compute the maximum or minimum weight
set X such that P(G,X) holds, we can compute by dynamic programming, at each node u
of the decomposition tree, a table OPT(Gu) with |C| entries, one for each homomorphism
class c ∈ C of P , where OPT(Gu)[c] corresponds to the optimum size of a partial solution set
Xu such that P(Gu, Xu) = c. This solution Xu is obtained by glueing partial solutions over
the children nodes of u, and function Selected is used to avoid overcounting vertices in the
intersection of partial solutions; see the full version of the paper [28] for complete details.

5 Distributed construction of the elimination tree

Our CONGEST protocol constructing an elimination tree of depth smaller than 2d for graphs
of treedepth at most d is depicted in Algorithm 2. A similar approach was previously used
in in [59] for so-called small treedepth decompositions (see also Section 7 of this article).



F. V. Fomin, P. Fraigniaud, P. Montealegre, I. Rapaport, and I. Todinca 25:13

Algorithm 2 CONGEST algorithm computing an elimination tree of G in O(22d) rounds.

Require: Protocol leader(G = (V,E), U) with a set U ⊆ V of distinguished vertices (i.e.,
each vertex knows whether it belongs to U). After O(diam(G)) CONGEST rounds, each
vertex u will know leader(u), the minimum identifier in the component of G[U ] containing
u.

1: Apply leader on all vertices of G
2: Let r be the unique node such that r = leader(r) ▷ Unique since G is connected
3: Set parent(r) = r ▷ r is the root of the tree
4: Mark vertex r ▷ Marked vertices are those already placed in the tree
5: Set depth(r) = 1
6: for step i = 2 to D = 2d − 1 do
7: // At step i we identify the nodes of T of depth i

8: Apply leader on all unmarked vertices of G ▷ O(2d) rounds
9: Each unmarked vertex u broadcasts (leader(u), u) to its neighbours ▷ One round

10: for each marked vertex v of depth i do ▷ All in a same round
11: for each ℓ among values leader(u) received by v do
12: v picks the corresponding u(ℓ) of minimum id ▷ u(ℓ) is a new node of depth i

13: v adds u(ℓ) to the list of its children
14: v sends to u(ℓ) a message with its id indicating that it becomes its parent.
15: end for
16: end for
17: for each vertex u that receives such a message from some v do ▷ All in a same round
18: u sets parent(u) = v, depth(u) = i and marks itself
19: end for
20: end for
21: if some vertex u is still unmarked then
22: u rejects because td(G) > d ▷ G contains a path with more than D vertices
23: end if

▶ Lemma 9. Let G = (V,E) be the (connected) input network, and let d ≥ 1 be an integer.
There exists an algorithm performing in O(22d) rounds in CONGEST that outputs either an
elimination tree T = (T, F ) of G with depth at most 2d, or reports that td(G) > d. In the
former case, each node u ∈ V knows its parent and its children in the tree T at the end of
the algorithm, as well as the depth of T .

Proof. Algorithm 2 constructs an elimination tree following the same approach as Lemma 2,
in a greedy manner: in a nutshell, it computes a depth-first search tree of G, heavily relying
on the fact that, if G is of treedepth at most d, then all its paths are of length at most
2d. Since G is connected, it starts with a root vertex v = r (chosen arbitrarily), and then
constructs elimination trees of G∖v, by treating each component separately. The components
of G∖ v are identified by their leader with the smallest node’s identifier of the component.
Each unmarked node eventually knows its leader (Instruction 8). For a component with
leader ℓ, we choose as root of the component a vertex that is adjacent to v (Instruction 12).
In particular, every edge of the tree is also an edge of G (see Instruction 14).

The construction preserves the following invariant. The tree constructed after step i is
an elimination tree of the subgraph induced by the marked vertices. Moreover, for each
connected component of unmarked vertices, its outgoing edges are solely incident to a path
from the root and a vertex v of depth i. In particular, at the end, T is an elimination tree

DISC 2024



25:14 Distributed Model Checking on Graphs of Bounded Treedepth

of G. Furthermore, T is a subtree of G. Therefore, by Lemma 5, if td(G) ≤ d then the
depths of T is smaller than 2d as requested, and the algorithm marks all vertices in less
than 2d phases. Consequently, if some vertices remain unmarked after this many rounds
(Instruction 21), we correctly assert that td(G) > d.

Regarding the round-complexity, observe that, at each step, there is a call to Algorithm
leader on the set of unmarked nodes (see, e.g., [48] for a detailed description of a leader-
election algorithm). Its round complexity is O(diam(G)). The diameter of G is O(2td(G)),
and thus is it at most O(2d) (we can adapt algorithm leader such that, if it does not succeed
in O(2d) rounds, then it rejects, which is correct as, in this case, td(G) > d). ◀

▶ Lemma 10. Let G = (V,E) be the input network, and let us assume that an elimination
tree T = (F, V ) of depth smaller than 2d has been constructed as in Lemma 9. There is a
CONGEST algorithm constructing the canonical tree decomposition (T, (Bu)u∈V ) in O(2d)
rounds. At the end of the algorithm, each node u knows its bag Bu as well as the graph G[Bu]
induced by the bag.

Proof. The algorithm proceeds top-down. For each round i = 1, . . . , D = 2d − 1, every node
u at depth i computes Bu and G[Bu]. Observe that when u is the root, Bu is a singleton so
G[Bu] is trivial. If u is not the root, then u has received Bv and G[Bv] from its parent v.
Observe that Bu = Bv ∪ {u} and the edges of G[Bu] are the edges of G[Bv], plus the edges
incident to u. Therefore, node u is able to compute the information from its parent, and to
transmit it to its children. ◀

6 Distributed model checking and optimization

We have now all ingredients to prove our main result.

▶ Theorem 11 (Distributed decision and optimization).
For any closed MSO formula φ, there exists an algorithm which, for any n-node graph G,
and any d ≥ 0, decides whether G |= φ, or reports “large treedepth” if td(G) > d, running
in O(22d) rounds in the CONGEST model.
For any MSO formula φ(S) with a free variable S representing a vertex-set, or an edge-set,
there exists an algorithm which, for any n-node graph G, and any d ≥ 0, selects a set
S of maximum weight satisfying G |= φ(S), or reports “large treedepth” if td(G) > d,
running in g(d, φ) rounds in the CONGEST model for some function g.

Proof. By Lemmas 9 and 10, one can construct a canonical tree decomposition T = (V, F )
of G = (V,E), with bags {Bu | u ∈ V } of width at most 2d (or correctly reject because
td(G) > d), in O(22d) rounds. Moreover each node u knows its parent parent(u), its bag Bu,
the graph G[Bu], and its depth in T . By construction, the tree T is a subgraph of G. It
remains to show that, based on these elements, one can implement the sequential algorithm
(cf. Algorithm 1) in CONGEST.

Let us first consider model-checking of a closed formula φ. We describe how the bottom-up
phase, and the decision at the root in Algorithm 1 can be implemented in depth(T ) rounds.
Let us consider all steps j ∈ {1, . . . , depth(T )}, where each step consists of a single round.
At step j, all nodes u of depth k = depth(T ) − j + 1 can compute the homomorphism
classes h(Gu) in parallel (k decreases from depth(T ) to 1), and can send the results of this
computation to their parents. Indeed, if u of depth k is a leaf, then it has all information
needed to compute h(Gu) already, because it only needs to know graph Gbase

u = G[Bu] (see
Instruction 4 of Algorithm 1, and Lemma 8). If u it is not a leaf, then it also needs the bags



F. V. Fomin, P. Fraigniaud, P. Montealegre, I. Rapaport, and I. Todinca 25:15

Bvi , and the homomorphism classes h(Gvi) from all its children vi, {1, . . . , q}. But, at step
j, node u has precisely already received these information from its children, who have sent
them at the previous step j − 1. The decision at the root can be performed at round 1. The
root accepts or rejects depending on its homomorphism class, as in Algorithm 1, and all
other nodes accept. Therefore, if G |= S, then all nodes accept, otherwise the root rejects.
Note that each message consists of a homomorphism class, thus the size of the messages
is a constant. More precisely, messages are of size log |C| bits, where C denotes the set of
homomorphism classes for property φ and treedepth at most 2d.

For the optimization version, due to space restriction the details are given in the full
version [28]. In a nutshell, the bottom up phase computes at each node u a table OPT(Gu)
of size C which, for each homomorphism class c ∈ C, stores the size of the optimal partial
solution Su corresponding to that class. Therefore the round complexity depends on the size
of this table OPT, which is upper bounded by some function g depending on d and formula φ.
A top-down phase is needed in order to mark the vertices of the global optimal solution. ◀

7 Applications to H-freeness for graphs of bounded expansion

For the many alternative definitions of graphs of bounded expansion, we refer to the book of
Nešetřil and Ossona de Mendez in [58]. In terms of applications, we simply recall that the
class of planar graphs, and, more generally, every class of graphs excluding a fixed minor,
are classes of graphs of bounded expansion. It is known that graphs of bounded expansion
admit so-called low treedepth decompositions.

▶ Theorem 12 ([58]). Let G be a class of graphs of bounded expansion. There is a function
f : N → N such that, for every integer p > 0, and every graph G = (V,E) ∈ G, the vertex set
of G can be partitioned into at most f(p) parts V1, . . . , Vf(p) such that the union of any q
parts, 1 ≤ q ≤ p, induces a subgraph of G with treedepth at most q.

A partition satisfying the property of Theorem 12 is called a low treedepth decomposition
of G for parameter p. Interestingly, low treedepth decompositions can be efficiently computed
in CONGEST, i.e., each vertex can compute the index i ∈ {1, . . . , f(p)} of the part to which
it belongs.

▶ Theorem 13 ([59]). For every graph class G with bounded expansion, and every positive
integer p, a low treedepth decomposition of G for parameter p can be computed in O(log n)
rounds in CONGEST.

The constant hidden in the big-O notation in the statement of Theorem 13 depends
on the class G and on the parameter p, and it is quite huge. The proof of Theorem 13 is
sophisticated, but the algorithm is actually quite simple. It is merely based on the fact
that graphs with bounded expansion have bounded degeneracy, and on the use of standard
distributed tools for approximating the degeneracy of a graph in CONGEST. Combining
Theorem 11 with Theorem 13, we can establish the following.

▶ Corollary 14. Let G be a class of graphs with bounded expansion, and let H be a connected
graph. Deciding H-freeness for graphs in G can be achieved O(log n) rounds under the
CONGEST model.

Proof. The algorithm works as follows. Let p be the number of vertices of H . First, compute
a low treedepth decomposition V1, . . . , Vf(p) of the input graph G = (V,E) into f(p) parts
for parameter p using Theorem 13. Then, for every non-empty set I ⊆ [f(p)] with |I| ≤ p,

DISC 2024



25:16 Distributed Model Checking on Graphs of Bounded Treedepth

let GI = G[∪i∈IVi] be the graph induced by the parts Vi, i ∈ I. Note that there are at most(
f(p)

p

)
such subsets I, that is, a constant number of choices for I. Also observe that if a

copy of H exists in graph G, then this copy of H belongs to at least one of the graphs GI .
Indeed, this holds for every set I of at most p parts Vi such that each of the p vertices of the
copy of H is contained in some part Vi. Informally, we “guess” the colors of the copies of
H, and I must contain these at most p colors. It is therefore sufficient to run the algorithm
in Theorem 11 on each graph GI in parallel, and to reject if one of the parallel executions
finds a copy of H. This is doable because (1) GI is of treedepth at most p, (2) if a copy
of H exists, then it will be found in a connected component of GI , thanks to the fact that
H is connected, and (3) the property “GI is H-free” can be expressed as an MSO formula
(actually, even as an FO formula), with p variables, one for each vertex of H. For instance,
for a graph H = (VH , EH) with VH = {1, 2, . . . , p}, we can use the formula

φH = ¬∃x1, x2, . . . , xp

 ∧
{i,j}∈EH

adj(xi, xj)

 ∧

 ∧
{i,j}/∈EH

¬adj(xi, xj)

 .

Thus the algorithm rejects if and only if the input graph contains a copy of H , as desired. ◀

In particular, Corollary 14 proves that H-freeness can be solved in O(log n) rounds in
planar graphs under CONGEST. In contrast, for arbitrary graphs, even C4-freeness requires
Ω(

√
n) rounds, and, for every p ≥ 2, there are O(p)-vertex graphs H for which H-freeness

requires Ω(n2−1/p) rounds [27]. Note that H-freeness can be considered in the usual sense
(i.e., the input graph does not contain any copy of H as an induced subgraph), but also in
the mere sense that there are no copies of H as a (non necessarily induced) subgraphs, by a
straightforward adaptation of the MSO formula describing the problem.

8 Conclusion

In this paper, we established a meta-theorem about MSO formulas on graphs with bounded
treedepth within the CONGEST model. Treedepth plays a fundamental role in the theory of
sparse graphs of Nešetřil and Ossona de Mendez [58]. In particular, decomposing a graph
in graphs of bounded treedepth is the crucial step in deriving a linear-time model-checking
algorithm for FO on graphs of bounded expansion in the sequential computational model.
Graphs of bounded expansion contain bounded-degree graphs, planar graphs, graphs of
bounded genus, graphs of bounded treewidth, graphs that exclude a fixed minor, etc. Model-
checking for FO on graphs of bounded expansion cannot be achieved in the CONGEST
model since, as we already mention, checking an FO predicate as simple as “there is at least
one vertex of degree > 2” requires Ω(n) rounds in n-node trees. Nevertheless, there might
exist some fragments of FO that could be tractable on graphs of bounded expansion in the
distributed setting. It would be interesting to identify the exact boundaries of intractability
in this context, regarding both distributed decision, and distributed certification. An initial
step in this direction was taken by Nešetřil and Ossona de Mendez in [59], resulting in a
distributed algorithm for computing a low treedepth decomposition of graphs of bounded
expansion, running in O(log n) rounds under CONGEST. As we illustrated, this results allows
to efficiently decide FO-expressible decision problems (such as H-freeness, for H connected)
for classes of graphs with bounded expansion, in O(log n) rounds. We restate the open
question of [59]: Given a local FO formula φ(x), i.e., a formula where φ(x) depends on a
fixed-radius neighborhood of vertex x only, can we mark all vertices satisfying φ in O(log n)
rounds?



F. V. Fomin, P. Fraigniaud, P. Montealegre, I. Rapaport, and I. Todinca 25:17

References
1 Alkida Balliu, Gianlorenzo D’Angelo, Pierre Fraigniaud, and Dennis Olivetti. What can be

verified locally? J. Comput. Syst. Sci., 97:106–120, 2018. doi:10.1016/J.JCSS.2018.05.004.
2 Aviv Bick, Gillat Kol, and Rotem Oshman. Distributed zero-knowledge proofs over networks.

In 33rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2426–2458, 2022.
doi:10.1137/1.9781611977073.97.

3 Lélia Blin, Laurent Feuilloley, and Gabriel Le Bouder. Optimal space lower bound for
deterministic self-stabilizing leader election algorithms. Discret. Math. Theor. Comput. Sci.,
25:1–17, 2023. doi:10.46298/DMTCS.9335.

4 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

5 Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of linear-time
algorithms from predicate calculus descriptions of problems on recursively constructed graph
families. Algorithmica, 7(5&6):555–581, 1992. doi:10.1007/BF01758777.

6 Nicolas Bousquet, Laurent Feuilloley, and Théo Pierron. Local certification of graph decompo-
sitions and applications to minor-free classes. In 25th International Conference on Principles
of Distributed Systems (OPODIS), volume 217 of LIPIcs, pages 22:1–22:17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.OPODIS.2021.22.

7 Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. Distributed connectivity decompo-
sition. In Proceedings of the 2014 ACM symposium on Principles of distributed computing,
pages 156–165, 2014. doi:10.1145/2611462.2611491.

8 Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes. Theor.
Comput. Sci., 811:112–124, 2020. doi:10.1016/J.TCS.2018.08.020.

9 Yi-Jun Chang. Efficient distributed decomposition and routing algorithms in minor-free
networks and their applications. In Proceedings of the 2023 ACM Symposium on Principles of
Distributed Computing, pages 55–66, 2023. doi:10.1145/3583668.3594604.

10 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

11 Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. Trade-offs in distributed interactive
proofs. In 33rd International Symposium on Distributed Computing (DISC), volume 146 of
LIPIcs, pages 13:1–13:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPICS.DISC.2019.13.

12 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM J. Comput., 41(5):1235–1265, 2012. doi:10.1137/
11085178X.

13 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In 33rd ACM Symposium on Principles of Distributed Computing (PODC), pages
367–376, 2014. doi:10.1145/2611462.2611493.

14 Michael Elberfeld, Martin Grohe, and Till Tantau. Where first-order and monadic second-order
logic coincide. ACM Trans. Comput. Log., 17(4):25, 2016. doi:10.1145/2946799.

15 Gábor Elek. Planarity can be verified by an approximate proof labeling scheme in constant-time.
J. Comb. Theory, Ser. A, 191:105643, 2022. doi:10.1016/J.JCTA.2022.105643.

16 Yuval Emek, Yuval Gil, and Shay Kutten. Locally restricted proof labeling schemes. In 36th
International Symposium on Distributed Computing (DISC), volume 246 of LIPIcs, pages
20:1–20:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.
DISC.2022.20.

17 Louis Esperet and Benjamin Lévêque. Local certification of graphs on surfaces. Theor. Comput.
Sci., 909:68–75, 2022. doi:10.1016/J.TCS.2022.01.023.

18 Louis Esperet and Sergey Norin. Testability and local certification of monotone properties
in minor-closed classes. In 49th International Colloquium on Automata, Languages, and

DISC 2024

https://doi.org/10.1016/J.JCSS.2018.05.004
https://doi.org/10.1137/1.9781611977073.97
https://doi.org/10.46298/DMTCS.9335
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1007/BF01758777
https://doi.org/10.4230/LIPICS.OPODIS.2021.22
https://doi.org/10.1145/2611462.2611491
https://doi.org/10.1016/J.TCS.2018.08.020
https://doi.org/10.1145/3583668.3594604
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.4230/LIPICS.DISC.2019.13
https://doi.org/10.4230/LIPICS.DISC.2019.13
https://doi.org/10.1137/11085178X
https://doi.org/10.1137/11085178X
https://doi.org/10.1145/2611462.2611493
https://doi.org/10.1145/2946799
https://doi.org/10.1016/J.JCTA.2022.105643
https://doi.org/10.4230/LIPICS.DISC.2022.20
https://doi.org/10.4230/LIPICS.DISC.2022.20
https://doi.org/10.1016/J.TCS.2022.01.023


25:18 Distributed Model Checking on Graphs of Bounded Treedepth

Programming (ICALP), volume 229 of LIPIcs, pages 58:1–58:15. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ICALP.2022.58.

19 Laurent Feuilloley. Introduction to local certification. Discret. Math. Theor. Comput. Sci.,
23(3):1–23, 2021. doi:10.46298/DMTCS.6280.

20 Laurent Feuilloley, Nicolas Bousquet, and Théo Pierron. What can be certified compactly?
compact local certification of MSO properties in tree-like graphs. In 41st ACM Symposium on
Principles of Distributed Computing (PODC), pages 131–140, 2022. doi:10.1145/3519270.
3538416.

21 Laurent Feuilloley and Pierre Fraigniaud. Survey of distributed decision. Bull. EATCS, 119,
2016. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/411.

22 Laurent Feuilloley and Pierre Fraigniaud. Error-sensitive proof-labeling schemes. J. Parallel
Distributed Comput., 166:149–165, 2022. doi:10.1016/J.JPDC.2022.04.015.

23 Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen. A hierarchy of local decision. Theor.
Comput. Sci., 856:51–67, 2021. doi:10.1016/J.TCS.2020.12.017.

24 Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry. Redun-
dancy in distributed proofs. Distributed Comput., 34(2):113–132, 2021. doi:10.1007/
S00446-020-00386-Z.

25 Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric Rémila, and Ioan
Todinca. Compact distributed certification of planar graphs. Algorithmica, 83(7):2215–2244,
2021. doi:10.1007/S00453-021-00823-W.

26 Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric Rémila, and
Ioan Todinca. Local certification of graphs with bounded genus. Discret. Appl. Math., 325:9–36,
2023. doi:10.1016/J.DAM.2022.10.004.

27 Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. Possibilities and impossibilities
for distributed subgraph detection. In Christian Scheideler and Jeremy T. Fineman, editors,
Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures, SPAA
2018, Vienna, Austria, July 16-18, 2018, pages 153–162. ACM, 2018. doi:10.1145/3210377.
3210401.

28 Fedor V. Fomin, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca.
Distributed model checking on graphs of bounded treedepth. CoRR, abs/2405.03321, 2024.
doi:10.48550/arXiv.2405.03321.

29 Pierre Fraigniaud, François Le Gall, Harumichi Nishimura, and Ami Paz. Distributed quantum
proofs for replicated data. In 12th Innovations in Theoretical Computer Science Conference
(ITCS), volume 185 of LIPIcs, pages 28:1–28:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPICS.ITCS.2021.28.

30 Pierre Fraigniaud, Mika Göös, Amos Korman, Merav Parter, and David Peleg. Ran-
domized distributed decision. Distributed Comput., 27(6):419–434, 2014. doi:10.1007/
S00446-014-0211-X.

31 Pierre Fraigniaud, Mika Göös, Amos Korman, and Jukka Suomela. What can be decided
locally without identifiers? In 32nd ACM Symposium on Principles of Distributed Computing
(PODC), pages 157–165, 2013. doi:10.1145/2484239.2484264.

32 Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for local
distributed computing. J. ACM, 60(5):35:1–35:26, 2013. doi:10.1145/2499228.

33 Pierre Fraigniaud, Frédéric Mazoit, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca.
Distributed certification for classes of dense graphs. In 37th International Symposium on
Distributed Computing (DISC), volume 281 of LIPIcs, pages 20:1–20:17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.DISC.2023.20.

34 Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. A meta-
theorem for distributed certification. Algorithmica, 86(2):585–612, 2024. doi:10.1007/
S00453-023-01185-1.

35 Pierre Fraigniaud, Boaz Patt-Shamir, and Mor Perry. Randomized proof-labeling schemes.
Distributed Comput., 32(3):217–234, 2019. doi:10.1007/S00446-018-0340-8.

https://doi.org/10.4230/LIPICS.ICALP.2022.58
https://doi.org/10.46298/DMTCS.6280
https://doi.org/10.1145/3519270.3538416
https://doi.org/10.1145/3519270.3538416
http://eatcs.org/beatcs/index.php/beatcs/article/view/411
https://doi.org/10.1016/J.JPDC.2022.04.015
https://doi.org/10.1016/J.TCS.2020.12.017
https://doi.org/10.1007/S00446-020-00386-Z
https://doi.org/10.1007/S00446-020-00386-Z
https://doi.org/10.1007/S00453-021-00823-W
https://doi.org/10.1016/J.DAM.2022.10.004
https://doi.org/10.1145/3210377.3210401
https://doi.org/10.1145/3210377.3210401
https://doi.org/10.48550/arXiv.2405.03321
https://doi.org/10.4230/LIPICS.ITCS.2021.28
https://doi.org/10.1007/S00446-014-0211-X
https://doi.org/10.1007/S00446-014-0211-X
https://doi.org/10.1145/2484239.2484264
https://doi.org/10.1145/2499228
https://doi.org/10.4230/LIPICS.DISC.2023.20
https://doi.org/10.1007/S00453-023-01185-1
https://doi.org/10.1007/S00453-023-01185-1
https://doi.org/10.1007/S00446-018-0340-8


F. V. Fomin, P. Fraigniaud, P. Montealegre, I. Rapaport, and I. Todinca 25:19

36 Jakub Gajarský and Petr Hlinený. Kernelizing MSO properties of trees of fixed height, and
some consequences. Log. Methods Comput. Sci., 11(1):1–26, 2015. doi:10.2168/LMCS-11(1:
19)2015.

37 François Le Gall, Masayuki Miyamoto, and Harumichi Nishimura. Distributed quantum
interactive proofs. In 40th International Symposium on Theoretical Aspects of Computer
Science (STACS), volume 254 of LIPIcs, pages 42:1–42:21. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPICS.STACS.2023.42.

38 JA Garay, S Kutten, and D Peleg. A sub-linear time distributed algorithm for minimum-weight
spanning trees. In Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science,
pages 659–668. IEEE, 1993.

39 Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-
Shamir. Near-optimal distributed maximum flow. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, pages 81–90, 2015.

40 Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In Inter-
national Symposium on Distributed Computing, pages 1–15. Springer, 2013. doi:10.1007/
978-3-642-41527-2_1.

41 Mohsen Ghaffari and Christoph Lenzen. Near-optimal distributed tree embedding. In
International Symposium on Distributed Computing, pages 197–211. Springer, 2014. doi:
10.1007/978-3-662-45174-8_14.

42 Mohsen Ghaffari and Merav Parter. Near-optimal distributed dfs in planar graphs. In 31st
International Symposium on Distributed Computing (DISC 2017), pages 21:1–21:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.DISC.2017.21.

43 Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory
Comput., 12(1):1–33, 2016. doi:10.4086/TOC.2016.V012A019.

44 Martin Grohe. Logic, graphs, and algorithms. In Logic and Automata: History and Perspectives,
in Honor of Wolfgang Thomas, volume 2 of Texts in Logic and Games, pages 357–422.
Amsterdam University Press, 2008. URL: https://eccc.weizmann.ac.il/report/2007/091/.

45 Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. In Model
Theoretic Methods in Finite Combinatorics - AMS-ASL Joint Special Session, volume 558,
pages 181–206. AMS, 2009. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.395.8282&rep=rep1&type=pdf.

46 Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Low-congestion shortcuts without
embedding. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
pages 451–460, 2016. doi:10.1145/2933057.2933112.

47 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-
tight distributed algorithm for approximating single-source shortest paths. In Proceedings
of the forty-eighth annual ACM symposium on Theory of Computing, pages 489–498, 2016.
doi:10.1145/2897518.2897638.

48 Juho Hirvonen and Jukka Suomela. Distributed Algorithms 2020. Aalto University, 2020.
URL: https://jukkasuomela.fi/da2020/.

49 Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. Interactive distributed proofs. In
37th ACM Symposium on Principles of Distributed Computing (PODC), pages 255–264. ACM,
2018. URL: https://dl.acm.org/citation.cfm?id=3212771.

50 Amos Korman, Shay Kutten, and Toshimitsu Masuzawa. Fast and compact self-stabilizing
verification, computation, and fault detection of an MST. Distributed Comput., 28(4):253–295,
2015. doi:10.1007/S00446-015-0242-Y.

51 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Comput.,
22(4):215–233, 2010. doi:10.1007/S00446-010-0095-3.

52 Stephan Kreutzer. Algorithmic meta-theorems. In Finite and Algorithmic Model Theory,
volume 379 of London Mathematical Society Lecture Note Series, pages 177–270. Cam-
bridge University Press, 2011. URL: http://www.cs.ox.ac.uk/people/stephan.kreutzer/
Publications/amt-survey.pdf.

DISC 2024

https://doi.org/10.2168/LMCS-11(1:19)2015
https://doi.org/10.2168/LMCS-11(1:19)2015
https://doi.org/10.4230/LIPICS.STACS.2023.42
https://doi.org/10.1007/978-3-642-41527-2_1
https://doi.org/10.1007/978-3-642-41527-2_1
https://doi.org/10.1007/978-3-662-45174-8_14
https://doi.org/10.1007/978-3-662-45174-8_14
https://doi.org/10.4230/LIPICS.DISC.2017.21
https://doi.org/10.4086/TOC.2016.V012A019
https://eccc.weizmann.ac.il/report/2007/091/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.8282&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.8282&rep=rep1&type=pdf
https://doi.org/10.1145/2933057.2933112
https://doi.org/10.1145/2897518.2897638
https://jukkasuomela.fi/da2020/
https://dl.acm.org/citation.cfm?id=3212771
https://doi.org/10.1007/S00446-015-0242-Y
https://doi.org/10.1007/S00446-010-0095-3
http://www.cs.ox.ac.uk/people/stephan.kreutzer/Publications/amt-survey.pdf
http://www.cs.ox.ac.uk/people/stephan.kreutzer/Publications/amt-survey.pdf


25:20 Distributed Model Checking on Graphs of Bounded Treedepth

53 Shay Kutten and David Peleg. Fast distributed construction of k-dominating sets and
applications. In Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, pages 238–251, 1995.

54 Christoph Lenzen and Boaz Patt-Shamir. Improved distributed steiner forest construction.
In Proceedings of the 2014 ACM symposium on Principles of distributed computing, pages
262–271, 2014. doi:10.1145/2611462.2611464.

55 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 565–573,
2014. doi:10.1145/2591796.2591850.

56 Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms.
In International Symposium on Distributed Computing, pages 439–453. Springer, 2014. doi:
10.1007/978-3-662-45174-8_30.

57 Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in interactive
proofs. In 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1096–115.
SIAM, 2020. doi:10.1137/1.9781611975994.67.

58 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

59 Jaroslav Nešetřil and Patrice Ossona de Mendez. A distributed low tree-depth decomposition
algorithm for bounded expansion classes. Distributed Comput., 29(1):39–49, 2016. doi:
10.1007/S00446-015-0251-X.

60 David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.
61 Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J. Comb. Theory,

Ser. B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

https://doi.org/10.1145/2611462.2611464
https://doi.org/10.1145/2591796.2591850
https://doi.org/10.1007/978-3-662-45174-8_30
https://doi.org/10.1007/978-3-662-45174-8_30
https://doi.org/10.1137/1.9781611975994.67
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/S00446-015-0251-X
https://doi.org/10.1007/S00446-015-0251-X
https://doi.org/10.1016/0095-8956(84)90013-3


Content-Oblivious Leader Election on Rings
Fabian Frei #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Ran Gelles #

Bar-Ilan University, Ramat Gan, Israel

Ahmed Ghazy #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Saarland University, Saarbrücken, Germany

Alexandre Nolin #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract
In content-oblivious computation, n nodes wish to compute a given task over an asynchronous network
that suffers from an extremely harsh type of noise, which corrupts the content of all messages across
all channels. In a recent work, Censor-Hillel, Cohen, Gelles, and Sela (Distributed Computing,
2023) showed how to perform arbitrary computations in a content-oblivious way in 2-edge connected
networks but only if the network has a distinguished node (called root) to initiate the computation.

Our goal is to remove this assumption, which was conjectured to be necessary. Achieving this
goal essentially reduces to performing a content-oblivious leader election since an elected leader can
then serve as the root required to perform arbitrary content-oblivious computations. We focus on
ring networks, which are the simplest 2-edge connected graphs. On oriented rings, we obtain a leader
election algorithm with message complexity O(n · IDmax), where IDmax is the maximal assigned ID.
As it turns out, this dependency on IDmax is inherent: we show a lower bound of Ω(n log(IDmax/n))
messages for content-oblivious leader election algorithms. We also extend our results to non-oriented
rings, where nodes cannot tell which channel leads to which neighbor. In this case, however, the
algorithm does not terminate but only reaches quiescence.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Content-Oblivious Computation, Faulty Communication, Leader Election,
Ring Networks, Ring Orientation

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.26

Related Version Full Version: https://arxiv.org/abs/2405.03646 [22]

Funding Ran Gelles: Partially supported by a grant from the United States-Israel Binational Science
Foundation (BSF), Jerusalem, Israel, Grant No. 2020277.

Acknowledgements R. Gelles would like to thank CISPA – Helmholtz Center for Information Security
and MPI – Max Planck Institute for Informatics for hosting him while part of this work was done.

1 Introduction

The field of distributed computing is rich with models helping us understand different types
of architectures and computational hardness by making different kinds of assumptions about
how computations are carried out. A recent work by Censor-Hillel, Cohen, Gelles, and
Sela [8] introduced a particularly weak computational model coined fully defective networks.
This model considers an asynchronous network in which messages may be fully corrupted
and thus not carry any information beyond their sheer existence. Algorithms designed for
this model cannot rely in any way on possible contents of messages, and thus are named
content-oblivious. Instead of relying on the content of messages or on their time of arrival
(since arbitrary delays may occur in asynchronous networks), such algorithms depend solely
on the order in which messages arrive from different neighbors.

© Fabian Frei, Ran Gelles, Ahmed Ghazy, and Alexandre Nolin;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabian.frei@cispa.de
https://orcid.org/0000-0002-1368-3205
mailto:ran.gelles@biu.ac.il
https://orcid.org/0000-0003-3615-3239
mailto:ahmed.ghazy@cispa.de
https://orcid.org/0009-0009-7414-5871
mailto:alexandre.nolin@cispa.de
https://orcid.org/0000-0002-3952-0586
https://doi.org/10.4230/LIPIcs.DISC.2024.26
https://arxiv.org/abs/2405.03646
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 Content-Oblivious Leader Election on Rings

The aforementioned work by Censor-Hillel et al. [8] showed that any computation possible
in the asynchronous setting with reliable content-carrying messages can be simulated in the
fully defective setting under two assumptions: that the network is 2-edge connected and that
there is a distinguished leader (which they call the root node) in the network. While the
same paper showed 2-edge connectivity to be essential for any kind of nontrivial computation
in fully defective networks, the question of the necessity of a pre-existing leader was not
settled. Censor-Hillel et al. conjectured that general computations in fully defective networks
do indeed require the existence of such a pre-elected leader.

In this paper, we disprove this conjecture, at least for the most fundamental type of
2-edge connected topologies, namely, rings. We design a content-oblivious algorithm that
successfully performs a leader election in oriented rings.

▶ Theorem 1. There is a quiescently terminating content-oblivious algorithm of message
complexity n(2 · IDmax + 1) that elects a leader in oriented rings of n nodes with unique IDs.

Here, IDmax denotes the maximal ID assigned to a node in the network, and quiescent
termination refers to the valuable property of our algorithm that nodes do not receive
messages after termination. We discuss quiescent computations and the issue of composability
in more detail in Section 1.1.

We further extend our result to the case where the ring is non-oriented, albeit under
a weaker definition of computation. Instead of termination, we only require stabilization,
which means that every node eventually settles on a decision (to be or not to be a leader,
in our case) that is never revised again. However, the nodes might not know whether they
have achieved their stable output already and remain ready to receive and potentially send
messages forever. This potential is not actualized for a quiescently stabilizing algorithm,
where all messaging activity ceases after finite time. Our algorithm not only elects a leader
in such a manner but also orients the ring.

▶ Theorem 2. There is a quiescently stabilizing content-oblivious algorithm of message
complexity n(2 · IDmax + 1) that elects a leader and orients a non-oriented ring of n nodes
with unique IDs.

Considering this weaker definition of computation also allows us to perform the same
tasks on the anonymous ring. In this setting, nodes are not given identifiers and they all have
the same initial state, but each of them has access to an independent source of randomness.
Furthermore, the algorithm is allowed to reach an incorrect result as long as it does so with
sufficiently small probability (below an arbitrary constant negative power of n). It follows
from prior work that there is no terminating algorithm for electing a leader in this setting.
However, if we require only quiescent stabilization instead of termination, both electing a
leader and orienting a ring are possible.

▶ Theorem 3. There is a content-oblivious algorithm of complexity nO(1) that elects a leader
and orients an anonymous ring of n nodes, each with access to its own source of randomness,
with high probability. The algorithm reaches quiescence but does not terminate.

Both of our deterministic leader election algorithms, for oriented and non-oriented rings,
have message complexity O(n · IDmax). Since IDmax ≥ n, this implies at least cn2 pulses, for
some constant c. The term IDmax is not very common in message complexities of algorithms,
despite a few exceptions [21, 27].1 Somewhat surprisingly, our analysis shows that this term
is inherent to content-oblivious algorithms. We prove the following lower bound.

1 Some algorithms depend on the IDs assigned to nodes. However, it is common for the complexity
analysis to assume that all IDs are of length O(log n) bits, making the dependence on the IDs implicit.



F. Frei, R. Gelles, A. Ghazy, and A. Nolin 26:3

▶ Theorem 4. Any deterministic terminating content-oblivious algorithm for leader election
in rings with unique IDs sends at least n⌊log(IDmax/n)⌋ messages.

Note that this Ω(n log(IDmax/n)) lower bound implies that the number of messages in a ring
of size n is unbounded – we can always increase the message complexity by assigning larger
IDs, even when n is a small constant.

1.1 Quiescence and Composability
As mentioned above, we concatenate our content-oblivious leader election algorithm (Theo-
rem 1) with the root-dependent universal content-oblivious algorithm [8, Thm. 1] to obtain
the following powerful corollary.

▶ Corollary 5. Assuming unique IDs, any asynchronous algorithm on rings can be simulated
in a fully defective oriented ring.

However, some subtleties arise when concatenating algorithms in the content-oblivious
setting. With reliable message content, each message could be tagged, indicating the algorithm
it belongs to. However, when concatenating content-oblivious algorithms, messages sent by
the first algorithm may be mistaken for ones sent by the second algorithm, and vice versa.

To make this composition work, we require two properties: (1) termination, i.e., nodes
should have a distinct point in time where they end the first algorithm and switch to the
second one, and (2) message-algorithm attribution, i.e., while a node executes an algorithm, it
only ever receives messages generated by nodes while they were executing the same algorithm.

Our algorithm for oriented rings (Theorem 1) achieves correct message-algorithm attribu-
tion (when composed with the scheme of [8]) by combining two mechanisms. First, it fea-
tures a quiescent termination. In particular, any node terminates eventually, and at that
time no messages are in delivery towards that node anymore, nor will any message be sent
to that node after its termination. Secondly, the nodes terminate in order, so that the leader
is the last to terminate. This makes our algorithm easy to compose with the algorithm of [8],
by replacing the act of termination with the act of switching to the second algorithm. The
leader, which is the last to terminate the first algorithm, is the node that initiates the com-
putation of the scheme in [8] (i.e., it acts as the root), and at the time it sends its first mes-
sage, we are guaranteed that all other nodes have already switched to that algorithm.

As a matter of fact, quiescent termination could be relaxed when composing general
algorithms: If we have a bound r on the number of messages of the first algorithm that
might reach a node after it transitions to the second algorithm, we could still concatenate
any algorithm in an altered form where nodes send r + 1 copies of each message, and process
arriving messages in groups of r + 1 messages as well. However, this clearly leads to an
undesired r-fold increase in the message complexity of the composed algorithm.

On the other hand, our algorithm for non-oriented rings (Theorem 2) does not terminate
and cannot be composed with other algorithms. As mentioned above, we only require the
algorithm to reach quiescence in this case.

1.2 Related Work
Leader election is a fundamental task that has been studied by the distributed computing
community since the 1970s. Simple leader election algorithms for asynchronous rings were
proposed by Le Lann [28] and by Chang and Roberts [10]. These algorithms employ O(n2)
messages to ensure that all nodes yield to the node with the maximal ID, which becomes the

DISC 2024



26:4 Content-Oblivious Leader Election on Rings

leader. Later work [25, 14, 29] improved this down to O(n log n) messages. This complexity
is tight in asynchronous rings [7, 21]. In synchronous rings, leader election can be performed
by communicating only O(n) messages [21, 17].

For the case of anonymous rings, i.e., with identical nodes without IDs, Angluin [2]
proved that symmetry cannot be broken, and thus no leader election algorithm exists. Attiya,
Snir, and Warmuth [5] examined anonymous asynchronous rings further and characterized
computable tasks. In particular, they showed that many tasks, including ring orientation,
require communicating Ω(n2) messages. Attiya and Snir [4] gave tight bounds on the
complexities of randomized algorithms. Relaxed notions of ring orientation were given by
Attiya, Snir, and Warmuth [5], where the orientation is either consistent with all nodes
or alternating between any two neighbors, and by Syrotiuk and Pachel [31], where nodes
determine whether a majority agrees on the same orientation or not. Orienting a ring and
leader election when n is known to the nodes is presented by Flocchini et al. [19].

The question of termination in anonymous rings was explored by Itai and Rodeh [26],
who discovered that a network cannot compute its size n by a terminating algorithm. As a
consequence, a leader election algorithm that terminates is impossible, too, since it is trivial
to learn n once a leader is given. On the other hand, if the nodes know n or even an upper
bound on n, a randomized leader election algorithm that terminates exists [26]. Afek and
Matias [1] give various leader election algorithms that trade off knowledge, termination, and
number of sent messages.

Censor-Hillel, Gelles, and Haeupler [9] designed a content-oblivious BFS algorithm as
a pre-processing step for their distributed interactive coding scheme [23]. Building on that
idea, Censor-Hillel et al. [8] introduced the concept of content-oblivious computation and
proved that general computations are only possible over 2-edge connected networks. They
designed a compiler that converts any asynchronous algorithm into a content-oblivious one,
assuming a pre-existing leader. They also gave explicit algorithms for content-oblivious DFS,
ear decomposition, and (generalized) Hamiltonian cycle construction.

Computation with fully corrupted messages has been comparatively more studied in
the synchronous setting, where the presence or absence of a message in a given round can
still be used to send one bit of information [30]. A notable example is the Beeping model,
introduced by Cornejo and Kuhn [11], in which each message sent by a node is received by
all its neighbors, and nodes can only distinguish between receiving no message and receiving
at least one message. Among other problems, leader election has been studied in this setting
in a sequence of works [24, 20, 15, 12]. Similar to the fully defective setting, compilers were
devised for transforming algorithms with stronger communication primitives into algorithms
for the Beeping model [16, 3, 13].

1.3 Organization

Section 2 formally introduces the content-oblivious setting and some other notions and
notations. In Section 3 we give our leader election algorithm for oriented rings, deferring some
proofs to the full version of our paper [22]. Section 4 discusses non-oriented rings. In Section 5,
we discuss anonymous rings and design a randomized quiescently stabilizing algorithm with a
high probability of success for both electing a leader and orienting a non-oriented ring, with
some proofs deferred to the full version of our paper [22]. Our lower bound on the number
of messages sent by a content-oblivious leader election algorithm is presented in Section 6.
Section 7 concludes our work with a brief summary and suggests a few follow-up questions.



F. Frei, R. Gelles, A. Ghazy, and A. Nolin 26:5

2 Preliminaries

Notations. For an integer n, we denote the set {1, 2, . . . , n} by [n]. All logarithms are
binary. For a variable var and a node v, we let var [v] denote the value the variable var holds
at the node v. By the term with high probability we mean a probability of at least 1−n−O(1).

The content-oblivious computation model. Consider a distributed network G = (V, E)
with n = |V | nodes. We usually assume that each node v ∈ V is assigned a positive integer as
its (unless otherwise stated) unique ID, usually denoted by IDv ∈ N. We denote the largest
ID assigned to a node in the network by IDmax, that is, IDmax := maxv∈V IDv, and by ℓ

the node possessing this ID. Note that the subset of natural numbers that can be assigned
to the nodes is not restricted to [n]; it can be chosen arbitrarily, as long as it contains n

distinct IDs. Apart from the IDs, the nodes are identical. Algorithms are uniform by default,
i.e., the nodes neither know the size of the network n nor any bound on it; for non-uniform
algorithms, the nodes may be equipped with such knowledge.

In this paper, we consider rings, i.e., connected graphs where all nodes have degree 2.
Neighboring nodes communicate by sending messages to each other. We assume that all
messages are subject to corruption: the content of any message is completely erased by noise,
resulting in an empty message of length 0, which we call a pulse. Computations that ignore
any potential content of a message and thus work only with pulses are called content-oblivious.

Further, the network is asynchronous: the time it takes a pulse to travel through a
channel and arrive at its end is unpredictable; the delays are unbounded but always finite.
Pulses cannot be dropped or injected by the channel. In such an asynchronous network,
the nodes possess neither a common clock nor any notion of time, and they are assumed
to be event-driven. This means that a node may act once right in the beginning of the
computation and from then on only upon receiving a pulse. As a function of its own ID, the
previously received pulses, and possibly its own source of randomness, it can then change its
state and, for each connected channel, send any number of pulses. Most of our algorithms
are deterministic, except for the ones in Section 5, where we consider a special case where
nodes do not have IDs and use randomness in order to generate them. We say that an
algorithm terminates (sometimes also referred to as process termination, explicit termination,
or termination detection in the literature) if for each node there is a time at which it has
decided on an output and entered a terminating state. Once in a terminating state, a node
ignores all incoming pulses and does not send any new ones. We say that an algorithm
has quiescent termination if at the time the last node terminates it is guaranteed that no
pulses are still in transit. An algorithm’s message complexity is the total number of messages
(pulses) it sends during a worst-case computation until all nodes have terminated or until
the network has reached quiescence.

Ring’s orientation. In a ring, each node communicates with its two neighbors via Port0
and Port1. Consider a pulse re-sent from Port1 by every node receiving it. If such a pulse
passes through all edges (i.e., is never reflected by a node with misaligned ports), we call the
ring oriented and the pulse clockwise (CW). Port1 of each node is then called its CW port,
leading to its CW neighbor. Counterclockwise (CCW) is defined analogously via Port0. Note
that CW pulses are sent from CW ports but arrive at CCW ports, and vice versa.

However, rings may not be oriented to begin with. In a non-oriented ring, there is no
guarantee that Port0 and Port1 of a node are aligned with a clockwise or counterclockwise
walk on the ring. See Fig. 1 for a demonstration. Algorithms for non-oriented rings must
work correctly for all assignments of the nodes’ ports. In this case the CW/CCW direction is
local per node, and we will use the notion of Port0 and Port1 to avoid confusion.

DISC 2024



26:6 Content-Oblivious Leader Election on Rings

v1
0 1

v5

0
1

v4

01

v3

0
1

v20
1

v1
0 1

v5

0
1

v4

01

v3

0
1

v20
1

Figure 1 An oriented ring (left) and a non-oriented one (right).

3 Leader Election in an Oriented Ring

In this section, we consider the problem of electing a leader in an oriented ring of size
unknown to the nodes. Recall that in the leader election task, nodes are required to terminate
with an output: Leader or Non-Leader, where a single node ℓ ∈ V outputs Leader, while all
other nodes must output Non-Leader. We design an algorithm to elect a leader that features
quiescent termination and prove the following.

▶ Theorem 1. There is a quiescently terminating content-oblivious algorithm of message
complexity n(2 · IDmax + 1) that elects a leader in oriented rings of n nodes with unique IDs.

For the algorithms in this section, we will use the following methods for sending and
receiving pulses. The method sendCW() sends one pulse over the CW channel. The method
recvCW() checks whether pulses are waiting in the CW incoming queue. If no pulse is in
the queue, the method returns 0. Otherwise, it consumes a single pulse from the queue
and returns 1. The methods sendCCW() and recvCCW() are the analogous CCW versions.
Moreover, for each node v, we introduce counters ρcw and σcw for the total number of received
and sent CW pulses, respectively. Likewise, we introduce ρccw and σccw for CCW pulses. We
assume each of the four methods above updates those counters with every received or sent
pulse. More precisely, every node v has variables ρcw[v] and σcw[v] initially set to 0. Every
time recvCW() processes a pulse from the queue of incoming pulses or sendCW() sends a pulse,
the counters increase according to ρcw[v]← ρcw[v] + 1 and σcw[v]← σcw[v] + 1, respectively.

3.1 Warm-up: Leader Election Without Termination
To demonstrate some of the main ideas of our algorithm, let us begin with a simple quiescently
stabilizing algorithm that uses only clockwise pulses and elects a leader in an oriented ring.
We emphasize that this algorithm is non-terminating. In this algorithm (see Algorithm 1),
each node starts by sending one pulse and then relays every received pulse in the same
direction, except for the single time when the number of received pulses reaches its own ID.
In this event, the node does not relay this one pulse and assigns itself the state of Leader, at
least temporarily. However, any pulses received after this are relayed again, and revert the
node to being a Non-Leader.

The main intuition behind this algorithm is that each node will eventually have sent and
received exactly IDmax pulses: n pulses are being generated at the initialization, and these
pulses keep circulating in the ring, increasing the counter of received pulses until some node
has received as many pulses as its ID. At this point, the node removes one pulse, and we are
left with n− 1 pulses in circulation. Except for the node with IDmax, every node will receive



F. Frei, R. Gelles, A. Ghazy, and A. Nolin 26:7

more pulses than its ID, ensuring it eventually becomes a follower. This continues until
all nodes, except the one with IDmax, have removed a single pulse from the circulation and
declared themselves followers. The last remaining pulse keeps circulating until all nodes have
received exactly IDmax pulses. As soon as the last node receives its IDmax-th pulse, it sets
itself as a leader and removes the last remaining pulse. Since the network no longer contains
any pulse, which we call quiescence, the states of the event-driven nodes remain unchanged
as well. Note, however, that nodes do not terminate since they do not know whether the
ring has achieved this quiescent state or not, i.e., whether some pulses are still in transit.

Algorithm 1 Quiescently Stabilizing Leader Election for Node v.

1: sendCW()
2: while true do
3: if recvCW() returns 1 then
4: if ρcw = IDv then
5: state← Leader
6: else ▷ v acts as a relay unless ρcw = IDv

7: state← Non-Leader
8: sendCW()

Even though Algorithm 1 does not terminate, analyzing it will help us design our
terminating leader election algorithm (Algorithm 2) later on. We begin by stating some key
invariants of Algorithm 1, used to show the algorithm’s correctness. Their proofs can be
found in the full version of the paper [22].

▶ Lemma 6. For every node v running Algorithm 1, the following invariants hold at the end
of each iteration of the main loop:
1. If ρcw < IDv, then σcw = ρcw + 1, i.e., v has sent exactly one pulse more than it has

received.
2. If ρcw ≥ IDv, then σcw = ρcw, i.e., v has sent exactly as many pulses as it has received.

▶ Lemma 7. Let ℓ be the node with IDℓ = IDmax. If ρcw[ℓ] ≥ IDℓ at some point, then ρcw[v] ≥
IDv holds for every node v at this point. That is, ℓ is the last node to satisfy ρcw[ℓ] ≥ IDℓ.

We now show that quiescence has been reached when ρcw[v] ≥ IDv holds for all nodes.

▶ Lemma 8. If ρcw[v] ≥ IDv holds at every node v, then the network is in quiescence.

Proof. By Lemma 2, we get that σcw[v] = ρcw[v] holds for all v; hence, the total number of
sent pulses is equal to the total number of received pulses. In particular, no pulses are in
transit (sent but not received). ◀

In fact, the converse is also true; that is, a necessary condition for quiescence is that
ρcw[v] ≥ IDv holds at every node v and becomes a relay.

▶ Lemma 9. If the network is in quiescence, then ρcw[v] ≥ IDv holds at every node v.

Proof. If there is quiescence, then
∑

v σcw[v] =
∑

v ρcw[v].
By Lemma 6, every node v has σcw[v] ≥ ρcw[v]. Assuming there is some bad node b with

ρcw[b] < IDb, then by Lemma 1, σcw[b] = ρcw[b] + 1. Therefore,
∑

v σcw[v] =
∑

v ̸=b σcw[v] +
σcw[b] ≥

∑
v ρcw[v] + 1, so this cannot occur. ◀

▶ Corollary 10. There is quiescence at some point of time if and only if each node v has
ρcw[v] ≥ IDv at that point of time.

DISC 2024



26:8 Content-Oblivious Leader Election on Rings

Proof. The corollary follows directly from Lemmas 8 and 9. ◀

Another equivalent statement to the ones in Corollary 10 is that every node has sent and
received exactly IDmax pulses.

▶ Lemma 11. In any execution of Algorithm 1, at any point of time, the following statements
are equivalent:
1. The network is in quiescence,
2. ∀v : ρcw[v] ≥ IDv, and
3. ∀v : ρcw[v] = σcw[v] = IDmax.

Proof. The first two statements are equivalent by Corollary 10.
Now, assuming ρcw[v] = IDmax holds for every v, then so does ρcw[v] ≥ IDv. Conversely,

assume ∀v : ρcw[v] ≥ IDv. By Lemma 7, the node ℓ with the largest ID is the last to satisfy
that inequality. After the iteration where this occurs for the first time, we have

ρcw[ℓ] = IDℓ = IDmax.

By the first equivalence, there is quiescence, and no more pulses are sent or received. Any
pulses that have been sent by a node u have been received by its neighbor v, that is, over all
CW edges (u, v), it holds that σcw[u] = ρcw[v].

Also, by Lemma 2, every node v has σcw[v] = ρcw[v]. As the network forms a ring,
combining those equations yields that ρcw[v] = σcw[v] = IDmax holds for every v. ◀

Given the above properties, we are ready to prove that certain interesting events occur in
every execution of Algorithm 1.

First, we show that the inequality ρcw[v] ≥ IDv is eventually satisfied by every v. Due to
the equivalences given by Lemma 11, this leads to a setting where quiescence is achieved,
and every node has sent and received exactly IDmax pulses.

▶ Lemma 12. In any execution of Algorithm 1, for every node v, there is some iteration,
where ρcw[v] ≥ IDv holds.

Proof. Let us track the evolution through time of B, the set of nodes that have not met the
condition yet; that is, at every point of time, for all b ∈ B, ρcw[b] < IDv.

Initially, B contains all nodes, each of which are removed upon meeting the condition.
Since a removed node never enters B again, |B| is monotonically decreasing.

Consider the point of time where |B| reaches a minimum, so B remains fixed. If |B| = 0,
then there is nothing to prove, so assume |B| > 0. At that time, maintain values ∆b :=
IDb − ρcw[b] > 0 for every b ∈ B.

By Lemma 1, for all b ∈ B, we have that σcw[b] = ρcw[b] + 1 always holds. Also, from
that point on, for every v /∈ B, we have σcw[v] = ρcw[v] by Lemma 2.

The number of pulses in transit2 at any given time is the difference between the total
number of sent and received pulses across all nodes. Therefore, since

∑
v σcw[v] =

∑
v ρcw[v]+

|B|, there are still |B| pulses in the network. Since the nodes outside B act as relays, they
maintain the number of pulses in transit and, in particular, never remove a pulse from the
network. Eventually, some node b ∈ B must receive a pulse, which decreases the difference ∆b

by one. If ∆b = 0, then b is removed from B, and |B| decreases beyond its minimum, a
contradiction. Otherwise, b forwards a pulse and the number of pulses in transit remains |B|,
so we can re-apply this argument. At some point, ∆b reaches 0 for some b ∈ B. Thus,
ρcw[b] ≥ IDb holds for b, and b is removed from B, again, a contradiction. ◀

2 Including pulses that are in some node’s queue, but were not processed yet.



F. Frei, R. Gelles, A. Ghazy, and A. Nolin 26:9

A result of Lemma 12, is that, eventually, all nodes send and receive exactly IDmax pulses,
and no further activity occurs on the network.

▶ Corollary 13. In any execution of Algorithm 1, at some point, every node has sent and
received exactly IDmax pulses, and the network reached quiescence.

Proof. By Lemma 12, there is an iteration, after which ρcw[v] ≥ IDv holds for all nodes v.
The statement then follows directly from Lemma 11. ◀

We also have the following trivial upper bound as a direct corollary.

▶ Corollary 14. In any execution of Algorithm 1, for every node v, at every point of time
ρcw[v] ≤ IDmax.

Proof. Immediate from Corollary 13 and the monotonicity of ρcw[v], which is initially 0. ◀

3.2 Leader Election With Quiescent Termination
Although Algorithm 1 is a quiescently stabilizing algorithm for leader election, more ideas
are needed in order to achieve this with quiescent termination. The main idea is to utilize
the CCW channel to notify all nodes when the leader is elected. The immediate approach
would be to leverage the event ρcw[v] = IDv, which signifies the successful election once it
happens at the node with maximal ID. However, this is impossible, since the same event also
occurs for every other node before the election process has finished.

To be able to detect termination, we require an event that occurs uniquely for the leader,
and never for other nodes. If we managed to run Algorithm 1 over the CCW channel after a
full execution of the same algorithm over the CW channel, then, by symmetry, all nodes would
eventually receive IDmax many CCW pulses. In this scenario, the event ρcw[v] = IDv = ρccw[v]
would, in fact, be unique to the node with the largest ID. Indeed, an initial full execution of
Algorithm 1 over the CW channel guarantees that all other nodes have ρcw[v] > IDv prior to
exchanging CCW pulses, so the above event occurs uniquely at the leader and could be used
as the trigger for termination.

The main remaining difficulty is that we cannot start the CCW algorithm after the CW
one is done since neither the leader nor any other node can infer that the CW algorithm
has stabilized purely from the number of CW pulses received. We overcome this obstacle by
running both algorithms in parallel, ensuring that the CCW one lags behind the CW one.
By subtly prioritizing the execution of the CW algorithm over that of the CCW one, we
enforce that once ρccw[v] = IDv occurs for some Non-Leader node, we already have ρcw[v] >

IDv. Then, the only node v satisfying ρcw[v] = IDv = ρccw[v] is the elected leader. It is the
uniqueness of all IDs, crucially including IDmax, that enables this approach.

The complete algorithm with quiescent termination is given in Algorithm 2. It contains
two instances of Algorithm 1: one over the CW channel (lines 3–8) and one over the CCW
channel (lines 9–13). The CW instance starts, as before, upon initialization, while the CCW
instance starts at node v once it reaches the ρcw[v] = IDv event in the CW instance. This
guarantees that the CCW instance lags behind the CW one. Finally, the last part of the
algorithm (lines 14–17) is executed once the condition ρcw[v] = IDv = ρccw[v] is observed
to be true, which happens only for the leader. At this point, all the nodes have ρcw and
ρccw set to IDmax, and the leader was the last node for which this event occurred, triggering
the following termination process: the leader sends a single CCW pulse. Any node receiving
this extra pulse sees, for the first time, ρccw > ρcw, forwards the pulse and terminates
(Algorithm 2). The extra pulse is forwarded until it returns to the leader, causing it to
terminate without forwarding the pulse. The analysis of Algorithm 2 is deferred to the full
version of the paper [22] due to the space constraints.

DISC 2024



26:10 Content-Oblivious Leader Election on Rings

Algorithm 2 Quiescently Terminating Leader Election for Node v.

1: sendCW()
2: repeat
3: if recvCW() returns 1 then ▷ Run Algorithm 1 over the CW channel
4: if ρcw = IDv then
5: state← Leader
6: else
7: state← Non-Leader
8: sendCW()
9: if ρcw ≥ IDv then ▷ Run Algorithm 1 over the CCW channel, once ρcw ≥ IDv

10: if σccw = 0 then sendCCW() end if
11: if recvCCW() returns 1 then
12: if ρccw ̸= IDv then
13: sendCCW()
14: if ρcw = IDv = ρccw then ▷ Initiate a termination pulse
15: sendCCW()
16: while recvCCW() returns 0 do
17: pass ▷ Wait for return of termination pulse
18: until ρccw > ρcw
19: output state

4 Leader Election in Non-Oriented Rings

A natural follow-up question to the above leader election algorithm in oriented rings is
whether the same holds for non-oriented rings. In this setting, nodes do not possess a
predefined CW channel and CCW channel anymore. Instead, they have two ports, Port0 and
Port1, connecting them to their two neighbors in an arbitrary order.

The straightforward approach would be to first orient the ring with a quiescently termi-
nating algorithm and then use our leader election algorithm from Section 3. Since orienting
the ring is easy with leader elected by quiescent termination, orientation and leader election
are essentially equivalent tasks from the perspective of quiescently terminating algorithms.

In this section, we instead present a quiescently stabilizing algorithm for non-oriented
rings, which both elects a leader and orients the ring. Recall that the difference from quiescent
termination is that the nodes do not need to terminate explicitly; it suffices for all pulse
activity to cease with the correctly computed output still present. Recall our main theorem
for this part.

▶ Theorem 2. There is a quiescently stabilizing content-oblivious algorithm of message
complexity n(2 · IDmax + 1) that elects a leader and orients a non-oriented ring of n nodes
with unique IDs.

We emphasize again that this algorithm does not terminate in the usual sense. Instead,
its success is defined as reaching quiescence while guaranteeing that at that time only a
single node has set its internal state to Leader, while all other nodes have set their state to
Non-Leader. Additionally, we require that nodes achieve a consistent orientation of the ring
as follows: each node has to label exactly one of its two ports as the port leading to the CW
neighbor such that starting at some node and repeatedly moving to node connected to CW
port lets us pass through all edges in the ring.



F. Frei, R. Gelles, A. Ghazy, and A. Nolin 26:11

For ease of exposure, we first present an algorithm of slightly worse complexity but
whose analysis is almost fully captured by results from earlier sections. We then improve its
complexity by proving an additional property about Algorithm 1, our main building block
for our algorithm for non-oriented rings (Algorithm 3). Namely, we show that executing
Algorithm 1 on a ring with non-unique IDs essentially achieves the same guarantees as
when used on a ring with unique IDs (Lemma 16). This observation allows us to halve the
complexity of Algorithm 3, as we shall see, and also has implications for solving the same
tasks on anonymous rings with access to randomness. As this extension to anonymous rings
is a minor effort and follows from standard techniques, we defer it to Section 5.

Algorithm overview. At a high level, Algorithm 3 consists of two parallels executions of
Algorithm 1, each one using each channel in the ring in a single direction. For an intuition
of how that is possible, consider a setting where the network has a single pulse in transit.
Suppose that all nodes execute the same algorithm that sends a pulse on Port1 whenever one
is received on Port0, and vice versa. Forwarding the pulse in this manner has it travel the
entire ring, since every time a pulse is received by a given node v from one of its neighbors,
it is sent to its other neighbor. If adding another pulse going in the other direction to the
network, the two pulses independently travel around the ring in opposite directions. The
nodes can thus effectively run two algorithms in parallel without them interfering with one
another, as long as one only works with clockwise pulses and the other with counterclockwise
pulses. As Algorithm 1 only uses pulses going in one direction, it satisfies this requirement.
The major caveat is that the nodes cannot be certain which of the two algorithms they
execute is working with clockwise pulses and which is working with counterclockwise pulses.

Our algorithm has essentially two parts: one in which the node reacts to pulses and
possibly forwards them (Lines 5 to 7), and one in which it computes its output depending on
the number of pulses it received from each port (Lines 8 to 16). From the point of view of
analyzing how many pulses are eventually sent in the network, only the first part is relevant.
It is the part that simulates two executions of Algorithm 1. For the nodes to settle on a
consistent ring orientation in the second part, we break symmetry between the two options
by having strictly more pulses sent in one orientation of the ring than in the other.

We distinguish the two parallel executions of Algorithm 1 by having each node v pick
two distinct virtual IDs for itself, ID(0)

v and ID(1)
v (Algorithm 3). ID(1)

v affects how v behaves
regarding pulses received from its Port0, and symmetrically for ID(0)

v and Port1. While nodes
do not know which of their two virtual IDs is used in the clockwise or counterclockwise
execution of Algorithm 1, they use a distinct ID in both executions. Eventually, in each
direction, the number of pulses received by each node stabilizes to the largest ID in that
direction. The choice of IDs ensures that the two parallel executions have distinct largest
IDs, so eventually all nodes see strictly more pulses being sent in one direction than the
other. This allows nodes to agree on a common orientation of the ring, and elect as leader
the node who was the source of the largest ID.

The nodes use the following methods for sending and receiving pulses. Let i ∈ {0, 1}.
1. sendPorti(): sends a pulse through Porti,
2. recvPorti(): check whether a pulse is waiting in the incoming queue of Porti. If not,

return 0. Otherwise, consume a single pulse from the queue and return 1.

▶ Proposition 15. Algorithm 3 elects a leader and consistently orients the ring using
n(4IDmax − 1) pulses. It achieves quiescence but does not terminate.

DISC 2024



26:12 Content-Oblivious Leader Election on Rings

Algorithm 3 Quiescently Stabilizing Leader Election on Non-Oriented Rings for Node v.

1: for i ∈ {0, 1} do
2: ID(i)

v ← 2 · IDv − 1 + i

3: sendPorti()
4: while true do
5: for i ∈ {0, 1} do
6: if recvPort1−i() returns 1 and ρ1−i ̸= ID(i)

v then
7: sendPorti() ▷ Pulses received at one port are sent forward at the opposite one
8: if max(ρ0, ρ1) ≥ ID(1)

v then
9: if ρ0 = ID(1)

v and ρ1 < ID(1)
v then

10: state ← Leader
11: else
12: state ← Non-Leader
13: if ρ0 > ρ1 then
14: name Port0 := CCW and Port1 := CW ▷ Port0 connects the CCW neighbor
15: else
16: name Port0 := CW and Port1 := CCW

Proof. Consider ℓ, the node of largest ID. We define as clockwise the direction of a pulse sent
from ℓ’s Port1 and forwarded by all other nodes (i.e., sent from Porti after arriving at Port1−i).
We call the ports sending such a pulse clockwise, and those receiving it counterclockwise. We
show the our algorithm elects ℓ as a leader and all nodes declare the correct port as clockwise.

We show that the network eventually achieves quiescence and all nodes receive the same
number of clockwise and counterclockwise pulses. Let us argue this for clockwise pulses; the
property for counterclockwise pulses will follow by symmetry. For every node v whose Port1
connects it to its clockwise neighbor, let us rename sendPort1() to sendCW() and recvPort0()
to recvCW() in its code. Let us also define IDcw

v = ID1
v for such nodes. For the other nodes,

which are connected to their clockwise neighbors through Port0, rename sendPort0() to
sendCW() and recvPort1() to recvCW() in their code, and let IDcw

v = ID0
v. We emphasize that

this renaming is done purely for our analysis and is not an operation performed by the nodes,
which are oblivious to what the clockwise direction is. Consider an execution of Algorithm 3.
Whenever the scheduler delivers a clockwise pulse, this pulse is read by a recvCW() method,
and if forwarded (which depends on IDcw

v ), it is re-sent by a sendCW() method, according
to our renaming. Other methods are never activated by clockwise pulses and never emit a
clockwise pulse. As such, Algorithm 3 executes the exact same code on clockwise pulses as
Algorithm 1 and thus has the same guarantees as Algorithm 1 regarding clockwise pulses.
By Corollary 13, this means that we achieve quiescence for clockwise pulses, with all nodes
eventually having sent and received exactly the same number maxv IDcw

v of clockwise pulses.
The same holds symmetrically for maxv IDccw

v pulses counterclockwise pulses per node, where
IDccw

v is defined similarly to IDcw
v .

Since ℓ picks as identifiers 2 · IDmax and 2 · IDmax − 1 for the two directions, we have
maxv IDcw

v = 2 · IDmax and maxv IDccw
v = 2 · IDmax − 1. Hence, all nodes have sent and

received 2 · IDmax clockwise pulses and 2 · IDmax − 1 counterclockwise pulses. This yields a
bound of n(4 · IDmax − 1) pulses, ensuring a consistent orientation according to the test on
Algorithm 3. ◀



F. Frei, R. Gelles, A. Ghazy, and A. Nolin 26:13

Improving the message complexity. We now show how to improve the complexity of
Algorithm 3 to n(2 · IDmax + 1). Since nodes send pulses according to their IDs, Algorithm 3
effectively doubles the number of pulses sent by the algorithm. To avoid this doubling,
one can generate the two IDs in a different manner; for instance, ID(1)

v ← IDv + 1, and
ID(0)

v ← IDv. However, this leads to assigning the same ID to multiple nodes. We argue that
Algorithm 3 works correctly even when IDs are not unique as long as the largest clockwise
and counterclockwise IDs are different. To that goal, we need to re-analyze Algorithm 1 in
such case, which we do in the next two technical lemmas.

▶ Lemma 16. Corollary 13 still holds if nodes run Algorithm 1 with non-unique IDs. This
includes the case in which multiple nodes v have IDv = IDmax.

Note that Lemma 16 is about Algorithm 1, the implicit main subroutine of Algorithm 3,
not Algorithm 3 itself. Most elements of the proof of Corollary 13 make no reference to the
node of largest ID. Most importantly, the invariants of Lemma 6 (that σcw[v] = ρcw[v] + 1
while ρcw[v] < IDv, and σcw[v] = ρcw[v] once ρcw[v] ≥ IDv) are consequences of how each node
reacts to the pulses it receives, and changing the distribution of IDs does not change that.
Lemma 7, however, makes an explicit reference to a node of largest ID, which requires us to
change the argument somewhat. Lemma 17, which we shall now prove, generalizes Lemma 7
to the setting with non-unique IDs.

clockwise
xi+1,ki+1

xi,1

xi−1,2

xi−1,1

xi,2xi,3

vi
vi−1

Figure 2 The naming of nodes between nodes of largest ID in the proof of Lemma 17.

▶ Lemma 17. Consider the set of nodes of largest ID, Vmax = {v : IDv = IDmax}. In
Algorithm 1, if ρcw[v] ≥ IDv for all v ∈ Vmax at some point, then ρcw[v] ≥ IDv holds for every
node v at this point. That is, one of the nodes in Vmax is the last node to satisfy ρcw[v] ≥ IDv.

Proof. Let m = |Vmax| be the number of nodes that hold IDmax. Denote these nodes
v1, . . . , vm, ordered clockwise from an arbitrary one of them. Let us identify vm+1 = v1 for
ease of notation. For each i ∈ [m], let ki ∈ {0, . . . , n − 1} be the number of consecutive
nodes with IDv < IDmax preceding vi in the ring. For each j ∈ [ki], let xi,j be the node j

counterclockwise hops from vi in the ring. See Figure 2 for an illustration.
We show that if ρcw[vi] ≥ IDvi holds at vi, then it also holds at all xi,j , j ∈ [ki]. Since

every node v ̸∈ Vmax has a node of largest ID in its clockwise direction later in the ring, this
implies that when ρcw[v] ≥ IDv holds at all vi ∈ Vmax, it also holds at every node v ∈ V .

Consider vi ∈ Vmax s.t. ρcw[vi] ≥ IDvi
= IDmax. Suppose ki > 0, as otherwise the

result is trivial. Let xi,0 = vi. For each j ∈ [0, ki), we show that ρcw[xi,j ] ≥ IDmax implies
ρcw[xi,j+1] ≥ IDmax. As the base case ρcw[xi,0] = ρcw[vi] ≥ IDmax holds, we get our result by
induction. Let j ∈ [0, ki) and suppose ρcw[xi,j ] ≥ IDmax. Since ρcw[xi,j ] ≤ σcw[xi,j+1], we
have that σcw[xi,j+1] ≥ IDmax. Since IDmax > IDxi,j+1 , by Lemma 6, it needs to hold that
ρcw[xi,j+1] = σcw[xi,j+1]. Therefore, ρcw[xi,j+1] ≥ IDmax. ◀

Equipped with Lemma 17, the proof of Lemma 16 follows quite naturally.

DISC 2024



26:14 Content-Oblivious Leader Election on Rings

Proof of Lemma 16. Let us review the proof of Corollary 13, and see which elements of it
could be affected by multiple nodes having the same ID. Let Vmax = {v : IDv = IDmax} be
the set of nodes of largest ID.

As already stated, the invariants of Lemma 6 still hold, and arguments relying on Lemma 7
must be amended to rely on Lemma 17 instead. Lemmas 8 and 9 and Corollary 10, about
how the network is in quiescence if and only if each node v has received (and, by Lemma 6,
also sent) at least IDv pulses, are immediate consequences of Lemma 6, and hence still hold.

We now get to Lemmas 11 and 12, which are two lemmas from which Corollary 13 follows
most directly. Lemma 11 shows equivalences between three properties: quiescence, that
ρcw[v] ≥ IDv at each v, and that ρcw[v] = σcw[v] = IDmax at each v. Again, the arguments
still hold if IDs are not unique: the connection between quiescence and all nodes satisfying
ρcw[v] ≥ IDv was shown in Corollary 10; while some node v ∈ Vmax has received less than
IDmax pulses, the network is not in quiescence; for all nodes in Vmax to have received IDmax
pulses, other nodes in the network need to have sent this many pulses, which implies they
have also received IDmax pulses.

Lemma 12 shows that the network cannot permanently remain in a state in which some
nodes have ρcw[v] < IDv. The argument again does not rely on the uniqueness of the IDs,
and only uses that if some non-empty set B of nodes satisfies ρcw[v] < IDv for each v ∈ B,
then since for those nodes σcw[v] = ρcw[v] + 1 (Lemma 6) the network has pulses still in
transit. These pulses must eventually reach nodes in B, increase the number of received
pulses ρcw of nodes in it, and eventually to the point that for a node in B, ρcw[v] ≥ IDv.

Put together, the whole argument still holds with non-unique IDs. ◀

The proof of our second main theorem is a corollary of the above.

Proof of Theorem 2. Let us modify Algorithm 3 as follows:
In Algorithm 3, we set as IDs ID(1)

v ← IDv + 1, and ID(0)
v ← IDv.

Similar to the argument in the proof of Proposition 15, this amounts to running two parallel
instances of Algorithm 1 over each channel. As in that proof, consider the maximal clockwise
and counterclockwise IDs, maxv IDcw

v = IDmax +1 and maxv IDccw
v = IDmax. From Lemma 16,

we know that the number of clockwise pulses sent and received by each node eventually
stabilizes at IDmax + 1, and similarly stabilizes at IDmax for the counterclockwise direction.
This results in a single leader being elected and a consistent orientation as before. The upper
bound of n(2IDmax + 1) follows from n(IDmax + 1) pulses being exchanged in one direction,
and n · IDmax in the other. ◀

5 Anonymous Rings

In this section, we consider the setting where a ring consists of n identical nodes without
IDs, each with access to its own independent source of randomness. We call such a ring
anonymous. As is standard in the literature about randomized algorithms, we aim to solve
our computational task with high probability, defined as bounding the probability of failure
by an arbitrary negative power of the network size n. That is, we present an algorithm
parameterized by a value c > 0, such that for any n, the algorithm correctly elects a leader
in rings of size n with probability at least 1−O(n−c). Our algorithm also correctly orients a
non-oriented ring with high probability.

Similar to other sections of this paper, proofs omitted from this section can be found in
the full version of this paper [22].



F. Frei, R. Gelles, A. Ghazy, and A. Nolin 26:15

As alluded to in the introduction, electing a leader with quiescent termination is impossible
under the assumptions of this section, even if we relax the objective to succeed with only
some arbitrary small constant probability. This follows from a negative result by Itai and
Rodeh [26, Thm. 4.1] about counting the number of nodes in an anonymous ring because
computing this number is easy in a ring with an elected leader. Consequently, we only aim
for a quiescently stabilizing algorithm.

As in Section 4, observe that despite assuming the uniqueness of all IDs in Section 3.1 to
elect the node with the largest ID, the task remains well-defined even if only the largest ID is
unique. Lemma 16 showed that on a ring with possibly non-unique IDs, Algorithm 1 elects
as leader all nodes v such that IDv = IDmax. Hence, if a single node satisfies IDv = IDmax, a
single leader is elected. Algorithm 3 is simply two parallel executions of Algorithm 1. As
we already showed in the proof of Theorem 2, those two parallel executions still yield the
desired result as long as the maximal ID in the two executions is unique. Hence, providing
an algorithm for sampling IDs with the guarantee that the maximal ID is unique with high
probability is sufficient to obtain a variant of Theorem 2 for anonymous rings.

We outline in Algorithm 4 a process by which nodes can utilize their access to randomness
to sample random IDs with the guarantee that, with high probability, the maximal ID
is unique and of order nO(1). The algorithm terminates quiescently – in fact, it uses no
communication – enabling composition: any algorithm can be performed afterwards with
the sampled IDs. As a result, with high probability, the anonymous setting reduces to the
one considered in Lemma 16. As explained previously, such an algorithm for sampling IDs
immediately implies the following result.

▶ Theorem 3. There is a content-oblivious algorithm of complexity nO(1) that elects a leader
and orients an anonymous ring of n nodes, each with access to its own source of randomness,
with high probability. The algorithm reaches quiescence but does not terminate.

At a high level, the algorithm for sampling IDs has each node first sample the number of
bits in its ID from a geometric distribution with parameter p = 2−1/Θ(c) before sampling
said bits uniformly at random. While each ID is of expected length Θ(c) and value 2Θ(c) at
the end of this process, the maximal ID is of length Θ(c2 log n) and value nΘ(c2), with high
probability. See [6]. Intuitively, while sampling a large ID is an unlikely event, this unlikely
event becomes more and more likely to occur somewhere in the network as the network
grows. Similar ideas have previously appeared in the literature, e.g., in [1, 18].

Algorithm 4 Message-Free Algorithm for Sampling an ID of Order nO(c2) for Node v, c > 0.

1: p← 2−1/(c+2)

2: Sample BitCount ∼ Geo(1 − p), i.e., according to the geometric distribution with
parameter 1− p

3: Sample IDv uniformly at random from {0, 1}BitCount

▶ Lemma 18. For any constant c > 0, with high probability, running Algorithm 4 in an
anonymous ring of n nodes assigns each one an ID of size nO(c2) such that the maximal ID
is attained uniquely by one node and is at least nΩ(c).

Proof sketch. Each node has a probability of px to have their BitCount variable exceed some
value x. With x ∈ Θ(logp n), this probability is of order 1/ poly(n). Doing a union bound
over all nodes, we get that with high probability, all nodes’ BitCount variables stay below
some value x ∈ Θ(logp n). It follows that the largest ID is of order at most poly(n). Since

DISC 2024



26:16 Content-Oblivious Leader Election on Rings

nodes do their sampling independently, the probability that all nodes’ BitCount variables
stay below some value x is (1− px)n. For x ∈ Θ(logp n), this is 1/ poly(n). As a result, at
least one node’s BitCount variable exceeds Θ(logp n), with high probability. Such nodes
then sample their random bits uniformly at random from poly(n) choices, which makes a
collision at the highest value very unlikely. ◀

The proof of Theorem 3 follows immediately from Lemma 18.
Finally, we note that a slight modification of Algorithm 3 would also allow us to sample a

unique ID for each node (Proposition 19), with high probability. As a result, the three settings
of (1) the anonymous ring, (2) the ring with a leader, and (3) the ring with unique IDs and
an orientation, are crucially separated by the possibility of quiescent termination. Leader
election, orienting the ring, and assigning unique IDs can all be computed in setting (1).
However, they can only be done without termination, while in settings (2) and (3), the same
tasks and more can be performed with quiescent termination.

▶ Proposition 19. Let IDv be the ID sampled by nodes in Algorithm 4, before running
Algorithm 3. Modify Algorithm 3 so that whenever a node receives a pulse, if min(ρ0, ρ1) > IDv,
node v updates its ID to a new ID sampled uniformly at random between 1 and min(ρ0, ρ1)−1.
Then, with high probability, all nodes have distinct IDs when reaching quiescence.

6 Lower Bound on Message Complexity in Content-Oblivious Rings

In this section, we show that the dependency of the message complexity of our algorithms
on IDmax is natural and inevitable by providing a lower bound showing that the number of
pulses sent increases indefinitely with the number of available IDs.

▶ Theorem 20. Let k and n be arbitrary positive integers, k ≥ n. If k distinct IDs are
assignable to the n nodes of the ring, at least n⌊log(k/n)⌋ pulses are sent by any leader
election algorithm for some assignment of IDs. In particular, an unbounded number of pulses
is sent for an infinite supply of IDs even on rings with just a single node.

The proof of this theorem makes use of the following definition.

▶ Definition 21 (Solitude pattern). Consider a ring with a single node (n = 1), and fix a
specific algorithm. Assume a scheduler that delivers pulses one by one, keeping the order in
which they were sent (breaking ties by prioritizing CW pulses). Define the solitude pattern
as the sequence of incoming pulses observed by the node, encoded as a binary string where 0
and 1 encode CW and CCW pulses, respectively. We denote the solitude pattern of a node
with ID = i by pi.

Besides this crucial definition, we make use of the following lemma telling us that each ID
has its own, unique solitude pattern. Essentially, the proof relies on matching all possible
pairs of IDs against each other in a ring of two nodes. If any two IDs had the same solitude
pattern, they would send and receive pulses in this ring (n = 2) exactly as they would in
solitude (n = 1). Thus, in one of these execution they give an invalid output.

▶ Lemma 22. For any uniform content-oblivious leader election algorithm, each solitude
pattern is unique. In other words, for any pair of distinct IDs i ̸= j, we have pi ̸= pj.

Proof. Fix a content-oblivious leader election algorithm on uniform rings. Seeking contradic-
tion, assume that two nodes with distinct IDs, i ̸= j, have the same solitude pattern, pi = pj .
Note that each of these nodes outputs Leader when run in isolation (n = 1).



F. Frei, R. Gelles, A. Ghazy, and A. Nolin 26:17

Consider a ring with n = 2 nodes, which are assigned the IDs i and j, respectively.
Assume a scheduler behaving the same way as in the definition of a solitude pattern for
each node individually. That is, pulses arrive one by one in the order they were sent out.
Moreover, we assume that the same delay is applied to all pulses. Since the two nodes’
solitude patterns are identical, and the scheduler maintains order, each node will receive
(and thus generate) exactly its solitude pattern. Indeed, since pi = pj , both nodes send their
first pulse in the same direction, and hence both receive it from the same direction as they
would when alone and then send their next pulse accordingly; thus both receive and send
exactly the pattern pi = pj . This means that both nodes output Leader as they must in their
solitude situation, contradicting the guarantees of the leader election task. ◀

Having established that each ID has its own unique solitude pattern, a lower bound arises
from properties of binary strings, namely the length required to avoid repeating patterns.
We begin with the following simple property following from the pigeon-hole principle.

▶ Lemma 23. For any s, n ≥ 1, any set of n2s distinct binary strings contains n strings
sharing a common prefix of length at least s.

Proof. Let s and n be positive integers. There are only 2s − 1 distinct binary strings shorter
than s. Therefore, in a set of n2s distinct binary strings at least n2s − 2s − 1 = (n− 1)2s + 1
of them have length at least s, implying that they contain a prefix string of length s. There
are only 2s distinct binary prefixes of length s, thus the pigeon-hole principle implies that at
least one prefix of length s is shared by at least ⌈((n− 1)2s + 1)/2s⌉ = ⌈n− 1 + 2−s⌉ = n of
the strings in the set. ◀

After deducing another corollary, we are ready to prove the lower bound of Theorem 20.

▶ Corollary 24. For any integers k ≥ n ≥ 1, any set of k distinct binary strings contains n

strings sharing a common prefix of length at least ⌊log(k/n)⌋.

Proof. Apply Lemma 23 with the given n and s = ⌊log(k/n)⌋. Note that the given set is
large enough since n2s ≤ n2log(k/n) = n(k/n) = k. ◀

Proof of Theorem 20. Assume that we have a uniform leader election algorithm, a ring
with n nodes, and at least k assignable IDs for any positive integers k ≥ n. Due to Lemma 22
we know that each ID has its own unique solitude pattern, which is just a binary string.
By Corollary 24, there are at least n IDs whose solitude patterns share a common prefix of
length s = ⌊log(k/n)⌋. Assume a scheduler that behaves as described in Lemma 22, for all
n nodes. It follows that all nodes send and receive pulses in exactly the same way as in their
respective solitude situations for the first ⌊log(k/n)⌋ time steps, sending one pulse in each
time step. Consequently, at least n · s = n⌊log(k/n)⌋ pulses are sent in total, proving the
first part of the theorem. The last statement in the theorem follows for an infinite set of
assignable IDs because n⌊log(k/n)⌋ grows indefinitely with increasing k, even for n = 1. ◀

Theorem 4 is then an immediate corollary of the above since the number of distinct IDs
is bounded by IDmax. This lower bound complements the upper bound of Theorem 1 and
proves that the IDmax term is not an artifact of our analysis or algorithm design but, rather,
an inherent property of the problem in this setting.

DISC 2024



26:18 Content-Oblivious Leader Election on Rings

7 Conclusion and Open Questions

As our main result, we have presented a quiescently terminating algorithm for leader election
in oriented rings with unique IDs that communicates n(2 · IDmax + 1) pulses. This implies
that any content-oblivious computation can be performed on rings without assuming a pre-
existing leader. We have also provided a lower bound showing that the message complexity
depending on IDmax is not a fluke but inherent to the problem.

An immediate candidate for future work is to extend our results from rings to general
networks, i.e., to design a content-oblivious leader election algorithm in arbitrary 2-edge
connected networks or, alternatively, prove this task impossible. Considering non-oriented
rings may be useful towards that goal since there is no sense of direction in general networks.
Our content-oblivious leader election for non-oriented rings does not terminate, and we
conjecture that this is inherent to the model. It remains as an open task for future work to
prove this or find a terminating algorithm.

References
1 Y. Afek and Y. Matias. Elections in anonymous networks. Information and Computation,

113(2):312–330, 1994. doi:10.1006/inco.1994.1075.
2 Dana Angluin. Local and global properties in networks of processors (extended abstract).

In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, STOC ’80,
pages 82–93, New York, NY, USA, 1980. ACM. doi:10.1145/800141.804655.

3 Yagel Ashkenazi, Ran Gelles, and Amir Leshem. Noisy beeping networks. Information and
Computation, 289(A):104925, 2022. doi:10.1016/J.IC.2022.104925.

4 Hagit Attiya and Marc Snir. Better computing on the anonymous ring. Journal of Algorithms,
12(2):204–238, 1991. doi:10.1016/0196-6774(91)90002-G.

5 Hagit Attiya, Marc Snir, and Manfred K. Warmuth. Computing on an anonymous ring. J.
ACM, 35(4):845–875, October 1988. doi:10.1145/48014.48247.

6 F Thomas Bruss and Colm Art O’cinneide. On the maximum and its uniqueness for geometric
random samples. Journal of applied probability, 27(3):598–610, 1990.

7 James E. Burns. A formal model for message passing systems. Technical report, Computer
Science Dept., Indiana Univ., Bloomington, Ind., 1980. TR91.

8 Keren Censor-Hillel, Shir Cohen, Ran Gelles, and Gal Sela. Distributed computations
in fully-defective networks. Distributed Computing, 36(4):501–528, 2023. doi:10.1007/
s00446-023-00452-2.

9 Keren Censor-Hillel, Ran Gelles, and Bernhard Haeupler. Making asynchronous distributed
computations robust to noise. Distributed Computing, 32(5):405–421, October 2019. doi:
10.1007/s00446-018-0343-5.

10 Ernest Chang and Rosemary Roberts. An improved algorithm for decentralized extrema-
finding in circular configurations of processes. Commun. ACM, 22(5):281–283, May 1979.
doi:10.1145/359104.359108.

11 Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In Distributed
Computing, 24th International Symposium, DISC 2010, volume 6343 of LNCS, pages 148–
162, 2010, Cambridge, MA, USA, September 13–15, 2010. Proceedings, 2010. Springer. doi:
10.1007/978-3-642-15763-9_15.

12 Artur Czumaj and Peter Davies. Leader election in multi-hop radio networks. Theoretical
Computer Science, 792:2–11, 2019. doi:10.1016/J.TCS.2019.02.027.

13 Peter Davies. Optimal message-passing with noisy beeps. In Proceedings of the 2023 ACM
Symposium on Principles of Distributed Computing, PODC, pages 300–309, 2023, Orlando,
FL, USA, June 19–23, 2023, 2023. ACM. doi:10.1145/3583668.3594594.

https://doi.org/10.1006/inco.1994.1075
https://doi.org/10.1145/800141.804655
https://doi.org/10.1016/J.IC.2022.104925
https://doi.org/10.1016/0196-6774(91)90002-G
https://doi.org/10.1145/48014.48247
https://doi.org/10.1007/s00446-023-00452-2
https://doi.org/10.1007/s00446-023-00452-2
https://doi.org/10.1007/s00446-018-0343-5
https://doi.org/10.1007/s00446-018-0343-5
https://doi.org/10.1145/359104.359108
https://doi.org/10.1007/978-3-642-15763-9_15
https://doi.org/10.1007/978-3-642-15763-9_15
https://doi.org/10.1016/J.TCS.2019.02.027
https://doi.org/10.1145/3583668.3594594


F. Frei, R. Gelles, A. Ghazy, and A. Nolin 26:19

14 Danny Dolev, Maria Klawe, and Michael Rodeh. An O(n log n) unidirectional distributed
algorithm for extrema finding in a circle. Journal of Algorithms, 3(3):245–260, 1982. doi:
10.1016/0196-6774(82)90023-2.

15 Fabien Dufoulon, Janna Burman, and Joffroy Beauquier. Beeping a deterministic time-optimal
leader election. In 32nd International Symposium on Distributed Computing, DISC 2018,
volume 121 of LIPIcs, pages 20:1–20:17, New Orleans, LA, USA, October 15–19, 2018, 2018.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPICS.DISC.2018.20.

16 Fabien Dufoulon, Janna Burman, and Joffroy Beauquier. Can uncoordinated beeps tell stories?
In PODC ’20: ACM Symposium on Principles of Distributed Computing, pages 408–417,
Virtual Event, Italy, August 3–7, 2020, 2020. ACM. doi:10.1145/3382734.3405699.

17 M. El-Ruby, J. Kenevan, R. Carlson, and K. Khalil. A linear algorithm for election in ring
configuration networks. In Proceedings of the Twenty-Fourth Annual Hawaii International
Conference on System Sciences, volume i, pages 117–123 vol.1, Los Alamitos, CA, USA, 1991.
IEEE Computer Society. doi:10.1109/HICSS.1991.183877.

18 Michael Feldmann, Andreas Padalkin, Christian Scheideler, and Shlomi Dolev. Coordinating
amoebots via reconfigurable circuits. Journal of Computational Biology, 29(4):317–343, 2022.
doi:10.1089/cmb.2021.0363.

19 Paola Flocchini, Evangelos Kranakis, Danny Krizanc, Flaminia L. Luccio, and Nicola Santoro.
Sorting and election in anonymous asynchronous rings. Journal of Parallel and Distributed
Computing, 64(2):254–265, 2004. doi:10.1016/j.jpdc.2003.11.007.

20 Klaus-Tycho Förster, Jochen Seidel, and Roger Wattenhofer. Deterministic leader election
in multi-hop beeping networks – (extended abstract). In Distributed Computing – 28th
International Symposium, DISC’14, volume 8784 of LNCS, pages 212–226, 2014, Austin, TX,
USA, October 12–15, 2014. Proceedings, 2014. Springer. doi:10.1007/978-3-662-45174-8_
15.

21 Greg N. Frederickson and Nancy A. Lynch. Electing a leader in a synchronous ring. J. ACM,
34(1):98–115, January 1987. doi:10.1145/7531.7919.

22 Fabian Frei, Ran Gelles, Ahmed Ghazy, and Alexandre Nolin. Content-oblivious leader
election on rings. CoRR, abs/2405.03646, 2024. URL: https://arxiv.org/abs/2405.03646,
doi:10.48550/arXiv.2405.03646.

23 Ran Gelles. Coding for interactive communication: A survey. Foundations and Trends® in
Theoretical Computer Science, 13(1–2):1–157, 2017. doi:10.1561/0400000079.

24 Mohsen Ghaffari and Bernhard Haeupler. Near optimal leader election in multi-hop radio
networks. In SODA’13, pages 748–766, New Orleans, Louisiana, USA, January 6–8, 2013,
2013. SIAM. doi:10.1137/1.9781611973105.54.

25 D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in circular configurations of
processors. Commun. ACM, 23(11):627–628, November 1980. doi:10.1145/359024.359029.

26 Alon Itai and Michael Rodeh. Symmetry breaking in distributed networks. Information and
Computation, 88(1):60–87, 1990. doi:10.1016/0890-5401(90)90004-2.

27 Shay Kutten, Peter Robinson, Ming Ming Tan, and Xianbin Zhu. Improved tradeoffs for leader
election. In Rotem Oshman, Alexandre Nolin, Magnús M. Halldórsson, and Alkida Balliu,
editors, Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing,
PODC 2023, Orlando, FL, USA, June 19-23, 2023, pages 355–365. ACM, 2023. doi:10.1145/
3583668.3594576.

28 Gérard Le Lann. Distributed systems – towards a formal approach. In Bruce Gilchrist, editor,
Information Processing, Proceedings of the 7th IFIP Congress 1977, pages 155–160, Toronto,
Canada, August 8–12, 1977, 1977. North-Holland.

29 Gary L. Peterson. An O(n log n) unidirectional algorithm for the circular extrema problem.
ACM Trans. Program. Lang. Syst., 4(4):758–762, October 1982. doi:10.1145/69622.357194.

30 Nicola Santoro and Peter Widmayer. Distributed function evaluation in the presence of
transmission faults. In Tetsuo Asano, Toshihide Ibaraki, Hiroshi Imai, and Takao Nishizeki,
editors, Algorithms, International Symposium SIGAL ’90, volume 450 of Lecture Notes in

DISC 2024

https://doi.org/10.1016/0196-6774(82)90023-2
https://doi.org/10.1016/0196-6774(82)90023-2
https://doi.org/10.4230/LIPICS.DISC.2018.20
https://doi.org/10.1145/3382734.3405699
https://doi.org/10.1109/HICSS.1991.183877
https://doi.org/10.1089/cmb.2021.0363
https://doi.org/10.1016/j.jpdc.2003.11.007
https://doi.org/10.1007/978-3-662-45174-8_15
https://doi.org/10.1007/978-3-662-45174-8_15
https://doi.org/10.1145/7531.7919
https://arxiv.org/abs/2405.03646
https://doi.org/10.48550/arXiv.2405.03646
https://doi.org/10.1561/0400000079
https://doi.org/10.1137/1.9781611973105.54
https://doi.org/10.1145/359024.359029
https://doi.org/10.1016/0890-5401(90)90004-2
https://doi.org/10.1145/3583668.3594576
https://doi.org/10.1145/3583668.3594576
https://doi.org/10.1145/69622.357194


26:20 Content-Oblivious Leader Election on Rings

Computer Science, pages 358–367, Tokyo, Japan, August 16–18, 1990, 1990. Springer. doi:
10.1007/3-540-52921-7_85.

31 Violet Syrotiuk and Jan Pachl. A distributed ring orientation algorithm. In International
Workshop on Distributed Algorithms (WDAG’87), pages 332–336. Springer Berlin Heidelberg,
1988. doi:10.1007/BFb0019813.

https://doi.org/10.1007/3-540-52921-7_85
https://doi.org/10.1007/3-540-52921-7_85
https://doi.org/10.1007/BFb0019813


Sorting in One and Two Rounds Using
t-Comparators
Ran Gelles #

Bar-Ilan University, Ramat Gan, Israel

Zvi Lotker #

Bar-Ilan University, Ramat Gan, Israel

Frederik Mallmann-Trenn #

King’s College London, UK

Abstract
We examine sorting algorithms for n elements whose basic operation is comparing t elements
simultaneously (a t-comparator). We focus on algorithms that use only a single round or two
rounds – comparisons performed in the second round depend on the outcomes of the first round
comparators. Algorithms with a small number of rounds are well-suited to distributed settings in
which communication rounds are costly.

We design deterministic and randomized algorithms. In the deterministic case, we show an
interesting relation to design theory (namely, to 2-Steiner systems), which yields a single-round
optimal algorithm for n = t2k

with any k ≥ 1 and a variety of possible values of t. For some values
of t, however, no algorithm can reach the optimal (information-theoretic) bound on the number of
comparators. For this case (and any other n and t), we show an algorithm that uses at most three
times as many comparators as the theoretical bound.

We also design a randomized Las-Vegas two-round sorting algorithm for any n and t. Our
algorithm uses an asymptotically optimal number of O(max( n3/2

t2 , n
t
)) comparators, with high

probability, i.e., with probability at least 1 − 1/n. The analysis of this algorithm involves the gradual
unveiling of randomness, using a novel technique which we coin the binary tree of deferred randomness.

2012 ACM Subject Classification Theory of computation → Sorting and searching; Mathematics of
computing → Probabilistic algorithms; Theory of computation → Distributed algorithms

Keywords and phrases Sorting, Steiner-System, Round Complexity, Deferred Randomness

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.27

Related Version The full version of this work is available in: arXiv:2405.12678 [18]

Funding Ran Gelles: Research supported in part by the United States-Israel Binational Science
Foundation (BSF) through Grant No. 2020277.
Frederik Mallmann-Trenn: Was funded by the EPSRC grant EP/W005573/1.

Acknowledgements R. Gelles would like to thank Paderborn University and CISPA – Helmholtz
Center for Information Security for hosting him while part of this research was done. The authors
would also like to thank the anonymous reviewers for multiple helpful comments.

1 Introduction

Sorting has been a fundamental task for computers (and earlier electronic devices) since
the inception of computer history [24, 13]. Many sorting algorithms are comparison-based,
meaning that there exists some device that compares pairs of elements and decides which of
them is the larger. By comparing multiple pairs, one can obtain a full order of all elements.
It is well known that if pairs are being compared, Θ(n log n) comparisons are needed in order
to fully sort any possible set of n elements. Such sorting, however, assumes one can apply

© Ran Gelles, Zvi Lotker, and Frederik Mallmann-Trenn;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 27; pp. 27:1–27:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ran.gelles@biu.ac.il
https://orcid.org/0000-0003-3615-3239
mailto:zvi.lotker@biu.ac.il
https://orcid.org/0000-0002-3759-5584
mailto:frederik.mallmann-trenn@kcl.ac.uk
https://orcid.org/0000-0003-0363-8547
https://doi.org/10.4230/LIPIcs.DISC.2024.27
https://arxiv.org/abs/2405.12678
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


27:2 Sorting in One and Two Rounds Using t-Comparators

comparisons in an adaptive manner, i.e., one can determine which pairs of elements to compare
next based on results of previous comparisons. It is not too difficult to see that without this
adaptive selection of elements, Ω(n2) comparisons are needed (see also Lemma 4 below).

In contrast to general-purpose CPUs, which allow fast comparison of two elements, spe-
cialized hardware that can be found in system-on-a-chip systems and GPUs, allows compar-
ing larger sets of elements. Motivated by the above, in this work we explore sorting algo-
rithms that use t-comparators. These blocks allow t elements to be compared simultaneously
to determine their total order, rather than comparing them in pairs. Our initial focus is on
deterministic, non-adaptive sorting algorithms where all comparisons are pre-determined
and independent of prior outcomes. Additionally, we consider randomized algorithms with a
limited degree of adaptiveness. In particular, we design sorting algorithms with two rounds,
where the second round can use the comparison outcomes from the first round. In both cases,
our goal is to minimize the number of t-comparators used.

To further motivate the case of sorting with t-comparators (t-sorting) in a single round,
consider the following scenario, which is very common in the Computer Science community.
A conference program committee (PC) is set to decide on the ranking of the n submitted
papers. Let us assume that there is an “absolute truth”, namely, that there exists a total
ordering of the papers, and that each PC member outputs the “true” ordering of any number
of papers assigned to them.1 To balance out the load, the papers are split so that each PC
member receives t papers. Note that the same paper can be sent to multiple PC members.
Each PC member, individually, returns to the chair the total order of the set of papers
assigned to them. The chair collects all these outputs and composes a total ordering of the n

papers, that is consistent with all the partial sets. Assume we wish the chair’s output to be
the “true” ordering of the papers, how many PC members are needed, as a function of n

and t? Note that the chair assigns the papers once, without having any information about
papers, that is, this is a non-adaptive t-sorting with a single round.

1.1 Deterministic Sorting
Consider deterministic t-sorting algorithms with a single round. Similar to the case of t = 2,
that requires comparing all

(
n
2
)

possible pairs, it can easily be shown that for any t, at least
γn,t =

(
n
2
)
/
(

t
2
)

many t-comparators are needed in order to fully sort n elements. This stems
from the fact that in order to learn the total ordering of n elements, we need to learn the
relative-order of all

(
n
2
)

pairs, while each t-comparator gives us information about at most(
t
2
)

different pairs of elements (Corollary 5).
Our first question is whether this bound is achievable, that is, whether there exists a

single round t-sorting algorithm that utilizes exactly γn,t comparators. We first show a way
to perform t-sorting with at most 3γn,t comparators (Lemma 6). The idea is rather simple:
we divide the elements into disjoint subsets, where each subset contains t/2 different elements.
Then, we go through all possible pairs of subsets, and for each such pair we compare the
t elements of their union using a separate t-comparator. This guarantees that any two
elements are compared by at least one comparator, so a total-ordering of the n elements can
be deduced from the results of the

(⌈n/(t/2)⌉
2

)
< 3γn,t different comparisons.

Our main result is an algorithm with an optimal level of γn,t t-comparators for the case
where t is a power of a prime and n = t2k , for any positive integer k ∈ N. Namely,

1 We realize that, in real life, no such absolute truth exists, and that PC members are heavily biased, etc.
These extensions make a very interesting direction for followup questions. We briefly discuss future
directions in Section 1.5.



R. Gelles, Z. Lotker, and F. Mallmann-Trenn 27:3

▶ Theorem 1 (main, deterministic). Let t be a power of a prime and let n = t2k , k ∈ N. Then,
there exists a deterministic single-round, t-sorting algorithm that utilizes exactly

(
n
2
)
/
(

t
2
)

comparators.

In order to obtain the above optimal sorting, we show a connection between sorting
and combinatorial design theory. Consider the case where t is a prime power and k = 1,
that is, n = t2, a setting that attained a lot of interest in the past, especially by hardware-
implementation oriented designs [40, 35, 36]. We essentially show that sorting with γn,t com-
parators is equivalent to an Affine Plane of order t. An affine plane (see e.g., [22, 31]) is
a design structure composed of elements (“points”) and subset of elements (“lines”) that
guarantees the following properties: (P1) every two points belong to a unique line, (P2) ev-
ery line contains at least two points, and (P3) not all points are co-linear. Further, it satis-
fies the Euclidean Property (A1): for every line L and any point p outside L, there exists a
unique line that contains p and is parallel to L. It is known that all lines in an affine plane
contain exactly the same number of points; call this number the order of the plane. It is also
known that an affine plane of order t contains t2 + t lines.

If we think about points as the elements we wish to sort and about lines as subsets of t

points which we compare via a single comparator, finding an affine plane of order t provides
the property that any two elements are being compared exactly a single time, i.e., by a single
comparator, leading to the optimal bound of γn,t comparators.

An affine plane of order t is easy to construct for any t that is a power of a prime. Let F
be a finite field with t elements, and consider pairs of elements (x, y), i.e., the plane F2. In
this plane, any two points (x1, y1) and (x2, y2), define a unique line that passes through them,
namely y = y1−y2

x1−x2
x + y2x1−y1x2

x1−x2
if x1 ̸= x2 and the line {(x1, y) | y ∈ F}, otherwise. It is easy

to verify this structure satisfies all the properties of an affine plane (see [31, Section 3.2]).
Affine planes are a special case of a more general combinatorial structure known as

Steiner systems (Definition 10). Indeed, if we change assumption (A1) so that there exists
no parallel lines at all (also known as the Elliptic Property), but still require that any two
points define a unique line, we would still get a sorting algorithm in which any two elements
are being compared against each other exactly once. In this case, the resulting structure is
again a special case of a Steiner system known as a Projective Plane. Known constructions
of projective planes imply that for any t − 1 being a power of a prime, one can sort t2 − t + 1
elements using exactly t2 − t + 1 many t-comparators, where every pair of elements is being
compared exactly once. These two constructions are summarized as Theorem 12.

We lift the above result from optimally sorting t2 elements to optimally sorting t2k ,
by developing a composition theorem (Lemma 15) that recursively performs sorting of t2k

elements by utilizing an optimal number of t2k−1 -comparators, for any k > 1.

1.2 Randomized Sorting
Similar to the deterministic case, if one does not bound the number of adaptive rounds a
randomized sorting algorithm is allowed to make, optimal sorting can easily be achieved. For
instance, Beigel and Gill [8] showed a generalized t-quicksort algorithm that sorts n elements
by utilizing at most 4 n log n

t log t many t-comparators, which is optimal, maybe up to the constant
(see Theorem 16). However, this algorithm requires O(logt n) adaptive rounds. Indeed, recall
that quicksort works in rounds, where at each round the algorithm selects (one or more)
pivot elements. These elements are used to “bucket” the rest of the elements into disjoint
subsets, meaning that all elements greater than one pivot and less than the next pivot belong

DISC 2024



27:4 Sorting in One and Two Rounds Using t-Comparators

to the same bucket. Then, each such bucket is recursively sorted by the same method. Since
each round depends on the pivots and buckets of the previous rounds, O(logt n) recursive
rounds are needed [8].

Our second question in this work is how to obtain optimal randomized t-sorting algorithms
with restricted number of rounds. Since we already analyzed the case of a single round and
reached optimal results, in the second part of this work we address the case of two rounds.
Our goal is to minimize the number of t-comparators used to sort n elements in a Las-Vegas
algorithm, where the output is correct with probability 1 but the number of comparators
used is a random variable that varies between different instances.

Our main result for this part is as follows.

▶ Theorem 2 (main, randomized). Let t < n be given. There exists a (Las-Vegas) randomized
sorting algorithm for n elements with two rounds, that utilizes O

(
max

(
n3/2

t2 , n
t

))
many t-

comparators, with probability at least 1 − 1/n.

We note that for the case where n = t2, our algorithm uses O(t) comparators which
is asymptotically optimal since n log n

t log t = Θ(t). We further note that a result by Alon and
Azar [3] implies that the expected number of comparators used in our algorithm when t ≤√

n, is also tight.
The high-level idea of the two-round algorithm is to perform a single round of “quicksort”

and then to optimally (deterministically) sort each resulting bucket, rather than recursively
sorting it. In more details, let m be some fixed parameter. Our algorithm starts by sampling
m elements that will serve as pivots. We bucket all the elements by dividing the rest n − m

elements into subsets of size m elements each, and comparing each such subset, along with
the m pivots by utilizing at most 3γ2m,t many t-comparators (per subset). This step tells us,
for each one of the n − m elements, between which two pivots it resides.

A pseudo code of our 2-round randomized algorithm is given below as Algorithm 1 for
the case t ≤ m. The case t > m is very similar and is covered in Section 4.

Algorithm 1 A randomized 2-round sorting for any n, t with t ≤ m.

Round 1:
1: Let P be a set of m elements from A, each sampled uniformly and independently from A.
2: Partition A \ P into subsets A1, . . . , Ak of size at most m each. ▷ k = ⌈(n − m)/m⌉
3: for all i ∈ [k] do
4: Sort P ∪ Ai using the optimal 1-round deterministic algorithm.
5: end for

Round 2:
6: Let P = (p1, . . . , pm) be the ordered elements in P . For 1 ≤ i ≤ m − 1, set Si to contain

all the elements which are greater than pi but lower than pi+1. Set S0 to be all the
elements lower than p1 and Sm be all the elements greater than pm.

7: for all 0 ≤ i ≤ m do
8: Sort Si using the optimal 1-round deterministic algorithm.
9: end for

In expectation, each bucket is of size ≈ n/m and sorting a bucket of this size takes 3γn/m,t

many t-comparators. If all buckets had size exactly n/m, this would lead immediately to the
desired result of 3 n

m γ2m,t + 3(m + 1)γn/m,t = O( nm
t2 + n2

mt2 ). This quantity is minimal when



R. Gelles, Z. Lotker, and F. Mallmann-Trenn 27:5

m ≈
√

n (ignoring constants), leading to the claimed O( n3/2

t2 ) bound.2 Unfortunately, buckets’
sizes vary, and some of them might be much larger, say, of size (n/m) log(n/m). However, our
analysis shows that this event is very rare and the additional number of comparators needed to
handle these cases is rather small. More specifically, in our analysis, we formulate a balls-into-
bins process to distribute elements into buckets, and bound the number of such bad events
using the balls-into-bins process. Let us now expend on the techniques used in this analysis.

1.2.1 Techniques: The binary tree of deferred randomness

Let us start by describing the balls-into-bins process we use. Consider the n elements,
and rename them a1, . . . , an so that they are sorted. Starting with a1, we group together
sequences of cn/m consecutive elements, for some sufficiently large constant c. We call
each such group a bin; namely, the first bin is b1 = {a1, . . . , acn/m} the second bin is b2 =
{acn/m+1, . . . , a2cn/m} and so on, resulting in a total of m/c bins overall. The balls will be
the m elements we pick as pivots. That is, let P = {p1, p2, . . . , pm} be the elements selected
as pivots. Since each pivot is sampled uniformly at random, the selection of some pi is
equivalent to throwing a ball to bin bj where pi ∈ bj .3

If each bin has a ball, than each “bucket” has at most 2cn/m elements, and the cost,
measured in the number of comparators needed to sort that bucket, is as desired. However,
the absence of a ball in a bin implies larger buckets. That is, the size of the bucket, and
hence the cost of sorting it, is determined by the stretch of bins without balls (up to two
additional bins, one from each side). In other words, in order to bound the cost of the
second round, we throw |P | = m balls uniformly at random into m/c bins and count the
length of consecutive empty bins. Recall that m =

√
n; we will substitute this value to avoid

cumbersome equations in the following.
A straightforward balls-into-bins analysis shows that there are c pivots per bin in expec-

tation and that the probability of not having a pivot in c′ consecutive bins scales as e−Ω(c′).
Ideally we would like to use the above probability and obtain a polynomially-small failure
probability by considering all the bins at the same time. Unfortunately, this approach breaks
due to the correlation between empty bins. Indeed, the fact that some bins are empty in-
dicates that the balls went somewhere else, altering the probability of having empty bins
elsewhere. The bins’ loads are negatively correlated. This means that concentration bounds
could potentially be used for negatively correlated variables. However, there are many obsta-
cles to this approach. First, note that while the loads of the bins are negatively correlated,
we actually need to bound different variables, namely, the lengths of consecutive sequences
of empty bin. Second, defining these variables and analyzing their probability function, as
well as proving that they are negatively correlated, seems to be a difficult task. Finally, note
that even the number of these random variables, is itself a random variable.

Instead, we introduce the concept of a binary tree of deferred randomness that enables a
more straightforward analysis of the concentration of empty bins, circumventing difficulties
arising from their dependencies.

2 The term O(n/t) in Theorem 2 stems from the other case, where t > m, i.e., t >
√

n.
3 We note that this balls-into-bin process differs slightly from our pivot selection process in the sense that

it samples pivots with replacement, while the original process samples without replacement. However,
one could modify the original process by allowing the same element to be sampled multiple times, and
later ignore these extra copies. It is immediate that sampling without replacement can only create
smaller bins and thus improve the overall complexity.

DISC 2024



27:6 Sorting in One and Two Rounds Using t-Comparators

u1
1600

u2
790

u4
310

u8
127

b1 b2

u9
183

b3 b4

u5
480

u10
470

b5 b6

u11
10

b7 b8

u3
810

u6
422

u12
145

b9 b10

u13
277

b11 b12

u7
388

u14
194

b13 b14

u15
194

b15 b16

Eu5

Eu12

Figure 1 The figure shows the distribution of pivots (balls) on the tree of deferred randomness,
marked as the numbers in each node. Here we have

√
n = 1600 pivots and 16 bins (c = 100). In the

first two levels, the distribution is about even. The node u11 receives too few balls and so the event
Eu5 holds. Similarly, b9 gets too few balls (bin’s balls are not shown in the figure), causing Eu12 to
happen. The nodes in gray portray the set END described in detail in the full version.

We think of the assignment of a pivot (a ball) to a bin as the bit-string describing the bin
where the pivot ends, that we reveal bit-by-bit. We define a binary tree, where each one of the√

n/c bins is a leaf. Thus, the tree has a depth of log(
√

n/c) (assuming
√

n/c is a power of two).
We define the following iterative process of assigning balls to the leaves of the tree: Initially
we have

√
n balls at the root. At every step, at every node u, we randomly assign each ball to

one of u’s children. This is equivalent to revealing the next bit in the string representing the
bin to which the pivot belongs to. The advantage of this approach lies in the careful revelation
of the randomness. At every level, we can derive concentration bounds without affecting the
following levels – the only thing that matters at a given node is how many balls arrive at it.

Consider the binary tree of deferred randomness after all balls are assigned and follow an
arbitrary path from the root to a leaf v. There are two cases. In the ideal case, at every node
along the path to v, the number of balls going left and right is close to the expected value,
namely, close to half. If this happens, then enough balls propagate along this path and with
high probability at least one of them will reach the leaf v. This is the good scenario, since if this
holds for many bins, the cost of sorting their elements will be very close to the expected cost.

The second case is when the concentration fails at some node u on the path, and the
assignments of the balls is not close to half. If this happens first at node u, we say that the bad
event Eu occurred, stop the process there (i.e., ignore other nodes in u’s subtree), and charge
a cost as if only a single ball reaches the bins under the node u. In other words, if there are ℓ

balls at node u, we assume that all the ℓ pivot selections ended up picking the same element.
By doing so, we overestimate the size of the resulted bucket to contain all the elements in all
the bins below u. Specifically, we charge this event with the cost of sorting O(ℓ · c

√
n) >

|bins(u)|·c
√

n elements; here we use the fact that, as long as the bad event Eu does not happen,
the number of balls reaching u always exceeds the number of bins in the subtree of u, |bins(u)|.

Figure 1 illustrates the infiltration of balls through the tree: a node u at level i is
associated to the 2log(c

√
n)−i bins below it. The number inside a node denotes how many

balls are assigned to that node. When u assigns the balls to its children, each ball picks one



R. Gelles, Z. Lotker, and F. Mallmann-Trenn 27:7

of the children uniformly at random, so each of the children is assigned half of u’s balls, in
expectation. The process continues until we reach the leaves at level log(c

√
n). In the rare

event that balls are distributed in a very skewed manner, the bad event Eu happens. For
instance, while u5 has 480 balls, they split very unevenly among its children, causing the bad
event Eu5 . The process stops there, i.e., we do not care how the balls continue in the subtree
of u5 and in particular, Eu never happens in any of u’s descendants. Since Eu5 happens
and the process stops there, the analysis charges an amortized cost which is proportional to
sorting a bucket of size of 4 bins (due to the 4 bins b5, b6, b7, b8 – for all we know, all the balls
could end up in b8, creating a single bucket that consists all the respective elements). In
fact, we upper bound this cost by the number of balls that arrive to u5, whose expectation
in this example is 4c ≫ 4. The situation might get even worse, since E12 occurs as well.
This effectively means that a single bucket might consist of all the element in bins b4–b10.
The dependency between neighboring nodes with bad events complicates the cost analysis.
However, by summing up the costs of all these events, we can derive the amortized cost per
such bad event and simplify the analysis by considering a single event at a time.

Luckily, the higher up in the tree a node is, the more balls the node holds and the less
likely the concentration bound will fail. The lower in the tree the node is, the lower the cost
is. In particular, once we approach the lower levels of the tree, the bad event Eu occurs with
constant probability. This does not pose any trouble, because the cost in this case is only a
constant factor larger than the expected cost of the case where each bin has at least one ball
in it. Overall, we show that for every level of the tree, the cost imposed in our process is very
close to its expectation, with high probability (at least 1 − 1/n2). Taking a union bound
over all the (at most n) levels of the our tree of deferred randomness yields the desired claim.
We give the full details in Section 4.3.

1.3 Related Work

A fundamental task like sorting naturally attracted a lot of attention in numerous variants
and settings. To put our result in the right context, in this section we mention just a few of
these variants and we mainly focus on comparison-based sorting algorithms. We refer the
reader to surveys [27, 16, 38] and books [24, 13, 2] for a more complete treatment on the
background of (general) sorting.

The task of sorting in small number of rounds was initiated by the work of Häggkvist and
Hell [20], who considered the case of sorting n elements in a single round by comparing pairs
of elements (i.e., t = 2). While they do not give any explicit sorting algorithm, they bound
the number of 2-comparators required for sorting in d-rounds by Ω(n1+1/d) from below and
by O(nαd log n) from above, for a constant αd that monotonously decreases towards 3/2 as d

grows. Specifically, for d = 2, they prove that the optimal number of comparisons lies within
the range (C1n3/2, C2n5/3 log n) for some constants C1, C2. Alon, Azar, and Vishkin [5]
improved the lower bound to Ω(n1+1/d(log n)1/d). Alon and Azar [3, 4] lower-bounded the
average number of comparisons by Ω(dn1+1/d), for any d-round algorithm with d ≤ log n.
They also improved the upper bound to O(n1+1/d log n) for a fixed d, and to dn1+O(1)/d for
any d ≤ log n. Bollobás and Rosenfeld considered a relaxed sorting task, where the relative
order of εn2 pairs might still be unknown at the end. They showed that by performing
Cεn3/2 comparisons, one can learn the order of

(
n
2
)

− εn2 pairs, where ε → 0 as Cε → ∞.
In contrast to the above existential bounds for 2-comparator based algorithms, our work
provides explicit sorting algorithms. Our algorithms are efficient, they utilize t-comparators
(allowing large values of t) and are asymptotically optimal, with respect to the above bounds.

DISC 2024



27:8 Sorting in One and Two Rounds Using t-Comparators

Other related tasks were also considered in the literature. Alon and Azar [4] gave bounds
on the number of comparisons required for approximate sorting and for selecting the median.
Braverman, Mao, and Weinberg [10] considered the task of selecting the k-rank item, in a
single round (and multiple rounds), and of partitioning an unordered array into the k-top
and (n − k)-bottom elements, in a single round. Their algorithms also work in the noisy-
comparison setting, where each comparison is correct with probability 2/3. Braverman, Mao,
and Peres [9] extended the above results and gave an algorithm sorting the k-top elements in
small number of rounds (d = 1, 2 and d ≥ 3). They also give lower and upper bounds for
this task, both in the noiseless and noisy-comparison setting.

A related approach for sorting is via sorting networks [7, 1, 25] and in particular, sorting
networks of t-comparators, a task that was raised by Knuth [24, Question 54 in Section 5.3]
and examined in [1, 30, 12, 15]. These are fixed networks of comparators with n inputs (each
element is an input) and n outputs (the sorted elements). One main difference between our
d-round sorting and a sorting network is that in the latter, each element appears exactly
once as an input. Then, any comparator that gets this element as an input must appear in a
different “round”. However, in a sorting algorithm, it is possible to give the same element to
multiple comparators at the same round, and then form the total order out of the outcomes
of all comparators.

Distributed sorting has appeared in the literature before, but it had a different meaning
than the distributed sorting we consider here. Wegner [41] and Rotem, Santoro, and
Sidney [34] considered the task of moving records around in a distributed network, so that
they end up in a sorted manner (i.e., records that end up at the first site have keys which
are strictly smaller than the records in the second site). These works mainly focused on the
number of exchanged messages. We also briefly mention parallel VLSI sorting algorithms,
e.g., [40, 36, 35, 23, 29]. Here the common setting is of n × n parallel processors, usually
connected as a two-dimensional grid. Each processors holds one element at any given time
and can transfer the element to a neighboring processors. The goal is that the elements
will end up in an ordered alignment, i.e., the minimal element at the first processors, etc.
This setting is somewhat similar to our case of n = t2, if we think of a row or a column of
processors as a single unit that can re-order the elements in that row or column according
to their rank. Another sorting variant was considered by Patt-Shamir and Teplitsky [32]
(building on [26]). Here, each computer starts with n records and needs to output their
rankings in the global order of all n2 records. Also unlike our task, each computer can sort
any number of records that it holds (i.e., it is not limited to being a t-comparator).

As mentioned above, randomized quicksort with t-comparators was given by Beigel and
Gill [8]. This algorithm features an optimal number of comparators, albeit it employs a large
number of rounds, d = O(logt n). A similar quicksort idea appeared earlier by Müller [28]
for t = Ω(log n), where the t-comparator is based on a systolic approach and takes O(t) time
to complete a single t-tuple sorting. Atallah, Frederickson, and Kosaraju [6] extended this
result to the full range of t.

Mergesort with t-comparators is given in [37], and cubesort with t-comparators is presented
in [14].

1.4 Organization
We formally state the problem of sorting with t-comparators, setting the relevant notations
in Section 2. We discuss one-round deterministic sorting in Section 3. Our optimal 2-round
randomized algorithm can be found in Section 4. The detailed analysis and missing proofs
are deferred to the full version of this work. In Appendix A we provide some simulations



R. Gelles, Z. Lotker, and F. Mallmann-Trenn 27:9

comparing our 2-round randomized algorithm with the state-of-the-art O(logt n)-round t-
quicksort algorithm, showing that the latter has in fact an expected number of rounds strictly
larger than 4 when n = t2.

1.5 Conclusions and Future Directions
In this work we studied the fundamental task of sorting n elements with t-comparators, where
the sorting algorithm is limited to a small number of interactive rounds. This setting, while
interesting on its own, fits in particular to distributed and parallel settings where interactive
communication is very costly while computation resources are moderately costly.

We dealt with both deterministic and randomized algorithms. In the deterministic case,
we established connections between optimal sorting algorithms in one round and combinatorial
design theory. While this connection allows optimal sorting for certain values of n and t,
it also suggests the impossibility for other values (e.g., t = 6). The question of the values
of n, t for which optimal sorting exists is isomorphic to the long-standing combinatorial
question of deciding the values of n, t for which the Steiner system S(2, t, n) exists. We hope
that an algorithmic approach could shed more light on this open question, e.g. through the
construction of composition theorems similar to Lemma 15, or through explicit constructions
for special cases.

Another interesting question is how the optimal number of t-comparators scales with
the number of rounds. This topic was thoroughly examined in the literature for t = 2, and
we extend the discussion to larger values of t. In the same vein, in the randomized setting,
we design algorithms that use only two rounds but utilize the same asymptotic number of
comparators as the optimal O(logt n)-round t-quicksort algorithm.

We believe our findings might be useful in other distributed settings. For instance, in the
Massively Parallel Computation model (MPC), where each worker machine performs the
actions of one t-comparator, and all machines act in parallel. While our algorithm for d = 1
rounds requires a large number of machines (i.e., more than n/t), it might make sense to
consider a larger amount of rounds and how it tradeoffs the number of machines in use. For
instance, could a sublinear number of machines be sufficient for d = O(1) rounds?

2 Preliminaries

Notations. For a positive integer n, we let [n] denote the set {1, 2, . . . , n}. All logarithms
are taken to base 2 unless otherwise noted. We say that an event happens with high probability
in some parameter (usually, in the number of elements n), if the event occurs with probability
at least 1 − 1/nc for some positive constant c ≥ 1.

Problem Statement. The elements are A = {a1, a2, . . . , an}. Each element has a value
val(ai) ∈ [n]. We assume that all values are unique, so that for any i ̸= j, val(i) ̸= val(j),
and all values in [n] are covered.

A t-comparator is a device that gets t elements {ai1 , . . . , ait
} as an input, and outputs the

respective order of their values. That is, it outputs a list j1, . . . , jt of indices, such that these
are a permutation of i1, . . . , it and it holds that val(aj1) ≤ val(aj2) ≤ · · · ≤ val(ajt

). Note
that it is allowed to give as an input the same element multiple times (hence the inequality
in the val() values).

A round of sorting is any assignment of elements to (possibly multiple) comparators. The
output of a single round of sorting is defined to be the output of all the comparators in that
round, i.e., the relative order between any t elements compared by some comparator.

DISC 2024



27:10 Sorting in One and Two Rounds Using t-Comparators

▶ Definition 3. Sorting n elements in d rounds via t-comparators is performing d rounds of
sorting, where the assignment of round i ≤ d depends on the outputs of rounds 1, . . . , i − 1.
The assignment of elements to comparators is such that, for any possible assignment of values
to the elements, there exists a single total ordering of the n elements that is consistent with
all the outputs of the d rounds.

We will usually care about the number of t-comparators required to sort n elements. Let
us denote OPT(n, t, d) the minimal number of t-comparators required to sort n elements in
d-rounds. In this paper we will focus on small values of d. In particular, in Section 3 we
analyze the case of deterministic sorting in d = 1 rounds. In Section 4 we discuss randomized
sorting with d = 2 rounds.

3 Sorting n elements in a single deterministic round

In this section we analyze sorting n elements with t-comparators in a single round. That
is, we seek ways to assign elements to comparators that yield enough information to obtain
a total-ordering of the elements. Since we restrict ourselves to a single round, we cannot
adaptively select elements to compare based on previous result. Instead, all the assignments
must be predetermined.

We begin with a few straightforward observations and facts. The following lemma is
probably a well known folklore: if we are allowed to compare only pairs of elements (t = 2)
and the comparisons are non-adaptive (d = 1), then all pairs of elements must be compared
in order to obtain the total-ordering of the n element.

▶ Lemma 4. For t = 2, sorting n elements with 2-comparators in d = 1 rounds requires
learning the relative order of each of the

(
n
2
)

= Θ(n2) pairs of elements. Thus, OPT(n, t =
2, d = 1) =

(
n
2
)
.

Proof. Otherwise, there are two elements ai, aj that are not compared against each other.
Let the two minimal elements (in the ranking) be ai, aj , respectively. Switching their relative
order (i.e., letting the minimal elements be aj , ai, respectively) will not change the outputs of
any of the comparators. Hence, there are two total ordering consistent with all the outputs,
contradicting the fact that this is a sorting of n elements, Definition 3. ◀

▶ Corollary 5. OPT(n, t, 1) ≥
(

n
2
)
/
(

t
2
)
.

Proof. The proof of Lemma 4 extends to larger comparators. If two elements are not being
compared by some comparator, let them be of minimal value and exchange their relative
order to end up with two consistent total ordering. Thus, OPT(n, t, 1) must provide enough
comparators to compare all pairs.

Each t-comparator gives the ranking of t elements among themselves. That is, it allows
us to learn the (pair-wise) order between at most

(
t
2
)

pairs of elements. The statement
immediately follows. ◀

Note that(
n
2
)(

t
2
) = n(n − 1)

t(t − 1) ≥ n2

t2 − n

t2 . (1)

We can show that sorting with at most twice the amount of optimal comparators of Eq. (1)
can be achieved for certain values of n, t; sorting with at most three times the optimal is
always possible.



R. Gelles, Z. Lotker, and F. Mallmann-Trenn 27:11

▶ Lemma 6. When (t/2) | n, OPT(n, t, 1) < 2
(

n
2
)
/
(

t
2
)
. Otherwise, OPT(n, t, 1) < 3

(
n
2
)
/
(

t
2
)
.

Proof. Assume (t/2) | n. Split the n elements into 2n/t subsets of size t/2 each, S1, . . . , S2n/t.
Now, for any i, j ∈ [2n/t] compare the elements in Si ∪ Sj using a t-comparator. It is
immediate that any two elements will be compared in this process. The total number of
comparators used is(

2n/t

2

)
= 1

2 · 2n

t

(
2n

t
− 1

)
= 2n2

t2 − n

t
.

The above is clearly larger than twice Eq. (1), by noting that n/t ≥ 2n/t2 holds for t ≥ 2.
However, when t/2 does not divide n, we need one additional subset S2n/t+1 for the

leftovers. This results with a total of 2n2/t2 + n/t comparators. When t < −1+
√

1+8n
2 , this

is still within a factor 2 of
(

n
2
)
/
(

t
2
)
. Otherwise, it is easy to see that we are within a factor 3

of the lower bound. Let us bound the ratio

2n2

t2 + n
t

n(n−1)
t(t−1)

= t − 1
t

· 2n + t

n − 1 .

The right hand side monotonically increases in t, and obtains its maximal value at t = n − 1.
This yields

n − 2
n − 1 · 3n − 1

n − 1 .

This function monotonically increases in n (as can easily be seen from its derivation) and
has a limit of 3 as n → ∞. ◀

3.1 The case of a large t

Let us now give optimal sorting assignments with d = 1 for the case of a large comparator,
t = Ω(n). To demonstrate the basic idea, assume t = n−1. We argue that three comparators
suffice in this case, which makes the bound in Lemma 6 tight for n ≥ 9. First, we compare
{a1, . . . , an−1} which gives a total-ordering for all elements but the last element, an, so we
need to compare an with all the other elements. This can be done with by employing two
additional comparators, e.g., comparing {an, a2 . . . , an−1} and {an, a1, . . . , a1}. Note that
the second comparator is substantially under-utilized. This means that we could still perform
sorting with only three comparators even for smaller values of t.

▶ Lemma 7. For any t ≥ 2
3 n, sorting n elements in a single round can be done with three

comparators.

Proof. The inputs to the three comparators are

{a1, . . . , at}, {an, an−1, . . . , at+1 , a1, a2, . . . , a⌈t/2⌉}, and
{an, an−1, . . . , at+1 , a⌈t/2⌉+1, . . . at}.

Note that any two elements ai, aj are being compared by some comparator, yielding all the
information we need to obtain a single consistent total order of the elements.

Since t ≥ 2
3 n, the second and third comparators get each (n − (t + 1) + 1) + ⌈ t

2 ⌉ ≤
⌊ 3

2 t⌋ − t + ⌈ t
2 ⌉ = t elements as input. Note that the ceiling/flooring matters only when t is

odd. In this case 3
2 t is fractional and since n must be an integer, we have n ≤ ⌊ 3

2 t⌋. ◀

DISC 2024



27:12 Sorting in One and Two Rounds Using t-Comparators

The above three comparators construction is tight, as it is impossible to sort n elements
with only two comparators. The proof resembles the approach taken by Lemma 4 for the
case of t = 2.

▶ Lemma 8. For any t < n, sorting in one round cannot be achieved with two comparators.

Proof. By a pigeonhole principle, there must exist (at least) two elements ai, aj that are not
compared against each other. We make it so ∀k ∈ [n] \ {i, j}, val(ai) < val(ak) and val(aj) <

val(ak). Then, it is impossible to determine which one of ai, aj is the minimal element.
Specifically, setting val(ai) < val(aj) gives the same comparator outputs as the case where
val(aj) < val(ai). This follows since they both are lower than any other element and no
comparator has both of them as input. Then, there exists two total ordering consistent with
the output of the comparators: one with val(ai) < val(aj) and the other with val(aj) <

val(ai), contradicting Definition 3. ◀

3.2 Minimal sorting for a variety of parameters via design theory

Recall the proof of Corollary 5. It implies that every two elements must be compared against
each other. This leads us to defining minimal sorting as follows.

▶ Definition 9. Sorting is said to be minimal if equality holds in the equation in Corollary 5.

That is, minimality is obtained when every two elements are compared against each other
exactly once, and all the t-comparators are fully utilized. Then on the one hand there is
no redundancy, and on the other hand all computational resources are fully used. Note
that optimality means the minimal number of comparators needed to get all pairs compared
against each other exactly once, but without requiring that all comparators are fully utilized.

While minimality implies optimality, the other direction does not hold. As demonstrated
above for 2n/3 ≤ t < n, optimality is obtained with 3 comparators. However, minimality is
not obtainable in this case. For instance, when n = 10, and t = 7, 8, 9 we have

(
n
2
)
/
(

t
2
)

∈
[1 1

4 , 2 1
7 ], but, as we proved, exactly 3 comparators are necessary in all these cases, i.e., some

comparator must be under-utilized regardless of the sorting algorithm.

▶ Definition 10 (A Steiner System). A Steiner System with parameters 0 < c < t < n,
denoted S(c, t, n), is a set P of n elements (we will call points) and a set L of objects (we
will call lines), where each line is a subset of t points and it holds that any subset of c points
is contained in exactly a single line.

Corollary 5 and the discussion above imply the following.

▶ Theorem 11. The Steiner system S(2, t, n) is equivalent to a minimal sorting of n elements
via t-comparators.

Proof. Immediate from definitions. Every point is an element to sort, every line is a single
comparator. Since any two points are contained exactly in a single line and since every line
contains exactly t points, we obtain minimality. ◀

The above equivalence allows us to use known results about S(2, t, n) to deduce cases for
which minimal sorting is possible. The following is an immediate corollary of the known
state-of-the-art about Steiner systems with c = 2, see e.g., [22, 19, 33].



R. Gelles, Z. Lotker, and F. Mallmann-Trenn 27:13

▶ Theorem 12.
1. Let t be a power of a prime. Minimal sorting of n = t2 elements is possible by employing

t2 + t many t-comparators.
2. Let t − 1 be a power of a prime. Minimal sorting of n = t2 − t + 1 elements is possible by

employing t2 − t + 1 many t-comparators.

Proof. (1) Follows from the fact that every field of size t implies a Steiner system S(2, t, t2)
(an Affine Plane), see [31, Section 3.2]. (2) Follows from the fact that every field of size t − 1
implies a Steiner system S(2, t, t2 − t + 1) (a Projective Plane), see [31, Section 4.5]. We note
that both constructions are explicit. ◀

The equivalence stated in Theorem 11 also yields some impossibilities on minimal sorting.
It is well known that the Steiner system S(2, 6, 36) does not exist. This problem, stated
originally as a question about Latin Squares and known as the 36 officers problem, dates
back to Euler [17] and was proven impossible by Terry [39]. Bruck and Ryster [11] extended
this result and proved that Steiner systems of many other orders are also impossible.

▶ Corollary 13 ([39, 11]). Minimal sorting of n = t2 elements (i.e., with exactly t + t2 many
t-comparators) is impossible for infinitely many values of t.

Despite decades of research, a full characterization of values of t that admit a S(2, t, t2)
system does not exist. In 1975, Willson [42] showed that for any t, a Steiner S(2, t, n) system
exists if and only if t | n and t(t − 1) | n(n − 1), except for finitely many values of n. This
implies the following corollary

▶ Corollary 14. For any t and large enough integer c, minimal sorting of n = tc elements is
possible with OPT(n, t, 1) =

(
n
2
)
/
(

t
2
)

many t-comparators.

Indeed, for any c ≥ 1 we have that t | tc and (t − 1) | (tc − 1) since tc − 1 = (t − 1)(tc−1 +
tc−2 + · · · + 1). Our composition theorem, which is given in the next section (Lemma 15),
gives explicit construction for some values of n, t. Finding explicit constructions for other
values remains open.

3.3 A Composition Theorem
The above Theorem 12 applies only to the cases where n = t2 or n = t2 − t + 1 (for certain
values of t). An interesting question is how to obtain a single-round sorting for other values of
t and n, e.g., for n = tc elements, with c ≥ 3. We partially answer this task by constructing
a t2-comparator out of an optimal number of t-comparators. Operating recursively on
larger n’s, this approach leads to the following theorem.

▶ Lemma 15. Let t be power of a prime and let n = t2k for some k ∈ N. Then, minimal
sorting of n elements with t-comparators is possible and employs OPT(n = t2k

, t, 1) =
(

n
2
)
/
(

t
2
)

many t-comparators.

Proof. We prove that minimal sorting is possible by induction on k. The base case, k = 1 is
given by Theorem 12(1).

For the induction step, assume we can sort n′ = t2k−1 elements using
(

n′

2
)
/
(

t
2
)

many t-
comparators. We show how to sort n = t2k elements with exactly

(
n
2
)
/
(

t
2
)

t-comparators.
Since n′ is a power of a prime, Theorem 12 provides us a optimal (minimal) way to sort
n elements using n′-comparators. Each n′-comparator can be implemented via an optimal

DISC 2024



27:14 Sorting in One and Two Rounds Using t-Comparators

(minimal) number of t-comparators, by induction. The total number of t-comparator thus
required to sort n elements is(

n
2
)(

n′

2
) ·

(
n′

2
)(

t
2
) =

(
n
2
)(

t
2
) ,

and this quantity is minimal by Corollary 5. ◀

As a corollary, the above composition theorem implies an explicit construction of a
S(2, t, t2k ) system for t a power of a prime and all integers k > 0.

4 Optimally sorting n elements in d = 2 randomized rounds

In Section 3, we studied optimal deterministic sorting in d = 1 rounds. We now wish to turn
to the case of d = 2 rounds, trading-off one additional round for fewer comparisons. We study
the randomized case since it allows us to reduce the number of comparisons considerably.
Since for d = 1 we have already obtained an optimal deterministic solution, it makes sense to
discuss randomized algorithms for d > 1. As randomized sorting with O(log n) comparators
are well-known [21, 8], we wish to keep the number of rounds small, and focus on the case
of d = 2. We design a fast randomized t-sorting algorithm, which is asymptotically optimal in
the number of t-comparators used, restricted to algorithms with d = 2 rounds. In certain cases,
for instance when n = t2, the asymptotic number of t-comparators is optimal even without
the round restriction. We discuss lower bounds on the number of t-comparators required for
sorting in Section 4.1. In Section 4.2 we consider the special case of d = 2 and n = t2 and in
Section 4.3 we consider the more general case of d = 2 and arbitrary n and t. The detailed
analysis is deferred to the full version. Our main result is Theorem 2, which we now recall.

▶ Theorem 2 (main, randomized). Let t < n be given. There exists a (Las-Vegas) randomized
sorting algorithm for n elements with two rounds, that utilizes O

(
max

(
n3/2

t2 , n
t

))
many t-

comparators, with probability at least 1 − 1/n.

4.1 Lower bounds
Before describing our algorithms, let us recall the lower bound on the number of t-comparators,
by Beigel and Gill [8].

▶ Theorem 16 ([8]). Sorting n elements requires utilizing at least log(n!)
log(t!) = n log n

t log t (1 + o(1))
many t-comparators.

The proof stems from the fact that log(n!) bits of information are required to sort n elements,
and that each comparator gives log(t!) bits of information. See Section II in [8].

The above lower bound allows any number of rounds. Alon and Azar [3] analyzed the
average number of 2-comparators required to sort n elements in d rounds and proved the
following.

▶ Theorem 17 ([3]). Sorting n elements in d ≤ log n rounds, requires utilizing at least
Ω(dn1+1/d) many 2-comparators on average.

The above theorem could be used to derive lower bounds on sorting with t-comparators.
Recall that each t-comparator compares at most

(
t
2
)

pairs of elements. Then, the following
lower bounds on the average number of t-comparators required in any randomized sorting is
immediate.



R. Gelles, Z. Lotker, and F. Mallmann-Trenn 27:15

▶ Corollary 18. Sorting n elements in d ≤ log n rounds, requires utilizing at least
Ω(dn1+1/d/t2) many t-comparators on average.

Because any average-case lower bound is also a worst-case lower-bound, if we plug in d = 2
in the above corollary, we obtain that our algorithm with O(n3/2/t2) many t-comparator
when t <

√
n, is asymptotically tight.

4.2 The simple special case of n = t2

In this section we present Algorithm 2, which performs t-sorting of n = t2 elements in two
rounds and utilizes O(t) many t-comparators. Note that by Theorem 16, this is asymptotically
tight, even without the restriction to d = 2 rounds. Although our Algorithm 3 and Algorithm 4
described in Section 4.3 are strictly more general, as they apply to any n, t, for pedagogical
reasons we first introduce the simplified and very natural Algorithm 2 that assumes the
special case of n = t2.

Algorithm 2 A randomized 2-round sorting of n = t2 elements with O(t) many t-comparators.

Round 1:
1: Let P be a set of t/2 elements from A, each sampled uniformly and independently from A.
2: Partition A into subsets A1, . . . , Ak of size t/2 each.
3: for all i ∈ [k] do
4: Input P ∪ Ai into a comparator. ▷ k comparators
5: end for

Round 2:
6: Let P = (p1, . . . , pt/2) be the ordered elements in P . For 1 ≤ i ≤ t/2 − 1, set Si to

contain all the elements which are greater than pi but lower than pi+1. Set S0 to be all
the elements lower than p1 and St/2 be all the elements greater than pt/2.

7: for all 0 ≤ i ≤ t/2 do
8: Sort Si via Lemma 6. ▷ at most

∑
i 3|Si|2/t2 comparators

9: end for

Recall our notations, where we wish to sort a set of n = t2 elements, denoted A =
{a1, . . . , an}. We assume that t is even and that (t/2) | n, and set k = n/(t/2). The algorithm
works as follows. In the first round, we first sample t/2 elements uniformly from A. These
will be ours “pivots”. We then take the remaining elements of A and compare them to the
pivots. That is, we split the remaining elements into n/(t/2) − 1 disjoint subsets of size t/2.
We input each subset to a t-comparator together with (all) the t/2 pivots. After this step,
for each element in A we know its relative position with respect to the pivots. Since we used
the same pivots in each comparator, we can see the first round as the pivots splitting A into
t/2 + 1 disjoint “buckets” such that all the elements in one bucket are strictly smaller (or
strictly larger) than all elements in any other bucket. In the second round of the algorithm,
we sort each bucket separately.

The first step utilizes n/(t/2) = 2t comparators, one for each subset of A. In the second
part, the number of comparators in use depends on the size of the buckets we need to
sort, which is a random variable determined by the pivots we sample in the first round. In

DISC 2024



27:16 Sorting in One and Two Rounds Using t-Comparators

expectation, each bucket is of size approximately4 n/(t/2 + 1) ≈ 2 n
t . If we assumed that the

number of elements per bin is tightly concentrated around its mean, then we could deduce that
sorting a single bucket using Lemma 6 would take O( n2

t4 ) = O(1) comparators, and summing
up over all t/2 + 1 buckets results in O( n2

t3 ) = O(t) comparators overall, in expectation.
However, we cannot make such an assumption, since, while each bucket has ≈ 2 n

t elements
in expectation, there might be very large buckets, with, say, O( n

t log n) elements. Our
analysis (which we perform only to the general case, in Section 4.3 below), is somewhat more
intricate and shows that the event of a large bucket is rare enough so that amortizing across
all the buckets, our algorithm still takes O(t) comparators with high probability.

4.3 The general case: supporting any n, t

Algorithm 2 can be executed with any n, t. The problem is that this would come at a very
high cost (measured in the number of t-comparators used). The main reason for this high
cost is that Algorithm 2 has a tradeoff between the costs of the different rounds: the cost of
the first rounds is O( n

t ) and the cost of the second is O( n2

t3 ). While these two costs equal O(t)
for n = t2, for arbitrary n and t these costs are no longer balanced and one of the rounds
would have a relatively high cost. The idea behind Algorithm 3 depicted below,5 is to balance
the costs of the phases, by carefully choosing the size of the pivot set and, as a result, the
expected sizes of the buckets they yield.

Algorithm 3 A randomized 2-round sorting for any n, t with t ≤
√

n.

Round 1:
1: Let P be a set of m =

√
n elements from A, each sampled uniformly and independently

from A.
2: Partition A \ P into subsets A1, . . . , Ak of size at most m each. ▷ k = ⌈(n − m)/m⌉
3: for all i ∈ [k] do
4: Sort P ∪ Ai via Lemma 6.
5: end for

Round 2:
6: Let P = (p1, . . . , pm) be the ordered elements in P . For 1 ≤ i ≤ m − 1, set Si to contain

all the elements which are greater than pi but lower than pi+1. Set S0 to be all the
elements lower than p1 and Sm be all the elements greater than pm.

7: for all 0 ≤ i ≤ m do
8: Sort Si via Lemma 6.
9: end for

Assume that the first round randomly selects m pivots, which we denote by the set P . In
order to “bucket” the n elements according to the pivots we need to compare them all with all
the pivots. To that end, we split the set A into subsets A1, . . . , Ak of size m (maybe except

4 To bound the expected size of each bucket, consider the sorted array of elements and uniformly select
t pivots. Connect the beginning of the array to its end to form a cycle. Now consider all intervals
between the pivots. The expected sum of the intervals, is roughly n. By linearity of expectation, we
can consider disjoint “chunks” of intervals, each composed of t consecutive intervals. By symmetry,
the expected lengths of all chunks are the same. Thus, each chunk must be, in expectation, about n/t
elements long (ignoring constants).

5 Algorithm 3 is identical to Algorithm 1 described in the introduction and repeated here for convenience.



R. Gelles, Z. Lotker, and F. Mallmann-Trenn 27:17

for the last subset), and compare each subset with the pivots. In contrary to Algorithm 2,
we can no longer input Ai ∪ P into a t comparator. Instead, we need to implement a 2m-
comparator out of t-comparators. We do so via Lemma 6, at the cost of 8m2/t2 many t-
comparators for a single simulated 2m-comparator.

Let us now analyze the expected cost of Algorithm 3. To calculate the cost of the first
round, note that we now need n/(2m) many (simulated) 2m-comparators each costing us
O(m2/t2) many t-comparators. Thus, the first round results in a total cost of O( nm

t2 ). The
expected cost of the second round is given as follows: since the set of pivots is sampled
uniformly, the expected size of each bucket is ≈ 2n/t (Footnote 4). Oversimplifying again
and assuming the number of elements per bin is tightly concentrated (which is not necessarily
true for each bin), we get the following. By Lemma 6, each one of the m + 1 buckets
costs O((n/m)2/t2) comparators in expectation. Overall, the expected cost in the second
round is O( n2

mt2 ). Summing the costs of the two rounds, the expected cost of Algorithm 3
is O( nm

t2 + n2

mt2 ). Interestingly, this value is minimized when m =
√

n, irrespective of t. In
the reminder, we simply set m =

√
n, and the cost becomes O( n3/2

t2 ).

The case of t >
√

n. The above analysis needs a little tweak to support the case of
t >

√
n. In this case, the number of comparators-per-bucket given by the terms O(m2/t2)

and O(n/m2t2) for the first and second round, respectively, is lower bounded by a single
comparator, and thus should read max

{
1, O(m2/t2)

}
and max

{
1, O(n/m2t2)

}
, respectively.

Therefore, the choice of parameters needs to be adjusted. In the following we show a selection
of parameters that optimize the case of t >

√
n, which yields Algorithm 4. We only give here

a sketch of the (simplified) expected cost analysis, since the precise high-probability analysis
see the full version.

Algorithm 4 A randomized 2-round sorting for any n, t with t >
√

n.

Round 1:
1: m̃ = ⌈n/t⌉
2: Let P be a set of m̃ elements from A, each sampled uniformly and independently from A.
3: Partition A \ P into subsets A1, . . . , Ak of size at most t each. ▷ k = ⌈(n − m̃)/t⌉
4: for all i ∈ [k] do
5: Sort P ∪ Ai via Lemma 6.
6: end for

Round 2:
7: Let P = (p1, . . . , pm̃) be the ordered elements in P . For 1 ≤ i ≤ m̃ − 1, set Si to contain

all the elements which are greater than pi but lower than pi+1. Set S0 to be all the
elements lower than p1 and Sm̃ be all the elements greater than pm̃.

8: for all 0 ≤ i ≤ m̃ do
9: Sort Si via Lemma 6.

10: end for

In Algorithm 4, We set the number of pivots to be m̃ = ⌈n/t⌉, and group the rest of the
elements into subsets {Ai} of size t each (instead of size m̃). We then continue with the
sorting as before.

In the first round of the algorithm, we sort k = O(n/t) sets, each of size t + m̃ = O(t).
Thus, by Lemma 6 sorting each such bucket can be done using c′ = O(1) comparators
resulting in c′k = O(n/t) comparators in total. In the second round, each Si has O(n/m̃) =
O(t) elements, in expectation. Assuming again our oversimplification that the number of

DISC 2024



27:18 Sorting in One and Two Rounds Using t-Comparators

elements in each bin is tightly concentrated around its mean, we get by Lemma 6 that
sorting each Si takes O(1) comparators. Since there are m̃ + 1 such sets, the total number of
comparators used in the second round is also bounded by O(n/t).

In the full version we formally analyze the number of comparators used by these schemes
(without the oversimplifying assumption) and show that it is concentrated around the stated
value, i.e., we prove Theorem 2. As mentioned above, we only analyze Algorithm 3 since the
analysis of Algorithm 4 is analogous. We stress again that the expected analysis presented
above is oversimplified. Further, even with a simple and straightforward expected analysis,
the dependencies of the events make it difficult to obtain high-probability concentration
bounds, i.e., bounds that hold except with a polynomially small probability.

References
1 M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In Proceedings of

the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages 1–9, 1983.
doi:10.1145/800061.808726.

2 Selim G Akl. Parallel sorting algorithms, volume 12. Academic press, 1985.
3 N. Alon and Y. Azar. The average complexity of deterministic and randomized parallel

comparison sorting algorithms. In 28th Annual Symposium on Foundations of Computer
Science (SFCS 1987), pages 489–498, 1987. doi:10.1109/SFCS.1987.54.

4 Noga Alon and Yossi Azar. Sorting, approximate sorting, and searching in rounds. SIAM
Journal on Discrete Mathematics, 1(3):269–280, 1988. doi:10.1137/0401028.

5 Noga Alon, Yossi Azar, and Uzi Vishkin. Tight complexity bounds for parallel comparison
sorting. In 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pages
502–510, 1986. doi:10.1109/SFCS.1986.57.

6 Mikhail J. Atallah, Greg N. Frederickson, and S.Rao Kosaraju. Sorting with efficient use
of special-purpose sorters. Information Processing Letters, 27(1):13–15, 1988. doi:10.1016/
0020-0190(88)90075-0.

7 K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–May
2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pages 307–314, 1968. doi:
10.1145/1468075.1468121.

8 Richard Beigel and John Gill. Sorting n objects with a k-sorter. IEEE Transactions on
Computers, 39(5):714–716, 1990. doi:10.1109/12.53587.

9 Mark Braverman, Jieming Mao, and Yuval Peres. Sorted top-k in rounds. In Proceedings of
the Thirty-Second Conference on Learning Theory, volume 99 of PMLR, pages 342–382, 2019.
URL: https://proceedings.mlr.press/v99/braverman19a.html.

10 Mark Braverman, Jieming Mao, and S. Matthew Weinberg. Parallel algorithms for select and
partition with noisy comparisons. In Proceedings of the Forty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’16, pages 851–862, 2016. doi:10.1145/2897518.2897642.

11 Richard H. Bruck and Herbert J. Ryser. The nonexistence of certain finite projective planes.
Canadian Journal of Mathematics, 1(1):88–93, 1949. doi:10.4153/CJM-1949-009-2.

12 YB Chiang. Sorting networks using k-comparators. PhD thesis, University of Cape Town,
2001. URL: http://hdl.handle.net/11427/4871.

13 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT press, 4th edition, 2022.

14 Robert Cypher and Jorge L.C. Sanz. Cubesort: A parallel algorithm for sorting n data items
with s-sorters. Journal of Algorithms, 13(2):211–234, 1992. doi:10.1016/0196-6774(92)
90016-6.

15 Natalia Dobrokhotova-Maikova, Alexander Kozachinskiy, and Vladimir Podolskii. Constant-
Depth Sorting Networks. In 14th Innovations in Theoretical Computer Science Conference
(ITCS 2023), volume 251 of LIPIcs, pages 43:1–43:19, 2023. doi:10.4230/LIPIcs.ITCS.2023.
43.

https://doi.org/10.1145/800061.808726
https://doi.org/10.1109/SFCS.1987.54
https://doi.org/10.1137/0401028
https://doi.org/10.1109/SFCS.1986.57
https://doi.org/10.1016/0020-0190(88)90075-0
https://doi.org/10.1016/0020-0190(88)90075-0
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1109/12.53587
https://proceedings.mlr.press/v99/braverman19a.html
https://doi.org/10.1145/2897518.2897642
https://doi.org/10.4153/CJM-1949-009-2
http://hdl.handle.net/11427/4871
https://doi.org/10.1016/0196-6774(92)90016-6
https://doi.org/10.1016/0196-6774(92)90016-6
https://doi.org/10.4230/LIPIcs.ITCS.2023.43
https://doi.org/10.4230/LIPIcs.ITCS.2023.43


R. Gelles, Z. Lotker, and F. Mallmann-Trenn 27:19

16 Vladmir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms. ACM
Comput. Surv., 24(4):441–476, December 1992. doi:10.1145/146370.146381.

17 Leonhard Euler. Recherches sur un nouvelle espéce de quarrés magiques. Verhandelingen
uitgegeven door het zeeuwsch Genootschap der Wetenschappen te Vlissingen, pages 85–239, 1782.

18 Ran Gelles, Zvi Lotker, and Frederik Mallmann-Trenn. Sorting in one and two rounds using
t-comparators. CoRR, abs/2405.12678, 2024. arXiv:2405.12678, doi:10.48550/arXiv.2405.
12678.

19 Mike Grannell and Terry Griggs. An introduction to steiner systems. Mathematical Spectrum,
26(3):74–80, 1994.

20 Roland Häggkvist and Pavol Hell. Parallel sorting with constant time for comparisons. SIAM
Journal on Computing, 10(3):465–472, 1981. doi:10.1137/0210034.

21 C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, January 1962. doi:10.1093/
comjnl/5.1.10.

22 D. R. Hughes and F. Piper. Design Theory. Cambridge University Press, 1985.
23 Christos Kaklamanis and Danny Krizanc. Optimal sorting on mesh-connected processor

arrays. In Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’92, pages 50–59, 1992. doi:10.1145/140901.140907.

24 Donald E. Knuth. Art of computer programming, volume 3: Sorting and Searching. Addison-
Wesley Professional, 2nd edition, April 1998.

25 Tom Leighton. Tight bounds on the complexity of parallel sorting. IEEE Transactions on
Computers, C-34(4):344–354, 1985. doi:10.1109/TC.1985.5009385.

26 Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel randomized load balancing:
extended abstract. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of
Computing, STOC ’11, pages 11–20, 2011. doi:10.1145/1993636.1993639.

27 W. A. Martin. Sorting. ACM Comput. Surv., 3(4):147–174, December 1971. doi:10.1145/
356593.356594.

28 Heinrich Müller. Sorting numbers using limited systolic coprocessors. Information Processing
Letters, 24(6):351–354, 1987. doi:10.1016/0020-0190(87)90109-8.

29 S. Olarin and S.Q. Zheng. Sorting n items using a p-sorter in optimal time. In Proceedings of
SPDP ’96: 8th IEEE Symposium on Parallel and Distributed Processing, pages 264–272, 1996.
doi:10.1109/SPDP.1996.570343.

30 Bruce Parker and Ian Parberry. Constructing sorting networks from k-sorters. Information
Processing Letters, 33(3):157–162, 1989. doi:10.1016/0020-0190(89)90196-8.

31 Abraham Pascoe. Affine and projective planes. Master’s thesis, Missouri State University,
2018. MSU Graduate Theses. 3233. https://bearworks.missouristate.edu/theses/3233.

32 Boaz Patt-Shamir and Marat Teplitsky. The round complexity of distributed sorting: extended
abstract. In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, PODC ’11, pages 249–256, 2011. doi:10.1145/1993806.1993851.

33 Colin Reid and Alex Rosa. Steiner systems s(2, 4, v)-a survey. The Electronic Journal of
Combinatorics, pages DS18–Feb, 2012.

34 Doron Rotem, Nicola Santoro, and Jeffrey B. Sidney. Distributed sorting. IEEE Transactions
on Computers, C-34(4):372–376, 1985. doi:10.1109/TC.1985.5009389.

35 Isaac D. Scherson, Sandeep Sen, and Adi Shamir. Shear sort: a true two-dimensional sorting
technique for VLSI networks. In International Conference on Parallel Processing, pages 903–
908, 1986.

36 Claus-Peter Schnorr and Adi Shamir. An optimal sorting algorithm for mesh connected
computers. In Proceedings of the eighteenth annual ACM symposium on Theory of computing,
pages 255–263, 1986. doi:10.1145/12130.12156.

37 Feng Shi, Zhiyuan Yan, and Meghanad Wagh. An enhanced multiway sorting network based on
n-sorters. In 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP),
pages 60–64, 2014. doi:10.1109/GlobalSIP.2014.7032078.

DISC 2024

https://doi.org/10.1145/146370.146381
https://arxiv.org/abs/2405.12678
https://doi.org/10.48550/arXiv.2405.12678
https://doi.org/10.48550/arXiv.2405.12678
https://doi.org/10.1137/0210034
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1145/140901.140907
https://doi.org/10.1109/TC.1985.5009385
https://doi.org/10.1145/1993636.1993639
https://doi.org/10.1145/356593.356594
https://doi.org/10.1145/356593.356594
https://doi.org/10.1016/0020-0190(87)90109-8
https://doi.org/10.1109/SPDP.1996.570343
https://doi.org/10.1016/0020-0190(89)90196-8
https://bearworks.missouristate.edu/theses/3233
https://doi.org/10.1145/1993806.1993851
https://doi.org/10.1109/TC.1985.5009389
https://doi.org/10.1145/12130.12156
https://doi.org/10.1109/GlobalSIP.2014.7032078


27:20 Sorting in One and Two Rounds Using t-Comparators

38 Dhirendra Pratap Singh, Ishan Joshi, and Jaytrilok Choudhary. Survey of gpu based sorting
algorithms. International Journal of Parallel Programming, 46:1017–1034, 2018. doi:10.1007/
S10766-017-0502-5.

39 G. Tarry. Le problème de 36 officiers. Compte Rendu de l’Association Française pour
l’Avancement de Science Naturel, 1900. vol. 1 (1900), 122-123; vol. 2 (1901), 170-203.

40 C. D. Thompson and H. T. Kung. Sorting on a mesh-connected parallel computer. Commun.
ACM, 20(4):263–271, April 1977. doi:10.1145/359461.359481.

41 Lutz M. Wegner. Sorting a distributed file in a network. Computer Networks (1976), 8(5):451–
461, 1984. doi:10.1016/0376-5075(84)90007-2.

42 Richard M. Wilson. An existence theory for pairwise balanced designs, III: Proof of the
existence conjectures. Journal of Combinatorial Theory, Series A, 18(1):71–79, 1975. doi:
10.1016/0097-3165(75)90067-9.

APPENDIX

A Simulations: Our algorithm and the state-of-the-art algorithm

Let us compare our Algorithm 1 to the state-of-the-art quicksort algorithm with t-comparators,
developed by Beigel and Gill [8]. Their algorithm works essentially as follows: randomly
select t/ log t pivot elements and use them to split all the elements into disjoint subsets. Now,
recursively sort any subset of size exceeding t.

(a) t = 10, n = 100. (b) t = 100, n = 10000.

Figure 2 A histogram of the number of rounds required to the completion of the algorithm in [8]
for the case of n = t2 with (a) t = 10 and (b) t = 100. Each histogram is based on 100 repeated
independent instances. In both t values, the average number of rounds is above 4.

The analysis in [8] proves that the number of t-comparators utilized throughout this
algorithm is n log n

t log t (1 + o(1)), which is asymptotically optimal. The same analysis suggests
the algorithm takes logm/2(n) rounds, where m = t/(2 log(t) ln(t)). (The basis of the log
in m is not defined in [8] and we take it to base e, yielding m = t/2 ln2 t.) It is easy to verify
that this function approaches log n

log t rounds, for sufficiently large t. In particular, for n = tc,
the function approaches c rounds as t → ∞. We would like to compare this to our algorithm,
that guarantees d = 2 rounds, regardless of t.

To be concrete, let us consider the case of n = t2. In this case, logm/2(t2) tends
asymptotically to 2 when t → ∞. To demonstrate the behavior of the recursive algorithm
we have performed Monte-Carlo simulations that measure the number of rounds it takes to
sort n = t2 elements, with t = 10 and t = 100. The results are depicted in Figure 2. Our
findings indicate that, for these values of t, the average number of rounds for n = t2 is not 2,
but rather 4.

https://doi.org/10.1007/S10766-017-0502-5
https://doi.org/10.1007/S10766-017-0502-5
https://doi.org/10.1145/359461.359481
https://doi.org/10.1016/0376-5075(84)90007-2
https://doi.org/10.1016/0097-3165(75)90067-9
https://doi.org/10.1016/0097-3165(75)90067-9


Self-Stabilizing MIS Computation in the Beeping
Model
George Giakkoupis #

Inria, Univ Rennes, CNRS, IRISA, France

Volker Turau #

Institute of Telematics, Hamburg University of Technology, Germany

Isabella Ziccardi #

Bocconi University, BIDSA, Milan, Italy

Abstract
We consider self-stabilizing algorithms to compute a Maximal Independent Set (MIS) in the extremely
weak beeping communication model. The model consists of an anonymous network with synchronous
rounds. In each round, each vertex can optionally transmit a signal to all its neighbors (beep). After
the transmission of a signal, each vertex can only differentiate between no signal received, or at least
one signal received. We also consider an extension of this model where vertices can transmit signals
through two distinguishable beeping channels. We assume that vertices have some knowledge about
the topology of the network.

We revisit the not self-stabilizing algorithm proposed by Jeavons, Scott, and Xu (2013), which
computes an MIS in the beeping model. We enhance this algorithm to be self-stabilizing, and explore
three different variants, which differ in the knowledge about the topology available to the vertices
and the number of beeping channels. In the first variant, every vertex knows an upper bound on the
maximum degree ∆ of the graph. For this case, we prove that the proposed self-stabilizing version
maintains the same run-time as the original algorithm, i.e., it stabilizes after O(log n) rounds w.h.p.
on any n-vertex graph. In the second variant, each vertex only knows an upper bound on its own
degree. For this case, we prove that the algorithm stabilizes after O(log n · log log n) rounds on any
n-vertex graph, w.h.p. In the third variant, we consider the model with two beeping channels, where
every vertex knows an upper bound of the maximum degree of the nodes in the 1-hop neighborhood.
We prove that this variant stabilizes w.h.p. after O(log n) rounds.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Maximal Independent Set, Self-Stabilization, Beeping Model

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.28

Funding George Giakkoupis: Supported by Agence Nationale de la Recherche (ANR), under project
ByBloS (ANR-20-CE25-0002).
Isabella Ziccardi: Supported by the European Research Council (ERC), under the European Union’s
Horizon 2020 research and innovation program (grant agreement No. 834861).

1 Introduction

The Maximal Independent Set (MIS) problem has a central role in the areas of parallel and
distributed computing. In a graph G = (V, E), an MIS is a subset of vertices I ⊆ V where
no two vertices in I are adjacent, and it is maximal with respect to inclusion. Recognized
for its importance in the field of distributed computing since the early 1980s [21, 3], the
computation of an MIS serves as a foundational subroutine in various algorithms in wireless
networks, routing, and clustering [23]. The interest in the MIS problem has recently extended
to biological networks, with observations of processes similar to the MIS elections in the
development of the fly’s nervous system [2].

© George Giakkoupis, Volker Turau, and Isabella Ziccardi;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 28; pp. 28:1–28:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:george.giakkoupis@inria.fr
https://orcid.org/0000-0002-8023-4485
mailto:turau@tuhh.de
https://orcid.org/0000-0001-9964-8816
mailto:isabella.ziccardi@unibocconi.it
https://orcid.org/0000-0002-1550-3677
https://doi.org/10.4230/LIPIcs.DISC.2024.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 Self-Stabilizing MIS Computation in the Beeping Model

While distributed MIS algorithms are well-explored in the standard synchronous message-
passing models like LOCAL, CONGEST, and CONGESTED-CLIQUE [23, 19, 20, 12, 15,
11, 4, 14], recently the MIS selection was considered also within weaker communication
frameworks [22, 1, 8]. Indeed, novel distributed communication models, inspired by scenarios
in biological cellular networks, wireless sensor networks and networks with sub-microprocessor
devices, were defined. The Stone Age model, introduced by Emek and Wattenhofer, provides
an abstraction of a network of randomized finite state machines that communicate with
their neighbors using a fixed message alphabet based on a weak communication scheme [10].
Another related model, which is the one we consider in this paper, is the full-duplex beeping
model1, where a network of anonymous processors and synchronous rounds is considered [5].
In each round, each vertex has the option to either broadcast a signal – a beep – to all its
neighbors or to remain silent. Subsequently, each vertex can determine whether it received
any signals or if all its neighbors remained silent. This does not allow a vertex to differentiate
which vertex emitted the signal, nor the number of signals received. We notice that a
variation of this model can be defined where, instead of a single type of signal, a constant
number of distinct signals exist, and the vertices can distinguish between the types of signals
received. The beeping model finds motivation in scenarios such as wireless sensor networks
or biological systems, where organisms can only detect proteins transmitted by neighboring
entities [1]. The problem of computing an MIS was already considered in the full-duplex
beeping model [18, 13, 1] and in the Stone Age model [9, 8, 10].

In both biological and wireless systems, another notable trait is their capability for
self-recovery. This ability is also essential in distributed and large-scale systems, which must
be able to effectively manage faults. Self-stabilizing algorithms are designed to ensure that
systems can recover from any state and eventually stabilize into a valid state, maintaining
stability as long as faults are absent [6, 7]. Indeed, self-stabilizing algorithms are guaranteed
to converge from any initial configuration. Two self-stabilizing MIS algorithms in the
standard message-passing model are proposed in [16]. However, only a few self-stabilizing
MIS algorithms have been proposed for the aforementioned weak communication models
[1, 8, 17]. In the full-duplex beeping model, Afek et al. in [1] introduced a self-stabilizing
algorithm that converges to an MIS in O(log2 N log n) rounds with high probability (w.h.p.),
if all vertices know an upper bound N on the network’s size n. They also established a
polynomial lower bound for the MIS in a similar model. This model includes an adversary
able to select the wake-up time slots for the vertices. Because of the presence of the adversary,
the lower bound of [1] is not applicable in the setting of this paper. In the full-duplex beeping
model, a constant-state algorithm was proposed in [17], which stabilizes in poly-logarithmic
rounds w.h.p., albeit being efficient only for some graph families. Meanwhile, Emek et al. [8]
devised an algorithm for a simplified version of the Stone Age model that is slightly stronger
than the beeping communication model, which stabilizes in O((D +log n) log n) rounds w.h.p.
on any D-bounded diameter graph, where D is considered a fixed parameter. However, in
this context, it would be desirable to relinquish the assumption that vertices possess global
information about the network’s structure.

Algorithms that do not require any knowledge of the network’s topology were also
proposed for the beeping model, but they strongly rely on the assumption that, at the
beginning of the algorithm, the vertices are in the same fixed initial state, and hence they are
not self-stabilizing. One algorithm was proposed by Afek et al. [1] for the full-duplex beeping
model, which stabilizes in O(log2 n) rounds w.h.p., without requiring vertex knowledge of the

1 This model is also called the beeping model with collision detection.



G. Giakkoupis, V. Turau, and I. Ziccardi 28:3

network’s topology. Later, Jeavons et al. [18] improved this result by proposing an algorithm
for the same model, capable of computing an MIS in any n-vertex graph in O(log n) rounds
w.h.p., without requiring any vertex knowledge2. Notice that these algorithms are not
self-stabilizing because they also rely on the presence of phases of two rounds, implying a
synchronization of the vertices modulo two.

1.1 Our Contribution
In this paper, we propose a self-stabilizing algorithm for computing the MIS in the full-duplex
beeping model, aiming for a stabilization time of O(log n) with minimal vertex knowledge
about network topology.

We consider the standard fault model, used in most self-stabilizing algorithms [7], where
the state of each node is stored in RAM and data in RAM can be corrupted by transients
faults (e.g., external events), while the code is stored in ROM and cannot be corrupted. We
consider a fault-free execution after a RAM corruption. An algorithm A is self-stabilizing
with termination time T if, after a transient fault within T fault-free steps, it reaches a legal
state. This is equivalent to asking that the algorithm A reaches a legal level after T fault-free
steps, starting from an arbitrary state, i.e., without a fixed initialization.

The starting point of our work is Jeavons’ algorithm in [18], which is non-self-stabilizing
and converges within O(log n) rounds. We propose two variants that achieve self-stabilization
and efficiency across all graph sizes. Our algorithms rely on each vertex’s ability to compute
a quantity ℓmax(v), which may require access to some information, such as the maximum
degree of the graph. The first variant assumes that vertices know an upper bound on the
maximum degree ∆ and stabilizes in O(log n) rounds, while the second variant assumes
that each vertex knows an upper bound on its own degree and stabilizes in O(log n log log n)
rounds. Additionally, we present a third algorithm for the extended beeping model with
two channels, stabilizing in O(log n) time if vertices know an upper bound on the maximum
degree among the 1-hop neighborhood. In summary, our contributions yield three algorithms
for computing MIS in the beeping model, each highlighting different scenarios based on
varying levels of vertex knowledge and beeping channels. Formally, we prove the following
theorem.

▶ Theorem 1. Let G be a n-vertex graph.
1. If each vertex knows the same upper bound on the maximum degree of G, which is at most

polynomial in n, then an MIS can be computed in the beeping model, in a self-stabilizing
manner, within O(log n) rounds w.h.p.

2. If each vertex knows an upper bound on its own degree, which is at most polynomial in n,
then an MIS can be computed in the beeping model, in a self-stabilizing manner, within
O(log n log log n) rounds w.h.p.

3. If each vertex knows an upper bound on the maximum degree of all vertices in its 1-hop
neighborhood, which is at most polynomial in n, then an MIS can be computed, in the
beeping model with two channels, in a self-stabilizing manner, within O(log n) rounds
w.h.p.

It remains an open question whether a fast, self-stabilizing algorithm computing an MIS in
the beeping model can be designed so that no information about the network topology is
required to be known by the vertices.

2 Ghaffari provided a refined analysis for Jeavons at al.’s algorithm in [13].

DISC 2024



28:4 Self-Stabilizing MIS Computation in the Beeping Model

2 The Algorithm

We assume the full-duplex beeping communication model and the starting point for our
algorithm is the beeping, randomized algorithm of Jeavons et al. in [18]. Each vertex v

is associated with an adaptive probability pt(v) of beeping in round t, and the algorithm
works in phases, each consisting of two rounds. In the first round of each phase, each
vertex v beeps with probability pt(v) and, if v beeps and all its neighbors are silent, then
v joins the MIS. In the second round of each phase, vertices that joined the MIS beep and
neighboring vertices hearing a beep become non-MIS vertices. Then, the newly joined MIS
and non-MIS vertices remain silent for the rest of the algorithm. The crucial point leading
to a O(log n) global round complexity with high probability, is that active vertices adapt
in each phase the beeping probability, initially p1(v) = 1/2 for each vertex v. The value
of pt+1(v) is decreased whenever neighboring vertices beep and is increased otherwise. In
particular pt+1(v) = pt(v)/2 in the former case and pt+1(v) = min{2pt(v), 1/2} otherwise.
The rationale of this behavior is twofold: to reduce the probability of neighboring vertices
attempting to concurrently join the MIS, and to increase the probability of making an
attempt to join the MIS in case of no concurrent attempts to do so.

This algorithm is not self-stabilizing for two reasons. First, it works just if at the beginning
of the algorithm the probability of beeping of each vertex v is p1(v) = 1/2, and the analysis
of the convergence time relies on that. Second, the presence of phases with two rounds
requires that the vertices are synchronized modulo two. These reasons are also the main
obstacle to making it self-stabilizing. Moreover, in self-stabilizing algorithms, vertices must
be able to detect errors, e.g., when a fault forces a vertex to change its state from MIS to
non-MIS, and hence stable vertices cannot be silent after they stabilized.

In order to design a self-stabilizing MIS algorithm for the full-duplex beeping model,
achieving a O(log n) global round complexity w.h.p., we dispense with the idea of phases and
we change the details of updating the beeping probabilities pt(v) to overcome the mentioned
issues. While keeping the idea of increasing and decreasing the beeping probability depending
on whether a beep was received, we refine this behavior in a significant way. As before,
when a vertex v beeps while hearing no beeps at the same time it attempts to join the
MIS. To signal this to neighboring vertices, vertex v keeps beeping, i.e., it sets its beeping
probability pt(v) to 1. If such a vertex hears a beep in one of the following rounds, it does
not immediately give up its attempt to join the MIS, but it keeps beeping with probability 1
for some fixed number rounds. Only after hearing a beep in a certain number of rounds, the
vertex changes its behavior back to halving its beeping probability in every round it hears a
beep. Furthermore, if the beeping probability decreases over a fixed threshold, the vertex sets
its beeping probability to 0 and stops beeping. The complete code is shown in Algorithm 1.

To implement the described behavior, each vertex maintains an integral state variable ℓ,
which we call level. The value of ℓ for vertex v is in the range −ℓmax(v), . . . , ℓmax(v), where
ℓmax(v) is a fixed value that depends on the vertex’s knowledge of some graph parameters.
We will see that this value has a strong influence on the analysis of the stabilization time.
The value of ℓt(v) of vertex v in round t implies the beeping probability pt(v) of v similar to
an activation function in an artificial neural network (see Figure 1, in Appendix D). As long
as ℓt(v) ≤ 0 vertex v beeps and pt(v) = 1, if ℓt(v) = ℓmax(v) it stops beeping and pt(v) = 0,
otherwise pt(v) = 2−ℓt(v).

In each round t each vertex v updates the value of ℓt(v) as follows. If v hears a beep then
its level increases: ℓt+1(v) = min{ℓt(v) + 1, ℓmax(v)}. Otherwise, ℓt+1(v) = max{ℓt(v)− 1, 1}
unless v was beeping in round t, in this case ℓt+1(v) = −ℓmax(v). Note that the only way the



G. Giakkoupis, V. Turau, and I. Ziccardi 28:5

Algorithm 1 Self-stabilizing version of Jeavons, Scott and Xu’s algorithm [18].

state: ℓ ∈ {−ℓmax(v), . . . , ℓmax(v)}

in each round t = 1, 2, . . . do
if ℓ < ℓmax(v) then

beep ← true with probability min
{

2−ℓ, 1
}

and beep ← false otherwise
else beep ← false

if beep then send signal to all neighbors
receive any signals sent by neighbors

if any signal received then
ℓ ← min{ℓ + 1, ℓmax(v)}

else if beep then
ℓ ← −ℓmax(v)

else ℓ ← max{ℓ− 1, 1}

level of a vertex v can decrease below 0 is if v beeps without beeping neighbors. We observe
that Algorithm 1 is self-stabilizing if its convergence is guaranteed for every initial value of
the levels.

The update rules of the algorithm guarantee that, once the level’s value of a vertex v is
−ℓmax(v) and each of v’s neighbors w has level’s value ℓmax(w), then v is such that pt(v) = 1
and all the neighbors u of v are such that pt(u) = 0. This guarantees that v and its neighbors
will not change their status as long as no faults occur, and hence they are stable. In this
case, v will be a MIS vertex and the neighbors become non-MIS vertices. Also, this strategy
allows all vertices to detect faults and react accordingly. But foremost, it allows to determine
the stabilization time.

The result and the analysis of the algorithm depend on the values ℓmax(v) of each
vertex v, which in turn depends on the knowledge available to each vertex v. We state
the detailed results in the following theorems, and notice that we denote with deg2(v) =
maxu∈N(v)∪{v} deg(u) the maximum degree in the 1-hop neighborhood of v.

▶ Theorem 2. For any n-vertex graph G, Algorithm 1 computes an MIS, starting from
an arbitrary configuration, within O(log n) rounds w.h.p., provided that ℓmax(v) = ℓmax ∈
[log ∆ + c1, c2 log n] for each vertex v and constants c1 ≥ 15 and c2 > 0.

▶ Theorem 3. For any n-vertex graph G, Algorithm 1 computes an MIS, starting from
an arbitrary configuration, within O(log n · log log n) rounds w.h.p., provided that ℓmax(v) ∈
[2 log deg(v) + c1, c2 log n] for each vertex v and constants c1 ≥ 30 and c2 > 0.

▶ Corollary 4. There exists a variant of Algorithm 1 for the beeping model with two beeping
channels such that, for any n-vertex graph G, it computes an MIS, starting from an arbit-
rary configuration, within O(log n) rounds w.h.p., provided that ℓmax(v) ∈ [2 log deg2(v) +
c1, c2 log n], for each vertex v and any constants c1 ≥ 15 and c2 > 0.

To execute Algorithm 1, each vertex v only needs to know the value of ℓmax(v). As stated
in the three results above, in order to get the time bounds, the value of ℓmax(v) must be in
O(log n) for each v. We remark that to satisfy this requirement it is unnecessary that the
value n is known by the vertices. If, for example, ℓmax = log ∆ + c1, then the requirement of
Theorem 2 is satisfied, and this only requires each node to know a loose upper bound on ∆.

DISC 2024



28:6 Self-Stabilizing MIS Computation in the Beeping Model

Roadmap. The rest of the paper is organized as follows. Section 3 contains notations,
preliminary definitions, the statement of two key lemmas, Lemmas 8 and 9, and an analysis
outline. In Section 4 we give the proof of Theorem 2, and in Section 5 the proof of Theorem 3.
The proofs of key Lemmas 8 and 9 can be found in Section 6. The description of the
algorithm using two beeping channels and its analysis (the proof of Corollary 4) are deferred
to Appendix B. We conclude in Section 7 with a summary and some open problems.

3 Definitions and Analysis Outline

Let G = (V, E) be a graph with n vertices. For each vertex v ∈ V , N(v) denotes the set of
v’s neighbors in G, and deg(v) = |N(v)| is the degree of v. Also, N+(v) = N(v) ∪ {v} is the
set of v’s neighbors and v itself. Let deg2(v) = maxu∈N+(v) deg(u) the maximum degree of
all the vertices in N+(v).

We introduce a few random variables that are used to describe the random process
generated by the execution of Algorithm 1. If we denote with ℓt(v) the level of vertex v ∈ V

at the beginning of round t ≥ 1, the random execution of the algorithm at time t depends
only on the values {ℓt(v)}v∈V . We denote with Ft the filtration of the process until step t,
which in particular gives us the values {ℓt(v)}v∈V .

We notice that in Algorithm 1 a vertex v ∈ V is stable and permanently added to the
MIS prior to round t if ℓt(v) = −ℓmax(v) and, for all u ∈ N(v), ℓt(u) = ℓmax(u). Hence, if
we define

µt(v) = min
u∈N(v)

ℓt(u)
ℓmax(u) ,

which has value in [−1, 1], we have that the set of vertices that have been added to the final
MIS set before round t is defined by

It = {v ∈ V : ℓt(v) = −ℓmax(v) ∧ µt(v) = 1}.

Moreover, the set of all stable vertices at the beginning of round t consists of the vertices in
the MIS and their neighbors, so we define St = It ∪N(It). We notice that the set of stable
vertices is increasing in t, i.e., for each t ≥ 1 we have that St ⊆ St+1. For any vertex v ∈ V ,
we denote with pt(v) the probability that v beeps during round t, which is

pt(v) =


1 if ℓt(v) ≤ 0
2−ℓt(v) if 0 < ℓt(v) < ℓmax(v)
0 if ℓt(v) = ℓmax(v).

We also denote with bt(v) a Bernoulli random variable which takes value 1 if v beeps in round
t, i.e., E [bt(v)] = pt(v). We define Bt(v) =

∑
u∈N(v) bt(u) as the number of v’s neighbors

that beep in round t and dt(v) = E [Bt(v)] =
∑

u∈N(v) pt(u) as the expected number of
beeping neighbors of v in round t. Note that if Bt(v) = 0 then µt(u) > 0 for all neighbors u

of v. The proof of the following elementary result can be found in Appendix C.

▶ Lemma 5. Let t > maxw∈V ℓmax(w). Then ℓt(v) > 0 or µt(v) > 0 for any v ∈ V .

Lemma 5 implies that in order to prove that our algorithm stabilizes within O(log n)
rounds we can assume that ℓt(v) > 0 or µt(v) > 0 for all rounds t ≥ 0. This is because
maxw∈V ℓmax(w) ∈ O(log n). Hence, we can ignore the initial maxw∈V ℓmax(w) rounds and
start our analysis after those rounds. In particular, ℓt(u) ≤ 0 implies µt(u) > 0.

We define a vertex to be prominent if it has negative or zero level, and a round to be
platinum for some vertex v if some of v’s neighbors is prominent.



G. Giakkoupis, V. Turau, and I. Ziccardi 28:7

▶ Definition 6 (Prominent Vertices and Platinum Rounds). A vertex v ∈ V is prominent in
round t if ℓt(v) ≤ 0. The set of prominent vertices in round t is denoted with PM t. Moreover,
we say that round t is a platinum round of vertex v if N+(v) contains a prominent vertex u,
i.e., u ∈ N+(v) ∩ PM t. We denote with Pt,k(v) the number of platinum rounds of vertex v

during rounds {t, . . . , t + k}.

Clearly, It ⊆ PM t. We notice that, since we assume t > maxw∈V ℓmax(w), then Lemma 5
implies that for each platinum round t of v there exists u ∈ N+(v) such that ℓt(u) ≤ 0
and µt(u) > 0, i.e., the probability that none of u’s neighbors beeps in round t is positive.
Remember, the only possibility for the level of vertex u to become less or equal to 0 is when
u beeps while no neighbor of u is beeping. This directly leads to the next lemma.

▶ Lemma 7. If t > maxw∈V ℓmax(w) is a platinum round for vertex v there exists a vertex
u ∈ N+(v) and a round t′ with t− ℓmax(u) ≤ t′ ≤ t in which u was beeping without beeping
neighbors and ℓt′+1(u) = −ℓmax(u).

We define, for any v ∈ V and t ≥ 1, the quantities

ηt(v) =
∑

u∈N(v)\St

2−ℓmax(u) and η′
t(v) =

∑
u∈N(v)\St:

ℓmax(u)>ℓmax(v)

2−ℓmax(v).

For the moment, the definitions of ηt(v) and η′
t(v) are rather technical, but they will be used

to upper bound the value of dt+1(v). We notice that ηt(v) and η′
t(v) are both decreasing in

t, since St ⊆ St+1.
The following two lemmas are the key to prove Theorems 2 and 3 and Corollary 4, their

proofs are deferred to Section 6. For a fixed v ∈ V the next lemma tells us how many rounds
we have to wait in order to have a platinum round of v.

▶ Lemma 8 (Lower Bound on Platinum Rounds). Assume that ℓmax(w) ≥ log deg(w) + 4 for
all w ∈ V . Consider a vertex v ∈ V and a round t > maxw∈V ℓmax(w) such that t is not a
platinum round of v, and ηt(v) ≤ 0.0001. Let τ (v)(t) = min{m ≥ 0 : Pt,m(v) ≥ 1}. Then

Pr
[
τ (v)(t) ≥ k | Ft

]
≤ e−γk,

for γ = e−30 and any k ≥ 2γ−1ℓmax(v).

We notice that, if ℓmax(w) is constant over all vertices w ∈ V , i.e., ℓmax(w) = ℓmax for
every vertex w ∈ V , then the existence of a platinum round t of v such that t > ℓmax is by
Lemma 7 sufficient to guarantee that v will be stable at the latest in round t + ℓmax. Indeed,
Lemma 7 implies the existence of a round 1 ≤ t′ ≤ t and a vertex u ∈ N+(v) such that u was
beeping in round t′ without beeping neighbors, and so ℓt′+1(u) = −ℓmax and µt′+1(u) > 0.
This implies that u beeps in the following ℓmax rounds, during which all neighbors of u will
increase their level until they reach maximum level ℓmax. This implies that u is such that
ℓt+ℓmax(u) ≤ 0 and µt+ℓmax(u) = 1, and hence u, v ∈ St+ℓmax and u ∈ It+ℓmax .

However, when ℓmax(w) is not constant, the analysis becomes considerably more complic-
ated, since the existence of a platinum round of v does not necessarily imply the subsequent
stabilization of v. Consider now some round t > maxw∈V ℓmax(w) which is platinum for v,
and let u ∈ N+(v) be a prominent vertex. After round t, two things may happen:

(i) In some round t + m with m ≥ 1, u is no longer prominent, and hence u ̸∈ It+m and
u, v may not be stable in round t + m;

(ii) In some round t + m with m ≥ 0, vertex u is prominent and all its neighbors have
reached the maximum level, i.e., µt+m(u) = 1, and so u ∈ It+m and u, v ∈ St+m.

DISC 2024



28:8 Self-Stabilizing MIS Computation in the Beeping Model

In the next lemma, we characterize the distribution of rounds t for the above two cases. Let

σ
(u)
out(t) = min{m ≥ 0 : u ̸∈ PM t+m}

σ
(u)
in (t) = min{m ≥ 0 : u ∈ It+m}

σ(u)(t) = min{σ(u)
out(t), σ

(u)
in (t)}.

▶ Lemma 9 (Stopping Times for Platinum Rounds). Assume that ℓmax(w) ≥ log deg(w) + 4
for all w ∈ V . Consider a round t > maxw∈V ℓmax(w) and a vertex u ∈ PM t \ St. Then
(a) Pr

[
σ(u)(t) = σ

(u)
in (t) ∧ σ(u)(t) < maxw∈N(u) ℓmax(w) | Ft

]
≥ 3−η′

t(u);
(b) Pr

[
σ(u)(t) = σout(t) ∧ σ(u)(t) > ℓmax(u) + x | Ft

]
≤ η′

t(u)2−x for any x ≥ 0.

3.1 Analysis Overview
We first give an overview of the proofs of Lemmas 8 and 9, and then we will see how to use
these results to prove Theorems 2 and 3 and Corollary 4. The proof of Lemma 8 has as a
starting point the proof in [13], but then it develops differently. First, as in [13], we define a
further type of round called golden round, which are rounds having constant probability of
becoming platinum in the subsequent round. We prove that, for any vertex v in any fixed
interval of rounds of length k = Ω(ℓmax(v)), we have a constant fraction of golden rounds
with probability at least 1− e−Ω(k), conditioned on the absence of platinum rounds during
that time interval. To prove the latter, as in [13], we analyze the development of the function
dt(v) – the expected number of beeping neighbors of v in round t – during this time span.
Note that platinum rounds and the conditioning were not considered in [13] and are essential
in our proof and setting.

The proof of Lemma 9 relies on Lemma 7. Assuming that u is prominent at time t, we
characterize the probabilities with which, after round t, u reaches again a positive level or
stabilizes. From Lemma 7 there exists a round t − ℓmax(u) ≤ t′ ≤ t where we have that
ℓt′+1(u) = −ℓmax(u) and then trivially dt′+1(u) =

∑
w∈N(u) pt′+1(u) ≤ deg(u). Then, in the

subsequent ℓmax(u) rounds, vertex u keeps beeping regardless the behavior of the vertices in
N(u). Hence, ℓt′+1+ℓmax(u)(w) = min{ℓmax(w), ℓt′+1(w) + ℓmax(u)} for each w ∈ N(u) and
thus, pt′+1+ℓmax(u)(w) ≤ 2−ℓmax(u) if ℓt′+1+ℓmax(u)(w) ̸= ℓmax(w). This implies that

dt′+1+ℓmax(u)(u) =
∑

w∈N(u)

pt′+1+ℓmax(u)(w) ≤
∑

w∈N(u)\St′+1:
ℓmax(w)>ℓmax(u)

2−ℓmax(u) ≤ η′
t′+1(u).

We will see that this implies that the vertices in N(u) will reach their maximal level with
probability at least 3−η′

t+1(u), and so in this case the platinum round leads to the stabilization
of u. On the other hand, part (b) of the lemma follows from the observation that, after the
first ℓmax(u) rounds after t, the probability that some vertex in N(u) beeps decreases in each
round by a constant factor.

Theorem 2 and Corollary 4 follow from the observation, already stated above, that if
ℓmax(w) is constant over w then, for each vertex v, one platinum round is sufficient to
guarantee the stabilization of v. Moreover, the choices of ℓmax(w) specified in the theorems
guarantee that ηt(v) ≤ 0.0001 for every v and t ≥ 1, and so Lemma 8 can always be used for
each non-platinum round t, and implies that we have to wait at most O(log n) rounds to
have a platinum round for each vertex v w.h.p., that in turns imply stabilization.

The proof of Theorem 3 is considerably harder. In this case, we can have several sequences
of consecutive platinum rounds, intermittent by sequences of consecutive non-platinum rounds,
until we reach a platinum round leading to the stabilization of the vertex. The analysis relies
on two main parts:



G. Giakkoupis, V. Turau, and I. Ziccardi 28:9

(1) We split the vertices in O(log log n) sets Vi. Before analyzing the stabilization of a vertex
v ∈ Vi, we wait for round Ti in which all vertices in ∪j<iVj have stabilized. The sets Vi

are defined according to the values ℓmax(v) of the vertices. According to the definition of
Ti, we can apply, for each round t ≥ Ti, Lemmas 8 and 9 to vertices in Vi.

(2) We then prove that, after round Ti, each vertex v ∈ Vi stabilize in O(log n) additional
rounds w.h.p. The analysis of the latter statement relies on Lemmas 8 and 9, which
characterize the lengths of three times intervals: that of the non-platinum rounds, of
the platinum rounds, and that of the number of platinum rounds not leading to the
stabilization of vertex v.

4 Knowledge of Maximum Degree ∆ (Proof of Theorem 2)

The following proof is a warm-up for the general case. It is directly implied by Lemma 8 and
the choice of ℓmax(v).

Proof of Theorem 2. As already mentioned, since ℓmax(v) is defined independently of v,
each vertex v just requires a single platinum round to become stable in at most ℓmax rounds.
Indeed, for each v ∈ V and each t ≥ 1,

ηt(v) ≤
∑

u∈N(v)

2− log ∆−15 ≤ 2−15 ≤ 0.0001 and η′
t(v) = 0.

This implies that, if t = 2ℓmax and v ∈ V , we have ηt(v) ≤ 0.0001. Hence, by Lemma 8, if we
take m = 2γ−1 log n (where γ is defined in Lemma 8), we have that Pr

[
τ (v)(t) ≤ m | Ft

]
≥

1−1/n2, and so Pt,m(v) ≥ 1 with probability at least 1−1/n2. Then, from Lemma 9(a), and
since η′

t+m(v) = 0, we have that, given Fm+t, the vertex v is stable after at most ℓmax rounds
with probability 1. Hence, vertex v is stable with probability 1− 1/n2 after t + m + ℓmax
rounds, and since ℓmax = O(log n) we have that t + m + ℓmax = O(log n). The theorem
follows from the union bound over all the vertices. ◀

5 Knowledge of Own Degree (Proof of Theorem 3)

In this section we prove Theorem 3. First, we prove the following lemma.

▶ Lemma 10. Assume that ℓmax(w) ≥ 2 log deg(w) for every w ∈ V and that, for some c =
O(1), maxw∈V ℓmax(w) ≤ c log n. Consider a vertex v ∈ V and a round t > maxw∈V ℓmax(w)
such that ηt(v) ≤ 0.0001 and ℓmax(v) ≤ 2ℓmax(u) for each u ∈ N(v) \ St. Then, there exists
a constant M = O(1) such that Pr [v ∈ St+m | Ft] ≥ 1− 1/n2, provided m = M log n.

Proof. We fix the execution up to the end of round t, so we do not have to condition
probabilities on Ft. We consider the sequence of rounds (which may also be infinite, with
J = +∞)

t ≤ t + τ1 ≤ t + τ1 + σ1 = m1 + t ≤ · · · ≤ t + mJ−1 + τJ ≤ t + mJ−1 + τJ + σJ = t + mJ ,

and the corresponding sequence of vertices v1, v2, . . . , vJ ∈ N+(v) \ St such that
1. t + mi−1 + τi is platinum for v and vi ∈ PM t+mi−1+τi ∩N+(v) for each i = 1, . . . , J ;
2. mi = mi−1 + τi + σi is such that vi ̸∈ PM t+mi

for each i = 1, . . . J − 1;
3. J = min{h ≥ 1 : vh ∈ Imh+t}, hence vJ ∈ It+mJ

and v ∈ St+mJ
. If v never stabilizes, we

define J = +∞ and the sequence v1, v2, . . . has infinite length.

DISC 2024



28:10 Self-Stabilizing MIS Computation in the Beeping Model

We observe that σi and τi are defined such that

τi = τ (vi)(t + mi−1), σi = σ(vi)(t + mi−1 + τi) and σJ = σ
(vJ )
in (t + mJ−1 + τJ). (1)

Consider the following two facts:
(i)

∑J
i=1(σi + ℓmax(vi)) ≤M1 log n for some M1 = Θ(1) with probability at least 1− 1/n3;

(ii) Provided that
∑J

i=1(σi + ℓmax(vi)) ≤ M1 log n, it holds
∑J

i=1 τi ≤ M2 log n for some
M2 = Θ(1) with probability at least 1− 1/n3.

The above facts (i) and (ii) prove the lemma. Indeed, if m = M1 log n + M2 log n, we
have that

Pr [v ̸∈ St+m] ≤ Pr
[

J∑
i=1

(σi + τi) ≥ m

]
≤ Pr

[
J∑

i=1
σi ≥M1 log n ∨

J∑
i=1

τi ≥M2 log n

]

≤ Pr
[

J∑
i=1

τi ≥M2 log n

∣∣∣∣∣
J∑

i=1
(σi + ℓmax(vi)) ≤M1 log n

]
+

+ Pr
[

J∑
i=1

(σi + ℓmax(vi)) ≥M1 log n

]
≤ 2

n3 .

Now we prove (i) and (ii) separately.

Proof of (i). We remark that, in this first step, we are just looking at the randomness of
the execution during the time intervals [t + τi + 1, t + τi + σi] for i = 1, . . . , J . We notice that

Pr
[

J∑
i=1

σi + ℓmax(vi) ≥M1 log n

]
≤ Pr

[
J∑

i=1
ℓmax(vi) ≥ 7 log n ∨ σJ ≥ max

w∈V
ℓmax(w)

]

+ Pr
[

J∑
i=1

ℓmax(vi) ≤ 7 log n ∧ σJ ≤ max
w∈V

ℓmax(w) ∧
J∑

i=1
(σi + ℓmax(vi)) ≥M1 log n

]
(2)

We start by showing that the first term in the inequality above is at most 1/(2n3). Let
h = sup{j ≥ 1 :

∑j
i=1 ℓmax(vi) ≥ 7 log n} and notice that, since minv∈V ℓmax(v) ≥ 1, from

the minimality of h we have that h ≤ 7 log n. Assume that h ≤ J , otherwise the inequality
follows trivially. Lemma 9(a) together with (1) yields

Pr
[

J∑
i=1

ℓmax(vi) ≥ 7 log n ∨ σJ ≥ max
w∈V

ℓmax(w)
]

≤ Pr
[

h⋂
i=1
{vi ̸∈ PM ti+1 ∨ σi ≥ max

w∈V
ℓmax(w)}

]
≤

h∏
i=1

(
1− 3−η′

t(vi)
)
≤ 2

h∏
i=1

η′
t(vi). (3)

Moreover, we have that

η′
t(vi) ≤

∑
w∈N(vi):

ℓmax(w)>ℓmax(vi)

2−ℓmax(vi) ≤ deg(vi) · 2−ℓmax(vi)

≤ deg(vi)
2ℓmax(vi)/2 2−ℓmax(vi)/2 ≤ 2−ℓmax(vi)/2,



G. Giakkoupis, V. Turau, and I. Ziccardi 28:11

where the last inequality follows from the fact that ℓmax(vi) ≥ 2 log deg(vi). Hence, from the
latter inequality and (2) we have that

Pr
[

J∑
i=1

ℓmax(vi) ≥ 7 log n ∨ σJ ≥ max
w∈V

ℓmax(w)
]
≤ 2

h∏
i=1

η′
t(vi) ≤ 2−

∑h

i=1
ℓmax(vi)/2+1 ≤ 1

2n3 ,

where the last inequality follows from the fact that
∑h

i=1 ℓmax(vi) ≥ 7 log n.
We proceed by showing that the term in (2) is bounded by 1/(2n3). From (1) and

Lemma 9(b) we have that, for each i = 1, . . . , J−1, the random variables σi are stochastically
dominated by ℓmax(vi) + Yi, where Yi are independent geometric random variables with
parameter 1/2. We have that, fixing M1 = 36 + c and since maxw∈V ℓmax(w) ≤ c log n,

Pr

[
J∑

i=1

ℓmax(vi) ≤ 7 log n ∧ σJ ≤ max
w∈V

ℓmax(w) ∧
J∑

i=1

σi + ℓmax(vi) ≥M1 log n

]

≤ Pr

[
J−1∑
i=1

(Yi + 2ℓmax(vi)) + σJ ≥M1 log n ∧
J∑

i=1

ℓmax(vi) ≤7 log n ∧ σJ ≤ max
w∈V

ℓmax(w)

]

≤ Pr

[
J−1∑
i=1

Yi ≥ 2J + 8 log n ∧ J ≤7 log n

]
= Pr

[
Bin(2J + 8 log n, 1

2 ) ≤ J − 1 ∧ J ≤ 7 log n
]

≤ 1
2n3 ,

where the last inequality follows from Lemma 16, in Appendix A, and since
∑J

i=1 ℓmax(vi) ≤
7 log n implies that J ≤ 7 log n.

Proof of (ii). This time we are looking at the randomness of the rounds [t + mi + 1, t +
mi + τi+1] for i = 1, . . . , J . From (1) and Lemma 8, we have that the random variables τi

are stochastically dominated by 2γ−1ℓmax(vi) + Xi, where Xi are i.i.d. geometric random
variable with parameter p = 1 − e−γ , where γ = e−30. Then, we have that, assuming
that

∑J
i=1(σi + ℓmax(vi)) ≤ M1 log n and in particular that

∑J
i=1 ℓmax(vi) ≤ M1 log n, if

M2 = 2γ−1M1 + M1/p + 4/p2, then

Pr
[

J∑
i=1

τi ≥M2 log n |
J∑

i=1
ℓmax(vi) ≤M1 log n

]

≤ Pr
[

J∑
i=1

Xi + 2γ−1ℓmax(vi) ≥M2 log n |
J∑

i=1
ℓmax(vi) ≤M1 log n

]

≤ Pr
[

J∑
i=1

Xi ≥ J
p + 4 log n

p2 |
J∑

i=1
ℓmax(vi) ≤M1 log n

]

= Pr
[

Bin( J
p + 4 log n

p2 , p) ≤ J |
J∑

i=1
ℓmax(vi) ≤M1 log n

]
≤ 1

n3 (4)

where (4) follows from Lemma 16, and the last inequality follows from the fact that p = 1−e−γ

and that
∑J

i=1 ℓmax(vi) ≤M1 log n implies that J ≤M1 log n. ◀

We now can proceed with the proof of Theorem 3.

Proof of Theorem 3. We have 2 log deg(w) + 30 ≤ ℓmax(w) ≤ c2 log n for every w ∈ V and
some c2 = O(1). For each i = 1, . . . , c2 log log n, we consider the following subsets of vertices

Vi = {v ∈ V : ℓmax(v) ∈ [2i, 2i+1]}.

DISC 2024



28:12 Self-Stabilizing MIS Computation in the Beeping Model

Let Ti be the round until all the vertices in ∪j≤iVj are stabilized, i.e.,

Ti = min{t′ ≥ 1 : ∪j≤iVj ⊆ St′}.

We have that, for each vertex v ∈ Vi+1 and each t ≥ Ti,

2ℓmax(u) ≥ ℓmax(v) ∀u ∈ N+(v) \ St.

Indeed, we have u ̸∈ ∪j≤iVj since u ̸∈ St and t ≥ Ti. Hence, ℓmax(u) ≥ 2i+1. Since v ∈ Vi+1,
ℓmax(v) ≤ 2i+2 and so 2ℓmax(u) ≥ ℓmax(v). We also have, for each t ≥ Ti and each v ∈ Vi+1

ηt(v) ≤
∑

u∈N(v)\St

2−ℓmax(u) ≤
∑

u∈N(v)\St

2−ℓmax(v)/2 ≤
∑

u∈N(v)\St

1
deg(v)2−15 ≤ 0.0001,

where the second inequality follows from the fact that 2ℓmax(u) ≥ ℓmax(v), and the third
inequality since ℓmax(v) ≥ 2 log deg(v) + 30.

We can now apply Lemma 10, if t ≥ max{Ti, maxw∈V ℓmax(w) + 1}, to all the vertices
v ∈ Vi+1, obtaining (with an union bound over all the vertices in Vi) the existence of a round
mi = O(log n) such that Pr [Vi+1 ⊆ St+mi

] ≥ 1− 1/n. Applying this argument iteratively
for each i = 1, . . . , c2 log log n, we obtain the existence of a round

m =
log log n∑

i=1
mi = O(log n · log log n)

such that all vertices are stable w.h.p. at round m. ◀

6 Proof of Key Lemmas

6.1 Lower Bound on Platinum Rounds (Proof of Lemma 8)
Before proving Lemma 8, we introduce some definitions and preliminary lemmas.

▶ Definition 11 (Light Vertices). A vertex v ∈ V is called light in round t if µt(v) >

0 ∧ (dt(v) ≤ 10 ∨ ℓt(v) ≤ 0). We denote with Lt the set of light vertices at round t and with
Ht = V \ Lt the set of heavy (non-light) vertices at round t.

Intuitively, a light vertex v is prominent or has a positive, constant probability of not
receiving a beep signal during round t and, in the latter case, if pt(v) is large enough, v has a
constant probability of beeping without beeping neighbors during round t. We remark that
the condition µt(v) > 0 is necessary since, if µt(v) = 0, the vertex v hears a beep during
round t with probability 1.

We denote with dL
t (v) =

∑
u∈N(v)∩Lt

pt(u) the expected number of beeping light neighbors
of v in round t, and with dH

t (v) =
∑

u∈N(v)∩Ht
pt(u) the expected number of beeping heavy

neighbors of v in round t. We notice that dt(v) = dL
t (v) + dH

t (v).

▶ Definition 12 (Golden Rounds). Round t is a golden round of vertex v if one of the
following two conditions are satisfied:
(a) ℓt(v) ≤ 1 and dt(v) ≤ 0.02;
(b) dL

t (v) > 0.001.
We denote with Gt,k(v) the number of golden rounds of vertex v during rounds {t, . . . , t + k}.

In the next section, we will give a lower bound on the number of golden rounds.



G. Giakkoupis, V. Turau, and I. Ziccardi 28:13

6.1.1 Lower Bound on Golden Rounds
▶ Lemma 13. Assume that ℓmax(w) ≥ log deg(w)+4 for all w ∈ V . Consider a vertex v ∈ V

and a round t > maxw∈V ℓmax(w) such that t is not a platinum round of v, and ηt(v) ≤ 0.0001.
Let τ (v)(t) be defined as in Lemma 8. Then, we have that, for any k ≥ 70 · ℓmax(v),

Pr
[
Gt,k(v) ≤ 0.05k ∧ τ (v)(t) > k | Ft

]
≤ e−k/100.

We notice that, if round t is not a platinum round of v, every round s ∈ [t, τ (v)(t)] is also
not a platinum round of v, since the only way a vertex in N+(v) can take a negative level
is by beeping without beeping neighbors, and τ (v)(t) is the first round that happens. The
proof of Lemma 13, which is deferred to Appendix C, relies on the following result.

▶ Lemma 14. Let v ∈ V and t > maxw∈V ℓmax(w) such that round t is not a platinum
round of v and ηt(v) ≤ 0.0001.
(a) If dt(v) ≤ 0.02, then ℓt+1(v) ≤ max{1, ℓt(v)− 1} with probability at least 0.97.
(b) If dt(v) > 0.01 and dL

t (v) < 0.01dt(v), then with probability at least 0.97, we have that
dt+1(v) < 0.6dt(v) or that t + 1 is a platinum round for v.

Proof. We fix the execution up to the end of round t, so we do not have to condition
probabilities on Ft. In what follows, we prove separately the two statements.

We prove (a) first. Since dt(v) =
∑

u∈N(v) pt(u) ≤ 0.02 it follows that pt(u) ≤ 1
2 for all

u ∈ N(v). Thus, the probability that no neighbor of v beeps is at least
∏

u∈N(v) (1− pt(u)) ≥
4−dt(v) ≥ 0.97. Hence, Pr[ℓt+1(v) ≤ max{ℓt(v)− 1, 1}] ≥ 0.97.

Next we prove (b). Since t is not a platinum round of v, we have that for each u ∈ N+(v),
ℓt(u) ≥ 1. Moreover, we notice that there may be in round t a beeping vertex u ∈ N+(v)
that does not receive a signal, and so ℓt+1(u) = −ℓmax(u) ≤ 0.

For any vertex u ∈ N+(v), we have the following upper bounds for pt+1(u) (recall that
ℓt(u) > 0 since t is not a platinum round of v):

pt+1(u) ≤



2−ℓmax(u)+1 if ℓt(u) = ℓmax(u) and u ̸∈ St

0 if ℓt(u) = ℓmax(u) and u ∈ St

pt(u)
2 if Bt(u) ≥ 1 and ℓt(u) ̸= ℓmax(u)

2pt(u) if Bt(u) = bt(u) = 0 and ℓt(u) ̸= ℓmax(u)
1 if Bt(u) = 0, bt(u) = 1 and ℓt(u) ̸= ℓmax(u)

The last case, i.e., when Bt(u) = 0 and bt(u) = 1 implies that t + 1 is a platinum round for v,
and that ℓt+1(u) = −ℓmax(u). Define Jt+1(v) the set of such vertices, i.e., the set of vertices
in N(v) beeping in round t without beeping neighbors. Then,

dt+1(v) ≤
∑

u∈N(v)\St:
ℓt(u)=ℓmax(u)

2−ℓmax(u)+1 +
∑

u∈N(v):
Bt(u)≥1

ℓt(u)̸=ℓmax(u)

pt(u)
2 +

∑
u∈N(v):

Bt(u)=bt(u)=0

2pt(u) + Jt+1(v)

≤ 2ηt(v) +
∑

u∈N(v)∩Ht

pt(u)
(

1
2 + 2 · 1Bt(u)=0

)
+

∑
u∈N(v)∩Lt

2pt(u) + Jt+1(v).

We notice that, since dL
t (v) =

∑
u∈N(v)∩Lt

pt(u) ≤ 0.01dt(v) and ηt(v) ≤ 0.001, we have that

dt+1(v) ≤ 0.0002 + 0.02dt(v) + Jt+1(v) +
∑

u∈N(v)∩Ht

pt(u)
(

1
2 + 2 · 1Bt(u)=0

)
.

DISC 2024



28:14 Self-Stabilizing MIS Computation in the Beeping Model

We want to bound, for each u ∈ N(v)∩Ht, the probability that Bt(u) = 0. Since u ∈ N(v)∩Ht

and ℓt(u) ≥ 1, then dt(u) ≥ 10 or µt(u) = 0. In the latter case, we know that u has some
neighbor u′ ∈ N(u) with pt(u′) = 1. Hence, we have that Pr [Bt(u) = 0] = 0. In the former
case, we have that none of u’s neighbors is beeping with probability at most∏

w∈N(u)

(1− pt(w)) ≤ e−dt(u) ≤ e−10.

Hence, we have that, for each u ∈ N(v) ∩Ht, Pr [Bt(u) = 0] ≤ e−10. So,

E

 ∑
u∈N(v)∩Ht

2pt(u)1Bt(u)=0

 ≤ ∑
u∈N(v)∩Ht

2pt(u)e−10.

Markov’s inequality implies that
∑

u∈N(v)∩Ht
2pt(u)1Bt(u)=0 ≤ 0.01

∑
u∈N(v)∩Ht

2pt(u) with
probability at least 1− e−10

0.01 ≥ 0.97. Thus, with probability at least 0.97, we have that

dt+1(v) ≤ 0.0002 + 0.02dt(v) + Jt+1(v) + 0.5dt(v) + 0.02dt(v) ≤ 0.6dt(v) + Jt+1(v), (5)

where the last inequality follows by noticing that dt(v) > 0.01 and hence 0.0002 < 0.02dt(v).
This yields the lemma, since (5) implies that either dt+1(v) < 0.6dt(v), or Jt+1(v) > 0, and
hence t + 1 is a platinum round for v. ◀

6.1.2 From Golden to Platinum Rounds
We first notice that, for each golden round t of v, round t + 1 is platinum for v with constant
probability. Indeed, we have the following lemma.

▶ Lemma 15. Let t > maxw∈V ℓmax(w) be a non-platinum round of v, and consider τ (v)(t)
as in Lemma 8. Then, we have that, for each t ≤ s < τ (v)(t) which is golden for v,
Pr

[
τ (v)(t) = s + 1 | Fs

]
≥ γ, where γ ≥ e−27.

Proof. Since t ≤ s < τ (v)(t), s is not a platinum round of v, every vertex u ∈ N+(V ) is
such that ℓs(v) ≥ 1. In what follows, we prove that, with constant probability γ > 0, during
round s, there is a vertex u ∈ N+(v) such that Bs(u) = 0 and bs(u) = 1. This implies that
ℓs+1(u) = −ℓmax(u) and that µs+1(u) > 0, hence that s + 1 is platinum for v. Since s is
golden for v, we have that part (a) or (b) of Definition 12 holds.

First, assume that (a) holds, thus ℓs(v) ≤ 1 and ds(v) ≤ 0.02. In this case, with
probability at least 0.48, we have that Bs(v) = 0 and bs(v) = 1 and so s + 1 is platinum for
v. Indeed, the expected number of beeping neighbors of v during round s is ds(v) ≤ 0.02.
Therefore, for Markov’s inequality, Pr [Bs(v) ≥ 1] ≤ 0.02, and v beeps with probability at
least 1/2, and then the level of v is updated to zero with probability at least 1

2 · 0.98 > 0.48.
We now assume that round s satisfies (b), therefore that dL

s (v) ≥ 0.001. We will prove
that, in such types of rounds, with probability at least a constant γ, there is a beeping vertex
u ∈ N(v) with no beeping neighbors during round s. Let k = |N(v) ∩ Ls| be the number of
light neighbors of v, and denote {w1, . . . , wk} = N(v)∩Ls. We remark that all light vertices
wi are such that ℓs(u) > 0 for each u ∈ N(wi) and ds(wi) ≤ 10. We define Ei to be the event
indicating that vertex wi is beeping during round s. Let E = ∪iEi. We have that,

Pr [E ] ≥ 1−
∏

w∈N(v)∩Ls

(1− pt(w)) ≥ 1− e
−

∑
w∈N(v)∩Ls

ps(w)
= 1− e−dL

s (w) ≥ 1− e−0.001.



G. Giakkoupis, V. Turau, and I. Ziccardi 28:15

Suppose that E occurs, and let j be the smallest index such that Ej occurs, i.e., Ē1 ∩
Ē2 ∩ · · · ∩ Ēj−1 ∩ Ej occurs. If Gj = N(wj) \ {w1, . . . , wj−1}, then the probability that no
neighbor of wj in Gj beeps is at least∏

u∈Gj

(1− ps(u)) ≥
∏

u∈N(wj)

(1− ps(u)) ≥ e−2ds(w) ≥ e−20.

where the first inequality follows from the fact that, since wj is light, µs(wj) > 0 and so each
u ∈ N(wj) is such that ℓs(u) ≥ 1. Combining this with the previous inequality, we have that
a vertex w ∈ N(v) with ds(w) ≤ 10 is beeping with no beeping neighbors with probability at
least e−20(1− e−0.001) > e−27 = γ. ◀

Lemma 8 follows from Lemmas 13 and 15.

Proof of Lemma 8. We fix the execution up to the end of round t, so we do not have to
condition on Ft. We have that

Pr
[
τ (v)(t) > k

]
= Pr

[
τ (v)(t) > k ∧Gt,k(v) > 0.05k

]
+ Pr

[
τ (v)(t) > k ∧Gt,k(v) ≤ 0.05k

]
≤ Pr

[
τ (v)(t) > k ∧Gt,k(v) > 0.05k

]
+ e−k/100 (6)

≤ (1− e−27)0.05k + e−k/100 (7)

≤ e−e−270.05k + e−k/100 ≤ e−e−29k + e−k/100 ≤ e−e−30k,

where (6) follows from Lemma 13, and (7) follows from Lemma 15. ◀

6.2 Stopping Times for Platinum Rounds (Proof of Lemma 9)
Proof of Lemma 9. We fix the execution up to the end of round t, so we do not have to
condition probabilities on Ft.

We prove part (a) first. Since u ∈ PM t\St, we have ℓt(u) ≤ 0. Since t > maxw∈V ℓmax(w)
Lemma 5 implies that µt(u) > 0, i.e., ℓt(w) > 0 for all w ∈ N(v). By Lemma 7 there exist
a round t′ ≤ t with ℓt′(u) = −ℓmax(u) and t − ℓmax(u) ≤ t′. Thus, each neighbor w of u

incremented its level during the rounds t′, t′ + 1, . . . , t or the level of w reached ℓmax(u).
Let ℓ = t − t′. Thus, ℓt(w) ≥ min{ℓmax(w), ℓmax(u) − ℓ}. Hence, if ℓt(w) < ℓmax(w) then
pt(w) ≤ 2−(ℓmax(u)−ℓ). This yields

dt(u) =
∑

w∈N(u)\St

pt(w) ≤
∑

w∈N(u)\St

2−(ℓmax(u)−ℓ),

and also that, in the subsequent ℓ rounds, vertex u is beeping and the level of each of u’s
neighbors increases in each round. Therefore, we have ℓt+ℓ(w) ≥ min{ℓmax(w), ℓmax(u)} for
each w ∈ N(u), and, moreover

dt+ℓ(u) =
∑

w∈N(u)\St:
ℓmax(w)>ℓmax(u)

2−ℓmax(u) = η′
t(u).

We notice that, if ℓmax(u) ≥ ℓmax(w) for each w ∈ N(u), then we have that dt+ℓ(u) = 0
and hence Pr

[
σ(u)(t) = σ

(u)
in (t) ∧ σ(u)(t) ≤ ℓmax(u)

]
= 1, and this proves (a) when η′

t(u) = 0.
If otherwise η′

t(u) > 0, we can define

ℓ′ = max
w∈N(u)

ℓmax(w)− ℓmax(u)

DISC 2024



28:16 Self-Stabilizing MIS Computation in the Beeping Model

which is such that 0 < ℓ′ ≤ maxw∈N(u) ℓmax(w), and we have that (σ(u)(t) = σ
(u)
in (t)) ∧

(σ(u)(t) ≤ ℓ′) happens with probability at least

ℓ′∏
i=1

∏
w∈N(u):

ℓmax(w)>ℓmax(u)

(
1− pt(w)

2i+ℓmax(u)

)
≥

ℓ′∏
i=1

∏
w∈N(u):

ℓmax(w)>ℓmax(u)

3−pt(w)2−(i+ℓmax(u))

≥
ℓ′∏

i=1
3−η′

t(u)2−i

≥ 3−η′
t(u),

where the first inequality follows from the fact that, for each w ∈ N(u), pt(w)/2ℓmax(u) ≤ 2−4.
Next we prove part (b). We observe that, for each x ≥ 0, we have that

Pr
[
σ(u)(t) ̸= σ

(u)
in (t) ∧ σ(u)(t) > ℓmax(u) + x

]
≤ Pr

[
σ(u)(t) = σ

(u)
out(t) | σ(u)(t) > ℓmax(u) + x

]
.

Since we have that the event σ(u)(t) > ℓmax(u) + x implies that, for each w ∈ N(u),
pt+ℓmax(u)+x(w) ≤ 2−(ℓmax(u)+x), we have that

Pr
[
σ(u)(t) = σ

(u)
out(t) | σ(u)(t) > ℓmax(u) + x

]
≤ 1−

∏
w∈N(u)\St

(
1− 2−(ℓmax(u)+x)

)
≤

∑
w∈N(u)\St

2−(ℓmax(u)+x)

≤ η′
t(u)2−x. ◀

7 Conclusion

In this paper, we describe a new randomized self-stabilizing MIS algorithm using the beeping
model requiring each vertex to have only limited knowledge about the topology that comes
close to the O(log n) time bound. The algorithm is motivated by the non self-stabilizing
algorithm of Jeavons et al. [18]. To transform it into a self-stabilizing algorithm we had
to overcome two issues: Firstly, the known initial configuration and secondly, the phase
concept. We prove that the global knowledge of the maximum degree is sufficient to obtain
a O(log n) self-stabilizing algorithm. If we rely on the local knowledge of the vertex degree,
the algorithm stabilizes in time O(log n · log log n). It is an open question if this upper bound
is tight, or whether the analysis can be improved to obtain the upper bound O(log n).

We remark that, for a beeping model with two channels, we can easily implement the
phases with two rounds with the presence of two beeping channels, and we prove that, in
such a case, a self-stabilizing MIS algorithm terminating in O(log n) relies on the (almost)
local knowledge of the 2-hop neighbors. It is natural to ask whether the local knowledge
can be completely removed, obtaining an algorithm for the beeping model (with one or two
channels) that computes an MIS in a self-stabilizing way.

References
1 Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard Haeupler, and Fabian

Kuhn. Beeping a maximal independent set. Distributed Comput., 26(4):195–208, 2013.
doi:10.1007/s00446-012-0175-7.

https://doi.org/10.1007/s00446-012-0175-7


G. Giakkoupis, V. Turau, and I. Ziccardi 28:17

2 Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama Barkai, and Ziv Bar-Joseph.
A biological solution to a fundamental distributed computing problem. Science, 331(6014):183–
185, 2011. doi:10.1126/science.1193210.

3 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. J. Algorithms, 7(4):567–583, 1986. doi:10.1016/
0196-6774(86)90019-2.

4 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. J. ACM,
68(5):39:1–39:30, 2021. doi:10.1145/3461458.

5 Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In Proc.
24th International Symposium on Distributed Computing, DISC, pages 148–162, 2010. doi:
10.1007/978-3-642-15763-9_15.

6 Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974. doi:10.1145/361179.361202.

7 Shlomi Dolev. Self-Stabilization. MIT Press, 2000. URL: http://www.cs.bgu.ac.il/
%7Edolev/book/book.html.

8 Yuval Emek and Eyal Keren. A thin self-stabilizing asynchronous unison algorithm with
applications to fault tolerant biological networks. In Proc. 40th ACM Symposium on Principles
of Distributed Computing, PODC, pages 93–102. ACM, 2021. doi:10.1145/3465084.3467922.

9 Yuval Emek and Jara Uitto. Dynamic networks of finite state machines. Theor. Comput. Sci.,
810:58–71, 2020. doi:10.1016/J.TCS.2017.05.025.

10 Yuval Emek and Roger Wattenhofer. Stone age distributed computing. In Proc. 32nd
ACM Symposium on Principles of Distributed Computing, PODC, pages 137–146, 2013.
doi:10.1145/2484239.2484244.

11 Salwa Faour, Mohsen Ghaffari, Christoph Grunau, Fabian Kuhn, and Václav Rozhon. Local
distributed rounding: Generalized to MIS, matching, set cover, and beyond. In Proc. 34th
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 4409–4447, 2023. doi:10.1137/
1.9781611977554.CH168.

12 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proc. 27th ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 270–277, 2016.
doi:10.1137/1.9781611974331.ch20.

13 Mohsen Ghaffari. Distributed MIS via all-to-all communication. In Proc. 36th ACM Symposium
on Principles of Distributed Computing, PODC, pages 141–149, 2017. doi:10.1145/3087801.
3087830.

14 Mohsen Ghaffari. Distributed maximal independent set using small messages. In Proc.
30th ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 805–820, 2019. doi:
10.1137/1.9781611975482.50.

15 Mohsen Ghaffari, Christoph Grunau, and Václav Rozhon. Improved deterministic network
decomposition. In Proc. 32nd ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
2904–2923, 2021. doi:10.1137/1.9781611976465.173.

16 George Giakkoupis, Volker Turau, and Isabella Ziccardi. Luby’s MIS algorithms made self-
stabilizing. Information Processing Letters, 188:106531, 2025. doi:10.1016/j.ipl.2024.
106531.

17 George Giakkoupis and Isabella Ziccardi. Distributed self-stabilizing MIS with few states and
weak communication. In Proc. 42nd ACM Symposium on Principles of Distributed Computing,
PODC, pages 310–320, 2023. doi:10.1145/3583668.3594581.

18 Peter Jeavons, Alex Scott, and Lei Xu. Feedback from nature: Simple randomised distributed
algorithms for maximal independent set selection and greedy colouring. Distributed Comput.,
29(5):377–393, 2016. doi:10.1007/S00446-016-0269-8.

19 Nathan Linial. Distributive graph algorithms - Global solutions from local data. In Proc.
28th Symposium on Foundations of Computer Science, FOCS, pages 331–335, 1987. doi:
10.1109/SFCS.1987.20.

DISC 2024

https://doi.org/10.1126/science.1193210
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1145/3461458
https://doi.org/10.1007/978-3-642-15763-9_15
https://doi.org/10.1007/978-3-642-15763-9_15
https://doi.org/10.1145/361179.361202
http://www.cs.bgu.ac.il/%7Edolev/book/book.html
http://www.cs.bgu.ac.il/%7Edolev/book/book.html
https://doi.org/10.1145/3465084.3467922
https://doi.org/10.1016/J.TCS.2017.05.025
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.1137/1.9781611977554.CH168
https://doi.org/10.1137/1.9781611977554.CH168
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1145/3087801.3087830
https://doi.org/10.1145/3087801.3087830
https://doi.org/10.1137/1.9781611975482.50
https://doi.org/10.1137/1.9781611975482.50
https://doi.org/10.1137/1.9781611976465.173
https://doi.org/10.1016/j.ipl.2024.106531
https://doi.org/10.1016/j.ipl.2024.106531
https://doi.org/10.1145/3583668.3594581
https://doi.org/10.1007/S00446-016-0269-8
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1109/SFCS.1987.20


28:18 Self-Stabilizing MIS Computation in the Beeping Model

20 Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. MST construction in O(log
log n) communication rounds. In Proc. 15th Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA, pages 94–100, 2003. doi:10.1145/777412.777428.

21 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J.
Comput., 15(4):1036–1053, 1986. doi:10.1137/0215074.

22 Thomas Moscibroda and Roger Wattenhofer. Maximal independent sets in radio networks. In
Proc. 24th ACM Symposium on Principles of Distributed Computing, PODC, pages 148–157,
2005. doi:10.1145/1073814.1073842.

23 David Peleg. Distributed computing: A locality-sensitive approach. SIAM, 2000.

APPENDIX

A Tools

▶ Lemma 16. Let X1, . . . , Xn be a sequence of i.i.d. geometric random variables with success
probability p. Then, we have that

Pr
[

n∑
i=1

Xi ≥ k

]
= Pr [Bin(k, p) ≤ n] .

Proof. Asking that
∑n

i=1 Xi ≥ k is like asking that, in k Bernoulli trials, we have less than
n successes. ◀

▶ Theorem 17 (Chernoff’s Inequality). Let X =
∑n

i=1 Xi, where Xi with i ∈ [n] are
independently distributed in [0, 1]. Let µ = E [X] and µ− ≤ µ ≤ µ+. Then:
(a) for every t > 0

Pr [X > µ+ + t] ≤ e−2t2/n and Pr [X < µ− − t] ≤ e−2t2/n;

(b) for 0 < ϵ < 1

Pr [X > (1 + ϵ)µ+] ≤ e− ϵ2
3 µ+ and Pr [X < (1− ϵ)µ−] ≤ e− ϵ2

2 µ− .

B Two Beeping Channels (Proof of Corollary 4)

One of the reasons that the MIS algorithm of Jeavons et al. [18] is not self-stabilizing is
the usage of phases consisting of two rounds. This allows a newly joined MIS vertex to
signal this event to all neighbors in the subsequent round. Afterwards, these vertices become
passive, i.e., no longer participate in the algorithm. Thus, a vertex v that newly joined the
MIS cannot be forced by a neighbor that is unaware that v joined the MIS to leave the
MIS again in the successive round. This problem can be circumvented if a second beeping
channel is available, since we can let the vertices joining the MIS beep on that channel.
Indeed, beginning in the round immediately following the round vertex v joined the MIS, it
signals in every round on this second channel. Neighbors of v take this as an opportunity to
become non-MIS vertices. This second channel and the corresponding behavior can be easily
integrated into Algorithm 1 (see Algorithm 2). The range of state variable ℓ(v) is restricted
to [0, ℓmax(v)], where ℓ(v) = 0 (resp. ℓ(v) = ℓmax(v)) implies that v is in the MIS (resp. not
in the MIS). If a vertex v which is enabled to signal with beep1 receives neither signal from
a neighbor then it sets ℓ(v) to 0 and signals beep2 in all future rounds. Vertices receiving
a beep2 signal set ℓ(v) to ℓmax(v) and refrain from beeping in future rounds. We end this
section by giving the proof of Corollary 4.

https://doi.org/10.1145/777412.777428
https://doi.org/10.1137/0215074
https://doi.org/10.1145/1073814.1073842


G. Giakkoupis, V. Turau, and I. Ziccardi 28:19

Algorithm 2 Self-stabilizing version of Jeavons at al.’s algorithm with two beeping
channels.

state: ℓ ∈ {0, . . . , ℓmax(v)}

in each round t = 1, 2, . . . do
if 0 < ℓ < ℓmax(v) then

beep1 ← true with probability 2−ℓ and beep1 ← false otherwise
else beep1 ← false
beep2 ← (ℓ = 0)

if beep1 or beep2 then send the corresponding signal to all neighbors
receive any signals sent by neighbors

if beep2 signal received then
ℓ ← ℓmax(v);

else if beep1 signal received then
ℓ ← min{ℓ + 1, ℓmax(v)}

else if beep1 then
ℓ ← 0

else if beep2 = false then
ℓ ← max{ℓ− 1, 1}

Proof of Corollary 4. We consider Algorithm 2 and we notice that the update rule of ℓ of
the non-stable vertices is the same of Algorithm 1, and hence we can still use Lemma 8, since
it relies just on the update rule for ℓ. Note the difference between the two algorithms: In
Algorithm 1 if the level of a vertex is 0 or lower then it is guaranteed that it sends a beep.
In Algorithm 2 a vertex sends a beep2 signal if and only if its level is 0.

We will prove that the termination time of Algorithm 2 is O(log n), if we take ℓmax(v) ≥
2 log deg2(v) + 15 for every v ∈ V . We first notice that, in this case, we have that

η1(v) ≤
∑

u∈N(v)

2−2 log deg2(u)−15 ≤
∑

u∈N(v)

1
deg2(v)

2−15 ≤ 0.0001,

and hence, for each t ≥ 1 and v ∈ V we have that ηt(v) ≤ 0.0001.
We notice that, for a vertex v ∈ V to stabilize in Algorithm 2, it suffice to have a platinum

round for v. Hence, from Lemma 8 we have that each vertex stabilizes in time O(log n)
with probability at least 1− 1/n2. The theorem follows from the union bound applied to all
vertices. ◀

C Omitted Proofs

Proof of Lemma 5. Let t0 be the first round such that ℓt0(v) > 0 or µt0(v) > 0. First, we
will prove that this condition continues to hold for all rounds t ≥ t0. Then, we will prove
that t0 ≤ maxw∈V ℓmax(w) + 1.

Consider any round t ≥ t0 and assume that ℓt(v) > 0 or µt(v) > 0. This implies that
µt+1(v) > 0 or ℓt+1(v) > 0. Indeed, assume that µt(v) ≤ 0. Then ℓt(v) > 0 and at least one
neighbor of v beeps in round t. Thus, ℓt+1(v) = min {ℓt(v) + 1, ℓmax(v)} ≥ ℓt(v) > 0, i.e.,
the condition of the lemma holds in round t + 1. Next consider the case that µt(v) > 0. If
v beeps in round t then all neighbors increase their value for ℓ, i.e., µt+1(v) ≥ µt(v) > 0.

DISC 2024



28:20 Self-Stabilizing MIS Computation in the Beeping Model

If v does not beep in round t then ℓt(v) > 0. Indeed, if no neighbor of v beeps then
ℓt+1(v) = max {ℓt(v)− 1, 1} > 0, and if at least one neighbor of v beeps then ℓt+1(v) =
min {ℓt(v) + 1, ℓmax(v)} ≥ ℓt(v) > 0, i.e., the condition of the lemma holds in round t + 1.

Assume that ℓ0(v) ≤ 0 and µ0(v) ≤ 0. Then, in the first round all vertices in N+(v)
beep. Hence, all these vertices increment their level by 1, i.e., ℓ1(v) = ℓ0(v) + 1 and
µ1(v) = minu∈N(v)

ℓ0(u)+1
ℓmax(u) . Since −ℓmax(u) ≤ ℓ0(u) for all vertices u ∈ V , there exists

t0 ≤ maxu∈N+(v) ℓmax(u) + 1, such that ℓt0(v) > 0 or µt0(v) > 0. This completes the
proof. ◀

Proof of Lemma 13. Fix a vertex v ∈ V . We consider k ≥ 70ℓmax(v) consecutive rounds,
starting from a round t which is not a platinum round of v. Since ηt(v) is decreasing in t, in
all rounds t + m, m ≥ 0, we have ηt+m(v) < 0.0001. We consider the following sets of rounds

Dt,k(v) = {0 ≤ m ≤ k : dt+m(v) > 0.2}
Et,k(v) = {0 ≤ m ≤ k : dt+m(v) > 0.1 and dL

t+m(v) ≥ 0.1dt+m(v)}
Ft,k(v) = {0 ≤ m ≤ k : dt+m(v) > 0.1 and dL

t+m(v) < 0.1dt+m(v)}
Ht,k(v) = {0 ≤ m ≤ k : dt+m(v) < 0.2 and ℓt+m(v) ≤ 1}.

We say that in some round t′ we have a wrong move if none of the following conditions occurs
(a) t or t + 1 is a platinum round of v;
(b) ηt(v) > 0.0001;
(c) dt(v) ≤ 0.01 or dt(v) > 0.02;
(d) dL

t (v) ≥ 0.01dt(v);
(e) dt+1(v) < 0.6dt(v);
(f) ℓt+1(v) ≤ max{ℓt(v)− 1, 1};

From Lemma 14, we have that a vertex makes a wrong move with probability at most
0.03. Since the randomness of each round is independent of the others, we know by Chernoff’s
bound, that in the rounds {t, t + 1, . . . , t + k} there are at most 0.04k wrong moves with
probability at least 1− e−k/100, and we will refer to this event with B.

In the rest of the proof, we assume that B happens, and we will see that it implies,
deterministically, that τ (v)(t) ≤ k or that Gt,k(v) ≥ 0.1k. So, we assume that τ (v)(t) > k

and we will prove that, under event B, this implies that Gt,k(v) ≥ 0.1k. We remark that, if
τ (v)(t) > k, for each 0 ≤ m ≤ k, we have that dt+m+1(v) ≤ 2dt+m(v).

In what follows, we will prove that:
(i) if Et,k(v) < 0.05k, then Dt,k(v) < 0.25k

(ii) if Dt,k(v) < 0.25k, then Ht,k(v) > 0.28k.

We prove (i) first. We denote with D′
t,k(v) the set {0 ≤ m ≤ k : dt+m(v) > 0.1} and

we notice that D′
t,k(v) = Et,k(v) ∪ Ft,k(v). Also let h = |Dt,k(v)| and h′ = |D′

t,k(v)|. Since
the number of wrong moves is bounded by 0.04k, and since Et,k(v) < 0.05k the number
of rounds in D′

t,k(v) in which dt+m(v) can double is at most 0.09k, and in the rest of the
rounds it will decrease of a factor of 0.6.

In order to keep dt+m(v) > 0.2, in a consecutive interval of rounds in D′
t,k(v), the number

of increasing moves must be at least log0.5(0.6) > 0.7 times the number of decreasing moves,
and at most log5/3(10dt(v)) ≤ 2 log(10 deg(v)) ≤ 2 log deg(v) + 8 decreases are used to
decrease the initial value of dt(v) below 0.1. Hence, the total number of rounds in Dt,k(v) is
at most



G. Giakkoupis, V. Turau, and I. Ziccardi 28:21

0.09k + 0.09
0.7 k + 2 log(deg(v)) + 8 ≤ 0.22k + 2 log deg(v) + 8

≤ 0.22k + 2ℓmax(v)
≤ 0.22k + 0.03k

= 0.25k.

Next we prove (ii). Since |Dt,k(v)| ≤ 0.25k, the set DC
t,k(v) = {0 ≤ m ≤ k : dt+m(v) ≤

0.2} contains at least 0.75k rounds. The number of wrong moves is bounded by 0.04k,
and in rounds DC

t,k(v) a wrong moves implies that ℓt+m+1(v) = min{ℓt+m(v) + 1, ℓmax(v)}.
Moreover, we have that in the rounds Dt,k(v), ℓt+m+1(v) ≤ min{ℓt+m(v) + 1, ℓmax(v)} is
satisfied. Hence, ℓt(v) can increase in at most |Dt,k(v)|+ 0.04k ≤ 0.29k rounds. The rounds
in DC

t,k(v) in which no wrong move occurred are such that ℓt+m+1(v) = max{1, ℓt+m(v)− 1},
since we assumed that τ (v)(t) > k. Since DC

t,k(v) has at least 0.75k elements, and since
the number of wrong moves is bounded by 0.04k, the number of moves in which ℓt+m(v)
decreases is at least 0.75k − 0.04k = 0.71k. Since the number of rounds in which ℓt+m(v)
increases is at most 0.29k, we have that the number of increases is at least 2.4 times the
number of decreases.

Denote the number of rounds in DC
t,k(v) where ℓt+m(v) decreases by U and those where it

increases by D. Thus, D + U ≥ 0.75k and U ≥ 2.4D. In the worst case, each round with an
increase follows a round with a decrease. Then, we still have 0.75k−2D rounds with an increase
left. Then, 0.75k − 2D = U −D ≥ 0.58U ≥ 0.3k. As it takes at most ℓmax(v) for pt+m(v)
to reach 1/2 we can say that, since k ≥ 70ℓmax(v), we have at least 0.3k − ℓmax(v) > 0.28k

rounds where ℓt+m(v) = 1 and dt+m(v) < 0.2, hence Ht,k(v) > 0.28k. ◀

D Illustration of Beeping Probability

Beeping probability pt (v )

l t (v )
−lmax (v ) lmax (v )0

1

Figure 1 Beeping probability pt(v) of v based on value of ℓt(v).

DISC 2024





Massively Parallel Ruling Set Made Deterministic
Jeff Giliberti #

University of Maryland, College Park, MD, USA

Zahra Parsaeian #

University of Freiburg, Germany

Abstract
We study the deterministic complexity of the 2-Ruling Set problem in the model of Massively Parallel
Computation (MPC) with linear and strongly sublinear local memory.
Linear MPC: We present a constant-round deterministic algorithm for the 2-Ruling Set problem

that matches the randomized round complexity recently settled by Cambus, Kuhn, Pai, and
Uitto [DISC’23], and improves upon the deterministic O(log log n)-round algorithm by Pai and
Pemmaraju [PODC’22]. Our main ingredient is a simpler analysis of CKPU’s algorithm based
solely on bounded independence, which makes its efficient derandomization possible.

Sublinear MPC: We present a deterministic algorithm that computes a 2-Ruling Set in Õ(
√

log n)
rounds deterministically. Notably, this is the first deterministic ruling set algorithm with
sublogarithmic round complexity, improving on the O(log ∆ + log log∗ n)-round complexity that
stems from the deterministic MIS algorithm of Czumaj, Davies, and Parter [TALG’21]. Our
result is based on a simple and fast randomness-efficient construction that achieves the same
sparsification as that of the randomized Õ(

√
log n)-round LOCAL algorithm by Kothapalli and

Pemmaraju [FSTTCS’12].

2012 ACM Subject Classification Theory of computation → MapReduce algorithms

Keywords and phrases deterministic algorithms, distributed computing, massively parallel computa-
tion, graph algorithms, derandomization

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.29

Related Version Full Version: https://arxiv.org/abs/2406.12727

Funding Jeff Giliberti: Financial support in part by the Fulbright U.S. Graduate Student Program,
sponsored by the U.S. Department of State and the Italian-American Fulbright Commission. The
content does not necessarily represent the views of the Program.

Acknowledgements We are grateful to Christoph Grunau and Manuela Fischer for valuable discus-
sions. We would also like to thank the anonymous reviewers for their helpful feedback, and Yannic
Maus for his shepherding of the paper.

1 Introduction

In this paper, we present faster deterministic parallel algorithms for finding 2-ruling sets.
Given an n-vertex m-edge graph G = (V, E) and an integer β ≥ 1, the more general problem
of β-ruling sets consists of finding a subset S ⊆ V of non-adjacent vertices such that each
vertex v ∈ V \ S is at most β hops away from some vertex in S. Thus, a β-ruling set is also
a β + 1 ruling set. This concept serves as a natural generalization of one of the most central
and well-studied problems in distributed graph algorithms, known as Maximal Independent
Set (MIS), which corresponds to a 1-ruling set. Generally, for β ≥ 1, the complexity of a
β-ruling set reduces as the value of β increases.

We design 2-ruling set algorithms for the model of Massively Parallel Computation (MPC)
in the strongly sublinear and linear memory regimes. The study of 2-ruling sets is motivated
by its close relationship with MIS, while still permitting the development of considerably
faster algorithms. Additionally, it is known that for problems utilizing MIS as a subroutine,
a β-ruling set may serve as an alternative for some β > 1 [4].

© Jeff Giliberti and Zahra Parsaeian;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 29; pp. 29:1–29:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jeffgili@umd.edu
https://orcid.org/0000-0003-3404-1647
mailto:zahrap@cs.uni-freiburg.de
https://orcid.org/0009-0006-3848-1796
https://doi.org/10.4230/LIPIcs.DISC.2024.29
https://arxiv.org/abs/2406.12727
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


29:2 Massively Parallel Ruling Set Made Deterministic

MPC Model. Initially introduced by [32] and later refined in [2, 7, 30], this model is
characterized by a set of M machines each with memory S. The input is distributed across
machines and the computation proceeds in synchronous rounds. Each round machines
perform arbitrary local computation and all-to-all communication, sending and receiving up
to S words. The main goal is to minimize the number of communication rounds required by
the algorithm. A second goal is to minimize the global space needed to solve the problem, i.e.,
the number of machines times the local memory per machine, which is Ω(n + m) for graph
problems. In the linear regime of MPC each machine is assigned local memory S = O(n),
while in the (strongly) sublinear regime of MPC the local memory is O(nα), for constant
0 < α < 1.

Linear MPC. In the linear model of MPC, a series of works showed that several fundamental
problems such as (∆ + 1)-coloring [13, 16] and minimum-spanning tree [42] admit constant-
round deterministic algorithms. Surprisingly, a recent work of [11] provides a randomized
2-ruling set algorithm with constant-round complexity improving on the O(log log log n)
time algorithm by [31] and the O(log log ∆) time bound that stems from the MIS algorithm
by [26]. On the deterministic side, [43] gave an algorithm that computes a 2-ruling set in
O(log log n) time, which improved on the O(log ∆ + log log∗ n) round complexity due to the
deterministic MIS algorithm of [18, 17, 20]. Key challenges in this domain lie in determining
the existence of deterministic algorithms achieving constant-round complexity for 2-ruling
sets and sublogarithmic-round complexity for MIS.

Sublinear MPC. In the sublinear model of MPC, the above O(log ∆ + log log∗ n)-round
algorithm by [18, 17] is the fastest known for both MIS and 2-ruling set. On the randomized
side, [28] show that MIS can be solved in Õ(

√
log ∆ + log log n) rounds and [43] show that

2-ruling set can be solved in Õ(log1/6 ∆ + log log n), where the Õ(·) notation hides poly log(·)
factors. It may be worth noting that if we limit the global space to Õ(n + m), then the
fastest 2-ruling set algorithm has Õ(log1/4 n + log log n) randomized complexity [43] and
O(log ∆ log log n) deterministic complexity [18, 23].

Other Related Work. There is a large body of work studying ruling sets in the LOCAL
model [24, 9, 31, 45, 10, 6]. The most relevant to ours is the randomized LOCAL algorithm
of [35] for computing 2-ruling sets that combined with [25] yields a LOCAL round complexity
of Õ(

√
log n). On the hardness side, in the LOCAL model, there is a lower bound for 2-ruling

set of Ω(min{
√

∆, log∆ n}) deterministic rounds and of Ω(min{
√

∆, log∆ log n) randomized
rounds by [5, 4], which, in terms of its proportion to n, are Ω( log n

log log n ), and Ω( log log n
log log log n ),

respectively. For MIS and maximal matching (MM), the best known deterministic lower
bound is Ω(min{∆, log∆ n}) by [3], and the best known randomized lower bounds are
Ω(min{∆, log∆ log n}) by [3] and Ω(min{ log ∆

log log ∆ , log∆ n}) by [36], which, in terms of its

proportion to n, are Ω( log n
log log n ), Ω( log log n

log log log n ), and Ω(
√

log n
log log n ), respectively. Via the MPC

conditional lower-bound framework by [27, 17], these results give the following component-
stable lower bounds for sublinear MPC algorithms:

Ω(log log n) for deterministic 2-ruling set, deterministic and randomized MIS and MM.

Ω(log log log n) for randomized 2-ruling set.



J. Giliberti and Z. Parsaeian 29:3

1.1 Our Contribution

We design improved deterministic algorithms for the problem of 2-ruling set in the MPC
setting with linear and sublinear local memory.

Linear MPC Regime. We develop a deterministic algorithm that matches the constant-
round complexity of [11] and even its optimal global space usage.

▶ Theorem 1. There is a O(1)-round linear MPC algorithm that computes a 2-ruling set
deterministically using linear global space.

Prior to our work, the best known deterministic complexity was O(log log n) by a result of
[43]. Our algorithm (Section 3) is obtained by derandomizing the O(1)-round algorithm of
[11]. While the derandomization framework of our algorithm has been applied successfully
to numerous MPC graph problems [12, 16, 19, 18, 15, 22, 23, 43], the main challenge lies in
analyzing (a slight variation of) [11]’s algorithm under limited independence, as we overview
later in Section 1.2.1.

Sublinear MPC Regime. We design the first deterministic sublogarithmic algorithm for
finding a 2-ruling set when the memory per machine is strictly sublinear.

▶ Theorem 2. There is a deterministic sublinear MPC algorithm that finds a 2-ruling
set in O(

√
log ∆ · log log ∆ + log log∗ n) rounds using O(n1+ε + m) global space, for any

constant ε > 0. Moreover, the same algorithm runs in O(
√

log ∆ · log log n) using global
space O(n + m).

For ∆≫ log∗ n, our algorithm gives an almost quadratic improvement over the runtime
obtained using the MIS algorithm of [20], and gets closer to the Õ(log1/6 ∆+log log n) random-
ized complexity of [33]. It is worth noting that it matches the conditionally-optimal runtime
of Ω(log log n) when ∆ = O(2log2 log n/ log log log n), even though, being it not component-stable,
the lower bound does not apply.

This algorithm (Section 4) is obtained by derandomizing the sparsification developed by
[35] for solving 2-ruling sets in the LOCAL model. Specifically, we show that a randomized
O(1)-LOCAL downsampling step can be carried out in only O(log log ∆) rounds determin-
istically in MPC with strongly sublinear space per machine and optimal global space. To
achieve that, we combine several well-established derandomization tools such as limited
independence, the method of conditional expectation, and coloring for reducing seed length,
as we discuss in Section 1.2.2.

We also note that our techniques may be more general and apply to β-ruling sets for
β > 2. Concretely, one may combine our result with the framework of [10] to obtain faster
MPC β-ruling sets algorithms. This direction is left for future work.

1.2 2-Ruling Sets: Technical Overview

We present the main intuition behind the recent constant-round randomized algorithm by
[11] in the linear regime of MPC and the randomized Õ(

√
log n)-round LOCAL algorithm by

[35], which is also closely followed by subsequent works [31, 33, 43]. Then, we provide an
overview of our deterministic algorithms and the main ideas that lead to randomness-efficient
analyses.

DISC 2024



29:4 Massively Parallel Ruling Set Made Deterministic

1.2.1 Linear Memory Regime
Randomized Constant-Round Algorithm. The constant-round 2-ruling set algorithm by
[11] relies on computing an MIS iteratively on subgraphs of linear size, which can be solved
locally on a single machine. Their algorithm samples each vertex v from V and includes it in
Vsamp independently with probability 1/

√
deg(v). This sampling primitive is shown to give

two useful structural properties, with high probability. First, the induced subgraph G[Vsamp]
has a linear number of edges. Second, a certain MIS computation on G[Vsamp] returns an
independent set that is at distance at most two from all but at most n/

√
d vertices with

degree [d, 2d) in the original graph G, for each d ∈ {2⌊log ∆⌋, 2⌊log ∆⌋−1, . . . , Ω(1)}. Then, it
is shown that, after two repetitions, the number of remaining edges for each degree class d is
at most n/poly(d), which sums up to O(n) over all d’s.

Their analysis of the above sampling process relies on full independence in the sense
that random decisions of any node influence its neighbors at distance at most three. Then,
each node influences only up to n3α many nodes by assuming that any node has degree at
most nα, for constant α > 0. This property is exploited to union bound over large sets of
independent nodes in G7, since nodes at distance 8 are enough far apart not to influence one
another. Clearly, this property breaks apart under our constraint of limited independence
and requires to analyze the sampling process differently.

Constant-Round Derandomization. In a nutshell, we show that the same asymptotic guar-
antees as that provided by the above randomized algorithm can be achieved deterministically.
While it is easy to show that their initial sampling step gives a subgraph with a linear
number of edges in expectation, even under pairwise independence, the main challenge is to
prove that only n/dΩ(1) nodes survive across all O(log ∆) d-degree classes, simultaneously.
Establishing the same polynomial decrease (in dΩ(1)) of the size of each d-degree class ensures
the same constant-round complexity.

Our key modification to [11]’s analysis is to increase the threshold for a node to be called
good. We say that a node of degree d is good if it has at least dΩ(1) neighbors in G[Vsamp],
as opposed to the Θ(log n) requirement of [11]. This leads to the following two properties.

First, in the sampling step, we prove that each good node of degree d is covered with
probability 1 − 1/poly(d) and that suffices. In fact, through the method of conditional
expectation, non-covered nodes will induce at most O(n) edges.

Second, in the MIS step, we prove that remaining “bad” nodes are at most n/dΩ(1) for each
degree class, without any assumption on the maximum degree. To achieve that, we combine
a pairwise independent MIS algorithm (similar to that of [23]) with a pessimistic estimator
that notably expresses the progress made over all degree classes as a single expectation. This
expectation can then be obtained by means of standard derandomization tools.

1.2.2 Strongly Sublinear Memory Regime
Randomized 2-Ruling Set Sparsification. The central step of the 2-ruling set algorithms
by [34, 33] is a sparsification procedure that returns a subgraph G′ of sufficiently small
maximum degree. Then, computing a maximal independent set on G′ has time proportional
to its maximum degree, and yields a 2-ruling set that covers all vertices in G which have a
neighbor in G′.

They construct a subgraph G′ of maximum degree O(f · log n) such that any (high-degree)
node with a degree in [∆, ∆/f ] in G has a neighbor in G′, for some parameter f ≥ log n. It is
easy to see that sampling each vertex v ∈ V with probability f ·log n/∆ independently ensures
that every vertex with degree at least ∆/f will have a sampled vertex in its neighborhood
with high probability.



J. Giliberti and Z. Parsaeian 29:5

We just focused solely on covering vertices with degrees in [∆, ∆/f ]. It turns out that, by
each time removing the subgraph G′ and its neighbors, the same sampling step can be repeated
O(logf ∆) times, where in the j-th step nodes with degrees in [f logf ∆−(j−1), f logf ∆−j ] are
covered, with j ∈ [logf ∆]. This simple process leads to a randomized round complexity of
O(log f + logf ∆ + poly log log n) by applying any MIS algorithm that runs in O(log ∆ +
poly log log n) rounds [25, 28] on the union of all subgraphs, which have no conflicts by
construction. Then, f = 2

√
log ∆ is chosen to achieve a runtime of O(

√
log ∆ + poly log log n).

Deterministic 2-Ruling Set Sparsification. Our goal is to replace the above randomized
sampling with a deterministic sampling that returns a subgraph G′ with the same properties
as those returned by the above construction [34, 33]. We slightly alter the sampling guarantees
to allow for a relaxed maximum degree in G′ of up to poly(f) instead of O(f log n). Instead
of sampling each vertex with probability f · log n/∆ randomly and independently in a single
round, we sample them in a deterministic manner in O(log log ∆) rounds. The way in which
we design this deterministic sampling step is explained next.

The standard approach is to limit the randomness by sampling vertices using a carefully
selected k-wise independent hash function. A naive implementation that samples vertices
with probability poly(f)

∆ would need a family of k-wise independent hash functions with
k = Ω(logf n), since each vertex has poly(f) expected sampled neighbors. The need for
Ω(logf n)-wise independence results in a seed of length Ω(logf n · log ∆). Since in O(1) MPC
rounds only O(log n) bits can be fixed, this one-step process appears to require Ω( log ∆

log f )
many rounds1, which is very far from being sublogarithmic.

Our approach to make this construction randomness-efficient relies on breaking down
the sampling process into O(log log ∆) sub-sampling processes, each of which has weaker
guarantees but requires only O(1) rounds. In particular, the basis of our process is a simple,
deterministic, constant-round routine that decreases the maximum degree by a O(

√
∆)-factor,

while ensuring that the maximum-to-minimum degree ratio of O(f) is maintained, i.e., each
vertex v has degree roughly |NG(v)|/

√
∆ in G′.

Then, we repeatedly apply this degree-reduction routine to sparsify the neighborhoods of
high-degree vertices until their degree drops to 2O(log f). It is easy to see that this requires at
most O(log log ∆) repetitions. However, in each iteration, some downsampled neighborhoods
may deviate from their expectation, say by an ϵ-factor. Such deviation is amplified each time,
resulting in a potential error of ϵO(log log ∆). Nevertheless, through a suitable f and ϵ, we can
minimize the error and show that the subgraph G′ has poly(f) maximum degree. Therefore,
we can iterate through the O(logf ∆) degree classes (as in the randomized case) and apply
our deterministic degree reduction to achieve the same result, up to a O(log log ∆) factor.

Further Comparison. Several sparsifications for MIS and 2-ruling sets in LOCAL and
low-memory MPC have been studied. We include a brief comparison with the works of
[18, 39, 33].

A deterministic O(1)-round sampling process appeared in the MIS algorithm of [18]. There,
the goal is to reduce the maximum degree to at most nϵ while ensuring that the resulting
subgraph maintains enough edges and the distribution of degrees is still representative of the
original graph. They decrease the maximum degree by an nΩ(1)-factor for O(1) times, until
the desired bound is achieved. Since the expected new maximum degree is still on the order

1 Here, shortening the seed length using a family of ε-approximate k-wise independent hash functions
still requires ω(1) MPC rounds.

DISC 2024



29:6 Massively Parallel Ruling Set Made Deterministic

of nΩ(1), concentration around the expectation can be achieved with O(1)-wise independence,
and thus derandomized in O(1) rounds. In contrast, in 2-ruling set, the main challenge is to
subsample the neighborhoods of nodes with degree d ≪ nΩ(1). In fact, applying a similar
subsampling method would require Ω(logd n)-wise independence and Ω( log ∆

log f ) rounds, as
explained in the paragraph above. Thus, while the method in [18] is effective for high-degree
nodes with d = nΩ(1), handling smaller degrees requires a different approach.

The ruling set algorithm of [39] introduces a CONGEST sparsification that runs in
O(log2 n) rounds and deals with O(log ∆) degree classes. There, a single sampling step
requires a seed of length O(log2 n) as they require guarantees stricter than ours. Specifically,
their sparsification must maintain a low diameter and ensure proper coverage. Although
their derandomization is CONGEST-efficient, it would require O(log n) MPC rounds, making
it unsuitable to our setting.

Finally, we note that the faster randomized 2-ruling set algorithm of [33] relies on
(informally) performing graph exponentiation on a sparsified subgraph. This approach
relies on fixing the randomness of future iterations in advance, which simplifies the process
of speeding up algorithms in LOCAL. The main challenge in adapting this approach to a
deterministic setting is that existing techniques are generally effective at derandomizing
only O(1) steps of an algorithm. They do not easily extend to derandomize algorithms that
simulate Ω(1) randomized rounds locally on each single machine via graph exponentiation.
Consequently, achieving the same speed up deterministically appears to require a novel
approach.

2 Preliminaries

In our analyses, we will use the notation poly(·) to refer to (·)c, for a constant c > 0 at the
exponent that can be made arbitrarily large without affecting asymptotic bounds.

Primitives in MPC. We recall that basic computations can be performed in the MPC model
with strongly sublinear local memory in O(1) rounds deterministically [29, 30].

Therefore, tasks such as computing the degree of each vertex, ensuring neighborhoods
of all vertices are stored on single machines, and collecting certain subgraphs onto a single
machine will be used as black-box tools.

Derandomization Framework. A rich and successful line of research has studied the
derandomization of algorithms in the parallel and distributed setting. In the MPC model,
classic derandomization schemes using limited independence and the method of conditional
expectation [38, 41], can be augmented with the power of local computation and global
communication to achieve the expected result in O(1) rounds.

We will often use the concepts of k-wise independence and family of k-wise independent
hash functions (see, e.g., [40, 44]). Given a randomized process that works under k-wise
independence, it is known how to construct a k-wise independent family of hash functions.

▶ Lemma 3 ([1, 14, 21]). For every N, k, ℓ ∈ N, there is a family of k-wise independent hash
functions H = {h : [N ]→ {0, 1}ℓ} such that choosing a uniformly random function h from
H takes at most k(ℓ + log N) + O(1) random bits, and evaluating a function from H takes
time poly(ℓ, log N) time.

Moreover, to show concentration around the expected value under k-wise independence, we
will use the following tail bound.



J. Giliberti and Z. Parsaeian 29:7

▶ Lemma 4 (Lemma 2.3 of [8]). Let k ≥ 4 be an even integer. Let X1, . . . , Xn be random
variables taking values in [0, 1]. Let X = X1 + . . . + Xn denote their sum and let µ ≤ E[X]
satisfying µ ≥ k. Then, for any ϵ > 0, we have

Pr [|X − E[X]| ≥ ϵ · E[X]] ≤ 8
(

2k

ϵ2µ

)k/2
.

We consider randomized algorithms that succeed in expectation when their random
choices are made using a family of k-wise independent hash functions H. Once our algorithm
(randomly) picks a hash function h, then all choices are made deterministically according
to h. Thus, our problem is that of deterministically finding a hash function that achieves a
result as good as the expectation.

The by-now standard MPC derandomization process can be broken down into two parts:
(i) show that the family of hash functions H has size poly(n) and produces the desired result
in expectation, and (ii) find one good hash function by applying the method of conditional
expectation in a distributed fashion. We will focus on establishing (i), since (ii) can then be
achieved by known MPC derandomization methods introduced by earlier works [12, 15, 18]
to which we refer for further details. It is worth mentioning that for step (ii) to be solved
using earlier tools as a black-box, the aimed expectation should be expressed as a sum of
locally computable quantities by each individual machine, i.e., the individual expectation of
each node that a machine stores.

3 Deterministic 2-Ruling Set in Linear MPC

We first introduce the reader to several sets of nodes that play a crucial role in our algorithm.
These sets of nodes are defined to reflect how a node will be handled by our algorithm.
Specifically, the core of the algorithm is a downsampling procedure that outputs a sufficiently
small subgraph on which we will compute a maximal independent set with the goal of ruling
a large fraction of nodes in the original graph.

Observe that if a node has a neighbor in the downsampled graph, then it will have some
node in the maximal independent set at distance at most two. This means that if a node is
likely to have a sampled neighbor, then it is likely to be ruled, and we call such a node good.
In the following, our definitions and algorithm are parameterized by a constant ε = 1/40,
which has not been optimized.

▶ Definition 5 (Good Node). A node v ∈ G is good if it satisfies
∑

u∈N(v)
1√

deg(u)
≥ deg(v)ε.

If a node v is not good, i.e.,
∑

u∈N(v)
1√

deg(u)
< deg(v)ε, then we say that v is a bad node.

Bad nodes are split into O(log ∆) degree classes as follows. Let d0 be a sufficiently large
constant and dmax = ⌈log ∆⌉.

▶ Definition 6 (Bad Node Classes). For d ∈ {2d0 , 2d0+1, . . . , 2dmax ], the set Bd includes all
bad nodes with degree in [d, 2d).

Therefore, bad nodes are likely to have few sampled nodes. This fact motivates the following
observation. If a (bad) node has many bad nodes within its 2-hop neighborhood, then it is
likely that at least one of such bad ones is in the maximal independent set. If that is the
case, we call such nodes lucky bad nodes, as specified in the following definition.

▶ Definition 7 (Lucky Bad Nodes). For d ∈ {2d0 , 2d0+1, . . . , 2dmax ], the set Bd ⊆ Bd includes
each node u ∈ Bd such that u has a neighbor w with |N(w)∩Bd| ≥ 6d0.6. If there are multiple
such w’s, pick one arbitrarily and let Su be an arbitrarily chosen subset of N(w) ∩Bd such
that |Su| = 6d0.6.

DISC 2024



29:8 Massively Parallel Ruling Set Made Deterministic

With these definitions in mind, we are now ready to present our deterministic constant-
round 2-Ruling Set algorithm in the linear regime of MPC.

The algorithm operates in three simple steps: Sampling, Gathering, and MIS Computation.
The first step of the algorithm samples each node v with probability deg−1/2(v). The sampling
probability is chosen to ensure that the downsampled graph has a linear number of edges.
Moreover, we will slightly alter the downsampled graph to include all nodes that do not satisfy
certain requirements, without affecting the asymptotic size of this subgraph. Therefore, in
the second step, we will be able to collect such subgraph onto a single machine. Then, the
MIS computation begins by running one iteration of Luby’s MIS on (part of) the subgraph
from the previous step and continues by extending such independent set to a maximal one
locally.

We will prove several desirable properties about the three-step algorithm above that
lead to a reduction of a dΩ(1)-factor for each degree class d. Therefore, by repeating this
three-step algorithm O(1) times, the number of edges over all degree classes converges to
O(n) and thus can be collected and solved locally, completing the proof of Theorem 1.

Next, we present the algorithm in more detail and then proceed to analyzing its three
steps with a particular focus on randomness efficiency. In fact, such randomness-efficient
analyses will allow for a simple derandomization.

3.1 The Algorithm
Sampling Step. Let G = (V, E) be the input graph with n vertices and m edges. Let Vsamp
denote the set of sampled vertices. We include each vertex v ∈ V in Vsamp with probability
pv = 1√

deg(v)
, according to a family of k-wise independent random variables with k = O(1).

Gathering Step. We gather several subsets of nodes whose (combined) induced subgraph
will be shown to have a linear number of edges. Gathered nodes are those either sampled
in the previous step or not satisfying certain properties as formally defined below. Let V ∗

denote the union of the following node subsets, which are being gathered locally onto a single
machine:
1. The set of sampled nodes Vsamp;
2. Every good node that is not sampled and has no sampled neighbors;
3. For each d, every lucky bad node u ∈ Bd that has either less than d0.1 sampled nodes in

Su or one of the sampled nodes in Su has more than d2ε sampled neighbors; as formalized
in Lemma 10.

MIS Computation. Our goal is now to compute a maximal independent set on the locally
gathered subgraph G[V ∗] to rule all but roughly at most a ∆Ω(1)-fraction of nodes in G. We
achieve this by first computing a partial MIS on the sampled bad vertices, i.e.,

⋃
d Bd∩Vsamp,

using a variation of Luby’s algorithm as detailed in the proof of Lemma 12. Afterward, we
can simply compute an MIS locally (and thus sequentially) on the remaining vertices, which
are not incident to the partial MIS computed earlier.

Output Properties. We expect that the output given by the derandomization of the above
three-step process satisfies the following properties. We will later use these properties to
achieve a deterministic constant-round complexity. Observe that we can ignore constant-
degree nodes since they can be gathered and dealt with locally at last.

Good nodes: All good nodes in G are ruled after the MIS step.



J. Giliberti and Z. Parsaeian 29:9

Uncovered lucky bad nodes: For each d, after the computation of a partial MIS, only
a dΩ(1)-fraction of lucky bad nodes remains uncovered.
Uncovered bad nodes: For each d, the number of bad nodes in Bd \ Bd is only a
dΩ(1)-fraction of all nodes with initial degree at least d in G .

3.2 Analysis
We first establish that good nodes are likely to have a neighbor in Vsamp. Since we will
compute an MIS on V ∗ ⊇ Vsamp, such good nodes will be at distance at most 2 from a
node in the MIS. Moreover, good nodes that have no sampled neighbor will be shown to be
incident to a linear number of edges, allowing us to gather them as part of V ∗.

▶ Lemma 8. Every good vertex v has a neighbor in Vsamp with probability at least 1 −
1

poly(deg(v)) .

Proof. For any vertex u, let Xu be the indicator random variable for the event u ∈ Vsamp,
and X be the random number of neighbors of v in Vsamp. Further, let µ := E[X] =∑

u∈N(v) E[Xu] =
∑

u∈N(v) Pr[Xu = 1] ≥ deg(v)ε ≫ k, since nodes of constant degree can
be ignored and dealt with separately at last by collecting them onto a single machine. By
applying Lemma 4, we have

Pr[X = 0] ≤ Pr[|X − µ| ≥ µ] ≤ 8 ·
(

kµ + k2

µ2

)k/2

≤ 8 ·
(

2k

µ

)k/2
= 1

poly(deg(v)) ,

which proves the lemma. ◀

Toward the goal of ruling lucky bad nodes, we next show that bad nodes are likely to
have few sampled neighbors. This means that sampled bad nodes, by having a low degree in
the sampled graph, will have higher chances of being in the partial MIS computed later.

▶ Lemma 9. Any node u ∈ Bd has at most d2ε sampled neighbors with probability at least
1− 1

poly(d) .

Proof. Recall that for any u ∈ Bd, it holds that
∑

w∈N(u)
1√

deg(w)
< deg(u)ε. We will

use this fact to prove that the number of sampled neighbors does not deviate by more
than O(d2ε) with probability at least 1− 1

poly(d) . Let Xw be the indicator random variable
for the event w ∈ Vsamp, and X be the random number of neighbors of u in Vsamp. Let
µ = E[X] =

∑
w∈N(u) E[Xw] =

∑
w∈N(u) Pr[Xw = 1] < deg(u)ε < 2dε. By applying

Lemma 4, we get

Pr[|X − µ| ≥ d2ε − µ] ≤ 8 ·
(

k2 + kµ

(d2ε − µ)2

)k/2

≤ 8 ·
(

2k2

dε

)k/2

= 1
poly(d) .

Note that for small values of d, our constant d0 can be chosen such that 2d0·ε = Ω(k2). ◀

The next lemma proves that each lucky bad node u has a large number of nodes sampled
out of its set Su. Specifically, we need to show that the number of sampled nodes in Su is
higher than the degree of such nodes in the sampled graph. This fact will be used to ensure
that lucky bad nodes have a vertex, within their 2-hop neighborhoods, in the MIS, thereby,
ensuring their coverage.

▶ Lemma 10. For any lucky bad node u, its set Su ⊆ Bd of cardinality 6d0.6 contains at
least d0.1 sampled nodes and each sampled node in Su has at most d2ε sampled neighbors
with probability at least 1− 1

poly(d) .

DISC 2024



29:10 Massively Parallel Ruling Set Made Deterministic

Proof. By Lemma 9 and a union bound over the set Su of 6d0.6 nodes, none of them has
more than d2ε sampled neighbors with probability at least 1− 1

poly(d) . Our goal is now to
prove that the number of sampled vertices within Su is less than d0.1 with probability at
most 1

poly(deg(u)) = 1
poly(d) .

Let X be the random number of sampled vertices in Su, and let µ = E[X] ≥ 3d0.1, since
each vertex in Bd is sampled with probability at least 1/

√
2d. By applying Lemma 4, the

probability of X deviating by more than d0.1 from its expected value is

Pr[|X − µ| ≥ µ− d0.1] ≤ 8 ·
(

2kµ

(µ− d0.1)2

)k/2
≤ 8 ·

(
2k

d0.1

)k/2
= 1

poly(deg(u)) . ◀

We now use the above lemmas, together with a bound on the number of edges induced
by the sampling step, to prove that our gathering step effectively collects O(n) edges.

▶ Lemma 11. The subgraph induced by G[V ∗] has O(n) edges in expectation.

Proof. Our goal is to prove that the expected sum of the original degrees of nodes in V ∗ is
O(n), which clearly upper bounds the number of edges in the induced subgraph. To do so,
we analyze each subset individually.

We first analyze the expected number of edges induced by Vsamp. Let X denote the
random number of edges within the subgraph G[Vsamp]. Let Ye be an indicator random
variable for the event that edge e is in G[Vsamp]. To aid our analysis, we orient each edge in
the graph from the endpoint with lower degree to the endpoint with higher degree. Now,
consider an edge e = (u, v) with deg(u) ≤ deg(v). Vertices u and v are each sampled
with probability at most 1√

deg(u)
. By pairwise independence, the probability of edge e

being in G[Vsamp] is bounded by 1
deg(u) . Consequently, the expected number of edges is

E[X] =
∑

v∈V

∑
e∈out(v) E[Ye] ≤

∑
v∈V

∑
e∈out(v)

1
deg(u) = O(n).

Next, let V good denote the set of good nodes that have no sampled neighbor and Y the
random number of edges incident to V good in G. By Lemma 8, each good node v is in V good
with probability at most 1/poly(deg(v)). Thus,

E[Y ] ≤
∑
v∈V

deg(v) · Pr[v ∈ V good] ≤
∑
v∈V

deg(v)
poly(deg(v)) = O(n).

Finally, let the set B′
d ⊆ Bd include each unlucky bad node u such that either less than

d0.1 vertices in Su are sampled or any sampled node in Su has more than 2dε sampled
neighbors. By Lemma 10, each node u is in B′

d with probability at most 1/poly(d). Let Z

be the random number of edges incident to B′
d. We have

E[Z] ≤
dmax∑
i=d0

∑
u∈B2i

deg(u) · Pr[u ∈ B′
2i ] ≤

dmax∑
i=d0

∑
u∈B2i

2d

poly(d) ≤
dmax∑
i=d0

|B2i | = O(n). ◀

Derandomize Sampling and Gathering Steps. We are now ready to discuss how the above
Sampling and Gathering steps can be turned into a deterministic linear MPC algorithm.
Recall that each vertex is sampled according to a family of k-wise independent random
variables with k = O(1). A family H of k-wise independent hash functions such that
h ∈ H : [n] → [n3] can be specified using a random seed of length O(log n), meaning that
|H| = poly(n). Each h maps the n vertex IDs (assumed to be from 1 up to n) to an integer
in [n3]. Then, each vertex is sampled and belongs to Vsamp iff its ID is mapped to an



J. Giliberti and Z. Parsaeian 29:11

integer that is at most
⌊
n3/

√
deg(v)

⌋
with respect to h, where the floor affects results only

asymptotically. Each vertex can now locally check whether it will be included in V ∗ for a
specified hash function h. In fact, the machine that v is assigned to stores all v’s neighbors
and the set Sv if v is a lucky bad node. Therefore, it is easy to see that each node can
computed the objective function |E(G[V ∗])| locally, and we can thus apply the distributed
method of conditional expectation. Since |H| = poly(n), after a constant number of rounds
we will find a h that ensures |E(G[V ∗])| = O(n).

We now turn to analyzing the MIS step. Recall that we first compute a partial MIS on
the sampled bad nodes in order to rule all but a small fraction of lucky bad nodes. The next
lemma explains how such an independent set is being computed.

▶ Lemma 12. Let B̂d include each node u ∈ Bd that satisfies the property of Lemma 10.
After the partial MIS computation, each node u ∈ B̂d will be ruled with probability at least
1− 45

dε for all d ∈ [d0, dmax]. This result depends only on the randomness used in the MIS
computation.

The proof of Lemma 12 is provided in Appendix A.
The above lemma turns out not to be sufficient to derandomize our MIS step. In fact, we

need to show that all degree classes of lucky bad nodes have a high enough chance of being
ruled simultaneously. This is due to the fact that in the derandomization process, we can
control only one objective function and not O(log ∆) as the number of degree classes would
appear to require. In the next lemma, we show how to define a pessimistic estimator that
solves this issue.

▶ Lemma 13. After the partial MIS computation, all but at most |Bd|
dΩ(1) nodes will be ruled

in expectation, for all d simultaneously.

Proof. Let us first reason about a fixed d and then about all d’s simultaneously.
Recall that B̂d include each node u ∈ Bd that satisfies the property of Lemma 10. There

are at most |Bd|
poly(d) vertices in Bd \ B̂d by Lemma 10. Then, any vertex in B̂d is ruled with

probability at least 1− 45
dε by Lemma 12. Therefore, by linearity of expectation, the number

of non-ruled vertices in is at most 45|Bd|/dε.
Our goal is now to define a single objective function whose expected value ensures that

the same asymptotic result holds for all d simultaneously. Let Xd be the random number of
unruled nodes in Bd, for each d. We define our objective function Q, which will serve as a
“pessimistic estimator”, as a weighted sum of the Xd’s as follows.

Q =
dmax∑
i=d0

X2i · 2i· ε
2

|B2i |
,

so that we get

E[Q] =
dmax∑
i=d0

E[X2i ] · 2i· ε
2

|B2i |
≤

dmax∑
i=d0

45|B2i |
2iε

· 2i· ε
2

|B2i |
=

dmax∑
i=d0

45
2iε/2 = O(1),

where the convergency follows from choosing a sufficiently large constant d0 = O(ε−1).
Observe that the expected value of Q ensures that, for each set Bd, the number of nodes
which are not ruled after running our Luby’s step is Xd ≤ E[Q] · |Bd|

dε/2 = |Bd|
dΩ(1) . ◀

DISC 2024



29:12 Massively Parallel Ruling Set Made Deterministic

Deterministic MIS Step. We now present an efficient derandomization of the above partial
MIS computation in the linear MPC regime. As discussed in Lemma 12, our family H of
pairwise independent hash functions has size |H| = poly(n). Note that each lucky bad
node u can store in a single machine its set Su and all of their sampled neighbors since
|Su| · d2ε = O(d) = O(deg(u)). Then, each vertex u can check whether it will be ruled under
a specified hash function h. Therefore, we can compute u’s contribution to Q(h) locally,
where Q(h) is the objective function of Lemma 13 under a specified hash function h. This
allows us to apply the distributed method of conditional expectation with objective Q to
find a good hash function with Q(h) = O(1) in a constant number of rounds.

Counting the bad nodes. Let V≥d denote the set of all nodes in G with initial degree at
least d, and let the set B∗

d
def= Bd \ Bd. It remains to prove that the set B∗

d contains only
a small fraction of nodes. The next lemma is equivalent to Lemma 9 of [11] up to some
parameters change.

▶ Lemma 14. For any degree d ∈ [2d0 , 2dmax ], we have that |B∗
d | ≤ 12|V≥d|/d0.4.

Proof. For a bad node v, it is easy to see by contradiction that at least d/2 of v’s neighbors
have degree at least d2(1−ε)/4 (see also Lemma 8 of [11]). Let d′ = d2(1−ε)

4 . Therefore, any
node v ∈ B∗

d has at least d/2 neighbors in V≥d′ . Furthermore, any node in V≥d′ neighboring
a node in B∗

d has at most 6d0.6 edges connecting to nodes in Bd ⊇ B∗
d . As a result of these

observations, we derive the following inequality:

d/2 · |B∗
d | ≤ 6|V≥d′ | · d0.6,

which together with the fact that d′ ≥ d, for d large enough, proves the lemma. ◀

Bounding Total Runtime. In the above paragraphs, we showed how to achieve determinis-
tically the properties required by our three-step algorithm outlined at the beginning of this
section. We now rove that repeating this process O(1) times reduces the size of the graph to
O(n/∆), implying that the remaining nodes can be collected and solved for locally.

▶ Lemma 15. At the end of the first iteration, the number of remaining uncovered vertices
with degree at least d, denoted by V

(1)
≥d , satisfies

|V (1)
≥d | ≤ |V≥d|/dε′

.

Proof. The remaining uncovered vertices are only bad nodes. An uncovered bad node of
degree [d, 2d) can be either in B∗

d (Lemma 14) or remained uncovered after running the
deterministic MIS step (Lemma 13). Over all d, . . . , 2dmax , this leads to:

|V (1)
≥d | ≤

dmax∑
i=log d

|B∗
2i |+

|Bd|
2Ω(i) ≤

dmax∑
i=log d

12|V≥2i |
20.4·i + |Bd|

2Ω(i) ≤ |V≥d|
dmax∑

i=log d

1
2Ω(i) = |V≥d|

dΩ(1) ,

where the last inequality follows from |Bd| ≤ |V≥d|, and the final bound is due to the
geometric sum being asymptotically dominated by the first term. ◀

Having established, in Lemma 15, the progress made at each iteration by our three-step
process, we can now apply a simple induction to show the desired bound on the progress
made after several iterations.



J. Giliberti and Z. Parsaeian 29:13

▶ Lemma 16. After O(1) iterations, the graph induced by uncovered nodes has O(n) edges.

Proof. Let V
(k)

≥d denote the number of remaining uncovered vertices with degree at least d

at iteration k. Our goal is to prove that after k iterations, it holds that V
(k)

≥d ≤ V≥d/dkε′

so that for k = O(1/ε′), we get V
(k)

≥d ≤ V≥d/d1.1. The base case for k = 1 follows from
Lemma 15. Now, let us assume that V

(k−1)
≥d ≤ V≥d/d(k−1)ε′ . By a straightforward application

of Lemma 15, we have that V
(k)

≥d ≤ |V
(k)

≥d |/dε′ ≤ V≥d/dkε′ , as desired. Now, since the number
of nodes with degree [d, 2d) is upper bounded by |V≥d|, the total number of edges is at most∑log dmax

i=log d0
V≥d · 2i+1−1.1·i =

∑log dmax
i=log d0

O(n/20.1·i) = O(n). ◀

4 Deterministic 2-Ruling Set in Sublinear MPC

In this section, we show that for an input graph with maximum degree ∆, a 2-ruling set
can be computed deterministically in the strongly sublinear memory regime of MPC in
Õ(log1/2 n) rounds.

We start by introducing a simple, deterministic, constant-round routine that reduces the
size of each high-degree neighborhood by a

√
∆-factor, where high-degree refers to node with

degree at least log(n) ·∆0.6. For ease of exposition, assume that high-degree vertices form a
set U , and that V is the set of all vertices (including high-degree vertices) that are being
downsampled. Therefore, we reason about a bipartite graph G = (U ⊔ V, E), where each
node in u ∈ U is connected to each vertex v ∈ NG(u) in the other part. Our goal is to ensure
that each vertex u has roughly NG(u)/

√
∆ neighbors deterministically. For simplicity, in

the next lemma, we make two assumptions: (i) the neighbors of each vertex fit into a single
machine, and defer the other case to Lemma 18; (ii) we are given a certain coloring of G

that we discuss how to achieve at the end of this section.

▶ Lemma 17. Let G be a graph with bipartition V (G) = U ⊔ V and ∆ be an upper bound on
the maximum degree of any node in U such that ∆ ∈ O(nα) for some α < 1. Furthermore,
assume that each node in V is given a color out of a palette of O(∆6) colors, such that any
two distinct nodes v, v′ ∈ V that have a common neighbor in U are assigned distinct colors.
Then, there exists a deterministic constant-round sublinear MPC algorithm that computes a
subset V sub ⊆ V such that for any node u ∈ U with degG(u) ≥ log(n) ·∆0.6, it holds that
|NG(u) ∩ V sub| ∈

[
1

3
√

∆
|NG(u)|, 1√

∆
|NG(u)|

]
. The global space usage is linear in the input

size.

Proof. Let us assume that each node v ∈ V knows its own color cv of a coloring satisfying
the above properties. Then, nodes in V apply a hash function h from a k-wise independent
family H that maps each color to an integer in [⌈3

√
∆/2⌉]. A node v is then sampled under h

iff h(v) = 1, which occurs with probability 1/⌈3
√

∆/2⌉, where the ceil affects our results only
asymptotically. We choose k = 4c log∆ n, for constant c > 0, so that the seed length to select
a hash function from H is at most ℓ = O(log∆ n) ·max{O(log ∆6), O(log

√
∆)} = O(log n),

i.e., the family H has size poly(n).
We prove that for each vertex u ∈ U with degree larger than log n ·∆0.6, the probability

of having between 1
3

√
∆
|N(u)| and |N(u)|/

√
∆ neighbors within V sub is at least 1− 1

nc , i.e.,
the count of v’s neighbors in V sub deviates by at most 1

3
√

∆
|N(u)|. For each neighbor v of u,

let Xv be an indicator random variable for the event v ∈ V sub. Define X =
∑

v∈N(u) Xv as
the number of neighbors of u in V sub. Then, µ = E[X] = 2|N(u)|

3
√

∆
≥ c log n∆0.1. By applying

DISC 2024



29:14 Massively Parallel Ruling Set Made Deterministic

Lemma 4, we have:

Pr[|X − µ| ≥ µ/2] ≤ 8
(

4kµ + 4k2

µ2

)k/2

≤ 8
(

16c2∆0.1 log2 n + 32c2 log2 n

∆0.2c2 log2 n

)k/2

≤ 8
(

1
∆0.1

) 4c
2 · log n

log ∆

≤ 1
n2c

.

Therefore, the expected number of high-degree vertices in U whose count of sampled neighbors
deviates by more than µ/2 is at most n2c−1 < 1. This means that we can apply the method
of conditional expectation in a distributed fashion with as objective function the number of
bad nodes, i.e., those whose sampled neighborhood deviates from the expectation by more
than half. Since the memory capacity of each machine is O(nα), each machine can compute
locally the contribution to the objective of all the vertices (and their neighbors) it stores.
Therefore, after O(1) rounds, we find a hash function such that all high-degree vertices in U

have the desired number of sampled neighbors. ◀

Next, we discuss how to extend Lemma 17 to handle the case in which not all neighbors of
a vertex in U can be collected onto a single machine. In particular, if ∆≫ nα, then aiming
for a reduction of a

√
∆-factor might not be viable, given the constrained local memory. Due

to that, we slightly relax our goal and reduce our high-degree neighborhoods by a nε-factor,
for some constant ε < α. To achieve that, we split edges into groups so that each machine is
assigned nc·ε edges, for c > 1. While we can only control the deviation of each single group
of edges, we will be able to bound the overall number of neighbors, i.e., edges per node, using
the fact that there are at most ∆/nc·ε groups.

▶ Lemma 18. Let G be a graph with bipartition V (G) = U ⊔ V . Let ∆ be an upper bound
on the maximum degree of any node in U such that ∆ ≥ n10ε, for some constant ε > 0.
Then, there exists a deterministic constant-round sublinear MPC algorithm that computes a
subset V sub ⊆ V such that for any node u ∈ U with degG(u) ≥ log(n) ·∆0.6, it holds that
|NG(u) ∩ V sub| ∈

[ 1
2nε |NG(u)|, 3

2nε |NG(u)|
]
. The global space usage is linear in the input

size.

Proof. Consider an arbitrary vertex u ∈ U with degree at least log(n) · ∆0.6. The idea
is to split edges of u into groups of size at most n4ε, which fits into the memory of one
machine. Specifically, each machine holds n4ε edges except for a single machine that holds
any remaining edges, which are at most n4ε. Then, we sample nodes in V with probability
n−ε according to a family of O(1)-wise independent hash function. Using a calculation
similar to that of Lemma 17, we can find a hash function such that all groups of n4ε edges
have n3ε ± n2ε sampled edges. Then, the total number of sampled neighbors is at least∑

machine i

n3ε − n2ε ≥
⌊
|NG(u)|

n4ε

⌋
·
(
n3ε − n2ε

)
≥ |NG(u)|

nε
− |NG(u)|

n2ε
− n3ε ≥ |NG(u)|

2nε
,

where n3ε = o( |NG(u)|
2nε ) since NG(u) ≥ n6ε. An analogous calculation shows that the total

number of sampled neighbors for any vertex u is at most 3|NG(u)|
2nε . ◀

We are now ready to present our O(log log ∆) sparsification. We show that we can find
a subset of nodes incident to all nodes in U such that their induced maximum degree is
2O(log f) for f = 2

√
log ∆. This is achieved by repeating the sampling processes of Lemmas 17

and 18 for O(log log ∆) times. Here, one key observation to bound the deviation is that in
each run of Lemma 17 only the lower tail may deviate up to a 1/3-factor from |NG(u)|√

∆
. So,

the final multiplicative error will be 3O(log log ∆) = poly log ∆.



J. Giliberti and Z. Parsaeian 29:15

▶ Lemma 19. Let G be a graph with bipartition V (G) = U ⊔ V . Let ∆ and ∆
f be an upper

bound on the maximum degree and a lower bound on the minimum degree, respectively, of
any node in U for any parameter f ≤ ∆0.4

log n and f ≥ poly(log n). There exists a sublinear
MPC algorithm that computes in O(log log ∆) rounds a subset V sub ⊆ V such that for any
node u ∈ U with degG(u) ≥ ∆

f , it holds that |NG(u) ∩ V sub| ∈ [1, 2O(log f)]. The algorithm
global space usage is linear in the input size.

Proof. Our goal is to find a suitable set V sub by applying the sparsification outlined in
Lemma 17. If ∆ ≥ nα, we first apply Lemma 18 for O(1/ε) = O(1) times until the maximum
degree in U is within the memory capacity of a single machine O(nα), which can be achieved
by setting ε ≤ α

10 , i.e., nα ≥ n10ε. Define ∆′ ≤ nα as the maximum degree in U after
downsampling vertices in V for O(1) iterations as per Lemma 18. Notice that the minimum
degree in U is now c · ∆′

f , for some constant c > 0. Then, we run the algorithm of Lemma
17 for k = O(log log ∆) iterations, and stop as soon as the minimum degree in U is within
2O(log f). We prove by induction that after k iterations nodes have degrees in[

c

f · 3k
(∆′)1/2k

, (∆′)1/2k

]
.

The base case follows from Lemma 17. The induction step then follows from[
c

f · 3(k−1) (∆′)1/2(k−1)
· 1

3(∆′)1/2k , (∆′)1/2(k−1)
· 1

(∆′)1/2k

]
=

[
c

f · 3k
(∆′)1/2k

, (∆′)1/2k

]
.

By choosing k = ⌊log log ∆′ − log(2 log(f · log ∆′))⌋, one can verify that, for any vertex in
U , the minimum degree in the downsampled graph will be at least one, and the maximum
degree at most 2O(log(f ·log ∆)) = 2O(log f). ◀

Our 2-ruling set algorithm is paramterized by f = 2
√

log ∆. On a high-level, we mimic
the randomized local 2-ruling set algorithm of [35]. In each iteration i, 0 ≤ i ≤ ⌊log f⌋, we
address the set of vertices with degree in (∆/f i+1, ∆/f i]. We apply the sparsification of
Lemma 19 on each set of high-degree vertices, one set at a time sequentially. Each sparsified
subgraph is then put aside and, together with all incident nodes in G, is removed from further
consideration before starting the next iteration. At the end, the union of all subgraphs of
induced maximum degree 2O(log f) and possibly some remaining low-degree vertices are given
in input to an MIS algorithm, whose solution is effectively a 2-ruling set. We detail the
algorithm in the following pseudocode and proceed to its analysis below.

Algorithm 1 Sublinear 2-Ruling Set.

f ← 2
√

log ∆; M ← ∅
for i← 0, 1, · · · , ⌊log f⌋ do

U ← {v ∈ V | degG(v) ∈ ( ∆
fi+1 , ∆

fi ]}; V ′ ← V

G′ ← (U ⊔ V ′, E′ = {(u, v) | u ∈ U, v ∈ V ′, (u, v) ∈ E}) ▷ Bipartition for sparsification
for j ← 1, 2, · · · , O(log log ∆) do ▷ See also Lemma 19

∆′ ← maximum degree in G′

V ′ ← sample v ∈ V ′ with prob. max{ 2
3

√
∆′ , 1

nε }

M ←M ∪ V ′

V ← V \ (V ′ ∪NG(V ′)) ▷ Remove neighbors of sampled set
Return MIS on G[M ∪ V ]

The proofs of the next two lemmas are fairly standard and deferred to Appendix B.

DISC 2024



29:16 Massively Parallel Ruling Set Made Deterministic

▶ Lemma 20. At the end of iteration i, 1 ≤ i ≤ ⌊log f⌋, all vertices still in V have degree at
most max{∆

fi , 2O(log f)}.

▶ Lemma 21. After ⌊log f⌋ iterations, the subgraph induced by M together with vertices still
in V , i..e, G[M ∪ V ], has maximum degree 2O(log f).

Proof of Theorem 2. As proved in Lemma 19, each iteration of the algorithm runs in
O(log log ∆) rounds. Since there are O(

√
log ∆) iterations for f = 2

√
log ∆, the total number

of rounds is O(
√

log ∆ · log log ∆). From Lemma 21, we see that the sparsified graph
given by M together with vertices still in V has degree at most 2O(

√
log ∆). Therefore, the

MIS computation at the end of the algorithm takes O(
√

log ∆ + log log∗ n) by using the
deterministic MIS algorithm from Lemma 27 of [20] that runs in O(log ∆′ + log log∗ n) on a
∆′-maximum degree graph, provided that the allowed global space is O(n1+δ +m). Otherwise,
we use the variation given in [23] that runs in O(

√
log ∆ · log log n) and uses linear global

space. ◀

Lastly, we need to show how to achieve a poly(∆) coloring of G2 to fulfill the assumption
made in Lemma 17. Due to space constraints, it is deferred to Appendix B.1.

References
1 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm

for the maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986. doi:
10.1016/0196-6774(86)90019-2.

2 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. Proceedings of the forty-sixth annual ACM symposium
on Theory of computing, 2013. URL: https://api.semanticscholar.org/CorpusID:316401.

3 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. 2019 IEEE
60th Annual Symposium on Foundations of Computer Science (FOCS), pages 481–497, 2019.
URL: https://api.semanticscholar.org/CorpusID:57721262.

4 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed delta-coloring
plays hide-and-seek. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2022, pages 464–477, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3519935.3520027.

5 Alkida Balliu, Sebastian Brandt, and Dennis Olivetti. Distributed lower bounds for ruling sets.
SIAM Journal on Computing, pages 70–115, 2022. URL: https://epubs.siam.org/doi/10.
1137/20M1381770, doi:10.1137/20M1381770.

6 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. J. ACM, 63(3), June 2016. doi:10.1145/2903137.

7 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI symposium on Principles
of database systems, 2013. URL: https://api.semanticscholar.org/CorpusID:11086753.

8 M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Proceedings 35th
Annual Symposium on Foundations of Computer Science, pages 276–287, 1994. doi:10.1109/
SFCS.1994.365687.

9 Andrew Berns, James Hegeman, and Sriram V. Pemmaraju. Super-fast distributed algorithms
for metric facility location. ArXiv, abs/1308.2473, 2012. URL: https://api.semanticscholar.
org/CorpusID:124685, arXiv:1308.2473.

10 Tushar Bisht, Kishore Kothapalli, and Sriram V. Pemmaraju. Brief announcement: Super-fast
t-ruling sets. Proceedings of the 2014 ACM symposium on Principles of distributed computing,
2014. URL: https://api.semanticscholar.org/CorpusID:12210091.

https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1016/0196-6774(86)90019-2
https://api.semanticscholar.org/CorpusID:316401
https://api.semanticscholar.org/CorpusID:57721262
https://doi.org/10.1145/3519935.3520027
https://epubs.siam.org/doi/10.1137/20M1381770
https://epubs.siam.org/doi/10.1137/20M1381770
https://doi.org/10.1137/20M1381770
https://doi.org/10.1145/2903137
https://api.semanticscholar.org/CorpusID:11086753
https://doi.org/10.1109/SFCS.1994.365687
https://doi.org/10.1109/SFCS.1994.365687
https://api.semanticscholar.org/CorpusID:124685
https://api.semanticscholar.org/CorpusID:124685
https://arxiv.org/abs/1308.2473
https://api.semanticscholar.org/CorpusID:12210091


J. Giliberti and Z. Parsaeian 29:17

11 Mélanie Cambus, Fabian Kuhn, Shreyas Pai, and Jara Uitto. Time and Space Optimal
Massively Parallel Algorithm for the 2-Ruling Set Problem. In Rotem Oshman, editor, 37th
International Symposium on Distributed Computing (DISC 2023), volume 281 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 11:1–11:12, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.DISC.2023.11.

12 Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local distributed
algorithms under bandwidth restrictions. Distributed Computing, 33(3):349–366, June 2020.
doi:10.1007/s00446-020-00376-1.

13 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
Complexity of (Delta+1) Coloring in Congested Clique, Massively Parallel Computation, and
Centralized Local Computation. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC ’19, pages 471–480, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3293611.3331607.

14 Benny Chor and Oded Goldreich. On the power of two-point based sampling. Journal of
Complexity, 5(1):96–106, 1989. doi:10.1016/0885-064X(89)90015-0.

15 Sam Coy and Artur Czumaj. Deterministic massively parallel connectivity. In Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages
162–175, New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/
3519935.3520055.

16 Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-round coloring
in the congested clique. In Proceedings of the 39th Symposium on Principles of Distributed
Computing, PODC ’20, pages 309–318, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3382734.3405751.

17 Artur Czumaj, Peter Davies, and Merav Parter. Component stability in low-space massively
parallel computation. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing, PODC’21, pages 481–491, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3465084.3467903.

18 Artur Czumaj, Peter Davies, and Merav Parter. Graph sparsification for derandomizing
massively parallel computation with low space. ACM Trans. Algorithms, 17(2), May 2021.
doi:10.1145/3451992.

19 Artur Czumaj, Peter Davies, and Merav Parter. Improved Deterministic (Delta+1) Coloring
in Low-Space MPC. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing, PODC’21, pages 469–479, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3465084.3467937.

20 Artur Czumaj, Peter Davies-Peck, and Merav Parter. Component stability in low-space
massively parallel computation. Distributed Computing, 37(1):35–64, March 2024. doi:
10.1007/s00446-024-00461-9.

21 Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Veličković. Efficient
approximation of product distributions. Random Structures & Algorithms, 13(1):1–16, 1998.
doi:10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W.

22 Manuela Fischer, Jeff Giliberti, and Christoph Grunau. Improved Deterministic Connectivity in
Massively Parallel Computation. In Christian Scheideler, editor, 36th International Symposium
on Distributed Computing (DISC 2022), volume 246 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 22:1–22:17, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.DISC.2022.22.

23 Manuela Fischer, Jeff Giliberti, and Christoph Grunau. Deterministic massively parallel
symmetry breaking for sparse graphs. In Proceedings of the 35th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’23, pages 89–100, New York, NY, USA,
2023. Association for Computing Machinery. doi:10.1145/3558481.3591081.

24 Beat Gfeller and Elias Vicari. A randomized distributed algorithm for the maximal independent
set problem in growth-bounded graphs. In ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, 2007. URL: https://api.semanticscholar.org/CorpusID:13473182.

DISC 2024

https://doi.org/10.4230/LIPIcs.DISC.2023.11
https://doi.org/10.1007/s00446-020-00376-1
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1016/0885-064X(89)90015-0
https://doi.org/10.1145/3519935.3520055
https://doi.org/10.1145/3519935.3520055
https://doi.org/10.1145/3382734.3405751
https://doi.org/10.1145/3465084.3467903
https://doi.org/10.1145/3451992
https://doi.org/10.1145/3465084.3467937
https://doi.org/10.1007/s00446-024-00461-9
https://doi.org/10.1007/s00446-024-00461-9
https://doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W
https://doi.org/10.4230/LIPIcs.DISC.2022.22
https://doi.org/10.1145/3558481.3591081
https://api.semanticscholar.org/CorpusID:13473182


29:18 Massively Parallel Ruling Set Made Deterministic

25 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proceedings of the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 270–277, 2016. doi:10.1137/1.9781611974331.ch20.

26 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and Ronitt Ru-
binfeld. Improved massively parallel computation algorithms for mis, matching, and vertex
cover. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
PODC ’18, pages 129–138, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3212734.3212743.

27 Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional hardness results for massively
parallel computation from distributed lower bounds. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science (FOCS), pages 1650–1663, 2019. doi:10.1109/FOCS.
2019.00097.

28 Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications in
massively parallel computation and centralized local computation. In Proceedings of the 2019
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1636–1653, 2019.
doi:10.1137/1.9781611975482.99.

29 Michael T. Goodrich. Communication-efficient parallel sorting. SIAM Journal on Computing,
29(2):416–432, 1999. doi:10.1137/S0097539795294141.

30 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation in
the mapreduce framework. In Takao Asano, Shin-ichi Nakano, Yoshio Okamoto, and Osamu
Watanabe, editors, Algorithms and Computation, pages 374–383, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-25591-5_39.

31 James Hegeman, Sriram V. Pemmaraju, and Vivek Sardeshmukh. Near-constant-time dis-
tributed algorithms on a congested clique. In International Symposium on Distributed Com-
puting, 2014. URL: https://api.semanticscholar.org/CorpusID:277941.

32 Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapreduce.
In Proceedings of the 2010 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 938–948, 2010. doi:10.1137/1.9781611973075.76.

33 Kishore Kothapalli, Shreyas Pai, and Sriram V. Pemmaraju. Sample-And-Gather: Fast Ruling
Set Algorithms in the Low-Memory MPC Model. In Nitin Saxena and Sunil Simon, editors, 40th
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2020), volume 182 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 28:1–28:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.FSTTCS.2020.28.

34 Kishore Kothapalli and Sriram Pemmaraju. Distributed graph coloring in a few rounds. In
Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, PODC ’11, pages 31–40, New York, NY, USA, 2011. Association for Computing
Machinery. doi:10.1145/1993806.1993812.

35 Kishore Kothapalli and Sriram V. Pemmaraju. Super-fast 3-ruling sets. In Founda-
tions of Software Technology and Theoretical Computer Science, 2012. URL: https:
//api.semanticscholar.org/CorpusID:16038481.

36 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and
upper bounds. J. ACM, 63(2), 2016. doi:10.1145/2742012.

37 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

38 Michael Luby. Removing randomness in parallel computation without a processor penalty.
Journal of Computer and System Sciences, 47(2):250–286, 1993. doi:10.1016/0022-0000(93)
90033-S.

39 Yannic Maus, Saku Peltonen, and Jara Uitto. Distributed symmetry breaking on power graphs
via sparsification. In Proceedings of the 2023 ACM Symposium on Principles of Distributed
Computing, PODC ’23, pages 157–167, New York, NY, USA, 2023. Association for Computing
Machinery. doi:10.1145/3583668.3594579.

https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1145/3212734.3212743
https://doi.org/10.1109/FOCS.2019.00097
https://doi.org/10.1109/FOCS.2019.00097
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1137/S0097539795294141
https://doi.org/10.1007/978-3-642-25591-5_39
https://api.semanticscholar.org/CorpusID:277941
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.28
https://doi.org/10.1145/1993806.1993812
https://api.semanticscholar.org/CorpusID:16038481
https://api.semanticscholar.org/CorpusID:16038481
https://doi.org/10.1145/2742012
https://doi.org/10.1137/0221015
https://doi.org/10.1016/0022-0000(93)90033-S
https://doi.org/10.1016/0022-0000(93)90033-S
https://doi.org/10.1145/3583668.3594579


J. Giliberti and Z. Parsaeian 29:19

40 Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge university
press, 1995. doi:10.1017/CBO9780511814075.

41 Rajeev Motwani, Joseph (Seffi) Naor, and Moni Naor. The probabilistic method yields
deterministic parallel algorithms. Journal of Computer and System Sciences, 49(3):478–
516, 1994. 30th IEEE Conference on Foundations of Computer Science. doi:10.1016/
S0022-0000(05)80069-8.

42 Krzysztof Nowicki. A deterministic algorithm for the mst problem in constant rounds of
congested clique. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 1154–1165, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3406325.3451136.

43 Shreyas Pai and Sriram V. Pemmaraju. Brief announcement: Deterministic massively parallel
algorithms for ruling sets. In Proceedings of the 2022 ACM Symposium on Principles of
Distributed Computing, PODC’22, pages 366–368, New York, NY, USA, 2022. Association for
Computing Machinery. doi:10.1145/3519270.3538472.

44 Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Approximating
packing integer programs. Journal of Computer and System Sciences, 37(2):130–143, 1988.
doi:10.1016/0022-0000(88)90003-7.

45 Johannes Schneider, Michael Elkin, and Roger Wattenhofer. Symmetry breaking depending
on the chromatic number or the neighborhood growth. Theor. Comput. Sci., 509:40–50, 2013.
doi:10.1016/J.TCS.2012.09.004.

A Missing Proofs for Linear MPC Result

Proof of Lemma 12. We analyze one step of (a variation of) Luby’s algorithm that builds
an independent set I on the set of sampled bad vertices

⋃
d Bd ∩ Vsamp. We will fix a seed

specifying a hash function from a pairwise independent family H. Let v ∈ (
⋃

d Bd ∩ Vsamp).
An hash function h maps node v to a value zv ∈ [n3]. Then, v joins the independent set I iff
zv < zw for all w ∼ v and zv < n3

d3ε , where w ∈ N(v) ∩ (
⋃

d Bd ∩ Vsamp).
By Lemma 10, each node u ∈ B̂d has at least d0.1 nodes from Su that are sampled, each

of which has at most d2ε sampled neighbors. For the purpose of the analysis, let the set Au

include exactly d0.1 = d4ε of such nodes and let {Xv}v∈Au
be the random variables denoting

the event that v joins I. We denote X =
∑

v∈Au
Xv as their sum. For any v, we have

1
d3ε
− 1

n3 ≤ Pr
[
zv <

n3

d3ε

]
≤ 1

d3ε
.

By pairwise independence,

Pr[Xv = 1] ≥ Pr
[

zv <
n3

d3ε

]
−

∑
v′∈N(v)∩S(B)

Pr
[

zv′ ≤ zv <
n3

d3ε

]
≥ 1

d3ε
− 1

n3 − d2ε

d6ε
≥ 1

3d3ε
.

It follows that E[X] =
∑

v∈Au
Pr[Xv = 1] ≥ dε

3 . Our goal is now to bound Pr [X = 0].
Observe that for any two vertices v, v′ ∈ Au, we have that

E[XvXv′ ] ≤ Pr
[
zv <

n3

d3ε
∩ zv′ <

n3

d3ε

]
≤ d−6ε,

by pairwise independence. Thus, we get

Var[X]
E[X]2 ≤

∑
v∈Au

Var[Xv] +
∑

v,v′∈Au
Cov[Xv, Xv′ ]

E[X]2 .

DISC 2024

https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1016/S0022-0000(05)80069-8
https://doi.org/10.1016/S0022-0000(05)80069-8
https://doi.org/10.1145/3406325.3451136
https://doi.org/10.1145/3519270.3538472
https://doi.org/10.1016/0022-0000(88)90003-7
https://doi.org/10.1016/J.TCS.2012.09.004


29:20 Massively Parallel Ruling Set Made Deterministic

We know that∑
v∈Au

Var[Xv] ≤ d4ε · Pr[Xv = 1](1− Pr[Xv = 1]) ≤ d4ε · 1
3d3ε

= dε

3 ,

∑
v,v′∈Au

Cov[Xv, Xv′ ] ≤ d8ε(E[XvXv′ ]− E[Xv]E[Xv′ ]) ≤ d8ε(d−6ε − 1/9d6ε) ≤ d2ε.

Therefore,

Var[X] ≤ dε

3 + d2ε ≤ 4dε

3 , and Var[X]
E[X]2 ≤

4dε

3(
dε

3
)2 = 4dε

3 ·
9

d2ε
= 36

dε
.

Applying Chebyshev’s inequality, we have

Pr[X = 0] ≤ Pr [|X − E[X]| ≥ E[X]] ≤ Var[X]
E[X]2 ≤

45
dε

. ◀

B Missing Proofs for Low-Memory MPC Result

Proof of Lemma 20. Consider a high-degree vertex u ∈ U at the start of the i-th iteration.
By Lemma 19, each node in U is incident to a node that joins the set M by the end of this
iteration. Since all vertices incident to M are removed from V , the lemma follows. ◀

Proof of Lemma 21. First, consider a vertex v that joins the set M at some iteration j.
Observe that no neighbor of v in G had joined M earlier, otherwise, u would have been
removed. By Lemma 19, all vertices that join M at iteration j have induced degree at most
2O(log f). Then, the neighbors of M are removed from V and, thus, cannot join M anymore.
This proves that vertices in M have degree at most 2O(log f). Second, consider a vertex w

that at the end of the ⌊log f⌋-th iteration is still in V . This means that w does not neighbor
M and that, by Lemma 20, w has degree at most 2O(log f), finishing the claim. ◀

B.1 Coloring of G2

Here, we discuss how to compute a poly(∆) coloring of G2 to fulfill the assumption made in
Lemma 17.

Whenever ∆ = nΩ(1), the initial assignment of IDs to vertices, typically from 1 to n,
effectively serves as a poly(∆) coloring of G2. In the case where ∆ ≤ nδ for constant δ < α/2,
we ensure ∆2 ≪ nα. This implies that the 2-hop neighborhood of every node can be stored
within the local memory of a single machine. Storing the 2-hop neighbors on a single machine
permits the use of Linial’s coloring reduction technique [37], which achieves a O(∆6) coloring
in O(1) rounds. However, this approach necessitates of a global space usage of O(n1+2δ),
potentially exceeding O(n + m). To improve the global space usage, after three runs of
Lemma 17, the degree of each vertex which has not been removed is at most ∆0.22. Since
each sampled vertex is incident to a high-degree vertex of initial degree at least O(∆/f), we
can charge high-degree vertices O(∆0.66)≪ ∆/f space consumption. This reduction allows
us to gather the 2-hop neighbors of all active nodes onto single machines without breaching
the global space limit. A further optimization involves substituting the first three runs of
Lemma 17 with a weaker version, detailed below, addressing all but at most n

∆0.01 vertices.
The proof follows from that of Lemma 17.



J. Giliberti and Z. Parsaeian 29:21

▶ Lemma 22. Let G = (V, E) be a graph with an upper bound ∆ on the maximum degree.
There is a sublinear MPC algorithm that computes in O(1) rounds a subset V ′ ⊆ V ensuring
that, for all but at most n

∆0.01 vertices v ∈ V with degG(v) ≥ log(n) · ∆0.6, it holds that
|NG(v) ∩ V ′| ∈

[
1

3
√

∆
|NG(v)|, 1√

∆
|NG(v)|

]
.

Applying Lemma 22 initially and excluding up to n
∆Ω(1) vertices not meeting our criteria

allows for the execution of O(log log ∆) iterations for the well-behaved vertices. The excluded
vertices are subsequently addressed by repeating the same process. After O(1) iterations,
the remaining vertex count drops to O( n

∆2 ), fitting the global space needed to store their
2-hop neighborhoods within O(n). Consequently, after O(log log ∆) rounds, all vertices are
processed without affecting the asymptotic total number of rounds.

DISC 2024





Granular Synchrony
Neil Giridharan1 #

Unversity of California, Berkeley, CA, USA

Ittai Abraham1 #

Intel Labs, Petah Tikva, Israel

Natacha Crooks #

Unversity of California, Berkeley, CA, USA

Kartik Nayak #

Duke University, Durham, NC, USA

Ling Ren1 #

University of Illinois Urbana-Champaign, IL, USA

Abstract
Today’s mainstream network timing models for distributed computing are synchrony, partial syn-
chrony, and asynchrony. These models are coarse-grained and often make either too strong or too
weak assumptions about the network. This paper introduces a new timing model called granu-
lar synchrony that models the network as a mixture of synchronous, partially synchronous, and
asynchronous communication links. The new model is not only theoretically interesting but also
more representative of real-world networks. It also serves as a unifying framework where current
mainstream models are its special cases. We present necessary and sufficient conditions for solving
crash and Byzantine fault-tolerant consensus in granular synchrony. Interestingly, consensus among
n parties can be achieved against f ≥ n/2 crash faults or f ≥ n/3 Byzantine faults without resorting
to full synchrony.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Timing model, synchrony, asynchrony, consensus, blockchain, fault tolerance

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.30

Funding Ling Ren1: National Science Foundation award #2143058.

1 Introduction

A fundamental aspect of any distributed computation is the timing model. There are three
mainstream timing models: synchrony, asynchrony, and partial synchrony. Under synchrony,
messages arrive before a known upper bound ∆. Under asynchrony, messages arrive in any
finite amount of time. With partial synchrony [16], there is an unknown but finite Global
Stabilization Time (GST), and the network is asynchronous before GST and synchronous
afterwards.

The synchrony model is arguably a rosy reality: even a single message that takes longer
than ∆ to arrive is a violation of the synchrony model (forcing us to consider either the
sender or recipient to be faulty). On the other hand, the asynchrony model is extremely
pessimistic, making it challenging, or even impossible, to design protocols in it. The most
well-known example may be the FLP impossibility [18], which states that any consensus
protocol that can tolerate even a single crash fault in asynchrony must have an infinite
execution. This implies that deterministic consensus in asynchrony is impossible. The partial

1 This work was started while authors were at VMware Research.

© Neil Giridharan, Ittai Abraham, Natacha Crooks, Kartik Nayak, and Ling Ren;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 30; pp. 30:1–30:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giridhn@berkeley.edu
https://orcid.org/0009-0008-2175-2611
mailto:ittai.abraham@intel.com
https://orcid.org/0000-0001-9568-7674
mailto:ncrooks@berkeley.edu
https://orcid.org/0000-0002-3567-801X
mailto:kartik@cs.duke.edu
https://orcid.org/0000-0001-5675-263X
mailto:renling@illinois.edu
https://orcid.org/0000-0003-3437-7570
https://doi.org/10.4230/LIPIcs.DISC.2024.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


30:2 Granular Synchrony

synchrony model tries to balance asynchrony and synchrony and has been the most widely
adopted in practice so far. But it is close to asynchrony in essence and shares the same fault
tolerance bounds as (randomized) asynchronous protocols.

This paper argues that the current characterization of network timings is too coarse-
grained. We recognize the variability and heterogeneity of modern networks and propose
that they should be modeled in a granular manner via a graph consisting of a mixture of
synchronous, partially synchronous, and asynchronous links. We call the new model granular
synchrony.

Our new model is more than yet another theoretical construct. It is rooted in and
motivated by our understanding and characterizations of modern distributed systems and
networks. Modern distributed systems increasingly span datacenters, be it for disaster recovery
or fault isolation [32, 6, 28]. Within datacenters, networks are mostly synchronous [35].
Spikes in message delays do occur [3], but such spikes are rare and almost never happen to
the entire datacenter [21]. Across datacenters and over the Internet, networks are mostly
well-behaved but are susceptible to significant fluctuations [22] and adversarial attacks [14].

The granular synchrony timing model can serve as a unifying framework for network
timing models. Synchrony, partial synchrony, and asynchrony are all extreme cases of it.
Outside these extreme cases, the granular synchrony model is a natural intermediate between
synchrony and partial synchrony (or asynchrony) and gives rise to new results that can be
construed as an intermediate between fundamental results in distributed computing.

For concreteness, we focus on the problem of fault-tolerant consensus [27] in this paper.
It is well-known that under synchrony, the agreement variant of consensus can be solved in
the presence of f < n crash faults or f < n/2 Byzantine faults (assuming digital signatures).
With partial synchrony, fewer faults can be tolerated: f < n/2 crash faults or f < n/3
Byzantine faults [16]. Asynchrony has the same fault thresholds and further requires the use
of randomization [18].

We derive necessary and sufficient conditions for solving crash fault-tolerant (CFT)
and Byzantine fault-tolerant (BFT) consensus in granular synchrony. A key benefit and
interesting implication of the granular synchrony model is that we do not have to assume full
synchrony to tolerate f ≥ n/2 crash faults or f ≥ n/3 Byzantine faults. Instead, consensus
can be reached if and only if the underlying communication graph satisfies certain conditions.

We remark that all our protocols are graph-agnostic, meaning they do not need to
know the synchronicity property of any link. As a result, our protocols can work in the
following alternative formulation of the granular synchrony model. The consensus algorithm
is parameterized by n and f . Initially, all communication links are synchronous. The
adversary has the power to corrupt f nodes and alter some links to be partially synchronous
or asynchronous but must not violate the necessary condition for the given n and f . On the
other hand, most of our impossibility proofs rule out algorithms that know the graph and
are tailored for the graph. This strengthens both our protocols and our impossibility results.

We will consider two variants of the granular synchrony model. The first variant only has
synchronous and partially synchronous links (no asynchronous links), and we refer to it as
granular partial synchrony. CFT consensus in granular partial synchrony can be solved if
and only if any quorum of n− f nodes collectively can communicate synchronously with at
least f + 1 nodes despite faulty nodes. BFT consensus in granular partial synchrony can be
solved if and only if any set of n− 2f correct nodes can communicate synchronously with at
least f + 1 correct nodes despite faulty nodes.

The second variant further allows asynchronous links, and we refer to it as granular
asynchrony. For CFT consensus to be solved deterministically in granular asynchrony, it
is additionally required that after removing all asynchronous edges and all crashed nodes,



N. Giridharan, I. Abraham, N. Crooks, K. Nayak, and L. Ren 30:3

less than n− f nodes are outside the largest connected component of the remaining graph.
For undirected graphs, this condition is weaker than the correct ⋄f -source condition in [4]
(see §B) and establishes the minimum synchrony condition needed to circumvent the FLP
impossibility [18]. For BFT consensus to be solved deterministically in granular asynchrony
by a graph-agnostic algorithm, it is additionally required that there is a correct node with
partially synchronous paths to at least f other correct nodes. The necessary and sufficient
condition for algorithms that know the graph is still open.

2 Model and Definitions

We assume communication links are bi-directional. In granular partial synchrony, each link
can be either synchronous or partially synchronous. In granular asynchrony, each link can
be synchronous, partially synchronous, or asynchronous. A synchronous link delivers each
message sent on the link within a known upper bound ∆. A partially synchronous link
respects the ∆ message delivery bound after GST. An asynchronous link has no delay bound
and just has to deliver each message eventually. We assume all communication links are
reliable and FIFO (first-in-first-out), and deliver each transmitted message exactly once.

Beyond this, the model is the same as traditional consensus literature. There are n nodes
in total. The adversary can corrupt up to f nodes and can do so at any time during the
protocol execution (i.e., the adversary is adaptive). In the CFT case, faulty nodes can fail by
crashing only. In the BFT case, faulty nodes can behave arbitrarily and can be coordinated by
the adversary. For BFT, we further assume the existence of digital signatures and public-key
infrastructure (PKI) and that faulty nodes cannot break cryptographic primitives. A message
is only considered valid by correct nodes if its accompanying signature is verified (we omit
writing these signature operations in the protocols).

Our protocols do not require any form of clock synchronization among nodes, and instead
just require bounded clock skews. To elaborate, certain steps of our protocols require nodes
to wait for some amount of time (e.g., 4∆). For simplicity, our protocol description assumes
each node will wait for precisely that amount of time. But it is not hard to see that our
protocols still work if each node waits for a time that falls in a known bounded range (e.g.,
between 4∆ and 5∆), which is easy to achieve with bounded clock skews.

It is convenient to describe the network as an undirected graph G = (V, E). Each vertex
represents a node, and each edge represents a communication link. We use vertex and node
interchangeably, and edge and link interchangeably. Our protocols are graph agnostic: they
do not assume knowledge of the graph.

▶ Definition 1 (Synchronous path). Node a has a synchronous path to node b, written as
a→ b, if there exist a sequence of synchronous edges (a, i1), (i1, i2), , . . . , (ik, b) where every
intermediate node ij is correct.

Note that in the above definition, only intermediate nodes need to be correct. Therefore,
every node, even a faulty one, has a synchronous path to itself, i.e., a → a, ∀a ∈ V . We
generalize the notion of synchronous paths from two nodes to two sets of nodes A and B.

▶ Definition 2. A→ B if ∀b ∈ B, ∃a ∈ A such that a→ b.

▶ Definition 3 (Path length, distance and diameter). The length of a path is the number of
edges in it. If a→ b, the synchronous distance between these two nodes is the length of the
shortest synchronous path between them. The synchronous diameter of a graph G is

d(G) := max
F,a,b s.t. |F |≤f, a→b

d(a, b).

DISC 2024



30:4 Granular Synchrony

Partially synchronous path, path length, distance, and diameter d′(G) are similarly
defined. Note that a partially synchronous path can contain synchronous edges.

The (partially) synchronous distance is only defined for a pair of nodes that have a
(partially) synchronous path between them. We also remark that for the Byzantine case,
distance is only defined for a pair of correct nodes. The max in the diameter definition is
taken over all pairs with the corresponding distance defined. The two diameters capture
the worst-case round-trip delays among nodes connected by synchronous and partially
synchronous paths, respectively. If d(G) or d′(G) is known, they can be directly used in our
protocols; otherwise, |V | − 1 is a trivial upper bound. We will simply write d and d′ when
there is no ambiguity.

▶ Definition 4 (Consensus). In a consensus protocol, every node has an initial input value
and must decide a value that satisfies the following properties.

Agreement: No two correct nodes decide different values.2

Termination: Every correct node eventually decides.
Validity: If all nodes have the same input value, then that is the decision value.

3 CFT Consensus in Granular Partial Synchrony

▶ Theorem 5. Under granular partial synchrony, CFT consensus on a graph G = (V, E) is
solvable if and only if, regardless of which up to f nodes are faulty, ∀A ⊆ V with |A| ≥ n− f ,
∃B ⊆ V with |B| ≥ f + 1 such that A→ B.

In words, the condition is that any set A of size at least n− f has a potentially larger set
B of size at least f + 1, such that for any node b ∈ B there exits a ∈ A and a synchronous
path from a to b. Intuitively, if a message arrives at all of A, then it will arrive at all of B

after some delay.
It is worth noting that classic crash fault tolerance bounds are special cases of our theorem.

For example, when all links are synchronous, any node has synchronous paths to all n nodes.
Thus, synchronous CFT consensus can be solved for any n ≥ f + 1. At the other extreme,
n = 2f +1 is the smallest value of n for which the condition in Theorem 5 trivially holds even
when all edges are partially synchronous (see necessity proof). The more interesting part
of our theorem is of course when we have a mix of synchronous and partially synchronous
edges. Figure 1 gives examples of these intermediate cases where CFT consensus is solvable
with f + 1 < n ≤ 2f .

3.1 Necessity
We first prove the “only if” part of Theorem 5. The proof is similar to the DLS proof in
partial synchrony [16]. To ensure agreement, we must ensure that nodes cannot be partitioned
into two disjoint groups with no synchronous inter-group links. The condition in Theorem 5
ensures exactly that.

Proof. For n ≥ 2f + 1, the “only if” part of the theorem is vacuous because the condition
trivially holds: n− f ≥ f + 1, and every node has a synchronous path to itself.

For n ≤ 2f , we prove by contradiction. Suppose there is an algorithm that solves
consensus on a graph G that does not satisfy the condition in the theorem. Then, there
exists a set F of up to f nodes such that, if nodes in F crash, there exists a set A of at least

2 For CFT consensus, we actually achieve the stronger property of uniform agreement, which states that
no two nodes (even faulty ones) decide differently.



N. Giridharan, I. Abraham, N. Crooks, K. Nayak, and L. Ren 30:5

(a) (b) (c)

Figure 1 Only synchronous links are shown in the figure for brevity. Faulty nodes are denoted
in red with horns, and the correct nodes are denoted in gray. The figure shows the necessary and
sufficient condition in theorem 5 being satisfied for (a) n = 4, f = 2, (b) n = 5, f = 3, and (c)
n = 6, f = 3.

n− f nodes, which collectively have synchronous paths to at most f nodes. Let B be the set
of these f nodes excluding A. Let C be the remaining nodes, i.e., C = [n] \ {A ∪B}. Note
that {A, B, C} is a three-way disjoint partition of the n nodes. Also note that |A ∪B| ≤ f

and |B ∪ C| = n− |A| ≤ f . Next, we consider three executions.
In execution 1, all nodes have input v1 and nodes in B ∪C crash at the beginning. Since

|B ∪C| ≤ f , A eventually decides v1 in time t1 due to validity. In execution 2, all nodes have
input v2 ̸= v1 and nodes in A ∪B crash at the beginning. Since |A ∪B| ≤ f , C eventually
decides v2 in time t2 due to validity.

In execution 3, nodes in A have input v1, nodes in C have input v2, nodes in B crash
at the beginning, and GST > max(t1, t2). Note that crashing B (instead of F ) does not
change the fact that A has synchronous paths to A∪B only. This is because, with B crashed,
nodes in F \B do not have synchronous paths to A themselves (otherwise, they would have
synchronous paths to A with F crashed). Thus, synchronous paths from A to C cannot go
through F \ B. Because there are no synchronous edges between A and C, the adversary
can delay the delivery of all messages between A and C until after GST. Thus, A cannot
distinguish execution 3 from execution 1 and C cannot distinguish execution 3 from execution
2. Then, A decides v1 and C decides v2, violating agreement. ◀

3.2 Protocol
Next, we present a new CFT consensus protocol assuming the condition in theorem 5 holds.
This establishes the sufficiency of the condition.

Overview. A natural starting point is a standard quorum-based partially synchronous CFT
consensus protocol. Such protocols require n > 2f to ensure any two quorums of size n− f

intersect. When n ≤ 2f , two quorums of n− f may not intersect. But when the condition
in theorem 5 holds, a quorum of n − f nodes can hear from f + 1 nodes of any critical
information in bounded time. This effectively promotes a quorum of size n− f to f + 1 and
ensures safety as a quorum of size f + 1 always intersects a quorum of size n− f .

Similar to other leader-based partially synchronous consensus protocols, our protocol
operates in a series of views, where each view has a leader. The leader of view v is denoted
as Lv. Leaders can be elected using a simple round-robin order. If a view after GST has
a correct leader, nodes will commit that leader’s proposal and terminate. There is a view
change procedure to replace a leader who is not making progress. We focus on a single-shot
consensus here, but the protocol can be easily adapted to the multi-shot setting.

DISC 2024



30:6 Granular Synchrony

Algorithm 1 CFT consensus protocol in granular partial synchrony for node i.

1: vi ← 0 ▷ Initialize local view number
2: lock ← (0, inputi) ▷ Initially lock on the input value
3: enter view 1

4: upon entering view v do
5: vi ← v

6: start view_timer ← timer(4∆) ▷ Timer for changing view
7: send ⟨Status, v, lock⟩ to Lv

8: upon receiving n− f ⟨Status, vi,−⟩ and i = Lvi do
9: val← value from the highest lock (by view) received

10: send ⟨Propose, vi, val⟩ to all ▷ Leader proposal

11: upon receiving ⟨Propose, vi, val⟩ do
12: lock ← (vi, val)
13: send ⟨Vote, vi, val⟩ to all

14: upon receiving n− f ⟨Vote, vi, val⟩ or ⟨Commit, val⟩ do
15: send ⟨Commit, val⟩ to all
16: commit val and terminate

17: upon view_timer expiring do
18: send ⟨NewView, vi + 1⟩ to all

19: upon receiving ⟨NewView, v⟩ where v > vi do
20: echo ⟨NewView, v⟩ and to all
21: send ⟨Locked, lock⟩ to all
22: stop accepting Propose messages in views up to v − 1
23: wait 2d∆ time
24: enter view v

25: upon receiving ⟨Locked, lock′⟩ do
26: lock ← higher lock (by view) between lock and lock′

27: echo ⟨Locked, lock′⟩ to all

Locks. A lock := (view, value) consists of a view and value. Initially, each node locks on
its input value with view number 0. When a node receives a proposal from the leader of
the current view, it updates its lock to the current view and the proposed value. Locks are
ranked by view numbers. Note that except for the initial view 0, there cannot be two locks
with the same view number but different values, since only one value is proposed per view.
Locks from view 0 can be ranked arbitrarily.

We describe the protocol next.

Status step. Each view begins with every node sending a Status message to the leader of
the current view. A node also starts a timer for the view.

Leader proposal step. When Lv is in view v and receives n− f ⟨Status, v,−⟩ messages,
it proposes the highest locked value among those. Note that Lv only sends one Propose
message in a view. When a node is in view v and receives a ⟨Propose, v, val⟩ message, it
updates its lock to (v, val) and sends a ⟨Vote, v, val⟩ message to all nodes.



N. Giridharan, I. Abraham, N. Crooks, K. Nayak, and L. Ren 30:7

Commit step. When a node receives a quorum of n− f ⟨Vote, v, val⟩ messages or a single
⟨Commit, val⟩ message, it commits val, sends a ⟨Commit, val⟩ message to all nodes, and
terminates.

View change step. When a node times out in a view v without committing a value, it
sends ⟨NewView, v + 1⟩ to all nodes, asking them to move to the next view. Upon receiving
⟨NewView, v⟩ for a higher view v, a node echoes ⟨NewView, v⟩ and its own lock to all
nodes, waits for 2d∆ time, and then enters view v. During this waiting period, the node will
not send Vote for its current view but will listen for Locked messages to update its lock
and also echo locks. The 2d∆ time accounts for the worst-case round-trip delay to send a
NewView message and receive the Locked message.

3.3 Analysis
▶ Lemma 6. If some node commits val in view v, then any ⟨Propose, v′, val′⟩ message in
view v′ ≥ v must have val′ = val.

Proof. We prove this lemma by induction on view v′. The base case of v′ = v is straightfor-
ward since each leader proposes only one value, so val′ = val.

For the inductive step, suppose the lemma holds up to view v′ − 1, and we consider view
v′. Suppose for the sake of contradiction that some node commits val in view v, and there
is a ⟨Propose, v′, val′⟩ message from Lv′ for val′ ̸= val. Lv′ must have received ⟨Status,
v′,−⟩ messages from a set P of n− f nodes. By the condition in theorem 5, P → Q, where
Q is a set of f + 1 nodes. Since a node committed val in view v, there must exist a set R of
n− f nodes that sent ⟨Vote, v, val⟩ messages and updated lock := (v, val) in view v. Sets
Q and R intersect in at least one node. Let this node be q.

Since the graph is undirected, there must exist a node p ∈ P such that q → p. By the
induction hypothesis, Propose messages from view v to v′− 1 must be for val. Since a node
only updates its lock monotonically based on view numbers, node q must have a lock with
view ≥ v for val. Let tp be the time node p echoed ⟨NewView, v′⟩. By time tp + d∆, node
q receives ⟨NewView, v′⟩. Upon receiving ⟨NewView, v′⟩, node q sends a ⟨Locked, lock⟩
message to all nodes. This lock is received by node p by time tp + 2d∆. Node p updates
its lock to view ≥ v for val before entering view v′. Thus, Lv receives at least one Status
message for val with view ≥ v and propose val, a contradiction. ◀

▶ Theorem 7 (Agreement). No two nodes commit different values.

Proof. Let v be the smallest view in which a node commits some value, say val. Since only
val can be proposed in view v and all subsequent views by lemma 6, no node can commit a
different value. ◀

▶ Theorem 8 (Termination). All correct nodes eventually decide.

Proof. With round-robin leader election, correct nodes are elected leaders infinitely often.
Thus, there must be a view v, after GST + 2d∆, whose leader is correct. We next prove that
all nodes will decide and terminate in view v (if they don’t decide earlier).

Let t (t ≥ GST + 2d∆) be the first time some correct node enters view v. This correct
node sends ⟨NewView, v⟩ to all nodes at t − 2d∆ ≥ GST . All correct nodes receive
⟨NewView, v⟩ by time t− 2d∆ + ∆, wait 2d∆ themselves, and enter view v by time t + ∆.
Upon entering view v, they send ⟨Status, v,−⟩ messages to Lv. Lv receives n− f ⟨Status,
v,−⟩ messages by time t+2∆, and sends a ⟨Propose, v,−⟩ message to all nodes. All correct

DISC 2024



30:8 Granular Synchrony

nodes receive the ⟨Propose, v,−⟩ message and send ⟨Vote, v,−⟩ messages by time t + 3∆.
All correct nodes receive n− f ⟨Vote, v,−⟩ messages and commit by time t + 4∆. Since a
node’s view timer is 4∆, all correct nodes commit and terminate in view v. ◀

▶ Theorem 9 (Validity). If all nodes have the same input val, then all correct nodes eventually
decide val.

Proof. If all nodes have the same input val, all nodes set lock ← (0, val). Following a similar
proof as in lemma 6, no other value can be proposed in all subsequent views. Validity follows
from termination. ◀

4 CFT Consensus in Granular Asynchrony

▶ Theorem 10. Under granular asynchrony, CFT consensus on a graph G = (V, E) can
be solved deterministically if and only if, (i) the condition in theorem 5 holds and (ii) for
all F with |F | ≤ f , less than n − f nodes are outside the largest connected component of
G′ = (V − F, ⋄E) where ⋄E is the set of synchronous and partially synchronous edges.

In other words, condition (ii) says that if we remove all asynchronous edges and all faulty
nodes from G and further remove the largest connected component in the remaining graph,
then there are fewer than n− f nodes left.

4.1 Necessity
Proof. Condition (i) is already proved to be necessary in theorem 5. We focus on condition (ii).
Suppose for the sake of contradiction there exists a deterministic algorithm A that solves
CFT consensus on a graph G that violates condition (ii). This means there exists a set F

with |F | ≤ f such that removing the largest connected component from G′ = (V − F, ⋄E)
(G with F and all asynchronous edges removed) leaves ≥ n− f nodes.

Suppose the graph G′ has q connected components. Clearly, q > 1. Let Ci be i-th
connected component in G′. We have |F ∪Ci| ≤ f for all i because even the largest connected
component plus F has at most f nodes.

We construct an external system consisting of q nodes connected only by asynchronous
links. We can convert A into a deterministic algorithm that solves consensus in this external
system while tolerating one crash fault. To do so, let the i-th node in the external system,
qi, simulate the nodes in Ci in A. If qi has input vi, then all nodes in Ci have input vi in
the simulation.

An execution in this external system with qi crashing at time t faithfully simulates an
execution of A with F crashing in the beginning and Ci crashing at time t. In particular,
observe that two connected components in G′ only have asynchronous edges between them
once nodes in F crash. Since |F ∪Ci| ≤ f for all i, A solves consensus in the original system.
Thus, the simulated algorithm solves consensus deterministically in the external system while
tolerating one crash fault in asynchrony. This contradicts the FLP impossibility [18]. ◀

4.2 Protocol
Next, we adapt our previous CFT consensus protocol in algorithm 1 from granular partial
synchrony to granular asynchrony, assuming the condition in theorem 10 holds. This
establishes the sufficiency of the condition.

Our prior CFT consensus protocol still maintains safety under granular asynchrony,
but liveness no longer holds because there is no time when all edges behave synchronously
(asynchronous links do not have a GST assumption). As a result, correct leaders in our prior



N. Giridharan, I. Abraham, N. Crooks, K. Nayak, and L. Ren 30:9

Algorithm 2 CFT consensus protocol in granular asynchrony for node i.

1: vi ← 0 ▷ Initialize local view number
2: lock ← (0, inputi) ▷ Initially lock on the input value
3: enter view 1

4: upon entering view v do
5: vi ← v

6: send ⟨Status, v, lock⟩ to all

7: upon receiving n− f ⟨Status, vi,−⟩ where i ̸= Lvi
do

8: echo these n− f ⟨Status, vi,−⟩ to all
9: start proposal_timer ← timer(3d′∆)

10: upon receiving ⟨Propose, vi, val⟩ do
11: lock ← (vi, val)
12: echo ⟨Propose, vi, val⟩ to all
13: send ⟨Vote, vi, val⟩ to all

14: upon proposal_timer expiring and no leader proposal received do
15: send ⟨ViewChange, vi⟩ to all

16: upon receiving n− f ⟨ViewChange, v⟩ do
17: send ⟨NewView, v + 1⟩ to all

18: Vote, Commit, Locked, NewView messages at all nodes and Status messages at
view leaders are processed the same way as in Algorithm 1

protocol may continuously time out. Luckily, condition (ii) in theorem 10 can be leveraged
to guarantee that when the set F of crashed nodes stops growing, and a correct node in the
largest connected component of G′ = (V − F, ⋄E) is elected leader after GST, this leader
will not be replaced and will make progress. To do so, we first require n− f nodes to initiate
a view change. This way, because all nodes in F are crashed and fewer than n− f nodes are
outside the largest connected component of G′ = (V − F, ⋄E), we just need to make sure
that no node in this largest connected component initiates a view change. This technique
is similar to those used in view synchronizes [11, 10] to make sure correct nodes eventually
overlap and remain in the same view to ensure termination.

We only describe the status and view change steps since the rest of the protocol remains
the same as algorithm 1.

Status and propose step. Upon entering a new view v, a node sends a ⟨Status, v, lock⟩
message to all nodes. When a node receives at least n − f ⟨Status, v,−⟩ messages, it
forwards this set of Status messages to all nodes and starts a timer of 3d′∆ duration. Upon
receiving a proposal, a node forwards the proposal to all nodes, in addition to locking on
and voting for the proposal. The same vote and commit steps from algorithm 1 follow.

View change. A node suspects the leader is faulty if it does not receive a ⟨Propose,
v,−⟩ message before its timer expires. When this occurs, a node sends a ⟨ViewChange,
v⟩ message to all nodes, indicating it wishes to quit view v. When a node receives n − f

⟨ViewChange, v⟩ messages for the current view v, it sends a ⟨NewView, v + 1⟩ message
to all nodes. Upon receiving a NewView message, a node carries out the same new view
step from algorithm 1.

DISC 2024



30:10 Granular Synchrony

4.3 Analysis

The agreement and validity proofs are identical to the granular partial synchrony CFT case.
We focus on termination.

▶ Lemma 11. If no correct node ever terminates, then every correct node keeps entering
higher views.

Proof. Suppose for the sake of contradiction, there exists a correct node n1, which never
enters a higher view. Let v be the view n1 is in. If any correct node ever enters a view higher
than v, it sends a NewView message for that higher view to all nodes. n1 will eventually
receive this higher NewView message and enter a higher view, a contradiction. Thus, no
node ever enters a view higher than v. Before entering view v, n1 has sent ⟨NewView, v⟩ to
all nodes. All correct nodes will eventually receive this ⟨NewView, v⟩ message, enter view v,
and send ⟨Status, v,−⟩ messages. Eventually, correct nodes will receive n−f ⟨Status, v,−⟩
messages and start their proposal timers. If n1 receives n− f ⟨ViewChange, v⟩ messages,
it will enter view v + 1, a contradiction. Thus n1 never receives n− f ⟨ViewChange, v⟩
messages. Then, there must be at least one correct node that never sends ⟨ViewChange, v⟩
and instead echoes ⟨Propose, v,−⟩ to all nodes. Eventually, all correct nodes will receive
⟨Propose, v,−⟩ message and send ⟨Vote, v,−⟩ messages to all nodes. Eventually n1 will
receive n− f ⟨Vote, v,−⟩ messages and terminate, a contradiction. ◀

▶ Theorem 12. All correct nodes eventually terminate.

Proof. Suppose for the sake of contradiction that some correct node never terminates.
Observe that if one correct node terminates, it sends a Commit message and makes all
correct nodes eventually terminate. Thus, no correct node ever terminates. By lemma 11,
every correct node keeps entering higher views.

Eventually, there will be a first time after GST + 2d∆ that some correct node enters a
view v such that (i) the set F of crashed nodes no longer grows in views ≥ v, (ii) Lv ̸∈ F ,
and (iii) Lv is in the largest connected component G′ = (V − F, ⋄E). Let C denote this
largest connected component. We next prove no node in C will ever send ⟨ViewChange, v⟩.

Let p be the first node in C that enters view v, and let p enter view v at time t > GST +2d∆.
Observe that no node in C will send ⟨ViewChange, v⟩ before time t + 3d′∆ (proposal timer
duration is 3d′∆). Nodes in F crashed before entering view v and cannot send ⟨ViewChange,
v⟩. Due to the condition in theorem 10, n− |C ∪ F | < n− f . Thus, there will not be n− f

⟨ViewChange, v⟩ messages before t + 3d′∆.
p sends ⟨NewView, v⟩ at time t− 2d∆ > GST . All nodes in C receive ⟨NewView, v⟩

by t− 2d∆ + d′∆, enter view v by t + d′∆, and stay in view v at least until t + 3d′∆.
When a node q ∈ C receives n − f ⟨Status, v,−⟩ messages at time t′ > t, q echoes

these n − f messages and starts its proposal timer. All nodes in C enter view v by time
t + d′∆ and are ready to echo these ⟨Status, v,−⟩ messages. (Recall that d′ is the partially
synchronous diameter of the graph.) Lv, which is in C, receives these n− f ⟨Status, v,−⟩
messages by time max(t + 2d′∆, t′ + d′∆) < t′ + 2d′∆. Lv sends a ⟨Propose, v,−⟩ message
by time t′ + 2d′∆ and it reaches q by time t′ + 3d′∆, which is before q’s proposal timer
expires. Thus, q does not send ⟨ViewChange, v⟩. This establishes that no node in C

will ever send ⟨ViewChange, v⟩. Again, nodes in F never send ⟨ViewChange, v⟩. Since
n− |C ∪F | < n− f , there will never be n− f ⟨ViewChange, v⟩ messages. Thus, no correct
node ever enters a view higher than v. This contradicts lemma 11. ◀



N. Giridharan, I. Abraham, N. Crooks, K. Nayak, and L. Ren 30:11

5 BFT Consensus in Granular Partial Synchrony

▶ Theorem 13. Under granular partial synchrony, BFT consensus with n ≥ 2f + 1 on a
graph G is solvable if and only if, for any set F of at most f faulty nodes, ∀A ⊆ V − F with
|A| ≥ n− 2f , ∃B ⊆ V − F with |B| ≥ f + 1 such that A→ B.

In words, the condition is that any honest set A of size at least n− 2f has a potentially
larger honest set B of size at least f + 1, such that for any node b ∈ B there exits a ∈ A and
a synchronous path from a to b. Intuitively, if a message arrives at all of A, then it will also
arrive at all of B after some delay.

Note that in BFT consensus, it never hurts the adversary to corrupt the maximum
number of nodes allowed since Byzantine nodes can actively participate. This is why we can
focus on the case of |F | = f (as opposed to |F | ≤ f).

Observe that the classic Byzantine fault tolerance bounds are special cases of our theorem.
For example, when n = 2f + 1 and all links are synchronous, any n− 2f = 1 correct node has
synchronous paths to all n− f = f + 1 correct nodes, so consensus is solvable. At the other
extreme, n = 3f + 1 is the smallest value of n for which the condition in theorem 13 trivially
holds even when all edges are partially synchronous (see necessity proof). And again, we will
focus on the more interesting region of 2f + 1 < n ≤ 3f .

5.1 Necessary
The proof is again very similar to DLS [16]. The essence of the condition (and the proof)
is to prevent a “split-brain” attack in which two groups of n − 2f correct nodes cannot
communicate in time and separately make progress with f Byzantine nodes.

Proof of Theorem 13 necessity part. For n ≥ 3f + 1, the theorem is vacuous because the
condition trivially holds: any set of n− 2f ≥ f + 1 correct nodes have synchronous paths to
at least f + 1 correct nodes (i.e., themselves).

For n ≤ 3f , we prove by contradiction. Suppose there is an algorithm that solves consensus
on a graph G that does not satisfy the condition in the theorem. Then, there exists a set F of
f nodes such that, if nodes in F are faulty, a set A of n− 2f correct nodes collectively have
synchronous paths to at most f correct nodes. Let B be the set of these f nodes excluding
A. Let C be the remaining nodes, i.e., C = [n] \ {F ∪ A ∪ B}. Note that {A, B, F, C} is
a four-way disjoint partition of the n nodes. Also note that n − 2f = |A| ≤ |A ∪ B| ≤ f ,
|F | = f , and |C| = n− |F ∪A ∪B| ≤ f .

Next, we consider three executions. In execution 1, all nodes have input v1, and nodes in
C are Byzantine. Since |C| ≤ f , A ∪ B eventually decide v1 in time t1 due to validity. In
execution 2, all nodes have input v2, and nodes in A ∪B are Byzantine. Since |A ∪B| ≤ f ,
C eventually decide v2 in time t2 due to validity.

In execution 3, nodes in A ∪B have input v1, nodes in C have input v2, nodes in F are
Byzantine, and GST > max(t1, t2). F will behave towards A ∪ B like in execution 1 and
towards C like in execution 2. Because there is no synchronous link between A ∪B and C,
A ∪B cannot distinguish execution 3 from execution 1 and C cannot distinguish execution 3
from execution 2. Thus, A ∪B decides v1 and C decides v2, violating agreement. ◀

5.2 Protocol
Next, we give a new BFT consensus protocol assuming the condition in theorem 13 holds.
The protocol we present here achieves external validity [12]. In appendix C, we show how
to extend it to achieve the strong unanimity validity in definition 4. This establishes the
sufficiency of the condition.

DISC 2024



30:12 Granular Synchrony

Like in the CFT case, we will start from a standard leader-based partially synchronous
BFT protocol and then take advantage of our graph condition to upgrade a quorum of n−2f

correct nodes to f + 1 correct nodes.
A lock is a set L of n− f signed matching ⟨Vote-1, view, val⟩ messages from distinct

nodes. Locks are ranked by their view numbers. We describe the protocol next.

Status step. Each view begins with every node sending a Status message to the leader of
the current view. A node also starts a timer for the view.

Leader proposal step. When the leader of view v, Lv, receives a set S of n− f ⟨Status,
v,−⟩ messages from distinct nodes, it picks the highest-ranked lock among those. If no lock is
reported, then the leader can safely propose its own input value, vali. Otherwise, the leader
must propose the value in the highest-ranked lock. The leader sends ⟨Propose, v, val, S⟩ to
all nodes. Note that a correct leader only sends one Propose message in a view.

Equivocation check step. When a node receives ⟨Propose, v, val, S⟩, it checks whether
val is the highest-ranked locked value from the set S. If so, it forwards the Propose message
to all nodes and starts a timer for d∆ to listen for conflicting Propose messages in the same
view. If it receives a conflicting Propose message, it detects the leader is faulty, forwards
the equivocation to all nodes, and sends a ViewChange message for the current view. If the
timer expires and no conflicting Propose message is received, the node will send a ⟨Vote-1,
v, val⟩ message to all nodes indicating its support for the leader’s proposal.

Locking step. When a node receives n − f ⟨Vote-1, v, val⟩ messages, it forms a lock
certificate L for val in view v. The node updates its lock := L and sends a ⟨Vote-2, v, val⟩
message to all nodes. The equivocation check guarantees the uniqueness of the locked value
in each view.

Commit step. Upon receiving C ← n − f ⟨Vote-2, v, val⟩ messages, a node sends a
⟨Commit, C⟩ message. Upon receiving a ⟨Commit, C⟩ message, it commits and terminates.

View Change. A node sends ⟨ViewChange, v⟩ if it detects equivocation or times out in
view v. Upon receiving f +1 ViewChange messages, a node stops sending Vote-1/Vote-2
messages in view v and sends its lock to all nodes. A node cannot immediately enter the
next view but instead must wait 2d∆ time before doing so. This is to give enough time for
locks to propagate in the network.

5.3 Analysis
External validity is easily ensured if all correct nodes validate the proposed value before
voting for it. In appendix C, we show how to achieve the strong unanimity validity in
definition 4. We now focus on agreement and termination.

▶ Lemma 14. If there exist n− f ⟨Vote-1, v, val⟩ messages and n− f ⟨Vote-1, v, val′⟩
messages in the same view v, then val = val′.

Proof. Suppose for the sake of contradiction there exist a set S of n− f ⟨Vote-1, v, val⟩
messages and a set S′ of n− f ⟨Vote-1, v, val′⟩ messages where val ̸= val′.



N. Giridharan, I. Abraham, N. Crooks, K. Nayak, and L. Ren 30:13

Algorithm 3 BFT consensus protocol in granular partial synchrony for node i.

1: vi ← 0, lock ← ⊥ ▷ Initialize local view number and lock
2: enter view 1

3: upon entering view v do
4: vi ← v

5: start view_timer ← timer((5 + d)∆) ▷ Timer for changing view
6: send ⟨Status, v, lock⟩ to Lv

7: upon receiving S ← n− f ⟨Status, vi,−⟩ do
8: val← value in the highest lock in S, or inputi if all locks in S are ⊥
9: send ⟨Propose, vi, val, S⟩ to all

10: upon receiving ⟨Propose, vi, val, S⟩ from Lvi
do

11: if val matches the highest locked value in S or all locks in S are ⊥ then
12: echo ⟨Propose, vi, val, S⟩ to all
13: start vote_timer ← timer(d∆) ▷ To detect equivocation

14: upon vote_timer expiring and no equivocation detected do
15: send ⟨Vote-1, vi, val⟩ to all

16: upon receiving L← n− f ⟨Vote-1, vi, val⟩ do
17: lock ← L

18: send ⟨Vote-2, vi, val⟩ to all

19: upon receiving C ← n− f ⟨Vote-2, vi, val⟩ or one ⟨Commit, C⟩ do
20: send ⟨Commit, C⟩ to all
21: commit val and terminate

22: upon receiving ⟨Propose, vi, val,−⟩ and ⟨Propose, vi, val′,−⟩ where val′ ̸= val do
23: echo ⟨Propose, vi, val,−⟩ and ⟨Propose, vi, val′,−⟩ to all
24: send ⟨ViewChange, vi⟩ to all

25: upon view_timer expiring do
26: send ⟨ViewChange, vi⟩ to all

27: upon receiving V C ← f + 1 ⟨ViewChange, v⟩ where v > vi do
28: stop sending Vote-1/Vote-2 messages for views up to v

29: echo V C to all
30: echo ⟨Locked, lock⟩ to all
31: wait 2d∆
32: enter view v + 1

33: upon receiving ⟨Locked, lock′⟩ do
34: lock ← higher lock between lock and lock′

35: echo ⟨Locked, lock′⟩ to all

DISC 2024



30:14 Granular Synchrony

Of the n− f nodes whose Vote-1 messages are in S, at least a set P of n− 2f must be
correct. By the condition in theorem 13, P → H where H is a set of f + 1 correct nodes.
Due to quorum intersection, S′ ∩H must contain at least one node, which is correct. Let c′

be this node. Since the graph is undirected, there exists c ∈ S such that c′ → c.
Let t be the time c′ starts its vote timer. At time t, c′ also forwards the ⟨Propose,

v, val′,−⟩ message to all nodes. By time t + d∆, c receives this message. Thus, c must
have sent ⟨Vote-1, v, val⟩ before time t + d∆. Otherwise, c would have detected leader
equivocation and would not have voted. Then, c must have forwarded ⟨Propose, v, val,−⟩
to all nodes before time t. c′ receives this ⟨Propose, v, val,−⟩ message before time t + d∆,
which is before its vote timer expires. Thus, c′ detects leader equivocation and would not
have voted. This contradicts c′ ∈ S′. ◀

▶ Lemma 15. If some node commits val in view v, then any set of n− f ⟨Vote-1, v′, val′⟩
messages (lock certificate) in view v′ ≥ v must have val′ = val.

Proof. We prove this lemma by induction on view v′. The base case of v′ = v is straight-
forward by lemma 14. For the inductive step, suppose the lemma holds up to view v′ − 1,
and now we consider view v′. Suppose for the sake of contradiction that some node commits
val in view v, and there exist n − f > f nodes that send ⟨Vote-1, v′, val′⟩ messages for
val′ ̸= val. A correct node will only send ⟨Vote-1, v′, val′⟩ if a proposal carries in view v′

a set S of ⟨Status, v′,−⟩ messages. Thus, there exists a subset H ⊆ S of n − 2f correct
nodes which sent ⟨Status, v′,−⟩. By the condition in theorem 13, H → Q, where Q is a set
of f + 1 correct nodes.

Since a node committed val in view v, there must exist some set n− f nodes that sent
⟨Vote-2, v, val⟩, of which a set R of at least n− 2f are correct. Before sending ⟨Vote-2,
v, val⟩ messages, these correct nodes updated lock := (v, val) in view v. Sets Q and R

intersect in at least one correct node. Let this node be q. Since the graph is undirected
and H → Q, there must exist a node h ∈ H such that q → h. By the induction hypothesis,
any lock certificate from view v to v′ − 1 must be for val. Since a node only updates its
lock monotonically based on view numbers, node q must have a lock with view ≥ v for val.
Let th be the time node h echoed f + 1 ⟨ViewChange, v′⟩ messages. By time th + d∆,
node q must have received f + 1 ⟨ViewChange, v′⟩ messages. Node q will then echo a
⟨Locked, lock⟩ message to all nodes. This will be received by node h by time th + 2d∆.
Node h will update its lock to be at least view v for val. Thus, from nodes in H , Lv′ receives
at least one Status message for val with view ≥ v. By the induction assumption, any lock
certificate not for val must have view < v. Thus, no correct node sends ⟨Vote-1, v′, val′⟩, a
contradiction. ◀

▶ Theorem 16 (Agreement). No two correct nodes commit different values.

Proof. Let v be the smallest view in which a correct node commits some value, say val. By
lemma 15, only val can receive n− f ⟨Vote-1, v⟩ messages in any view v′ ≥ v, so no other
value can be committed by a correct node. ◀

▶ Theorem 17 (Termination). All correct nodes eventually decide.

Proof. With round-robin leader election, correct nodes are elected leaders infinitely often.
Thus, there must be a view v, after GST + 2d∆, whose leader is correct. We next prove that
all nodes will decide and terminate in view v (if they don’t decide earlier).

Let t (t ≥ GST + 2d∆) be the first time some correct node enters view v. This correct
node echoes f + 1 ⟨ViewChange, v − 1⟩ messages to all nodes at t − 2d∆ ≥ GST . All
correct nodes will receive the new view certificate by time t− 2d∆ + ∆, wait 2d∆ themselves,



N. Giridharan, I. Abraham, N. Crooks, K. Nayak, and L. Ren 30:15

and enter view v by time t + ∆. Upon entering view v, they send ⟨Status, v,−⟩ messages to
Lv. Lv receives n− f ⟨Status, v,−⟩ messages by time t + 2∆, and send a ⟨Propose, v,−⟩
message to all nodes. All correct nodes will receive the ⟨Propose, v,−⟩ message by time
t + 3∆ and start their vote timers. Since Lv is correct and does not equivocate, all correct
nodes will send a ⟨Vote-1, v,−⟩ message by time t + (3 + d)∆. All correct nodes will receive
n− f ⟨Vote-1, v,−⟩ messages by time t + (4 + d)∆, and send a ⟨Vote-2, v,−⟩ message. All
correct nodes will receive n− f ⟨Vote-2, v,−⟩ messages and commit by time t + (5 + d)∆).
Since a node’s view timer is (5 + d)∆, and changing views requires f + 1 ⟨ViewChange, v⟩
messages, all correct nodes will remain in view v, commit and terminate in view v. ◀

6 Related Work

Necessary and sufficient conditions to solve consensus in all three classic timing models have
been long established [27, 17, 15, 18, 9, 16]. There is also a large body of work on CFT
and BFT consensus protocols in all three timing models. Our protocols adopt standard
techniques from previous protocols such as quorum intersection [26, 29, 13], synchronous
equivocation detection [23, 1, 2], and view synchronizers [11, 10].

Weaker models than synchrony have been suggested in the literature. Some of these are
orthogonal to the timing model. A line of work studies consensus on incomplete communica-
tion graphs [34, 24, 25]. The mobile link failure model [33] allows a bounded number of lossy
links. These models are orthogonal because they still need to adopt one of the classic timing
models for the links that exist in the graph and are not lossy. The mobile sluggish model [19]
allows temporary unbounded message delays for a set of honest nodes (the set can change
over time). The sleepy model [30] allows a large fraction of nodes to be inactive. Both are
models of node failures. Correct nodes that are not sluggish/sleepy are still assumed to have
pair-wise synchronous links with each other.

The Visigoth fault tolerance (VFT) paper [31] proposes a timing model that consists of
synchronous and asynchronous links. Their model assumes every node has asynchronous
links to at most s correct nodes and synchronous links to the remaining nodes. For CFT,
VFT requires n− s ≥ f + 1, so every node must have at least f + 1 synchronous links. For
BFT, VFT requires every node to have n− s ≥ 2f + 1 synchronous links. In contrast, our
graph conditions are weaker (less restrictive) in that they only require a set of n− f nodes
for CFT (n− 2f correct nodes for BFT) to have synchronous paths to at least f + 1 nodes
(f + 1 correct nodes for BFT). We additionally consider partially synchronous edges.

Another line of work that considers a mixture of links studies the minimal condition to
circumvent the FLP [18] impossibility and solve consensus deterministically [20, 5, 8, 7, 4].
Many of these works [20, 5, 8] consider the harder setting of directed graphs, while we only
consider undirected graphs. Since they focus on circumventing FLP, they only consider a
mixture of asynchronous and partially synchronous links, but no synchronous links. Our
main focus is to use synchronous links to achieve better fault tolerance than those under
partial synchrony. But as mentioned, when n > 2f for crash and n > 3f for Byzantine,
our “safety-critical” condition becomes vacuous, and our model degenerates to a mixture
of partially synchronous and asynchronous links. In this context, our work establishes the
minimum condition for circumventing FLP for CFT consensus in undirected graphs.

DISC 2024



30:16 Granular Synchrony

7 Conclusion

This paper introduces the granular synchrony model that considers a mixture of synchronous,
partially synchronous, and asynchronous links to better capture the heterogeneity of modern
networks. We present necessary and sufficient conditions for solving crash and Byzantine
consensus in granular synchrony. Our results show that consensus is solvable in the presence
of f ≥ n/2 crash faults and f ≥ n/3 Byzantine faults in granular synchrony, even though
not all links are synchronous.

References
1 Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync hotstuff:

Simple and practical synchronous state machine replication. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 106–118, 2020. doi:10.1109/SP40000.2020.00044.

2 Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzantine
broadcast: A complete categorization. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, PODC’21, pages 331–341, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3465084.3467899.

3 Saksham Agarwal, Qizhe Cai, Rachit Agarwal, David Shmoys, and Amin Vahdat. Harmony:
A congestion-free datacenter architecture. In 21st USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 24), pages 329–343, Santa Clara, CA, April 2024.
USENIX Association. URL: https://www.usenix.org/conference/nsdi24/presentation/
agarwal-saksham.

4 Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.
Communication-efficient leader election and consensus with limited link synchrony. In Proceed-
ings of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing,
PODC ’04, pages 328–337, New York, NY, USA, 2004. Association for Computing Machinery.
doi:10.1145/1011767.1011816.

5 M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Consensus with byzantine
failures and little system synchrony. In International Conference on Dependable Systems and
Networks (DSN’06), pages 147–155, 2006. doi:10.1109/DSN.2006.22.

6 Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik Kosar. Wpaxos: Wide area
network flexible consensus. IEEE Trans. Parallel Distrib. Syst., 31(1):211–223, January 2020.
doi:10.1109/TPDS.2019.2929793.

7 Olivier Baldellon, Achour Mostéfaoui, and Michel Raynal. A necessary and sufficient synchrony
condition for solving byzantine consensus in symmetric networks. In International Conference
on Distributed Computing and Networking, pages 215–226. Springer, 2011. doi:10.1007/
978-3-642-17679-1_19.

8 Zohir Bouzid, Achour Mostfaoui, and Michel Raynal. Minimal synchrony for byzantine
consensus. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
pages 461–470, 2015. doi:10.1145/2767386.2767418.

9 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987. doi:10.1016/0890-5401(87)90054-X.

10 Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Liveness and Latency of Byzantine
State-Machine Replication. In Christian Scheideler, editor, 36th International Symposium
on Distributed Computing (DISC 2022), volume 246 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 12:1–12:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.DISC.2022.12.

11 Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Making byzantine consensus live.
Distributed Computing, 35(6):503–532, 2022. doi:10.1007/S00446-022-00432-Y.

12 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantipole:
practical asynchronous byzantine agreement using cryptography (extended abstract). In

https://doi.org/10.1109/SP40000.2020.00044
https://doi.org/10.1145/3465084.3467899
https://www.usenix.org/conference/nsdi24/presentation/agarwal-saksham
https://www.usenix.org/conference/nsdi24/presentation/agarwal-saksham
https://doi.org/10.1145/1011767.1011816
https://doi.org/10.1109/DSN.2006.22
https://doi.org/10.1109/TPDS.2019.2929793
https://doi.org/10.1007/978-3-642-17679-1_19
https://doi.org/10.1007/978-3-642-17679-1_19
https://doi.org/10.1145/2767386.2767418
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.4230/LIPIcs.DISC.2022.12
https://doi.org/10.1007/S00446-022-00432-Y


N. Giridharan, I. Abraham, N. Crooks, K. Nayak, and L. Ren 30:17

Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’00, pages 123–132, New York, NY, USA, 2000. Association for Computing Machinery.
doi:10.1145/343477.343531.

13 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI ’99, pages 173–186,
USA, 1999. USENIX Association. URL: https://dl.acm.org/citation.cfm?id=296824.

14 Shinyoung Cho, Romain Fontugne, Kenjiro Cho, Alberto Dainotti, and Phillipa Gill. Bgp
hijacking classification. In 2019 Network Traffic Measurement and Analysis Conference (TMA),
pages 25–32, 2019. doi:10.23919/TMA.2019.8784511.

15 D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM J.
Comput., 12(4):656–666, November 1983. doi:10.1137/0212045.

16 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, April 1988. doi:10.1145/42282.42283.

17 Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. In Proceedings of the Fourth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’85, pages 59–70, New York, NY, USA, 1985.
Association for Computing Machinery. doi:10.1145/323596.323602.

18 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985. doi:10.1145/3149.
214121.

19 Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tolerance. In
Advances in Cryptology – CRYPTO 2019: 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part I, pages 499–529, Berlin,
Heidelberg, 2019. Springer-Verlag. doi:10.1007/978-3-030-26948-7_18.

20 Moumen Hamouma, Achour Mostéfaoui, and Gilles Trédan. Byzantine consensus with few
synchronous links. In Principles of Distributed Systems: 11th International Conference,
OPODIS 2007, Guadeloupe, French West Indies, December 17-20, 2007. Proceedings 11, pages
76–89. Springer, 2007. doi:10.1007/978-3-540-77096-1_6.

21 Owen Hilyard, Bocheng Cui, Marielle Webster, Abishek Bangalore Muralikrishna, and Aleksey
Charapko. Cloudy forecast: How predictable is communication latency in the cloud?, 2023.
arXiv:2309.13169, doi:10.48550/arXiv.2309.13169.

22 Toke Høiland-Jørgensen, Bengt Ahlgren, Per Hurtig, and Anna Brunstrom. Measuring latency
variation in the internet. In Proceedings of the 12th International on Conference on Emerging
Networking EXperiments and Technologies, CoNEXT ’16, pages 473–480, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2999572.2999603.

23 Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006, pages 445–462,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. doi:10.1007/11818175_27.

24 Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya. Exact byzantine consensus
on undirected graphs under local broadcast model, 2019. arXiv:1903.11677.

25 Muhammad Samir Khan and Nitin Vaidya. Asynchronous byzantine consensus on undirected
graphs under local broadcast model, 2019. arXiv:1909.02865.

26 Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May
1998. doi:10.1145/279227.279229.

27 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982. doi:10.1145/357172.357176.

28 Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consensus in
egalitarian parliaments. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 358–372, New York, NY, USA, 2013. Association for
Computing Machinery. doi:10.1145/2517349.2517350.

29 Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy method
to support highly-available distributed systems. In Proceedings of the Seventh Annual ACM

DISC 2024

https://doi.org/10.1145/343477.343531
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.23919/TMA.2019.8784511
https://doi.org/10.1137/0212045
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/323596.323602
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/978-3-540-77096-1_6
https://arxiv.org/abs/2309.13169
https://doi.org/10.48550/arXiv.2309.13169
https://doi.org/10.1145/2999572.2999603
https://doi.org/10.1007/11818175_27
https://arxiv.org/abs/1903.11677
https://arxiv.org/abs/1909.02865
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/2517349.2517350


30:18 Granular Synchrony

Symposium on Principles of Distributed Computing, PODC ’88, pages 8–17, New York, NY,
USA, 1988. Association for Computing Machinery. doi:10.1145/62546.62549.

30 Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, pages 380–409, Cham, 2017.
Springer International Publishing. doi:10.1007/978-3-319-70697-9_14.

31 Daniel Porto, João Leitão, Cheng Li, Allen Clement, Aniket Kate, Flavio Junqueira, and
Rodrigo Rodrigues. Visigoth fault tolerance. In Proceedings of the Tenth European Conference
on Computer Systems, EuroSys ’15, New York, NY, USA, 2015. Association for Computing
Machinery. doi:10.1145/2741948.2741979.

32 Fedor Ryabinin, Alexey Gotsman, and Pierre Sutra. SwiftPaxos: Fast Geo-Replicated state
machines. In 21st USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24), pages 345–369, Santa Clara, CA, April 2024. USENIX Association. URL: https:
//www.usenix.org/conference/nsdi24/presentation/ryabinin.

33 U. Schmid, B. Weiss, and J. Rushby. Formally verified byzantine agreement in presence of
link faults. In Proceedings 22nd International Conference on Distributed Computing Systems,
pages 608–616, 2002. doi:10.1109/ICDCS.2002.1022311.

34 Lewis Tseng and Nitin Vaidya. Exact byzantine consensus in directed graphs, 2014. arXiv:
1208.5075.

35 Tian Yang, Robert Gifford, Andreas Haeberlen, and Linh Thi Xuan Phan. The synchronous
data center. In Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS
’19, pages 142–148, New York, NY, USA, 2019. Association for Computing Machinery. doi:
10.1145/3317550.3321442.

A BFT Consensus in Granular Asynchrony

We present a sufficient condition for solving BFT consensus in granular asynchrony.

▶ Theorem 18. If (i) the condition in theorem 13 holds and (ii) for all F with |F | = f ,
there exists a node in graph G′ = (V − F, ⋄E), which has partially synchronous paths to f

other nodes in G′, then BFT consensus on graph G = (V, E) can be solved deterministically
under granular asynchrony.

We have proved the necessity of condition (i) (for all algorithms) in Section 5.1. Con-
dition (ii) was proven necessary in [7] for algorithms that work for the family of all graphs
that satisfy the condition (i.e., graph-agnostic algorithms). If algorithms can be tailored to
the graph, the tight condition for Byzantine consensus remains open.

A.1 Protocol
Next, we adapt our previous BFT consensus protocol in algorithm 3 from granular partial
synchrony to granular asynchrony, assuming the condition in theorem 18 holds. This
establishes the sufficiency of the condition.

As with our granular asynchrony CFT consensus protocol, we utilize condition (ii) in
theorem 10 to guarantee that, when the correct node with partially synchronous paths to f

other nodes in G′ = (V − F, ⋄E) is elected leader after GST, this leader will not be replaced
and will make progress. To do so, we first require n− f nodes to initiate a view change, of
which at least n− 2f must be correct. This way, because fewer than n− 2f correct nodes
are asynchronously connected to the leader, we just need to make sure that none of the f

nodes the leader is connected to via partially synchronous paths initiates a view change.
We only describe the status and view change steps, since the rest of the protocol remains

the same as algorithm 3.

https://doi.org/10.1145/62546.62549
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.1145/2741948.2741979
https://www.usenix.org/conference/nsdi24/presentation/ryabinin
https://www.usenix.org/conference/nsdi24/presentation/ryabinin
https://doi.org/10.1109/ICDCS.2002.1022311
https://arxiv.org/abs/1208.5075
https://arxiv.org/abs/1208.5075
https://doi.org/10.1145/3317550.3321442
https://doi.org/10.1145/3317550.3321442


N. Giridharan, I. Abraham, N. Crooks, K. Nayak, and L. Ren 30:19

Algorithm 4 BFT consensus protocol in granular asynchrony for node i.

1: vi ← 0, lock ← ⊥ ▷ Initialize local view number and lock
2: enter view 1

3: upon entering view v do
4: vi ← v

5: send ⟨Status, v, lock⟩ to all

6: upon receiving n− f ⟨Status, vi,−⟩ messages where i ̸= Lv do
7: echo these n− f ⟨Status, vi,−⟩ to all
8: start proposal_timer ← timer(3d′∆) ▷ Timer before changing view

9: upon proposal_timer expiring and no leader proposal received do
10: send ⟨ViewChange, vi⟩ to all

11: Proposal, Vote-1, Vote-2, Commit messages, n−f ViewChange messages (instead
of f + 1), equivocation detection at all nodes, and Status messages at view leaders are
processed the same way as in Algorithm 3

Status step. Upon entering a new view v, a node sends a ⟨Status, v, lock⟩ message to all
nodes. When a node receives at least n− f ⟨Status, v,−⟩ messages, it forwards this set of
Status messages to all nodes and starts a timer with 3d′∆ duration. The same propose,
vote, and commit steps from algorithm 3 follow.

View change. A node suspects the leader is faulty if it does not receive a ⟨Propose,
v,−,−⟩ message before its proposal timer (instead of view timer) expires. A view change
certificate consists of n− f ⟨ViewChange, v⟩ messages (instead of f + 1 in algorithm 3).
Upon receiving n− f ⟨ViewChange, v⟩, a node carries out the same waiting period step
from algorithm 1.

A.2 Analysis
The agreement and validity proofs are identical to the granular partial synchrony BFT case.
We focus on termination.

▶ Lemma 19. If no correct node ever terminates, then every correct node keeps entering
higher views.

Proof. Suppose for the sake of contradiction, there exists a correct node n1, which never
enters a higher view. Let v be the view n1 is in. If any correct node ever enters a view
v′ > v, it must have echoed n − f ⟨ViewChange, v′ − 1⟩ messages to all nodes. n1 will
eventually receive this set n− f ⟨ViewChange, v′ − 1⟩ messages and enter a higher view,
a contradiction. Thus, no correct node ever enters a view higher than v. Before entering
view v, n1 must have sent n− f ⟨ViewChange, v − 1⟩ to all nodes. All correct nodes will
eventually receive this set of ⟨ViewChange, v − 1⟩ messages, enter view v, and send a
⟨Status, v,−⟩ message. Eventually, correct nodes will receive n−f ⟨Status, v,−⟩ messages
and start their proposal timers. If n1 receives n − f ⟨ViewChange, v⟩ messages, it will
enter view v + 1, a contradiction. Thus n1 never receives n− f ⟨ViewChange, v⟩ messages.
Then, there must be at least one correct node, n2, which never sends ⟨ViewChange, v⟩,
and instead echoes ⟨Propose, v,−,−⟩ to all nodes. Eventually, all correct nodes will receive

DISC 2024



30:20 Granular Synchrony

a ⟨Propose, v,−,−⟩ message and echo it. If a correct node detects leader equivocation,
it will forward it to all correct nodes. n2 will eventually receive the conflicting Propose
messages and send a ⟨ViewChange, v⟩ message, a contradiction. Thus, no correct node
will detect leader equivocation. Then, all correct nodes will send ⟨Vote-1, v,−⟩ messages
to all nodes. Eventually all correct nodes will receive n− f ⟨Vote-1, v,−⟩ messages, and
send a ⟨Vote-2, v,−⟩ message. Eventually, n1 will receive n− f ⟨Vote-2, v,−⟩ messages,
commit and terminate, a contradiction. ◀

▶ Theorem 20. All correct nodes eventually terminate.

Proof. Suppose for the sake of contradiction that some correct node never terminates.
Observe that if one correct node terminates, it sends a Commit message and makes all
correct nodes eventually terminate. Thus, no correct node ever terminates. By lemma 19,
every correct node keeps entering higher views.

Eventually, there will be a first time after GST + 2d∆ that some correct node enters
a view v such that (i) Lv ̸∈ F , and (ii) Lv has paths to at least f other nodes in graph
G′ = (V − F, ⋄E). Let C denote this set of nodes including Lv. We next prove no node in C

will ever send ⟨ViewChange, v⟩.
Let p be the first node in C that enters view v, and let p enter view v at time t > GST +2d∆.

Observe that no node in C will send ⟨ViewChange, v⟩ before time t + 3d′∆ (proposal timer
duration is 3d′∆). Due to the condition in theorem 18, n− |C| < n− f . Thus, there will not
be n− f ⟨ViewChange, v⟩ messages before t + 3d′∆.

p sends n− f ⟨ViewChange, v − 1⟩ messages at time t− 2d∆ > GST . All nodes in C

receive n− f ⟨ViewChange, v − 1⟩ messages by time t− 2d∆ + d′∆, enter view v by time
t + d′∆, and stay in view v at least until time t + 3d′∆.

When a node q ∈ C receives n− f ⟨Status, v,−⟩ messages at time t′ > t, q echoes these
n− f messages and starts its proposal timer. All nodes in C enter view v by time t + d′∆
and are ready to echo these ⟨Status, v,−⟩ messages by t + d′∆. Lv, which is in C, receives
these n− f ⟨Status, v,−⟩ messages by time max(t + 2d′∆, t′ + d′∆) < t′ + 2d′∆. Lv sends
a ⟨Propose, v,−⟩ message by time t′ + 2d′∆ and it reaches q by time t′ + 3d′∆, which is
before q’s proposal timer expires. Thus, q does not send ⟨ViewChange, v⟩. This establishes
that no node in C will ever send ⟨ViewChange, v⟩.

Since n− |C| < n− f , there will never be n− f ⟨ViewChange, v⟩ messages. Thus, no
correct node ever enters a view higher than v. This contradicts lemma 19. ◀

B Comparison with [4]

[4] showed that a correct ⋄f -source is a sufficient condition for solving CFT consensus in a
directed graph. A correct ⋄f -source is a correct node that has f outgoing fault-free paths that
are eventually synchronous. [4] argued the potential optimality of their result by showing that
every node being a ⋄(f − 1)-source is not sufficient for solving CFT consensus. Our results
show that, at least in the case of undirected graphs, a correct ⋄f -source is not necessary.
Our condition (ii) in theorem 10 is weaker and is sufficient.

To show our condition is weaker, we first prove that a correct ⋄f -source implies the
condition (ii) in theorem 10. Let C be the connected component in G′ = (V, ⋄E) that the
correct ⋄f -source belongs to. We have |C| ≥ f + 1. Removing F ∪ C must leave at most
n− f − 1 nodes in the remaining graph.

Next, Figure 2 shows an example of a graph that satisfies our condition but does not
have a correct ⋄f -source. For this graph, if the adversary corrupts B and C, then there is
no correct ⋄f -source since A only has a link to B and D only has a link to C. This graph,



N. Giridharan, I. Abraham, N. Crooks, K. Nayak, and L. Ren 30:21

Figure 2 In this graph n = 4 and f = 2. Each edge represents a synchronous link and a missing
edge represents an asynchronous link.

Algorithm 5 BFT Unanimity Validity.

1: vi ← 0, lock ← ⊥ ▷ Initialize local view number and lock
2: inputs← {}

3: echo ⟨Input, inputi⟩ to all
4: start input_timer ← timer(2d∆)

5: upon receiving m← ⟨Input, inputj⟩ do
6: echo m

7: inputs← inputs ∪ {m}

8: upon input_timer expiring do
9: send ⟨Forward-Inputs, inputs⟩ to all

10: upon receiving FI ← n− f ⟨Forward-Inputs, inputs⟩ do
11: if having received I ← f + 1 ⟨Input, val⟩ messages in FI then
12: lock ← I

13: enter view 1

however, satisfies the condition (ii) in theorem 10. If |F | = 0, removing the largest connected
component (the entire graph) leaves 0 nodes, satisfying the condition. For any choice of F

with |F | = 1, the largest connected component after removing F must be of size at least 2.
Thus, there will be at most 1 remaining node, satisfying the condition. For any choice of
F such that |F | = 2, the largest remaining connected component must be of size at least 1.
Thus, there will be at most 1 remaining node, satisfying the condition.

C BFT Unanimity Validity

In this section, we give a way to convert our BFT algorithms from external validity to strong
unanimity validity. The idea is to try to have nodes lock before starting the first view, and if
all correct nods have the same input, then that input is the only lock.

▶ Lemma 21. If all correct nodes have the same input, then all correct nodes will lock on
this value before entering view 1, and any lock in view 0 must be for val.

Proof. In view 0, all correct nodes send their inputs and echo other nodes’ inputs they receive
(using Input and Forward-Inputs messages) before their input timer expires in 2d∆ time.
For any two correct nodes p and q such that p→ q, p will receive q’s input before p’s input
timer expires. Similarly, q will receive p’s input before q’s input timer expires. Consider any
correct node c. Node c will eventually receive a set A of n− f ⟨Forward-Inputs, inputs⟩
messages. Among them, a subset B of n− 2f are from correct nodes. By the condition in
theorem 13, B → C where C is a set of f + 1 correct nodes. Since every node in B waits
2d∆ before sending a Forward-Inputs message, this is sufficient time for each node in C

DISC 2024



30:22 Granular Synchrony

to receive an input from some node in B and also sends its input to that node in B. Thus,
B will contain the input values from C, a set of f + 1 correct nodes. If all correct nodes
have the input val, node c must receive at least f + 1 ⟨Input, val⟩ messages, and there are
at most f Input messages for a different value (from f Byzantine nodes). Therefore, every
correct node will set its lock to I ← f + 1 ⟨Input, val⟩ in view 0, and any lock in view 0
must be for val. ◀

▶ Lemma 22. If all correct nodes have the same input, then any lock in view v ≥ 0 must be
for val.

Proof. The base case is established by lemma 21. Now assume the lemma holds for all v− 1,
and consider view v. Suppose for the sake of contradiction a lock forms for val′ ≠ val. Lv

must have proposed val′ ̸= val. By the induction assumption, any lock must be for val. Thus,
Lv must have received S ← n − f Status messages where all locks are ⊥. By lemma 21,
all correct nodes will lock on val before entering view 1. The set S must contain a Status
message from at least one correct node. This correct node will at least have a lock in view 0
or higher, and thus its Status message will not have lock = ⊥, a contradiction. ◀

▶ Theorem 23. If all correct nodes have the same input, then only that value can be decided.

Proof. By lemma 22, any lock must be for val, the input of the correct nodes. Only locked
values can be decided. Validity then follows from termination. ◀



Distributed Delta-Coloring Under Bandwidth
Limitations
Magnús M. Halldórsson #

Reykjavik University, Iceland

Yannic Maus #

TU Graz, Austria

Abstract
We consider the problem of coloring graphs of maximum degree ∆ with ∆ colors in the distributed
setting with limited bandwidth. Specifically, we give a poly log log n-round randomized algorithm
in the CONGEST model. This is close to the lower bound of Ω(log log n) rounds from [Brandt et
al., STOC ’16], which holds also in the more powerful LOCAL model. The core of our algorithm
is a reduction to several special instances of the constructive Lovász local lemma (LLL) and the
deg + 1-list coloring problem.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Graph problems, Graph coloring, Lovász local lemma, LOCAL model,
CONGEST model, Distributed computing

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.31

Related Version Full Version: https://arxiv.org/abs/2405.09975

Funding Magnús M. Halldórsson: Supported in part by Icelandic Research Fund grant 217965.
Yannic Maus: Supported by the Austrian Science Fund (FWF), Grant P36280-N.

Acknowledgements We thank Saku Peltonen for valuable input and discussions.

1 Introduction

The objective in the c-coloring problem is to color the vertices of a graph with c such that any
two adjacent vertices receive different colors. In the distributed setting, the ∆ + 1-coloring
problem has long been the focus of interest as the natural local coloring problem: any partial
solution can be extended to a valid full solution. It has fast poly(log log n)-round algorithms,
both in LOCAL [12] and CONGEST [29], and so does the more general deg+1 -list coloring
problem (d1LC), which is what remains when a subset of the nodes has been ∆ + 1-colored
[30, 34].

The ∆-coloring problem, on the other hand, is non-local: fixing the colors of just two
nodes can make it impossible to form a proper ∆-coloring, see Figure 1 for an example. Due
to its simplicity, it has become the prototypical problem for the frontier of the unknown
[27, 2]. Even the existence of such colorings is non-trivial: a celebrated result by Brooks
from the ’40s shows that ∆-colorings exist for any connected graph that is neither an odd
cycle nor a clique on ∆ + 1 nodes [10].

A poly(log log n)-round ∆-coloring algorithm was recently given in LOCAL [22], but no
non-trivial algorithm is known in CONGEST. It is of natural interest to examine if the
transition from local to non-local problems behaves differently in LOCAL and in CONGEST.
Thus, we set out to answer the following question:

Is there a sublogarithmic time distributed ∆-coloring algorithm using small messages?

© Magnús M. Halldórsson and Yannic Maus;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 31; pp. 31:1–31:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mmh@ru.is
https://orcid.org/0000-0002-5774-8437
mailto:yannic.maus@ist.tugraz.at
https://orcid.org/0000-0003-4062-6991
https://doi.org/10.4230/LIPIcs.DISC.2024.31
https://arxiv.org/abs/2405.09975
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 Distributed Delta-Coloring Under Bandwidth Limitations

In this work, we answer the question in the affirmative. We prove the following theorem.

▶ Theorem 1. There is a randomized poly log log n-round CONGEST algorithm to ∆-color
any graph with maximum degree ∆ ≥ 3. The algorithm works with high probability.

Theorem 1 nearly matches the lower bound of Ω(log log n) that holds in LOCAL [9]. In
[2], the authors claim that in order to make progress in our understanding of distributed
complexity theory, we require a ∆-coloring algorithm that is genuinely different from the
approaches in [41, 27]. This is due to the fact that the current state-of-the-art runtime for
∆-coloring lies exactly in the regime that is poorly understood. The approaches of [41, 27] are
based on brute-forcing solutions on carefully chosen subgraphs of super-constant diameter. In
contrast, our results are based on a bandwidth-efficient deterministic reduction to a constant
number of “simple” Lovász Local Lemma (LLL) instances and O(log ∆) instances of d1LC;
the LLL is a general solution method applicable to a wide range of problems. It is known
that LLL is complete for sublogarithmic computation on constant-degree graphs, but its role
on general graphs is widely open [13]. Our algorithm adds to the small list of problems (see
the related work section in [33]) that can be solved in sublogarithmic time with an LLL-type
approach, even under the presence of bandwidth restrictions. Before continuing further, let
us first detail the computational model.

In the CONGEST model, a communication network is abstracted as an n-node graph
of maximum degree ∆, where nodes serve as computing entities and edges represent com-
munication links. Initially, a node is unaware of the topology of the graph G, nodes can
communicate with their neighbors in order to coordinate their actions. This communication
happens in synchronous rounds where, in each round, a node can perform arbitrary local
computations and send one message of O(log n) bits over each incident edge. At the end of
the algorithm, each node outputs its own portion of the solution, e.g., its color in coloring
problems. The LOCAL model is identical, except without restrictions on message size.

1.1 Technical Overview on Previous Approaches
Previous fast distributed ∆-coloring algorithms either use huge bandwidth [41, 27] or use
limited bandwidth but only work in the extreme cases of either very high-degree [22] or
super low-degree graphs [40]. Optimally, we would like to take any of these solutions and run
them with minor modifications to obtain an algorithm that uses low bandwidth and works
for all degrees. This approach is entirely infeasible for the highly specialized algorithms in
[41, 27, 28]. These works crucially rely on learning the full topology of non-constant diameter
subgraphs, which is impossible in CONGEST.

For graphs of super-low degree, i.e., at most poly log log n, an efficient ∆-coloring algorithm
with low bandwidth can be deduced from the results in [40]. In fact, the paper takes a
complexity-theoretic approach and shows that any problem can be solved in sublogarithmic
time with low bandwidth as long as 1) the problem is defined on low-degree graphs, 2) a
given solution can be checked efficiently for correctness by a distributed algorithm, and 3)
the problem admits a sublogarithmic time LOCAL model algorithm. As such, the results
are not very constructive for any specific problem like the ∆-coloring problem. In fact, it is
known that these generic techniques cannot be extended to problems defined on graphs with
larger degrees [3], which is the main target of our work.

Our best hope is then the poly log log n-round LOCAL model algorithm of [22]. We discuss
it in detail throughout the next few pages as it motivates the design choices of our solution.
Unfortunately, for maximum degrees that are at most poly-logarithmic, it relies on the prior
O(log ∆) + poly log log n-round LOCAL model algorithm from [27] in a black-box manner.



M. M. Halldórsson and Y. Maus 31:3

For large maximum degrees, however, when ∆ is ω(log3 n), they provide a sophisticated
constant-round randomized reduction to the deg + 1-list coloring problem (d1LC) that also
works with low bandwidth. The central ingredient in this reduction is the notion of slack.

Slack. To reduce the ∆-coloring problem to d1LC, it suffices to obtain a unit amount of
slack for each node. Namely, if two neighbors of a node are assigned the same color, there
are then more colors available to the node than its number of uncolored neighbors. Slack can
be easily generated w.h.p. (for most, but not all, kinds of nodes) with a simple single-round
procedure termed SlackGeneration, as long as the graph has high degree. This observation
has been used in countless papers on various coloring problems, e.g., [18, 35, 12, 29, 22].
For intermediate-degree graphs, this slack generation problem can be formulated as an
instance of the constructive Lovász Local Lemma (LLL), but one that seems inherently
non-implementable in CONGEST, as we explain later.

Recall that the LLL is a general solution method applicable to a wide range of problems.
Defined over a set of independent random variables, it asks for an assignment of the variables
that avoids a set of “bad” events. The original theorem [19] shows that such an assignment
exists as long as the probability of the events to occur is sufficiently small in relation to
the dependence degree of the events, i.e., the number of other events that share a variable.
There is now a general LOCAL algorithm running in O(log n) rounds of LOCAL [39, 15], but
superfast poly(log log n) algorithms are only known for restricted cases [21, 26, 17]. Even
less is known about solvability in CONGEST [31, 33].

In the presented slack generation LLL, there is a bad event for each node that holds if
the respective node does not obtain slack. The mentioned SlackGeneration works as follows.
Each node gets activated with a constant probability, picks a random candidate color that it
keeps if no neighbor wants to get the same color and discards otherwise (see Algorithm 3
in Section 3 for details). Hence, there are random variables for each node depicting its
activation status and candidate color choice. The main reason why this LLL cannot be
directly implemented in CONGEST is that events involve values of variables at distance 2
in the communication graph. This makes it impossible for an event node to obtain full
information on the status of all its variables, an ingredient that essentially is crucial in all
known sublogarithmic-time LLL algorithms. The formal meaning of the word “essential”
in that sentence is extremely technical and is captured by the notion of a simulatable LLL
(see the full version of this paper). In essence, it says that the LLL is easy enough such
that event nodes can learn enough information about their variables to execute some simple
primitives such as evaluating their status (does the event hold or not), resampling their
variables, and computing certain conditional probabilities for the event to hold under partial
variable assignments. The latter condition is the most challenging one to ensure.

1.2 Our Technical Approach
What we have discussed so far is only half the truth. In fact, the slack generation process
only works for sparse nodes, i.e., nodes with many non-edges in their neighborhood. If the
graph is locally too dense, then slack cannot be obtained via this LLL. Thus, the algorithm
of [22] carefully analyzes the topological structure of the hard instances for ∆-coloring,
combining several different (deterministic and randomized) methods to create slack. Such a
treatment seems to be inherent to the ∆-coloring problem as a very similar classification was
independently and currently discovered in the streaming model [1]. Additionally, it has also
been shown to be useful in different models of computation. In the aftermath of these works,
it has been used to obtain efficient massively parallel algorithms for the problem [16].

DISC 2024



31:4 Distributed Delta-Coloring Under Bandwidth Limitations

Figure 1 This is an example of an almost clique (AC). The depicted nice AC is a clique on ∆ + 1
nodes with a single missing (red) edge. It is essential that the two nodes incident to the missing
edge receive the same color to solve the ∆-coloring problem. All non-nice ACs form proper cliques.

Our algorithm is based on a fine-grained version of this classification equipped with a
sequence of various LLLs for eventual slack generation. Each LLL is easier to solve in the
CONGEST model than the aforementioned slack generation LLL. In the following, we use
the terminology of [22], and explain their algorithm and our solution in more detail.

Like in all recent randomized distributed graph coloring algorithms, they divide the
graph into sparse and dense parts that are referred to as “almost-cliques” (ACs). Then,
they partition the ACs further into different types – ordinary, nice, difficult – each of which
admits a different coloring approach. See Figure 1 for an example of an AC. One challenge is
that all these different types of tricky subgraphs may appear in the same graph and close to
each other. For this overview it is best to imagine each AC as a proper clique on almost ∆
nodes in which each node has a few external neighbors residing in other ACs and creating
lots of dependencies between different ACs. Thus, their algorithm is fragile with regard to
the order in which different types of ACs are colored. The starting point of our work is that
the core step of their algorithm does not work in low-degree graphs. More detailed, the first
step of their algorithm executes SlackGeneration (see Algorithm 3 in Section 3) on a
carefully selected subset of nodes to achieve three objectives: a) giving slack to all sparse
nodes, b) providing a slack-toehold1 for a subclass of the difficult ACs that the authors term
“runaway”, and c) providing each ordinary clique with a node that has slack. Each of these
probabilistic guarantees holds w.h.p. as long as ∆ = ω(log3 n). Their proof shows that, in
essence, all three cases are LLLs but ones that are far from being simulatable. We discuss
our solutions for a)–c), separately.

Solution for a). Providing slack to sparse graphs is the main application of the LLL
algorithm in [33]. In essence, we adapt their techniques to provide slack to sparse nodes but
provide additional guarantees that are needed for other parts of the graph.

Solution for b). For the difficult cliques we propose a solution that eliminates randomness
and solely colors all the nodes via a sequence of d1LC instances. See Figure 2 for an
illustration of our solution. First, we adjust the classification of difficult almost-cliques from
[22]. All nodes in a given difficult clique have the same external degree. We associate with
each such AC C a special node sC on its outside that has many neighbors on the inside
(namely, more than twice the external degree of C’s nodes).

1 A slack-toehold for an AC is an uncolored node that can be stalled to be colored later. All of its
neighbors then lose one competitor for the remaining colors, providing them with temporal slack.



M. M. Halldórsson and Y. Maus 31:5

𝐶1 𝐶2 𝐶3

Figure 2 for part b): The illustration depicts three difficult cliques of different layers. The
external degree of C1 is 1, the external degree of C2 is 2 and the external degree of C3 is 4. C1 has
the lowest layer and its special node (the red node) is part of C2. The blue special node of C2 is
part of C3. So when we color C1 the red node serves as an uncolored toehold providing slack to two
gray nodes of C1. Stalling the coloring of these gray nodes provides slack to the white nodes of C1

so that they can be colored, followed by the gray ones. For illustration purposes, we chose ∆ to be
9, but note that this would actually not classify C3 as a difficult clique. A special node of C3 would
need 2eC3 = 8 neighbors in C3, which is impossible due to C3’s size.

From here, we assign each difficult clique a layer that determines the step in which it gets
colored. Those with a special node that is not contained in another difficult clique are treated
separately and assigned to layer ∞, to be dealt with at the very end. The other difficult
cliques are assigned to layers indexed by the base-2 logarithm of their external degree. The
crucial property that follows is that the cliques in a given layer have their special node in a
higher layer. This allows us to color the cliques layer by layer, starting with smaller layers.
The special node sC is stalled to be colored later, providing a toehold for C. This way, we
color the cliques and special nodes in all layers besides ∞.

This leaves the problem of coloring ACs the ∞ layer and their still uncolored special
nodes. In this exposition, we assume that special nodes are not shared by multiple difficult
cliques. In that case, we pair the special node sC up with some node uC ∈ C that is not
adjacent to sC with the objective to same-color the nodes: assigning both the same color.
This is done via a virtual coloring problem capturing the dependencies between all selected
pairs in the participating difficult cliques and the restrictions imposed by already colored
vertices of the graph. We show that this virtual coloring instance is indeed a d1LC instance
and can be solved efficiently in CONGEST despite being a problem on a virtual graph. As a
result, the clique C obtains an uncolored node yC that is adjacent to both sC and uC , has
slack due to two same-colored neighbors, and can serve as a toehold for C.

Besides removing the need for randomization to solve the difficult cliques, our classification
of difficult cliques also captures significantly more ACs than the definition of difficult cliques
in [22]. The additional structure provided to the remaining ACs is exploited down the line
in the most challenging part of the algorithm, dealing with the ordinary cliques in part c).

Solution for c). The most involved part by far is dealing with case c). We split the ordinary
cliques into the small (of size less than ∆−∆/ poly log log(n)) and large. The small ones
can be handled just like the sparse nodes, as one can show that their induced neighborhoods
are relatively sparse. The main effort then is to manually create slack for the large ordinary
cliques. For this exposition, it is best to imagine an ordinary clique to be a clique on ∆
nodes in which each node of the clique has exactly one external neighbor that is again a
member of a large ordinary clique. See Figure 3 for an illustration.

DISC 2024



31:6 Distributed Delta-Coloring Under Bandwidth Limitations

𝐶1 𝐶2 𝐶3

Figure 3 for Part c): For the large ordinary cliques, we find triples of nodes consisting of
a yellow (striped), a light yellow (dotted), and a gray (solid) node. The two yellow nodes are
non-adjacent while the gray node is adjacent to both of them. The goal is to same-color the pairs of
yellow/light-yellow nodes, to which end we form a virtual coloring instance consisting of all pairs and
their dependencies. After same-coloring the yellow nodes, the gray node provides a slack-toehold for
the clique. An important aspect is that triples of different ordinary ACs are non-overlapping and no
neighborhood of the graph contains too many nodes in such pairs, as otherwise we may run into
unsolvable subinstances down the line. We find these triples by a sequence of “simple” LLLs.

In order to create slack-toehold in each large AC C, we compute a “vee-shaped” triple
(xC , yC , zC) of nodes, with xC , yC ∈ C and zC /∈ C, but zC ∈ N(yC) and zC is also a
non-neighbor of xC . Then, we set up a virtual list coloring instance with a node for each such
pair with the objective to same-color the pairs (xC , zC). As we ensure that yC is uncolored,
it serves as a slack-toehold for the AC. As many of the important ACs can be mutually
adjacent, the main difficulty lies in finding non-overlapping triples for the ACs. We ensure
this by first computing a suitable candidate set Z from which we then pick the third node
zC of the triple. Finding the set Z can be modeled as an “easy” LLL fitting the framework
of [33]. Finding the node zC ∈ Z can also be modeled as a different type of “easy” LLL. In
essence, the first LLL is easy (in CONGEST) as its bad events only consist of simple bounds
on the number of neighbors in Z. Next, we elaborate on our LLL for finding zC ∈ Z with
slightly more detail; due to further technicalities of the existing LLL algorithms from which
we spare you in this technical overview, our actual solution differs slightly from the one
presented here.

With a given set Z, we model the problem of selecting zC ∈ Z as an LLL as follows.
Each AC C sends a proposal (to serve as its zC node) to each outside neighbor inside Z with
probability poly log log n/∆. The proposal is successful if no other AC proposes to that node.
We show that with a constant probability, no other AC proposes to the same node and that
this is independent for different nodes in Z. Since we ensure C has many neighbors in Z, we
obtain that the probability that none of C’s proposals are successful is bounded above by
p = exp(−Ω(poly log n)). The main benefit is that this LLL and also the LLL for finding the
set Z are simple enough to be simulatable (in contrast to LLLs based on randomized slack
generation for those ACs that can be derived from the proofs in [33]).

Once we have found zC , the structure of large ordinary ACs implies that we can deter-
ministically find the other two nodes xC and yC of the triple. Additional complications arise
in ensuring that the list coloring instance of the pairs is a d1LC instance, i.e., that the size
of the joint available color palette of xC and zC exceeds the maximum degree in the virtual
graph induced by the pairs. The last difficulty that appears is solving the d1LC instance, as
the bandwidth between the nodes within a pair is very limited and existing d1LC algorithms
cannot be run in a black-box manner.



M. M. Halldórsson and Y. Maus 31:7

Further related work. Graph coloring is fundamental to distributed computing as an elegant
way of breaking symmetry and avoiding contention, and was, in fact, the topic of the original
paper introducing the LOCAL model [37]. There is an abundance of efficient deterministic
and randomized ∆ + 1-coloring algorithms in LOCAL and CONGEST for various settings,
e.g., [6, 35, 23, 12, 5, 43, 39, 29, 32, 30, 24]. The excellent monograph on distributed graph
coloring by Barenboim and Elkin is still a great resource for older results [7].

There are significantly fewer results for coloring with fewer than ∆ + 1 colors. A LOCAL
algorithm is known for ∆ − k-coloring in graphs not containing too large cliques [4]. An
O(log log n)-round ∆-coloring algorithm in the LOCAL model is known for trees [11], matching
the lower bound [9] within a constant factor. Additionally, there are works coloring special
graph classes such as coloring planar graphs with 6 or 5 colors in O(log n) rounds with a
deterministic LOCAL algorithm [14, 42].

Outline. In Section 2, we define the notion of slack and state required results from prior
work on solving d1LC and computing an almost clique decomposition (ACD). In Section 3,
we present our ∆-coloring algorithm with essentially all proofs. The algorithm consists of 5
phases and all phases except for Phases 1 (ACD computation) and Phase 2 are deterministic
reductions to various d1LC instances. In Phase 2, we provide slack to sparse nodes and the
nodes in ordinary cliques; this refers to part a) and part c) described in Section 1.2. For
ease of presentation, the (involved) Phase 2 is presented in a top down manner. In Section 4
we present the high level overview of this phase. In essence its a reduction to solving four
different subproblems. The details of the reduction are deferred to Appendix A. The heart of
our approach is actually solving each of these subproblems via an instance of the constructive
Lovász Local Lemma. As this part is extremely technical and cannot fit into the space
constraints of a conference publication we defer this part to the full version of the paper.

2 Preliminaries: d1LC, Slack, Almost-Clique Decomposition, Graytone

In the deg + 1-list coloring (d1LC) problem, each node of a graph receives as input a list
of allowaed colors whose size exceeds its degree. The goal is to compute a proper vertex
coloring in which each node outputs a color from its list. The problem can be solved with a
simple centralized greedy algorithm, and it also admits efficient distributed algorithms.

▶ Lemma 2 (List coloring [30, 34]). There is a randomized CONGEST algorithm to (deg + 1)-
list-color (d1LC) any graph in O(log5 log n) rounds, w.h.p. This reduces to O(log3 log n)
rounds when the degrees and the size of the color space is poly(log n).

The slack of a node (potentially in a subgraph) is defined as the difference between the
size of its palette and the number of uncolored neighbors (in the subgraph).

▶ Definition 3 (Slack). Let v be a node with color palette Ψ(v) in a subgraph H of G. The
slack of v in H is the difference |Ψ(v)| − d, where d is the number of uncolored neighbors of
v in H.

We use the following helpful terminology.

▶ Definition 4 (Graytone [22]). Consider an arbitrary step of the algorithm. A node is gray
if it has unit-slack or a neighbor that will be colored in a later step of the algorithm. A node
is grayish if it is not gray but has a gray neighbor. A set of gray and grayish nodes is said to
be graytone.

DISC 2024



31:8 Distributed Delta-Coloring Under Bandwidth Limitations

Any graytone set can be colored as two d1LC instances: first the grayish nodes and then the
gray. We emphasize that the graytone property depends on the order in which nodes are
processed. It always refers to a certain step of the algorithm in which we color the respective
set. Throughout our algorithm we aim at making more and more nodes graytone.

A proof of the following construction central to our approach is given in Appendix B.

▶ Lemma 5 (ACD computation [1, 22]). For any graph G = (V, E), there is a partition
(almost-clique decomposition (ACD) of V into sets Vsparse and C1, C2, . . . , Ct such that each
node in Vsparse is Ω(ϵ2∆)-sparse and for every i ∈ [t],

(i) (1− ε/4)∆ ≤ |Ci| ≤ (1 + ε)∆ ,
(ii) Each v ∈ Ci has at least (1− ε)∆ neighbors in Ci: |N(v) ∩ Ci| ≥ (1− ε)∆ ,
(iii) Each node u ̸∈ Ci has at most (1− ε/2)∆ neighbors in Ci: |N(u) ∩ Ci| ≤ (1− ε/2)∆.

Further, there is an O(1)-round CONGEST algorithm to compute a valid ACD, w.h.p.

We say that nodes in Vsparse are sparse and other nodes are dense. It is immediate from
Lemma 5 that each dense node has external degree (or neighbors outside its AC) at most
ε∆ and at most 2ε∆ non-neighbors in its AC. Also, any pair of nodes in Ci have at least
(1− 3ε)∆ ≥ 3∆/4 common neighbors in Ci.

Notation. For a graph G = (V, E) and two nodes u, v ∈ V , let distG(u, v) denote the
length of a shortest (unweighted) path between u and v in G. For a set S ⊆ V we denote
distG(v, S) = minu∈S distG(v, u). N(v) denotes the set of neighbors of a node v ∈ V .

3 ∆-Coloring in CONGEST

In this subsection, we prove the following theorem.

▶ Theorem 1. There is a randomized poly log log n-round CONGEST algorithm to ∆-color
any graph with maximum degree ∆ ≥ 3. The algorithm works with high probability.

The extreme cases of very large ∆ and very small ∆ can be solved in the claimed runtime
with prior work [22, 40], see the proof of Theorem 1 in Section 3.3. Here, we present an
algorithm for the most challenging regime where ∆ ∈ O(poly log n) ∩ Ω(poly log log n).

In the extreme case that ∆ = ω(log21 n), the ∆-coloring algorithm from [22] even runs
in O(log∗ n) rounds. A lower bound of Ω(log∆ log n) rounds in the LOCAL model for the
∆-coloring problem [9] rules out a O(log∗ n) algorithm for small ∆. Hence, in this section, we
aim for an algorithm using poly log log n rounds. In fact, we reduce the ∆-coloring problem to
a few list coloring instances and a few LLL instances, each of which we solve in poly log log n

rounds.

3.1 Fine-Grained ACD Partition
The following definitions of types of almost-cliques are crucial for all results of the paper.
The reader is hereby warned to read them slowly!

▶ Definition 6 (Types of almost-cliques). For an AC C, let eC = ∆ − |C| + 1. An AC is
easy if it contains a non-edge or a node of degree less than ∆. A node v /∈ C is an intrusive
neighbor of a non-easy C if v has at least 2eC neighbors in C. A non-easy AC is difficult
if it has an intrusive neighbor. Each difficult AC C arbitrarily selects one of its intrusive
neighbors as its special node sC . An AC is nice if it is easy or if it is both non-difficult and
contains a special node (necessarily for another AC). An AC is ordinary if it is neither nice
nor difficult.



M. M. Halldórsson and Y. Maus 31:9

Note that all ACs except the easy are proper cliques and all nodes in such a clique C

have external degree eC . We say that a node is ordinary (difficult, nice) if it belongs to an
ordinary (difficult, nice) AC, respectively. The difficult ACs are divided into levels.

▶ Definition 7 (Levels of difficult ACs). The maximum level ∞ contains all difficult ACs
whose special node is not contained in a difficult AC. A difficult AC C that is not at the
maximum level has level ℓ(C) = ⌈log2 eC⌉.

Observe that ℓ(C) ≤ log2 ∆ = O(log log n) for all difficult ACs.

▶ Definition 8 (Node classification). The nodes are partitioned into the following sets:
1. S: the set of special nodes that are not in difficult ACs,
2. Dℓ: nodes in difficult ACs of level ℓ, ℓ ∈ [lg ∆] ∪ {∞} (might include special nodes),
3. N : nodes in nice ACs, excluding those in S,
4. O: nodes in ordinary ACs, and
5. V∗: nodes in Vsparse, excluding those in S.

Our classification is built on [22] but is subtly different and more fine-grained. We
are driven by a need to limit the reach of probabilistic arguments, being that we are in
the challenging sub-logarithmic degree range. Thus, a strictly smaller set of dense nodes
(the ordinary) needs probabilistic slack in our formulation. On the other hand, the easy,
difficult, and nice definitions are more inclusive here. The difficult ones are here divided into
super-constant number of levels, as opposed to only two types in [22].

The underlying idea is to ensure that every node gets at least one unit of slack, ensuring
that it can be colored as part of a d1LC instance. Easy nodes have such slack from the start;
difficult ones get it from their special nodes (special nodes are used in several different ways
to provide slack); sparse and ordinary nodes get it from probabilistic slack generation; and
non-easy nice ones get it from same-coloring a non-edge it contains. The most challenging
part of the low-degree regime is the probabilistic part. That has guided our definition,
resulting in the ordinary ACs being defined as restrictively as possible and, in fact, much
more restrictive than the ordinary ACs in [22].

3.2 Algorithm for ∆-coloring
Our ∆-coloring algorithm consists of the following five phases.

Algorithm 1 ∆-coloring.

1: Compute an ACD (ε = 1/172) and form the ordered partition of the nodes.
2: Color sparse nodes V∗ and ordinary nodes O
3: Color nice nodes N
4: For increasing 1 ≤ ℓ <∞ :

Color difficult nodes Dℓ in level ℓ

5: Color difficult nodes in D∞ and special nodes in S

The remainder of the paper describes these phases in detail. Only Phases 1 and 2 are
randomized. Phase 2 is also the most involved part of our algorithm. For ease of presentation,
we defer its details when ∆ is at most logarithmic to Section 4. In this section, we present
Phase 2 in the case of ∆ ≥ c log n for a sufficiently large constant c, where Phase 2 does
not require any LLL and which is sufficient to understand how Phase 2 interacts with the
remaining phases. The remaining phases are identical in both cases.

DISC 2024



31:10 Distributed Delta-Coloring Under Bandwidth Limitations

3.2.1 Phase 1: Partitioning the Nodes
We first apply Lemma 5 to compute an ACD for ε = 1/172 and break the graph into nice
ACs, difficult ACs, ordinary ACs, and the remaining nodes in V∗ according to Definition 8.

3.2.2 Phase 2: Sparse and Ordinary Nodes (∆ ≫ log n)
In this subsection, we prove the following lemma.

▶ Lemma 9. There exists a poly log log n-round CONGEST algorithm that w.h.p. colors the
sparse nodes and nodes in ordinary cliques if ∆ ≥ c log n for a sufficiently large constant c.

Lemma 9 essentially follows from the proof of Lemma 3.5 in [22, arxiv version]. However, as
we have changed the definition of ordinary cliques, we spell out the required details.

Slack generation is based on trying a random color for a subset of nodes. Sample a set of
nodes and a random color for each of the sampled nodes. Nodes keep the random color if
none of their neighbors choose the same color. See Algorithm 3 for a pseudocode. If there are
enough non-edges in a node’s neighborhood, then it probabilistically gets significant slack.

Algorithm 2 Phase 2: Coloring Sparse and Ordinary Nodes (when ∆ ≫ log n).

1: Run SlackGeneration on V∗ ∪ O
2: Color the remaining ordinary nodes O
3: Color the remaining sparse nodes V∗

Algorithm 3 SlackGeneration.

Input: S ⊆ V

1: Each node in v ∈ S is active w.p. 1/20
2: Each active node v samples a color rv u.a.r. from [χ].
3: v keeps the color rv if no neighbor tried the same color.

We also require the following lemma from [22].

▶ Lemma 10 ([22]). Let C be a non-easy AC, S ⊆ V be a subset of nodes containing C,
and M be an arbitrary matching between C and N(C) \ C. Then, after SlackGeneration
is run on S, C contains Ω(|M |) uncolored nodes with unit-slack in G[S], with probability
1− exp(−Ω(|M |)).

There exists a large matching satisfying the hypothesis of Lemma 10,

▶ Lemma 11. For each ordinary AC C, there exists a matching MC between C and N(C)\C

of size 2∆/5.

Proof. We use the following combinatorial result that is proven in Appendix B for complete-
ness.

▷ Claim 12. Let B = (Y, U, EB) be a bipartite graph where nodes in Y have degree at least
k and nodes in U have degree at most 2k. There exists a matching of size |Y |/2 in B.

Proof. Let M be a maximum matching in B and suppose that more than half the nodes in
Y are unmatched. Let S be the set of nodes reachable from the unmatched nodes Y \ V (M).
Since M has no augmenting path, S contains no unmatched node of U . All of the |Y ∩ S| · k



M. M. Halldórsson and Y. Maus 31:11

edges incident on Y ∩ S have their other endpoint in U ∩ S. By the degree bound on U ,
there are fewer than |U ∩ S|2k such edges. Thus, |Y ∩ S| < 2|U ∩ S|. Every node in U ∩ S

is matched to a node in Y ∩ S, while all unmatched nodes in Y are in Y ∩ S. Thus, the
number of unmatched nodes in Y is at most |Y ∩ S| − |U ∩ S| < |U ∩ S| ≤ |M |. This is a
contradiction, and hence, at least half the nodes in Y are matched. ◁

As C is not easy, all its nodes have external degree eC , while nodes in N(C) \ C

are by assumption not intrusive neighbors of C, so they have at most 2eC neighbors in
C. Claim 12 then implies that there exists a matching between C and N(C) \ C of size
|C|/2 ≥ (1− ϵ)∆/2 ≥ 2∆/5. ◀

The properties of Phase 2 are summarized in the following lemma.

▶ Lemma 13. If ∆ ≥ c log n for a sufficiently large constant c, the following properties hold
w.h.p. after Step 1 of Algorithm 2:
(†) Each sparse node has unit-slack in G[V∗],
(††) Each ordinary AC has an uncolored unit-slack node in G[V∗ ∪ O].

Proof. We run SlackGeneration on the node set S = V ∗ ∪ O. Nodes with neighbors
outside V ∗ ∪ O have slack while the rest of the graph is stalled. We focus on the remaining
nodes. Each sparse node gets the respective slack with probability at least 1− exp(Ω(∆))
[18, Lemma 3.1], implying (†). By Lemma 11, there is a matching between C and N(C) \ C

of size 2∆/5. Thus, (††) holds with probability at least 1− exp(−Ω(∆)), by Lemma 10.
Both probabilities become w.h.p. guarantees if ∆ ≥ c log n for a sufficiently large constant

c. For ∆ ≥ ∆0 for a sufficiently large constant ∆0 we obtain an LLL. ◀

Proof of Lemma 9. By Lemma 13 w.h.p. all sparse nodes become gray as they have unit
slack. Also, the unit-slack node in each ordinary AC becomes gray and all other nodes of the
AC become grayish as ordinary ACs induce cliques. This is sufficient to color all nodes with
O(1) d1LC instances. ◀

Forward pointer. The main difficulty of Phase 2 for smaller values of ∆ is to mimic the
properties of Lemma 13. Section 4 are devoted to ensuring these properties via several LLLs
and d1LC instances that can be solved in a bandwidth-efficient manner.

3.2.3 Phase 3: Nice ACs
We give a simpler treatment than [22]. We want a toehold in each nice AC: a node with
permanent or temporary slack. With a toehold, the rest is easy. Namely, ACs have all
nodes of internal degree at least (1− ε)∆, of which none are colored in previous phases. The
neighbors of a toehold are gray, and there are at least (1− ε/4)∆ of them by Lemma 5, all
uncolored. The remaining nodes in the AC are then grayish, so the AC is graytone.

Nice ACs come in three types, depending on if they contain a special node, a non-edge, or
a degree-below-∆ node. The first and third types immediately give us a toehold. It remains
then to consider nice ACs with a non-edge but with no special node, which we call hollow.

For a hollow AC C, we identify an arbitrary non-edge (uC , wC) and call it the pair for C.
We color the pairs for hollow ACs as a d1LC instance. The two nodes in a pair have at least
∆/2 common neighbors within C and any of them can function as a toehold. It remains to
argue that we can find a valid coloring of the pairs efficiently.

▶ Lemma 14. The pairs of hollow ACs can be colored in the CONGEST model in O(log3 log n)
rounds.

DISC 2024



31:12 Distributed Delta-Coloring Under Bandwidth Limitations

Proof. As the nodes of a hollow C were uncolored, the only nodes that can conflict with the
coloring of the pair are the at most 2 · ε∆ ≤ ∆/2 external neighbors. The ∆ + 1 colors we
have to work with significantly exceed that. Thus, the pairs are deg + 1-list colorable.

Both nodes of the pair (uC , wC) have at least (1− ϵ)∆ neighbors in C, so they have at
least (1− ϵ)∆− (|C| − (1− ϵ)∆) > (1− 3ϵ)∆ ≥ ∆/2 common neighbors in C. They provide
the bandwidth to transmit to one node all the colors adjacent to the other node. Also, all
messages to and from uC vis-a-vis its external neighbors can be forwarded in two rounds.
Hence, we can simulate any CONGEST coloring algorithm on the pairs with O(1)-factor
slowdown; in particular, we can simulate the algorithm from Lemma 2. ◀

3.2.4 Phase 4: Difficult ACs in a Non-Maximum Level
By Definition 7, the special node sC of any difficult AC C at a level other than D∞ is
contained in another difficult AC C ′ ≠ C. The next lemma shows that the level of C ′ must be
strictly larger than the level of C, which allows us to color C fast while C ′ remains uncolored.

▷ Claim 15. For an AC C with ℓ(C) < ∞, let C ′ be the difficult AC that contains the
special node sC . Then we have ℓ(C) < ℓ(C ′).

Proof. The special node sC has external degree of at least 2eC as it is connected to at least
2eC nodes of C that do not lie within C ′. Hence, we obtain that the external degree eC′ in
AC C ′ is at least eC′ ≥ 2eC , so ℓ(C ′) > ℓ(C). ◁

We color all ACs of a level in parallel, in increasing order of levels. Due to the previous
claim, the special node of an AC is contained in a difficult clique in a larger level or not
contained in a difficult clique at all. Hence, the special node is uncolored when the clique is
processed. So, when processing some level 1 ≤ i ≤ O(log log n), we color all nodes in ACs of
that level, but we do not color their respective special nodes. Thus, the respective special
node provides a toehold for the respective clique.

3.2.5 Phase 5: Difficult ACs in the Maximum Level
The maximum level is processed last and differently from the other levels. By definition, the
special node sC of an AC in ∞ level is not contained in a difficult AC. Also, all nodes in
D∞ and their special nodes are still uncolored at the beginning of this phase.

The algorithm has four steps: (1) Form pairs of selected non-adjacent nodes, (2) Color
the nodes in each pair consistently, (3) Graytone color the remaining nodes of the AC, and
(4) Color the special nodes S. We explain each step in detail.

First, we form the following pairs. For each special node sC that is special for only one
AC C at level ∞: Form a type-1 pair Ts = (sC , uC) with a non-neighbor of sC in C. For
each special node s that is special for more than one ACs at level ∞, form a type-2 pair
Ts = (w1, w2), where w1 and w2 are arbitrary non-adjacent nodes in two of the ACs for
which s is special. Let E be the set of the latter special nodes.

▷ Claim 16. The pairs can be properly formed.

Proof. Type-1: An (uncolored) non-neighbor uC of pC exists as pC can have at most (1−ε/2)∆
neighbors in C by Lemma 5 (4), but the AC C has at least (1− ε/4)∆ vertices.

Type-2: Let C1 and C2 be two ACs at level∞ for which s is special, where e(C1) ≤ e(C2).
By definition, s has at least 2e(C1) (2e(C2)) neighbors in C1 (C2), respectively. Pick w1 to
be any neighbor of s in C1. Node w1 has at most e(C1) neighbors in C1. Thus, there are at
least 2e(C2)− e(C1) > 0 nodes in C2 that are neighbors of s and non-neighbors of w1, and
we can pick any such node as w2. ◁



M. M. Halldórsson and Y. Maus 31:13

▶ Lemma 17. Coloring the pairs is a (deg + 1)-list coloring instance that can be solved in
poly log log n rounds in CONGEST, w.h.p.

Proof. Type-1 pair T = {sC , uC}, sC /∈ C, uC ∈ C: We say that a node conflicts with the
pair {sC , uC} if the node is already colored or is contained in an adjacent pair of the same
phase. As C does not contain a special node, uC is the only node of C participating in the
phase and all other nodes of C are still uncolored. The node uC can only be adjacent to
eC conflicting nodes as it has external degree at most eC . As sC has at least 2eC neighbors
in C, it can conflict with at most ∆ − 2eC nodes. Thus, the pair conflicts with at most
eC + ∆− 2eC = ∆− eC nodes, which is less than ∆, the number of colors initially available.
Thus, the problem of coloring such pairs is a (deg + 1)-list coloring problem.

Type-2 pair T = {w1, w2}: Each such pair (w1, w2) is adjacent to at most e(C1)+e(C2) ≤
2ϵ∆ nodes in other ACs. Further, all nodes in the ACs C1 and C2 are still uncolored, so
both nodes have at least (1− 2ϵ)∆ colors in their palette, and each pair is adjacent to at
most 2ε∆ other pairs or already colored neighbors, that is, the palette exceeds the degree.

CONGEST Implementation. A type-1 pair has at least e(C) common neighbors (the
special node sC has 2e(C) neighbors inside the clique by its definition that are all connected
to uC), which suffices to communicate the colors and all messages of external neighbors of
uC to sC (uC has at most eC external neighbors). Hence, the coloring can be achieved in
CONGEST.

Let s be the common special node of a type-2 pair {w1, w2} and let C1 and C2 be the
respective cliques. For i = 1, 2 the node wi has at most eCi

outside neighbors and s has
2eCi

≥ eCi
neighbors in Ci, denote these by Xi. We simulate the pair by s. The node wi

can forward all initial colors of outside neighbors as well as all messages from them to s by
relaying them through Xi. ◀

After coloring the pairs, each difficult AC C has a node with unit-slack in G[V \ E ], either
because the clique contains an uncolored node with two neighbors appearing in a consistently
colored type-1 pair T = {sC , uC}, or because it contains an uncolored node with a neighbor
in E . In the former case, the uncolored node exists because sC has at least one neighbor
in C that is also a neighbor of uC . In the latter case, the special node s with type-2 pair
T = {w1, w2} has by definition further neighbors besides w1 and w2 in each clique that are
all uncolored.

Thus, we color all nodes in difficult cliques via the graytone property. At the end, we
color the nodes in E , which have unit-slack as they are adjacent to a type-2 pair.

3.3 Proof of Theorem 1
Proof of Theorem 1. There are five cases, depending on the relation of ∆ and n. Generally,
we use Lemma 2 to solve d1LC instances in poly log log n rounds. Whenever the d1LC
instances require additional arguments to be solved in the respective time, e.g., because they
are defined on a virtual graph, we reason their runtime when they are introduced.

If ∆ = ω(log4 n), we use the algorithm from [22] to ∆-color the graph.
For c log n ≤ ∆ = O(log4 n) for a sufficiently large constant c, the result follows by
executing Algorithm 1 with the arguments of this section. Phases 1–3 only require O(1)
rounds and a constant number of d1LC instances. In Phase 4, we iterate through the
O(log ∆) = O(log log n) levels and solve a constant number of d1LC instances for each
level. Phase 5 can be executed in poly log log n time by Lemma 17.

DISC 2024



31:14 Distributed Delta-Coloring Under Bandwidth Limitations

When poly log log n ≤ ∆ ≤ c log n, we use Algorithm 1 from this section and replace
Phase 2 with Algorithm 4 (presented in Section 4) whose correctness and runtime we
prove in Section 4.
If ∆0 ≤ ∆ ≤ poly log log n, we use the algorithm of this section together with the LLL
representation from the proof of Lemma 13. The LLL can be solved with the CONGEST
LLL solver of [40] in poly ∆ poly log log n = poly log log n rounds. Here, ∆0 is a sufficiently
large constant such that the LLL guarantees from Lemma 13 hold.
If 3 ≤ ∆ ≤ ∆0, that is, for constant ∆, there is an existing algorithm from [40].

In all cases, the algorithm runs in poly log log n rounds. ◀

4 Phase 2 (∆ = O(log n)): Sparse Nodes and Ordinary Cliques

In this section, we deal with Phase 2 for the most challenging regime of ∆ ∈ O(log n) ∩
Ω(poly log log n). The following lemma follows from all proofs in this section, together with
Lemmas 20, 22, and 23 stated in Appendix A and proven in the full version of this paper.

▶ Lemma 18 (Phase 2). There exists a poly log log n-round CONGEST algorithm that w.h.p.
color the sparse nodes and nodes in ordinary cliques if log10 log n ≤ ∆ ≤ O(log n).

We first give high-level ideas of our method. We divide the ordinary cliques into the
small, of size at most ∆(1− 1/(10 log3 log n)), and the large. Nodes in small ordinary cliques
have significant sparsity (i.e., non-edges in their induced neighborhood), which means that
the one-round procedure of trying a random color has a good probability of successfully
generating slack. The natural LLL formulation of that step is therefore well-behaved enough
that it can be solved fast in CONGEST with a few additional tweaks.Large nodes need a
different approach.

For each large AC, we produce unit slack for a single node. See Figure 3 for an illustration
of the process we will describe. We identify for each such AC a triplet of nodes (x, y, z) with
the objective to color x and z with the same color, while y remains uncolored. This way, y

receives unit slack, which gives us a toehold to color the whole AC.
Computing such triplets is non-trivial. We do so by breaking it into three steps, each

solvable by a different LLL formulation. In brief, we first compute a set Z of candidate
z-nodes; next partition Z into two sets; and then select the actual z-nodes to be used from
these two sets. The split of Z into two sets is required to make the process of finally finding
the z-nodes fit the LLL solver from [33]. The properties of the set Z imply that it is then
much easier to identify compatible x- and y-nodes, and once we find such triplets, we set up
a virtual coloring instance for same-coloring x- and z-nodes in each triple. We show that this
instance is d1LC and can be solved with low bandwidth despite being defined on a virtual
graph. This provides a slack-toehold to the y-node of each triple and the coloring can be
extended via d1LC instances to the whole instance.

Algorithm. The first step of the algorithm is to compute a large matching MC between
each ordinary clique C and N(C) \ C in parallel. We then classify the ordinary cliques as
follows. Fix the parameter q(n) = 10 log3 log n throughout this section.

▶ Definition 19 (Small, Large, Unimportant and Important Ordinary cliques.). An ordinary
AC is large if it contains more than ∆−∆/q(n) nodes, and small otherwise. A large AC is
important if |(V (MC) \ C) ∩ Ol| ≥ ∆/12, and unimportant otherwise.



M. M. Halldórsson and Y. Maus 31:15

We say that a node is small/large/important/unimportant if it belongs to an AC of the
corresponding type. Let Oi, Ou, Ol = Oi∪Ou, and Os be the set of important, unimportant,
large, and small nodes, respectively.

Next, we summarize the high level steps of the algorithm.

Algorithm 4 Phase 2: Coloring Sparse and Ordinary Nodes (∆ = O(log n)).

1: Step 0: For each ordinary AC C in parallel, compute a matching MC ⊆ C × (N(C) \C).
Classify ordinary ACs into important, unimportant, and small ACs.

2: Step 1: Generate slack for sparse and small nodes (via LLL, see full version)
3: Step 2: Compute candidate sets Z = Z1 ∪ Z2 ⊆ Ol (via LLL, see full version)
4: Step 3: Form triples (xC , yC , zC) ∈ C × C × Z (via LLL, see full version)
5: Step 4: Same-color (x, z)-pairs via virtual coloring instance
6: Step 5: Color the remainder of V ∗ ∪ O (via d1LC instances).

Steps 0,4, and 5 are detailed in Appendix A. While Steps 1–3 are the heart of this paper,
their treatment is extremely technical and requires setting up several involved LLLs that
are then solved with the LLL solvers of [33]. Thus, the complete treatment of these steps
is defered to the full version of the paper and Appendix A only focuses on presenting the
guarantees provided by these steps (Lemmas 20, 22, and 23).

References
1 Sepehr Assadi, Pankaj Kumar, and Parth Mittal. Brooks’ theorem in graph streams: a

single-pass semi-streaming algorithm for ∆-coloring. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, pages 234–247, 2022.

2 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed ∆-coloring
plays hide-and-seek. In Proc. 54th ACM Symp. on Theory of Computing (STOC), 2022.

3 Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Locally
checkable labelings with small messages. In Seth Gilbert, editor, 35th International Sympo-
sium on Distributed Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual
Conference), volume 209 of LIPIcs, pages 8:1–8:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.DISC.2021.8.

4 Étienne Bamas and Louis Esperet. Distributed coloring of graphs with an optimal number of
colors. In Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS),
volume 126 of LIPIcs, pages 10:1–10:15. LZI, 2019. doi:10.4230/LIPICS.STACS.2019.10.

5 Philipp Bamberger, Fabian Kuhn, and Yannic Maus. Efficient deterministic distributed coloring
with small bandwidth. In PODC ’20: ACM Symposium on Principles of Distributed Computing,
Virtual Event, Italy, August 3-7, 2020, pages 243–252, 2020. doi:10.1145/3382734.3404504.

6 L. Barenboim. Deterministic (∆ + 1)-coloring in sublinear (in ∆) time in static, dynamic
and faulty networks. In Proc. 34th ACM Symposium on Principles of Distributed Computing
(PODC), pages 345–354, 2015.

7 Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals
and Recent Developments. Morgan & Claypool Publishers, 2013. doi:10.2200/
S00520ED1V01Y201307DCT011.

8 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. Journal of the ACM, 63(3):20:1–20:45, 2016. doi:10.1145/
2903137.

9 Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local
lemma. In Proc. 48th ACM Symposium on Theory of Computing (STOC 2016), pages 479–488.
ACM, 2016. doi:10.1145/2897518.2897570.

DISC 2024

https://doi.org/10.4230/LIPIcs.DISC.2021.8
https://doi.org/10.4230/LIPICS.STACS.2019.10
https://doi.org/10.1145/3382734.3404504
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.1145/2903137
https://doi.org/10.1145/2903137
https://doi.org/10.1145/2897518.2897570


31:16 Distributed Delta-Coloring Under Bandwidth Limitations

10 R. Leonard Brooks. On colouring the nodes of a network. Mathematical Proceedings of the
Cambridge Philosophical Society, 37(2):194–197, 1941. doi:10.1017/S030500410002168X.

11 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. Distributed edge
coloring and a special case of the constructive Lovász local lemma. ACM Trans. Algorithms,
2020. doi:10.1145/3365004.

12 Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (∆+1)-coloring
algorithm? In Proceedings of the ACM Symposium on Theory of Computing (STOC), pages
445–456, 2018. doi:10.1145/3188745.3188964.

13 Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM J.
Comput., 48(1):33–69, 2019. doi:10.1137/17M1157957.

14 Shiri Chechik and Doron Mukhtar. Optimal distributed coloring algorithms for planar graphs
in the LOCAL model. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 787–804. SIAM, 2019. doi:10.1137/1.9781611975482.49.

15 Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the Lovász
local lemma and graph coloring. Distributed Comput., 30(4):261–280, 2017. doi:10.1007/
S00446-016-0287-6.

16 Sam Coy, Artur Czumaj, Peter Davies, and Gopinath Mishra. Parallel derandomization
for coloring, 2024. Note: https://arxiv.org/abs/2302.04378v1 contains the Delta-coloring
algorithm. arXiv:2302.04378.

17 Peter Davies. Improved distributed algorithms for the Lovász local lemma and edge coloring.
In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 4273–4295. SIAM, 2023. doi:10.1137/1.9781611977554.CH163.

18 Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2∆ − 1)-edge-coloring is much easier than
maximal matching in the distributed setting. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 355–370, 2015. doi:10.1137/1.9781611973730.26.

19 Paul Erdös and László Lovász. Problems and Results on 3-chromatic Hypergraphs and some
Related Questions. Colloquia Mathematica Societatis János Bolyai, pages 609–627, 1974.

20 Manuela Fischer. Improved deterministic distributed matching via rounding. In Andréa W.
Richa, editor, 31st International Symposium on Distributed Computing, DISC 2017, October
16-20, 2017, Vienna, Austria, volume 91 of LIPIcs, pages 17:1–17:15. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.DISC.2017.17.

21 Manuela Fischer and Mohsen Ghaffari. Sublogarithmic Distributed Algorithms for Lovász
Local Lemma, and the Complexity Hierarchy. In the Proceedings of the 31st International
Symposium on Distributed Computing (DISC), pages 18:1–18:16, 2017. doi:10.4230/LIPIcs.
DISC.2017.18.

22 Manuela Fischer, Magnús M. Halldórsson, and Yannic Maus. Fast distributed Brooks’ theorem.
In Proceedings of the SIAM-ACM Symposium on Discrete Algorithms (SODA), pages 2567–
2588, 2023. doi:10.1137/1.9781611977554.ch98.

23 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In Proceedings
of the IEEE Symposium on Foundations of Computer Science (FOCS), pages 625–634, 2016.
doi:10.1109/FOCS.2016.73.

24 Marc Fuchs and Fabian Kuhn. List defective colorings: Distributed algorithms and applications.
In Rotem Oshman, editor, 37th International Symposium on Distributed Computing, DISC
2023, October 10-12, 2023, L’Aquila, Italy, volume 281 of LIPIcs, pages 22:1–22:23. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.DISC.2023.22.

25 Mohsen Ghaffari. Distributed maximal independent set using small messages. In Proc. 30th
Symp. on Discrete Algorithms (SODA), pages 805–820, 2019. doi:10.1137/1.9781611975482.
50.

https://doi.org/10.1017/S030500410002168X
https://doi.org/10.1145/3365004
https://doi.org/10.1145/3188745.3188964
https://doi.org/10.1137/17M1157957
https://doi.org/10.1137/1.9781611975482.49
https://doi.org/10.1007/S00446-016-0287-6
https://doi.org/10.1007/S00446-016-0287-6
https://arxiv.org/abs/2302.04378v1
https://arxiv.org/abs/2302.04378
https://doi.org/10.1137/1.9781611977554.CH163
https://doi.org/10.1137/1.9781611973730.26
https://doi.org/10.4230/LIPIcs.DISC.2017.17
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.1137/1.9781611977554.ch98
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.4230/LIPICS.DISC.2023.22
https://doi.org/10.1137/1.9781611975482.50
https://doi.org/10.1137/1.9781611975482.50


M. M. Halldórsson and Y. Maus 31:17

26 Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, pages 662–673, 2018. doi:10.1109/FOCS.2018.00069.

27 Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. Improved distributed
delta-coloring. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, PODC 2018, Egham, United Kingdom, July 23-27, 2018, pages 427–436, 2018.
URL: https://dl.acm.org/citation.cfm?id=3212764.

28 Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster,
and without network decomposition. In Proceedings of the IEEE Symposium on Foundations
of Computer Science (FOCS), pages 1009–1020, 2021. doi:10.1109/FOCS52979.2021.00101.

29 Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. Efficient randomized
distributed coloring in CONGEST. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages 1180–1193, 2021. Full version at CoRR abs/2105.04700. doi:
10.1145/3406325.3451089.

30 Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. Near-optimal
distributed degree+1 coloring. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22:
54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24,
2022, pages 450–463. ACM, 2022. doi:10.1145/3519935.3520023.

31 Magnús M. Halldórsson, Yannic Maus, and Alexandre Nolin. Fast distributed vertex splitting
with applications. In Christian Scheideler, editor, 36th International Symposium on Distributed
Computing, DISC 2022, October 25-27, 2022, Augusta, Georgia, USA, volume 246 of LIPIcs,
pages 26:1–26:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/
LIPICS.DISC.2022.26.

32 Magnús M. Halldórsson and Alexandre Nolin. Superfast coloring in CONGEST via efficient
color sampling. In Tomasz Jurdzinski and Stefan Schmid, editors, Structural Information
and Communication Complexity - 28th International Colloquium, SIROCCO 2021, Wrocław,
Poland, June 28 - July 1, 2021, Proceedings, volume 12810 of Lecture Notes in Computer
Science, pages 68–83. Springer, 2021. doi:10.1007/978-3-030-79527-6_5.

33 Magnús M. Halldórsson, Yannic Maus, and Saku Peltonen. Distributed Lovász local lemma
under bandwidth limitations, 2024. arXiv:2405.07353, doi:10.48550/arXiv.2405.07353.

34 Magnús M. Halldórsson, Alexandre Nolin, and Tigran Tonoyan. Overcoming congestion in
distributed coloring. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 26–36. ACM, 2022. doi:10.1145/3519270.3538438.

35 David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (∆ + 1)-coloring in
sublogarithmic rounds. Journal of the ACM, 65:19:1–19:21, 2018. doi:10.1145/3178120.

36 Öjvind Johansson. Simple distributed ∆ + 1-coloring of graphs. Inf. Process. Lett., 70(5):229–
232, 1999.

37 Nati Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193–
201, 1992. doi:10.1137/0221015.

38 Yannic Maus, Saku Peltonen, and Jara Uitto. Distributed symmetry breaking on power graphs
via sparsification. In Proceedings of the 2023 ACM Symposium on Principles of Distributed
Computing, PODC ’23, pages 157–167, New York, NY, USA, 2023. Association for Computing
Machinery. doi:10.1145/3583668.3594579.

39 Yannic Maus and Tigran Tonoyan. Local conflict coloring revisited: Linial for lists. In Hagit
Attiya, editor, 34th International Symposium on Distributed Computing, DISC 2020, October
12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 16:1–16:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.DISC.2020.16.

40 Yannic Maus and Jara Uitto. Efficient CONGEST algorithms for the Lovász local lemma. In
Seth Gilbert, editor, Proceedings of the International Symposium on Distributed Computing
(DISC), volume 209 of LIPIcs, pages 31:1–31:19. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPICS.DISC.2021.31.

DISC 2024

https://doi.org/10.1109/FOCS.2018.00069
https://dl.acm.org/citation.cfm?id=3212764
https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.1145/3406325.3451089
https://doi.org/10.1145/3406325.3451089
https://doi.org/10.1145/3519935.3520023
https://doi.org/10.4230/LIPICS.DISC.2022.26
https://doi.org/10.4230/LIPICS.DISC.2022.26
https://doi.org/10.1007/978-3-030-79527-6_5
https://arxiv.org/abs/2405.07353
https://doi.org/10.48550/arXiv.2405.07353
https://doi.org/10.1145/3519270.3538438
https://doi.org/10.1145/3178120
https://doi.org/10.1137/0221015
https://doi.org/10.1145/3583668.3594579
https://doi.org/10.4230/LIPIcs.DISC.2020.16
https://doi.org/10.4230/LIPICS.DISC.2021.31


31:18 Distributed Delta-Coloring Under Bandwidth Limitations

41 Alessandro Panconesi and Aravind Srinivasan. The local nature of ∆-coloring and its algorith-
mic applications. Combinatorica, 15(2):255–280, 1995. doi:10.1007/BF01200759.

42 Luke Postle. Linear-time and efficient distributed algorithms for list coloring graphs on surfaces.
In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 929–941. IEEE
Computer Society, 2019. doi:10.1109/FOCS.2019.00060.

43 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposi-
tion and distributed derandomization. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages 350–363, 2020.

A Details of Phase 2

Step 0: Classifying ACs and computing matchings. We compute a matching MC for
each ordinary clique C between the vertices in C and the ones in N(C) \ C. We use a
2.5-approximate algorithm of [20] running in O(log2 ∆ + log∗ n) = O(log2 log n) rounds,
obtaining that |MC | ≥ (2∆/5)/2.5 = ∆/10, using Lemma 11.

We view the edges of MC as being directed arcs with a head in C and tail in V \ C.
Each AC can determine its size and the size of V (MC) ∩ Ol in O(1) rounds and hence the
classification of Definition 19 can be computed in O(1) rounds.

Step 1: Slack for sparse and small nodes. In this step, we create slack for sparse nodes
and all nodes in Os. The key property of small nodes is that they are relatively sparse (with
many non-edges in their neighborhoods), so randomly trying colors is likely to produce slack.
That leads to an LLL formulation that we can make simulatable and can therefore implement
in CONGEST.

The properties are summarized by the following lemma. Besides providing slack to all
sparse nodes and the nodes in small ordinary ACs, it also guarantees that each neighborhood
(and hence also each AC) does not have too many nodes colored and that the matching MC

of each AC does not get too many nodes colored.

▶ Lemma 20. Assume that we are given a matching MC of size at least ∆/10 between C and
N(C) \ C for each ordinary AC C. There is a poly log log n-round (LLL-based) CONGEST
algorithm that w.h.p. colors a subset S ⊆ V ∗ ∪ O and ensures that:
1. Each uncolored node in V ∗ ∪ Os has unit-slack in G[V ∗ ∪ O].
2. In each of the following subsets, at most O(log4 log n · log ∆) nodes are colored: N(v) for

each v ∈ V ∗ ∪ O and V (MC) for each AC C .

Step 2: Compute triple candidate set via LLL. Let X = Ol\{v ∈ Ol : v colored in Step 1}.
The goal of this step is to compute two disjoint sets Z1, Z2 of uncolored nodes such that

each important AC has sufficiently many matching edges satisfying the following definition
of usefulness.

▶ Definition 21 (useful edge). Given a subset Z ⊆ X and important AC C, a matched arc
−→vu ∈MC is useful for C if v ∈ (X \Z) and u ∈ Z. Refer to Z as the black nodes and X \Z

as the white nodes. An edge is white if both endpoints are white.

An arc −→vz cannot be useful for the AC containing v; only the one containing z.
Formally, Step 2 provides the following lemma. For an AC C and set Z, let U(C, Z)

denote the arcs of MC with one endpoint in Z (and the other in C).

https://doi.org/10.1007/BF01200759
https://doi.org/10.1109/FOCS.2019.00060


M. M. Halldórsson and Y. Maus 31:19

▶ Lemma 22. Let q = 1/30. There is a poly log log n-round (LLL-based) CONGEST algorithm
computing disjoint subsets Z1, Z2 ⊆ Ol satisfying the following properties, w.h.p.:
1. |U(C, Zi)| ≥ q2(1− q)3∆/60, for i = 1, 2 and for each important AC C, and
2. |(Z1 ∪ Z2) ∩N(v)| ≤ ∆/10, for all v ∈ O.

Step 3: Forming triples via LLL. The goal of this step is to compute a triple (xC , yC , zC) ∈
C × C × Z of nodes that satisfy the conditions of the next lemma. These triple nodes are
distinct for different ACs.

▶ Lemma 23. Given sets Z1, Z2 ⊆ Ol with the properties as in Lemma 22, there is a
poly log log n-round (LLL-based) CONGEST algorithm that computes for each large important
AC C a triple (xC , yC , zC) of uncolored nodes such that w.h.p.:
1. xC , yC ∈ C and zC /∈ C,
2. yCxC , yCzC ∈ E, xCzC ̸∈ E (xC and zC are non-adjacent; yc is adjacent to both xC and

zC) and
3. the graph induced by {zC : C is important} has maximum degree ≤ ∆/10.

We model the problem of selecting zC for each important AC C as a disjoint variable set
LLL.

Step 4: Same-coloring (xC , zC) pairs. Given a triple (xC , yC , zC), we will create a toehold
for the AC C at yC by coloring its non-adjacent neighbors xC and zC with the same color.

Let HP (P for pair) be the virtual graph consisting of one vertex for each pair (sC , zC)
and an edge between two pairs (sC , zC) and (sC′ , zC′) if there is any edge in G between
{sC , zC} and {sC′ , zC′}. The list of available colors L((sC , zC)) consists of all colors that
are not used by the already colored neighbors in G of sC and zC .

▶ Lemma 24. The maximum degree ∆HP
of HP is upper bounded by ∆/9.

Proof. By Lemma 23, each node has at most ∆/10 neighbors in Z. Define the set X ′ =
{xC : C is an important AC}. As X ′ contains at most one node per AC, the number of
neighbors that a node in Ol can have in U is upper bounded by its external degree plus
1, which is upper bounded by ∆/q(n) + 1. Thus, the maximum degree ∆HP

of the virtual
graph HP is at most ∆/10 + ∆/q(n) + 1 ≤ ∆/9 for sufficiently large n. ◀

▶ Lemma 25. Coloring HP – i.e., same-coloring the pairs – is a deg+1-list coloring instance.

Proof. By Lemma 24 we obtain ∆HP
≤ ∆/9. As we colored at most x = O(log5 log n)

vertices in each neighborhood in Step 1, the list of available colors of each pair has at least
∆ − 2x ≫ ∆/9 = ∆HP

colors available in their joint list. Hence, we obtain a deg + 1-list
coloring instance. ◀

CONGEST implementation. Our algorithm is based on the deg + 1-list coloring algorithm
from [25, 8]. Before we show how to color the nodes in HP , we need to define a slow (it takes
O(log n) rounds) randomized algorithm. The algorithm is used in our analysis and it works
as follows. In each iteration, each uncolored pair executes the following procedure that may
result in the pair to try to get colored with a color or to not try a color (also see Algorithm 5
for pseudocode of the algorithm). Throughout the algorithm, nodes xC and zC maintain
lists L(xC) and L(zC) consisting of all colors not used by their respective neighbors in G.
Then, in one iteration node xC selects a color c u.a.r. from its list of available colors L(xC),
and sends it to the other endpoint through node yC . The other endpoint zC checks whether

DISC 2024



31:20 Distributed Delta-Coloring Under Bandwidth Limitations

c ∈ L(zC); if so, both nodes agree on trying color c, and the color is sent to their neighbors.
If no incident pair tries the same color, the pair gets permanently colored with the color.
Lastly, both nodes individually update their lists by removing colors from adjacent vertices
that got colored from their respective list. There is no explicit coordination between the two
vertices in maintaining a joint list of available colors.

Algorithm 5 Randomized Pair Coloring.

1: Each node xC selects a color c u.a.r. from L(xC) and sends c to zC

2: If c ∈ L(zC) then TryColor(c)
3: Update lists L(xC) ← L(xC) \ {c(v) : v ∈ NG(xC)} and L(zC) ← L(zC) \ {c(v) : v ∈

NG(zC)}

The next lemma shows that each pair gets colored with constant probability.

▶ Lemma 26. Consider an arbitrary iteration of Algorithm 5 and an arbitrary pair (xC , zC)
for a hiding AC C that is uncolored at the start of the iteration. Then, we have

Pr((xC , zC) gets colored in the iteration) ≥ 1/2 . (1)

The bound on the probability holds regardless of the outcome of previous iterations.

Proof. Note 2 that throughout the execution of Algorithm 5 the respective lists of nodes
xC and zC are always of size at least ∆−∆HP

− Ω(log5 log n) ≥ 4∆/5 as ∆ = ω(log5 log n)
and ∆HP

≤ ∆/9, by Lemma 24. Note, that both nodes keep their individual list of available
colors in which they only remove the colors of immediate neighbors in G from the list of
available colors. Thus, at all times we have |L(xC)| ∩ L(zC)| ≥ 3∆/5. Let X be the set of
colors tried by one of the ∆HP

≤ ∆/9 pairs incident to (sC , zC) in the current iteration. We
obtain |(L(sC) ∩ L(zC)) \X| ≥ ∆/2. As these colors are at least half of L(xC)’s palette, the
probability that the pair (xC , zC) gets colored is at least 1/2. ◀

▶ Lemma 27. There is a randomized poly log log n-round CONGEST algorithm that w.h.p.
colors the pairs of HP .

Proof. Consider the well-understood color trial algorithm in which nodes repeatedly try a
color from their list of available colors, keep their color permanently if no neighbor tries the
same color, and remove colors of permanently colored neighbors from their list of available
colors. It is known that this algorithm colors each node with a constant probability in each
iteration [8, 36]. Thus, it requires O(log n) rounds to color all vertices of a graph. The
shattering-based CONGEST algorithm from [25] for d1LC runs in poly log log n rounds. It
requires three subroutines: a) A color trial algorithm like the one from [8, 36], b) a network
decomposition algorithm that can run on small subgraphs (the ones in [43, 40, 38] do the
job), and c) the possibility to run O(log n) instances of the color trial algorithm in parallel.
In our setting we want to solve the same problem, but on the virtual graph Hp while the
communication network is still the original graph G. The subroutine for part b) can be taken
from prior work as the same issue is dealt with formally in [40, 38, 33]. We refer to these
works for the details and also the definition of a network decomposition. Let us sketch the
main ingredient for the informed reader. Instead of computing a network decomposition of
small subgraphs of HP , the subgraphs are first projected to G, and a network decomposition

2 The constants in this proof are not chosen optimally in order to improve readability.



M. M. Halldórsson and Y. Maus 31:21

of G is computed afterwards. This only requires an increased distance between clusters such
that the preimage of the decomposition induces a proper network decomposition of HP .

For ingredients a) and c), we observe that Ghaffari’s algorithm only requires the following
properties for the color trial algorithm: i) one iteration can be executed in constant time
and with poly log log n bandwidth, allowing to execute O(log n) instances in parallel in the
CONGEST model, and ii) each node gets colored with a constant probability in each iteration.
Thus, we can replace the color trial algorithm with the color trial algorithm for HP given
in Algorithm 5. We have already argued that it can be implemented with poly log log n

bandwidth showing i) and Lemma 26 provides its constant success probability for ii). ◀

Step 5: Completing the coloring. To finish the coloring, we first color the unimportant
nodes and then the important, small, and sparse nodes.

▶ Lemma 28. Unimportant nodes are graytone as long as the other ordinary nodes (small,
sparse, important) are inactive.

Proof. The only steps so far in which we colored vertices are Steps 1 and 4. In Step 1 we
color at most O(log5 log n) vertices per AC and per matching MC of each ordinary AC C.
In Step 4 we only color (a subset of) the vertices in Z and one vertex per important AC (the
vertex xC for AC C). As |Z ∩ C| ≤ ∆/10, we color at most ∆/10 + O(log5 log n) ≤ ∆/9
vertices in each unimportant AC.

Fix some unimportant AC C. Recall that the algorithm of [20] finds a 2.5-approximate
matching, which by Lemma 11 implies that |MC | ≥ ∆/10. As an unimportant AC has
fewer than ∆/12 nodes in (V (MC) \ C) ∩ Ol, we obtain that V (MC) \ C contains at least
∆/10 − ∆/12 = 7∆/60 nodes that are not contained in Ol. By Lemma 20, at most
O(log5 log n) of these get colored in Step 1; denote the uncolored nodes of these by S and let
S′ = N(S) ∩ C. By the earlier argument, at most ∆/9 nodes of S′ are already colored, that
is, there exists some v ∈ S′ that is still uncolored and has an uncolored neighbor u /∈ Ol. As
u is stalled to be colored later, v is gray and other nodes of the AC are grayish. ◀

▶ Lemma 29. Small, sparse, and important nodes are graytone.

Proof. By Lemma 20, each small or sparse node has slack in G[V ∗ ∪O] and is therefore gray
(and stays gray until colored).

For an important AC C with triple (xC , yC , zC), the node yC is gray as xC and zC are
same-colored. Hence, the remaining uncolored nodes of C are either already colored or
graytone as they are adjacent to v. ◀

B Computing the ACD

We adapt a proof from [22] that, as stated, applies only to the case when ∆ is sufficiently
large. Technically, the argument differs only in that we build on [34] instead of [29] in the
first step of the argument, where we compute a decomposition with weaker properties. We
have opted to rephrase it, given the different constants in the definitions of these works and
in order to make it more self-contained.

▶ Lemma 5 (ACD computation [1, 22]). For any graph G = (V, E), there is a partition
(almost-clique decomposition (ACD) of V into sets Vsparse and C1, C2, . . . , Ct such that each
node in Vsparse is Ω(ϵ2∆)-sparse and for every i ∈ [t],

(i) (1− ε/4)∆ ≤ |Ci| ≤ (1 + ε)∆ ,
(ii) Each v ∈ Ci has at least (1− ε)∆ neighbors in Ci: |N(v) ∩ Ci| ≥ (1− ε)∆ ,

DISC 2024



31:22 Distributed Delta-Coloring Under Bandwidth Limitations

(iii) Each node u ̸∈ Ci has at most (1− ε/2)∆ neighbors in Ci: |N(u) ∩ Ci| ≤ (1− ε/2)∆.
Further, there is an O(1)-round CONGEST algorithm to compute a valid ACD, w.h.p.

Proof. We first use a O(1)-round CONGEST algorithm of [HNT22] to compute a weaker form
of ACD with parameter ε/4.3 Namely, it computes w.h.p. a partition (V ′, D1, D2, . . . , Dk)
where nodes in V ′ are Ω(∆)-sparse and we have, for each i ∈ [k]:
(a) |Di| ≤ (1 + ε/4)∆, and
(b) |N(v) ∩Di| ≥ (1− ε/4)∆, for each v ∈ Di.
What this construction does not satisfy is condition (iii).

We form a modified decomposition (Vsparse, C1, · · · , Ck) as follows. For each i ∈ [t], let
Ci consist of Di along with the nodes in V ′ with at least (1 − ε)∆ neighbors in Di. Let
Vsparse = V \ ∪iCi. Observe that the decomposition is well-defined, as a node u ∈ V ′ cannot
have (1− ε)∆ > ∆/2 neighbors in more than one Di.

We first bound from above the number of nodes added to each part Ci. Each node in Di

has at most ε∆/4 outside neighbors, so the number of edges with exactly one endpoint in
Di is at most ε∆|Di|/4 ≤ ε(1 + ε/4)∆2/4, using (a) to bound |Di|. Each node in Ci \Di is
incident on at least (1− ε)∆ such edges (by definition). Thus,

|Ci \Di| ≤ ε/4 · (1 + ε/4)∆/(1− ε) ≤ ε∆/2 . (2)

Now, (iii) holds since a node outside Ci has at most (1− ε)∆ neighbors in Di (by the
definition of Ci) and at most |Ci \Di| ≤ ϵ∆/2 other neighbors in Ci (by Equation (2)). Also,
(ii) holds for nodes in Di by (b) and for nodes in Ci \Di by the definition of Ci. For the
lower bound in (i), |Ci| ≥ |Di| ≥ (1− ε/4)∆, by (b). For the upper bound of (i), we have
|Ci| ≤ |Di|+ |Ci \Di| ≤ (1 + 3ϵ/4)∆ (by (a) and Equation (2)).

Finally, the claim about Vsparse follows from the definition of V ′, as Vsparse ⊆ V ′. ◀

3 While such a statement is used in the paper, it is not explicitly stated. Alternatively, we may use an
alternative (slower) implementation (Lemma 4.4) in [Flin et al (FGHKN22), arXiv:2301.06457]] that
runs O(log log n) rounds for ∆ = poly(log n) and still suffices for our main result. The slowdown in
[FGHKN22] comes from working with sparsified graphs, while a CONGEST version also runs in O(1)
rounds.



Quantum Byzantine Agreement Against
Full-Information Adversary
Longcheng Li #

State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences,
Beijing, China
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing,
China

Xiaoming Sun #

State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences,
Beijing, China
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing,
China

Jiadong Zhu1 #

State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences,
Beijing, China

Abstract
We exhibit that, when given a classical Byzantine agreement protocol designed in the private-channel
model, it is feasible to construct a quantum agreement protocol that can effectively handle a full-
information adversary. Notably, both protocols have equivalent levels of resilience, round complexity,
and communication complexity. In the classical private-channel scenario, participating players are
limited to exchanging classical bits, with the adversary lacking knowledge of the exchanged messages.
In contrast, in the quantum full-information setting, participating players can exchange qubits, while
the adversary possesses comprehensive and accurate visibility into the system’s state and messages.
By showcasing the reduction from quantum to classical frameworks, this paper demonstrates the
strength and flexibility of quantum protocols in addressing security challenges posed by adversaries
with increased visibility. It underscores the potential of leveraging quantum principles to improve
security measures without compromising on efficiency or resilience.

By applying our reduction, we demonstrate quantum advantages in the round complexity of
asynchronous Byzantine agreement protocols in the full-information model. It is well known that in
the full-information model, any classical protocol requires Ω(n) rounds to solve Byzantine agreement
with probability one even against Fail-stop adversary when resilience t = Θ(n) [2]. We show that
quantum protocols can achieve O(1) rounds (i) with resilience t < n/2 against a Fail-stop adversary,
and (ii) with resilience t < n/(3 + ϵ) against a Byzantine adversary for any constant ϵ > 0, therefore
surpassing the classical lower bound.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Quantum computation theory

Keywords and phrases Byzantine agreement, Quantum computation, Full-information model

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.32

Related Version Extended Version: https://arxiv.org/abs/2409.01707

Funding This work was supported in part by the National Natural Science Foundation of China
Grants No. 62325210, and the Strategic Priority Research Program of Chinese Academy of Sciences
Grant No. XDB28000000.

1 Corresponding author

© Longcheng Li, Xiaoming Sun, and Jiadong Zhu;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 32; pp. 32:1–32:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lilongcheng22s@ict.ac.cn
https://orcid.org/0000-0002-5259-9807
mailto:sunxiaoming@ict.ac.cn
https://orcid.org/0000-0002-0281-1670
mailto:zhujiadong2016@163.com
https://orcid.org/0000-0003-4701-9967
https://doi.org/10.4230/LIPIcs.DISC.2024.32
https://arxiv.org/abs/2409.01707
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


32:2 Quantum Byzantine Agreement Against Full-Information Adversary

1 Introduction

Byzantine agreement (BA) [32], also referred to as Byzantine fault-tolerant distributed
consensus, is a crucial topic in secure distributed computing. In simple terms, in a BA
protocol, a group of n players who do not trust each other and possess private input bits,
come to a consensus on a shared output bit, even if a subset of size t of the players are
corrupted by a malicious adversary, who can force the corrupt parties to deviate from their
prescribed programs during the protocol execution. The Byzantine agreement problem has
been extensively researched over the past four decades, leading to numerous findings on the
feasibility and potential of BA protocols in various settings [19, 11, 3].

In this paper, we focus on BA that succeeds with probability one in the full-information
model, where the adversary knows the knowledge of all local variables, including quantum
states if applicable. It is well known that in this model, when up to t players may be
corrupted, no classical deterministic protocol can solve synchronous BA in less than t+ 1
rounds even in the presence of a Fail-stop adversary [32]. It is further proved by [5] that
any classical randomized protocol requires at least expected Ω̃(

√
n) rounds. Given these

constraints, it is natural to ask the following question:
Can quantum communication accelerate BA in the full-information model?

The seminal work of [7] provides a confirming answer to the above question by constructing
a constant round synchronous quantum BA protocol against the Byzantine adversary,
surpassing the established round complexity lower bound in [5]. The protocol builds upon
an expected constant round classical BA protocol introduced in [19], which is not resilient
against a full-information adversary and requires a private channel. In their work, [7] proposes
a quantum modification to the original classical protocol to make it robust against a full-
information adversary. They achieve this by introducing a novel approach of deferring coin
flips, substituting them with quantum superpositions until after the adversary has chosen
his actions in a certain round. Notably, the modification does not change the structure of
the original classical protocol and therefore preserves its constant round complexity. [7] also
extends the synchronous quantum protocol to the asynchronous case, but with suboptimal
resilience t < n/4.

[7] demonstrates an elegant method of reducing quantum full-information protocols
to classical private-channel protocols while maintaining key attributes such as resilience,
round complexity, and communication complexity. This approach offers a valuable means
of evaluating the quantum advantage in the full-information model by comparing classical
full-information and classical private-channel models. By highlighting the notable distinctions
between these two classical models, they underscore the substantial quantum advantage
inherent in the full-information domain.

In light of these findings, [7] raises the question of whether their reduction strategy could
be applied to other settings, such as low round complexity asynchronous BA protocols with
resilience n/4 ≤ t < n/3, to further investigate potential quantum advantages. Unfortunately,
limited progress has been made on this issue since its introduction. This paper seeks to tackle
this challenge from a comprehensive viewpoint. Instead of narrowly focusing on the reduction
of quantum protocols to classical protocols in a specific setting (e.g., the asynchronous
protocol with resilience n/4 ≤ t < n/3, which is better than that in [7]), our objective is to
address the following question:

Is it possible to convert any classical private-channel BA protocol to a quantum
full-information BA protocol while preserving the same characteristics such as

resilience, round complexity, and communication complexity?



L. Li, X. Sun, and J. Zhu 32:3

Table 1 Round complexity of Byzantine agreement in the full-information model.

Model Adversary Resilience Classical Quantuma)

Upper bound Lower bound Upper bound PC

Sync. Fail-stop t = Θ(n) Õ(
√
n) [5] Ω̃(

√
n) [5] O(1) [7, 24] [16]

Byzantine t < n/3 O(n) [32] O(1) [7] [19]

Async.

Fail-stop t = Θ(n) O(n) [2]

Ω(n) [2]

O(1) (Our work) [3]
Byzantine t < n/4 Õ(n4) [26] O(1) [7] [19]
Byzantine t < n

3+ϵ
b) Õ(n4/ϵ8) [26] O(1/ϵ) (Our work) [4]

Byzantine t < n/3 Õ(n12) [26] O(n) (Our work) [4]

a) Every quantum protocol presented in the table is built upon some classical private-channel protocol
PC . The last two columns of the table show the classical private-channel protocols alongside their
quantum full-information equivalents for comparison and reference purposes.

b) Notice that when ϵ is a constant, the quantum upper bound is O(1/ϵ) = O(1).

1.1 Our Contribution
As our main result, we answer the above question in the affirmative by demonstrating a
general reduction from a quantum full-information BA protocol to a classical private-channel
BA protocol:

▶ Theorem 1. Given a classical synchronous (resp. asynchronous) non-erasing BA protocol
designed to counter a private-channel Fail-stop (resp. Byzantine) adversary, we can construct a
quantum synchronous (resp. asynchronous) BA protocol capable of handling a full-information
Fail-stop (resp. Byzantine) adversary while maintaining the same levels of resilience, round
complexity, and communication complexity.

It is crucial to emphasize that the theorem we present is applicable under the condition
that the classical protocol forming the foundation of our quantum protocol is non-erasing,
which means its security does not rely on the erasure of intermediate states. To the
best of our knowledge, this criterion is met by all existing classical protocols within the
scope of information-theoretic BA with probability one. For a more detailed definition
of this concept, please refer to Definition 3 in Section 4 where we will provide a formal
explanation. Furthermore, throughout our paper, we consistently assume that the adversary
is computationally unlimited and adaptive1, allowing it to modify its strategy based on the
information acquired during the execution of the protocol.

By applying our reduction, we obtain several new quantum advantages related to round
complexity in the full-information setting. As summarized in Table 1, our main result enables
us to quantize existing classical private-channel protocols into some quantum full-information
protocols of which the round complexity surpasses the classical lower bound in the same
setting. In particular, we obtain two new quantum speedups in the asynchronous model:

Fail-stop model: Section 14.3 of [3] presents a constant-round classical BA protocol
with optimal resilience t < n/2 against the Fail-stop adversary in the private-channel
setting. By applying our reduction, we obtain a constant-round quantum full-information
BA protocol with t < n/2, while any classical full-information protocol requires Ω(n)
rounds [2].

1 Similar reductions can also be made from the quantum non-adaptive full-information model to the
classical non-adaptive private-channel model.

DISC 2024



32:4 Quantum Byzantine Agreement Against Full-Information Adversary

Byzantine model: For any ϵ > 0, [4] presents an O(1/ϵ)-round classical BA protocol
with resilience t < n/(3+ ϵ) against the private-channel Byzantine adversary. By applying
our reduction, we obtain an O(1/ϵ)-round quantum full-information BA protocol with
resilience t < n/(3 + ϵ). When ϵ is a constant independent of n, the quantum BA achieves
constant rounds, while any classical full-information protocol requires Ω(n) rounds [2].
When ϵ ≤ 1/n, ⌈n/(3 + ϵ)⌉ = ⌈n/3⌉, which indicates that t < n/(3 + ϵ) is equivalent to
t < n/3. By substituting ϵ = 1/n into O(1/ϵ), we find that our quantum BA requires
O(1/ϵ) = O(n) rounds. In comparison, the best known classical protocol [26] in the same
setting requires Õ(n12) rounds.

1.2 Technical Overview
We briefly explain the key ideas behind Theorem 1, especially how to quantize a classical
protocol into a quantum one and how to simulate a quantum full-information adversary
in the classical setting. The key idea is utilizing quantum superpositions to turn exposed
randomness into hidden randomness.

A simple motivating example. Before introducing the complicated quantum full-information
BA protocol against the Byzantine adversary, [7] first presents a simple quantum full-
information BA protocol against the Fail-stop adversary, who can corrupt players by halting
it and choosing a subset of their messages to be delivered. This simple protocol follows
a common framework of reducing a BA protocol to a common-coin protocol, where all
uncorrupted players need to output a common random coin with constant success probability.
We will use the common-coin protocol, as demonstrated in the BA protocol against the
Fail-stop adversary in [7], as a motivating example to explain the key idea of our paper. The
common-coin protocol works in the quantum full-information setting and draws inspiration
from a common-coin protocol in the classical private-channel setting [16]. In the following
discussion, we will start by offering a brief overview of the classical private-channel protocol
in [16] and explaining its limitations when confronted with a full-information adversary. We
then explain how [7] effectively resolve this issue by leveraging quantum principles.

The classical private-channel protocol in [16] works as follows: (i) Each player i picks
a random coin ci ∈ {0, 1} and a random leader value li ∈ [n3] and then multicasts (ci, li);
(ii) Each player i outputs the coin cj such that lj is the largest leader value i receives. A
private-channel Fail-stop adversary learns nothing about the values of {ci} and {li}, so the
best it can do is to randomly stop t players. Since there are at least n− t > n/2 uncorrupted
players, the largest leader falls among uncorrupted players with probability 1/2, and the
probability of collision of leader values is negligible. Switching to full-information adversary,
{ci} and {li} become known to the adversary. Then the adversary can corrupt the leader and
let only a subset of players receive the leader’s message so that it can break the common-coin
protocol. However, [7] shows that the problem can be fixed if we allow quantumness. Instead
of choosing random ci and li, we let player i purify randomness, i.e, preparing two n-qudit
superposition states

|ci⟩ := 1√
2

(|00 · · · 0⟩ + |11 · · · 1⟩) and |li⟩ := 1√
n3

n3∑
l=1

|l, l, . . . , l⟩ ,

and then distribute the n qudits of |ci⟩ and |li⟩ among the players. In the next round, the
players measure the qudits they receive and obtain the classical random coins and leader
values. Although the full-information adversary can see the pure state of the system, quantum
mechanics prevents it from knowing the random values before measurement. Thus this simple
purified quantum protocol works against the full-information adversary.



L. Li, X. Sun, and J. Zhu 32:5

Generalized reduction in the synchronous model. Inspired by the above example, we give
a general reduction from quantum full-information BA protocols to classical private-channel
BA protocols. For any classical BA protocol PC , the local computation of each player at
round k involves (i) preparing some randomness rk, and (ii) computing a function f to
determine the decided value and messages to be sent. We construct a quantum protocol PQ

by modifying PC ’s local computation to (i) preparing a quantum state
∑

r

√
Pr[rk = r] |r⟩,

(ii) applying a unitary Uf to compute f reversibly i.e., Uf |v⟩ |0⟩ := |v⟩ |f(v)⟩ and send
quantum messages.

We assume that the output of f contains a variable dk ∈ {0, 1,⊥} indicating the decided
value at round k (⊥ if not decided yet). The player in PQ will measure the corresponding
quantum register of dk and decide if dk ̸=⊥. In addition, to prevent a communication blowup,
we also assume the output of f includes the message pattern bk ∈ {0, 1}n where the j-th bit
bk[j] indicates whether to send message to player j. PQ will measure the register of bk and
send messages only to players with bk[j] = 1.

Security analysis. To prove that PQ is secure against a quantum full-information adversary,
we follow the argument that given any quantum full-information adversary AQ attacking PQ,
we can construct a classical adversary AC in the private-channel model that perfectly simulates
(PQ,AQ) when interacting with PC . However, one may question why this simulation is
possible since AQ is apparently more powerful than AC in two aspects:
1. AQ is full-information while AC is private-channel.
2. AQ is quantum while AC is classical.

For the first problem, observe that the randomness of PQ comes solely from players’
measurement results of {bk} and {dk}, of which the corresponding classical variables in PC

are also available to AC .2 The pure state view of PQ is fully determined by {bk} and {dk},
so actually AQ knows no more than AC about the state of the system.

For the second problem, we first consider the Fail-stop adversary case to demonstrate
why it is not a concern. The ability of a Fail-stop adversary AQ is to halt players and choose
a subset of their messages to be delivered, which is essentially classical. Thus AC can easily
simulate those actions.

The Byzantine case is trickier because a Byzantine adversary AQ can apply quantum
operations on the registers of corrupted players. In this case, we let AC classically simulate3

a quantum state on the registers of corrupted players in order to keep track of AQ’s actions.
Moreover, when corrupted players (controlled by AC) send messages to uncorrupted players,
they cannot simply transmit quantum messages in the manner AQ does because players
in PC are not equipped to receive quantum information. To circumvent this challenge, we
let corrupted players first measure the messages and then send the measurement outcomes,
which are classical, to the uncorrupted players. Intuitively, measuring those messages will
not affect the simulation because uncorrupted players always keep a copy of messages they
receive. After a quantum message is sent to a uncorrupted player, corrupted players are
unable to reobtain it, resulting in the message being traced out from the corrupted players’
system, which is equivalent to being measured. There is still one caveat in the simulation
of AQ by AC : because AQ is adaptive, it can corrupt new players during the protocol and

2 Private-channel AC knows message patterns by definition. We can also assume AC knows the decided
values of players because if a uncorrupted player decides in a BA protocol, all other uncorrupted players
will eventually decide the same value.

3 We assume the adversary is computationally unbounded.

DISC 2024



32:6 Quantum Byzantine Agreement Against Full-Information Adversary

reobtain the quantum messages sent to them previously, while AC will only obtain collapsed
classical messages when corrupting new players. To fix this, we let AC maintain a copy T
of the communication transcript between uncorrupted players and corrupted players. By
following this approach, when AC corrupts some new players, it can replicate the necessary
quantum states as per the content stored in T . In this way, AC can perfectly simulate AQ

in the classical setting.

Round and communication complexity. Our construction of AC actually yields a stronger
result: the probability distribution of executions in (PQ,AQ) is identical to that of executions
in (PC ,AC). This leads to the conclusion presented in Theorem 1.

Extending to the asynchronous model. Our results in the synchronous model can be
extended to the asynchronous model without extra effort. The primary distinction lies in the
measurement metric used; while synchronous protocols are evaluated in rounds, asynchronous
protocols are evaluated in terms of steps. In one step, only one uncorrupted player receives
a message, then performs local computation and possibly sends out messages. It is still
feasible to purify the randomness, perform reversible computation in each step, and develop
a quantum full-information protocol.

Although our results are inspired by the Fail-stop protocol in [7], our techniques are new
compared with [7], especially in the Byzantine model. In the Byzantine model, [7] involves
an intricate procedure of modifying the original classical protocol by replacing its classical
verifiable secret sharing (VSS) component with a quantum VSS. In contrast, our approach
focuses on demonstrating the efficacy of extracting purified classical randomness, a feature
that is applicable to any classical protocol exhibiting a non-erasing property. Therefore, we
expect our technique to have a broader range of applications.

2 Related Work

We address the construction of a quantum full-information protocol from a classical private-
channel protocol. In this section, we discuss existing results in closely related contexts and
provide a brief overview of their techniques.

BA protocols with private channels. The private-channel model is frequently studied
in BA problems. In this model, the adversary is unable to access the contents of the
messages exchanged between the participating players. A seminal work [19] presents a
synchronous BA protocol that can withstand up to t < n/3 failures and operates within an
expected constant number of rounds. Additional randomized protocols [35, 11] addressing
scenarios where n/3 ≤ t < n/2 are known, which require extra assumptions like a public-
key infrastructure and a trusted dealer. Due to their dependency on these supplementary
assumptions, these protocols cannot be adapted to the information-theoretic setting. In the
information-theoretic setting, [3] presents an asynchronous BA protocol that can withstand
up to t < n/2 failures while maintaining a constant running time, particularly effective
against the Fail-stop adversary. For the Byzantine adversary, [1] introduces a concept called
shunning verifiable secret sharing and gives an asynchronous BA protocol with optimal
resilience t < n/3 and O(n2) running time, which is later improved to O(n) by [4].

The full-information model. The full-information model, as introduced by [8], serves as
a framework for investigating collective coin-flipping within a network of n players with t

failures. This model has spurred a series of research efforts aimed at enhancing fault tolerance



L. Li, X. Sun, and J. Zhu 32:7

and reducing round complexity in protocols such as those proposed by [34] and [18]. [23]
considers the problem of multiparty computation in the full-information model. [27] gives
the first asynchronous leader election protocol in the full information model with constant
success probability against a constant fraction of corrupted players. Asynchronous BA in the
full-information model used to require exponential time to be solved with linear resilience
[6, 10], which is recently improved to polynomial time by a sequence of works [29, 25, 26].

Quantum Byzantine protocols. Besides the work of [7], many works have applied quantum
principles to Byzantine fault tolerance problems, which has led to significant advancements in
the field. A key contribution is made by [20], who introduces quantum elements to Byzantine
problems by addressing a weaker version called Detectable Byzantine Agreement (DBA).
Their protocol involves three parties and is based on the Aharonov state. Building upon this
work, [22] proposes a 3-party DBA protocol utilizing four-particle entangled qubits. Further
research by [21] shows that the DBA protocol can reach any tolerance found. Other variants
of the problem setting [15, 30, 33] are considered to ensure feasibility of the problem against
strong Byzantine adversaries. It is also worth mentioning that a recent work [24] improves
the communication complexity of the synchronous Fail-stop protocol of [7] from O(n2) to
O(n1+ϵ) for any constant ϵ > 0 while maintaining constant running time.

3 Preliminaries

3.1 Quantum Computation
In this section, we will briefly discuss quantum computation. For a more in-depth explanation,
readers are encouraged to refer to [31].

In quantum computing, a qubit serves as the fundamental unit of quantum information,
analogous to a classical bit. A pure quantum state in a quantum system comprising n qubits,
is represented by a unit-length vector in the 2n-dimensional Hilbert space. A commonly used
basis of the space is the computational basis {|i⟩ = |i1, i2, . . . , in⟩ : i1, . . . , in ∈ {0, 1}}. Then
any pure state |ψ⟩ can be expressed as

∑2n−1
i=0 αi |i⟩ , where αi are complex numbers known

as amplitudes, satisfying the condition
∑

i |αi|2 = 1. A mixed quantum state, also known as
a density matrix, represents a probability mixture of pure states. If a quantum system is in
state |ψi⟩ with probability pi, then its density matrix ρ :=

∑
i pi |ψi⟩ ⟨ψi| where ⟨ψi| denotes

the conjugate transpose of |ψi⟩. Any density matrix is Hermitian and trace one. In this
paper, we also use density matrix to describe classical probability distribution: If a random
variable X takes value xi with probability pi, then it can be described by the density matrix∑

i pi |xi⟩ ⟨xi|.
Transformations in an n-qubit quantum system are described by unitary transformations

in the 2n-dimensional Hilbert space. Such a transformation is depicted by a unitary matrix
U , which satisfies UU † = I where † is conjugate transpose and I is identity matrix. If U is
applied to a pure state |ψ⟩, the state becomes U |ψ⟩. If U is applied to a mixed state ρ, the
state becomes UρU †.

Another important operation is quantum measurement. We will only use projective
measurement in our paper. A projective measurement M is described by a collection of
orthogonal projectors {Πi} such that

∑
i Πi = I. When M is applied on a pure state |φ⟩,

it collapses to state 1√
β

Πi |φ⟩ with probability β = ⟨φ| Πi |φ⟩. In the language of density
matrix, we have M(ρ) =

∑
i ΠiρΠi. In particular, the computational basis measurement has

projectors {|i⟩ ⟨i| : 0 ≤ i < 2n}. If a quantum state
∑

i αi |i⟩ is measured in computational

DISC 2024



32:8 Quantum Byzantine Agreement Against Full-Information Adversary

basis, it collapses to state |i⟩ with probability |αi|2. Measurement can also be conducted on
a portion of the system or on select qubits within the system. For instance, the measurement
restricted on the first qubit of a n-qubit system has projectors {|0⟩ ⟨0| ⊗ I2n−1 , |1⟩ ⟨1| ⊗ I2n−1}
where I2n−1 is the identity operator on the last n− 1 qubits.

3.2 Byzantine Agreement Problem
In a Byzantine agreement problem, n distinct players labeled from 1 to n need to reach a
decision on the value of a bit. Each player i inputs a bit xi ∈ {0, 1} and must decide an
output bit in {0, 1} that satisfies the following conditions:
1. Agreement: All uncorrupted players decide the same value.
2. Validity: If all xi are the same bit y, then all uncorrupted players decide y.
3. Termination: All uncorrupted players terminate with probability 1.
The problem was introduced by Pease, Shostak and Lamport [32] in 1980. One can consider
different network models, models of inter-player communication, models of local computation,
and fault models. In this paper, the following models are of interest.

Network Models. We will consider both synchronous network, where all messages are
guaranteed to be delivered within some known time ∆ from when they are sent, and
asynchronous network where messages may be arbitrarily delayed.
Models of Inter-player Communications. Every two players are connected by a
transmit reliable4 channel. We consider two different communication paradigms: classical
and quantum. In the classical model, players can communicate classical messages, while
in the quantum model, they can communicate quantum messages.5
Models of Local Computation. In the field of Byzantine protocols, there is a common
tendency to overlook the intricacies of local computations. We assume players have
unbounded computational power and local memory.
Fault models. We model the faulty behavior of the system by an adversary. The
adversary can corrupt participating players and make them deviate from their prescribed
programs. Once a player has been corrupted, it remains corrupted permanently. The
uncorrupted players are referred to as “good” and sometimes the corrupted players are
labeled as “bad”. In our work, we consider the following types of adversarial behavior:

Adaptive. We will consider adaptive adversaries in this paper. An adaptive adversary
corrupts players dynamically based on its current information at any time of the
protocol.
Unbound Computation. Just like good players, the adversary has unlimited
computational power and memory.
Private-channel and Full-information. We will consider both private-channel and
full-information adversaries. An adversary in the private-channel model is characterized
by its lack of adaptation based on the specific contents of messages exchanged within a
system. Essentially, this type of adversary can only discern patterns of communication,
such as the timing and players involved in message exchanges, without access to
the actual message contents. By contrast, a full-information adversary possesses
comprehensive knowledge of all local variables associated with the players involved in
the system. In the context of the quantum model, a full information adversary knows
at each point the exact pure state of the system.

4 Messages will not be corrupted or lost during transmission.
5 Since classical messages can also be encoded by qubits, no additional classical channels are required.



L. Li, X. Sun, and J. Zhu 32:9

Fail-stop and Byzantine. We will consider both Fail-stop and Byzantine adversaries.
The players corrupted by the Fail-stop adversary will no longer take part in the protocol.
We remark that a private-channel Fail-stop adversary cannot read the local memory
of corrupted players.6 However, the players corrupted by a Byzantine adversary can
deviate arbitrarily from the protocol.

We are interested in several metrics that measure the performance of BA protocols:
Resilience: the maximum number of parties that can be corrupted within the protocol.
Round Complexity: Assume there is a virtual “global clock” within the network that
is not accessible to any player. In this context, the term delay refers to the time taken
from sending a message to its reception. The number of rounds7 in an execution refers to
the total execution time divided by the longest message delay. The round complexity of
a protocol P is defined as the maximum expected number of rounds in P’s executions,
considering all inputs and potential adversaries.
Communication Complexity: the maximum expected number of messages sent by
good players throughout the protocol, considering all inputs and potential adversaries.

3.3 Helper lemmas
The following two lemmas will be used, of which the proofs are given in Appendix A.

▶ Lemma 1. Let M be the computational basis measurement of a Hilbert space H. Then M
commutes with
1. any permutation unitary U acting on H;
2. any orthogonal projector Π on H in computational basis.

▶ Lemma 2. Let G be good players’ registers, B be bad players’ registers. Initially G and B
are independent and then they make quantum communication for several rounds. Assume G
keeps a local copy of the communication transcript between G and B. Then the pure state of
the system GB can be written as

∑
m αm |m,ϕm⟩G ⊗ |ψm⟩B where |m⟩ are the communication

transcripts, |ϕm⟩ are states of G besides the communication transcripts, and |ψm⟩ are states
of B.

4 Proof of Main Theorem

In this section, we prove our main theorem by giving a general reduction from quantum
full-information BA protocols to classical private-channel protocols.

▶ Theorem 1. Given a classical synchronous (resp. asynchronous) non-erasing BA protocol
designed to counter a private-channel Fail-stop (resp. Byzantine) adversary, we can construct a
quantum synchronous (resp. asynchronous) BA protocol capable of handling a full-information
Fail-stop (resp. Byzantine) adversary while maintaining the same levels of resilience, round
complexity, and communication complexity.

Our reduction requires a “non-erasing” property of classical private-channel protocols:

6 Some BA protocols consider a stronger Fail-stop adversary who can read the memory of corrupted
players, but our Theorem 1 still applies to those protocols because we only require security against a
weaker Fail-stop adversary.

7 In the synchronous model, this definition is equivalent to the number of synchronous rounds during the
execution.

DISC 2024



32:10 Quantum Byzantine Agreement Against Full-Information Adversary

▶ Definition 3 (Non-erasing BA protocol). In the context of a classical BA protocol denoted as
P, each computational step performed by a player can be seen as the evaluation of a function
f(s) where s is the internal state of the player. Consider a modified protocol, denoted as P ′,
which follows the structure of P except that players in P ′ keep a copy of their previous state
s in their local memory subsequent to each evaluation of f(s).

A BA protocol such as P is called non-erasing if the adjusted protocol P ′ maintains the
characteristics of being a BA protocol while preserving the same level of resilience, round and
communication complexity as P.

To the best of our knowledge, this non-erasing property is considered a reasonable
assumption as it is met by all existing protocols within the scope of information-theoretic BA
with probability one, e.g., [16, 19, 3, 4]. Beyond our scope, there exist BA protocols requiring
the ability to securely erase intermediate secrets, often referred to as the memory-erasure
model [17]. Those protocols either rely on cryptographic assumptions [13] or succeed only
with high probability [28].

The rest of this section is to prove Theorem 1. For simplicity, we will only give a full
proof for the synchronous model (Section 4.1) and then briefly discuss how to extend it to
the asynchronous case (Section 4.2).

4.1 Synchronous Model
In this subsection, we prove Theorem 1 for the synchronous model. Without loss of generality,
we assume a synchronous classical non-erasing private-channel BA protocol PC has the
following normal form.

Classical protocol PC . Let k denote the round number, m(i,j)
k denote the message sent from

i to j and m
′(i,j)
k denote a copy of m(i,j)

k to be kept by i, b(i,j)
k ∈ {0, 1} denote the message

pattern which is 1 if m(i,j)
k is non-empty, and d(i) ∈ {0, 1,⊥} denote the decided value of i

(⊥ if not decided yet). We also use m(∗,i)
k to denote the vector

(
m

(1,i)
k ,m

(2,i)
k , . . . ,m

(n,i)
k

)
and m

′(i,∗)
k ,m

(i,∗)
k , b

(i,∗)
k are defined similarly. At round k, player i on input xi executes the

following steps.

PC for player i at round k

1. Receive messages m(∗,i)
k−1 from other players if k > 1.

2. Sample randomness r(i)
k .

3. Compute a function fP : View(i)
k →

(
m

(i,∗)
k ,m

′(i,∗)
k , b

(i,∗)
k , d

(i)
k

)
wherea

View(i)
k :=


(
i, xi, r

(i)
1

)
if k = 1(

View(i)
k−1,m

′(i,∗)
k−1 ,m

(∗,i)
k−1 , r

(i)
k

)
otherwise

.

4. If the decided value d(i)
k ̸=⊥, output value d(i)

k and terminate.b

5. For j ∈ [n], send messages m(i,j)
k to player j if b(i,j)

k = 1.

a Keeping View(i)
k in memory does not lose generality beacuse PC is non-erasing.

b We assume a player decides and terminates at the same time, since otherwise we can always defer
the decision until the player terminates.



L. Li, X. Sun, and J. Zhu 32:11

Then we construct a quantum BA protocol PQ by quantizing PC as follows. The essential
idea is to purify the local randomness, compute everything reversibly, and do as little
measurement as possible. In this way, only a superposition of all possible local information
is revealed to the quantum full-information adversary. Formally,

Quantum protocol PQ. Let k denote the round number, M(i,j)
k ,M′(i,j)

k ,B(i,j)
k ,D(i)

k ,R(i)
k

denote the quantum registers holding the message from player i to player j, the copy of the
message, the message pattern, the decided value of player i, and the randomness of player i
respectively. At round k, player i on input xi executes the following steps.

PQ for player i at round k

1. Receive quantum messages M(∗,i)
k−1 from other players if k > 1.

2. Prepare a quantum state
∑

r

√
Pr[r(i)

k = r] |r⟩ in a new quantum register R(i)
k .

3. Let U (i)
P denote the unitary |v⟩ |y⟩ → |v⟩ |y + fP (v)⟩ which reversibly computes

function fP . Execute UP on register View(i)
k and an empty ancilla register A(i)

k :=(
M(i,∗)

k ,M′(i,∗)
k ,B(i,∗)

k ,D(i)
k

)
where

View(i)
k :=

|i⟩ ⟨i| ⊗ |xi⟩ ⟨xi| ⊗ R(i)
1 if k = 1(

View(i)
k−1,M

′(i,∗)
k−1 ,M

(∗,i)
k−1 ,R

(i)
k

)
otherwise

.

4. Measure register D(i)
k . If the result d(i)

k ̸=⊥, output d(i)
k and terminate.

5. For each j ∈ [n], measure B(i,j)
k . If the result b(i,j)

k = 1, send the M(i,j)
k to player j.

In the rest of this subsection, for both Fail-stop and Byzantine cases, we prove that PQ is
a quantum full-information BA protocol with the same resilience, round and communication
complexity as PC . The proof follows the argument that assuming there is quantum full-
information adversary AQ attacking PQ, we can construct a classical adversary AC in the
private-channel model attacking PC .

4.1.1 Fail-stop adversary
Without loss of generality, we assume the adversary launches attacks at the beginning of
each round for both PC and PQ. The Fail-stop adversary has the ability to adaptively halt
some players and choose only a subset of their messages in this round to be received. Now
consider a quantum full-information Fail-stop adversary AQ attacking PQ, which can be
formalized as follows.

Quantum full-information adversary AQ. Assume AQ samples its randomness rA before
the protocol starts. Then at round k, AQ first chooses the set of corrupted players Sk up to
round k such that |Sk| ≤ t and Sk ⊇ Sk−1, and then AQ decides only a subset of Sk \ Sk−1’s
messages to be sent. Here, we model the message exchanging step as a permutation unitary
Vk which swaps the registers M(i,j)

k and the receiving register of player j for i, j ∈ [n]. Then
AQ’s attack can be modeled by choosing an appropriate Vk. Thus AQ can be viewed as a
function fA : rA,View1,View2, . . . ,Viewk−1 → (Sk, Vk) where Viewj is the pure state view of
the system at round j.

Let bj := (b(1,1)
j , . . . , b

(n,n)
j ) and dj := (d(1)

j , . . . , d
(n)
j ). Observe that the random-

ness of the system comes only from classical variables rA, {bj}, {dj}, so the pure state
Viewk is fully determined by those variables. Thus there exists a function fV such that

DISC 2024



32:12 Quantum Byzantine Agreement Against Full-Information Adversary

fV (rA, b1, d1, b2, d2, . . . , bk, dk) = Viewk. Since the variables {bj} and {dj} in PC are also
available to classical private-channel adversaries, now we construct a classical private-channel
adversary AC attacking PC .

Classical adversary AC in the private-channel model. First sample the same randomness
rA as AQ before the protocol starts. Then at round k, compute its action by the following
steps.
1. For each j ∈ [k − 1], compute quantum state |ψj⟩ := fV (rA, b1, d1, b2, d2, . . . , bj , dj).
2. Compute action (Sk, Vk) := fA (rA, |ψ1⟩ , |ψ2⟩ , . . . , |ψk−1⟩).

Then we prove that AC perfectly simulates the execution of (PQ,AQ) when interacting
with PC , which is characterized by Lemma 5.

▶ Definition 4. A k-round execution E of (PC ,AC) is a sequence
rA, (b1, d1), (b2, d2), . . . , (bk, dk). E is also a k-round execution of (PQ,AQ) since the
pure states of the system at each round can completely determined by E using fV .

▶ Lemma 5. Any k-round execution E occurs in (PQ,AQ) and (PC ,AC) with the same prob-
ability. Furthermore, if the pure state after E in (PQ,AQ) is

∑
u αu |u⟩, then the distribution

of the system’s possible states after E in (PC ,AC) conditioned on E is
∑

u |αu|2 |u⟩ ⟨u|.8

Proof. See Appendix B. ◀

By the above lemma, we have:

▶ Proposition 6. In the synchronous Fail-stop model, given a non-erasing classical private-
channel BA protocol PC , there exists a quantum full-information BA protocol PQ with the
same resilience, round and communication complexity as PC .

Proof. Assuming there exists an adversary AQ that can cause an inconsistent, invalid or
non-terminating execution E in (PQ,AQ) with probability p > 0 by corrupting ≤ t players,
then E also occurs in (PC ,AC) with probability p by Lemma 5, which gives a contradiction.
Thus the resilience of PQ is at least the resilience of PC .

Given an execution E , let |E| be the number of rounds of E , and CC(E) :=∑|E|
k=1

∑
i∈S̄k,j∈[n] b

(i,j)
k denote the number of messages in E . Then by Lemma 5,9

RC(PQ) := max
AQ

E
execution E

Pr[E ∈ (PQ,AQ)] · |E|

= max
AC ∈Q

E
execution E

Pr[E ∈ (PC ,AC)] · |E| ≤ RC(PC),

CC(PQ) := max
AQ

E
execution E

Pr[E ∈ (PQ,AQ)] · CC(E)

= max
AC ∈Q

E
execution E

Pr[E ∈ (PC ,AC)] · CC(E) ≤ CC(PC)

where RC(·) denotes round complexity, CC(·) denotes communication complexity, and Q
denotes the set of classical private-channel adversaries that are constructed from some
quantum full-information adversary in the beyond way. ◀

8 We use density matrix to represent classical probability distribution. See Section 3.1 for details.
9 For simplicity, we can assume players’ input of is chosen by the adversary, so there is no need to take

maximum over the input.



L. Li, X. Sun, and J. Zhu 32:13

4.1.2 Byzantine adversary

For the Byzantine case, we also assume the adversary launches attacks at the beginning
of each round. Unlike the Fail-stop adversary, the Byzantine adversary can manipulate
corrupted players in an arbitrary way. Now consider a quantum full-information Byzantine
adversary AQ attacking PQ, which can be formalized as follows.

Quantum full-information adversary AQ. Assume AQ samples its randomness rA before
the protocol starts. Let Sk denote the corrupted players up to round k such that |Sk| ≤
t, Sk ⊇ Sk−1, and S̄k := [n]\Sk denote good players. Here, we model the message-exchanging
step differently from the Fail-stop case. When player j receives the message from i, the
register M(i,j)

k is simply appended to j’s workspace. Then at round k, AQ acts as follows.
1. First let current corrupted players Sk−1 receive all the messages sent to them.
2. Apply arbitrary quantum operation on Sk−1, which can be decomposed as a unitary

Uk and a measurement operator Mk on the registers of Sk−1 by Stinespring dilation
theorem.10 Let ak denote the measurement outcome.

3. Choose an enlarged set Sk of corrupted players and corrupt Sk \ Sk−1.
4. Apply arbitrary quantum operation on Sk, which can be decomposed as applying a

unitary U ′
k and a measurement operator M′

k on the registers of Sk. Let a′
k denote the

measurement outcome.

We remark that step 4 is necessary because an adaptive adversary can decide to corrupt
a player i and stop (or change) the message just sent by i in step 5 of the previous round.

Similar to the Fail-stop case, the adversary’s operations Uk,Mk, U
′
k,M′

k and the corrupted
set Sk are all functions of randomness rA and the system’s pure states at each step. And the
system’s pure states can be fully determined by classical variables rA, {aj}, {a′

j}, {bj} and
{dj}. Thus we can define two functions gA and fA such that

gA

(
rA, a1, a

′
1, b1, d1, . . . , ak−1, a

′
k−1, bk−1, dk−1

)
= (Uk,Mk), and

fA

(
rA, a1, a

′
1, b1, d1, . . . , ak−1, a

′
k−1, bk−1, dk−1, ak

)
= (Sk, U

′
k,M′

k).

Additionally, we define Φ
(
rA, a1, a

′
1, b1, d1, . . . , ak−1, a

′
k−1, bk−1, dk−1, ak

)
to be the sys-

tem’s pure state right after step 3 of AQ at round k. Then by Lemma 2, we have

Φ
(
rA, a1, a

′
1, b1, d1, . . . , ak−1, a

′
k−1, bk−1, dk−1, ak

)
=

∑
m

αm |m,ϕm⟩S̄k
|ψm⟩Sk

(1)

where |m⟩ are the copy of messages between S̄k and Sk kept by S̄k, |ϕm⟩ are states of S̄k

besides the copy, and |ψm⟩ are states of Sk.
Since classical variables {bk}, {dk} in PC are also available to the adversary in the

private-channel model, we can construct a classical Byzantine adversary AC attacking PC as
follows.

10 Stinespring dilation theorem [14] states that for any quantum operation E , there exists a unitary U and
an environment space E such that E(ρ) = TrE

(
U(ρ⊗ |0⟩ ⟨0|E)U†

)
. The partial trace TrE is equivalent

to measuring E. We can assume players start with large enough empty workspace so there is no need to
append new ancilla space in order to perform U .

DISC 2024



32:14 Quantum Byzantine Agreement Against Full-Information Adversary

Classical adversary AC in the private-channel model. First sample the same randomness
rA as AQ before the protocol starts. During the protocol, AC maintains a communication
transcript T between good players S̄k and bad players Sk. Also, AC classically simulates a
quantum state of the registers of Sk, which is denoted by |φk⟩ after round k. At round k,
AC acts as follows.
1. Let Sk−1 receive all the messages m(∗,Sk−1)

k−1 sent to them and record in T .
2. Compute (Uk,Mk) by gA. Then apply Uk and Mk on |φk−1⟩ ⊗ |m(∗,Sk−1)

k−1 ⟩ and obtain
the measurement outcome ak.

3. Compute (Sk, U
′
k,M′

k) by fA. Corrupt players Sk and update T as the communication
transcript between new sets S̄k and Sk. Then according to T , AC discards old state
|φk−1⟩ and simulates a new state |ψT ⟩ which is defined in Eq. (1).

4. Apply U ′
k and M′

k to |ψT ⟩ and obtain measurement outcome a′
k. Then apply a computa-

tional basis measurement Mmsg on messages to be sent from Sk to S̄k and add those
messages to T . Let |φk⟩ be the pure state after applying U ′

k, M′
k and Mmsg.

▶ Definition 7. A k-round execution E of (PC ,AC) is a sequence rA, (a1, a
′
1, b1, d1), . . .,

(ak, a
′
k, bk, dk). E is also a k-round execution of (PQ,AQ) since the pure states of the system

can be determined by E.

▶ Lemma 8. Any k-round execution E occurs in (PQ,AQ) and (PC ,AC) with the same
probability. Furthermore, if the pure state in (PQ,AQ) after E is |Qk⟩, then the distribution of
system’s state in (PC ,AC) after E is Ck := MS̄k

(|Qk⟩ ⟨Qk|) where MS̄k
is the computational

basis measurement on good players S̄k’s registers.11

Proof. See Appendix C. ◀

By the above lemma, we conclude Theorem 1 for the synchronous Byzantine case, which
can be proven the same way as the Fail-stop case (Proposition 6).

▶ Proposition 9. In the synchronous Byzantine model, given a non-erasing classical private-
channel BA protocol PC , there exists a quantum full-information BA protocol PQ with the
same resilience, round and communication complexity as PC .

4.2 Asynchronous Model
The techniques used in the proof above can be extended to the asynchronous model as
well. However, a key distinction lies in the terminology used to characterize the execution:
while the synchronous model employs “rounds”, the asynchronous model employs “steps”. In
this context, a step involves a single good player receiving only one message, carrying out
computations, and potentially transmitting messages. The order in which players receive
messages is determined by the adversary. For simplicity, we assume that each player initially
receives its input as its first message, and each message contains the sender’s ID.

In alignment with the synchronous model, our approach involves first giving a normal
form to any asynchronous classical non-erasing private-channel BA protocol PC and then
quantizing it into a quantum protocol PQ against the full-information adversary.

11 Density matrix Ck represents a distribution of system’s states with classical S̄k and quantum Sk. It is
classically feasible because Sk’s quantum state is classically simulated, and the correlation between S̄k

and Sk is classical, i.e., there is no quantum entanglement.



L. Li, X. Sun, and J. Zhu 32:15

Classical protocol PC . Each player is activated each time it receives a message. Let π(i)
k

denote the k-th message player i receives, where the first message π(i)
1 is its input xi. The

notations m(i,j)
k ,m

′(i,j)
k , b

(i)
k , d

(i)
k are defined similarly as in synchronous model (Section 4.1).

PC for player i upon receiving the k-th message π
(i)
k

1. Sample randomness r(i)
k .

2. Compute a function fP : View(i)
k →

(
m

(i,∗)
k ,m

′(i,∗)
k , b

(i,∗)
k , d

(i)
k

)
where

View(i)
k :=


(
i, xi, r

(i)
1

)
if k = 1(

View(i)
k−1,m

′(i,∗)
k−1 , π

(i)
k , r

(i)
k

)
otherwise

.

3. If the decided value d(i)
k ̸=⊥, output value d(i)

k and terminate.
4. For j ∈ [n], send messages m(i,j)

k to player j if b(i,j)
k = 1.

Quantum protocol PQ. Each player is activated each time it receives a message. Let Π(i)
k

denote the k-th quantum message player i receives. The notations M(i,j)
k ,M′(i,j)

k ,B(i,j)
k ,D(i)

k

are defined similarly as in synchronous model (Section 4.1). We remark that Π(i)
k is an alias

of register M(j′,i)
k′ for some j′, k′.

PQ for player i upon receiving the k-th message Π(i)
k

1. Prepare a quantum state
∑

r

√
Pr[r(i)

k = r] |r⟩ in a new quantum register R(i)
k .

2. Let U (i)
P denote the unitary |v⟩ |y⟩ → |v⟩ |y + fP (v)⟩ which reversibly computes

function fP . Execute U (i)
P on register View(i)

k and an empty ancilla register A(i)
k :=(

M(i,∗)
k ,M′(i,∗)

k ,B′(i,∗)
k ,D(i)

k

)
where

View(i)
k :=

|i⟩ ⟨i| ⊗ |xi⟩ ⟨xi| ⊗ R(i)
1 if k = 1(

View(i)
k−1,M

′(i,∗)
k−1 ,Π

(i)
k ,R(i)

k

)
otherwise

.

3. Measure register D(i)
k . If the result d(i)

k ̸=⊥, output d(i)
k and terminate.

4. For each j ∈ [n], measure B(i,j)
k . If the result b(i,j)

k = 1, send the M(i,j)
k to player j.

Then we claim that PQ is a quantum BA protocol against the quantum full-information
adversary in the asynchronous model with the same round and communication complexity as
PC . The proof is almost the same as the synchronous case, so we only sketch the proof here.

Assuming there is a quantum full-information Fail-stop (resp. Byzantine) adversary
AQ attacking PQ, we can construct a classical private-channel Fail-stop (resp. Byzantine)
adversary AC attacking PC as in Section 4.1.1 (resp. Section 4.1.2). Then we can define
execution execution in the asynchronous model.

▶ Definition 10 (Informal). A k-step execution E is defined to be a sequence rA, (a1, b1, d1),
(a2, b2, d2), . . . , (ak, bk, dk) where rA is the adversary’s randomness, aj is some classical
information the adversary obtains at step j, bj ∈ {0, 1}n is the message pattern, and
dj ∈ {0, 1,⊥} is the decided value of the player activated at step j.

Then similar to Lemma 5 (resp. Lemma 8), we prove that any execution occurs in
(PQ,AQ) with the same probability.

DISC 2024



32:16 Quantum Byzantine Agreement Against Full-Information Adversary

▶ Lemma 11 (Informal). Any k-step execution E occurs in (PQ,AQ) and (PC ,AC) with the
same probability.

Since the information contained in an execution E fully determines the properties, number
of rounds, and number of messages of the protocol, we can conclude Theorem 1 in the
asynchronous case. This can be proven similarly to the synchronous case (Proposition 6 and
Proposition 9).

▶ Proposition 12. In the asynchronous Fail-stop (or Byzantine) model, given a non-erasing
classical private-channel BA protocol PC , there exists a quantum full-information BA protocol
PQ with the same resilience, round and communication complexity as PC .

Proof of Theorem 1. Theorem 1 can be obtained by integrating the results from Proposi-
tion 6, Proposition 9 and Proposition 12. ◀

5 Discussions

In this paper, we present a general reduction from quantum full-information BA protocols to
classical private-channel BA protocols that preserves resilience, round and communication
complexity. Utilizing this reduction, we make progress towards the open question posed
by [7] of whether quantum BA can achieve O(1) round complexity and optimal resilience
t < n/3 simultaneously in the asynchronous full-information model. We show that O(1)
round complexity and suboptimal resilience t < n/(3 + ϵ) is possible for any constant ϵ > 0.
Our reduction also suggests that designing a better classical private-channel protocol may
finally lead to the resolution of this open question.

There are several interesting directions for future research. Firstly, it would be valuable
to explore whether the reverse of our reduction is possible, i.e., whether any quantum
full-information BA protocol can be converted to a classical private-channel BA protocol
without compromising key attributes like resilience. Existing techniques in this paper do not
apply due to the ability of good players to employ quantum operations. Secondly, it is worth
considering the potential generalization of our results to less strict models, such as BA that
terminates only with high probability [12, 28], or BA that requires erasing intermediate states
[28, 13]. Thirdly, it is worthwhile to explore the potential for developing BA protocols with
improved performance by granting quantum players the ability to utilize private memory,
thereby shifting the adversary from a position of full-information to one of limited knowledge.
This model presents an intriguing opportunity for innovation, especially considering the
existence of quantum key distribution in such a framework [9]. Finally, while our primary
focus is on addressing the BA problem as it stands as a fundamental challenge in this field, we
anticipate that our methods can also be applied to other fault-tolerant distributed computing
tasks like coin toss and leader election.

References
1 Ittai Abraham, Danny Dolev, and Joseph Y Halpern. An almost-surely terminating polynomial

protocol for asynchronous byzantine agreement with optimal resilience. In Proceedings of the
Twenty-seventh ACM symposium on Principles of Distributed Computing, pages 405–414, 2008.
doi:10.1145/1400751.1400804.

2 Hagit Attiya and Keren Censor. Tight bounds for asynchronous randomized consensus. Journal
of the ACM (JACM), 55(5):1–26, 2008. doi:10.1145/1411509.1411510.

3 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2004.

https://doi.org/10.1145/1400751.1400804
https://doi.org/10.1145/1411509.1411510


L. Li, X. Sun, and J. Zhu 32:17

4 Laasya Bangalore, Ashish Choudhury, and Arpita Patra. Almost-surely terminating asynchron-
ous byzantine agreement revisited. In Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, pages 295–304, 2018. URL: https://dl.acm.org/citation.cfm?
id=3212735.

5 Ziv Bar-Joseph and Michael Ben-Or. A tight lower bound for randomized synchronous
consensus. In Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’98, pages 193–199, New York, NY, USA, 1998. Association for
Computing Machinery. doi:10.1145/277697.277733.

6 Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols (extended abstract). In Robert L. Probert, Nancy A. Lynch, and Nicola Santoro,
editors, Proceedings of the Second Annual ACM Symposium on Principles of Distributed
Computing, Montreal, Quebec, Canada, August 17-19, 1983, pages 27–30. ACM, 1983. doi:
10.1145/800221.806707.

7 Michael Ben-Or and Avinatan Hassidim. Fast quantum byzantine agreement. In Proceedings
of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’05, pages
481–485, New York, NY, USA, 2005. Association for Computing Machinery. doi:10.1145/
1060590.1060662.

8 Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and minima
of banzhaf values. In 26th Annual Symposium on Foundations of Computer Science (SFCS
1985), pages 408–416, 1985. doi:10.1109/SFCS.1985.15.

9 Charles H Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and
coin tossing. Theoretical Computer Science, 560:7–11, 2014. doi:10.1016/j.tcs.2014.05.025.

10 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987. doi:10.1016/0890-5401(87)90054-X.

11 Gabriel Bracha. An O(log n) expected rounds randomized byzantine generals protocol. J.
ACM, 34(4):910–920, October 1987. doi:10.1145/31846.42229.

12 Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the
Twenty-fifth Annual ACM Symposium on Theory of Computing, pages 42–51, 1993. doi:
10.1145/167088.167105.

13 Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci., 777:155–183, 2019. doi:10.1016/j.tcs.2019.02.001.

14 Man-Duen Choi. Completely positive linear maps on complex matrices. Linear Algebra and
its Applications, 10(3):285–290, 1975.

15 Vicent Cholvi. Quantum byzantine agreement for any number of dishonest parties. Quantum
Information Processing, 21(4):151, 2022. doi:10.1007/s11128-022-03492-y.

16 Benny Chor, Michael Merritt, and David B Shmoys. Simple constant-time consensus protocols
in realistic failure models. Journal of the ACM (JACM), 36(3):591–614, 1989. doi:10.1145/
65950.65956.

17 Thaddeus Dryja, Quanquan C Liu, and Neha Narula. A lower bound for byzantine agree-
ment and consensus for adaptive adversaries using vdfs. arXiv preprint arXiv:2004.01939,
abs/2004.01939, 2020. arXiv:2004.01939, doi:10.48550/arXiv.2004.01939.

18 U. Feige. Noncryptographic selection protocols. In 40th Annual Symposium on Foundations
of Computer Science (Cat. No.99CB37039), pages 142–152, 1999. doi:10.1109/SFFCS.1999.
814586.

19 Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous
byzantine agreement. SIAM Journal on Computing, 26(4):873–933, 1997. doi:10.1137/
S0097539790187084.

20 Matthias Fitzi, Nicolas Gisin, and Ueli Maurer. Quantum solution to the byzantine agreement
problem. Phys. Rev. Lett., 87:217901, November 2001. doi:10.1103/PhysRevLett.87.217901.

21 Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein, and Adam Smith. Detect-
able byzantine agreement secure against faulty majorities. In Proceedings of the Twenty-First

DISC 2024

https://dl.acm.org/citation.cfm?id=3212735
https://dl.acm.org/citation.cfm?id=3212735
https://doi.org/10.1145/277697.277733
https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/1060590.1060662
https://doi.org/10.1145/1060590.1060662
https://doi.org/10.1109/SFCS.1985.15
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1145/31846.42229
https://doi.org/10.1145/167088.167105
https://doi.org/10.1145/167088.167105
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1007/s11128-022-03492-y
https://doi.org/10.1145/65950.65956
https://doi.org/10.1145/65950.65956
https://arxiv.org/abs/2004.01939
https://doi.org/10.48550/arXiv.2004.01939
https://doi.org/10.1109/SFFCS.1999.814586
https://doi.org/10.1109/SFFCS.1999.814586
https://doi.org/10.1137/S0097539790187084
https://doi.org/10.1137/S0097539790187084
https://doi.org/10.1103/PhysRevLett.87.217901


32:18 Quantum Byzantine Agreement Against Full-Information Adversary

Annual Symposium on Principles of Distributed Computing, PODC ’02, pages 118–126, New
York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/571825.571841.

22 Sascha Gaertner, Mohamed Bourennane, Christian Kurtsiefer, Adán Cabello, and Harald
Weinfurter. Experimental demonstration of a quantum protocol for byzantine agreement and
liar detection. Phys. Rev. Lett., 100:070504, February 2008. doi:10.1103/PhysRevLett.100.
070504.

23 Oded Goldreich, Shafi Goldwasser, and Nathan Linial. Fault-tolerant computation in the
full information model. SIAM Journal on Computing, 27(2):506–544, 1998. doi:10.1137/
S0097539793246689.

24 Mohammadtaghi Hajiaghayi, Dariusz Rafal Kowalski, and Jan Olkowski. Brief announcement:
Improved consensus in quantum networks. In Proceedings of the 2023 ACM Symposium on
Principles of Distributed Computing, pages 286–289, 2023. doi:10.1145/3583668.3594600.

25 Shang-En Huang, Seth Pettie, and Leqi Zhu. Byzantine agreement in polynomial time with near-
optimal resilience. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, STOC
2022, pages 502–514, New York, NY, USA, 2022. ACM. doi:10.1145/3519935.3520015.

26 Shang-En Huang, Seth Pettie, and Leqi Zhu. Byzantine agreement with optimal resilience via
statistical fraud detection. Journal of the ACM, 71(2):12:1–12:37, 2024. doi:10.1145/3639454.

27 Bruce M. Kapron, David Kempe, Valerie King, Jared Saia, and Vishal Sanwalani. Fast
asynchronous byzantine agreement and leader election with full information. ACM Trans.
Algorithms, 6(4), September 2010. doi:10.1145/1824777.1824788.

28 Valerie King and Jared Saia. Breaking the O(n2) bit barrier: scalable byzantine agreement
with an adaptive adversary. Journal of the ACM (JACM), 58(4):1–24, 2011. doi:10.1145/
1989727.1989732.

29 Valerie King and Jared Saia. Byzantine agreement in expected polynomial time. J. ACM,
63(2), March 2016. doi:10.1145/2837019.

30 Qing-bin Luo, Kai-yuan Feng, and Ming-hui Zheng. Quantum multi-valued byzantine agree-
ment based on d-dimensional entangled states. International Journal of Theoretical Physics,
58(12):4025–4032, 2019. doi:10.1007/s10773-019-04269-3.

31 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information (10th Anniversary edition). Cambridge University
Press, 2016. URL: https://www.cambridge.org/de/academic/subjects/
physics/quantum-physics-quantum-information-and-quantum-computation/
quantum-computation-and-quantum-information-10th-anniversary-edition?format=
HB.

32 Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, April 1980. doi:10.1145/322186.322188.

33 Ramij Rahaman, Marcin Wieśniak, and Marek Żukowski. Quantum byzantine agreement
via hardy correlations and entanglement swapping. Phys. Rev. A, 92:042302, October 2015.
doi:10.1103/PhysRevA.92.042302.

34 Alexander Russell and David Zuckerman. Perfect information leader election in log*n +
O(1) rounds. In 39th Annual Symposium on Foundations of Computer Science, FOCS ’98,
November 8-11, 1998, Palo Alto, California, USA, pages 576–583. IEEE Computer Society,
1998. doi:10.1109/SFCS.1998.743508.

35 Sam Toueg. Randomized byzantine agreements. In Proceedings of the Third Annual ACM
Symposium on Principles of Distributed Computing, PODC ’84, pages 163–178, New York,
NY, USA, 1984. Association for Computing Machinery. doi:10.1145/800222.806744.

https://doi.org/10.1145/571825.571841
https://doi.org/10.1103/PhysRevLett.100.070504
https://doi.org/10.1103/PhysRevLett.100.070504
https://doi.org/10.1137/S0097539793246689
https://doi.org/10.1137/S0097539793246689
https://doi.org/10.1145/3583668.3594600
https://doi.org/10.1145/3519935.3520015
https://doi.org/10.1145/3639454
https://doi.org/10.1145/1824777.1824788
https://doi.org/10.1145/1989727.1989732
https://doi.org/10.1145/1989727.1989732
https://doi.org/10.1145/2837019
https://doi.org/10.1007/s10773-019-04269-3
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://doi.org/10.1145/322186.322188
https://doi.org/10.1103/PhysRevA.92.042302
https://doi.org/10.1109/SFCS.1998.743508
https://doi.org/10.1145/800222.806744


L. Li, X. Sun, and J. Zhu 32:19

A Proofs of helper lemmas

A.1 Proof of Lemma 1
Proof.
1. Since U is a permutation unitary, there exists a permutation π such that U |i⟩ = |π(i)⟩

for any computational basis |i⟩ in H. Given any density matrix ρ =
∑

i,j ρi,j |i⟩ ⟨j| in H,
we have

M(UρU †) = M

∑
i,j

ρi,j |π(i)⟩ ⟨π(j)|


=

∑
k

|k⟩ ⟨k|
∑
i,j

ρi,j |π(i)⟩ ⟨π(j)| |k⟩ ⟨k| =
∑

k

ρk,k |π(k)⟩ ⟨π(k)| ,

UM(ρ)U† = U
∑

k

|k⟩ ⟨k|
∑
i,j

ρi,j |i⟩ ⟨j| |k⟩ ⟨k|U†

= U
∑

k

ρk,k |k⟩ ⟨k|U† =
∑

k

ρk,k |π(k)⟩ ⟨π(k)| .

Thus M(UρU †) = UM(ρ)U †.
2. Since Π is an orthogonal projector in the computational basis, we have Π =

∑
i∈S |i⟩ ⟨i|

for some set S. For any state ρ ∈ H, one can verify that M(ΠρΠ†) = ΠM(ρ)Π†. ◀

A.2 Proof of Lemma 2
Proof. Proof by induction on the number of messages. Initially, G and B are independent, so
the state of GB is |ϕ0⟩G ⊗ |ψ0⟩B. Assuming currently the state of GB is

∑
m αm |m,ϕm⟩G ⊗

|ψm⟩B, consider the next message. First G and B apply a local unitary UG ⊗ UB to generate
messages. Note that UG will not change the previous transcripts |m⟩. Then the state becomes∑

m

αmUG |m,ϕm⟩G ⊗ UB |ψm⟩B =
∑
m

αm |m,ϕ′
m⟩G ⊗ |ψ′

m⟩B .

If the message is sent by G, then the system can be written as∑
m

αm

∑
m′

βm′ |m,m′,m′, ϕ′
m,m′⟩G ⊗ |ψ′

m⟩B

where the second m′ is the message to be sent to B and the first m′ is a copy to be kept
by G. After sending the message, the system becomes∑

m,m′

αmβm′ |m,m′, ϕ′
m,m′⟩G ⊗ |m′, ψ′

m⟩B .

If the message is sent by B, then the system can be written as∑
m

αm |m,ϕm⟩G ⊗
∑
m′

βm′ |m′, ψ′
m,m′⟩B .

After sending the message, the system becomes∑
m,m′

αmβm′ |m,m′, ϕm⟩G ⊗ |ψ′
m,m′⟩B . ◀

DISC 2024



32:20 Quantum Byzantine Agreement Against Full-Information Adversary

B Proof of Lemma 5

Proof. Prove by induction on k. When k = 0, the execution E0 = rA occurs in (PQ,AQ) and
(PC ,AC) both with the probability of rA. Assume the lemma holds for k − 1. Consider a k-
round execution Ek := rA, (b1, d1), (b2, d2), . . . , (bk−1, dk−1), (bk, dk). By inductive hypothesis,
the (k−1)-round prefix Ek−1 := rA, (b1, d1), (b2, d2), . . . , (bk−1, dk−1) occurs with probability p
in both (PQ,AQ) and (PC ,AC), and the state before round k is |Qk−1⟩ :=

∑
u αu |u⟩ and

Ck−1 :=
∑

u |αu|2 |u⟩ ⟨u| for (PQ,AQ) and (PC ,AC) respectively.

Round k of (PQ, AQ). After AQ’s action and players receiving messages, the state of
the system becomes Vk |Qk−1⟩. Then good players first prepare a superposition state |rk⟩
of randomness in a new register Rk and prepare |0⟩ in a new register Ak. Note that here
Rk := (R(1)

k , . . . ,R(n)
k ), Ak := (A(1)

k , . . . ,A(n)
k ) and all other notations without superscript are

defined similarly.
Then the players apply the unitary operator UP := ⊗n

i=1U
(i)
P followed by a measurement

which outputs (bk, dk). The measurement can be viewed as an orthogonal projector Πbk,dk
in

computational basis that projects the quantum state of registers (Bk,Dk) into values (bk, dk).
Then the state after round k becomes

|Qk⟩ := 1√
β

Πbk,dk
UP (Vk |Qk−1⟩ ⊗ |0⟩A ⊗ |rk⟩R)

where β is the probability of getting measurement outcome (bk, dk).

Round k of (PC , AC). The first observation is that Ck can be viewed as first applying
the same operation as (PQ,AQ) and then applying computational basis measurement M on
the whole system:

Ck := M
(

1
β′ Πbk,dk

UPVk (Ck−1 ⊗ |0, rk⟩ ⟨0, rk|AR)V †
k U

†
P Π†

bk,dk

)
where β′ is the probability of getting measurement outcome (bk, dk). The second observation
is that Ck−1 = M′(|Qk−1⟩ ⟨Qk−1|) where M′ denotes the computational basis measurement
in |Qk−1⟩’s space. Then

Ck = M
(

1
β′ Πbk,dk

UPVk (M′ (|Qk−1⟩ ⟨Qk−1|) ⊗ |0, rk⟩ ⟨0, rk|AR)V †
k U

†
P Π†

bk,dk

)
= 1
β′ Πbk,dk

UPVkM (M′ (|Qk−1⟩ ⟨Qk−1|) ⊗ |0, rk⟩ ⟨0, rk|AR)V †
k U

†
P Π†

bk,dk
.

The second equality is because UP , Vk are all permutation unitaries and Πbk,dk
is an orthogonal

projector in computational basis, which all commute with M by Lemma 1. Since M measures
a larger space than M′, M′ can be absorbed into M, i.e., MM′ ≡ M. Thus

Ck = 1
β′ Πbk,dk

UPVkM (|Qk−1⟩ ⟨Qk−1| ⊗ |0, rk⟩ ⟨0, rk|AR)V †
k U

†
P Π†

bk,dk

= M
(

1
β′ Πbk,dk

UPVk (|Qk−1⟩ ⟨Qk−1| ⊗ |0, rk⟩ ⟨0, rk|AR)V †
k U

†
P Π†

bk,dk

)
= β

β′ M (|Qk⟩ ⟨Qk|) .

Finally, we have β = β′ because Ck has trace 1. Thus Ck = M (|Qk⟩ ⟨Qk|) and the probability
of the Ek occurring is pβ for both (PQ,AQ) and (PC ,AC). ◀



L. Li, X. Sun, and J. Zhu 32:21

C Proof of Lemma 8

Proof. Prove by induction on k. The base case k = 0 is trivial. Assume the proposition holds
for k−1. Consider a k-round execution Ek := rA, (a1, a

′
1, b1, d1), . . . , (ak, a

′
k, bk, dk). By induct-

ive hypothesis, the (k−1)-round prefix Ek−1 := rA, (a1, a
′
1, b1, d1), . . . , (ak−1, a

′
k−1, bk−1, dk−1)

occurs with probability p in both (PQ,AQ) and (PC ,AC), and the state before round k is
|Qk−1⟩ and Ck−1 := MSk−1 (|Qk−1⟩ ⟨Qk−1|) for (PQ,AQ) and (PC ,AC) respectively. Since
good players’ messages are fully determined by their local variables, MSk−1 can be restricted
to a measurement M′

Sk−1
which does not measure the messages S̄k−1 are about to send

out, i.e., M(S̄k−1,∗)
k . Then Ck−1 := M′

Sk−1
(|Qk−1⟩ ⟨Qk−1|). In the following, we consider the

evolution of |Qk−1⟩ and Ck−1 in round k.

Step 1 and 2 of the adversary. Both AQ and AC apply Uk and Mk on Sk−1 along with
the messages M(∗,Sk−1)

k−1 sent to them. Since we know Mk will output ak, it can be viewed as
an orthogonal projector Πak

that projects into the space of ak. Since Πak
and Uk act only

on Sk−1’s registers and the messages S̄k−1 will send to Sk−1, they commute with M′
S̄k−1

.
Thus the states of (PQ,AQ) and (PC ,AC) become

|Qk−0.5⟩ := 1
√
γ

Πak
Uk |Qk−1⟩ , and

Ck−0.5 := 1
γ′ Πak

UkCk−1U
†
kΠ†

ak
= 1
γ′ Πak

UkM′
S̄k−1

(|Qk−1⟩ ⟨Qk−1|)U†
kΠ†

ak

= M′
S̄k−1

(
1
γ′ Πak

Uk |Qk−1⟩ ⟨Qk−1|U †
kΠ†

ak

)
= γ

γ′ M′
S̄k−1

(|Qk−0.5⟩ ⟨Qk−0.5|).

where γ and γ′ are probabilites of |Qk−1⟩ and Ck−1 outputting ak. Since Ck−0.5 has trace 1,
we have γ = γ′ and thus Ck−0.5 = M′

S̄k−1
(|Qk−0.5⟩ ⟨Qk−0.5|).

Step 3 of the adversary. Both AQ and AC choose an enlarged set Sk of corrupted players.
This step does not affect the state |Qk−0.5⟩ of (PQ,AQ). By Lemma 2, we have |Qk−0.5⟩ =∑

m αm |m,ϕm⟩S̄k
|ψm⟩Sk

. Since M′
S̄k−1

can be decomposed as M′
S̄k−1

≡ M1 ⊗ M2 ⊗ M3,
where M1 acts on transcript |m⟩, M2 acts on registers of S̄k−1 besides |m⟩, and M3 acts
on registers newly corrupted players Sk \ Sk−1, we have

Ck−0.5 = M′
S̄k−1

(|Qk−0.5⟩ ⟨Qk−0.5|) =
∑

m

|αm|2 |m⟩ ⟨m| ⊗ M2 (|ϕm⟩ ⟨ϕm|) ⊗ M3 (|ψm⟩ ⟨ψm|) .

In step 3 of AC , AC has recorded the transcript m and will discard the old state
M3 (|ψm⟩ ⟨ψm|) and simulate a new state |ψm⟩. After that, the state of (PC ,AC) becomes

C ′
k−0.5 :=

∑
m

|αm|2 |m⟩ ⟨m| ⊗ M2 (|ϕm⟩ ⟨ϕm|) ⊗ |ψm⟩ ⟨ψm| = M′
S̄k

(|Qk−0.5⟩ ⟨Qk−0.5|) .

Note that we use M′
S̄k

to distinguish from operator MS̄k
which also measures the newly

appended registers Ak,Rk, and M(Sk,S̄k)
k−1 of S̄k at round k.

Step 4 of the adversary and good players’ action. Step 4 of AQ applies U ′
k followed by

measurement M′
k which outputs a′

k on Sk’s registers. The measurement can be viewed as a
projector Πa′

k
that projects into the space of a′

k. Then good players apply unitary UP and

DISC 2024



32:22 Quantum Byzantine Agreement Against Full-Information Adversary

projector Πbk,dk
which projects the state of registers (Bk,Dk) into values (bk, dk). Thus the

state of (PQ,AQ) after round k becomes

|Qk⟩ := 1√
β

Πbk,dk
UP

(
Πa′

k
U ′

k |Qk−0.5⟩ ⊗ |0⟩A ⊗ |rk⟩R

)
.

where β is the probability of outputting a′
k, bk, and dk.

Step 4 of AC will additionally apply a measurement Mmsg on messages M(Sk,S̄k)
k−1 sent

from Sk to S̄k. The good players’ action of PC can be viewed as applying the same operation
as PQ and then measuring good players S̄k’s space in computational basis. Thus the state of
(PC ,AC) becomes

Ck := MS̄k

(
1
β′ Πbk,dkUP

(
Mmsg(Πa′

k
U ′

kC
′
k−0.5U

′†
k Π†

a′
k

) ⊗ |0, rk⟩ ⟨0, rk|AR

)
U†

P Π†
bk,dk

)
= MS̄k

(
1
β′ Πbk,dkUP

(
Mmsg(Πa′

k
U ′

kM′
S̄k

(|Qk−0.5⟩ ⟨Qk−0.5|)U ′†
k Π†

a′
k

) ⊗ |0, rk⟩ ⟨0, rk|AR

)
U†

P Π†
bk,dk

)
where β′ is the probability of outputting a′

k, bk, and dk. Similar to Fail-stop case, MS̄k
and

UP Πbk,dk
commute by Lemma 1. M′

S̄k
and Πa′

k
U ′

k also commute because they act on S̄k

and Sk separately. Thus

Ck = 1
β′ Πbk,dkUP MS̄k

MmsgM′
S̄k

(
Πa′

k
U ′

k |Qk−0.5⟩ ⟨Qk−0.5|U ′†
k Π†

a′
k

⊗ |0, rk⟩ ⟨0, rk|AR

)
U†

P Π†
bk,dk

= 1
β′ Πbk,dkUP

(
MS̄k

(Πa′
k
U ′

k |Qk−0.5⟩ ⟨Qk−0.5|U ′†
k Π†

a′
k

) ⊗ |0, rk⟩ ⟨0, rk|AR

)
U†

P Π†
bk,dk

= MS̄k

(
1
β′ Πbk,dkUP

(
Πa′

k
U ′

k |Qk−0.5⟩ ⟨Qk−0.5|U ′†
k Π†

a′
k

⊗ |0, rk⟩ ⟨0, rk|AR

)
U†

P Π†
bk,dk

)
= β

β′ MS̄k
(|Qk⟩ ⟨Qk|) .

where the second equality is because MS̄k
measures a larger space than MmsgM′

S̄k
, thus

MS̄k
MmsgM′

S̄k
≡ MS̄k

.
Finally, since Ck has trace 1, we have β = β′ and thus Ck = MS̄k

(|Qk⟩ ⟨Qk|). The
probability of Ek occurring is pγβ for both cases. ◀



Communication Requirements for Linearizable
Registers
Raïssa Nataf #

Technion, Haifa, Israel

Yoram Moses #

Technion, Haifa, Israel

Abstract
While linearizability is a fundamental correctness condition for distributed systems, ensuring the
linearizability of implementations can be quite complex. An essential aspect of linearizable imple-
mentations of concurrent objects is the need to preserve the real-time order of operations. In many
settings, however, processes cannot determine the precise timing and relative real-time ordering of
operations. Indeed, in an asynchronous system, the only ordering information available to them is
based on the fact that sending a message precedes its delivery. We show that as a result, message
chains must be used extensively to ensure linearizability. This paper studies the communication
requirements of linearizable implementations of atomic registers in asynchronous message passing
systems. We start by proving two general theorems that relate message chains to the ability to
delay and reorder actions and operations in an execution of an asynchronous system, without the
changes being noticeable to the processes. These are then used to prove that linearizable register
implementations must create extensive message chains among operations of all types. In particular,
our results imply that linearizable implementations in asynchronous systems are necessarily costly
and nontrivial, and provide insight into their structure.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases linearizability, atomic registers, asynchrony, message chains, real time

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.33

Funding Yoram Moses is the Israel Pollak academic chair at the Technion. This work was supported
in part by the Israel Science Foundation under grant ISF 2061/19.

Acknowledgements We thank Gal Assa, Naama Ben David, and an anonymous referee for very
useful comments that improved the presentation of this paper. We alone are responsible for any
errors or misrepresentations.

1 Introduction

Linearizability [15] is a fundamental correctness criterion and is the gold standard for concur-
rent implementations of shared objects. Informally, an object implementation is linearizable
if in each one of its executions, operations appear to occur instantaneously, in a way that is
consistent with the execution and the object’s specification. Linearizable implementations
have been developed for a variety of concurrent objects [1, 20, 14] and is also widely used
in the context of state-machine replication (SMR) mechanisms [23, 11, 22]. Understanding
the costs that linearizable implementations imply and optimizing their performance is thus
crucial. Lower bounds on linearizable implementations are rare in the literature. Our paper
makes a significant step towards capturing inherent costs of linearizability in the important
case of linearizable register implementations, and provides a new formal tool for capturing
the necessary structure of communication in register implementations.

© Raïssa Nataf and Yoram Moses;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 33; pp. 33:1–33:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raissa.nataf@cs.technion.ac.il
https://orcid.org/0009-0003-1127-754X
mailto:moses@ee.technion.ac.il
https://orcid.org/0000-0001-5549-1781
https://doi.org/10.4230/LIPIcs.DISC.2024.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


33:2 Communication Requirements for Linearizable Registers

In an execution of a linearizable implementation, the actions performed and values
observed by processes depend on the real-time ordering of non-overlapping operations [15].
However, processes do not have direct access to real time in the asynchronous setting, and
this makes satisfying linearizability especially challenging. The only way processes can obtain
information about the real-time order of events in asynchronous message-passing systems is
via message chains (cf. Lamport’s happens before relation [18]). Roughly speaking, a message
chain connects process i at (real) time t and process j ̸= i at t′ if there is a sequence of
messages starting with a message sent by i at or after t, ending with a message received
by j no later than time t′, such that every message is received by the sender of the following
message in the sequence, before the following message is sent.1 Message chains can be used to
ensure the relative real-time order of events. Moreover, as we formally show, in the absence
of a message chain relating events at distinct processes, there can be no way to tell what
their real-time order is. This paper establishes the central role that message chains must
play in achieving linearizability in an asynchronous system.

Registers constitute a central abstraction in distributed computing. In their seminal
paper [4], Attiya, Bar-Noy and Dolev provide a linearizable implementation of single-writer
multi-reader (SWMR) registers in an asynchronous message passing model where processes
are prone to crash failures. This implementation was extended to the multi-writer multi-
reader (MWMR) case in [19]. Since then, there has been significant interest in implementing
registers in asynchronous message passing models. In [4], quorum systems are used to
guarantee a message chain between every pair of non-overlapping operations. This is costly,
of course, both in communication and in execution time. Is it necessary?

In a linearizable implementation of a MWMR register, every process can issue reads
and writes, and a read should intuitively return the most recent value written. It is to be
expected that a reader must be able to access previous write operations, and especially the
one whose value its read operation returns. But should writing a new value, for example,
require message chains from all previous reads and writes? Must a process that has read a
value communicate this fact to others? Interestingly, we show in this work that typically, the
answer is yes. Moreover, we prove that every operation of a fault-tolerant implementation of
a MWMR register must communicate with a quorum set before it completes.

The main contributions of this paper are
1. We show that in a linearizable implementation of a register in an asynchronous setting,

every operation, regardless of type, might need to have a message chain to arbitrary
operations in the future. Moreover, in an f -resilient implementation, before a process
can complete an operation, it must construct a round-trip message chain interaction with
nodes in a quorum set of size greater than f . These requirements apply to every execution
and thus, provide a natural way for establishing lower bounds on the performance of
register implementations and related applications not only in the worst case, but also
in optimistic executions (a.k.a. fast paths) [22, 17, 10]. We expect this work to serve as
a tool for analyzing the efficiencies of existing implementations and also as a guide for
implementing new linearizable objects in the future.

2. We show these results by formulating and proving two useful and general theorems about
coordination in asynchronous systems. One relates message chains to the ability to delay
particular actions in an execution of an asynchronous system for an arbitrary amount of
time, without the delay being noticeable to any process in the system. The other relates
them to the ability to change the relative real-time order of operations on concurrent
objects in manners that may cause violations of linearizability requirements.

1 A formal definition appears in Section 3.2.



R. Nataf and Y. Moses 33:3

Interestingly, a significant amount of communication in a linearizable implementation is
required for timing purposes, rather than for transferring information about data values. Our
results apply verbatim if message passing is replaced by communication via asynchronous
single-writer single-reader (SWSR) registers or in hybrid models ([2]) for a suitably modified
notion of message chains. They also extend to other variants of linearizability, such as strict
linearizability [3].

This paper is structured as follows: Section 2 presents related work. In Section 3 we
present the model and preliminary definitions and results about message chains, real time
ordering and the local equivalence of runs. In Section 4 we prove a theorem about the
ability to delaying actions in a way that processes cannot notice. This is used in Section 5 to
show that certain operations can be reordered in a run, in a similar fashion. These results,
which can be applied to arbitrary objects, are next used for the study of atomic register
implementations. Section 6 contains definitions of registers and linearization in our setting.
Section 7 provides general results showing the need for message chains between operations in
executions of linearizable register implementations. In Section 8 we show how the presence
of failures combined with the results of the previous sections imply the necessity of using
quorum systems.

2 Related Work

Attiya, Bar-Noy and Dolev’s paper (ABD) [4] shows how to implement shared memory via
message passing in an asynchronous message passing model where processes are prone to
crash failures. Their algorithm (which we shall call ABD) is f -resilient and makes use of
quorum systems. Each write or read operation performs two communication rounds. In each
communication round by p, process p sends messages to all n processes and waits for replies
from n − f processes before it proceeds to the next communication round.

In [10] and [16], Dutta et al. and Huang et al., respectively, consider a model consisting
of disjoint sets of servers, writers and readers and where at least one process can fail (f ≥ 1).
They study implementations of an atomic register where read or write operations are fast,
by which they mean that the operations terminate following a single communication round.
In [10], an SWMR register implementation is provided with fast reads and writes, if the
number of readers is small enough relative to the number of servers and the maximal number
of failures. They also prove that MWMR register implementations with both fast read and
fast writes are impossible. [16] proves that implementations with fast writes are impossible
and by showing under which conditions (on the number of failures) implementations with
fast reads exist. The models of [10, 16] assume crash failures. Our results in Sections 4-7 are
valid both when processes are guaranteed to be reliable (no failures) and in the presence of
crash failures.

In [21] Naser-Pastoriza et al. consider networks where channels may disconnect. As
one of that paper’s main contributions, it establishes minimal connectivity requirements for
linearizable implementations of registers in a crash fault environment where channels can
drop messages. Informally, it is shown that (1) all processes where obstruction-freedom holds
must be strongly connected via correct channels; and (2). If the implementation tolerates
k process crashes and n = 2k + 1, then any process where obstruction-freedom holds must
belong to a set of more than k correct processes strongly connected by correct channels.

The works [6, 8, 9] show that quorum failure detectors, introduced by Delporte-Gallet et
al. in [8], are the weakest failure detectors enabling the implementation of an atomic register
object in asynchronous message passing systems. This class of failure detectors capture
the minimal information regarding failures that processes must possess to in linearizable
implementation of registers.

DISC 2024



33:4 Communication Requirements for Linearizable Registers

Variants of linearizability that differ in the way crashes are handled have been defined in
the context of NVRAMs; see Ben-David et. al [5] for a survey. Another important variant
is strong linearizability, introduced by Golab et. al in [13]. There it is shown that in a
randomized algorithm, executions behave exactly as if using atomic objects if and only if the
implementation is strongly linearizable. It has been shown that registers do not have strongly
linearizable implementations in the message passing model. Our results in Sections 4–6 are
valid in asynchronous models in general and can thus also be used in the analysis and the
study of such variants of linearizability.

3 Model and Preliminary Definitions

3.1 Model
While asynchronous systems are often captured using an interleaving model, we adopt the
asynchronous message passing model from [12], in which several events can take places at
the same time. This facilitates reasoning about the time at which actions and operations
occur, and analyzing the possibility of modifying the timing of some operations while leaving
the timing of other operations unchanged. We briefly describe the model here and refer
the reader to Appendix A for the complete detailed model. The detailed model is required
mainly for the proof of Theorem 6 which is lays the technical basis for most of our analysis.

We consider an asynchronous message passing model with n processes, connected by
a communicated network, modelled by a directed graph where an edge from process i to
process j is called a channel, and denoted by chani,j . The environment, which plays the
role of the adversary, is in charge of scheduling processes, of delivering messages, and of
invoking operations (such as reads, writes etc.) at a process. A run of the system is an
infinite sequence r = r(0), r(1), . . . of global states, where each global state r(m) determines
a local state for each process, denoted by ri(m). We identify time with the natural numbers,
and consider r(m) to be the system’s state at time m in r. For ease of exposition, we assume
that messages along a channel are delivered in FIFO order. Moreover, we assume that the
local state of a process i keeps track of of the events it has been involved in so far: all actions
it has performed, all messages it sent and received, and all operations invoked at i, up to
the current time. Asynchrony of the system is captured by assuming that processes moves,
message deliveries and operation invocation are scheduled in an arbitrary nondeterministic
order. Thus messages can take any amount of time to be delivered, and processes can
refrain from performing moves for arbitrarily long time intervals. We consider actions to be
performed in rounds, where round m occurs between time m and time m + 1. The transition
from r(m) to r(m + 1) is based on the actions performed by the environment and by all
processes that move in round m + 1.

A process i is said to be correct in r if it is allowed to move (by the environment) infinitely
often in r. Otherwise process i is faulty (or crashes) in r. We say that a message µ is lost in r

if it is sent in r and never delivered. A system is said to be reliable if no process ever fails
and no message is ever lost, in any of its runs. Finally, a protocol is said to be f -resilient if
it acts correctly in all runs in which no more than f processes are faulty.

3.2 Message Chains, Real-time Ordering and Local Equivalence
As stated in the introduction, the real-time order of events in a system plays a central
role in linearizable protocols. The main source of information about the order of events in
asynchronous systems are message chains. We denote by θ = ⟨p, t⟩ a process-time pair (or



R. Nataf and Y. Moses 33:5

a node) consisting of the process p and time t. Such a pair is used to refer to the point on p’s
timeline at real time t. We can inductively define a message chain between nodes of a given
run as follows.

▶ Definition 1 (Message chains). There is a message chain from θ = ⟨p, t⟩ to θ′ = ⟨q, t′⟩
in a run r, denoted by θ ⇝r θ′, if
(1a) p = q and t < t′,
(1b) p sends a message to q in round t + 1 of r, which arrives no later than in round t′, or
(2) there exists θ′′ such that θ ⇝r θ′′ and θ′′ ⇝r θ′.

Lamport calls “⇝r” the happens before relation [18]. As we now show, the existence of
message chains indeed implies real-time ordering. We write θ <r θ′ if θ = ⟨p, t⟩ and θ′ = {q, t′}
are nodes in r and t < t′. An immediate implication of Definition 1 is

▶ Observation 2. If θ ⇝r θ′ then θ <r θ′.

Proof. Let θ = ⟨p, t⟩ and θ′ = ⟨q, t′⟩. The proof is by induction on the minimal number of
applications of step (2) in Definition 1 needed to establish that θ ⇝r θ′. If θ ⇝r θ′ by (1a)
then t < t′. Similarly, if it is by (1b), then t < t′ because a message sent in round t + 1
can only arrive in a round t′ ≥ t + 1 > t. Finally, if θ ⇝r θ′ by clause (2), then for some
node θ′′ = ⟨p′′, t′′⟩ we have that θ ⇝r θ′′ and θ′′ ⇝r θ′, where, inductively, t < t′′ and t′′ < t.
It follows that t < t′, as required. ◀

The converse is not true: It is possible for θ to appear before θ′ in real time, without a
message chain between them. As we shall see, however, in the absence of a message chain,
processes will not be able to detect the ordering between the nodes.

Roughly speaking, the information available to a process at a given point is determined
by its local state there. A process is unable to distinguish between runs in which it passes
through the same sequence of local states. We will find it useful to consider when two runs
cannot ever be distinguished by any of the processes. Formally:

▶ Definition 3 (Local Equivalence). Two runs r and r′ are called locally equivalent, denoted
by r ≈ r′, if for every process j, a local state ℓj of j appears in r iff ℓj appears in r′.

Recall that the local state of a process i consists of its local history so far. Consequently, an
equivalent definition of local equivalence is that if two runs are locally equivalent, then every
process starts in the same state, performs the same actions and sends and receives the same
messages, all in the same order, in both runs.

A node θ = ⟨i, t⟩ of i in r is said to correspond to node θ′ = ⟨j, t′⟩ of r′, denoted by θ ∼ θ′,
if i = j (they refer to the same process) and the process has the same local state at both
(i.e., ri(r) = r′

i(t′)). We will make use of the following properties of local equivalence (the
proof of Lemma 4 appears in the Appendix):

▶ Lemma 4. Let r and r′ be two runs such that r ≈ r′. Then
(i) If θ1 ⇝r θ2 then θ′

1 ⇝r′ θ′
2 holds for all nodes θ′

1 and θ′
2 of r′ such that θ1 ∼ θ′

1
and θ2 ∼ θ′

2

(ii) If r is a run of protocol P , then r′ is also a run of P

(iii) A process i fails in r iff it fails in r′, and similarly
(iv) A message µ is lost in r iff the same message is lost in r′

DISC 2024



33:6 Communication Requirements for Linearizable Registers

4 Delaying the Future while Maintaining the Past

We are now ready to state and prove the main theorem that will allow us to capture the subtle
interaction between message chains and the ability to reorder operations in an asynchronous
system.

▶ Definition 5 (The past of θ). For a node θ in a run r, we define pastr(θ) ≜ {θ′ | θ′ ⇝r θ}.

Chandy and Misra have already shown that, in a precise sense, in an asynchronous system,
a process at a given node cannot know about the occurrence of any events except for ones
that appear in its past [7]. Our theorem will show that for any given node θ in a run r

(which we think of as a “pivot node”) all events that occur outside pastr(θ) can be pushed
into the future by an arbitrary amount ∆ > 0, without any node observing the change.

𝜃
𝑗!

𝑗"

𝑗#

𝑟 𝑟!
Δ

𝑗!

𝑗"

𝑗#

𝜇!

𝜇"

𝜇# 𝜇!

𝜇"

𝜇#𝜃 Δ

Δ

Figure 1 Delaying events by ∆ relative to the past of a node θ (the “pivot”).

▶ Theorem 6 (Delaying the future). Fix a run r of a protocol P , a node θ = ⟨i, t⟩, and a delay
∆ > 0. For each process j denote by tj the minimal time l ≥ 0 such that ⟨j, l⟩ ̸⇝r θ (i.e.,
⟨j, tj⟩ is the first point of j that is not in the past of θ in r). Then there exists a run r′ ≈ r

satisfying, for every process j:

rj(m) =
{

r′
j(m) for all m ≤ tj

r′
j(m + ∆) for all m ≥ tj + 1

This theorem lays the technical foundation for most of our analysis in this paper. We
start by providing a sketch of its proof, and follow with the full proof.

Proof sketch. Recall that we are given r, θ and ∆. For every process j there is an earliest
time tj such that ⟨j, tj⟩ /∈ pastr(θ). We now construct a run r′ that agrees with r on all nodes
of pastr(θ). I.e., for every node θ′ = ⟨p, t′⟩ ∈ pastr(θ), then the same actions occur in round t′

on p’s timeline, and rp(t′) = r′
p(t′). Moreover, outside of pastr(θ) the run r′ is defined as

follows. The environment in r′ “puts to sleep” every process j (by performing skipj actions)
for a duration of ∆ rounds starting from round tj + 1 and ending in round tj + ∆. Every
message that, in r, is delivered to j at a round m > tj is delivered ∆ rounds later, i.e., in
round m + ∆, in r′. Similarly, every message sent by i after time ti in r is sent ∆ rounds
later in r′. A crucial property of this construction is that, by definition of ⇝r, if the sending
of a message is delayed by ∆ in r′ – the sending node is not in pastr(θ) – then its delivery is
delayed by ∆ as well. Consequently, every message sent in r′ is delivered at a time that is
greater than the time it is sent, and so r′ is a legal run. What remains is to check that the
run r′ is indeed locally equivalent to r. This careful and somewhat tedious task is performed
in the full proof that follows below. ◀



R. Nataf and Y. Moses 33:7

As illustrated in Figure 1, the run r′ contains a band of inactivity that is ∆ rounds deep
in front of the boundary of pastr(θ). Since ∆ can be chosen arbitrarily, Theorem 6 can be
used to rearrange any activity that does not involve nodes of pastr(θ), even events that may
be very early, to occur strictly after θ in r′. Crucially, no process is ever able to distinguish
among the two runs.

Proof of Theorem 6. To simplify the case analysis in our proof, we define

shift∆[m, tj ] ≜
{

m m ≤ tj

m + ∆ m ≥ tj + 1

Notice that the range of shift∆[m, tj ] for m ≥ 0 is the set of times m′ not in the interval
tj + 1 ≤ m′ ≤ tj + ∆. Moreover, observe that shift∆[m − 1, tj ] = shift∆[m, tj ] − 1 for all
m > 0 such that m ̸= tj + 1. We shall construct a run r′ ≈ r satisfying, for every process j

and all m ≥ 0:
(i) rj(m) = r′

j(shift∆[m, tj ]) for all m ≥ 0, and
(ii) Process j performs the same actions and receives the same messages in round m of r

and in round shift∆[m, tj ] of r′, for all m ≥ 1.

We construct r′ as follows. Both runs start in the same initial state: r′(0) = r(0). Denote
the environment’s action in r in round m by η(r, m) = (η1(r, m), . . . , ηn(r, m)). For every
process j the environment’s actions ηj satisfies ηj(r′, m′) ≜ skipj for all m′ in the range
tj + 1 ≤ m′ ≤ tj + ∆. For all m ≥ 0 we define

ηj(r′, shift∆[m, tj ]) ≜

{
ηj(r, m) if ηj(r, m) ∈ {skipj , movej , invokej(x)}
deliverj(|µ, shift∆[mh, th]|, h) if ηj(r, m) = deliverj(|µ, mh|, h)

As for process actions, for all j and m > 0, if ηj(r′, shift∆[m, tj ]) = movej and
r′

j(m − 1) = rj(m − 1) then j performs the same action αj ∈ Pj(rj(m − 1)) in round
shift∆[m, tj ] of r′ as in round m of r, and otherwise it performs an arbitrary action from
Pj(r′

j(shift∆[m − 1, tj ]) in round shift∆[m, tj ] of r′. Notice that, by definition, all pro-
cesses follow the protocol P = (P1, . . . , Pn) in r′. Moreover, observe the following useful
property of r′:

▷ Claim 7. r′
j(shift∆[m, tj ] − 1) = r′

j(shift∆[m − 1, tj ]) for all m > 0.

Proof. We consider two cases:
m = tj + 1: Observe that r′(tj + ∆ + 1) = r′(tj + ∆) = · · · = r′(tj) since by definition
of the run r′, we have that ηj(r′, m′) = skipj for all tj + 1 ≤ m′ ≤ tj + ∆. So,
r′

j(shift∆[m, tj ] − 1) = r′
j(shift∆[tj + 1, tj ] − 1) = r′

j(tj + 1 + ∆ − 1) = r′
j(tj + ∆) =

r′
j(tj) = r′

j(shift∆[m − 1, tj ]).
0 < m ̸= tj + 1: If m ≤ tj then by definition of shift∆ we have that shift∆[m, tj ] = m

and shift∆[m − 1, tj ] = m − 1 = shift∆[m, tj ] − 1. Similarly, if m > tj + 1 then
shift∆[m, tj ] = m + ∆ and shift∆[m − 1, tj ] = m − 1 + ∆ = shift∆[m, tj ] − 1. In both
cases we obtain that r′

j(shift∆[m, tj ] − 1) = r′
j(shift∆[m − 1, tj ]), as desired. ◁

We are now ready to prove that r′ is a legal run of P satisfying (i) and (ii). We prove
this by induction on m ≥ 0, for all processes j.

Base, m = 0: By definition of r′ we have that r′
j(0) = rj(0).

Step, m > 0: Assume inductively that (i) and (ii) hold for all processes h at all times
strictly smaller than m. We start by establishing:

▷ Claim 8. If a message µ sent by a process h at time mh is delivered to j in round m of r,
then |µ, shift∆[mh, th]| ∈ chanhj at time shift∆[m, tj ] − 1 of r′.

DISC 2024



33:8 Communication Requirements for Linearizable Registers

Proof. Clearly, if µ is delivered to j in round m of r then ηj(r, m) = deliverj(|µ, mh|, h)
for some process h ̸= j and round mh < m. By the inductive assumption for h and
mh < m, we have that µ is sent in round shift∆[mh, th] of r′. In addition, by definition
of r′, for all m′ < shift∆[m, tj ] it holds that ηj(r′, m′) ̸= deliverj(|µ, shift∆[mh, th], h).
So |µ, shift∆[mh, th]| ∈ chanhj at time shift∆[m, tj ] − 1 in r′. ◁

Recall that we have by the inductive assumption that r′
j(shift∆[m − 1, tj ]) = rj(m − 1).

Claim 7 thus implies that

r′
j(shift∆[m, tj ] − 1) = rj(m − 1). (1)

We can now show that (i) and (ii) hold for j and m by cases depending on the environment’s
action ηj(r, m) in round m of r:

ηj(r, m) = skipj : By definition of ηj for r′, we have that ηj(r′, shift∆[m]) = skipj .
So, r′

j(shift∆[m, tj ]) = r′
j(shift∆[m, tj ] − 1) = rj(m − 1), proving (i). Moreover, no

action is performed by j neither in r nor in r′ and no message is delivered to j in either
case, ensuring that (ii) also holds.
ηj(r, m) = invokej(x): In this case, ηj(r′, shift∆[m]) = invokej(x), implying that
r′

j(shift∆[m, tj ]) = rj(m).
ηj(r, m) = movej : In this case, ηj(r′, shift∆[m]) = movej by definition of ηj for r′. By
(1) we have that r′

j(shift∆[m, tj ] − 1) = rj(m − 1). So by definition of r′, process j

performs the same action αj ∈ Pj(rj(m)) in the round shift∆[m, tj ] of r′ as it does in
the round m of r. This also ensures r′

j(shift∆[m, tj ]) = rj(m). In addition, no message
is delivered in round m of r and none is delivered to it in round shift∆[m, tj ] of r′.
ηj(r, m) = deliverj(|µ, mh|, h): In this case, no action is performed by j. By definition,
ηj(r′, shift∆[m, tj ]) = deliverj(|µ, shift∆[mh, th]|, h). Recall that by (1) we have
r′

j(shift∆[m, tj ] − 1) = rj(m − 1). We now show that µ is delivered in r in round m iff
it is delivered in r′ in round shift∆[m, tj ].

If µ is delivered in round m of r then by Claim 8 we have that |µ, shift∆[mh, th]| ∈
chanhj at time shift∆[m, tj ] − 1 in r′ so µ is delivered in round shift∆[m] of r′ as
well.
Otherwise, i.e., µ is not delivered in round m of r. Assume by way of contradiction
that µ is delivered in round shift∆[m, tj ] of r′. So |µ, shift∆[mh, th]| ∈ chanhj at time
shift∆[m, tj ] − 1 in r′ and thus µ is sent in round shift∆[mh, th] < shift∆[m, tj ]
of r′. By the inductive hypothesis, µ is sent in round mh of r . Since µ is not
delivered in round m of r, while ηj(r, m) = deliverj(|µ, mh|), we have that µ is
delivered in some round m′ < m of r. So by Claim 8, µ must be delivered at time
shift∆[m′, tj ] < shift∆[m, tj ] in r′. Hence, |µ, shift∆[mh, th]| /∈ chanhj at time
shift∆[m, tj ]−1 in r′, contradicting the fact that µ is delivered in round shift∆[m, tj ]
of r′.

We thus obtain that rj(m) = r′
j(shift∆[m, tj ]), and that the same actions (none in this

case) and the same messages are delivered in round m of r and in round shift∆[m, tj ]
of r′. ◀

5 Operations

To capitalize on the power of Theorem 6, we now set out to show how operations on distributed
objects can be rearranged while maintaining local equivalence. We consider operations that
are associated with individual processes. An operation O of type O2 starts with an invocation

2 While processes are typically able to perform particular types of operations on concurrent objects,
such as reads, writes, etc., many different instances of an operation may appear in a given run. Every
instance of an operation has a type.



R. Nataf and Y. Moses 33:9

input invokei(O, arg) from the environment to process i, and ends when process i performs
a matching response action returni(O, arg) ∈ Acti. Operation invocations in our model are
nondeterministic and asynchronous – the environment can issue them at arbitrary times.3

Operations can have invocation or return parameters, which appeared as arg in the above
notation. E.g., a write invocation to a register will have a parameter v (the value to be
written), while the response to a read on the register will provide the value v′ being read.

We say that an operation X occurs between nodes θ = ⟨i, t⟩ and θ′ = ⟨i, t′⟩ in r if X’s
invocation by the environment (of the form invokei(·)) occurs in round t in r and process i

performs X’s response action in round t′. In this case we denote X.s ≜ θ and X.e ≜ θ′, and use
tX.s(r) to denote the operation’s starting time t and tX.e(r) to denote its ending time t′. When
the run is clear from the context we do not precise it. An operation O is completed in a run r

if r contains both the invocation and response of O, otherwise O is pending. Observe that in
a crash prone environment, it is not possible to guarantee that every operation completes,
since once a process crashes, it is not able to issue a response.

▶ Definition 9 (Real-time order and concurrency). For two operations X and Y in r we say
that X precedes Y in r, denoted X <r Y, if tX.e(r) < tY.s(r), i.e., if X completes before Y is
invoked. If neither X precedes Y nor Y precedes X, then X and Y are considered concurrent
in r. Finally, X is said to run in isolation in r if no operation is concurrent to X in r.

▶ Definition 10 (Message chains among operations). We write X⇝⇝⇝r Y and say that there is
a message chain between the operations X and Y in r if X.s⇝r Y.e.

Notice that X ⇝⇝⇝r Y does not imply that X happens before Y in real time (i.e., it does not
imply that X <r Y). Rather, it only implies that Y does not end before X starts (i.e., Y ̸<r X).
Moreover, while “⇝r” among individual nodes is transitive, “⇝⇝⇝r” among operations is not.

An operation X of i in the run r is said to correspond to operation X′ of j in r′, denoted
by X ∼ X′, if i = j (they are performed by the same process), X.s ∼ X′.s and X.e ∼ X′.e. Note
that for locally equivalent runs r ≈ r′, for every operation X in r there is a corresponding
operation X′ in r′. In the sequel, we will often refer to corresponding operations in different
runs by the same name. Observe that, by the definition of ⇝⇝⇝r and Lemma 4, if X⇝⇝⇝r Y and
r ≈ r′ then X⇝⇝⇝r′ Y.

We are now ready to use Theorem 6 to show that if a run does not contain a message
chain from one operation to another operation, then operations in the run can be reordered
so that the former operation takes place strictly after the latter one. More formally:

▶ Theorem 11 (Moving one operation ahead of the other). Let X and Y be two operations
in a run r. If Y completes in r and X ̸⇝⇝⇝r Y, then there exists a run r′ ≈ r in which both (i)
Y <r′ X and (ii) X <r′ Z holds for every completing operation Z in r such that X <r Z and
Z ̸⇝⇝⇝r Y.

Proof. Let r′ be the run built in the proof of Theorem 6 wrt. the run r with pivot θ = Y.e

and delay ∆ = tY.e(r) − tX.s(r) + 1. By Theorem 6 we have that r ≈ r′, so each process
performs the same operations and in the same local order. By the assumption, X ̸⇝⇝⇝r Y, i.e.,
X.s ̸⇝r Y.e, so X is moved forward by ∆ while Y happens at the same real time in both r

and r′. We thus have that Y <r′ X because

tX.s(r′) = tX.s(r) + ∆ = tX.s(r) + tY.e(r) − tX.s(r) + 1 = tY.e(r) + 1 = tY.e(r′) + 1 > tY.e(r′).

3 We assume for simplicity that following an invokei, the environment will not issue another invokei to
the same process before i has provided a matching response.

DISC 2024



33:10 Communication Requirements for Linearizable Registers

Finally, let Z be an operation in r such that Z ̸⇝⇝⇝r Y and X <r Z. Since Z ̸⇝⇝⇝r Y, the real times
of both X.e and Z.s in r′ are shifted by ∆ relative to their times in r. Thus, X <r Z implies
that X ends before Z starts in r′ also, i.e., X <r′ Z. ◀

6 Registers and Linearizability

A register is a shared object that supports two types of operations: reads R and writes
W . We focus on implementing a MWMR (multi-writer multi-reader) register, in which
every process can perform reads and writes, in an asynchronous message-passing system.
Simulating a register in an asynchronous system has a long tradition in distributed computing,
starting with the work of [4]. When implementing registers in the message passing model,
one typically aims to mimic the behaviour of an atomic register. A register is called atomic
if its read and write operations are instantaneous, and each read operation returns the
value written by the most recent write operation (or some default initial value if no such
write exists). The standard correctness property required of such a simulation is Herlihy
and Wing’s linearizability condition [15]. Roughly speaking, an object implementation is
linearizable if, although operations can be concurrent, operations behave as if they occur in
a sequential order that is consistent with the real-time order in which operations actually
occur: if an operation O terminates before an operation O′ starts, then O is ordered before O′.
More formally:

We denote by invokei(W, v) the invocation of a write operation of value v at process i and
by returni(W ) the response to a write operation. (Recall that the invocation is an external
input that process i receives from the environment, while the response is an action that i

performs.) Similarly, invokei(R) denotes the invocation of a read operation at process i

and by returni(R, v) the response to a read operation returning value v. We say that an
invocation invokei(·) and a response returni(·) are matching if they both are by the same
process and in addition, they both are invocation and response of an operation of the same
type.

▶ Definition 12 (Sequential History). A sequential history is a sequence H = S0, S1, ... of
invocations and responses in which the even numbered elements S2k are invocations and the
odd numbered ones are responses, and where S2k and S2k+1 are matching invocations and
responses whenever S2k+1 is an element of H.

We use the following notation:

▶ Notation 1. Let H be a sequential history and let X, Y be two operations in H. We denote
X <H Y the fact that X’s response appears before Y’s invocation in H.

▶ Definition 13. An atomic register history is a sequential history H in which every read
operation returns the most recently written value, and if no value is written before the read,
then it returns the default value ⊥.

▶ Definition 14 (Linearization). A linearization of a run r is an atomic register history H

satisfying the following.
The elements of H consist of the invocations and responses of all completed operations
in r, possibly some invocations of pending operations in r, and for each invocation of a
pending operation that appears in H, a matching response.
If X <r Y and the invocation of Y appears in H, then X <H Y.



R. Nataf and Y. Moses 33:11

▶ Definition 15 (Linearizable Protocols). P is a (live) linearizable atomic register protocol
( l.a.r.p.) if for every run r of P :

every operation invoked at a nonfaulty process in r completes, and
there exists a linearization of r as defined above.

Unless explicitly mentioned otherwise, all of the runs r in our formal statements below
are assumed to be runs of an l.a.r.p. P .

7 Communication Requirements for Linearizable Registers

In this section, we study the properties of linearizable atomic register protocols in the
asynchronous message passing model. Since linearizability is local [15], it suffices to focus
on implementing a single register, since a correct implementation will be compatible with
linearizable implementations of other registers and objects. We assume for ease of exposition
that a given value can be written to the register at most once in any given run. (It follows
that if the value v is written in r, we can denote the write operation by W(v)).

We say that an operation X is a v-operation and write Xv if (i) X is a read that returns
value v, or (ii) X is a write operation writing v. In every linearization history of a run r of an
l.a.r.p., a read operation returning a value v ̸= ⊥ must be preceded be an operation writing
the value v. A direct application of Theorem 11 allows us to formally prove that, as expected,
a read operation returning v must receive a message chain from the operation writing v:

▶ Lemma 16. If a read operation Xv in r returns a value v ̸= ⊥ then W(v)⇝⇝⇝r Xv.

Proof. Let r be a run of a l.a.r.p. P , and assume by way of contradiction that there is an
operation Xv with v ̸= ⊥ in r such that W(v) ̸⇝⇝⇝r Xv. Since Xv is assumed to return v, it
completes in r. Applying Theorem 11 wrt. X = Xv and Y = W(v) we obtain a run r′ ≈ r such
that Xv <r′ W(v). By Lemma 4(ii) we have r′ is a run of P as well. It follows that r′ must
have a linearization H. But by linearizability, H must be such that Xv <H W(v). Since v is
written only once, there is no write of v before Xv in H , contradicting the required properties
of a linearization. ◀

Lemma 16 proves an obvious connection: For a value to be read, someone must write
this value, and the reader must receive information that this has occurred. But as we shall
see, linearizability also forces the existence of other message chains; indeed, most pairs of
operations in an execution must be related by a message chain.

A straightforward standard but very useful implication of linearizability for atomic
registers is captured by the following lemma.

▶ Lemma 17 (no a-b-a). Let Xa <r Yb <r Zc be three completing operations in a run r of a
l.a.r.p. P . If a ̸= b then a ̸= c.

Proof. We first show the following claim:

▷ Claim 18. Let Rv be a completing read operation occurring in r and let H be a linearization
of r. Then (i) W(v) <H Rv, and moreover (ii) there is no value v′ ̸= v s.t. W(v) <H W(v′) <H Rv.

Proof. Recall that the sequential specification of a register states that a read must return
the most recent written value. The fact that the value v must have been written implies (i).
The fact that it is the last written value linearized before Rv implies (ii). ◁

DISC 2024



33:12 Communication Requirements for Linearizable Registers

Returning to the proof of Lemma 17, let H be a linearization of r. Clearly, the real time
order requirement of linearizability implies that Xa <H Yb <H Zc. By Claim 18 (i), we have
that W(a) ≤H Xa and W(b) ≤H Yb. Combining these inequalities with Claim 18 (ii), we obtain
that W(a) ≤H Xa <H W(b) ≤H Yb ≤H Zc. If Zc is a write operation then a ̸= c results from
the fact that W(a) <H Zc and that the value a can be written at most once in r. If Zc is
a read operation, then it cannot return a since the value a is not the last written value
before Zc (since W(a) <H W(b)). ◀

Lemmas 16 and 17 explain the second communication round of the ABD algorithm [4], also
known as Write-Back: Roughly speaking, the Write-Back of a read R returning value v

guarantees that the reader knows that for every future read R′, the run will contain a message
chain from W(v) through R to R′.

Based on Theorem 11 and Lemma 17, we are now in a position to prove our most powerful
result about linearizable implementations of atomic registers, which shows that they must
create message chains between operations of all types: Reads to writes, writes to writes,
reads to reads and writes to reads. Intuitively, Theorem 19 shows that if a value b is read,
then every b-operation must be reached by a message chain from all other earlier operations.

▶ Theorem 19 (Linearizability entails message chains). Let Rb be a completing read operation
in r and let Yb be a b-operation that completes in r such that Rb ̸⇝⇝⇝ Yb. Then for every c ≠ b

and operation Xc <r Rb, the run r contains a message chain Xc⇝⇝⇝r Yb.

Proof. Assume by way of contradiction that there is an operation Xc <r Rb such that
Xc ̸⇝⇝⇝r Yb. First notice that all three operations Xc, Yb and Rb complete in r′, since Rb and Yb

complete by assumption and Xc <r Rb. We apply Theorem 11 wrt. X = Xc and Y = Yb

and obtain a run r′ ≈ r such that Yb <r′ Xc. Moreover, since Xc <r Rb, we also have by
Theorem 11 (ii) that Xc <r′ Rb. We thus obtain Yb <r′ Xc <r′ Rb for values b ̸= c. This
contradicts Lemma 17, completing the proof. ◀

Intuitively, Theorem 19 shows that read or write operations involving a value that is
actually read (i.e., returned by a read operation) must receive message chains from practically
all earlier operations. We can show that the same can be true more broadly, e.g., even for a
completing write operation W(v) where v is never read in the run.

▶ Corollary 20. Let Xa <r Yb and assume that Yb completes in r. If Yb runs in isolation in r

and a ̸= b, then Xa⇝⇝⇝r Yb.

Proof. Let r be a run satisfying the assumptions. There exists a run r′ such that (i) r′ is
identical to r up to tY b.e(r) (in particular, r′(m) = r(m) for all 0 ≤ m ≤ tYb.e), and (ii) there
is an invocation of a read operation R in round tYb.e + 1 of r′, at a process i that is nonfaulty
in r′. Since i is nonfaulty, R completes in r′. Moreover, since Yb runs in isolation and R starts
after Yb ends, the value returned by R must be b. We obtain a run r′ in which Yb <r′ Rb and
Xa <r′ Rb with a ̸= b. So by Theorem 19 we have that Xa⇝⇝⇝r′ Yb. Since r′(m) = r(m) for all
0 ≤ m ≤ tYb.e it follows that Xa⇝⇝⇝r Yb, as claimed. ◀

8 Failures and Quorums

By assumption, invocations of reads and writes to a register are spontaneous events, which
is modeled by assuming that they are determined by the adversary (or the environment
in our terminology) in a nondeterministic fashion. Intuitively, in a completing register
implementation, the adversary can at any point wait for all operations to return and then



R. Nataf and Y. Moses 33:13

perform a read. Suppose that this read operation is invoked at time t and that the value
it returns is v. Then, by Theorem 19, the resulting run r must contain message chains
X⇝⇝⇝r W(v) from every operation X that completed before time t to the write operation W(v).
Therefore, before it can complete, every operation X must ensure that message chains from X
to future operations can be constructed. There are several ways to ensure this in a reliable
system. One way is by requiring the process on which X is invoked to construct a message
chain to all other processes before X returns. This essentially requires a broadcast to all
processes that starts after X is invoked. Another way to ensure this is by having every
transaction Y coordinate a convergecast to it from all processes, that is initiated after Y is
invoked. Each of these can be rather costly. A third, and possibly more cost effective way
can be to assign a distinguished coordinator process c for the register object, and ensure
that every operation X creates a message chain to c that is followed by a message chain
back from c to the process invoking X. Notice that none of these strategies can be used in a
system in which one or more processes can crash: After a crash, neither the broadcast nor
the convergecast would be able to complete. Similarly, a coordinator c as described above
would be a single point of failure, and once it crashes no operation could complete.

We now show that in a system in which up to f processes can crash, Theorem 19 implies
that an operation must complete round-trip communications with at least f other processes
before it can terminate. We proceed as follows.

▶ Definition 21. We say that a process p observes a completed operation X in a run r if r

contains a message chain from X.s to ⟨p, tX.e⟩. (The message chain reaches p by the time
operation X completes.) Process p is called a witness for X in r if r contains a message chain
from X.s to X.e that contains a p-node θ = ⟨p, t⟩.

▶ Lemma 22. Let P be an f -resilient l.a.r.p., and let X be a completed operation in a run r

of P . Then more than f processes must observe X in r.

Proof. Assume, by way of contradiction, that no more than f processes observe X in r.
Let r′ be a run of P that coincides with r up to time tX.e, in which all processes that have
observed X fail from round tX.e + 1 (and no other process crashes), in which all operations
that are concurrent with X complete and, after they do, a write operation W(v) (for a value v

not previously written) runs in isolation, followed by a completed read. Since all processes
that observed X in r′ crash before W(v) is invoked, X ̸⇝⇝⇝r′ W(v). The read returns v, and so
Theorem 19 implies that X⇝⇝⇝r′ W(v), contradiction. ◀

We can now show that in f -resilient l.a.r.p.’s, every operation must perform at least one
round-trip communication to all members of a quorum set of size at least f . Formally:

▶ Theorem 23. Let P be an f -resilient l.a.r.p., and let X be a completed operation in a run r

of P . Then r must contain more than f witnesses for X.

Proof. Assume by way of contradiction that there is a run r of P that contains ≤ f witnesses
for X. Notice that for every witness p for X in r there must be a node ⟨p, t⟩ ⇝r X.e. We
apply Theorem 6 to r with pivot X.e and delay ∆ = tX.e − tX.s + 1, to obtain a run r′ ≈ r.
By Lemma 4(iii) the run r′ is a run of P . By choice of ∆, only processes with nodes in
pastr′(X.e) can observe X in r′, so every observer of X must be a witness for X. By construction
pastr(X.e) = pastr′(X.e), and so there are no more than f witnesses for X in r′. It follows
that no more than f processes observe X in r′, contradicting Lemma 22 . ◀

The ABD algorithm requires the number of processes to satisfy n ≥ 2f + 1 [4]. This ensures
that every two sets of n − f processes intersect in at least one process, i.e., each operation
communicates with a quorum set. We remark that although Theorem 23 implies the need to

DISC 2024



33:14 Communication Requirements for Linearizable Registers

communicate with quorum sets, the Write-Back round is not always necessary. If a reader of v

receives message chains from all processes that are in a quorum set that W(v) communicated
with in the first round, then the message chains of Lemma 16 can be guaranteed without
the Write-Back. The algorithm of [10] is based on this type of observation. In addition,
strengthening the results of [21], our work implies that the channels that are shown to exist
in [21] must in fact be used to interact with quorums.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. Journal of the ACM (JACM), 40(4):873–890, 1993. doi:
10.1145/153724.153741.

2 Marcos K. Aguilera, Naama Ben-David, Irina Calciu, Rachid Guerraoui, Erez Petrank, and
Sam Toueg. Passing messages while sharing memory. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, PODC ’18, pages 51–60, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3212734.3212741.

3 Marcos K Aguilera and Svend Frølund. Strict linearizability and the power of aborting.
Technical Report HPL-2003-241, 2003.

4 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing
systems. J. ACM, 42(1):124–142, January 1995. doi:10.1145/200836.200869.

5 Naama Ben-David, Michal Friedman, and Yuanhao Wei. Survey of persistent memory
correctness conditions. arXiv preprint arXiv:2208.11114, 2022. doi:10.48550/arXiv.2208.
11114.

6 François Bonnet and Michel Raynal. A simple proof of the necessity of the failure detector
sigma to implement an atomic register in asynchronous message-passing systems. Information
Processing Letters, 110(4):153–157, 2010. doi:10.1016/j.ipl.2009.11.011.

7 K. M. Chandy and J. Misra. How processes learn. Distributed Computing, 1(1):40–52, 1986.
doi:10.1007/BF01843569.

8 Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos, Petr
Kouznetsov, and Sam Toueg. The weakest failure detectors to solve certain fundamental
problems in distributed computing. In Proceedings of the twenty-third annual ACM symposium
on Principles of distributed computing, pages 338–346, 2004. doi:10.1145/1011767.1011818.

9 Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Andreas Tielmann. The
weakest failure detector for message passing set-agreement. In International Symposium on
Distributed Computing, pages 109–120. Springer, 2008. doi:10.1007/978-3-540-87779-0_8.

10 Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Arindam Chakraborty. How fast can a
distributed atomic read be? In Proceedings of the Twenty-Third Annual ACM Symposium on
Principles of Distributed Computing, PODC ’04, pages 236–245, New York, NY, USA, 2004.
Association for Computing Machinery. doi:10.1145/1011767.1011802.

11 Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin,
and Pierre Sutra. State-machine replication for planet-scale systems. In Proceedings of the
Fifteenth European Conference on Computer Systems, EuroSys ’20, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3342195.3387543.

12 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
Knowledge. MIT Press, Cambridge, Mass., 2003.

13 Wojciech Golab, Lisa Higham, and Philipp Woelfel. Linearizable implementations do not
suffice for randomized distributed computation. In Proceedings of the Forty-Third Annual
ACM Symposium on Theory of Computing, STOC ’11, pages 373–382, New York, NY, USA,
2011. Association for Computing Machinery. doi:10.1145/1993636.1993687.

14 Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. The art of multiprocessor
programming. Newnes, 2020.

https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/3212734.3212741
https://doi.org/10.1145/200836.200869
https://doi.org/10.48550/arXiv.2208.11114
https://doi.org/10.48550/arXiv.2208.11114
https://doi.org/10.1016/j.ipl.2009.11.011
https://doi.org/10.1007/BF01843569
https://doi.org/10.1145/1011767.1011818
https://doi.org/10.1007/978-3-540-87779-0_8
https://doi.org/10.1145/1011767.1011802
https://doi.org/10.1145/3342195.3387543
https://doi.org/10.1145/1993636.1993687


R. Nataf and Y. Moses 33:15

15 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990. doi:
10.1145/78969.78972.

16 Kaile Huang, Yu Huang, and Hengfeng Wei. Fine-grained analysis on fast implementations of
distributed multi-writer atomic registers. In Proceedings of the 39th Symposium on Principles
of Distributed Computing, PODC ’20, pages 200–209, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3382734.3405698.

17 Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data structures.
ACM SIGPLAN Notices, 47(8):141–150, 2012. doi:10.1145/2145816.2145835.

18 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, July 1978. doi:10.1145/359545.359563.

19 N.A. Lynch and A.A. Shvartsman. Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In Proceedings of IEEE 27th International Symposium on
Fault Tolerant Computing, pages 272–281, 1997. doi:10.1109/FTCS.1997.614100.

20 Maged M Michael and Michael L Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing, pages 267–275, 1996. doi:10.1145/248052.248106.

21 Alejandro Naser-Pastoriza, Gregory Chockler, and Alexey Gotsman. Fault-Tolerant Computing
with Unreliable Channels. In Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada,
and Yukiko Yamauchi, editors, 27th International Conference on Principles of Distributed
Systems (OPODIS 2023), volume 286 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 21:1–21:21, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.OPODIS.2023.21.

22 Fedor Ryabinin, Alexey Gotsman, and Pierre Sutra. SwiftPaxos: Fast Geo-Replicated state
machines. In 21st USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24), pages 345–369, Santa Clara, CA, April 2024. USENIX Association. URL: https:
//www.usenix.org/conference/nsdi24/presentation/ryabinin.

23 Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: a
tutorial. ACM Comput. Surv., 22(4):299–319, December 1990. doi:10.1145/98163.98167.

A Detailed Model

Our model is based on the asynchronous message passing model of Fagin et al. [9]. We
consider a set Π of n processes. connected via a communication network Net, defined by
a directed graph (Π, E). Every edge (i, j) ∈ E is associated with a channel, and denoted
by chanij , consisting of a set of records of the form |µ, t|. Such a record represents the fact
that µ was sent by i to j in round t and is still in transit (i.e., it has not been delivered
yet). In addition to the processes, the environment (denoted by e) models what is commonly
referred to as the adversary.

Actions: For i ∈ Π, the set of actions Acti it can perform consists of local actions αi

(possibly including a no_opi action) and message send actions of the form sendi(µ, j).
The environment actions will play the role of determining when messages are delivered,
when processes are scheduled to move and external inputs to individual processes. Thus,
an environment action αe is a tuple η⃗ = ⟨η1, ..., ηn⟩ containing a component ηi for every
process i. Each ηi is either movei, skipi, invokei(x), or deliveri(|µ, t|, j) for some
message µ and process j ̸= i. The movei action means that i performs an action according
to its protocol as defined below; skipi means that i is ignored in the current round;
invokei(x) means that i will receive the external input x, while deliveri(|µ, t|, j) means
that i will receive the message µ from j, provided that this message is in transit, and is
the next message to be delivered in FIFO order.

DISC 2024

https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3382734.3405698
https://doi.org/10.1145/2145816.2145835
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/FTCS.1997.614100
https://doi.org/10.1145/248052.248106
https://doi.org/10.4230/LIPIcs.OPODIS.2023.21
https://www.usenix.org/conference/nsdi24/presentation/ryabinin
https://www.usenix.org/conference/nsdi24/presentation/ryabinin
https://doi.org/10.1145/98163.98167


33:16 Communication Requirements for Linearizable Registers

States: The local state of a process at any given point is its local event history hi,
containing an initial value and a sequence of local events: all the messages i received,
external inputs and all the actions i performed, all arranged in the order in which i

observed them. The local state of the environment contains the complete record of
all actions performed so far, as well as the current contents of chanij for all network
edges (i, j) ∈ E. A global state is a tuple g = (ℓe, ℓ1, . . . , ℓn) containing a state for the
environment and a state for each one of the processes. An initial global state is one in
which all local states contain only the initial values.
Protocols: A protocol Pi associates a nonempty set of actions (of Acti) with every local
state of the process i. If Pi(ℓi) = S, then the action performed by i when scheduled to
move in state ℓi will be one of the elements of S. A protocol for the processes has the
form P = (P1, . . . , Pn), and it associates a protocol Pi with every process i ∈ Π.
Environment Protocol: The environment’s protocol, which we denote by P a

e , is given
by P a

e (ℓe) ≜ {η⃗ : η⃗ ∈ Acte}. In words, P a
e (ℓe) performs, for every process i ∈ P ,

an independent, nondeterministic choice of ηi among the possibilities of movei, skipi,
deliveri(·, ·) or invokei(·).
Transition Function: A joint action is a tuple (η⃗, α1, . . . , αn) with η⃗ ∈ Acte and
αi ∈ Acti for each i ∈ Π. The transition function modifies the environment’s local state ℓe

by appending the current round’s joint action at the end of the event history h. Local
states are transformed as follows: If ηi = movei then the action αi ∈ Pi(ℓi) that i performs
(as recorded in the joint action added to h) is appended at the end of hi. Moreover, if
ηi = movei and i’s action is sendi(µ, j) where (i, j) is a link in Net, then a record |µ, m|,
where m is the current (sending) round, is added to chanij . Similarly, if ηi = invokei(·),
then this external input is appended at the end of hi. If ηi = deliveri(|µ, t|, j) and |µ, t|
is the oldest message in chanji(m) (the message µ was sent in round t by j, is still in
transit at the current time m, and is the next message to be delivered according to FIFO
order), then this record |µ, t| is removed from chanji and (j, µ) is appended to the end
of hi. In this case, µ is said to be delivered in round m in r. The local state ℓi of i ∈ P

remains unchanged if ηi = skipi or if ηi = deliveri(|µ, t|, j) and |µ, t| /∈ chanji(m), and
the i-component in the joint action α⃗m performed at time m is ‘⊥i’.
Runs: A run r is an infinite sequence of global states, whose first element r(0) is the
initial global state and we use r(m) to denote the (m + 1)th state in the sequence. We
identify time with the natural numbers, and think of r(m) as being the global state at
time m in r. We denote by ri(m) the local state of process i in r(m).
Run of a protocol P : A run r is called a run of P if

(i) r(0) is an initial global state, and
(ii) for every m ≥ 0, there is a joint action α⃗ = (η⃗, α1, . . . , αn) with η⃗ ∈ Acte and

αi ∈ Pi(ri(m)) for every i = 1, . . . , n such that r(m + 1) is obtained by applying the
transition function to α⃗ and r(m).

A protocol Pi is deterministic if it always specifies a unique action, i.e., if Pi(ℓi) = S then
|S| = 1. We remark that while processes may or may not follow a deterministic protocol, the
environment’s protocol is highly nondeterministic. The asynchronous aspect of an a.m.p. is
captured mainly by the environment’s protocol and the transition function: The environment
can delay the delivery of a message for arbitrarily long, and it can similarly delay a process
from taking a step, and this is independent of how many steps others take, and of whether
they receive messages sent to them. Moreover, the transition function is such that a process’
local state changes only if the process either receives a message, takes a step, or that the



R. Nataf and Y. Moses 33:17

environment’s action is an invocation. Thus, it has no way of telling whether and how much
time has passed since its last move.

Crashes and loss of messages. A process i is said to be correct in r if it is allowed to move
(ηi = movei) infinitely often in r. Otherwise process i is faulty (or crashes) in r. We say that
a message µ is lost in r if it is sent in r and never delivered.

A system is said to be reliable if no process ever fails and no message is ever lost, in any
of its runs. A protocol is said to be f-resilient if it acts correctly in all runs in which no
more than f processes are faulty.

We now restate and prove Lemma 4.

▶ Lemma 4. Let r and r′ be two runs such that r ≈ r′. Then
(i) If θ1 ⇝r θ2 then θ′

1 ⇝r′ θ′
2 holds for all nodes θ′

1 and θ′
2 of r′ such that θ1 ∼ θ′

1
and θ2 ∼ θ′

2
(ii) If r is a run of protocol P , then r′ is also a run of P

(iii) A process i fails in r iff it fails in r′, and similarly
(iv) A message µ is lost in r iff the same message is lost in r′

Proof. We prove each one of the claims.
(i) Let θ1, θ2 in r such that θ1 ⇝r θ2. Denote by θ1 = α1, α2, . . . , αk = θ2 the nodes

constituting this message chain such that αi+1 is obtained from αi applying (1a) or
(1b) of Definition 1. We prove by induction on k that αk has a corresponding message
chain α′

1 ⇝r′ α′
k in r′ when α1 ∼ α′

1 and αk ∼ α′
k.

Base: k = 1. The base case results directly from the fact that every local state in r

appears in r′ and vice-versa. Thus there is α′
1 ∼ α1 in r′.

Step: Let k > 1 and assume inductively that the claim holds for θ1 = α1, α2, . . . , αk−1.
If αk is obtained from αk−1 by (1a) of Definition 1, then let α′

k−1 = ⟨p, tk−1⟩ be the
node of r′ such that αk−1 ∼ α′

k−1. By local equivalence between r and r′ there must
be a node α′

k ∼ αk of p in r′, and the claim holds.
If αk is obtained from αk−1 by (1b), meaning that a message is sent at node αk−1 and
arrives no later than at αk = ⟨p, tk⟩, then since the send and the delivery of messages
are registered in processes local states, we have by definition of locally equivalence that
this message is also sent at α′

k−1 and arrives no later than a node α′
k ∼ αk of p in r′.

(ii) Assume r is a run of P . We show that if action αi is performed in r′ then it is an action
of P . Let α′

i be an action performed by i in r′ and denote by li the state of i right after
performing this operation . By definition of local equivalence, there is a point in r such
that i has local state li in r. I.e., i performed action α′

i in r, which by assumption is a
run of P .

(iii) If a process i fails in r, then there is a time t from which the environment action of i

is not movei anymore. Thus, there is a finite number of actions registered to its local
state along the run. By definition of local equivalence, this is the case also for r′, i.e., i

fails also in r′.
(iv) Let µ be a message sent by i to j at node θ in r. It follows from item (i) that µ is

sent at some node θ′ ∼ θ in r′. If µ is lost in r, then this message is never delivered to
process j and thus this reception is never added to the local state of j. By item (i) it
follows µ is also lost in r′. ◀

DISC 2024





Single Bridge Formation in Self-Organizing Particle
Systems
Shunhao Oh1 #

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Joseph L. Briones #

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

Jacob Calvert #

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Noah Egan #

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Dana Randall #

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Andréa W. Richa #

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

Abstract
Local interactions of uncoordinated individuals produce the collective behaviors of many biological
systems, inspiring much of the current research in programmable matter. A striking example is the
spontaneous assembly of fire ants into “bridges” comprising their own bodies to traverse obstacles
and reach sources of food. Experiments and simulations suggest that, remarkably, these ants always
form one bridge – instead of multiple, competing bridges – despite a lack of central coordination.
We argue that the reliable formation of a single bridge does not require sophistication on behalf of
the individuals by provably reproducing this behavior in a self-organizing particle system. We show
that the formation of a single bridge by the particles is a statistical inevitability of their preferences
to move in a particular direction, such as toward a food source, and their preference for more
neighbors. Two parameters, η and β, reflect the strengths of these preferences and determine the
Gibbs stationary measure of the corresponding particle system’s Markov chain dynamics. We show
that a single bridge almost certainly forms when η and β are sufficiently large. Our proof introduces
an auxiliary Markov chain, called an “occupancy chain,” that captures only the significant, global
changes to the system. Through the occupancy chain, we abstract away information about the
motion of individual particles, but we gain a more direct means of analyzing their collective behavior.
Such abstractions provide a promising new direction for understanding many other systems of
programmable matter.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Self-organizing particle systems, programmable matter, bridging, jump chain

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.34

Related Version arXiv Version: https://arxiv.org/abs/2408.10830 [17]

1 Introduction

Ants are known to collaborate to form elaborate structures. Army ants of genus Eiticon
self-assemble and disperse while foraging to form shortcuts in order to more efficiently reach
food [19]. Weaver ants of species Oecophylla longinoda bind leaves together when building

1 Corresponding author.

© Shunhao Oh, Joseph L. Briones, Jacob Calvert, Noah Egan, Dana Randall, and Andréa W. Richa;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 34; pp. 34:1–34:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ohoh@gatech.edu
https://orcid.org/0009-0002-1328-0040
mailto:jbrione3@asu.edu
https://orcid.org/0000-0002-5847-4263
mailto:calvert@gatech.edu
https://orcid.org/0000-0001-9173-0946
mailto:negan7@gatech.edu
mailto:randall@cc.gatech.edu
https://orcid.org/0000-0002-1152-2627
mailto:aricha@asu.edu
https://orcid.org/0000-0003-3592-3756
https://doi.org/10.4230/LIPIcs.DISC.2024.34
https://arxiv.org/abs/2408.10830
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


34:2 Single Bridge Formation in Self-Organizing Particle Systems

their nests and can form long chains [13]. In this work, we take inspiration from the behavior
of fire ants of species Solenopsis invicta, which can self-assemble into floating rafts and
structural bridges [16]. These bridges are structures composed of the ants as they entangle
themselves and allow other ants a medium over which they can reach a target, such as food.
It is not well understood why individual ants sacrifice themselves by becoming entangled
with others in unfavorable circumstances such as suspension over water, but such occurrences
are regularly accomplished without any centralized coordination.

Recent laboratory experiments at the University of Georgia [24] were the first to replicate
the more general fire ant bridging found in nature by placing food in the center of a bowl
filled with water to see how hungry ants will coordinate. Initially, ants surround the bowl
looking for food, but soon they begin to explore the water, begin building multiple structures
extending from the edge of the bowl. Eventually some structures start to reach the food, but
over time only a single bridge persists, with the other ants traversing the bridge to bring food
back to the nest. Biologists have questioned what coordination allows the ants to always
form a single bridge, streamlining their initial structures to minimize the number of ants
sacrificed for the bridge while enabling the remaining ants to productively harvest food for
the nest [19]. Physicists, biologists and computer scientists [4] have developed an agent-based
model that mimics this behavior with locally interacting particles that primarily depends
on two parameters: one capturing their individual awareness of the food source, based on
proximity, and another that captures the rigidity of the bridge structure by measuring an
interparticle attraction among all nearest neighbor pairs, which has been shown to suffice to
encourage collectives to aggregate [4]. This physical model also allows ants to climb over
one another and incorporates additional physical parameters such as the meniscus effects at
the edge of the bowl and effects of small clusters disconnecting. Their simulations reliably
replicate the tendency for exactly one bridge to form, but lack an explanation because the
biological and simulated protocols are too difficult to analyze in order to connect the local
behavior of individuals with the complex coordinated structure formed by the ensemble.

We show that the emergence of at most one bridge, as observed in ant experiments,
follows from a statistical inevitability, and not from the sophistication of the individuals.
Here, rather than tracking the movements of individual particles (or ants) over time according
to a local Markov chain, we define a related auxiliary occupancy chain that captures only
the changes to which sites are occupied. The states of the occupancy chain record the sites
where one or more particles currently exist and the transitions capture the stochastic changes
to the occupied sites over time, to determine long-term behavior. This approach of using
occupancy chains allow us to apply techniques from statistical physics to infer properties of
contours, and the simplified analysis is likely to be useful in other contexts, such as various
fixed magnetization spin systems [8], biased growth processes [9], and collectives arising in
swarm robotics responding to directed external stimuli [12].

1.1 Related work
Ant bridging can be viewed as an example of programmable matter, in which researchers
seek to create materials that can be programmed to change their physical properties in
response to user input and environmental stimuli. Diverse examples of programmable matter
– like DNA tiles [22], synthetic cells [11], and reconfigurable modular robots [5] – are linked
through their common use of local interactions to produce global functionality beyond the
capabilities of individuals. Examples of this phenomenon abound in nature, including honey
bees that select nest sites using decentralized recruitment [2], cockroach larvae that aggregate
using short-range pheromones [10], and fire ants that assemble their bodies into rafts to



S. Oh, J. L. Briones, J. Calvert, N. Egan, D. Randall, and A. W. Richa 34:3

Figure 1 Photos of fire ants, Solenopsis, self-assembling over time to form a bridge to reach food
placed in the center of a bowl filled with water. Experiments performed by and photo credit to
Takao Sasaki and Horace Zeng at the University of Georgia.

survive floods [16]. For this reason, programmable matter is often designed by analogy with
biological collectives that exhibit an emergent behavior of interest [20, 18]. However, this
form of biomimicry is generally unamenable to rigorously proving that an algorithm executed
by the constituents of matter reliably leads to a desired behavior. This analysis is critical to
understanding the extent to which algorithms for programmable matter are robust when
they are actually deployed [12].

An abstraction of programmable matter known as a self-organizing particle system (SOPS)
addresses this gap. In the standard amoebot model for SOPS [7, 6], particles exist on the sites
(or nodes) of a lattice, with at most one particle per site, and move between sites along lattice
edges. Each particle is anonymous (unlabeled), interacts only with particles on adjacent
lattice sites, has limited (normally assumed to be constant-size) memory, and does not have
access to any global information such as a common direction on the lattice, a coordinate
system or the total number of particles. We note that in this paper, we are studying a particle
system with possibly multiple particles (ants) per site, but we reduce to an occupancy chain
which recovers the “SOPS perspective” by just indicating whether each site is occupied or not.
Recent work on SOPS has led to rigorous stochastic distributed algorithms for various tasks
by exploring phase changes that lead to desirable collective behavior with high probability.
Examples include compression and expansion [4], where particles cluster closely or expand;
separation [3], where colored particles would like to separate into clusters of same color
particles; aggregation [12], where the system would like to compress but no longer needs to
remain connected; shortcut bridging [1]; locomotion [21, 23]; and transport [12]. However,
while these algorithms based on local Markov chains provide insight into emergent collective
behavior, the proofs guaranteeing the long-term behaviors become prohibitively challenging
as the collectives take on increasingly complicated tasks with more sophisticated interactions.
For example, while the work in [1] also looked at the bridging behavior of fire ants [19], it did
not focus on the bridge formation process. Instead, the paper assumed that a single bridge
already existed, anchored at two fixed points (corresponding to the nest and the food), and
considered the (simpler) problem of optimizing the placement of the bridge with respect to
parameters of relevance.

1.2 Overview of our results
To gain insight into structures that emerge from ant bridging, we consider a discrete model
on a finite w × h domain Λ = Λ(w, h) of the triangular lattice, with periodic boundary
conditions in the horizontal direction, representing the circular bowl containing food. It

DISC 2024



34:4 Single Bridge Formation in Self-Organizing Particle Systems

Λ0

Λ[ah]

Λ[bh]

Λh+1

Λ1

∈ σ

Λh

Figure 2 A domain Λ of the triangular lattice of width of w = 20 and height of h = 10 with periodic
boundary conditions identifying the ends of rows (indicated by yellow shading). The configuration σ

(black dots) has multiple (a, b)-bridges for (a, b) = (0.4, 0.7), but not for (a, b) = (0.4, 0.8).

will be convenient to think of Λ as a cylindrical domain comprised of h layers (or cycles),
corresponding to the h rows Λ1 through Λh, each of width w (see Figure 2). We model the
motion of a finite set of n particles entering Λ at Λ1, and growing a connected component
by occupying sites on the interior of Λ in order to eventually reach the food, which we
assume can be found at every site on Λh. Particles may move onto empty sites or walk
upon sites currently occupied by other particles – we intentionally abstract away the specific
dynamics by directly analyzing the occupancy chain, which only tracks changes to the set σ

of occupied sites in Λ. In analogy with fire ant bridging, a step of the occupancy chain can be
interpreted as a lone ant on the boundary of σ climbing over a neighboring ant, thus creating
an unoccupied site, or as an ant concluding its walk over other ants to occupy a new site
adjacent to the previous boundary. For simplicity, we assume that the aspect ratio α = w/h

is a constant and that n scales linearly with the area of the region, writing n = ⌊ρh2⌋ for
some constant ρ > 0, as these are the conditions under which bridges may form.

The occupancy chain captures the relative preferences of particles to move toward Λh

(e.g., due to the scent of the food source placed along Λh), parameterized by η > 0, and
their preference for locations with more neighbors, increasing the rigidity of the connected
structure. The balance of these preferences is expressed through a function on configurations
called the Hamiltonian, which is related to the stationary probability of configurations and
expresses the overall “fitness” of a configuration, with each particle contributing its piece.

For a configuration σ and a site v ∈ σ, let S(v) be the intensity of the scent at v, which
is any nonincreasing function of graph distance d(v) from v to Λh. Let Bσ(v) be the number
unoccupied sites that neighbor v. Then the Hamiltonian H of a configuration σ is

H(σ) = −
∑

v ∈ σ

(ηS(v)−Bσ(v)) , (1)

where η > 0 is a parameter describing how much a particle favors a stronger scent relative
to how much it desires more neighbors. A second parameter β, the interparticle attraction,
captures the strength of the Hamiltonian. These induce a probability distribution π over the
set of valid configurations Ω (defined in Section 2.1) known as the Gibbs distribution, where

π(σ) = exp (−βH(σ)) /Z, for σ ∈ Ω (2)

in terms of the normalization constant Z =
∑

τ∈Ω e−βH(τ). Note we have taken some liberties
in defining the occupancy chain by assuming that each particle has been walking on the
current bridge structure sufficiently long that it is near equilibrium.



S. Oh, J. L. Briones, J. Calvert, N. Egan, D. Randall, and A. W. Richa 34:5

We may now talk about the shape of the contour between the set of occupied and unoc-
cupied sites on Λ in order to determine the number of bridges at equilibrium. We introduce
a weak definition of “multiple bridges” to show that any contours that unnecessarily “back-
track” a nontrivial amount from any layer will be extremely unlikely when the interparticle
attraction β is large enough. We say that a configuration σ has multiple (a, b)-bridges for
real numbers 0 < a < b < 1 if the restriction of σ to layers ⌊ah⌋ and greater contains at least
two components (on the lattice Λ) that reach layer ⌊bh⌋. This is formally stated later in
Definition 4 . Intuitively, one can imagine such configurations as ones that extend out to
layer Λ⌊bh⌋, retract back to Λ⌊ah⌋, then extend out to Λ⌊bh⌋ a second time.

Our first main theorem states that, on any w × h region Λ with constant aspect ration α,
regardless of the scent parameter η, if the interparticle attraction β is large enough, then
for any constant ϵ ∈ (0, 1), the probability of seeing multiple (a, b)-bridges where b− a ≥ ϵ is
always exponentially small in β and h (see Theorem 5 in Section 3.2). Taking b = 1 shows
that we are unlikely to see a contour that reaches the food multiple times while backtracking
a distance ϵ between the intervals in which they touch.

Our second main result concerns whether or not any bridge will be likely to form. This
question is much more delicate and depends on the scent parameter η, some basic assumptions
about the scent gradient (see Definition 9), and some bounds on the number of particles in
the system. If the scent parameter η is too small, then particles will compress around the
boundary and are unlikely to reach the food, so no bridge will form. If the scent parameter
is sufficiently large, then a single bridge will emerge, but never more. These conditions are
properly outlined in Section 3.2 and stated as Theorem 10 and Corollary 11.

The proofs are motivated by a technique from statistical physics known as a Peierls
argument that constructs a mapping from low-probability configurations to high-probability
ones, to infer global properties of the distribution π. The key challenge in constructing suitable
mappings for our model is the dependence of the scent component S of the Hamiltonian on
the distance of sites from Λh. As a consequence, standard physics approaches based on simple
mappings that rearrange sites is insufficient. We overcome this challenge by introducing the
layer sequence of a configuration, which counts the number of the configuration’s elements
in each layer. Its virtue is that it is far easier to describe and analyze transformations of
layer sequences than those of configurations, and the layer sequence retains the information
necessary to calculate the scent component of the configuration’s Hamiltonian. Moreover,
while it discards the geometric information that is needed to calculate the configuration’s
boundary length, we are nevertheless able to obtain useful bounds on the boundary length.

Our choice to model the motion of the contour directly via an occupancy chain, instead
of inferring it from dynamics prescribed to individual particles (ants), is a significant and
valuable departure from the norm in distributed computing. Without this abstraction
tracking only the salient changes to the profile of the ensemble, it would be far more difficult
to rigorously analyze the bridge formation behavior. Notably, this abstraction comes at the
cost of obscuring the underlying particles’ computational capabilities and the local distributed
algorithm that govern the particles’ dynamics, which we address and clarify in Section 2.2.

The success of SOPS in designing simple, local algorithms that produce complex, global
behaviors suggests that the apparently intelligent behaviors of natural collectives may in fact
be the inevitable consequences of unremarkable circumstances. We see a broader opportunity
here, not only to explain how the intelligent behaviors of natural collectives arise, but also
to demonstrate that such an explanation need not assume great intelligence or detailed
knowledge on behalf of the individuals. We believe incorporating occupancy chains may be a
way to provide insight into other complex collectives.

DISC 2024



34:6 Single Bridge Formation in Self-Organizing Particle Systems

2 The Bridging Occupancy Chain

In the preceding section, we introduced the domain Λ, the Hamiltonian H , and the probability
distribution π that H induces, to the extent necessary to informally state our results. In
particular, we mentioned that π is supported on a subset of valid configurations Ω, but
deferred a definition. We now introduce an extension of Λ that we use to define Ω, and then
we elaborate the terms of the Hamiltonian, before defining π and the occupancy chain.

2.1 The model
Some subsets of the vertices of Λ are not suitable abstractions of the bridges in Figure 1,
because they do not extend from Λ1 or because they contain holes. To make this precise, we
extend the domain Λ with two further layers, Λ0 and Λh+1, the sites of which we respectively
treat as always occupied and always unoccupied (Figure 2). We denote by Λ this extended
domain, which is isomorphic to Λ with a height of h + 2, as shown in Figure 2. We define
the set of valid configurations to be

Ω =
{

σ ⊆ V (Λ) : |σ| ≤ n and σ ∪ V (Λ0) is simply connected in Λ
}

,

where |σ| denotes the number of elements of σ.
Recall that the Hamiltonian (Equation 1) of a configuration σ ⊆ V (σ) involves a sum

over sites v ∈ σ, with contributions from the scent intensity S(v) at v and the number Bσ(v)
of neighbors of v that are not in σ. To be precise, we define Bσ(v) according to

Bσ(v) = |{u ∈ V (Λ) \ σ : (u, v) ∈ E(Λ)}| ,

which serves to penalize configurations that are less compact. Note that, if σ ∈ Ω, then
Bσ(v) < 6 for every v ∈ σ. The scent intensity of a site v ∈ V (Λ) is a function that depends
only on its distance to the food, which we will assume is stronger the closer a site is to the
food. For the sake of the proofs however, we will phrase these as distances d(v, Λ0) from the
bottom of the region Λ, noting trivially that d(v, V (Λ0)) = h− d(v, V (Λh)). For convenience
of notation, we define a nondecreasing function Sh : [h] 7→ R≥0, and write the scent intensity
at a vertex v as

S(v) = Sh

(
d(v, V (Λ0))

)
.

While the function Sh being nondecreasing is sufficient to show in Section 3.1 that multiple
bridges are exponentially unlikely, when we discuss whether or not a bridge to the food will
form in Section 3.2, we use a slightly narrower class of functions that we call nondecelerating
(Definition 9). This covers a broad class of functions, including but not limited to:

Sh(y) = Chyk −Dh or Sh(y) = C ′
h(h− y)−k′

−D′
h,

where k, k′ ≥ 1, where the values Ch, C ′
h normalize the sum of Sh over a “column” of Λ to a

constant, and Dh, D′
h are chosen to make Sh(1) = 0. The purpose of the normalization is

to make the contributions of S(v) and Bσ(v) to the Hamiltonian comparable, so η controls
whether a bridge forms. In the case of k, k′ = 1, the first option gives us a linear scent
gradient, while the second option represents a scent intensity proportional to the reciprocal of
the distance from the food. Section 3.2 discusses the cases when this sum is not normalized.



S. Oh, J. L. Briones, J. Calvert, N. Egan, D. Randall, and A. W. Richa 34:7

We define the occupancy chain in the next section and show that it constitutes an
aperiodic and irreducible Markov chain on Ω, hence it has a unique stationary distribution
on Ω, as given in Equation 2. Observe that by writing λ = eβ > 0 and γ = eβη > 0, this
formulation can be equivalently written as

π(σ) ∝
∏
v∈σ

(
λ−Bσ(v)γS(v)

)
, (3)

where the probability of each configuration can be written as a product of weights of its
individual particles, normalized.

Although the Hamiltonian is partly inspired by the Ising model where the preference
for having more neighbors can be thought of as the strength of a ferromagnetic interaction
between particles, the scent component of the Hamiltonian introduces a directional bias that
deviates from classical models, making the analysis considerably more challenging (see, e.g.,
[9]). Viewing the dynamics through the occupancy chain gives us a succinct tool to derive
emergent behaviors of the collective not as easily provable for related agent-based models.

2.2 The algorithm
The bridging occupancy chain algorithm can be briefly described as follows: Initially, the
sites of Λ are unoccupied. Given a configuration σ, we select a uniformly random site v of
Λ. If v is occupied, then we attempt to remove it from σ. Otherwise, if v is unoccupied
and |σ| is less than n, then we attempt to add v to σ. The move is rejected if it produces a
configuration that does not belong to Ω, i.e., if it is not simply connected in Λ.

To enforce that simple connectivity is maintained at all times, starting from a simply
connected configuration, we follow what we call local simple connectivity checks, that can be
shown to ensure that the configuration as a whole always remains simply connected in Λ
(Lemma 2). Note that the checks below only depend on a site v and its immediately adjacent
sites in Λ, which will be important when we discuss the underlying particle dynamics at the
end of this section.

▶ Definition 1 (Local Simple Connectivity). For a site v ∈ V (Λ), our definition of local
simple connectivity depends on whether v is occupied or not. Let N (σ, v) denote the extended
neighborhood of v in σ ∪ V (Λ0), where v is any site of Λ.
1. If v ∈ σ, we say that v is locally simply connected iff |N (σ, v)| ≤ 5 and the induced

subgraph Λ[N (σ, v)] is connected.
2. If v ̸∈ σ, we say that v is locally simply connected iff |N (σ, v)| ≥ 1 and the induced graph

Λ[N (σ, v)] is connected.
The intuition behind this definition is that in Case (1) it is safe to remove a locally simply
connected site v from σ, since making v unoccupied cannot disconnect its neighborhood in σ

(nor create a hole at v); in Case (2), making the site v occupied cannot connect previously
disconnected neighboring sites in σ and therefore cannot create a hole. Note that, for every
locally simply connected move, the reverse is also a valid move.

Algorithm 1 describes the moves of the occupancy chain. Note that we are using a
variant of the Metropolis-Hastings algorithm [15], but it is easy to check that for any two
configurations whose symmetric difference is a single vertex, detailed balance will be satisfied.

The following two lemmas prove the correctness of the Bridging Occupancy Chain. We
start by proving that the algorithm will keep the configurations simply connected and then
show the Bridging Occupancy Chain is irreducible and aperiodic, and therefore converges to
the indicated stationary distribution π.

DISC 2024



34:8 Single Bridge Formation in Self-Organizing Particle Systems

Algorithm 1 Bridging Occupancy Chain.

Let σ denote the current configuration.
v ← uniformly random site in Λ
p← uniformly random number in [0, 1]
if v is locally simply connected then

if v ∈ σ and p ≤ min{1, exp (β(2Bσ(v)− ηS(v)))} then
Make v unoccupied.

else if v ̸∈ σ, |σ| < n, and p ≤ min{1, exp (−β(2Bσ(v)− ηS(v)))} then
Make v occupied.

▶ Lemma 2 (Maintaining Simple Connectivity). Adding or removing a locally simply connected
site from a configuration σ ∈ Ω maintains simple connectivity.

Proof. Let σ be the current configuration, which we define as simply connected if σ ∪ V (Λ0)
is simply connected in Λ. As Λ0 is treated as always filled, σ ∪ V (Λ0) is never empty.

The only way the removal of an occupied site v ∈ σ can make the resulting configuration
not simply connected is (i) if it introduces a hole, but this would imply that v had six occupied
neighbors in σ ∪ V (Λ0), which is not allowed; or (ii) if it disconnects the configuration, but
that would imply that the neighboring occupied sites to v in σ ∪ V (Λ0) were disconnected,
which we also do not allow. On the other hand, the only way the addition of an occupied
site v to σ can violate simple connectivity is if it introduces a cycle that was not present in
σ ∪ V (Λ0). This can only happen if the neighbors of v in σ ∪ V (Λ0) were either the empty
set or if they induced a disconnected graph in σ ∪ V (Λ0), which we again do not allow. The
addition of an occupied site to σ cannot disconnect the resulting configuration. ◀

▶ Lemma 3 (Irreducibility and Aperiodicity). The Bridging Occupancy Chain is aperiodic and
irreducible. Thus it converges to the stationary distribution π given by Equation 2.

Proof. We first observe that for every locally simply connected move, the reverse is also
valid and locally simply connected. Next, we establish irreducibility of the occupancy chain
by showing that from every configuration σ ∈ Ω, we can always identify a site v ∈ σ such
that making v unoccupied is a valid move. This would imply that we can always reach the
empty configuration via valid moves, and therefore we can connect any pair of configurations
σ, τ ∈ Ω by first making all the sites in σ unoccupied and then making all the sites in τ

occupied by following the reversal of the path from τ to the empty configuration.
Let v be any site in σ that has greatest distance from a site in Λ0 following edges in Λ

with both endpoints occupied. We will argue that v is locally simply connected. Removing
v cannot form a hole because v has greatest distance from Λ0 and therefore cannot have
six occupied neighbors. Likewise, making v unoccupied cannot disconnect σ or there would
be occupied sites whose shortest path to V (Λ0) passes through v, contradicting v having
greatest shortest distance to V (Λ0). Therefore v is locally simply connected.

Finally, we note that when σ is nearly empty, most choices of v will result in self-loops
in the chain, so the chain is aperiodic. Hence, since the chain is ergodic (aperiodic and
irreducible), it must have a unique stationary distribution, which is given by Equation 2 due
to the Metropolis–Hastings transition probabilities satisfying detailed balance. ◀

Now that we have established the occupancy chain dynamics, it remains to discuss the
underlying SOPS dynamics that would govern the behavior of the chain. While the occupancy
chain abstraction comes at the cost of obscuring the details of the underlying algorithm that



S. Oh, J. L. Briones, J. Calvert, N. Egan, D. Randall, and A. W. Richa 34:9

each particle runs, there are indeed local distributed algorithms running independently on
constant-memory particles, which we here assume to operate under a sequential scheduler
(i.e., where at most one particle is active at any point in time, as in e.g., [4]), that can
closely approximate the occupancy chain dynamics. We first note that each iteration of
the Bridging Occupancy Chain, and in particular the checks for local simple connectivity
within it, can be executed by constant-sized memory agents with only local communication,
since the algorithm only depends on the the states of the agents that occupy site v and its
immediate neighborhood in Λ.

In the physics agent-based model for the fire-ant bridging biological experiments in [24]
that were the original motivation of this work, each particle (ant) performs an independent
random walk, biased by the scent gradient as it walks over other particles on the bridge, and
biased by both the scent gradient and number of nearest neighbors as it leaves or joins the
boundary. The transition probabilities of the occupancy chain are the probabilities with
which the bridge structure gains or loses one particle when this particle’s walk on the current
bridge structure is at stationarity. Moreover, while fine differences in the specific scent
gradient affect the motion of the contour, this merely requires that individuals sense, and
are acted upon by, the local gradient and does not require them to store and compute with
correspondingly fine numbers. Thus, the occupancy chain model is rich enough to capture
the long-term behavior of distributed collectives, and can also describe other underlying
dynamics because it abstracts details that are irrelevant to our analysis.

3 Equilibrium properties of the occupancy chain

We are now prepared to prove that at most one bridge will form by analyzing the stationary
distribution of the occupancy chain. First, we argue that multiple bridges are unlikely if the
affinity parameter is sufficiently large. Then, we identify a phase change in the formation of
bridges as the scent parameter varies.

3.1 Precluding the formation of multiple bridges
In Section 1.2 we briefly described a configuration with multiple (a, b)-bridges as one that
extends out to layer Λ⌊bh⌋, retracts back to Λ⌊ah⌋, then extends out to Λ⌊bh⌋ a second time.
We now formally define this, as well as the depth of the backtrack for such configurations.

▶ Definition 4 (Multiple (a, b)-bridges). For real values 0 < a < b < 1, a configuration
σ ⊆ V (Λ) has multiple (a, b)-bridges if the subgraph of Λ induced by

⋃h
k=⌊ah⌋ (σ ∩ V (Λk))

contains at least two components that each contain some vertex from Λ⌊bh⌋. We call ϵ =
b− a > 0 the depth of the backtracking.

To describe the rarity of multiple bridges forming, we consider the event that the configuration
has multiple (a, b)-bridges for some pair (a, b) with depth at least ϵ > 0, defined as:

MBϵ = ∪a∈(0,1−ϵ) {σ ∈ Ω : σ has multiple (a, a + ϵ)-bridges} . (4)

We note that this event includes intervals of length greater than ϵ as a configuration with
multiple (a, a + ϵ′)-bridges for ϵ′ > ϵ also has multiple (a, a + ϵ)-bridges. Our next result tells
us that the probability of MBϵ decays exponentially in β and h, so long as β is large enough
in terms of the aspect ratio α and depth ϵ.

▶ Theorem 5 (No Multiple Bridges). For every ϵ > 0 and every w × h region Λ with aspect
ratio α = w/h, there exists a positive number β0 = β0(α, ϵ) such that, if β > β0, then the
probability π(MBϵ) of multiple bridges with depth ϵ is at most e−βhϵ/2.

DISC 2024



34:10 Single Bridge Formation in Self-Organizing Particle Systems

We emphasize that the quantity β0 in Theorem 5 does not depend on the constant ρ (recall
that n = ⌊ρh2⌋) and scent parameter η, even though these parameters affect the stationary
distribution. Instead, as the proof explains, MBϵ is rare because its occurrence requires that
the configuration has a relatively long boundary. While the number of configurations in
MBϵ grows exponentially in the perimeter of the domain Λ, this number is insufficient to
compensate for the configurations’ low weight when the boundary length penalty is high.
Accordingly, for MBϵ to be rare, it suffices for β to be large in terms of α, which controls the
perimeter, and ϵ, which controls the boundary length when MBϵ occurs.

We now state three lemmas that we will use to prove Theorem 5. The first two of
these results are due to the technical machinery of layer sequences, which we mentioned
in Section 1.2 and which we formally introduce in Section 3.3. We note that, although we
their proofs appear later, they do not rely on any earlier results. We state them in terms of
the total boundary length and scent components of the Hamiltonian, which we define for a
configuration σ ∈ Ω as

B(σ) =
∑
v∈σ

Bσ(v) and S(σ) =
∑
v∈σ

S(v).

▶ Lemma 6. For every σ ∈ Ω, there exists τ ∈ Ω such that B(τ) ≤ min{B(σ), 6w + 4h} and
S(τ) ≥ S(σ).

Lemma 6 states that in the case where σ has boundary length greater than 6w+4h, we can
always find another configuration τ that has boundary length at most 6w + 4h with at least
as great a scent component (we can set τ = σ otherwise). This implies that H(σ) ≥ H(τ)
for all positive values of β and η. Moreover, the boundary length of τ is bounded above in
terms of w + h, instead of w × h. The proof of Lemma 6 appears in Section 3.3.

If σ has multiple bridges, then we can further guarantee that there is a configuration
τ with a boundary that is strictly shorter by an amount proportional to the depth of the
bridges. This is the content of Lemma 7, which we prove in Appendix A.

▶ Lemma 7. For every ϵ > 0 and σ ∈ MBϵ, there exists τ ∈ Ω such that B(σ) ≥ B(τ) + ϵh.

Together, Lemmas 6 and 7 imply that a configuration σ with multiple bridges can be
mapped to a configuration τ that has far greater probability under π because H(σ)−H(τ) ≥
βϵh. This observation is one part of the proof of Theorem 5. The other part is a bound on
the number of configurations with a given boundary length.

▶ Lemma 8. The number of configurations with a boundary length of ℓ is at most 2ℓ+2w.

Proof. Each configuration σ ∈ Ω of boundary length ℓ is fully described by a collection of
self-avoiding paths of total length ℓ on the dual lattice. Each of these paths must start and
end on either the top or bottom of Λ, giving 2w possible starting points. There are at most
22w ways to label each starting point as used or unused, and no more than 2ℓ ways to draw
these paths given known starting points as there are at most two directions on the dual
lattice to take each step of the path, giving an upper bound of 2ℓ+2w. ◀

With these three lemmas, we are now prepared to prove our first main theorem:

Proof of Theorem 5. We aim to upper bound the probability that the event MBϵ occurs,
using the fact that we can map the configurations it comprises to configurations with shorter
boundaries. More precisely, by Lemma 7, for every σ ∈ MBϵ, there exists τσ ∈ Ω such that

B(σ)−B(τσ) ≥ ϵh. (5)



S. Oh, J. L. Briones, J. Calvert, N. Egan, D. Randall, and A. W. Richa 34:11

In fact, we can assume that τσ further satisfies

S(σ) ≤ S(τσ) and B(τσ) ≤ 6w + 4h (6)

because, if it did not, then we could use Lemma 6 to map τσ to a configuration that satisfies
all three bounds in its place. We partition MBϵ according to the difference in (5):

MBϵ = ∪k≥ϵhMBϵ,k, where MBϵ,k = {σ ∈ MBϵ : B(σ)−B(τσ) = k} . (7)

The probability of each σ ∈ MBϵ,k is exponentially small in k, due to the first bound in (6):

π(σ) ≤ π(σ)
π(τσ) = e−β(H(σ)−H(τσ)) ≤ e−β(B(σ)−B(τσ)) = e−βk. (8)

This bound is useful because |MBϵ,k| is at most exponentially large in k. Indeed, due to the
second bound in (6), every σ ∈ MBϵ,k has boundary length of at most

B(σ) = B(τσ) + k ≤ 6w + 4h + k.

There are at most 22w+ℓ configurations with a boundary length of exactly ℓ (Lemma 8),
hence the number of configurations in MBϵ,k is at most

|MBϵ,k| ≤ |{σ ∈ Ω : B(σ) ≤ 6w + 4h + k}| ≤
∑

ℓ≤6w+4h+k

22w+ℓ ≤ 47w+4h+k. (9)

We combine the partition of MBϵ with the estimates of π(σ) and |MBϵ,k| to conclude that

π(MBϵ)
(7)=

∑
k≥ϵh

∑
σ∈MBϵ,k

π(σ)
(8)
≤

∑
k≥ϵh

|MBϵ,k|e−βk
(9)
≤

∑
k≥ϵh

47w+4h+ke−βk.

Since w = αh, this bound is at most e−βhϵ/2 when β is large enough in terms of α and ϵ. ◀

3.2 Conditions for bridge formation
In this section, we show that whether a bridge to the food forms depends on the balance
between the scent and boundary length components of the Hamiltonian. Recall that η controls
each particle’s desire to move toward the food relative to its desire for more neighbors.

The competition between scent and boundary length is richest when there are not too few
or too many particles in the system. When there are too few particles, no bridges can form;
when there are too many particles, “bridges” can form without incurring a high boundary
cost, due to the periodic boundary conditions. Accordingly, we assume that the number of
particles n is ⌊ρh2⌋, for a constant ρ that satisfies 1/2 < ρ < α− 2, in terms of the aspect
ratio α = w/h of the domain Λ. Implicitly, we require that α is greater than 2.5.

We write the scent intensity as a function Sh : [h] → R≥0, where Sh(k) represents the
intensity of any particle on layer k. Previously, we only assumed that Sh was a nondecreasing
function (i.e., nonincreasing in the distance from the food), and showed that as long as β is
sufficiently high, at most one bridge forms. Now we assume additional light conditions on
Sh, which we believe will apply for most “natural” definitions of the scent intensity function.
We use the term nondecelerating functions to refer to this broad class of functions.

▶ Definition 9. For a function Sh : [h]→ R≥0, let ∆Sh(k) = Sh(k + 1)− Sh(k) denote the
discrete derivative of Sh at k ∈ [h − 1]. We say that Sh is nondecelerating if Sh(1) = 0,
∆Sh(k) ≥ 0 for all k ∈ [h− 1], and ∆(∆Sh)(k) ≥ 0 for all k ∈ [h− 2].

DISC 2024



34:12 Single Bridge Formation in Self-Organizing Particle Systems

Assuming that the scent function is nondecelerating, our second main result identifies a
phase change in the probability that no bridge reaches the food. We define this event as

NB = {σ ∈ Ω : σ ∩ V (Λh) = ∅}.

The phases correspond to ranges of β and η that depend on the column scent φ =
∑h

k=1 Sh(k),
which represents the sum of the scent intensities over a single “column” of Λ. We consider
the case when φ > 0 is a constant with respect to h, the aspect ratio satisfies α > 2.5, and
the constant ρ belongs to (0.5, α− 2). We define the phases in terms of the quantities

β1 = 2ρ + 3 + 4α

2ρ− 1 log 2, β2 =
(

1 + α

2

)
log 2, and η1 = 4

φ

(
1 + 1

ρ

)
,

as well as η2 = η2(β), given by

η2 = 1
φ

min
{

2
(

1− log 2
β

)
,

4
1 + ρ

(
1−

(
1 + α

2

) log 2
β

)}
.

Note that both η1 and η2 are proportional to 1/φ, and η2 is strictly positive when β > β2.

▶ Theorem 10 (Phase Change). Suppose that 1/2 < ρ < α− 2 and let Sh be nondecelerating.
(i) (At Least One Bridge) If β > β1 and η > η1, then there exist positive numbers c1 =

c1(β, η) and h1 = h1(β, η) such that π(NB) ≤ e−c1h, for all h ≥ h1.
(ii) (No Bridge) If β > β2 and η < η2(β), then there exist positive numbers c2 = c2(β, η)

and h2 = h2(β, η) such that π(NB) ≥ 1− e−c2h, for all h ≥ h2.

Since η1 and η2 are proportional to 1/φ, an immediate corollary of Theorem 10 is that, if
the scent is especially strong or especially weak, in the sense that the asymptotic growth of
the column scent as h→∞ satisfies φ = ωh(1) or φ = oh(1), then bridge formation is either
likely or unlikely, independently of η.

▶ Corollary 11. Suppose that 1/2 < ρ < α− 2 and Sh is nondecelerating.
(i) (Strong Scent) If β > β1 and φ = ωh(1), then there exist positive numbers c3 = c3(β)

and h3 = h3(β) such that π(NB) ≤ e−c3h, for all h ≥ h3.
(ii) (Weak Scent) If β > β2 and φ = oh(1), then there exist positive numbers c4 = c4(β)

and h4 = h4(β) such that π(NB) ≥ 1− e−c4h, for all h ≥ h4.

Note Corollary 11(ii) holds without the assumption that Sh is nondecelerating. In fact, it
holds when Sh is nonnegative because, when φ = oh(1), the contribution of boundary length
to the Hamiltonian dominates the scent component, making fine properties of Sh irrelevant.

The proof of Theorem 10 relies on three lemmas. Informally, the first says that a subset
of configurations Ωbad has exponentially small probability in h if every σ ∈ Ωbad can be
mapped to a configuration with a Hamiltonian that is smaller by roughly h + B(σ). The
proof, which can be found in the full version of the paper [17], is similar to that of Theorem 5.

▶ Lemma 12. Fix an aspect ratio α, as well as δ and ϵ, all positive numbers. Suppose that
Ωbad is a subset of configurations such that, for every σ ∈ Ωbad, there exists τσ ∈ Ω satisfying

H(σ)−H(τσ) ≥ ϵh + δB(σ) + Oh(1),

where the function implicit in Oh(1) does not depend on σ. Then, for every

β > β0(δ, ϵ) := max
{

log 2
δ

,
2α log 2

ϵ

}
,

there exist c = c(β) > 0 and h0 = h0(β) > 0 such that π(Ωbad) ≤ e−ch for all h ≥ h0.



S. Oh, J. L. Briones, J. Calvert, N. Egan, D. Randall, and A. W. Richa 34:13

The next lemma states that if a configuration does not form a bridge, then it is possible
to identify a configuration with a Hamiltonian that is strictly smaller as a function of h and
the boundary length of the original configuration.

▶ Lemma 13. If β > β1 and η > η1, then there exist positive values δ1 = δ1(ρ, α) and
ϵ1 = ϵ1(ρ, α) such that β1 ≥ β0(δ1, ϵ1) and, for every σ ∈ NB, there exists τσ ∈ Ω satisfying

H(σ)−H(τσ) ≥ ϵ1h + δ1B(σ) + Oh(1).

The proof involves a multi-stage transformation of the original configuration’s layer
sequence (Appendix A). The same is true of the next result, which instead compares
configurations that reach Λh to the empty configuration ∅, which has H(∅) = 0.

▶ Lemma 14. If β > β2 and η < η2(β), then there exist positive values δ2 = δ2(η, φ, ρ, α)
and ϵ2 = ϵ2(η, φ, ρ, α) such that β2 ≥ β0(δ2, ϵ2) and every σ /∈ NB satisfies

H(σ)−H(∅) ≥ ϵ2h + δ2B(σ) + Oh(1).

Theorem 10 follows directly from the preceding lemmas.

Proof of Theorem 10. Parts (i) and (ii) follow from two applications of Lemma 12, one to
Ωbad = NB and another to Ωbad = NBc, which are justified by Lemmas 13 and 14. ◀

3.3 Layer sequences
The proofs of our main results rely on mappings of configurations to ones with more desirable
properties (Lemmas 6, 7, 13, and 14). For example, Lemma 6 states that every configuration
can be mapped to a second configuration with at least as favorable boundary length and
scent components, and which has a boundary length of O(w + h). The purpose of this
section is to introduce layer sequences, the key technical idea underlying these lemmas, and
to demonstrate their use by proving Lemma 6.

The layer sequence N = (nk)h
k=1 of a (possibly non-valid) configuration σ ⊆ V (Λ) counts

the number nk = nk(σ) of its elements in each layer of Λ:

nk(σ) = |σ ∩ V (Λk)|.

The statements that we will make in this section will apply not only to configurations in Ω,
but a broader class Ω of configurations σ ⊆ V (Λ) that have layer sequences that have no
fully occupied layer (k where nk(σ) = w) after one that is not fully occupied, and no fully
unoccupied layer (k where nk(σ) = 0) before one that is not fully unoccupied:

Ω =
{

σ ⊆ V (Λ) : (nk+1(σ) = w =⇒ nk(σ) = w) and
(nk(σ) = 0 =⇒ nk+1(σ) = 0) for all k ∈ [h− 1]

}
.

Notably, configurations in Ω must have this property as they are simply connected, so we
can say that Ω ⊆ Ω. Referencing this property, for 0 ≤ Rbot ≤ Rtop ≤ h, we can denote by
LRtop,Rbot the set of layer sequences that are fully occupied from layers 1 to Rbot, partially
occupied from layers Rbot + 1 to Rtop, and fully unoccupied for the remaining layers.

Even though the layer sequence of a configuration discards information about the con-
figuration’s boundary, we can still use it to obtain bounds on the boundary length (our
definition of boundary length extends to configurations in Ω). This is the content of the next
two results. To state them, we denote by σM the part of a configuration σ ∈ Ω in layers 1
through M :

σM = ∪M
k=1(σ ∩ V (Λk)).

DISC 2024



34:14 Single Bridge Formation in Self-Organizing Particle Systems

▶ Lemma 15 (Boundary length increment). Let 0 ≤ Rbot ≤ Rtop ≤ h and let σ ∈ Ω have layer
sequence N ∈ LRtop,Rbot . For integers M where max{Rbot, 1} ≤M ≤ min{Rtop − 1, h− 2},
the truncation σM+1 has boundary length satisfying B(σM+1) ≥ B(σM ) + DM , where

DM = 2 + 2 max {nM+1 − nM + 1, 0}+ 2 max {nM+1 − nM − 1, 0} .

If M = h− 1 instead, then we have B(σM+1) = B(σ) ≥ B(σM ) + DM − 2nh. Furthermore,
the bound is tight in the sense that, for any N ∈ LRtop,Rbot , there exists τ ∈ Ω (not Ω) with
layer sequence N which satisfies B(τM+1) ≤ B(τM ) + DM for every such M .

The proof of Lemma 15, which is self-contained, appears in Appendix A. Lemma 15
implies a lower bound on a configuration’s boundary length in terms of its layer sequence.

▶ Lemma 16 (Boundary length lower bounds). Suppose that N ∈ LRtop,Rbot where 0 ≤ Rbot ≤
Rtop ≤ h and let Rmin = max{Rbot, 1}. For each M ∈ {Rmin, Rmin + 1, . . . , Rtop}, we define

BM (N) = BRmin(N) +
M−1∑

k=Rmin

Dk, where BRmin(N) =
{

2n1 + 2 if Rbot = 0,

2w if Rbot ≥ 1.

Then, for any configuration σ ∈ Ω with layer sequence N , for any M ∈ {Rmin, Rmin +
1, . . . , Rtop}, the truncation σM has boundary length satisfying

B(σM ) ≥
{

BM (N) if M < h,

BM (N)− 2nh if M = h.

Furthermore, this bound is tight in the sense that for any layer sequence N ∈ LRtop,Rbot ,
there exists a configuration τ ∈ Ω with layer sequence N where B(τRbot+1) = BRbot+1(N)
and B(τM+1) ≤ B(τM ) + DM for each M ∈ {Rmin, Rmin + 1, . . . , Rtop}.

Proof of Lemma 16. This follows from Lemma 15 by induction on M , with M = Rmin as
the base case. ◀

We use the two preceding facts about layer sequences to prove Lemma 6. The proof
features the quantity S(N), which is the scent intensity common to all configurations with
layer sequence N .

Proof of Lemma 6. We aim to show that, for an arbitrary configuration σ ∈ Ω, there exists
τ ∈ Ω such that B(τ) ≤ B(σ), S(τ) ≥ S(σ), and B(τ) ≤ 6w + 4h. The idea of the proof is
to show that, if there are layers k1 and k2 such that the layer sequence N of σ satisfies

k2 ≥ k1 + 2, nk1+1 − nk1 ≥ 2, and nk2+1 − nk2 ≥ 2,

then it is possible to “promote” one of the occupied sites to a higher layer, resulting in a new
layer sequence N

+ = (n+
k )k∈[h] ∈ LR+

bot
,R+

top , in such a way that Bh(N+) ≤ Bh(N). Moving
an occupied site to a higher layer clearly also ensures that S(N+) ≥ S(N), because Sh is
nonincreasing with distance from the food. We define N

+ by removing an occupied site
from layer k1 + 1 and adding it to layer k2. In other words, for each k ∈ [h], we define:
n+

k = nk − 1 if k = k1 + 1; n+
k = nk + 1 if k = k2; and n+

k = nk otherwise. Note that, like
Rbot, R+

bot is at most k1.



S. Oh, J. L. Briones, J. Calvert, N. Egan, D. Randall, and A. W. Richa 34:15

To compute the difference between Bh(N+) and Bh(N), we look at the terms affected by
the change. For each k, denote by Dk and D+

k the terms of the sums of Bh(N) and Bh(N+).
We observe that D+

k1
= Dk1 − 4 and D+

k2
= Dk2 − 4, and the differences D+

k1+1 −Dk1+1 and
D+

k2−1 −Dk2−1 are at most 8 when k1 + 1 and k2 − 1 are equal, and at most 4 when they
are not. This implies that Bh(N+) ≤ Bh(N)− 8 + 8 = Bh(N).

We repeat this process of promoting occupied sites to find a layer sequence N
∗ = (n∗

k)k∈[h]

such that Bh(N∗) ≤ Bh(N), S(N∗) ≥ S(N), and n∗
k+1 − n∗

k ≤ 1 for all but at most two
values of k. Moreover, if there are two such values of k, they must be consecutive integers.
This implies the upper bound

Bh(N∗) ≤ BR∗
bot

+1(N) + 4(R∗
top −R∗

bot) + 4w ≤ 6w + 4h.

By Lemma 16, there exists τ ∈ Ω with layer sequence N
∗ and B(τ) ≤ Bh(N∗), hence

B(τ) ≤ 6w + 4h. ◀

4 Conclusion

We define a simple SOPS model of bridging based on the particles’ affinity for more neighbors,
which results in more “robust” bridges, and a bias toward the food. We show that the
emergence of a single bridge in collective systems is a statistical inevitability, requiring no
central coordination. The novelty of our strategy is based on defining and analyzing a much
simpler occupancy chain that abstracts the specific local dynamics of the particles and looks
at the evolution of the contour indicating the system’s occupied sites. We intentionally
kept the occupancy chain as simple as possible to show the generality of the single bridging
emergent phenomena to highlight the connections to similar statistical physics models.2

Moreover, the occupancy chain that evolves according to a Hamiltonian defined only by
contour length and scent gradient is simple enough to provide rigorous proofs using tools
from statistical physics.

We see several directions for future work: First, we believe that we can extend our
results to other models inspired by biological systems and beyond, such as by including ants
retreat from the food after they are fed, by using a more sophisticated occupancy chain
that models rafts by allowing a collection of ants to move together in a single move, or by
including more specifics of man-made swarm robotics systems. Our simulations show that
such variants do not significantly change our findings. Second, the occupancy chain abstracts
away information about the motion of individual particles, and allows us to gain a more direct
means of analyzing their collective behavior: We expect that such abstractions will help
understanding the collective behavior of many other programmable matter systems. Third,
occupancy Markov chains have the potential for impact in statistical physics, by allowing one
to relax the need for precisely estimating surface tension of contours, potentially enabling a
better formal understanding of fixed magnetization spin systems [8], and collectives arising
in swarm robotics responding to directed external stimuli [12]. Lastly, while simulations
suggest that both the occupancy chain and the underlying agent-based simulations converge
in polynomial time, we do not have a formal bound on the mixing time of either. Future
work can relax the connectivity restriction on valid configurations, which may make it easier
to derive such bounds, but ant experiments suggest typically the majority do stay connected.

2 The techniques we use also apply to other geometries, including the square lattice and other planar
graphs with or without periodic boundary conditions.

DISC 2024



34:16 Single Bridge Formation in Self-Organizing Particle Systems

It would also be helpful to derive general bounds relating the mixing times of an occupancy
chain with the underlying dynamics for a general class of models, perhaps building on similar
decomposition theorems [14].

References
1 M. Andrés Arroyo, S. Cannon, J.J. Daymude, D. Randall, and A.W. Richa. A stochastic

approach to shortcut bridging in programmable matter. Natural Computing, 17(4):723–741,
2018. doi:10.1007/S11047-018-9714-X.

2 S. Camazine, K.P. Visscher, J. Finley, and S.R. Vetter. House-hunting by honey bee swarms:
Collective decisions and individual behaviors. Insectes Sociaux, 46(4):348–360, 1999.

3 S. Cannon, J.J. Daymude, C. Gökmen, D. Randall, and A.W. Richa. A local stochastic
algorithm for separation in heterogeneous self-organizing particle systems. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX-
/RANDOM), pages 54:1–54:22, 2019.

4 S. Cannon, J.J. Daymude, D. Randall, and A.W. Richa. A Markov chain algorithm for
compression in self-organizing particle systems. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC), pages 279–288, 2016.

5 J. Daudelin, G. Jing, T. Tosun, M. Yim, H. Kress-Gazit, and M. Campbell. An integrated
system for perception-driven autonomy with modular robots. Science Robotics, 3(23):eaat4983,
2018. doi:10.1126/scirobotics.aat4983.

6 J.J. Daymude, A.W. Richa, and C. Scheideler. The canonical amoebot model: Algorithms
and concurrency control. CoRR, abs/2105.02420, 2021. arXiv:2105.02420.

7 Z. Derakhshandeh, S. Dolev, R. Gmyr, A.W. Richa, C. Scheideler, and T. Strothmann. Brief
announcement: Amoebot - a new model for programmable matter. In Proceedings of the 26th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 220–222,
2014.

8 R.L. Dobrushin, R. Kotecky, and S.B. Shlosman. The Wulff Construction: a Global Shape
from Local Interactions. American Mathematical Society, Providence, 1992.

9 S. Greenberg, D. Randall, and A.P. Streib. Sampling biased monotonic surfaces usijng
exponential metrics. Combinatorics, Probability and Computing, 29:672–697, 2020. doi:
10.1017/S0963548320000188.

10 R. Jeanson, C. Rivault, J.L. Deneubourg, S. Blanco, R. Fournier, C. Jost, and G. Theraulaz.
Self-organized aggregation in cockroaches. Animal Behaviour, 69(1):169–180, 2005.

11 E. Karzbrun, A.M. Tayar, V. Noireaux, and R.H. Bar-Ziv. Programmable on-chip DNA
compartments as artificial cells. Science, 345(6198):829–832, 2014. doi:10.1126/science.
1255550.

12 S. Li, B. Dutta, S. Cannon, J.J. Daymude, R. Avinery, E. Aydin, A.W. Richa, D.I. Goldman,
and D. Randall. Programming active cohesive granular matter with mechanically induced
phase changes. Science Advances, 7(17):eabe8494, 2021. doi:10.1126/sciadv.abe8494.

13 A. Lioni, C. Sauwens, G. Theraulaz, and J.-L. Deneubourg. Chain formation in Oecophylla
longinoda. Journal of Insect Behavior, 14(5):679–696, 2001.

14 N. Madras and D. Randall. Markov chain decomposition for convergence rate analysis. Annals
of Applied Probability, 12(2):581–606, 2002.

15 N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of
state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092,
1953.

16 N.J. Mlot, C.A. Tovey, and D.L. Hu. Fire ants self-assemble into waterproof rafts to survive
floods. Proceedings of the National Academy of Sciences, 108(19):7669–7673, 2011.

17 S. Oh, J.L. Briones, J. Calvert, N. Egan, D. Randall, and A.W. Richa. Single bridge formation
in self-organizing particle systems. ArXiv preprint http://www.arxiv.org/abs/2408.10830, 2024.

https://doi.org/10.1007/S11047-018-9714-X
https://doi.org/10.1126/scirobotics.aat4983
https://arxiv.org/abs/2105.02420
https://doi.org/10.1017/S0963548320000188
https://doi.org/10.1017/S0963548320000188
https://doi.org/10.1126/science.1255550
https://doi.org/10.1126/science.1255550
https://doi.org/10.1126/sciadv.abe8494


S. Oh, J. L. Briones, J. Calvert, N. Egan, D. Randall, and A. W. Richa 34:17

18 N.T. Ouellette and D.M. Gordon. Goals and limitations of modeling collective behavior in
biological systems. Frontiers in Physics, 9, 2021. doi:10.3389/fphy.2021.687823.

19 C.R. Reid, M.J. Lutz, S. Powell, A.B. Kao, I.D. Couzin, and S. Garnier. Army ants dynamically
adjust living bridges in response to a cost–benefit trade-off. Proceedings of the National Academy
of Sciences, 112(49):15113–15118, 2015.

20 E. Şahin. Swarm robotics: From sources of inspiration to domains of application. In Swarm
Robotics, pages 10–20, 2005.

21 W. Savoie, S. Cannon, J.J. Daymude, R. Warkentin, S. Li, A.W. Richa, D. Randall, and
D. I. Goldman. Phototactic supersmarticles. Artificial Life and Robotics, 23(4):459–468, 2018.
doi:10.1007/S10015-018-0473-7.

22 B. Wei, M. Dai, and P. Yin. Complex shapes self-assembled from single-stranded DNA tiles.
Nature, 485(7400):623–626, 2012. doi:10.1038/nature11075.

23 A. Yadav. Stochastic maze solving under the geometric amoebot model. Master’s thesis, Rutgers
University, 2021. URL: https://rucore.libraries.rutgers.edu/rutgers-lib/65707/.

24 H. Zeng, J. Briones, R. Avinery, S. Li, A. Richa, D. Goldman, and T. Sasaki. Fire ant pontoon
bridge: a self-assembled dynamic functional structure. In Integrative and Comparative Biology,
volume 62, pages S341–S342, 2023.

A Additional details of the technical lemmas

In this appendix, we further develop the properties and applications of layer sequences,
introduced in Section 3.3. First, in Section A.1, we collect the proofs of some inputs to the
proof of Theorem 5. Then, in Section A.2, we discuss the main ideas behind the inputs to
the proof of Theorem 10.

A.1 Further inputs to Theorem 5
Proof of Lemma 15. For σ ∈ Ω, we look at the change in total boundary length when we
add layer M + 1 of σ to σM . Let CM+1 be the number of components in the restriction of σ

to only layer M + 1.
As layer M + 1 is not completely filled, there are exactly nM+1 − CM+1 edges between

occupied sites within layer M + 1. Thus, the number of edges of Λ with exactly one endpoint
at an occupied site in layer M + 1 is equal to 6nM+1− 2(nM+1−CM+1) = 4nM+1 + 2CM+1.
Some of the edges are shared with occupied sites on layer M . Denoting by EM+1 the number
of edges between layers M and M + 1, we can see that adding layer M + 1 to σM adds
4nM+1 + 2CM+1 − 2EM+1 to the boundary length of σM+1.

We compute an upper bound for EM+1 by counting the number of occupied sites in layer
M + 1 with at least one and with at least two edges to layer M respectively. Layer M , with
CM components, provides nM + CM occupied sites in layer M + 1 with at least one edge to
layer M , and nM − CM occupied sites in layer M + 1 with two edges to layer M . A site in
layer M + 1 cannot have more than two edges to layer M . This gives an upper bound of
min{nM + cM , nM+1} for the former, and min{nM − cM , nM+1} for the latter. This gives
us the following lower bound:

B(σM+1)−B(σM )
≥ 4nM+1 + 2CM+1 − 2 min{nM + CM , nM+1} − 2 min{nM − CM , nM+1}
≥ 2CM+1 + 2 max{nM+1 − nM − CM , 0}+ 2 max{nM+1 − nM + CM , 0}
≥ 2 + 2 max{nM+1 − nM − 1, 0}+ 2 max{nM+1 − nM + 1, 0}.

The last inequality holds because CM+1 ≥ 1 and max{nM+1 − nM −CM , 0}+ max{nM+1 −
nM +CM , 0} ≥ max{nM+1−nM−1, 0}+max{nM+1−nM +1, 0} for any value of nM+1−nM ,

DISC 2024

https://doi.org/10.3389/fphy.2021.687823
https://doi.org/10.1007/S10015-018-0473-7
https://doi.org/10.1038/nature11075
https://rucore.libraries.rutgers.edu/rutgers-lib/65707/


34:18 Single Bridge Formation in Self-Organizing Particle Systems

as long as CM ≥ 1 (which is true as σ ∈ Ω). To show the second statement of the lemma, we
can construct σ layer by layer, where each layer from max{1, Rbot} to Rtop has exactly one
component and MM+1 is maximized for each value of M . ◀

Proof of Lemma 7. In this proof, we will use (x)+ to denote max{x, 0} for x ∈ R. Fix
ϵ ≥ 1/h and a configuration σ ∈ MBϵ. By definition (4), there is an a ∈ (0, 1) such that σ

has multiple (a, a + ϵ)-bridges. Set M = ⌊ah⌋, and let Λ≥M represent the set of sites on
layers M to h. We can divide the elements of σ within Λ≥M into connected components
V1, V2, . . . , VP for some integer P . Denote by Vbase the elements of σ not in Λ≥M . For each
j ∈ {1, 2, . . . , P}, we denote σ(j) = Vj ∪ Vbase which we note will be a configuration in Ω,
and let N

(j) = (n(j)
k )k∈{0,1,...,h} be its layer sequence.

By applying Lemma 15, the increase in boundary length when adding the sites Vj to the
restriction of σ to the layers 1, 2, . . . , M − 1 must be at least B

(j), where

B
(j) =

R
(j)
top−1∑

k=M

(
2 + 2

(
n

(j)
k+1 − n

(j)
k + 1

)
+

+ 2
(

n
(j)
k+1 − n

(j)
k − 1

)
+

)
,

and where R
(j)
top denotes the topmost non-empty layer of σ(j). We can thus give the following

lower bound for the boundary length of σ:

B(σ) ≥ BM (N) +
P∑

j=1
B

(j)
.

Denoting by N = (nk)k∈{0,1,...,h} the layer sequence of σ itself, by Lemma 16, there exists a
configuration τ with layer sequence N where:

B(τ) = BM (N) +
Rtop−1∑

k=M

(
2 + 2 (nk+1 − nk + 1)+ + 2 (nk+1 − nk − 1)+

)
.

Without loss of generality, we may assume that Rtop = R
(1)
top ≥ R

(2)
top ≥ . . . ≥ R

(P )
top .

B(σ)−B(τ) ≥
P∑

j=1
B

(j) −
Rtop∑
k=M

(
2 + 2 (nk+1 − nk + 1)+ + 2 (nk+1 − nk − 1)+

)

= −
P∑

j=2

R
(j)
top∑

k=M

2 + 2
R

(j)
top∑

k=M


∑

j∈[P ]
k≤R

(j)
top−1

(
n

(j)
k+1 − n

(j)
k +1

)
+
− (nk+1 − nk + 1)+



+ 2
R

(j)
top∑

k=M


∑

j∈[P ]
k≤R

(j)
top−1

(
n

(j)
k+1 − n

(j)
k − 1

)
+
− (nk+1 − nk − 1)+

 .

The second and third terms of the above expression are non-negative as for I ∈ {1,−1}, we



S. Oh, J. L. Briones, J. Calvert, N. Egan, D. Randall, and A. W. Richa 34:19

have ∑
j∈[P ]

k≤R
(j)
top−1

(
n

(j)
k+1 − n

(j)
k + I

)
+
− (nk+1 − nk + I)+

=
∑

j∈[P ]
k≤R

(j)
top

(
n

(j)
k+1 − n

(j)
k + I

)
+
−

( ∑
j∈[P ]

k≤R
(j)
top

(nk+1 − nk) + I
)

+
≥ 0.

This allows us to conclude that

B(σ)−B(τ) ≥
P∑

j=2

R
(j)
top∑

k=M

2 = 2
P∑

j=2
(R(j)

top −M + 1). (10)

If σ has multiple (a, a + ϵ)-bridges, we must have P ≥ 2 and R
(2)
top −M + 1 ≥ ϵh, and so

according to (10) we must have B(σ) ≥ B(τ) + 2ϵh. ◀

A.2 Further inputs to Theorem 10
In this section, we present the main ideas behind Lemmas 13 and 14, which we prove in the
full version of the paper [17]. These lemmas arise from the analysis of a transformation of
layer sequences which gives a significant improvement (more negative) in the Hamiltonian
when a configuration without a bridge to the food is extended to reach the food, so long as
the scent parameter η is sufficiently large.

Let σ be an arbitrary configuration with layer sequence N = (nk)k∈[h]. Suppose that
N ∈ L0,D, where D ≤ h− 1 is the highest occupied layer in σ. We will transform N into a
new layer sequence N

post in L0,h (i.e. it reaches Λh). We then show that with a sufficiently
large value of η (or φ), the increase in scent intensity going from N to N

post will more than
compensate for the potential increase in boundary length. However, the transformation from
N to N

post is complex, and we will thus split it into multiple steps – pre-process, the main
transformation, and post-process. The layer sequences after each of these steps are denoted
N

pre, N
mid and N

post respectively.
To understand the following transformations from N to N

pre to N
mid to N

post, we can
visualize layer sequences as “right-justified” configurations in Λ (see Figure 3). The particles
of these right-justified configurations can be grouped into columns, where the site on the kth

layer of column j (counted from the right) is filled if and only if its layer sequence has at
least j particles in layer k.

The pre-processing step, which creates an intermediate layer sequence N
pre = (npre

k )k∈[h] ∈
L0,h, is solely to account for specific edge cases in the eventual transformation to N

post. To
define N

pre starting from N , we first add in the unused n−|σ| particles to the layer sequence.
We denote u = w −maxk∈[h]{nk} − 1, the number of empty columns that we can fill with
unused particles. We thus take min

{
u, ⌊n−|σ|

h ⌋
}

empty columns and fill them with unused
particles (which is equivalent to increasing each entry of the layer sequence by said amount
of columns). The next step is to guarantee at least one completely filled column. If there
are no completely filled columns even after adding the unused particles, h−D particles are
taken one at the time from the highest layer with at least two particles, and placed to form
a single column of particles. This transformation is illustrated in Figure 3c.

The particles of the layer sequence N
pre can be divided into three layer sequences

(nfull
k )k∈[h], (n⊥

k )k∈[h] and (n⊤
k )k∈[h] by column (so that npre

k = nfull
k + n⊥

k + n⊤
k for all k ∈ [h]).

DISC 2024



34:20 Single Bridge Formation in Self-Organizing Particle Systems

(a) Original configuration σ with some number of
unused particles (not shown).

(b) Representation of layer sequence N (right-
justified σ) with unused particles not shown.

(c) Representation of layer sequence N
pre. There

were no empty columns in N , so all unused par-
ticles remain unused, while 2 particles from the
topmost layers are moved to form a single column
to the top. Particles from (nfull

k )k∈[h], (n⊥
k )k∈[h]

and (n⊤
k )k∈[h] represented by black circles, double

circles and single circles respectively.

(d) Representation of layer sequence N
mid (ex-

cluding the crosses). Particles from (n⊤
k )k∈[h] are

shifted upward, and two full columns are created
from the 26 particles in (n⊥

k )k∈[h], with 6 particles
from (n⊥

k )k∈[h] unused. These 6 particles are added
back to the positions marked with crosses to form
the layer sequence N

post.

Figure 3 Transformation from the layer sequence N to N
post, with the layer sequences represented

as right-justified configurations.

The first layer sequence (nfull
k )k∈[h] is represents the particles belonging to the J full = npre

h ≥ 1
full columns of the right-justified configuration. The remaining columns are then identified
as either bottom-supported or non-bottom-supported. The bottom-supported columns are
those which have some value k′ ∈ {0, 1, 2, . . . , h− 1} where layers {1, 2, . . . , k′} in the column
are occupied and the remaining layers are unoccupied (an alternative definition is having no
unoccupied site below an occupied site). Particles from bottom-supported columns are put
into (n⊥

k )k∈[h], while those from non-bottom-support columns go into (n⊤
k )k∈[h]. Alternatively,

for each value of k in [h] we can define formally
nfull

k = J full,
n⊥

k =
∣∣∣{j ∈ [w] : j > J full and npre

k′+1 ≥ j =⇒ npre
k′ ≥ j for all k′ ∈ [h− 1]

}∣∣∣, and
n⊤

k = npre
k − n⊥

k − nfull
k .

To construct N
mid, we apply different transformations to the particles corresponding to

each of these layer sequences to construct a new configuration σmid. The particles in (n⊥
k )k∈[h]

are transformed into J⊥ = ⌊ 1
h

∑h
k=1 n⊥

k ⌋ full columns while the particles in (n⊤
k )k∈[h] have

their particles shifted to the tops of their respective columns. These non-bottom-supported
columns are placed directly next to the J full + J⊥ filled columns in the right-justified
configuration σmid (see Figure 3d). Note that there may be up to h − 1 unused particles
from (n⊥

k )k∈[h] after this transformation. The layer sequence of this new configuration will
be denoted by N

mid = (nmid
k )k∈[h].

To describe this transformation more precisely in terms of layer sequences, for each
i ∈ [w], we denote C⊤

i = |{k ∈ [h] : n⊤
k ≥ i}|, the number of particles in the ith non-bottom-



S. Oh, J. L. Briones, J. Calvert, N. Egan, D. Randall, and A. W. Richa 34:21

supported column. With J full and J⊥ defined as before, we can then define the layer sequence
N

mid = (nmid
k )k∈[h], where for each k ∈ [h],

nmid
k = J full + J⊥ +

∣∣∣{i ∈ [w] : C⊤
i ≥ h− k + 1

}∣∣∣.
We note that this is a valid transformation (into a layer sequence N

mid ∈ L0,h) as for each
k ∈ [h], we know that J⊥ ≤ maxk′{n⊥

k′} and
∣∣∣{i ∈ [w] : C⊤

i ≥ h− k + 1
}∣∣∣ ≤ maxk′{n⊤

k′}, so
we must have nmid

k ≤ npre
k ≤ w − 1.

We include one final step in the transformation to ensure that the change in scent
intensity from N

pre to N
post is non-negative. In particular, in the transformation from

N
pre to N

post, for the sake of simplicity, we had transformed the particles from (n⊥
k )k∈[h]

into J⊥ = ⌊ 1
h

∑h
k=1 n⊥

k ⌋ full columns, leaving m ≤ h− 1 particles unused. As a final post-
processing step, we can add these m particles back to the final layer sequence, by adding
one particle each to the topmost m rows that have less than w − 1 particles (note that the
final layer sequence is non-decreasing). This gives a positive net change in scent intensity for
the particles from (n⊥

k )k∈[h], while potentially increasing the value of Bh by at most Oh(1)
(using the definition of Bh in Lemma 16).

Change in scent intensity. We compute the overall change in the two transformations to
show Lemma 17. It is important to note that in our analysis, we do not assume that φ is
constant with respect to h. Note that for this and the following lemmas, we will only give
the brief ideas for the proofs; the remaining details are presented in [17]. Recall that S(N ′)
denotes the scent intensity common to all configurations with layer sequence N

′.

▶ Lemma 17 (Scent Intensity). The changes in scent intensities in the transformations from
N to N

pre and from N
pre to N

post are non-negative and have the following lower bounds:

S(Npre)− S(N) ≥ φ ·min
{

u,
⌊n− |σ|

h

⌋}
S(Npost)− S(Npre) ≥ |σ|φ

h

(
1− D

h

)
+ φ ·Oh(1),

where u = w −maxk∈[h]{nk} − 1 and Oh(1) represents a function that does not depend on
the specific choice of starting configuration σ.

For the transformation from N to N
pre in the proof of Lemma 17, the number of full columns

added to the N is min
{

u,
⌊

n−|σ|
h

⌋}
, and neither the adding of full columns nor the shifting

of h−D particles to the top h−D rows can decrease the total scent intensity. On the other
hand, the transformation from N

pre to N
post requires a more involved analysis, to show that

for particles from both bottom-supported columns and non-bottom-supported columns, the
average increase in the total scent intensity per particle has a lower bound of φ

h

(
1− D

h

)
,

with a small error term.

Change in boundary length. Instead of computing the boundary lengths for configurations
directly, we compare the (tight) boundary length lower bounds that are defined in Lemma 16
between the initial and final layer sequences N and N

post.

▶ Lemma 18 (Boundary Length). In the transformation from N ∈ L0,D to N
post ∈ L0,h, we

have:

Bh(Npost)−BD(N) ≤ 4(h−D)− 2 max
{

w − u−D,

(
|σ|
h
− h

2

)}
+ Oh(1),

DISC 2024



34:22 Single Bridge Formation in Self-Organizing Particle Systems

where Oh(1) represents a function that does not depend on the specific choice of starting
configuration σ. Furthermore, by Lemma 16 there exists a configuration τ with layer sequence
N

post such that B(τ)−B(σ) ≤ Bh(Npost)−BD(N), and thus has the same upper bound.

The proof of Lemma 18 focuses almost entirely on the comparison between layer sequences
N and N

mid, by noting that the post-processing step produces an insignificant change in
boundary length.

Change in the Hamiltonian. Finally, putting together the changes in scent intensity
(Lemma 17) and boundary length (Lemma 18) going form N to N

post, we can compute a
lower bound for the change in Hamiltonian. There are two cases in the proof of Lemma 13,
roughly corresponding to whether or not there were enough empty columns u in N to fit the
majority of the unused particles in the transformation from N to N

pre. In the case where
u is small (u <

⌊ n−|σ|
h

⌋
), the boundary length of the initial configuration or layer sequence

will be close to w, and is the primary contributor to the change in Hamiltonian. In the case
where u is large (u ≥

⌊ n−|σ|
h

⌋
), the increase in scent intensity without additional boundary

length from being able to construct full columns of particles makes it undesirable for particles
to remain unused in the configuration.



Memory Lower Bounds and Impossibility Results
for Anonymous Dynamic Broadcast
Garrett Parzych #

School of Computing and Augmented Intelligence, Biodesign Center for Biocomputing, Security and
Society Arizona State University, Tempe, AZ, USA

Joshua J. Daymude #

School of Computing and Augmented Intelligence, Biodesign Center for Biocomputing, Security and
Society Arizona State University, Tempe, AZ, USA

Abstract
Broadcast is a ubiquitous distributed computing problem that underpins many other system tasks. In
static, connected networks, it was recently shown that broadcast is solvable without any node memory
and only constant-size messages in worst-case asymptotically optimal time (Hussak and Trehan,
PODC’19/STACS’20/DC’23). In the dynamic setting of adversarial topology changes, however,
existing algorithms rely on identifiers, port labels, or polynomial memory to solve broadcast and
compute functions over node inputs. We investigate space-efficient, terminating broadcast algorithms
for anonymous, synchronous, 1-interval connected dynamic networks and introduce the first memory
lower bounds in this setting. Specifically, we prove that broadcast with termination detection is
impossible for idle-start algorithms (where only the broadcaster can initially send messages) and
otherwise requires Ω(log n) memory per node, where n is the number of nodes in the network. Even
if the termination condition is relaxed to stabilizing termination (eventually no additional messages
are sent), we show that any idle-start algorithm must use ω(1) memory per node, separating the
static and dynamic settings for anonymous broadcast. This lower bound is not far from optimal, as
we present an algorithm that solves broadcast with stabilizing termination using O(log n) memory
per node in worst-case asymptotically optimal time. In sum, these results reveal the necessity of
non-constant memory for nontrivial terminating computation in anonymous dynamic networks.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Networks →
Network algorithms

Keywords and phrases Dynamic networks, anonymity, broadcast, space complexity, lower bounds,
termination detection, stabilizing termination

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.35

Funding This work is supported in part by National Science Foundation award CCF-2312537.

1 Introduction

Distributed algorithms for dynamic networks enable processes to coordinate even as the
communication links between them change over time, often rapidly and adversarially [1, 8].
When once a process disconnecting from a distributed system was viewed as a rare crash
fault to tolerate, research over the last two decades has come to view dynamics as natural or
even necessary to a system’s function. Application domains such as self-stabilizing overlay
networks [2, 19], blockchains [4, 21], and swarm robotics [20,22] are defined by their rapidly
changing or physically moving components, forcing algorithms to achieve their goals by
leveraging – or more often operating in spite of – these dynamics.

Despite the challenges, many fundamental problems have been addressed under adversarial
dynamics, including broadcast, consensus, and leader election (see [3, 5] for complementary
surveys). However, many of these algorithms endow their nodes with unique identifiers,
port labels for locally distinguishing among their neighbors, (approximate) knowledge of

© Garrett Parzych and Joshua J. Daymude;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 35; pp. 35:1–35:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gparzych@asu.edu
https://orcid.org/0009-0008-4789-9603
mailto:jdaymude@asu.edu
https://orcid.org/0000-0001-7294-5626
https://doi.org/10.4230/LIPIcs.DISC.2024.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


35:2 Memory Lower Bounds and Impossibility for Anonymous Dynamic Broadcast

the number of nodes in the network, or superlinear memories. Taking inspiration from
collective behavior in biological complex systems of computationally weak entities – such as
foraging in ant colonies [10,32], aggregation in slime mold spore migrations [36], and energy
distribution in microbiomes [28,33] – we question to what extent these additional capabilities
are necessary. Specifically, we consider dynamic networks of anonymous nodes (lacking
both unique identifiers and port labels) with limited memory. As an aside, anonymity is
a desirable feature in its own right for engineering privacy-sensitive applications, such as
Bluetooth-based contact tracing [35].

We consider the fundamental problem of synchronous broadcast, in which all nodes in
a network must eventually be informed of some information originating at a single node.
In static, connected networks, broadcast can be solved without any persistent memory
at all: the amnesiac flooding algorithm [23–25] – in which nodes forward copies of any
message they receive to any neighbor that did not send them the message in the last round
– informs all nodes (correctness) and allows them to eventually stop sending additional
messages (stabilizing termination) within worst-case asymptotically optimal time. But even
when adversarial dynamics are constrained to maintain network connectivity in every round,
a longstanding conjecture states that dynamic broadcast with stabilizing termination is
impossible in O(log n) memory without node identifiers or knowledge of n [31], let alone
without any memory at all. We summarize our contributions as follows.

Our Contributions. All results are proven with respect to deterministic algorithms run by
anonymous nodes (lacking identifiers and port labels) in a dynamic network whose topology
can change arbitrarily but remains connected in each synchronous round. In this setting:

Broadcast with termination detection – i.e., the broadcaster must eventually decide
broadcast is complete – is impossible for idle-start algorithms where only the broadcaster
can initially send messages (Section 2) and otherwise requires Ω(log n) space (Section 3).
Any idle-start algorithm solving broadcast with stabilizing termination – i.e., eventually
no additional messages are sent – must have ω(1) space complexity (Section 4). We then
present an algorithm solving broadcast with stabilizing termination in O(log n) space
and worst-case asymptotically optimal time (Section 5).

We note that although synchronous systems are typically seen as less general than
asynchronous ones, it is actually the opposite for the purposes of lower bounds. Since an
asynchronous adversary can always simulate a synchronous one, any impossibility results or
lower bounds proven w.r.t. synchrony will apply to both types of systems.

1.1 Model
Dynamic Networks. We consider a synchronous dynamic network comprising a fixed set of
nodes V . Nodes communicate with each other via message passing over a communication
graph whose topology changes over time. We model this topology as a time-varying graph
G = (V, E, T, ρ) where V is the set of nodes, E is the static set of undirected edges that
may appear in the graph, T = N is the lifetime of the graph, and ρ : E × T → {0, 1} is
the presence function indicating whether an edge exists at a given time [8]. We refer to
the set of edges present at time t ∈ T as Et = {e ∈ E : ρ(e, t) = 1} and the undirected
graph Gt = (V, Et) as the snapshot of G at time t ∈ T . We assume an adversary controls
the presence function ρ and that E is the complete set of edges on V ; i.e., we do not limit
which edges the adversary can introduce. We do, however, follow the majority of dynamic
broadcast literature (e.g., [8, 12,26,27,31]) in assuming 1-interval-connectivity (also called
“always-connected snapshots”); i.e., the adversary may make arbitrary topological changes at
each time t ∈ T so long as each snapshot Gt is connected.



G. Parzych and J. J. Daymude 35:3

Node Capabilities. Motivated by computationally weak individuals in biological collectives
(e.g., cells, microbes, social insects, etc.), we consider nodes that are anonymous, lacking
unique identifiers, and have no knowledge or approximation of any global measure, including
the number of nodes n. We further assume that nodes have no port labels; i.e., they cannot
count or locally distinguish among their neighbors. Consequently, when a node communicates
with its neighbors via message passing, it does so using a broadcast mechanism, sending the
same message to all its current neighbors.

Algorithms and Execution. Each node in the time-varying graph G synchronously executes
the same distributed algorithm A. All nodes are initialized at time t = 0, and each
synchronous round t starting at time t proceeds as follows:
1. The adversary fixes the network topology Gt for round t.
2. Each node may send a message to its neighbors in Gt according to algorithm A as a

function of its current state.
3. Each node may perform a state transition according to algorithm A as a function of its

current state and the multiset of messages it (reliably) receives from its neighbors in Gt.

Memory. In this paper, we are primarily concerned with an algorithm’s space complexity,
the maximum number of bits a node uses to store its state between rounds. As usual for
distributed systems, we are interested in the asymptotic growth of this measure as a function
of n = |V |, the number of nodes. We emphasize that even if nodes have Ω(log n) memory
– sufficient for storing unique identifiers – they are anonymous and are not assigned such
identifiers a priori. We also note that we do not analyze message complexity directly, as our
execution model specifies nodes that send messages based only on their states; thus, there
are at most as many message types as states.

Broadcast. In the broadcast problem, every node starts in the same state except for a single
node known as the broadcaster that is trying to deliver some information to every other node
in the network. We say that a node is informed if it is the broadcaster or has previously
received a message from an informed node. All other nodes are uninformed. A broadcast
is complete when every node in the network is informed. A distributed algorithm A solves
the broadcast problem in t rounds if, for any time-varying graph whose nodes all execute A,
broadcast is completed by the end of round t.

Idle-Start. A node is idle if it will not send a message in the subsequent round, and will not
change its state if it does not receive a message (this has also been called “quiescent” [29],
though that term is overloaded in this context). Some broadcast algorithms critically rely on
initializing all nodes as non-idle at time t = 0; conversely, an idle-start algorithm initializes
all nodes except the broadcaster as idle.

Termination. A simple solution to broadcast is to make every informed node continuously
send messages. Since we assume 1-interval connectivity, there is always at least one uninformed
node receiving a message from an informed node in each round, so this algorithm solves
broadcast in O(n) rounds. This runtime bound is worst-case asymptotically optimal, but
a smoothed analysis reveals significant improvements on more “typical” topologies [17,18].
This algorithm also achieves Θ(1) space complexity, since nodes need only remember whether
they’re informed. However, nodes sending messages forever creates undesirable congestion
and precludes the system from advancing to further tasks, e.g., starting a new broadcast

DISC 2024



35:4 Memory Lower Bounds and Impossibility for Anonymous Dynamic Broadcast

or using the broadcast information as part of a larger algorithm. Thus, we seek algorithms
meeting some kind of termination conditions. An algorithm achieves stabilizing termination
if every node becomes idle within finite time. An algorithm achieves the stronger condition
of termination detection if the broadcaster correctly and irrevocably decides that broadcast
is complete (i.e., by entering a terminating state) within finite time.

1.2 Related Work

Broadcast is a ubiquitous and well-studied distributed computing problem, often appearing
as a building block in more complex tasks. In static, connected networks, broadcast with
stabilizing termination is solvable without any node memory (and thus without identifiers)
and only Θ(1) message complexity in worst-case asymptotically optimal time, though port
labels are required to distinguish among neighbors [23,24]. In a recent extension of this work,
the same algorithm was proven correct under node and edge deletion dynamics [25], but
breaks down under more general adversarial dynamics. With this inspiration, our focus is
space-efficient, terminating algorithms for broadcast in anonymous dynamic networks.

Early works on dynamic broadcast typically assumed stronger node capabilities. A series
of works on shortest, fastest, and foremost broadcast assumed local identifiers enabling a
node u to maintain a consistent label for any neighbor v, even if v disconnected from and later
reconnected to u [6–8]. This assumption enables the construction of time-invariant logical
structures like spanning trees, which – when combined with the assumption of recurrent
dynamics (edges will eventually reappear) – reduces dynamic broadcast to static routing on
these structures. Similar techniques are used when assuming both unique node identifiers and
shared knowledge of n, the number of nodes in the network [34]. Among these early works,
only O’Dell and Wattenhofer [31] share our focus on anonymous nodes and space complexity.
They conjectured that no algorithm can solve broadcast with stabilizing termination in
O(log n) space when nodes are anonymous and have no knowledge of n. Interestingly, we
prove this is solvable in our model (Section 5), though we do not disprove their conjecture
since our model’s synchrony is not directly comparable to their combination of asynchronous
time, bounded message latency, and disconnection detection for re-broadcasting messages.

A parallel line of work investigated what functions a dynamic network can deterministically
compute over its nodes’ inputs [27]. In the context of anonymous dynamic networks, most
results focus on the (exact) counting problem [9,11,14,15,26,30], which terminating broadcast
reduces to in O(n) time and O(log n) space: once the broadcaster knows the number of
nodes n, it need only wait n rounds before every other node must have been informed (since
the dynamic network is 1-interval connected), at which point it can terminate. These works
recently culminated in the exact characterization by Di Luna and Viglietta [12, 13] showing
that anonymous dynamic networks with at least one leader can compute only the multi-
aggregate functions – those for which a node’s output depends only on its own input and the
multiset of all nodes’ inputs – and do so in optimal (linear) time. However, their algorithm
uses Θ(n3 log n) space in the worst case [16], leaving open what memory is necessary. Our
impossibility results and memory lower bounds for terminating broadcast (Sections 2–4)
shed light on this question, as many nontrivial multi-aggregate functions require information
from at least one node to be communicated to all other nodes (e.g., minimums/maximums,
averages, exact and generalized counting, etc.).



G. Parzych and J. J. Daymude 35:5

...

G

b

v0 v1 v2 vk vk+1
P

(a) End of Round 0.

b

v0 v1 v2 vk vk+1...

G

P

(b) End of Round 1.

b

v0 v1 v2 vk vk+1...

G

P

(c) End of Round k.

Figure 1 The time-varying graph G used in the proof of Theorem 1. In each round t, the
broadcaster b is connected to node vt in the path P . Informed nodes are shown in green. When b

declares broadcast to be complete in round k, node vk+1 is still uninformed.

2 Impossibility Results for Termination Detection

We begin by proving that there is no idle-start algorithm – i.e., one in which only the
broadcaster can initially send messages – that solves broadcast with termination detection in
our setting. The idea behind the proof is as follows. Supposing to the contrary that such an
algorithm A exists, it must solve broadcast and detect termination on any static, connected
network G. So we consider an execution of A on an extension of G as a time-varying graph
G that we carefully construct to achieve two goals: (1) the execution of A on G in the
time-varying graph G is identical to its execution on G alone, and (2) there is an idle node in
G that is sequestered from ever being informed. This drives a contradiction: the broadcaster
must detect termination in G because it does so on G alone, but will do so incorrectly because
there is still an uninformed node.

▶ Theorem 1. No deterministic idle-start algorithm can solve broadcast with termination
detection for anonymous, synchronous, 1-interval connected dynamic networks.

Proof. Suppose to the contrary that there exists an idle-start algorithm A solving broadcast
with termination detection in our setting. Let G be any static, connected graph and let b

be any node in G. If A is executed on G with b as the broadcaster, there must exist some
round k during which b correctly and irrevocably declares broadcast to be complete.

Construct a time-varying graph G as follows (see Figure 1). First, G contains the static
graph G as a fixed part; i.e., all edges of G will remain present throughout the lifetime of G.
Additionally, G contains a fixed path P = v0v1 · · · vk+1 of k + 2 nodes. Finally, in each round
t ∈ {0, . . . , k}, there is a single edge {b, vt} connecting the broadcaster b to the path P .

Consider the execution of A on G with b as the broadcaster. We argue by induction on
t ∈ {0, . . . , k} that in round t, (1) all nodes in G send the same messages and perform the same
state transitions as they did in the execution of A on G, and (2) the nodes {vt+1, . . . , vk+1}
remain idle and uninformed. In round t = 0, only the broadcaster b potentially sends
messages and changes state since A is an idle-start algorithm. Recall that nodes have no
port labels and no knowledge of n. Thus, b must send the same messages and perform the
same state transition as in the execution of A on G. The only neighbor of b in the path P is
v0, so nodes {v1, . . . , vk+1} receive no messages and remain idle and uninformed.

Now suppose the claim holds up to and including some round 0 ≤ t < k. By the induction
hypothesis, all nodes in G have the same states at the start of round t + 1 as in the execution
of A on G, and thus send the same messages. However, since {b, vt+1} is the only edge
between G and P in round t + 1, b could in principle make a divergent state transition if it

DISC 2024



35:6 Memory Lower Bounds and Impossibility for Anonymous Dynamic Broadcast

receives a message from vt+1. But by the induction hypothesis, vt+1 is idle and thus sends
no messages in round t + 1. For this same reason, nodes {vt+2, . . . , vk+1} receive no messages
and remain idle and uninformed in round t + 1.

Therefore, in round k, the broadcaster b irrevocably declares broadcast to be complete
just as it did in the static setting, but vk+1 remains uninformed, a contradiction. ◀

A related line of research investigates the computability of functions in dynamic networks
with no or multiple leaders. Di Luna and Viglietta have recently shown that if the number
of leaders is known, nodes can compute the same functions as systems with a single leader.
However, they found that if the number of leaders is unknown, then it is impossible for nodes
to compute the size of the network with termination detection [13]. Using similar ideas to
our previous proof, we can show that broadcast with termination detection is also impossible
without knowing the number of broadcasters. Since broadcast can be reduced to counting the
size of the network (simply broadcast for n rounds after receiving the count), our theorem
implies the result of Di Luna and Viglietta. However, since we are unaware of any reduction
from counting to broadcast, ours seems to be slightly more general.

▶ Theorem 2. Even without an idle start, no deterministic algorithm can solve broadcast with
termination detection for anonymous, synchronous, 1-interval connected dynamic networks
if nodes have no knowledge of the number of broadcasters.

Proof. Suppose for contradiction that an algorithm A solves broadcast with termination
detection without giving nodes knowledge of the number of broadcasters. Let the configuration
of a dynamic network at time t be the multiset of node states at the start of round t. Let
C0, C1, . . . , Cx be the sequence of configurations that occur from running A on the complete
graph K3 with a single broadcaster, where Cx is the first configuration in which the broadcaster
declares termination. We will create a new time-varying graph G on which A will incorrectly
terminate. First create 2x copies of C0, with each copy having a single broadcaster and two
non-broadcasters. Add a path p0p1 . . . px of x + 1 nodes and for each copy of C0, choose one
of the non-broadcaster nodes and attach it to p0; this will be the first snapshot of G.

Suppose that in C1, the broadcaster was in state β1 and the non-broadcasters in state
α1. By symmetry of the graphs, after the first round of executing A on G, each copy of C0
will have a node in state β1 and a node in state α1, while the node attached to p0 will be
in some other unknown state. Thus there are 2x nodes in state β1 and 2x nodes in state
α1. Use all the nodes in state α1 and half the nodes in state β1 to create 2x−1 copies of the
configuration C1. Attach all of the unused nodes from the copies of C0 to p1. Again, choose
a single non-broadcaster node from each copy of C1, and attach them to p1. Then run A for
one additional round. If β2 and α2 are the states of the broadcaster and non-broadcasters in
C2 respectively, then by symmetry, our graph after this round will have 2x−1 copies each of
β2 and α2. We can now use these nodes to create 2x−2 copies of C2.

Continuing on in this way, we can create 2x−i copies of configuration Ci for each i ∈
{0, . . . , x} while only informing a single node in the path at a time. Thus, after x rounds, we
will have 2x−x = 1 copy of Cx and px will still be uninformed. But the broadcaster in the
copy of Cx will have declared termination, contradicting the correctness of A. ◀

3 Memory Lower Bound for Termination Detection

In an idle-start algorithm, nodes have no indication of whether they have idle, uninformed
neighbors. This drives the indistinguishability result at the center of Theorem 1: a static,
connected graph cannot tell if it’s the entire network or a subgraph in a larger whole. Without



G. Parzych and J. J. Daymude 35:7

Kn0–i+1

Kn0–i+1

a

p... ...

... ...

D0

Pi

Ck = Bk∪Ak∪Pk∪Gk Ci = Bi∪Ai∪Pi∪Gi

Dj

Gk∪(Ak \ Ak') Gi = Gk∪{a, p}Pk

Dj+1 Dx

{α0}
n0 – i

{β0}

{αi}
n0 – i {αf}

n0 – i{αk}
n0 – i

Ak' ={αk}
n0 – i

{βk}

{βk}

{βi} {βf}

a

p

Ai ={αi}
n0–i–1

Bi ={βi}

Figure 2 The inductive construction of configuration Ci as described in the proof of Theorem 3.
The key idea is to find a new pair of states (βi, αi) that is not already in (β0, α0), . . . , (βi−1, αi−1)
by arranging a previously identified reachable configuration Ck and extending the corresponding
execution of A by one additional round.

the constraints of an idle-start, however, this particular contradiction – and its corresponding
impossibility result – disappears. For example, the history tree algorithm of Di Luna and
Viglietta solves broadcast in this setting in linear time and Θ(n3 log n) space [16]. Still, all
such algorithms must use at least logarithmic memory, as we now show.

▶ Theorem 3. Any algorithm that solves broadcast with termination detection for anonymous,
synchronous, 1-interval connected dynamic networks must have Ω(log n) space complexity.

Proof. Consider any (non-idle-start) algorithm A that solves broadcast with termination
detection. Let f(n) be the maximum number of states that A uses when run on dynamic
networks of at most n nodes. We will show that f(n) ≥ n1/2 for all n ≥ 1, implying that A
uses log(f(n)) ≥ log(n1/2) = Ω(log n) space.

Suppose to the contrary that there exists an n0 ≥ 1 such that f(n0) < n
1/2
0 . A

configuration C is reachable (from an initial configuration) if there exists a time-varying
graph G and time t such that the execution of A on G for t rounds results in configuration C.
We will find a sequence of n0 reachable configurations (Ci)n0−1

i=0 where each Ci is a disjoint
union of multisets1 of states Bi ∪ Ai ∪ Pi ∪ Gi satisfying:

1. |Ci| = 2n0,
2. Bi = {βi}, where βi is the state of the broadcaster,
3. Ai = {αi}n0−i−1, exactly n0 − i − 1 copies of the same state αi,

1 A multiset X is a disjoint union of multisets Y ∪ Z if the multiplicity of any element x ∈ X is the sum
of multiplicities of x in Y and Z.

DISC 2024



35:8 Memory Lower Bounds and Impossibility for Anonymous Dynamic Broadcast

4. |Pi| ≥ n0 − i and contains only uninformed states,
5. Gi = Ci \ (Bi ∪ Ai ∪ Pi), and
6. (βi, αi) ̸= (βj , αj) for all j ̸= i.

Initially, the broadcaster is in some state β0 and all other nodes are uninformed in some
state α0 ̸= β0. Define the initial configuration C0 by letting B0 = {β0}, A0 = {α0}n0−1,
P0 = {α0}n0 , and G0 = ∅. Clearly, C0 is reachable and meets the above conditions.

Now consider any 1 ≤ i < n0 and suppose that C0, . . . , Ci−1 have already been defined;
we define Ci recursively as follows (see Figure 2 for an illustration). Let D = (D0, . . . , Dx)
be the sequence of configurations obtained by running A on Kn0−i+1, the complete graph
on n0 − i + 1 nodes, where Dx is the first configuration in which the broadcaster declares
termination. Note that, by the symmetry of the complete graph, each configuration in D has
one state for the broadcaster and one state shared by every other node. Let j ∈ {0, . . . , x}
and k ∈ {0, . . . , i − 1} be such that βk ∈ Dj and Dj \ {βk} ⊆ Ak and for any other j′, k′

fulfilling this condition, j′ ≤ j. Note that such a j must exist since, firstly, D0 is the initial
configuration of Kn0−i+1 and thus β0 ∈ D0 and D0 \ {β0} = {α0}n0−i ⊆ {α0}n0−1 = A0;
and secondly, the sequence D is finite since A terminates in finite time. We also have j < x

since otherwise there exists a configuration Ck containing |Pk| ≥ n0 − k > 0 uninformed
nodes (by induction), but βk ∈ Dx is a terminating state, contradicting the correctness of A.

Configuration Ck is reachable, so there is some time-varying graph upon which the
execution of A will within finite time be in configuration Ck = Bk ∪ Ak ∪ Pk ∪ Gk. We
extend this execution by putting this graph into the following topology and executing A for
a single additional round. In a slight abuse of notation, we refer here to configurations as
sets of nodes instead of multisets of states since edge dynamics make nodes in the same state
interchangeable. Choose any subset A′

k ⊆ Ak of n0 − i nodes (which is well-defined since
|Ak| = n0 − k − 1 ≥ n0 − i by induction) and arrange them with Bk as a complete graph
Kn0−i+1. Arrange the nodes in Pk as a path. Connect these components by attaching an
end p ∈ Pk of the path to some node a ∈ A′

k and connect every node in Gk ∪ (Ak \ A′
k) only

to this node a. Let Ci be the configuration obtained after executing one round of A on this
topology. Clearly Ci is reachable; we show next that it satisfies the required conditions.

1. |Ci| = |Ck| = 2n0 as desired.
2. Let Bi = {βi} be the state of the unique node in Bk after this one additional round.
3. Consider any two nodes a1, a2 ∈ A′

k \ {a} before execution of the round. Notice that they
are both connected to Bk and every node in A′

k except for themselves. By induction,
every node in A′

k has the same state αk. Thus, a1 and a2 receive the same sets of messages
from their neighbors, so they transition to the same state in the next round. Let αi be
this state shared by all nodes in A′

k \ {a} after the round’s execution and let Ai be the
corresponding configuration. Thus Ai = {αi}|A′

k|−1 = {αi}n0−i−1 as desired.
4. Consider any node v ∈ Pk \ {p} before execution of the round. By induction, v and its

neighbors are uninformed. Thus, v receives no message from an informed node in the
subsequent round and remains uninformed. Let Pi be the (states of) nodes Pk \ {p}. By
induction, we have |Pi| = |Pk| − 1 ≥ n0 − k − 1 ≥ n0 − i as desired.

5. Gi = Ci \ (Bi ∪ Ai ∪ Pi) is simply defined as all the remaining nodes from Ck.
6. Suppose for contradiction that (βi, αi) = (βℓ, αℓ) for some ℓ ∈ {0, . . . , i − 1}. Recall that

the configuration Dj = {βk} ∪ {αk}n0−i was obtained by running A on Kn0−i+1 and Dj

is not the final configuration of that execution. Moreover, observe that when we extended
the execution reaching Ck by one round, we reconstructed this exact configuration
and topology by arranging A′

k ∪ Bk as a complete graph. When running A for one



G. Parzych and J. J. Daymude 35:9

additional round on this component, the broadcaster in Dj and Bk transitions from
βk to βi and the non-broadcasters in Dj and A′

k \ {a} transition from αk to αi. Thus,
Dj+1 = {βi} ∪ {αi}n0−i = {βℓ} ∪ {αℓ}n0−i, by supposition. But this implies βℓ ∈ Dj+1
and Dj+1 \ {βℓ} = {αℓ}n0−i ⊆ {αℓ}n0−ℓ = Aℓ, contradicting the maximality of j.

Thus, we obtain the desired sequence of n0 reachable configurations (Ci)n0−1
i=0 and their

corresponding distinct state pairs (βi, αi). The initial state pair (β0, α0) appears in every
execution of A and the remaining state pairs (βi, αi) for i ≥ 1 appear in executions of A on
complete graphs Kn0−i+1 of at most n0 nodes. But the maximum number of states A can
use on dynamic networks of at most n0 nodes is f(n0) < n

1/2
0 , so there are only f(n0)2 < n0

distinct state pairs, a contradiction. ◀

4 Memory Lower Bound for Stabilizing Termination from Idle-Start

We now turn our attention from termination detection to stabilizing termination, requiring
only that all nodes are eventually informed and stop sending messages. In this section, we
prove that any idle-start algorithm solving broadcast with stabilizing termination must
use superconstant memory. This shows that stabilizing broadcast is strictly harder in
dynamic networks than in the static setting, which has a trivial constant-memory algorithm
(if uninformed and receiving a message, become informed and forward the message to all
neighbors) and even permits an algorithm with no persistent memory at all [23,24].

Our proof will use similar time-varying graphs as in the proofs of Theorems 1 and 3.
However, those proofs derived contradictions from the broadcaster declaring termination
too early, a condition that cannot be used in the case of stabilizing termination. Instead,
we suppose a constant memory algorithm exists and use it to create an infinite sequence of
configurations satisfying some very specific properties. We show in Lemma 6, however, that
no infinite sequence with these properties exists.

In Lemma 5, we show that the time an algorithm takes to stabilize on a static complete
graph, starting from any reachable configuration, depends only on the number of states used
and not on the number of nodes in the graph. This will be useful in our proof since we
consider algorithms using constant memory, thus implying a fixed bound on the stabilization
time for any complete graph, regardless of size. To this end, we define the following function.

▶ Definition 4. Let f(k) be the minimum number of rounds such that for any idle-start
algorithm A solving broadcast with stabilizing termination using at most k states and any
configuration C reachable by A, an execution of A on a static complete graph starting in
configuration C stabilizes within f(k) rounds.

We first prove that this function is well-defined and bounded.

▶ Lemma 5. f(k) ≤ 3k!

Proof. Let A be an idle-start algorithm solving broadcast with stabilizing termination using
only k states and consider its execution on a static complete graph starting from some
reachable configuration C. At each round, consider partitioning the nodes into ℓ ≤ k sets by
their current state. In each round, any nodes with the same state receive the same messages
from their neighbors and transition to the same next state, so nodes sharing a state continue
to do so throughout the execution. Thus, although the number of sets ℓ can decrease over
time as some nodes converge to the same state, it can never increase. If there are ℓ sets of
nodes with distinct states at one time, there are

(
k
ℓ

)
possibilities for what these states are

and ℓ! ways for these states to be assigned to the sets. Again, since the number of of sets
can decrease, ℓ may take on any value in {1, . . . , k} throughout the execution.

DISC 2024



35:10 Memory Lower Bounds and Impossibility for Anonymous Dynamic Broadcast

Since A is deterministic, if the same assignment of states to the same sets ever occurs
twice in an execution, the algorithm must be in a loop. However, this can not happen since
C is reachable and thus A must stabilize in finite time. Thus, the maximum number of
configurations A can visit before stabilizing is

k∑
ℓ=1

(
k

ℓ

)
· ℓ! =

k∑
ℓ=1

k!
(k − ℓ)! = k! ·

k−1∑
i=0

1
i! ≤ k! · e ◀

Our next lemma sets us up for the contradiction in Theorem 7.

▶ Lemma 6. Let S = {S1, S2, . . . } be a collection of multisets Si which are each the disjoint
union of multisets Ai ∪ Bi with elements from [n] = {1, . . . , n} satisfying |Ai| = k, |Bi| is
finite, and ¬(Aj = Ai ∧ Bj ⊆ Bi) for all i ̸= j. Then |S| is finite.

Proof. Suppose for contradiction that S is an infinite collection fulfilling these conditions.
Since each Ai contains elements from [n] and |Ai| = k, there are only a finite number of
possible definitions for the multiset Ai. Since S is infinite, it must contain some infinite
subcollection S ′ = {S′

1, S′
2, . . .} ⊆ S such that A′

i = A′
j for all S′

i, S′
j ∈ S ′. Thus, for S to

fulfill the conditions, we must have B′
i ̸⊆ B′

j for all S′
i ̸= S′

j . We will derive a contradiction
by finding multisets in X0 = {B′

i | S′
i ∈ S ′} such that one is a subset of the other. In fact,

we show something much more general: X0 contains an infinite subcollection of equivalent
multisets, i.e., multisets containing the same elements with the same multiplicities.

We will use #(S, i) to denote the multiplicity of element i ∈ [n] in multiset S. Choose
any multiset X ∈ X0. For each i ∈ [n], let X (i)

1 = {B′ ∈ X0 \ {X} | #(B′, i) < #(X, i)} be
the collection of multisets of X0 containing fewer instances of i than X. Each B′ ∈ X0 \ {X}
must exist in at least one of these collections since X ̸⊆ B′. But there are only n collections
X (1)

1 , . . . , X (n)
1 , and X0 is infinite, so there must exist a collection X (i1)

1 that is infinite. For
each 0 ≤ j < #(X, i1), let X (i1,j)

1 = {B′ ∈ X (i1)
1 | #(B′, i1) = j} be the multisets in X (i1)

1
containing exactly j instances of element i1. Once again, there are infinitely many multisets
in X (i1)

1 but only a finite range of multiplicities j, so at least one collection X (i1,j)
1 is infinite.

Call this one X1.
Next define X2 in a similar way, but using X1 in place of X0. By our construction, every

multiset in X1 contains the same number of instances of element i1 ∈ [n]. When defining
X2 then, we will have X (i1)

2 = ∅. Thus, there will be an element i2 ∈ [n] with i2 ̸= i1 such
that every multiset in X2 has the same number of instances of i2. Since X2 ⊂ X1, every
multiset in X2 has the same number of instances of both i1 and i2. If we continue to define
the collections X3, . . . , Xn in this way, all multisets in each Xj will have the same numbers of
instances of i1, . . . , ij . Thus, for every X, Y ∈ Xn and i ∈ [n], #(X, i) = #(Y, i). But then Xn

is an infinite subcollection of equivalent multisets in X0, a contradiction. ◀

We now prove our superconstant memory lower bound.

▶ Theorem 7. Any idle-start algorithm that solves broadcast with stabilizing termination for
anonymous, synchronous, 1-interval connected dynamic networks must use ω(1) memory.

Proof. Suppose for contradiction that A is an idle-start algorithm with Θ(1) space complexity
that solves broadcast with stabilizing termination. Then there is a constant k such that A
never uses more than k states. Note that throughout the rest of this proof, f(k) is well-defined
and has finite value by Lemma 5. We will show that the existence of this algorithm A
contradicts Lemma 6 by constructing an infinite sequence of reachable configurations (Ci)∞

i=0
where each Ci is a disjoint union of multisets Si ∪ Ti satisfying:



G. Parzych and J. J. Daymude 35:11

...

Ki · f(k)

Round 0

If there exists a j < i with Sj = Si' and Tj ⊆ Ti', then:

Round 1

f(k) rounds

Round f(k)

x

p0 p1 p2 pf(k)-1

x

p0 p1 p2 pf(k)-1...

... ...

...

...

Ki · f(k)

K(j+1) · f(k) K(j+1) · f(k)

...

Ki · f(k)

x

p0 p1 p2 pf(k)-1

x

p0 p1 p2 pf(k)-1

x

p0 p1 p2 pf(k)-1

Ti'

new Ti'Sj∪Tj

Ti' \ Tj

Si'

new Si'

Figure 3 The time-varying graph structures used in the proof of Theorem 7.

1. |Si| = f(k),
2. |Ti| = i · f(k), and
3. ¬(Sj = Si ∧ Tj ⊆ Ti) for all j ̸= i.

Initially, the broadcaster is in some state β0 and all other nodes are in some other state
α0 ̸= β0. Define the initial configuration C0 by letting S0 = {β0} ∪ {α0}f(k)−1 and T0 = ∅.
Clearly, C0 is reachable and satisfies the above conditions.

Now consider any i ≥ 1 and suppose configurations C0, . . . , Ci−1 have already been
defined; we inductively define Ci as follows. Construct a time-varying graph G from two
static components: the complete graph Ki·f(k) on i · f(k) nodes (including the broadcaster)
and a path p0p1 · · · pf(k)−1 (Figure 3, top). In each round t ∈ {0, . . . , f(k) − 1}, these
components are connected by a single edge {x, pt}, where x ∈ Ki·f(k) is some fixed node. It
can be easily shown – as we did by induction in the proof of Theorem 1 – that the nodes in
Ki·f(k) send the same messages and transition to the same states in an execution of A on
G as they would in an execution of A on Ki·f(k) by itself. By definition, these executions
must stabilize on Ki·f(k) within f(k) rounds. At this point, let S′

i and T ′
i be the multisets of

states of the nodes in the path and complete graph, respectively.
If there is no j ∈ {0, . . . , i−1} such that Sj = S′

i and Tj ⊆ T ′
i , then we define configuration

Ci as Si = S′
i and Ti = T ′

i . Otherwise, if such a j does exist, we extend the execution of A
on G as follows (Figure 3, bottom). Arrange the nodes of Cj = Sj ∪ Tj as the complete graph
K(j+1)·f(k) and any f(k) nodes from T ′

i \ Tj as a path p0p1 · · · pf(k)−1; attach the remaining
nodes to the far end pf(k)−1 of the path. Then repeat the same process as before, executing
A for f(k) rounds when these components are connected in round t by a single edge {x, pt},
where x ∈ K(j+1)·f(k) is any fixed node. Configuration Cj is reachable by induction, and
again all nodes of K(j+1)·f(k) must send the same messages and transition to the same states
in the execution of A on G as they would in an execution of A on K(j+1)·f(k) alone. So, by
definition of f(k), all nodes in K(j+1)·f(k) must be idle after these f(k) rounds. Also, pf(k)−1

DISC 2024



35:12 Memory Lower Bounds and Impossibility for Anonymous Dynamic Broadcast

remains idle throughout this extended execution, so the initially idle non-path nodes attached
to it are also idle at this time. Redefine S′

i as the f(k) path nodes and T ′
i as all other nodes,

which as we’ve argued will all be idle. Again, if there is no j ∈ {0, . . . , i − 1} such that
Sj = S′

i and Tj ⊆ T ′
i , then define configuration Ci as Si = S′

i and Ti = T ′
i ; otherwise, extend

the execution of A on G by another f(k) rounds as above.
Suppose for contradiction that the condition for defining Ci is never met and the execution

of A on G is extended forever. In every round of this execution, there is at least one idle
node. So consider the execution of A on a modified G containing an extra node that is
attached to some idle node in each round. This execution is identical to the one on G, but
the extra node would never leave its initial state α0. Thus, there must also be non-idle nodes
in every round, or else this execution stabilizes with uninformed nodes, contradicting the
correctness of A. But then this infinite execution contains non-idle nodes in every round,
contradicting the supposition that A eventually stabilizes. Thus, multisets S′

i and T ′
i with

the desired condition will be found in finite time. Clearly, Ci = Si ∪ Ti = S′
i ∪ T ′

i is reachable;
we conclude by showing it satisfies the required conditions.

1. Every intermediate S′
i is defined as the states of nodes in the path components which

always comprise f(k) nodes. Thus, |Si| = f(k).
2. The time-varying graph G is defined on |Ki·f(k)| + |p0p1 · · · pf(k)−1| = (i + 1) · f(k) nodes.

Since |Si| = f(k), we have |Ti| = i · f(k).
3. Consider any j ̸= i. If j < i then this condition must be met since the execution defining

Ci only stopped once it was true. Otherwise, if j > i, then by Condition 2, |Tj | > |Ti|
and thus Tj ̸⊆ Ti is trivially true.

Thus, the infinite sequence (Ci)∞
i=0 can be defined fulfilling all of the conditions above.

But this contradicts Lemma 6 stating that all such sequences are finite. ◀

5 A Logspace Algorithm for Stabilizing Termination

In this section, we shift our attention from impossibilities and lower bounds to an idle-start
algorithm called Countdown that solves broadcast with stabilizing termination in our
anonymous, dynamic setting. This algorithm uses O(log n) memory – which is not far from
the ω(1) lower bound of Theorem 7 – and stabilizes in O(n) rounds which is worst-case
asymptotically optimal.

At a high level, the Countdown algorithm (Algorithm 1) coordinates a sequence of
broadcast attempts, each lasting twice as many rounds as its predecessor until one succeeds.
To facilitate these attempts, nodes store two values: Current, the number of rounds remaining
in the current attempt; and Maximum, the total duration of the current attempt. In each
round, non-idle nodes involved in an ongoing attempt broadcast their Current and Maximum
values to their neighbors and then decrement Current. Idle nodes that were previously not
involved in the attempt but receive these messages will join in by setting their own Current
and Maximum values accordingly. This continues until messages are sent with Current = 0,
indicating the end of the current attempt. If any idle node receives such a message, it detects
that the broadcast should have gone on for longer. It responds by initiating a new broadcast
attempt whose duration is double the previous one. These attempts continue until some
attempt makes all nodes non-idle, at which point no node will initiate another attempt and
the algorithm will stabilize.

Before analyzing this algorithm’s correctness and complexity, we define some notation. Let
v.vart denote the value of variable var in the state of node v at time t (i.e., the start of round t).
In this notation, the Countdown algorithm initializes the broadcaster b with b.Current0 = 0



G. Parzych and J. J. Daymude 35:13

Algorithm 1 Countdown for Node v.

Initialization. Set Current to 0 and Maximum to 1 if v is the broadcaster and both variables to
−1 otherwise.

Sending Messages.
1: if Current ̸= −1 then
2: Send: msg(Current, Maximum)

State Transitions.
3: if Current ̸= −1 then
4: Current← Current− 1
5: else if a message msg(c, m) was received then
6: if c = 0 then ▷ Initiate a new attempt.
7: Current← 2m

8: Maximum← 2m

9: else if c > 0 then ▷ Join the ongoing attempt.
10: Current← c− 1
11: Maximum← m

and b.Maximum0 = 1 and all other nodes v ̸= b with v.Current0 = v.Maximum0 = −1. Denote
the set of non-idle nodes in round t as St = {v ∈ V : v.Currentt ̸= −1}. We begin our
analysis by proving that all non-idle nodes share the same Current and Maximum values.

▶ Lemma 8. For all times t and any non-idle node v ∈ St, we have v.Currentt = ct and
v.Maximumt = mt, where c0 = 0, m0 = 1, and

(ct+1, mt+1) =
{

(2mt, 2mt) if ct = 0;
(ct − 1, mt) otherwise.

Proof. Argue by induction on t. Only the broadcaster b is initially non-idle, so c0 =
b.Current0 = 0 and m0 = b.Maximum0 = 1 by initialization. Now suppose the lemma holds
up to and including some time t ≥ 0 and let ct and mt be the unique values of v.Currentt

and v.Maximumt for all v ∈ St, respectively. Consider any node v ∈ St+1; if none exist, the
lemma holds trivially. We have two cases:

1. ct = 0. Suppose to the contrary that v ∈ St; i.e., v was also non-idle at time t. Then
v.Currentt = ct = 0. Thus, v must execute Line 4 in round t, yielding v.Currentt+1 = −1
and becoming idle by time t+1, a contradiction. So v was idle at time t but became non-idle
by time t + 1, meaning it must have received one or more messages from non-idle nodes in
round t. By Line 2 and the induction hypothesis, all of those messages are msg(ct = 0, mt).
So v must execute Lines 7–8 in round t, yielding v.Currentt+1 = v.Maximumt+1 = 2mt.
Our choice of v ∈ St+1 was arbitrary, so ct+1 = mt+1 = 2mt.

2. ct > 0. First suppose v ∈ St. Then v.Currentt = ct > 0, so v executes Line 4 in round t,
yielding v.Currentt+1 = ct − 1 and v.Maximumt+1 = mt as claimed. Now suppose v ̸∈ St.
To transition from idle to non-idle in round t, v must receive one or more messages from
non-idle nodes in round t. By Line 2, all of those messages are msg(ct > 0, mt). So v

must execute Lines 10–11, yielding v.Currentt+1 = ct − 1 and v.Maximumt+1 = mt. Our
choice of v ∈ St+1 was arbitrary, so ct+1 = ct − 1 and mt+1 = mt. ◀

Using the ct and mt values defined in Lemma 8, we next show that a broadcast attempt
lasting k rounds either informs all nodes and stabilizes or involves at least k + 1 non-idle
nodes before initiating a new attempt.

DISC 2024



35:14 Memory Lower Bounds and Impossibility for Anonymous Dynamic Broadcast

▶ Lemma 9. If k := ct = mt > 0, then either (1) St+k = V and St+k+1 = ∅, or (2)
|St+k| ≥ k + 1 and ct+k+1 = mt+k+1 = 2k.

Proof. Consider any time t at which k := ct = mt > 0, the start of a new broadcast attempt
by the set of nodes St. First suppose that for some 0 ≤ i ≤ k, we have St+i = V ; i.e., all
nodes are non-idle. By Lemma 8, we have ct+i = ct − i. Since all nodes v are non-idle at time
t + i and thus have v.Currentt+i = ct+i = ct − i, they all execute Line 4 in round t + i by
decrementing v.Current. If i < k, then v.Currentt+i+1 = ct −i−1 ̸= −1, so all nodes remain
non-idle and the process repeats; otherwise, if i = k, then v.Currentt+i+1 = ct − k − 1 = −1.
This renders all nodes idle at time t + k + 1, so Case 1 has occurred.

Now suppose that St+i ̸= V for all 0 ≤ i ≤ k; i.e., there is at least one idle node
throughout the attempt. We argue by induction on 0 ≤ i ≤ k that |St+i| ≥ |St| + i; i.e., at
least one idle node becomes non-idle in each round. The i = 0 case holds trivially, so suppose
the claim holds up to and including some i < k. Since ct+i = ct − i = k − i by Lemma 8, any
node in St+i must remain non-idle until time t + i + ct+i = t + k. So |St+i+1| ≥ |St+i|. If
the induction hypothesis is in fact a strict inequality, we are done:

|St+i| > |St| + i ⇒ |St+i+1| ≥ |St+i| ≥ |St| + i + 1.

So suppose instead that |St+i| = |St| + i. There must exist non-idle nodes at time t + 1 since
ct+1 = ct − 1 > −1 by Lemma 8, and there must exist idle nodes at time t + 1 by supposition.
Thus, since the dynamic network is 1-interval connected, there must be some idle node
v ∈ V \ St+i that receives a message from a non-idle node in round t + 1, causing v to become
non-idle (Lines 7–8 or 10–11). By the induction hypothesis, |St+i+1| ≥ |St+i|+1 = |St|+ i+1.

By this induction argument, we have |St+k| ≥ |St| + k ≥ k + 1. By Lemma 8, we have
that ct+k = ct − k = 0, and with another application of the same lemma, we conclude that
ct+k+1 = mt+k+1 = 2mt+k = 2mt = 2k. So Case 2 has occurred. ◀

Our algorithm’s correctness follows from the previous lemma and its time and space
complexities are obtained with straightforward counting arguments.

▶ Theorem 10. Countdown (Algorithm 1) correctly solves broadcast with stabilizing
termination from an idle start in O(n) rounds and O(log n) space for anonymous, synchronous,
1-interval connected dynamic networks.

Proof. By Lemma 8, we have c1 = m1 = 2, allowing us to apply Lemma 9. But suppose
to the contrary that this and all subsequent applications of the lemma result in Case 2 –
where a new attempt is initiated with double the duration – and not Case 1, where all nodes
are informed (St+k = V ) and the algorithm stabilizes (St+k+1 = ∅). Then there exists an
attempt of duration k ≥ n, which, by Lemma 9, ends with |St+k| ≥ k + 1 ≥ n + 1 non-idle
nodes. But there are only n nodes in the network, a contradiction. So Countdown must
inform all nodes and stabilize in finite time.

It remains to bound runtime and memory. Each time a new broadcast attempt is
initiated, the Maximum variable is doubled and the algorithm runs for another Maximum
rounds. As we already showed, once Maximum reaches or exceeds n, the subsequent attempt
will inform all nodes and stabilize. Thus, Maximum doubles at most ⌈log2 n⌉ times, meaning
Countdown stabilizes in at most

∑⌈log2 n⌉
i=0 2i = O(21+⌈log2 n⌉ − 1) = O(n) rounds. This

analysis also shows that the largest attainable Maximum value before its final doubling is
n − 1, so Maximum ≤ 2(n − 1) = O(n). Since −1 ≤ Current ≤ Maximum, we also have
Current = O(n), implying that Countdown has O(log n) space complexity. ◀



G. Parzych and J. J. Daymude 35:15

6 Conclusion

This paper investigated what memory is necessary for anonymous, synchronous, 1-interval
connected dynamic networks to deterministically solve broadcast with some termination
conditions. We considered both termination detection where the broadcaster must eventually
declare that every node has been informed and stabilizing termination where nodes must
eventually stop sending messages. Combining our results with the established literature, we
now know the following about this problem:

Termination Detection. Regardless of memory, broadcast with termination detection is
impossible for idle-start algorithms (Theorem 1) and for non-idle-start algorithms when the
number of broadcasters is unknown (Theorem 2). Any (non-idle-start) algorithm solving
broadcast with termination detection must use Ω(log n) memory per node (Theorem 3).
The best known space complexity for this problem follows from Di Luna and Viglietta’s
history trees algorithm which uses O(n3 log n) memory in the worst case [16].
Stabilizing Termination. Any idle-start algorithm solving broadcast with stabilizing
termination must use ω(1) memory per node (Theorem 7). As a positive result, this
problem is solvable with logarithmic memory under standard synchrony: Countdown
is a O(log n) memory, linear time algorithm achieving stabilizing termination without
identifiers or knowledge of n (Theorem 10).

For stabilizing termination, our ω(1) memory bound holds only for idle-start algorithms
and our O(log n) memory Countdown algorithm happens to be idle-start. In the non-idle-
start regime where non-broadcaster nodes can send messages from their initial states, can we
obtain a sublogarithmic space algorithm? Can any lower bound be shown? The contradiction
at the heart of our lower bound technique for idle-start algorithms identified configurations
Ci that are reachable with or without an extra uninformed node. In the non-idle-start case,
however, this extra uninformed node may send new and unaccounted for messages and we
can no longer guarantee Ci will still be reached, requiring a different approach.

The Ω(log n) and O(n3 log n) memory bounds for termination detection leave open a
significant gap for further improvement. Our logarithmic lower bound shows that termination
detection requires enough memory to count to n, and indeed there is a straightforward
solution for termination detection if (an upper bound on) n can be obtained: simply wait
for n rounds after broadcasting information for the first time and then declare all nodes
have been informed. Can broadcast with termination detection be achieved without solving
exact counting? If not, what approaches could yield algorithms for exact counting that are
more space-efficient than history trees? Viglietta recently proposed the existence of logspace
counting algorithms as an open problem unlikely to be solved by history trees [37]; we are
unsure such algorithms exist at all, as we suspect our Ω(log n) bound can be improved.

Finally, we note that all impossibility results and lower bounds in this paper apply also
to any problem broadcast reduces to, such as exact counting. Thus, these results and any
future improvements shed important light on the requirements of nontrivial terminating
computation in anonymous dynamic networks.

References

1 Karine Altisen, Stéphane Devismes, Anaïs Durand, Colette Johnen, and Franck Petit. Self-
Stabilizing Systems in Spite of High Dynamics. Theoretical Computer Science, 964:113966,
2023. doi:10.1016/j.tcs.2023.113966.

DISC 2024

https://doi.org/10.1016/j.tcs.2023.113966


35:16 Memory Lower Bounds and Impossibility for Anonymous Dynamic Broadcast

2 David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient Overlay
Networks. In Proceedings of the 18th ACM Symposium on Operating Systems Principles, pages
131–145, Banff, AB, Canada, 2001. ACM. doi:10.1145/502034.502048.

3 John Augustine, Gopal Pandurangan, and Peter Robinson. Distributed Algorithmic Founda-
tions of Dynamic Networks. ACM SIGACT News, 47(1):30, 2016.

4 Alysson Bessani, Eduardo Alchieri, João Sousa, André Oliveira, and Fernando Pedone. From
Byzantine Replication to Blockchain: Consensus is Only the Beginning. In 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages
424–436, Valencia, Spain, 2020. IEEE. doi:10.1109/DSN48063.2020.00057.

5 Arnaud Casteigts. A Journey through Dynamic Networks (with Excursions). Habilitation à
diriger des recherches, University of Bordeaux, Bordeaux, France, 2018.

6 Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro. Deterministic Compu-
tations in Time-Varying Graphs: Broadcasting under Unstructured Mobility. In Theoretical
Computer Science, volume 323 of IFIP Advances in Information and Communication Technol-
ogy, pages 111–124, Berlin, Heidelberg, 2010. Springer. doi:10.1007/978-3-642-15240-5_9.

7 Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro. Shortest, Fastest, and
Foremost Broadcast in Dynamic Networks. International Journal of Foundations of Computer
Science, 26(04):499–522, 2015. doi:10.1142/S0129054115500288.

8 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-Varying
Graphs and Dynamic Networks. International Journal of Parallel, Emergent and Distributed
Systems, 27(5):387–408, 2012. doi:10.1080/17445760.2012.668546.

9 Maitri Chakraborty, Alessia Milani, and Miguel A. Mosteiro. A Faster Exact-Counting
Protocol for Anonymous Dynamic Networks. Algorithmica, 80(11):3023–3049, 2018. doi:
10.1007/s00453-017-0367-4.

10 Arjun Chandrasekhar, Deborah M. Gordon, and Saket Navlakha. A Distributed Algorithm to
Maintain and Repair the Trail Networks of Arboreal Ants. Scientific Reports, 8(1):9297, 2018.
doi:10.1038/s41598-018-27160-3.

11 Giuseppe Di Luna and Roberto Baldoni. Non Trivial Computations in Anonymous Dynamic
Networks. In 19th International Conference on Principles of Distributed Systems (OPODIS
2015), volume 46 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–
33:16, Rennes, France, 2016. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.
4230/LIPICS.OPODIS.2015.33.

12 Giuseppe A. Di Luna and Giovanni Viglietta. Computing in Anonymous Dynamic Networks Is
Linear. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 1122–1133, Denver, CO, USA, 2022. IEEE. doi:10.1109/FOCS54457.2022.00108.

13 Giuseppe A. Di Luna and Giovanni Viglietta. Optimal Computation in Leaderless and
Multi-Leader Disconnected Anonymous Dynamic Networks. In 37th International Symposium
on Distributed Computing (DISC 2023), volume 281 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 18:1–18:20, L’Aquila, Italy, 2023. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.DISC.2023.18.

14 Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis Chatzigiannakis.
Conscious and Unconscious Counting on Anonymous Dynamic Networks. In Distributed
Computing and Networking, volume 8314 of Lecture Notes in Computer Science, pages 257–271,
Berlin, Heidelberg, 2014. Springer. doi:10.1007/978-3-642-45249-9_17.

15 Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis Chatzigiannakis.
Counting in Anonymous Dynamic Networks under Worst-Case Adversary. In 2014 IEEE 34th
International Conference on Distributed Computing Systems, pages 338–347, Madrid, Spain,
2014. IEEE. doi:10.1109/ICDCS.2014.42.

16 Giuseppe Antonio Di Luna and Giovanni Viglietta. Brief Announcement: Efficient Computation
in Congested Anonymous Dynamic Networks. In Proceedings of the 2023 ACM Symposium
on Principles of Distributed Computing, pages 176–179, Orlando, FL, USA, 2023. ACM.
doi:10.1145/3583668.3594590.

https://doi.org/10.1145/502034.502048
https://doi.org/10.1109/DSN48063.2020.00057
https://doi.org/10.1007/978-3-642-15240-5_9
https://doi.org/10.1142/S0129054115500288
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1007/s00453-017-0367-4
https://doi.org/10.1007/s00453-017-0367-4
https://doi.org/10.1038/s41598-018-27160-3
https://doi.org/10.4230/LIPICS.OPODIS.2015.33
https://doi.org/10.4230/LIPICS.OPODIS.2015.33
https://doi.org/10.1109/FOCS54457.2022.00108
https://doi.org/10.4230/LIPIcs.DISC.2023.18
https://doi.org/10.1007/978-3-642-45249-9_17
https://doi.org/10.1109/ICDCS.2014.42
https://doi.org/10.1145/3583668.3594590


G. Parzych and J. J. Daymude 35:17

17 Michael Dinitz, Jeremy Fineman, Seth Gilbert, and Calvin Newport. Smoothed Analysis of
Information Spreading in Dynamic Networks. In 36th International Symposium on Distributed
Computing (DISC 2022), volume 246 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 18:1–18:22, Augusta, GA, USA, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.DISC.2022.18.

18 Michael Dinitz, Jeremy T. Fineman, Seth Gilbert, and Calvin Newport. Smoothed Anal-
ysis of Dynamic Networks. Distributed Computing, 31(4):273–287, 2018. doi:10.1007/
s00446-017-0300-8.

19 Michael Feldmann, Christian Scheideler, and Stefan Schmid. Survey on Algorithms for
Self-Stabilizing Overlay Networks. ACM Computing Surveys, 53(4):74:1–74:24, 2020. doi:
10.1145/3397190.

20 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by
Mobile Entities: Current Research in Moving and Computing, volume 11340 of Lecture Notes
in Computer Science. Springer, Cham, 2019. doi:10.1007/978-3-030-11072-7.

21 Vincent Gramoli. From Blockchain Consensus Back to Byzantine Consensus. Future Generation
Computer Systems, 107:760–769, 2020. doi:10.1016/j.future.2017.09.023.

22 Heiko Hamann. Swarm Robotics: A Formal Approach. Springer, Cham, 1 edition, 2018.
doi:10.1007/978-3-319-74528-2.

23 Walter Hussak and Amitabh Trehan. On Termination of a Flooding Process. In Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, pages 153–155, Toronto,
ON, Canada, 2019. ACM. doi:10.1145/3293611.3331586.

24 Walter Hussak and Amitabh Trehan. On the Termination of Flooding. In 37th International
Symposium on Theoretical Aspects of Computer Science (STACS 2020), volume 154 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 17:1–17:3, Montpellier, France, 2020.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.STACS.2020.17.

25 Walter Hussak and Amitabh Trehan. Termination of Amnesiac Flooding. Distributed Com-
puting, 36(2):193–207, 2023. doi:10.1007/s00446-023-00448-y.

26 Dariusz R. Kowalski and Miguel A. Mosteiro. Polynomial Counting in Anonymous Dynamic
Networks with Applications to Anonymous Dynamic Algebraic Computations. Journal of the
ACM, 67(2):1–17, 2020. doi:10.1145/3385075.

27 Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed Computation in Dynamic
Networks. In Proceedings of the 42nd ACM Symposium on Theory of Computing, pages
513–522, Cambridge, MA, 2010. ACM. doi:10.1145/1806689.1806760.

28 Jintao Liu, Arthur Prindle, Jacqueline Humphries, Marçal Gabalda-Sagarra, Munehiro Asally,
Dong-yeon D. Lee, San Ly, Jordi Garcia-Ojalvo, and Gürol M. Süel. Metabolic Co-Dependence
Gives Rise to Collective Oscillations within Biofilms. Nature, 523(7562):550–554, 2015.
doi:10.1038/nature14660.

29 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1996.

30 Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. Naming and Counting in
Anonymous Unknown Dynamic Networks. In Stabilization, Safety, and Security of Distributed
Systems, volume 8255 of Lecture Notes in Computer Science, pages 281–295, Cham, 2013.
Springer. doi:10.1007/978-3-319-03089-0_20.

31 Regina O’Dell and Roger Wattenhofer. Information Dissemination in Highly Dynamic Graphs.
In Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing, pages
104–110, Cologne, Germany, 2005. ACM. doi:10.1145/1080810.1080828.

32 Shunhao Oh, Dana Randall, and Andréa W. Richa. Adaptive Collective Responses to Local
Stimuli in Anonymous Dynamic Networks. In 2nd Symposium on Algorithmic Foundations
of Dynamic Networks (SAND 2023), volume 257 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 6:1–6:23, Pisa, Italy, 2023. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.SAND.2023.6.

DISC 2024

https://doi.org/10.4230/LIPIcs.DISC.2022.18
https://doi.org/10.1007/s00446-017-0300-8
https://doi.org/10.1007/s00446-017-0300-8
https://doi.org/10.1145/3397190
https://doi.org/10.1145/3397190
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1016/j.future.2017.09.023
https://doi.org/10.1007/978-3-319-74528-2
https://doi.org/10.1145/3293611.3331586
https://doi.org/10.4230/LIPIcs.STACS.2020.17
https://doi.org/10.1007/s00446-023-00448-y
https://doi.org/10.1145/3385075
https://doi.org/10.1145/1806689.1806760
https://doi.org/10.1038/nature14660
https://doi.org/10.1007/978-3-319-03089-0_20
https://doi.org/10.1145/1080810.1080828
https://doi.org/10.4230/LIPIcs.SAND.2023.6


35:18 Memory Lower Bounds and Impossibility for Anonymous Dynamic Broadcast

33 Arthur Prindle, Jintao Liu, Munehiro Asally, San Ly, Jordi Garcia-Ojalvo, and Gürol M.
Süel. Ion Channels Enable Electrical Communication in Bacterial Communities. Nature,
527(7576):59–63, 2015. doi:10.1038/nature15709.

34 Michel Raynal, Julien Stainer, Jiannong Cao, and Weigang Wu. A Simple Broadcast Algorithm
for Recurrent Dynamic Systems. In 2014 IEEE 28th International Conference on Advanced
Information Networking and Applications, pages 933–939, Victoria, BC, Canada, 2014. IEEE.
doi:10.1109/AINA.2014.115.

35 Leonie Reichert, Samuel Brack, and Björn Scheuermann. A Survey of Automatic Contact
Tracing Approaches Using Bluetooth Low Energy. ACM Transactions on Computing for
Healthcare, 2(2):1–33, 2021. doi:10.1145/3444847.

36 Corina E. Tarnita, Alex Washburne, Ricardo Martinez-Garcia, Allyson E. Sgro, and Simon A.
Levin. Fitness Tradeoffs between Spores and Nonaggregating Cells Can Explain the Coexistence
of Diverse Genotypes in Cellular Slime Molds. Proceedings of the National Academy of Sciences,
112(9):2776–2781, 2015. doi:10.1073/pnas.1424242112.

37 Giovanni Viglietta. History Trees and Their Applications. In Structural Information and
Communication Complexity, volume 14662 of Lecture Notes in Computer Science, pages 3–23,
Cham, 2024. Springer. doi:10.1007/978-3-031-60603-8_1.

https://doi.org/10.1038/nature15709
https://doi.org/10.1109/AINA.2014.115
https://doi.org/10.1145/3444847
https://doi.org/10.1073/pnas.1424242112
https://doi.org/10.1007/978-3-031-60603-8_1


Connectivity Labeling in Faulty Colored Graphs
Asaf Petruschka #

Weizmann Institute of Science, Rehovot, Israel

Shay Spair #

Weizmann Institute of Science, Rehovot, Israel

Elad Tzalik #

Weizmann Institute of Science, Rehovot, Israel

Abstract
Fault-tolerant connectivity labelings are schemes that, given an n-vertex graph G = (V, E) and a
parameter f , produce succinct yet informative labels for the elements of the graph. Given only the
labels of two vertices u, v and of the elements in a faulty-set F with |F | ≤ f , one can determine if
u, v are connected in G − F , the surviving graph after removing F . For the edge or vertex faults
models, i.e., F ⊆ E or F ⊆ V , a sequence of recent work established schemes with poly(f, log n)-bit
labels for general graphs. This paper considers the color faults model, recently introduced in the
context of spanners [Petruschka, Sapir and Tzalik, ITCS ’24], which accounts for known correlations
between failures. Here, the edges (or vertices) of the input G are arbitrarily colored, and the faulty
elements in F are colors; a failing color causes all edges (vertices) of that color to crash. While
treating color faults by naïvly applying solutions for many failing edges or vertices is inefficient, the
known correlations could potentially be exploited to provide better solutions.

Our main contribution is settling the label length complexity for connectivity under one color
fault (f = 1). The existing implicit solution, by black-box application of the state-of-the-art scheme
for edge faults of [Dory and Parter, PODC ’21], might yield labels of Ω(n) bits. We provide a
deterministic scheme with labels of Õ(

√
n) bits in the worst case, and a matching lower bound.

Moreover, our scheme is universally optimal: even schemes tailored to handle only colorings of
one specific graph topology (i.e., may store the topology “for free”) cannot produce asymptotically
smaller labels. We characterize the optimal length by a new graph parameter bp(G) called the ball
packing number. We further extend our labeling approach to yield a routing scheme avoiding a single
forbidden color, with routing tables of size Õ(bp(G)) bits. We also consider the centralized setting,
and show an Õ(n)-space oracle, answering connectivity queries under one color fault in Õ(1) time.
Curiously, by our results, no oracle with such space can be evenly distributed as labels.

Turning to f ≥ 2 color faults, we give a randomized labeling scheme with Õ(n1−1/2f

)-bit
labels, along with a lower bound of Ω(n1−1/(f+1)) bits. For f = 2, we make partial improvement
by providing labels of Õ(diam(G)

√
n) bits, and show that this scheme is (nearly) optimal when

diam(G) = Õ(1).
Additionally, we present a general reduction from the above all-pairs formulation of fault-tolerant

connectivity labeling (in any fault model) to the single-source variant, which could also be applicable
for centralized oracles, streaming, or dynamic algorithms.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Data structures design and analysis

Keywords and phrases Labeling schemes, Fault-tolerance

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.36

Related Version Full Version: https://arxiv.org/abs/2402.12144

Funding Asaf Petruschka: This work is supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme, grant agreement No.
949083, and by the Israeli Science Foundation (ISF), grant 2084/18.
Shay Spair : Partially supported by the Israeli Council for Higher Education (CHE) via the Weizmann
Data Science Research Center.

© Asaf Petruschka, Shay Spair, and Elad Tzalik;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 36; pp. 36:1–36:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:asaf.petruschka@weizmann.ac.il
https://orcid.org/0009-0003-2325-2454
mailto:shay.sapir@weizmann.ac.il
https://orcid.org/0000-0001-7531-685X
mailto:elad.tzalik@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2024.36
https://arxiv.org/abs/2402.12144
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


36:2 Connectivity Labeling in Faulty Colored Graphs

Acknowledgements We are grateful to Merav Parter for encouraging this collaboration, and for
helpful guidance and discussions.

1 Introduction

Labeling schemes are important distributed graph data structures with diverse applications
in graph algorithms and distributed computing, concerned with assigning the vertices of
a graph (and possibly also other elements, such as edges) with succinct yet informative
labels. Many real-life networks are often error-prone by nature, which motivates the study of
fault-tolerant graph structures and services. In a fault-tolerant connectivity labeling scheme,
we are given an n-vertex graph G = (V, E) and an integer f , and should assign short labels
to the elements of G, such that the following holds: For every pair of vertices u, v ∈ V and
faulty-set F with |F | ≤ f , one can determine if u and v are connected in G− F by merely
inspecting the labels of the elements in {u, v} ∪ F . The main complexity measure is the
maximal label length (in bits), while construction and query time are secondary measures.

The concept of edge/vertex-fault-tolerant labeling, aka forbidden set labeling, was ex-
plicitly introduced by Courcelle and Twigg [9]. Earlier work on fault-tolerant connectivity
and distance labeling focused on graph families such as planar graphs and graphs with
bounded treewidth or doubling dimension [9, 8, 1, 2]. Up until recently, designing edge- or
vertex-fault-tolerant connectivity labels for general graphs remained fairly open. Dory and
Parter [10] were the first to construct randomized labeling schemes for connectivity under
f edge faults, where a query is answered correctly with high probability,1 with length of
O(min{f + log n, log3 n}) bits. Izumi, Emek, Wadayama and Masuzawa [21] derandomized
this construction, showing deterministic labels of Õ(f2) bits.2 Turning to f vertex faults,
Parter and Petruschka [32] designed connectivity labels for f ≤ 2 with Õ(1) bits. Very
recently, Parter, Petruschka and Pettie [33] provided a randomized scheme for f vertex faults
with Õ(f3) bits and a derandomized version with Õ(f7) bits, along with a lower bound of
Ω(f) bits. Another important research area which is closely related to fault-tolerant labeling
concerns the design of forbidden-set routing schemes, see e.g. [9, 1, 2, 10, 33]. (Further
background on such routing schemes is given in Section 1.1.1.)

In this work, we consider labeling schemes for connectivity under color faults, a model
that was very recently introduced in the context of graph spanners [34], which intuitively
accounts for known correlations between failures. In this model, the edges or vertices of the
input graph G are arbitrarily partitioned into classes, or equivalently, associated with colors,
and a set F of f such color classes might fail. A failing color causes all edges (vertices) of
that color to crash.The surviving subgraph G−F is formed by deleting every edge3 or vertex
with color from F . The scheme must assign labels to the vertices and to the colors of G,
so that a connectivity query ⟨u, v, F ⟩ can be answered by inspecting only the labels of the
vertices u, v and of the colors in F .

This new notion generalizes edge/vertex fault-tolerant schemes, that are obtained in the
special case when each edge or vertex has a unique color. However, in the general case, even
a single color fault may correspond to many and arbitrarily spread edge/vertex faults, which
poses a major challenge. Tackling this issue by naively applying the existing solutions for

1 Throughout, the term with high probability (w.h.p.) stands for probability at least 1 − 1/nα, where
α > 0 is a constant that can be made arbitrarily large through increasing the relevant complexity
measure by a constant factor.

2 Throughout, the Õ(·) notation hides polylog(fn) factors.
3 In the edge-colored case we naturally allow multi-graphs where parallel edges may have different colors.



A. Petruschka, S. Spair, and E. Tzalik 36:3

many individual edge/vertex faults (i.e., by letting the label of a color store all labels given
to elements in its class) may result in very large labels of Ω(n) bits or more, even when f = 1.
On a high level, this work shows that the correlation between the faulty edges/vertices,
predetermined by the colors, can be used to construct much better solutions.

Related Work on Colored Graphs. Faulty colored classes have been used to model Shared
Risk Resource Groups (SRRG) in optical telecommunication networks, multi-layered networks,
and various other practical contexts; see [7, 24, 40] and the references therein. Previous work
mainly focused on centralized algorithms for colored variants of classical graph problems
(and their hardness). A notable such problem is diverse routing, where the goal is to find
two (or more) color disjoint paths between two vertices [20, 12, 27]. Another is the colored
variant of minimum cut, known also as the hedge connectivity, where the objective is to
determine the minimum number of colors (aka hedges) whose removal disconnects the graph;
see e.g. [16, 39, 14].

A different line of work focuses on distances to or between color classes, and specifically
on (centralized) data structures that, given a query ⟨v, c⟩, report the closest c-colored vertex
to v in the graph, or the (approximate) distance from it [19, 5, 26, 15, 36, 13].

Remark on Color Lists. One might ask what happens if the correlated sets of failures
are allowed to have some “bounded” overlap. This can be modeled by color lists: every
vertex/edge has a small list of associated colors, and the failure of any one of them will cause
its crash. In some problems, the relevant complexity measures might be affected even when
lists only have some constant size, see e.g. [34]. However, all the results of the current paper
can be easily shown to hold with color lists of constant size, and we therefore focus only on
the disjoint color classes model.

1.1 Our Results
We initiate the study of fault-tolerant labeling schemes in colored graphs. All of our results
apply both to edge-colored and to vertex-colored (multi)-graphs.

1.1.1 Single Color Fault (f = 1)
For f = 1, i.e., a single faulty color, we (nearly) settle the complexity of the problem, by
showing a simple construction of labels with length O(

√
n log n) bits, along with a matching

lower bound of Ω(
√

n) bits. In fact, our scheme provides a strong beyond worst-case guarantee:
for every given graph G, the length of the assigned labels is (nearly) the best possible, even
compared to schemes that are tailor-made to only handle colorings of the topology in G,or
equivalently, are allowed to store the uncolored topology “for free” in all the labels. (By the
topology of G, we mean the uncolored graph obtained from G by ignoring the colors. Slightly
abusing notation, we refer to this object as the graph topology G, rather than the colored
graph G.) Guarantees of this form, known as universal optimality, have sparked major
interest in the graph algorithms community, and particularly in recent years, following the
influential work of Haeupler, Wajc and Zuzic [18] in the distributed setting. On an intuitive
level, the universal optimality implies that even when restricting attention to any class of
graphs, e.g. planar graphs, our scheme performs asymptotically as well as the optimal scheme
for this specific class. We note that one cannot compete with a scheme that is optimal for
the given graph and its coloring (aka “instance optimal”), as such a tailor-made scheme may
store the entire colored graph “for free”, and the labels merely need to specify the query.

DISC 2024



36:4 Connectivity Labeling in Faulty Colored Graphs

Our universally optimal labels are based on a new graph parameter called the ball packing
number, denoted by bp(G). When disregarding minor nuances by assuming G is connected,
bp(G) is the maximum integer r such that one can fit r disjoint balls of radius r in the
topology of G (see formal definition in Section 3.1). The ball packing number of an n-vertex
graph is always at most

√
n, but often much smaller. For example, bp(G) is smaller than the

diameter of G. In Section 3, we show the following:

▶ Theorem 1 (f = 1, informal). There is a connectivity labeling scheme for one color fault,
that for every n-vertex graph G, assigns O(bp(G) log n)-bit labels. Moreover, Ω(bp(G))-bit
labels are necessary, even for labeling schemes tailor-made for the topology of G, i.e., where
the uncolored topology is given in addition to the query labels.

The lower bound in Theorem 1 is information-theoretic, obtained via communication
complexity. The upper bound is based on observing that (when G is connected) there is a
subset A of O(bp(G)) vertices which is O(bp(G))-ruling: every vertex in G has a path to A

of length O(bp(G)).

Routing Schemes. Building upon our labeling scheme, we additionally provide a routing
scheme for avoiding any single forbidden color. This is a natural extension of the forbidden-set
routing framework, initially introduced by [9] (see also [1, 2, 10, 33]), to the setting of colored
graphs. We refer the reader to [10] for an overview of forbidden-set routing, and related
settings. Such a routing scheme consists of two algorithms. The first is a preprocessing
(centralized) algorithm that computes routing tables to be stored at each vertex of G, and
labels for the vertices and the colors. The second is a distributed routing algorithm that
enables routing a message M from a source vertex s to a target vertex t avoiding edges of
color c. Initially, the labels of s, t, c are found in the source s. Then, at each intermediate
node v in the route, v should use the information in its table, and in the (short) header of
the message, to determine where the message should be sent; formally, v should compute the
port number of the next edge to be taken from v (which must not be of color c). It may also
edit the header for future purposes. The main concern is minimizing the size of the tables
and labels, and even more so of the header (as it is communicated through the route). We
show:

▶ Theorem 2. There is a deterministic routing scheme for avoiding one forbidden color
such that, for a given colored n-vertex graph G, the following hold:

The routing tables stored at the vertices are all of size O(bp(G) log n) bits.
The labels assigned to the vertices and the colors are of size O(bp(G) log n) bits.
The header size required for routing a message is of O(log n) bits.

Another important concern is optimizing the stretch of the routing scheme, which is
the ratio between the length of the routing path and the length of the shortest s, t path in
G − c. Unfortunately, our routing scheme does not provide good stretch guarantees, and
optimizing it is an interesting direction for future work. We note, however, that the need to
avoid edges of color c by itself poses a nontrivial challenge, and black-box application of the
state-of-the-art routings schemes of Dory and Parter [10] for avoiding f = Ω(n) individual
edges would yield large labels, tables and headers, and large stretch (all become Ω(n)).

Centralized Oracles. We end our discussion for f = 1 by considering centralized oracles
(data structures) for connectivity under a single color fault. In this setting, one can utilize
centralization to improve on the naive approach of storing all labels. We note that this



A. Petruschka, S. Spair, and E. Tzalik 36:5

problem can be solved using existing O(n)-space and O(log log n)-query time oracles for
nearest colored ancestor on trees [28, 15], yielding the same bounds for single color fault
connectivity oracles. Interestingly, our lower bound shows that oracles with such space
cannot be evenly distributed into labels.

1.1.2 f Color Faults
It has been widely noted that in fault-tolerant settings, handling even two faults may be
significantly more challenging than handling a single fault. Such phenomena appeared, e.g.,
in distance oracles [11], min-cut oracles [3], reachability oracles [6] and distance preservers
[29, 17, 30]. In our case, this is manifested in generalized upper and lower bounds on the
label length required to support f color faults, exhibiting a gap when f ≥ 2; our upper
bound is roughly Õ(n1−1/2f ) bits, while the lower bound is Ω(n1−1/(f+1)) bits (both equal
Θ̃(
√

n) when f = 1).

▶ Theorem 3 (f ≥ 2 upper bound, informal). There is a randomized labeling scheme for
connectivity under f color faults with label length of min{fn1−1/2f

, n} · polylog(fn) bits.

▶ Theorem 4 (f ≥ 2 lower bound, informal). A labeling scheme for connectivity under f

color faults must have label length of Ω(n1−1/(f+1)) bits for constant f , hence Ω(n1−o(1)) bits
for f = ω(1).

Curiously, in the seemingly unrelated problem of small-size fault-tolerant distance pre-
servers (FT-BFS) introduced by Parter and Peleg [31], there is a similar gap in the known
bounds for f ≥ 3, of O(n2−1/2f ) and Ω(n2−1/(f+1)) edges [29, 4]. Notably, for the case of
f = 2, Parter [29] provided a tight upper bound of O(n5/3), later simplified by Gupta and
Khan [17]. Revealing connections between FT-BFS structures and the labels problem of this
paper is an intriguing direction for future work.

Apart from the gap between the bounds, there are a few more noteworthy differences
from the case of a single color fault. First, the scheme of Theorem 3 is randomized, as
opposed to the deterministic scheme for f = 1 (Theorem 1). Moreover, the construction is
based on different techniques, combining three main ingredients: (1) sparsification tools for
colored graphs [34], (2) the (randomized) edge fault-tolerant labeling scheme of [10], and
(3) a recursive approach of [32]. Second, the lower bound of Theorem 4 is existential (but
still information-theoretic): it relies on choosing a fixed “worst-case” graph topology, and
encoding information by coloring it and storing some of the resulting labels. We further
argue that this technique cannot yield a lower bound stronger than Ω̃(n1−1/(f+1)) bits. This
is due to the observation that a color whose label is not stored can be considered never faulty,
combined with the existence of efficient labeling schemes when the number of colors is small.

For the special case of two color faults, we provide another scheme, with label length of
Õ(D

√
n) bits for graphs of diameter at most D.

▶ Theorem 5 (f = 2 upper bound, informal). There is a labeling scheme for connectivity
under two color faults with label length of Õ(D

√
n) bits.

This beats the general scheme when D = O(n1/4−ϵ), and demonstrates that the existential
Ω(n2/3) lower bound does not apply to graphs with diameter D = O(n1/6−ϵ). Further, this
scheme is existentially optimal (up to logarithmic factors) for graphs with D = Õ(1). We
hope this construction could serve as a stepping stone towards closing the current gap between
our bounds, and towards generalizing bp(G) for the case of f = 2. Table 1 summarizes our
main results on connectivity labeling under color faults.

DISC 2024



36:6 Connectivity Labeling in Faulty Colored Graphs

Table 1 A summary of our results on f color fault-tolerant connectivity labeling schemes. The
table shows the provided length bounds (in bits) for such schemes.

No. faults Upper bound Lower bound

f = 1 Õ(bp(G)) = Õ(
√

n) Thm 1 Ω(bp(G)) (Ω(
√

n) in worst-case) Thm 1

f = 2
Õ(diam(G)

√
n) Thm 5

Ω(n2/3)

Thm 4
Õ(n3/4)

Thm 3f = O(1) Õ(n1−1/2f

) Ω(n1−1/(f+1))

f = ω(1) Õ(n) Ω(n1−o(1))

Due to space limitations, the full discussion and formal proofs for f ≥ 2 color faults are
deferred to the full version of the paper.

1.1.3 Equivalence Between All-Pairs and Single-Source Connectivity
In the single-source variant of fault-tolerant connectivity, given are an n-vertex graph G

with a designated source vertex s, and an integer f . It is then required to support queries of
the form ⟨u, F ⟩, where u ∈ V and F is a faulty-set of size at most f , by reporting whether
u is connected to s in G− F . Here, and throughout this discussion, we do not care about
the type of faulty elements; these could be edges, vertices or colors. For concreteness, we
focus our discussion on labeling schemes, although it applies more generally to other models,
e.g., centralized oracles, streaming, and dynamic algorithms. Clearly, every labeling scheme
for all-pairs fault-tolerant connectivity can be transformed into a single-source variant by
including s’s label in all other labels, which at most doubles the label length. We consider
the converse direction, and show that a single-source scheme can be used as a black-box to
obtain an all-pairs scheme with only a small overhead in length.

▶ Theorem 6 (Single-source reduction, informal). Suppose there is a single-source f fault-
tolerant connectivity labeling scheme using labels of at most b(n, f) bits. Then, there is an
all-pairs f fault-tolerant connectivity labeling scheme with Õ(b(n + 1, f))-bit labels.

The reduction is based on the following idea. Suppose we add a new source vertex s to G,
and include each edge from s to the other vertices independently with probability p. Given a
query ⟨u, v, F ⟩, if u, v are originally connected in G − F , they must agree on connectivity
to the new source s, regardless of p. However, if u, v are disconnected in G − F , and p is
such that 1/p is roughly the size of u’s connected component in G− F , then with constant
probability, u and v will disagree on connectivity to s. The full proof appears in Section 4.

1.2 Discussion and Future Directions
While our work provides an essentially complete picture for the case of a single color fault, our
results for f ≥ 2 color faults still leave open many interesting directions for future research:

Can we close the gap between the Õ(n1−1/2f ) and Ω(n1−1/(f+1)) bounds? Concretely, is
there a labeling scheme for connectivity under f = 2 color faults with labels of Õ(n2/3)
bits? Can our solution for low-diameter graphs be utilized to obtain such a scheme?
Is there a graph parameter that generalizes bp(G) and characterizes the length of a
universally optimal labeling scheme for f ≥ 2? Notably, even very simple graphs with
small diameter and ball packing number admit a lower bound of Ω(

√
n) bits for f = 2

(as shown in the full version).



A. Petruschka, S. Spair, and E. Tzalik 36:7

Can we provide non-trivial centralized oracles for connectivity under f ≥ 2 color faults?
Are there routing schemes for avoiding f ≥ 2 forbidden colors with small header size?
Our labeling scheme for f ≥ 2 could be extended to such a routing scheme, but with a
large header size of Õ(n1−1/2f ) bits.

Another intriguing direction is going beyond connectivity queries; a natural goal is to
additionally obtain approximate distances, which is open even for f = 1. This problem is
closely related to providing forbidden color routing schemes with good stretch guarantees.

2 Preliminaries

Colored Graphs. Throughout, we denote the given input graph by G, which is an undirected
graph with n vertices V = V (G), and m edges E = E(G). The graph G may be a multi-graph,
i.e., there may be several different edges with the same endpoints (parallel edges). The edges
or the vertices of G are each given a color from a set of C possible colors. The coloring is
arbitrary; there are no “legality” restrictions (e.g., edges sharing an endpoint may have the
same color). Without loss of generality, we sometimes assume that C ≤ max{m, n}, and that
the set of colors is [C]. For a (faulty) subset of colors F , we denote by G− F the subgraph
of G where all edges (or vertices) with color from F are deleted. When F is a singleton
F = {c}, we use the shorthand G− c.

In some cases, we refer only to the topology of the graph, and ignore the coloring. Put
differently, we sometimes consider the family of inputs given by all different colorings of
a fixed graph. This object is referred to as the graph topology G, rather than the graph
G. We denote by distG(u, v) the number of edges in a u-v shortest path (and ∞ if no
such path exist). For a non-empty A ⊆ V , the distance from u ∈ V to A is defined as
distG(u, A) = min{distG(u, a) | a ∈ A}.

Our presentation focuses, somewhat arbitrarily, on the edge-colored case; throughout, this
case is assumed to hold unless we explicitly state otherwise. This is justified by the following
discussion.

Vertex vs. Edge Colorings. An edge-colored instance can be reduced to a vertex-colored
one, and vice versa, by subdividing each edge4 e = {u, v} into two edges {u, xe} and {xe, v},
where xe is a new vertex. If the original instance has edge colors, we give the new instance
vertex colors, by coloring each new vertex xe with the original color of the edge e. (The
original vertices get a new “never-failing” color.) For the other direction, we color each of
{u, xe} and {xe, v} by the color of the original vertex incident to it, i.e., {u, xe} gets u’s
color, and {xe, v} gets v’s color.

These easy reductions increase the number of vertices to n + m, which a prioi might seem
problematic. However, as shown by [34], given any fixed (constant) bound f on the number
of faulty colors, one can replace a given input instance (either vertex- or edge-colored) by
an equivalent sparse subgraph with only Õ(n) edges, that has the same connectivity as the
original graph under any set of at most f color faults. So, by sparsifying before applying the
reduction, the number of vertices increases only to Õ(n). Moreover, all our results translate
rather seamlessly between the edge-colored and the vertex-colored cases, even without the
general reductions presented above (we explain this separately for each result).

4 Throughout, we slightly abuse notation and write e = {u, v} to say that e has endpoints u, v, even
though there might be several different edges with these endpoints.

DISC 2024



36:8 Connectivity Labeling in Faulty Colored Graphs

Vertex and Component IDs. We assume w.l.o.g. that the vertices have unique O(log n)-bit
identifiers from [n], where id(v) denotes the identifier of v ∈ V . Using these, we define
identifiers for connected components in subgraphs of G, as follows. When G′ is a subgraph
of G and v ∈ V (G′), we define cid(v, G′) = min{id(u) | u, v connected in G′}. This ensures
cid(u, G′) = cid(v, G′) iff u, v are in the same connected component in G′. Therefore, if one
can compute cid(v, G − F ) from the labels of v, F , then, using the same labels, one can
answer connectivity queries subject to faults.

Indexing Lower Bound. Our lower bounds rely on the classic indexing lower bound from
communication complexity. In the one-way communication problem Index(N), Alice holds
a string x ∈ {0, 1}N , and Bob holds an index i ∈ [0, N − 1]. The goal is for Alice to
send a message to Bob, such that Bob can recover xi, the i-th bit of x. Crucially, the
communication is one-way; Bob cannot send any message to Alice. The protocols are allowed
to be randomized, in which case both Alice and Bob have access to a public random string.
The following lower bound on the number of bits Alice is required to send is well-known (see
[25, 23, 22]).

▶ Lemma 7 (Indexing Lower Bound [23]). Every one-way communication protocol (even with
shared randomness) for Index(N) must use Ω(N) bits of communication.

3 Single Color Fault

In this section, we study the connectivity problem under one color fault. That is, given
two vertices u, v and a faulty color c, one should be able to determine if u, v are connected
in G − c. In Sections 3.1 and 3.2 we focus on labeling schemes, and provide universally
optimal upper and lower bounds. Section 3.3 then discusses routing in the presence of a
single forbidden color. In Section 3.5 we change gears and provide centralized oracles for the
problem.

3.1 Our Labeling Scheme and the Ball Packing Number
We first show a scheme that works when G is connected. Connectivity cannot be assumed
without losing generality, because of the color labels: A color gets only one label, which
should support connectivity queries in every connected component of the input. Later, in
Appendix A, we show how to remove this assumption. Consider the following procedure:
starting from an arbitrary vertex a0, iteratively choose a vertex ai which satisfies

distG(ai, {a0, . . . , ai−1}) = i,

until no such vertex exists. Suppose the procedure halts at the k-th iteration, with the set of
chosen vertices A = {a0, . . . , ak−1}. Then every vertex v ∈ V has distance less than k from
A. We use A to construct O(k log n)-bit labels, as follows.

Label L(c) of color c ∈ [C]: For every a ∈ A, store cid(a, G− c).
Label L(v) of vertex v ∈ V : Let P (v) be a shortest path connecting v to A, and let
a(v) be its endpoint in A. For every color c present in P (v), store cid(v, G − c). Also,
store id(a(v)).

Answering queries is straightforward as given L(v) and L(c), one can readily compute
cid(v, G − c): If the color c appears on the path P (v), then cid(v, G − c) is found in L(v).
Otherwise, P (v) connects between v and a(v) in G− c, hence cid(v, G− c) = cid(a(v), G− c),
and the latter is stored in L(c).



A. Petruschka, S. Spair, and E. Tzalik 36:9

The labels have length of O(
√

n log n) bits, as follows. Consider the A-vertices chosen
at iteration ⌈k/2⌉ or later. By construction, each of these ⌊k/2⌋ vertices is at distance at
least ⌈k/2⌉ from all others. Hence, the balls of radius ⌊k/4⌋ (in the metric induced by G)
centered at these vertices are disjoint, and each such ball contains at least ⌊k/4⌋ vertices.
Thus, ⌊k/2⌋ · ⌊k/4⌋ ≤ n, so k = O(

√
n).

The length of the labels assigned by this simple scheme turns out to be not only existentially
optimal, but also universally optimal (both up to a factor of log n). By existential optimality,
we mean that every labeling scheme for connectivity under one color fault must have Ω(

√
n)-

bit labels on some worst-case colored graph G. The stronger universal optimality means that
for every graph topology G, every such labeling scheme, even tailor-made for G, must assign
Ω(k)-bit labels (for some coloring of G).

The Ball-Packing Number. To prove the aforementioned universal optimality of our scheme,
we introduce a graph parameter called the ball-packing number. As the name suggests, this
parameter concerns packing disjoint balls in the metric induced by the graph topology G. Its
relation to faulty-color connectivity is hinted by the previous analysis using a “ball packing
argument” to obtain the Õ(

√
n) bound. We next give the formal definitions and some

immediate observations.

▶ Definition 8 (Proper r-ball). For every integer r ≥ 0, the r-ball in G centered at v ∈ V (G),
denoted BG(v, r), consists of all vertices of distance at most r from v. That is,

BG(v, r) = {u ∈ V (G) | distG(v, u) ≤ r}.

The r-ball BG(v, r) is called proper if there exists u ∈ BG(v, r) that realizes the radius, i.e.,
distG(u, v) = r. Note that if the radius r from v is not realized, then there exists r′ < r

such that the radius r′ is realized, and BG(v, r′) = BG(v, r) as sets of vertices. So, whether
B(v, r) is proper depends not only on the set of vertices in this ball, but also on the specified
parameter r.

▶ Observation 9. If r ≤ distG(u, v) <∞, then BG(u, r) and BG(v, r) are proper r-balls.

▶ Definition 10 (Ball-packing number). The ball-packing number of G, denoted bp(G), is
the maximum integer r such that there exist at least r vertex-disjoint proper r-balls in G.

▶ Observation 11. (i) For every n-vertex graph G, bp(G) ≤
√

n. (ii) For some graphs G,
we also have bp(G) = Ω(

√
n) (e.g., when G is a path).

A Ball-Packing Upper Bound. Our length analysis for the above scheme in fact showed
the existence of at least ⌊k/2⌋ disjoint and proper ⌊k/4⌋-balls, implying that k = O(bp(G))
by Definition 10. Minor adaptations to this scheme to handle several connected components
in G yields the following theorem, whose proof is deferred to Appendix A.

▶ Theorem 12. There is a deterministic labeling scheme for connectivity under one color
fault that, when given as input an n-vertex graph G, assigns labels of length O(bp(G) log n)
bits. The query time is O(1) (in the RAM model).

▶ Remark 13. By Observation 11(i), the label length is always bounded by O(
√

n log n) bits.

DISC 2024



36:10 Connectivity Labeling in Faulty Colored Graphs

3.2 A Ball-Packing Lower Bound
We now show an Ω(bp(G)) bound on the maximal label length.

▶ Theorem 14. Let G be a graph topology. Suppose there is a (possibly randomized) labeling
scheme for connectivity under one color fault, that assigns labels of length at most b bits for
every coloring of G. Then b = Ω(bp(G)).

▶ Remark 15. By the above theorem and Observation 11(ii), every labeling scheme for all
topologies must assign Ω(

√
n)-bit labels on some input, which proves Theorem 4 for the

special case f = 1.

Proof of Theorem 14. Denote r = bp(G). The proof uses the labeling scheme and the graph
topology G to construct a communication protocol for Index(r2). Let x = x0x1 · · ·xr2−1 be
the input string given to Alice, where each xi ∈ {0, 1}. Let i∗ be the index given to Bob,
where 0 ≤ i∗ ≤ r2 − 1. On a high level, the communication protocol works as follows. Both
Alice and Bob know the (uncolored) graph topology G in advance, as part of the protocol.
Alice colors the edges of her copy of G according to her input x, and applies the labeling
scheme to compute labels for the vertices and colors. She then sends O(r) such labels to
Bob, and he recovers xi∗ by using the labels to answer a connectivity query in the colored
graph. As the total number of sent bits is O(b · r), it follows by Lemma 7 that b · r = Ω(r2),
and hence b = Ω(r) = Ω(bp(G)). The rest of this proof is devoted to the full description of
the protocol.

In order to color G, Alice does the following. She uses the color palette {0, 1, . . . , r− 1} ∪
{⊥}, where the symbol ⊥ is used instead of r to stress that ⊥ is a special never failing color
in the protocol. Let v0, v1 . . . , vr−1 be centers of r disjoint proper r-balls in G, which exist
by Definition 10 of Ball-Packing, and since r = bp(G). For every k, l ∈ [0, r), define

Ek,l
def=

{
{u, w} ∈ E | distG(vk, u) = l and distG(vk, w) = l + 1

}
.

In other words, Ek,l is the set of edges connecting layers l and l + 1 of the k-th ball B(vk, r).
As the layers in a ball are disjoint, and the balls themselves are disjoint, the sets {Ek,l}k,l are
mutually disjoint. Alice colors these edge-sets by the following rule: For every i ∈ [0, r2 − 1],
she decomposes it as i = kr + l with l, k ∈ [0, r). If xi = 1, the edges in Ek,l get the color
l. Otherwise, when xi = 0, these edges get the null-color ⊥. Every additional edge in G,
outside of the sets {Ek,l}k,l, is also colored by ⊥. The purpose of this coloring is to ensure
the following property, for k, l ∈ [0, r) and i = kr + l: If xi = 0, then (the induced graph
on) BG(vk, r) does not contain any l-colored edges and its vertices are connected in G− l.
However, if xi = 1, then Ek,l is colored by l, hence in G− l, vk is disconnected from every u

for which distG(u, vk) > l.
Next, we describe the message sent by Alice. For 0 ≤ k ≤ r − 1, let uk ∈ V with

distG(uk, vk) = r, which exists by Definition 8, as BG(vk, r) is a proper r-ball. Alice
applies the labeling scheme on the colored G, and sends to Bob the labels of the vertices
v0, . . . , vr−1, u0, . . . , ur−1, and of the colors 0, . . . , r − 1. This amounts to 3r labels.

Finally, we describe Bob’s strategy. He decomposes i∗ as i∗ = k∗r + l∗ with k∗, l∗ ∈ [0, r),
and uses the labels of vk∗ , uk∗ , l∗ to query the connectivity of vk∗ and uk∗ in G− l∗. If the
answer is disconnected, Bob determines that xi∗ = 1, and if it is connected, he determines
that xi∗ = 0. By the previously described property of the coloring, Bob indeed recovers xi∗

correctly. Thus, this protocol solves Index(r2), which concludes the proof.
This proof extends quite easily to vertex-colored graphs; Alice can color the vertices in

the l-th layer of B(vk, r) instead of the edges Ek,l. ◀



A. Petruschka, S. Spair, and E. Tzalik 36:11

3.3 Forbidden Color Routing
We next consider designing routing schemes with a forbidden color, with our goal being to
prove Theorem 2 (see Section 1.1.1 for definitions and statement).

For the sake of simplicity, we assume that when c is the color to be avoided, the graph
G− c is connected. (In particular, this also implies that G is connected.) Intuitively, this
assumption is reasonable as we cannot route between different connected components of
G − c. To check if the routing is even possible (i.e., if s and t are in the same connected
component), we can use the connectivity labels of Theorem 12 at the beginning of the
procedure. Technically, this assumption can be easily removed, at the cost of introducing
some additional clutter.

3.3.1 Basic Tools
We start with some basic building blocks on which our scheme is used. First, we crucially use
the existence of the set A constructed in the labeling procedure of Section 3.1. The following
lemma summarizes its critical properties:

▶ Lemma 16. There is a vertex set A ⊆ V such that |A| = O(bp(G)), and every vertex
v ∈ V has distG(v, A) = O(bp(G)).

Next, we use (in a black-box manner) a standard building block in many routing schemes:
the Thorup-Zwick tree routing scheme [35]. Its properties are summarized in the following
lemma:

▶ Lemma 17 (Tree Routing [35]). Let T be an n-vertex tree. One can assign each vertex
v ∈ V (T ) a routing table RT (v) and a destination label LT (v) with respect to the tree T ,
both of O(log n) bits. For any two vertices u, v ∈ V (T ), given RT (u) and LT (v), one can
find the port number of the T -edge from u that heads in the direction of v in T .

We now define several trees that are crucial for our scheme.
First, we construct a specific spanning tree T of G, designed so that the V -to-A shortest

paths in G are tree paths in T . Recall that for every v ∈ V , P (v) is a shortest path connecting
v to A, and a(v) is the A-endpoint of this path (see the beginning of Section 3.1). We choose
the paths P (v) consistently, so that if vertex u appears on P (v), then P (u) is a subpath of
P (v). This ensures that the union of the paths

⋃
v∈V P (v) is a forest. The tree T is created

by connecting the parts of this forest by arbitrary edges. We root T at an arbitrary vertex r.
After the failure of color c, the tree T breaks into fragments (the connected components

of T − c). We define the recovery tree of color c, denoted Tc, as a spanning tree of G − c

obtained by connecting the fragments of T − c via additional edges of G− c. These edges are
called the recovery edges of Tc, and the fragments of T − c are also called fragments of Tc.

For u, v ∈ V and color c, we denote e(u, v, c) as the first recovery edge appearing in the
u-to-v path in Tc (when such exists). Note that we treat this path as directed from u to v.
Accordingly, we think of e(u, v, c) as a directed edge (x, y) where its first vertex x is closer to
u, and its second vertex y is closer to v. Thus, e(u, v, c) and e(v, u, c) may refer to the same
edge, but in opposite directions. We will use a basic data block denoted FirstRecEdge(u, v, c)
storing the following information regarding e(u, v, c):

The port number of e(u, v, c), from its first vertex x to its second vertex y.
The tree-routing label w.r.t. T of the first vertex x, i.e. LT (x).
A Boolean indicating whether the second vertex y and v lie in the same fragment of T − c.

DISC 2024



36:12 Connectivity Labeling in Faulty Colored Graphs

Note that FirstRecEdge(u, v, c) consists of O(log n) bits.
Finally, we classify the fragments of a recovery tree Tc (and of T − c) into two types:
A-fragments: fragments that contain at least one vertex from A.
B-fragments: fragments that are disjoint from A.

Our construction of T ensures the following property:

▶ Lemma 18. For every color c, if vertex v ∈ V is in a B-fragment of T − c, then c ∈ P (v),
i.e., the color c appears on the path P (v).

Proof. By construction, the path P (v) is a tree path in T connecting v to some a ∈ A. As v

is in a B-fragment of T − c, this path cannot survive in T − c, hence c appears on it. ◀

3.4 Construction of Routing Tables and Labels
We now formally describe the construction of the tables and labels of our scheme, by
Algorithms 1–3. An overview of how these are used to route messages, which provides the
intuition behind their construction, is provided in the next Section 3.4.1. At first read, it
may be beneficial to skip ahead and start with the overview, while referring to the current
section to see how the information storage described there is realized formally.

Algorithm 1 Creating the table R(v) of vertex v.

1: store RT (v)
2: store port number of the edge from v to its parent in T

3: c(v)← color of edge from v to its parent in T ▷ undefined if v = r

4: store c(v)
5: for each vertex a ∈ A do
6: store FirstRecEdge(v, a, c(v))
7: for each color c ∈ P (v) do
8: store RTc

(v)

Algorithm 2 Creating the label L(v) of vertex v.

1: store LT (v)
2: store a(v), the A-endpoint of P (v)
3: for each color c ∈ P (v) do
4: a(v, c)← an A-vertex in the nearest A-fragment to v in Tc

5: store FirstRecEdge(a(v, c), v, c)
6: store LTc

(v)

Algorithm 3 Creating the label L(c) of color c.

1: for each vertex a ∈ A do
2: store FirstRecEdge(r, a, c)

Size Analysis. It is easily verified that each store instruction in Algorithms 1–3 adds
O(log n) bits of storage. In all of these algorithms, the number of such instructions is
O(|P (v)|+ |A|), which is O(bp(G)) by Lemma 16. Hence, the total size of any R(v), L(v) or
L(c) is O(bp(G) log n) bits.



A. Petruschka, S. Spair, and E. Tzalik 36:13

3.4.1 Overview of the Routing Scheme
We are now ready to present our forbidden color routing scheme. Here, we give an overview
which conveys the main technical ideas. The formal details are provided in Appendix B.
Our scheme is best described via two special cases; in the first case, t is in an A-fragment,
and in the second case, the s-to-t path in Tc is only via B-fragments. These two cases are
combined to obtain the full routing scheme, essentially by first routing to the A-fragment
that is nearest to t in Tc, and then routing from that A-fragment to t (crucially, this route
does not contain A-fragments).

First Case: t is in an A-fragment. Suppose an even stronger assumption, that we are
actually given a vertex a∗ ∈ A that is in the same fragment as t. We will resolve this
assumption only at the wrap-up of this section. The general strategy is to try and follow the
s-to-t path in the recovery tree Tc. This path is of the form P1 ◦e1 ◦P2 ◦e2 ◦· · ·◦eℓ ◦Pℓ, where
each Pi is a path in a fragment Xi of T − c, and the ei edges are recovery edges connecting
between fragments, so that Xℓ is the fragment of t in T − c. Rather than following this path
directly, our goal will be to route from one fragment to the next, through the corresponding
recovery edge.

As there are only O(bp(G)) A-fragments, every v ∈ V can store O(log n) bits for each
A-fragment. However, the A-fragments depend on the failing color, so the routing table
of v cannot store said information for every color. To overcome this obstacle, note that in
every fragment in T − c (besides the one containing the root r), the root of the fragment
is connected to its parent via a c-colored edge. We leverage this property, and let the root
v of every fragment in T − c store, for every a ∈ A, the first recovery edge e(v, a, c) on the
path from v to a in Tc. Thus, when reaching the fragment Xi of T − c, we first go up as
far as possible, until we hit the root of Xi. In the general case, this is a vertex vi such that
the edge to its parent is of color c. Therefore, vi stores in its table the next recovery edge
ei = e(vi, a∗, c) we aim to traverse. The special case of vi = r is resolved using the color
labels. The color c stores, for every a ∈ A, the first recovery edge e(r, a, c); at the start of the
routing procedure, s extracts the information regarding e(r, a∗, c) and writes it in the header.

So, we discover ei in vi, and next we use the Thorup-Zwick routing of Lemma 17 on T

to get to the first endpoint of ei. The path leading us to this endpoint is fault-free (it is
contained in the fragment Xi). Then, we traverse ei, and continue in the same manner in
the next fragment Xi+1.

Once we reach the A-fragment that contains a∗ and t, we again use the Thorup-Zwick
routing of Lemma 17 on T . For that we also need LT (t), which s can learn from the label of
t and write in the header at the beginning of the procedure.

Second Case: the s-to-t path in Tc is only via B-fragments. As every vertex v in the
s-to-t path in Tc is in a B-fragment of T − c, by Lemma 18, c ∈ P (v). Thus, v can store the
relevant tree-routing table RTc(v). Essentially, every v has to store such routing table for
every color in P (v). Also, since c ∈ P (v), t can store in its label L(t) the tree-routing label
LTc(t), and the latter can be extracted by s and placed on the header of the message at the
beginning of the procedure. Hence, we can simply route the message using Thorup-Zwick
routing scheme of Lemma 17 on Tc.

Putting It Together. We now wrap-up the full routing procedure. If c /∈ P (t), then t is
connected to a(t), and we get the first case with a∗ = a(t), which can be stored in t’s label.
Thus, suppose c ∈ P (t). Since |P (t)| = O(bp(G)), the label of t can store O(log n) bits for

DISC 2024



36:14 Connectivity Labeling in Faulty Colored Graphs

every color on P (t), and specifically for the color c of interest. If t is in an A-fragment in
T − c, then t can pick an arbitrary A-vertex in its fragment as a∗, and again we reduce to
the first case. Suppose t is in a B-fragment in T − c. In this case, t sets a∗ to be an A-vertex
from the nearest A-fragment to t in Tc. The label of t can store a∗ and the first recovery
edge from a∗ towards t (i.e., e(a∗, t, c)) At the beginning of the procedure, s can find the
information regarding a∗ and e(a∗, t, c) in t’s label, and write it on the message header. Now,
routing from s to the fragment of a∗ is by done by the first case, traversing this fragment
towards e(a∗, t, c) is done using Thorup-Zwick tree-routing on T , and after taking this edge,
we can route the message to t according to the second case.

3.5 Centralized Oracles and Nearest Colored Ancestors
In the centralized setting of oracles for connectivity under one color fault, the objective
is to preprocess the colored graph G into a low-space centralized data structure (oracle)
that, when queried with (the names/ids of) two vertices u, v ∈ V and a color c, can quickly
report if u and v are connected in G− c. The labeling scheme of Theorem 12 implies such a
data structure with O(n1.5) space and O(1) query time.5 (The bounds for centralized data
structures are in the standard RAM model with Θ(log n)-bit words.) By the lower bound of
Theorem 14, such a data structure with space o(n1.5) cannot be “evenly distributed” into
labels.

However, utilizing centralization, we can achieve O(n) space with only O(log log n) query
time. This is obtained by a reduction to the nearest colored ancestor problem, studied by
Muthukrishnan and Müller [28] and by Gawrychowski, Landau, Mozes and Weimann [15].
They showed that a rooted n-vertex forest with colored vertices can be processed into an
O(n)-space data structure, that given a vertex v and a color c, returns the nearest c-colored
ancestor of v (or reports that none exist) in O(log log n) time. The reduction is as follows.
Choose a maximal spanning forest T for G, and root each tree of the forest in the vertex with
minimum id. For each vertex u ∈ V , assign it with the color d of the edge connecting u to its
parent in T . Additionally, store cid(u, G− d) in the vertex u. (The roots get a null-color and
store their ids, which are also their cids in every subgraph of G.) Now, construct a nearest
color ancestor data structure for T as in [28, 15]. Given a query v ∈ V and color c, we can
find the nearest c-colored ancestor w of v in O(log log n) time. As w is nearest, the T -path
from v to w in T does not contain c-colored edges, implying that cid(v, G− c) = cid(w, G− c),
and the latter is stored at w. (If no such c-colored ancestor exists, take w as the root,
and proceed similarly.) Given u, v ∈ V and color c, apply the above procedure twice, and
determine the connectivity of u, v in G− c by comparing their cids, within O(log log n) time.
We therefore get:

▶ Theorem 19. Every colored n-vertex graph G can be processed into an O(n)-space central-
ized oracle that given a query of u, v ∈ V and color c, reports if u, v are connected in G− c

in O(log log n) time.

The reduction raises an alternative approach for constructing connectivity labels for one
color fault, via providing a labeling scheme for the nearest colored ancestor problem. In
Appendix C we show that indeed, such a scheme with Õ(

√
n)-bit labels exists.

5 The data structure stores all vertex labels, and the labels of all colors that appear in some fixed maximal
spanning forest T of G. We can ignore all other colors, as their failure does not change the connectivity
in G.



A. Petruschka, S. Spair, and E. Tzalik 36:15

4 Reduction from All-Pairs to Single-Source

In the single-source variant of fault-tolerant connectivity, the input graph G comes with a
designated source vertex s. The queries to be supported are of the form ⟨u, F ⟩, where u ∈ V

and F is a faulty set of size at most f . It is required to report if u is connected to the source
s in G− F . The following result shows that this variant is equivalent to the all-pairs variant,
up to log n factors. The result holds whether the faults are edges, vertices, or colors, hence
we do not specify the type of faults.

▶ Theorem 20. Let f ≥ 1. Suppose there is a (possibly randomized) single-source f fault-
tolerant connectivity labeling scheme that assigns labels of at most b(n, f) bits on every
n-vertex graph. Then, there is a randomized all-pairs f fault-tolerant connectivity labeling
scheme that assigns labels of length O(b(n + 1, f) · log2 n) bits on every n-vertex graph.

Proof.

Labeling. For each i, j with 1 ≤ i ≤ ⌈α ln(n)/ ln(0.9)⌉, 1 ≤ j ≤ ⌈log2 n⌉+2 we independently
construct a graph Gij as follows: Start with G, add a new vertex sij , and independently for
each v ∈ V , add a new edge connecting sij to v with probability 2−j . The vertex sij and the
new edges are treated as non-failing. That is, in case of color faults, they get a null-color ⊥
that does not appear in G. For each element (vertex/edge/color) x of G, its label L(x) is the
concatenation of all Lij(x), where the Lij(·) are the labels given by the single-source scheme
to the instance Gij with designated source sij . The claimed length bound is immediate.

Answering queries. Let u, w ∈ V , and let F be a fault-set of size at most f . Given
L(u), L(w) and {L(x) | x ∈ F}, we should determine if u, w are connected in G− F . To this
end, for each i, j, we use the Lij(·) labels of u, F to determine if u is connected to sij in Gij ,
and do the same with w instead of u. If the answers are always identical for u and w, we
output connected. Otherwise, we output disconnected.

Analysis. We have made only O(log2 n) queries using the single-source scheme, so, with
high probability, all of these are answered correctly. Assume this from now on.

If u, w are connected in G− F , then this is also true for all Gij − F , so they must agree
on the connectivity to sij in this graph. Hence, in this case, the answers for u and w are
always identical, and we correctly output connected.

Suppose now that u and w are disconnected in G− F . Let U be the set of vertices in u’s
connected component in G − F . Define W analogously for w. Without loss of generality,
assume |U | ≤ |W |. Let j be such that 2j−2 < |U | ≤ 2j−1. Let N

(i)
U be the number of edges

between sij and U in Gij , and define N
(i)
W similarly. By Markov’s inequality,

Pr
[
N

(i)
U = 0

]
≥ 1− E

[
N

(i)
U

]
= 1− |U | · 2−j ≥ 1− 2j−1 · 2−j = 1/2.

On the other hand,

Pr[N (i)
W ≥ 1] = 1−

(
1− 2−j

)|W | ≥ 1−
(
1− 2−j

)2j−2

≥ 1− e−1/4 > 0.2.

Since U and W are disjoint, N
(i)
U and N

(i)
W are independent random variables. Hence, with

probability at least 0.1, the source sij is connected to w but not to u in Gij − F , and the
answers for u and w given by the Lij(·)-labels are different. As the graphs {Gij}i are formed
independently, the probability there exists an i for which w is connected to sij and u is
disconnected from sij is at least 1− (0.9)α ln n/ ln(0.9) = 1− 1/nα. In this case, the output is
disconnected, as required. ◀

DISC 2024



36:16 Connectivity Labeling in Faulty Colored Graphs

References
1 Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic approximate distance oracles

for planar graphs via forbidden-set distance labels. In Proceedings of the 44th Symposium
on Theory of Computing Conference, STOC, pages 1199–1218. ACM, 2012. doi:10.1145/
2213977.2214084.

2 Ittai Abraham, Shiri Chechik, Cyril Gavoille, and David Peleg. Forbidden-set distance labels
for graphs of bounded doubling dimension. ACM Trans. Algorithms, 12(2):22:1–22:17, 2016.
doi:10.1145/2818694.

3 Surender Baswana, Koustav Bhanja, and Abhyuday Pandey. Minimum+1 (s, t)-cuts and
dual edge sensitivity oracle. In 49th International Colloquium on Automata, Languages, and
Programming, ICALP, volume 229 of LIPIcs, pages 15:1–15:20. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.15.

4 Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams. Preserving
distances in very faulty graphs. In 44th International Colloquium on Automata, Languages,
and Programming, ICALP, volume 80 of LIPIcs, pages 73:1–73:14. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.73.

5 Shiri Chechik. Improved distance oracles and spanners for vertex-labeled graphs. In Algorithms
- ESA 2012 - 20th Annual European Symposium, volume 7501 of Lecture Notes in Computer
Science, pages 325–336. Springer, 2012. doi:10.1007/978-3-642-33090-2_29.

6 Keerti Choudhary. An optimal dual fault tolerant reachability oracle. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP, volume 55 of LIPIcs, pages
130:1–130:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
ICALP.2016.130.

7 David Coudert, Pallab Datta, Stephane Perennes, Hervé Rivano, and Marie-Emilie Voge.
Shared risk resource group complexity and approximability issues. Parallel Process. Lett.,
17(2):169–184, 2007. doi:10.1142/S0129626407002958.

8 Bruno Courcelle, Cyril Gavoille, Mamadou Moustapha Kanté, and Andrew Twigg. Connectivity
check in 3-connected planar graphs with obstacles. Electron. Notes Discret. Math., 31:151–155,
2008. doi:10.1016/j.endm.2008.06.030.

9 Bruno Courcelle and Andrew Twigg. Compact forbidden-set routing. In Proceedings 24th
Annual Symposium on Theoretical Aspects of Computer Science, STACS, volume 4393 of Lecture
Notes in Computer Science, pages 37–48. Springer, 2007. doi:10.1007/978-3-540-70918-3_4.

10 Michal Dory and Merav Parter. Fault-tolerant labeling and compact routing schemes. In
ACM Symposium on Principles of Distributed Computing, PODC, pages 445–455, 2021.
doi:10.1145/3465084.3467929.

11 Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Proceedings of
the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 506–515,
2009. doi:10.1137/1.9781611973068.56.

12 Georgios Ellinas, Eric Bouillet, Ramu Ramamurthy, J.-F Labourdette, Sid Chaudhuri, and
Krishna Bala. Routing and restoration architectures in mesh optical networks. Opt Networks
Mag, 4, January 2003.

13 Jacob Evald, Viktor Fredslund-Hansen, and Christian Wulff-Nilsen. Near-optimal distance
oracles for vertex-labeled planar graphs. In 32nd International Symposium on Algorithms and
Computation, ISAAC, volume 212 of LIPIcs, pages 23:1–23:14. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ISAAC.2021.23.

14 Kyle Fox, Debmalya Panigrahi, and Fred Zhang. Minimum cut and minimum k-cut in
hypergraphs via branching contractions. ACM Trans. Algorithms, 19(2):13:1–13:22, 2023.
doi:10.1145/3570162.

15 Pawel Gawrychowski, Gad M. Landau, Shay Mozes, and Oren Weimann. The nearest colored
node in a tree. Theor. Comput. Sci., 710:66–73, 2018. doi:10.1016/j.tcs.2017.08.021.

16 Mohsen Ghaffari, David R. Karger, and Debmalya Panigrahi. Random contractions and
sampling for hypergraph and hedge connectivity. In Proceedings of the Twenty-Eighth Annual

https://doi.org/10.1145/2213977.2214084
https://doi.org/10.1145/2213977.2214084
https://doi.org/10.1145/2818694
https://doi.org/10.4230/LIPIcs.ICALP.2022.15
https://doi.org/10.4230/LIPIcs.ICALP.2017.73
https://doi.org/10.1007/978-3-642-33090-2_29
https://doi.org/10.4230/LIPIcs.ICALP.2016.130
https://doi.org/10.4230/LIPIcs.ICALP.2016.130
https://doi.org/10.1142/S0129626407002958
https://doi.org/10.1016/j.endm.2008.06.030
https://doi.org/10.1007/978-3-540-70918-3_4
https://doi.org/10.1145/3465084.3467929
https://doi.org/10.1137/1.9781611973068.56
https://doi.org/10.4230/LIPIcs.ISAAC.2021.23
https://doi.org/10.1145/3570162
https://doi.org/10.1016/j.tcs.2017.08.021


A. Petruschka, S. Spair, and E. Tzalik 36:17

ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1101–1114, 2017. doi:10.1137/
1.9781611974782.71.

17 Manoj Gupta and Shahbaz Khan. Multiple source dual fault tolerant BFS trees. In 44th
International Colloquium on Automata, Languages, and Programming, ICALP, volume 80
of LIPIcs, pages 127:1–127:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.127.

18 Bernhard Haeupler, David Wajc, and Goran Zuzic. Universally-optimal distributed algorithms
for known topologies. In 53rd Annual ACM SIGACT Symposium on Theory of Computing,
STOC, pages 1166–1179, 2021. doi:10.1145/3406325.3451081.

19 Danny Hermelin, Avivit Levy, Oren Weimann, and Raphael Yuster. Distance oracles for vertex-
labeled graphs. In Automata, Languages and Programming - 38th International Colloquium,
ICALP, volume 6756 of Lecture Notes in Computer Science, pages 490–501. Springer, 2011.
doi:10.1007/978-3-642-22012-8_39.

20 Jian Qiang Hu. Diverse routing in optical mesh networks. IEEE Transactions on Communica-
tions, 51(3):489–494, 2003. doi:10.1109/TCOMM.2003.809779.

21 Taisuke Izumi, Yuval Emek, Tadashi Wadayama, and Toshimitsu Masuzawa. Determin-
istic fault-tolerant connectivity labeling scheme. In Symposium on Principles of Distributed
Computing, PODC, pages 190–199. ACM, 2023. doi:10.1145/3583668.3594584.

22 T. S. Jayram, Ravi Kumar, and D. Sivakumar. The one-way communication complexity of
hamming distance. Theory Comput., 4(1):129–135, 2008. doi:10.4086/toc.2008.v004a006.

23 Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication com-
plexity. Comput. Complex., 8(1):21–49, 1999. doi:10.1007/s000370050018.

24 F. Kuipers. An overview of algorithms for network survivability. ISRN Communications and
Networking, 2012, December 2012. doi:10.5402/2012/932456.

25 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1996. doi:10.1017/CBO9780511574948.

26 Itay Laish and Shay Mozes. Efficient dynamic approximate distance oracles for vertex-
labeled planar graphs. Theory Comput. Syst., 63(8):1849–1874, 2019. doi:10.1007/
s00224-019-09949-5.

27 Eytan H. Modiano and Aradhana Narula-Tam. Survivable lightpath routing: a new approach
to the design of wdm-based networks. IEEE J. Sel. Areas Commun., 20(4):800–809, 2002.
doi:10.1109/JSAC.2002.1003045.

28 S. Muthukrishnan and Martin Müller. Time and space efficient method-lookup for object-
oriented programs. In Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 42–51, 1996. URL: http://dl.acm.org/citation.cfm?id=313852.
313882.

29 Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, PODC, pages 481–490, 2015. doi:10.1145/2767386.
2767408.

30 Merav Parter. Distributed constructions of dual-failure fault-tolerant distance preservers. In
34th International Symposium on Distributed Computing, DISC, volume 179 of LIPIcs, pages
21:1–21:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
DISC.2020.21.

31 Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In Algorithms - ESA 2013 -
21st Annual European Symposium, volume 8125 of Lecture Notes in Computer Science, pages
779–790. Springer, 2013. doi:10.1007/978-3-642-40450-4_66.

32 Merav Parter and Asaf Petruschka. Õptimal dual vertex failure connectivity labels. In 36th
International Symposium on Distributed Computing, DISC, volume 246 of LIPIcs, pages
32:1–32:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
DISC.2022.32.

33 Merav Parter, Asaf Petruschka, and Seth Pettie. Connectivity labeling and routing with
multiple vertex failures. In Proceedings of the 56th Annual ACM Symposium on Theory of

DISC 2024

https://doi.org/10.1137/1.9781611974782.71
https://doi.org/10.1137/1.9781611974782.71
https://doi.org/10.4230/LIPIcs.ICALP.2017.127
https://doi.org/10.1145/3406325.3451081
https://doi.org/10.1007/978-3-642-22012-8_39
https://doi.org/10.1109/TCOMM.2003.809779
https://doi.org/10.1145/3583668.3594584
https://doi.org/10.4086/toc.2008.v004a006
https://doi.org/10.1007/s000370050018
https://doi.org/10.5402/2012/932456
https://doi.org/10.1017/CBO9780511574948
https://doi.org/10.1007/s00224-019-09949-5
https://doi.org/10.1007/s00224-019-09949-5
https://doi.org/10.1109/JSAC.2002.1003045
http://dl.acm.org/citation.cfm?id=313852.313882
http://dl.acm.org/citation.cfm?id=313852.313882
https://doi.org/10.1145/2767386.2767408
https://doi.org/10.1145/2767386.2767408
https://doi.org/10.4230/LIPIcs.DISC.2020.21
https://doi.org/10.4230/LIPIcs.DISC.2020.21
https://doi.org/10.1007/978-3-642-40450-4_66
https://doi.org/10.4230/LIPIcs.DISC.2022.32
https://doi.org/10.4230/LIPIcs.DISC.2022.32


36:18 Connectivity Labeling in Faulty Colored Graphs

Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 823–834. ACM,
2024. doi:10.1145/3618260.3649729.

34 Asaf Petruschka, Shay Sapir, and Elad Tzalik. Color fault-tolerant spanners. In 15th
Innovations in Theoretical Computer Science Conference, ITCS, volume 287 of LIPIcs, pages
88:1–88:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.
ITCS.2024.88.

35 Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings 13th ACM Symposium
on Parallel Algorithms and Architectures, SPAA, pages 1–10, 2001. doi:10.1145/378580.
378581.

36 Dekel Tsur. Succinct data structures for nearest colored node in a tree. Inf. Process. Lett.,
132:6–10, 2018. doi:10.1016/j.ipl.2017.10.001.

37 Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient
priority queue. Math. Syst. Theory, 10:99–127, 1977. doi:10.1007/BF01683268.

38 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). Inf.
Process. Lett., 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

39 Rupei Xu and Warren Shull. Hedge connectivity without hedge overlaps. CoRR, 2020.
arXiv:2012.10600.

40 Peng Zhang, Jin-Yi Cai, Lin-Qing Tang, and Wen-Bo Zhao. Approximation and hardness
results for label cut and related problems. Journal of Combinatorial Optimization, 21:192–208,
2011. doi:10.1007/s10878-009-9222-0.

A Single Color Fault: Proof of Theorem 12

Labeling. The labeling procedure is presented as Algorithm 4.

Algorithm 4 Labeling for one color fault.

Require: Colored graph G.
Ensure: Labels L(v) for each vertex v ∈ V , and L(c) for each color c.

1: A0 ← {a ∈ V | id(a) = cid(a, G)} ▷ vertices w/ min id in each connected component of G

2: A← ∅
3: i← 1
4: while there exists vertex ai ∈ V with distG(ai, A0 ∪A) = i do
5: A← A ∪ {ai}
6: i← i + 1
7: for each vertex v ∈ V do ▷ create the label L(v)
8: a(v)← a closest vertex to v from A0 ∪A in G

9: P (v)← a shortest v-to-a(v) path in G

10: store in L(v) the id of a(v), id(a(v))
11: store in L(v) a dictionary that maps key d to value cid(v, G− d), for every color d

on P (v)
12: for each color c do ▷ create the label L(c)
13: store in L(c) the name of the color c

14: store in L(c) a dictionary that maps key id(a) to value cid(a, G− c), for each a ∈ A

Answering queries. As before, it suffices to show that one can report cid(v, G− c) merely
from the labels L(v) and L(c). This is done as follows. If the key c appears in the dictionary of
L(v), then cid(v, G−c) is the corresponding value, and we are done. Otherwise, P (v) does not
contain the color c, so it connects v to a(v) in G−c, and therefore cid(v, G−c) = cid(a(v), G−c).

https://doi.org/10.1145/3618260.3649729
https://doi.org/10.4230/LIPICS.ITCS.2024.88
https://doi.org/10.4230/LIPICS.ITCS.2024.88
https://doi.org/10.1145/378580.378581
https://doi.org/10.1145/378580.378581
https://doi.org/10.1016/j.ipl.2017.10.001
https://doi.org/10.1007/BF01683268
https://doi.org/10.1016/0020-0190(83)90075-3
https://arxiv.org/abs/2012.10600
https://doi.org/10.1007/s10878-009-9222-0


A. Petruschka, S. Spair, and E. Tzalik 36:19

Recall that a(v) ∈ A0 ∪ A. If the key id(a(v)) appears in the dictionary of L(c), then
cid(a(v), G − c) is the corresponding value, and we are done. Otherwise, it must be that
a(v) ∈ A0. Recall that A0 contains vertices having minimum id in their connected component
in G. This implies that cid(a(v), G− c) = id(a(v)), and the latter is stored in L(v).

Length analysis. Let k be the halting iteration of the while loop in Algorithm 4 (line 4).
Then |A| = k − 1, so the length of each color label is O(k log n) bits. Also, by the while
condition, each vertex v ∈ V has distance less than k from A0 ∪A in G, so P (v) contains less
than k edges, hence also less than k colors. Therefore, the length of L(v) is also O(k log n)
bits.

We now prove that k = O(bp(G)). Let A′ = {ai | i ≥ ⌈k/2⌉} be the “second half” of
chosen A-vertices. Note that |A′| ≥ k/2. For each i = 1, . . . k − 1, denote by Ai the state of
set A right after the i-th iteration. If ai, aj ∈ A′ with i > j, then aj ∈ Ai−1, hence

distG(ai, aj) ≥ distG(ai, A0 ∪Ai−1) = i > ⌈k/2⌉.

Therefore, B(ai, ⌊k/4⌋) and B(aj , ⌊k/4⌋) are disjoint. Also, if ai ∈ A′, then distG(ai, A0 ∪
A) = i > ⌊k/4⌋, so Observation 9 implies that B(ai, ⌊k/4⌋) is proper. Thus, the collection
of ⌊k/4⌋-balls centered at the A′ vertices certifies that ⌊k/4⌋ ≤ bp(G), which concludes the
proof.
▶ Remark 21. The proof extends seamlessly to vertex-colored graphs. It is worth noting that
if the vertex a(v) has the color c, then cid(v, G− c) is stored in L(v) (since a(v) ∈ P (v)).

B Forbidden Color Routing

This section gives the formal description of the routing procedure, overviewed in Section 3.4.1.
At the beginning of the procedure, s holds the labels L(s), L(t) and L(c) and should

route the message M to t avoiding the color c. As described in Section 3.4.1, the routing
procedure will have two phases. In the first phase, the message is routed to the fragment of
T − c that contains a carefully chosen vertex a∗ ∈ A. In the second phase, it is routed from
this fragment to the target t.

Initialization at s. First, s determines the vertex a∗ as follows: If c ∈ P (t), then a∗ = a(t, c),
which is found in L(t). Otherwise, a∗ = a(t), the A-endpoint of P (t), which is again found
in L(t). Next, s creates the initial header of the message M , that contains:

The name of the color c.
The name of the vertex a∗.
The block FirstRecEdge(r, a∗, c), found in L(c).
The tree-routing label LT (t), found in L(t).
If c ∈ P (t), the block FirstRecEdge(a∗, t, c) and the tree-routing label LTc

(t), found in
L(T ).

This information will permanently stay in the header of M throughout the routing procedure,
and we refer to it as the permanent header. Verifying that it requires O(log n) bits is
immediate.

First Phase: Routing from s to the Fragment of a∗. As in Section 3.4.1, let e1, e2, . . . eℓ

be the recovery edges on the s-to-a∗ path in Tc (according to order of appearance), each
connecting between fragments Xi−1 and Xi of T − c. Denote by vi the root of fragment Xi,
and thus ei = e(vi, a∗, c). Recall that we aim to route the message through these edges and

DISC 2024



36:20 Connectivity Labeling in Faulty Colored Graphs

reach the last fragment Xℓ, which is an A-fragment containing a∗, according to the following
strategy: Upon reaching a fragment Xi ̸= Xℓ, we go up until we reach its root vi, extract
information regarding the next recovery edge ei, and use Thorup-Zwick tree-routing on T in
order to get to ei. We then traverse it to reach Xi+1, and repeat the process.

We now describe this routing procedure formally. The header of M contains two updating
fields:

M.UP: stores a Boolean value
M.NEXT: stores a block referring to the next recovery edge in the path, of the form
FirstRecEdge(·, a∗, c).

Clearly, this requires O(log n) bits of storage. We will maintain the following invariant:
(I): If the message is currently in the fragment Xi ̸= Xℓ, and M.UP = 0, then M.NEXT

stores information referring to ei.

At initialization, s sets M.UP← True and M.NEXT←⊥ (a null symbol), which trivially
satisfies the invariant (I). We will use the field M.UP also to mark that we are still in the
first phase of the routing. During the first phase, it will be a valid Boolean value. When we
reach the fragment Xℓ, we set M.UP to ⊥ to notify the beginning of the second phase. While
M.UP ̸=⊥ (i.e., during the first phase), upon the arrival of M to a vertex v, it executes the
code presented in Algorithm 5 to determine the next hop.

Algorithm 5 First phase: Routing M from v towards the fragment of a∗ (while M.UP ̸=⊥).

1: if M.UP = True then
2: if v ̸= r and c(v) ̸= c then
3: send M through the port to v’s parent in T , found in R(v)
4: else
5: find FirstRecEdge(v, a∗, c), in permanent header when v = r, or in R(v) when

c(v) = c

6: M.NEXT← FirstRecEdge(v, a∗, c)
7: M.UP← False

8: if M.UP = False then
9: x← first vertex of the edge e found in M.NEXT

10: if v ̸= x then
11: send M in direction of x in T , using LT (x) from M.NEXT, and RT (v) from R(v)
12: else ▷ v = x

13: if second vertex of e is in Xℓ (as indicated by M.NEXT) then
14: M.UP←⊥ ▷ will reach Xℓ in next step, and then done
15: else
16: M.UP← True

17: send M through the port of the edge e found in M.NEXT

Invariant (I) is maintained when setting M.UP ← False in Algorithm 5, since we
previously set M.NEXT to e(v, a∗, c), which is the first recovery edge in the v-to-a∗ path in
Tc, and thus, when v ∈ Xi, this edge equals ei. When the message first reaches a vertex
s′ ∈ Xℓ, the field M.UP contains a null value ⊥, and we start the second phase of the routing
procedure, as described next.

Second Phase: Routing from the Fragment of a∗ to t. Here, we use the careful choice
of the vertex a∗. The easier case is when c /∈ P (t). In this case, a∗ = a(v), and t is in the
same fragment as a∗ by Lemma 18. Therefore, we can use the Thorup-Zwick routing of



A. Petruschka, S. Spair, and E. Tzalik 36:21

Lemma 17 on T to route the message M from s′ to t. Note that the label LT (t) is found
in the permanent header, and that each intermediate vertex v on the path has RT (v) in its
table.

We now treat the case where c ∈ P (t). In this case, a∗ = a(t, c), which is defined to be an
A-vertex in the nearest A-fragment to t in Tc, and hence, Xℓ is that nearest A-fragment to t

in Tc. Since c ∈ P (t), the permanent header stores FirstRecEdge(a∗, t, c), or specifies that
the first recovery edge e(a∗, t, c) is undefined, i.e. that a∗ and t are in the same fragment.
In the latter case, we can act exactly as above and route the message over T . So, assume
FirstRecEdge(a∗, t, c) is found.

Let x and y be the first and second vertices of e(a∗, t, c). Then FirstRecEdge(a∗, t, c)
contains LT (x), so we can route the message between s′, x ∈ Xℓ using the Thorup-Zwick
routing of Lemma 17 on T . We then traverse the edge e(a∗, t, c) from x to y, where the
relevant port is stored in the permanent header. We now make the following important
observation:

▶ Lemma 22. If v is a vertex on the y-to-t path in Tc, then its table R(v) must contain
RTc

(v).

Proof. First, we note that v must be a B-fragment. Indeed, if v were in an A-fragment, then
this would be a closer A-fragment to t than Xℓ in Tc, which is a contradiction. Therefore,
by Lemma 18, it must be that c ∈ P (v). This means that RTc

(v) is stored in R(v) by
Algorithm 1. ◀

Note that LTc
(t) is found in the permanent header, as c ∈ P (t). Thus, we can route M from

y to t along the connecting path in the recovery tree Tc, using the Thorup-Zwick routing of
Lemma 17 on Tc. This concludes the routing procedure.

C Nearest Colored Ancestor Labels

In this section, we show how the O(n)-space, O(log log n)-query time nearest colored ancestor
data structure of [15] can be used to obtain O(

√
n log n)-bit labels for this problem.

The labels version of nearest colored ancestor is formally defined as follows. Given a
rooted n-vertex forest T with colored vertices, where each vertex v has an arbitrary unique
O(log n)-bit identifier id(v), the goal is to assign short labels to each vertex and color in T ,
so that the id of the nearest c-colored ancestor of vertex v can be reported by inspecting the
labels of c and v. The reduction from the centralized setting implies that such a labeling
scheme can be used “as is”for connectivity under one color fault.6 First, by Theorem 14, we
get:

▶ Corollary 23. Every labeling scheme for nearest colored ancestor in n-vertex forests must
have label length Ω(

√
n) bits. Furthermore, this holds even for paths, as their ball-packing

number is Ω(
√

n).

▶ Remark 24. The above lower bound can be strengthened to Ω(
√

n log n). This is by
considering the problem that our scheme actually solves: report the minimum id of a vertex
connected to v in G− c, from the labels of v and c. For this problem, one can extend the
proof of Theorem 14 to show an Ω(

√
n log n)-bit lower bound for paths. The reduction

described above shows that a nearest colored ancestor labeling scheme can be used to report
such minimum ids.

6 When constructing the nearest colored ancestor labels in the reduction, we augment the id of each
vertex v with cid(v, G − c), where c is the color of the tree edge from v to its parent.

DISC 2024



36:22 Connectivity Labeling in Faulty Colored Graphs

The data structure in [15] can, in fact, be transformed into O(
√

n log n)-bit labels. We
first briefly explain how this data structure works. Each vertex v gets two time-stamps
pre(v), post(v), which are the first and last times a DFS traversal in T reaches v. The time-
stamps of c-colored vertices are inserted to a predecessor structure [37, 38] for color c. For
each time-stamp of a (c-colored) vertex u, we also store the id of the nearest c-colored (strict)
ancestor of u. A query (v, c) is answered by finding the predecessor of pre(v) in the structure
of c. If the result is pre(u), then u is returned. If it is post(u), then the ancestor pointed by u

is returned. Correctness follows by standard properties of DFS time-stamps. The predecessor
structure for c answers queries in O(log log n) time, and takes up O(|Vc|) space (in words),
where Vc is the set of c-colored vertices. The total space is O(

∑
c |Vc|) = O(n).

To construct the labels, let H = {c | |Vc| ≥
√

n} be the highly prevalent colors, and R be
the rest of the colors. As there are only n vertices, |H| = O(

√
n). We can therefore afford to

let each vertex v explicitly store in its label the id of its nearest c-color ancestor, for each
c ∈ H. To handle the remaining R-colors, we store in the label of each c ∈ R the predecessor
structure for c, which only requires O(|Vc| log n) = O(

√
n log n) bits. By augmenting the

vertex labels with pre(·) times (requiring only O(log n) additional bits), we can also answer
queries with colors in R. We obtain:

▶ Corollary 25. There is a labeling scheme for nearest colored ancestor in n-vertex forests,
with labels of length O(

√
n log n) bits. Queries are answered in O(log log n) time.



Sing a Song of Simplex
Victor Shoup #

Offchain Labs, New York City, NY, USA

Abstract
We flesh out some details of the recently proposed Simplex atomic broadcast protocol, and modify it so
that leaders disperse blocks in a more communication-efficient fashion. The resulting protocol, called
DispersedSimplex, maintains the simplicity and excellent – indeed, optimal – latency characteristics
of the original Simplex protocol. We also present a variant that supports “stable leaders”. We also
suggest a number of practical optimizations and provide concrete performance estimates that take
into account not just network latency but also network bandwidth limitations and computational
costs.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols

Keywords and phrases Consensus, Atomic broadcast, Blockchain

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.37

Related Version Full Version: https://eprint.iacr.org/2023/1916 [22]

Acknowledgements Thanks to Benjamin Chan and Rafael Pass for helpful discussions on the Simplex
protocol. Thanks to Ed Felten for suggesting the “packet-switching pipeline” strategy in Section 3.5.

1 Introduction

Byzantine fault tolerance (BFT) is the ability of a computing system to endure arbitrary (i.e.,
Byzantine) failures of some of its components while still functioning properly as a whole. One
approach to achieving BFT is via state machine replication [21]: the logic of the system is
replicated across a number of machines, each of which maintains state, and updates its state
by executing a sequence of transactions. In order to ensure that the non-faulty machines
end up in the same state, they must each deterministically execute the same sequence of
transactions. This is achieved by using a protocol for atomic broadcast.

In an atomic broadcast protocol, we have a committee of n parties, some of which are
honest (and follow the protocol), and some of which are corrupt (and may behave arbitrarily).
Roughly speaking, such an atomic broadcast protocol allows the honest parties to schedule a
sequence of transactions in a consistent way, so that each honest party schedules the same
transactions in the same order. Each party receives various transactions as input – these
inputs are received incrementally over time, not all at once. It may be required that a
transaction satisfy some type of validity condition, which can be verified locally by each
party. These details are application specific and will not be further discussed. Each party
outputs an ordered sequence of transactions – these outputs are generated incrementally, not
all at once. One key security property of any secure atomic broadcast protocol is safety,
which means that each honest party outputs the same sequence of transactions. Another key
property of any secure atomic broadcast protocol is liveness. There are different notions of
liveness one can consider, but the basic idea is that the protocol should not get stuck and
stop outputting transactions.

Different protocols make different assumptions about the latency guarantees of the network
and the number of corrupt parties. Here, we assume that the number of corrupt parties is
less than n/3, and we consider protocols that are guaranteed to provide safety without any
latency assumption, and that are guaranteed to provide liveness only in intervals of “network
synchrony”, in which the latency is below a certain defined threshold. This is the partial

© Victor Shoup;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 37; pp. 37:1–37:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:victor@shoup.net
https://orcid.org/0009-0003-6996-5660
https://doi.org/10.4230/LIPIcs.DISC.2024.37
https://eprint.iacr.org/2023/1916
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


37:2 Sing a Song of Simplex

synchrony model, introduced in [12]. The bound of n/3 on the number of corrupt parties is
optimal in this model. Many quite practical atomic broadcast protocols have been proposed
in this model, starting with the classic PBFT protocol [8], and this is still an area of active
research.

In this paper, we consider the recently proposed Simplex atomic broadcast protocol [9].
Like many other recent protocols in this space (such as HotStuff [27] and HotStuff-2 [19]),
Simplex is a leader-based, permissioned blockchain protocol: the protocol proceeds in slots
(a.k.a., views, rounds), so that in each slot a leader proposes a block of transactions, and
these blocks get added to a tree of blocks. Over time, a path of committed blocks in this
tree emerges – safety ensures that all parties agree on the same path of committed blocks.
In these protocols, leaders typically are rotated in each slot – either in a round-robin fashion
or using some pseudo-random sequence – which also has the nice effect of mitigating against
censorship of transactions. The protocol relies on authenticated communication links and a
PKI to support digital signatures (preferably aggregate or threshold signatures for better
communication complexity).

Simplex is a wonderfully simple, efficient, and elegant protocol. In this paper, we add to
the Simplex story in a number of ways:

We flesh out some missing (but crucial) details of the Simplex protocol that are needed
to get a protocol with acceptable communication complexity. Along the way, we make a
few other simplifications; in particular, we observe that while the Simplex protocol as
specified in [9] relies on hash-based chaining of blocks, this turns out to be unnecessary.
More importantly, we modify the protocol so that leaders disperse blocks in a more
communication-efficient fashion, while maintaining its simplicity and excellent – in-
deed, optimal – latency characteristics. We call this variation on the Simplex protocol
DispersedSimplex.
We give a detailed analysis of DispersedSimplex (safety, liveness, and performance), and
discuss a number of important implementation details, arguing – based on concrete micro-
benchmarks and realistic assumptions on network behavior – that despite its simplicity,
in typical scenarios, DispersedSimplex should perform quite well in practice, even for
n ≈ 100.
We present and analyze a variant of DispersedSimplex that supports “stable leaders” (the
paper [9] did not investigate such a variant). We argue that this variant can achieve
even better performance, mainly because a stable leader can drive the protocol at a
significantly faster rate than a constantly rotating leader. The mechanism for failing
over from an unresponsive leader is very simple and lightweight (no more complicated or
expensive than rotating leaders as in the basic version of the protocol).

In the full version [22] of this paper, we also show how to improve communication complexity
using the improved data dissemination techniques of [16, 17], and (perhaps of more theoretical
interest) how to get by without any signatures (at the expense of somewhat higher latency).

In Appendix C, we also compare DispersedSimplex to other protocols in the literature.
As we will argue, DispersedSimplex, especially the variants that combine stable leaders and
better data dissemination techniques, should perform as well as or better than any other
state-of-the-art atomic broadcast protocol (including leader-based protocols such as HotStuff
[27] and HotStuff-2 [19], as well as DAG-based protocols such as [23]), at least in terms
of common-case throughput and latency. Again, these arguments are based on concrete
micro-benchmarks and assumptions on network behavior, and they suggest that it would be
worthwhile to measure the actual performance of a well-engineered implementation.



V. Shoup 37:3

2 The DispersedSimplex protocol

Like many other protocols in this area, the Simplex protocol iterates through slots (a.k.a.,
views, rounds), where in each slot there is a designated leader who proposes a new block,
which is chained to a parent block, and two rounds of voting are used to commit the block.
Moreover, to improve latency, the protocol is “pipelined”, in the sense that it optimistically
moves onto the next slot as soon as the first round of voting succeeds, before the block for
that slot is committed. Leaders may be rotated in each slot, either in a round-robin fashion or
using some pseudo-random sequence. The DispersedSimplex protocol has the same structure
as the Simplex protocol; however, instead of broadcasting the block directly, the slot leader
uses well-known techniques for information dispersal to disseminate large blocks in a way
that keeps the overall communication complexity low and avoids a bandwidth bottleneck at
the leader. In particular, the communication is balanced, meaning that each party, including
the leader, transmits roughly the same about of data over the network. We will show how
the information dispersal can be interleaved with the proposal phase and the first voting
round so that no extra latency is incurred.

2.1 Preliminaries

We have a committee of n parties, P1, . . . , Pn, at most t < n/3 of which are corrupt. We
assume the parties are connected by authenticated point-to-point channels. We will not
generally assume network synchrony. However, we say the network is δ-synchronous over an
interval [a, b + δ] if every message sent from an honest party P at time T ≤ b to an honest
party Q is received by Q before time T + δ. In this case, for all T ∈ [a, b], we say that the
network is δ-synchronous at time T .

2.1.1 Signatures

We make use of an (n− t)-out-of-n threshold signature scheme. We refer to a signature share
and a signature certificate: signature shares from n− t on a given message may be combined
to form a signature certificate on that message. This can be implemented as (i) a set of
signatures, or (ii) an aggregate signature scheme (such as one based on BLS signatures [5] as
in [4]), or (iii) a threshold version of an ordinary signature scheme (such as one again based
on BLS signatures as in [3]). Implementations (ii) and (iii) will result in much more compact
threshold signatures, and (iii) requires a set-up phase to distribute shares of a signing key.

The security property for such a threshold signature scheme is the Quorum Size
Property: it is infeasible to produce a signature certificate on a message m, unless n− t− t′

honest parties have issued signature shares on m, where t′ ≤ t is the number of corrupt
parties.

Under our assumption that the number of corrupt parties is strictly less than n/3, one can
easily establish the following Quorum Intersection Property: it is infeasible to produce
signature certificates on two distinct messages m and m′, unless at least one honest party
issued signature shares on both m and m′.

2.1.2 Information dispersal

We explicitly make use of well-known techniques for asynchronous verifiable information
dispersal (AVID) techniques involving erasure codes and Merkle trees (introduced in [6]).

DISC 2024



37:4 Sing a Song of Simplex

Erasure codes

For integer parameters k ≥ d ≥ 1, a (k, d)-erasure code encodes a bit string M as a vector
(f1, . . . , fk) of k fragments in such a way that any d such fragments may be used to efficiently
reconstruct M . Note that for variable-length M , the reconstruction algorithm also takes as
input the length β of M . The reconstruction algorithm may fail (for example, a formatting
error) – if it fails it returns ⊥, while if it succeeds it returns a message that when re-encoded
will yield k fragments that agree with the original subset of d fragments. We assume that all
fragments have the same size, which is determined as a function of k, d, and β.

Using a Reed-Solomon code, which is based on polynomial interpolation, we can realize a
(k, d)-erasure code so that if |M | = β, then each fragment has size ≈ β/d. More precisely,
using a Reed-Solomon code over binary finite fields, we can always construct a code such that
fragments are of size at most max(⌈β/d⌉, ⌈log2(k)⌉) – the term ⌈log2(k)⌉ comes from the
fact that we need to work with a field of cardinality at least k. In what follows, we will use
the more general upper bound of β/d + O(log(k)) on fragment size, which serves as an upper
bound for the above construction, as well as for other constructions and implementations
(which may impose additional restrictions on the length of fragments, such as being a multiple
of some specific constant).

In our protocol, the payload of block will be encoded using an (n, n− 2t)-erasure code.
Such an erasure code encodes a payload M as a vector of fragments (f1, . . . , fn), any n− 2t

of which can be used to reconstruct M . This leads to a data expansion rate of (at most)
roughly 3; that is,

∑
i|fi| ≈ n/(n− 2t) · |M | < 3|M |.

Merkle trees

Recall that a Merkle tree allows one party P to commit to a vector of values (v1, . . . , vk)
using a collision-resistant hash function by building a (full) binary tree whose leaves are
the hashes of v1, . . . , vk, and where each internal node of the tree is the hash of its two
children. The root r of the tree is the commitment. Party P may “open” the commitment
at a position i ∈ [k] by revealing vi along with a “validation path” πi, which consists of the
siblings of all nodes along the path in the tree from the hash of vi to the root r. We call πi a
validation path from the root under r to the value vi at position i. Such a validation path is
checked by recomputing the nodes along the corresponding path in the tree, and verifying
that the recomputed root is equal to the given commitment r. The collision resistance of the
hash function ensures that P cannot open the commitment to two different values at a given
position.

Encoding and decoding

For a given payload M of length β, we will encode M as a vector of fragments (f1, . . . , fn)
using an (n, n− 2t)-erasure code, and then form a Merkle tree with root r whose leaves are
the hashes of f1, . . . , fn. We define the tag τ := (β, r).

For a tag τ = (β, r), we shall call (fi, πi) a certified fragment for τ at position i if (i)
fi has the correct length of a fragment for a message of length β, and (ii) πi is a correct
validation path from the root under r to the fragment fi at position i.

The function Encode takes as input a payload M . It builds a Merkle tree for M as above
with root r (encoding M as a vector of fragments, and then building the Merkle tree whose
leaves are the hashes of all of these fragments). It returns

(
τ, {(fi, πi)}i∈[n]

)
, where τ is the

tag (β, r), β is the length of M , and each (fi, πi) is a certified fragment for τ at position i.



V. Shoup 37:5

The function Decode takes as input
(

τ, {{(fi, πi)}i∈I
)
, where τ = (β, r) is a tag, I is

a subset of [n] of size n− 2t, and each (fi, πi) is a certified fragment for τ at position i. It
first reconstructs a message M ′ from the fragments {fi}i∈I , using the size parameter β. If
M ′ = ⊥, it returns ⊥. Otherwise, it encodes M ′ as a vector of fragments (f ′

1, . . . , f ′
n) and

Merkle tree with root r′ from (f ′
1, . . . , f ′

n). If r′ ̸= r, it returns ⊥. Otherwise, it returns M ′.
Under collision resistance for the hash function used for the Merkle trees, any n − 2t

certified fragments for given tag τ will decode to the same payload – moreover, if τ is the
output of the encoding function, these fragments will decode to M (and therefore, if the
decoding function outputs ⊥, we can be sure that τ was maliciously constructed). This
observation is the basis for the protocols in [11, 18, 26]. Moreover, with this approach, we do
not need to use anything like an “erasure code proof system” (as in [2]), which would add
significant computational complexity (and in particular, the erasure coding would have to be
done using parameters compatible with the proof system, which would likely lead to much
less efficient encoding and decoding algorithms).

2.2 Protocol data objects

2.2.1 Blocks

A block B is of the form Block(v, v′, τ), where (i) v = 1, 2, . . . is the slot number associated
with the block (we say B is a block for slot v), (ii) v′ < v is the slot number of B’s parent
block (v′ = 0 if B’s parent is a notional “genesis” block), and (iii) τ is a tag obtained by
encoding B’s payload M . For simplicity, we call a certified fragment for the tag τ a certified
fragment for B.

2.2.2 Support, commit, and complaint shares and certificates

A support share from party Pi on block B is of the form SuppShare(B, σi, fi, πi), where σi

is a valid signature share from Pi on Supp(B), and (fi, πi) is a certified fragment for B

at position i. A support certificate on B is of the form SuppCert(B, σ), where σ is a valid
signature certificate on Supp(B).

A commit share from party Pi on slot v is of the form CommitShare(v, σi), where σi is
a valid signature share from Pi on Commit(v). A commit certificate on v is of the form
CommitCert(v, σ), where σ is a valid signature certificate on Commit(v).

A complaint share from party Pi on slot v is of the form ComplaintShare(v, σi), where σi

is a valid signature share from Pi on Complaint(v). A complaint certificate on v is of the
form ComplaintCert(v, σ), where σ is a valid signature certificate on Complaint(v).

2.3 Subprotocols

We describe our protocol in terms of a main protocol and a few simple subprotocols. In
our presentation, these subprotocols are all running concurrently with each other and with
the main protocol: a single party can be thought of as running a local instance of the main
protocol and each of the subprotocols on different threads on the same CPU. However, this
particular architecture is mainly intended just for ease of presentation. We describe first the
data structures and logic of the subprotocols.

DISC 2024



37:6 Sing a Song of Simplex

2.3.1 Certificate pool
Each party maintains a certificate pool. Whenever a party receives a quorum of n− t support,
commit, or complaint shares, and it does not already have a corresponding certificate, it
will generate a certificate, add it to the pool, and broadcast the certificate to all parties.
Similarly, whenever a party receives a support, commit, or complaint certificate, and it does
not already have a corresponding certificate, it will add it to the pool, and broadcast the
certificate to all parties.

2.3.2 Complete block tree
Each party also maintains a complete block tree, which is a tree of blocks rooted at a notional
genesis block at slot 0. Under cryptographic assumptions, we will see that there will be at
most one block for any given slot in the tree. A block B = Block(v, v′, τ) is added to the
tree if each of the following holds:

the certificate pool contains a support certificate for B;
v′ = 0 or the complete block tree contains a parent block B′ = Block(v′, ·, ·);
the party has received a quorum of n− 2t support shares for B, from which the party
can reconstruct the effective payload M of B as M ← Decode(τ, {(fi, πi)}i∈I), where
{(fi, πi)}i∈I is the corresponding collection of certified fragments for τ ;
M ̸= ⊥ and satisfies some correctness predicate that may depend of the path of blocks
(and their payloads) from genesis to block B′.

Note that nothing is broadcast when a block is added to the tree.

2.3.3 Block commitment
We say that a block B for slot v is explicitly committed by party P if the complete block tree
of P contains B and the certificate pool of P contains a commit certificate for slot v. In this
case, we say that all of the predecessors of block B in the complete block tree are implicitly
committed by P . The notional genesis block is always considered to be a committed block.
The payloads of committed blocks may be then transmitted in order to the “execution layer”
of the protocol stack of a replicated state machine.

2.4 The main protocol
The logic of the main protocol for a party Pj is described in Fig. 1. In the description,
leader(v) denotes the leader for slot v – as discussed above, leaders may be rotated in each
slot, either in a round-robin fashion or using some pseudo-random sequence. The details for
generating and validating block proposals are described below. In the main protocol, a party
makes its decisions based on the objects in its certificate pool and its complete block tree
(which are maintained as described in Section 2.3) and the objects it has received from other
parties over authenticated channels. The core of the protocol is expressed in terms of a “wait
until either” statement which triggers one of several clauses based different preconditions.
Although not strictly necessary, for concreteness, we assume that if more than one clause’s
precondition is satisfied, then the syntactically first such clause is triggered.

The basic idea is this. The leader for slot v will send each party a block proposal for
a block B. Upon receiving such a block proposal, each party validates the proposal and
then sends a support share for B to all parties. Each party will move onto the next slot
when it adds B to its complete block tree; however, if too much time elapses before that
happens, it will broadcast a complaint share, and move onto the next slot when it obtains a



V. Shoup 37:7

corresponding complaint certificate. Note that when a party moves onto the next slot by
virtue of adding B to its complete block tree, it will also issue a commit share for v, but
only if it has not already issued a complaint share for slot v – this rule is essential for safety.

DispersedSimplex: main loop for party Pj

vlast ← 0
for v = 1, 2, . . .

Tstart ← clock(), done← proposed← supported← complained← false
while not done do

wait until either:
the certificate pool contains a complaint certificate for slot v ⇒

done← true
the complete block tree contains a block for slot v ⇒

if not complained then broadcast a commit share for v
done← true, vlast ← v

not complained and clock() > Tstart + ∆timeout ⇒
complained← true, broadcast a complaint share for slot v

leader(v) = Pj and not proposed ⇒
proposed← true

(∗) generate block proposal material B, (f1, π1), . . . , (fn, πn)
for i ∈ [n]: send BlockProp(B, fi, πi) to Pi

(∗∗) not supported and received from leader(v) a valid block proposal
BlockProp(B, fj , πj) ⇒

supported← true
generate a signature share σj on Supp(B)
broadcast the support share SuppShare(B, σj , fj , πj)

Figure 1 Logic for main loop of DispersedSimplex protocol for party Pj

2.4.1 Generating block proposals
The logic for generating block proposal material B, (f1, π1), . . . , (fn, πn) in slot v at line (∗)
is as follows: (i) build a payload M that validly extends the path in the complete block
tree ending at the block for slot vlast; (ii) compute (τ, {(fi, πi)}i∈[n])← Encode(M); (iii) set
B := Block(v, vlast, τ).

2.4.2 Validating block proposals
To check if BlockProp(B, fj , πj) is a valid block proposal from the leader in slot v at line (∗∗),
party Pj checks that each of the following conditions holds: (i) B is of the form Block(v, v′, τ),
where v′ < v and the complete block tree contains a block for slot v′; (ii) the certificate pool
contains complaint certificates for slots v′ + 1, . . . , v − 1; (iii) (fj , πj) is a certified fragment
for τ at position j.

Note that even if some of the conditions do not hold at a given point in time, they may
hold at a later point in time. When party Pj sees a block proposal in slot v, it can check
the stated conditions – if these conditions fail due to the lack of either a parent block in the
complete block tree or a complaint certificate, these conditions will need to be rechecked
whenever a new block is added to the complete block tree or a new complaint certificate is
added to the certificate pool. We will discuss below (in Appendix B.1) how to efficiently
implement the test that the certificate pool contains the necessary complaint certificates
using a data structure whose size is proportional to the gap between current slot and the
last committed slot so that the amortized cost of these tests is O(1) per slot.

DISC 2024



37:8 Sing a Song of Simplex

3 Analysis

By abuse of terminology, we state security properties unconditionally – they implicitly
assume the security of the threshold signature scheme and the collision resistance of the
hash functions used to build Merkle trees, and should be understood to hold with all but
negligible probability for all efficient adversaries.

3.1 Initial observations
We state some basic properties:
Uniqueness and Validity Property: Suppose that a block B for some slot v is added to the

complete block tree of some party. Then no other block for slot v can be added to the
complete block tree of that party or any other party. Moreover, if the leader for slot v is
honest, B must have been proposed by that leader.
The first part follows from the Quorum Intersection Property, based on the fact an honest
party issues a support share for at most one block per slot. The second part follows from
the Quorum Size Property.

Completeness Property: If an object X appears in the certificate pool (so X is a support,
commit, or complaint certificate) or in the complete block tree (so X is a block), then X

(or its equivalent) will eventually appear in the corresponding pool/tree of every other
party.1 Moreover, if X appears in a party’s pool/tree at a time T at which the network
is δ-synchronous, it will appear in every party’s pool/tree before time T + δ.
For the support, commit, and complaint certificates, this is clear. For the blocks in
the complete block tree, we are relying on the Quorum Size Property: when a support
certificate for a block B is added to the support pool, at least n − 2t honest parties
must have already broadcast support shares for B, which contain B as well as fragments
sufficient to reconstruct B’s payload.

Incompatibility of Complaint and Commit Property: It is impossible to produce both a
complaint and commit certificate for the same slot v.
This follows from the Quorum Intersection Property, based on the fact that in each slot,
an honest party will never issue both a complaint share and a commit share.

3.2 Safety
Safety follows immediately from the following lemma. See Appendix A.1 for a proof.

▶ Lemma 1 (Safety). Suppose a party P explicitly commits a block B for slot v, and a block
C for slot w ≥ v is in the complete block tree of some party Q. Then B is an ancestor of C

in Q’s complete block tree.

3.3 Liveness
Liveness follows immediately from the following lemmas. The first lemma analyzes the
optimistic case where the network is synchronous and the leader of a given slot is honest,
showing that the leader’s block will be committed. See Appendix A.2 for a proof.

1 Note that the “or equivalent” qualification is necessary to account for signature certificates, if these are
not necessarily unique.



V. Shoup 37:9

▶ Lemma 2 (Liveness I). Consider a particular slot v ≥ 1 and suppose the leader for slot
v is an honest party Q. Suppose that the first honest party P to enter the loop iteration
for slot v does so at time T . Further suppose that the network is δ-synchronous over the
interval [T, T + 3δ] for some δ with ∆timeout ≥ 3δ. Then each honest party will finish the
loop iteration before time T + 3δ by adding Q’s proposed block B to its complete block tree.
and will eventually commit B. Moreover, each honest party will eventually commit B, and
this will happen before time T + 4δ if the network remains δ-synchronous over the interval
[T, T + 4δ].

The second lemma analyzes the pessimistic case, when the network is asynchronous or
the leader of a given round is corrupt. It says that eventually, all honest parties will move on
to the next round. See Appendix A.3 for a proof.

▶ Lemma 3 (Liveness II). Suppose that the network is δ-synchronous over an interval
[T, T + ∆timeout + 2δ], for an arbitrary value of δ, and that at time T , some honest party is
in the loop iteration for slot v and all other honest parties are in a loop iteration for v or a
previous slot. Then before time T + ∆timeout + 2δ, all honest parties finish the loop iteration
for slot v.

We note that in periods of asynchrony, for any slot v in which the leader Q is honest, if
any block is committed in slot v, it must have been the block proposed by Q. This follows
from the (second part of the) Uniqueness and Validity Property.

We also remark that by the Incompatibility of Complaint and Commit Property, for
a valid block B, the slot number of B’s parent block cannot be less than that of the last
committed block. This property is enables a practical implementation to keep the storage
bounded using standard techniques of checkpointing and garbage collection (and perhaps
with standard techniques for dynamically increasing timeouts until commitments are seen).

3.4 Complexity estimates

3.4.1 Communication complexity

We measure the communication complexity per slot. This is the sum over all honest parties
P and all parties Q of the bit-length of all slot-v-specific messages sent from P to Q. The
communication complexity per slot of DispersedSimplex is easily seen to be bounded by
3nβ + O(n2(κ + λ log n)), where (i) β is a bound on the size of a block, (ii) κ is a bound on
the size of a threshold signature share or certificate, and (iii) λ is a bound on the size of the
hash function outputs used for Merkle trees. Indeed, the cost breaks down as follows: (i)
3nβ + O(n2 log n) for disseminating payload fragments, (ii) O(n2 log n · λ) for disseminating
Merkle paths, and (iii) O(n2κ) for disseminating signature shares and certificates. If blocks
are large, in particular, if β ≫ n(κ+λ log n), the communication complexity will be dominated
by the cost of disseminating the payload fragments.

Moreover, the communication load is balanced, meaning that each party, including the
leader for a slot, transmits roughly the same about of data over the network. In fact, as we
described the protocol, for large β, each non-leader transmits about 3β bits in total, while
the leader transmits about 6β bits in total. In Section 3.5, we discuss a simple variation
in which the leader also transmits only about 3β bits. In the full version [22], we discuss a
variation in which each party transmits only 1.5β–2β bits.

DISC 2024



37:10 Sing a Song of Simplex

3.4.2 Latency
We may also measure various notions of latency. We define:

optimistic proposal-commit latency: assuming the leader is honest, and that the network
is appropriately synchronous, the time it takes for the leader’s proposal to be committed
by all honest parties (same as the notion of “proposal confirmation time” in [9]);
optimistic consecutive-proposal latency: assuming two consecutive leaders are honest, and
that the network is appropriately synchronous, the amount of time that elapses between
when they make their respective proposals (similar to the notion of “optimistic block
time” in [9]).

If a given transaction is submitted to the system (i.e., to all parties), the sum of these two
latencies upper bounds the total time it takes for a transaction to be included in a proposal
and then committed. The optimistic consecutive-proposal latency also upper bounds what
we might call the optimistic reciprocal block throughput, the reciprocal of the rate at which
blocks are proposed (and committed) in a steady state where all leaders are honest and the
network is appropriately synchronous.

For DispersedSimplex, just as for Simplex, we readily see that if the network is δ-
synchronous with ∆timeout ≥ 3δ, then the optimistic proposal-commit latency is 3δ and the
optimistic consecutive-proposal latency is 2δ. This proposal-commit latency is optimal (it
matches lower bound in [1] for psync-BB).

It is also useful to look at the latency between proposals made between non-consecutive
honest leaders. That is, if leaders in slots v and v + k + 1 are honest, but the k leaders in the
intervening slots are crashed or corrupt, how much time may elapse between the time the
leader in slot v makes its proposal and the time the leader in slot v + k + 1 makes its proposal.
Let us call this the optimistic k-gap proposal latency. For DispersedSimplex, just as for
Simplex, this is 2δ + k · (∆timeout + δ). If leaders are chosen at random, then the probability
that there is a gap of size k between slots with honest leaders decreases exponentially with k.
We note that DispersedSimplex protocol is optimistically responsive, meaning that it runs as
fast as the network will allow so long as leaders are honest.

3.5 Other costs and concrete estimates
The above analysis abstracts away a number of practically important details. Indeed, our
latency estimates in Section 3.4.2 only took into account propagation delays caused by
network latency, but did not take into account transmission delay (caused by limited network
bandwidth) and computation delay (caused by limited compute bandwidth).

In this section, we discuss other costs and make some concrete estimates for performance
under specific assumptions. We are generally interested in values of n up to around 100,
where each of the n parties is running commodity hardware and connected to a WAN with
typical network bandwidth and latency.

We first consider the computational cost of erasure coding. This should not have a
significant impact on the overall system performance, assuming one uses a reasonably
good implementation of erasure coding algorithms. One such implementation is the
reed-solomon-simd library at https://github.com/AndersTrier/reed-solomon-simd,
which is based on [15, 14]. We benchmarked this implementation with parameters cor-
responding to t = 32 and n = 3t+1 = 97 and payload sizes of 100KB and 1MB on a Macbook
Pro with an Apple M1 Max CPU. The encoder runs at a rate of nearly 2GB/s for both
payload sizes. The decoder runs at a rate of about 250MB/s for the 100KB payload and
about 500MB/s per second for the 1MB payload. Generally, the encoder speed is independent

https://github.com/AndersTrier/reed-solomon-simd


V. Shoup 37:11

of the payload size and the decoder speed increases with the payload size (because fixed
costs get amortized). At these speeds, it is very unlikely that the erasure coding will be a
bottleneck.

We next consider the computational cost of signature generation, verification, and
aggregation. Let us assume we use aggregate BLS signatures with the standard proof-of-
possession mitigation against rogue-key attacks, so that public keys and signatures are very
cheaply aggregated by simply adding them together. On the same hardware above, we
benchmarked the blst library at https://github.com/supranational/blst. The cost of
signing or verifying one BLS signature is well under 1ms, and the cost of adding public keys
and signatures in the aggregation process can be effectively ignored (at least for quorums
of size up to a few hundred). To aggregate many unverified BLS signatures, a party P can
very cheaply aggregate the unverified signatures and then verify the result. If the aggregate
verification fails, P will have to perform a much more expensive search to find out which of
the individual signatures were bad. However, once the bad signatures are found, since the
parties that contributed those signatures must be corrupt, P can simply ignore all signatures
(and indeed all messages) sent from these parties going forward. This works because we are
assuming the signatures are sent over authenticated channels (although P cannot publicly
prove their corrupt behavior, unless the BLS signatures are themselves authenticated using
some cheaper digital signature, such as EdDsa). Thus, over the long run, the cost of verifying
and aggregating a set of individual signatures is essentially just the cost of one BLS signature
verification. Similarly, when a party P receives an aggregate signature from another party,
if the verification of that aggregate signature fails, P can simply ignore that party going
forward.

The other main computational cost to consider is that of hashing. On the same hardware
mentioned above, the openssl implementation of SHA256 runs at a speed of 2GB/s.

With these benchmarks, and additional assumptions on network bandwidth and latency,
we can estimate the performance (latency and throughput) of the protocol (in the optimistic
setting). We shall assume network bandwidth of 1Gb/s (i.e., 125MB/s) and that the protocol
is running over a WAN, so that there is essentially no contention for network bandwidth among
the parties. Specifically, our assumption is that all parties can simultaneously transmit to the
network at a rate of 1Gb/s. We shall assume a network latency of 100ms (so it takes 100ms for
a packet to travel from P to Q once P has transmitted the packet, which is generally consistent
with round-trip times reported in https://www.cloudping.co/grid/p_90/timeframe/1D).

The protocol’s performance will depend on: (i) transmission delay, the delay per slot
induced by network bandwidth, (ii) propagation delay, the delay per slot induced by the
network latency, and (iii) computation delay, the delay induced by computation. The
optimistic consecutive-proposal latency is just the sum of these delays and throughput is the
block size β divided by the sum of these delays. Here, we will assume that β is the number
of bytes in a block. Of course, β also impacts transmission and computation delay.

We will make one small change to the protocol that will streamline its execution. Namely,
instead of using an (n, n− 2t)-erasure code, we will use an (n− 1, n− 2t− 1)-erasure code,
and adopt the convention that the leader does not hold a fragment. We note that with this
change, the encoding of a block is still at most 3β bytes, and that the above benchmarks for
n = 97 are still valid. With this change, the way the block data flows through the network
in a given slot is as follows:

the leader encodes a block of size β as a codeword of size ≈ 3β, and transmits to each of
the n− 1 other parties its fragment, which has size ≈ 3β/n, so that the leader transmits
a total of ≈ 3β bytes across the network.

DISC 2024

https://github.com/supranational/blst
https://www.cloudping.co/grid/p_90/timeframe/1D


37:12 Sing a Song of Simplex

each party other than the leader broadcasts its fragment of size ≈ 3β/n to the n − 2
other parties (besides itself and the leader), so each such party transmits a total of ≈ 3β

bytes across the network.
Assuming fragments are sufficiently large, each fragment can be broken up into many packets,
and a simple “packet-switching pipeline” strategy can be used to minimize the transmission
delay. Specifically, the leader begins by sending to each other party P the first packet of
P ’s fragment, then it sends to each other party P the second packet of P ’s fragment, and
so on; at the same time, when a party P receives one packet of its own fragment from the
leader, it immediately broadcasts that fragment to all other parties. One sees that with this
simple “packet-switching pipeline” strategy, the transmission delay per slot is roughly 3β

bytes divided by the network bandwidth available to each party (without pipelining, it would
be twice as much). With a network bandwidth of 1Gb/s, this translates into a transmission
delay per slot of about 25ms for every 1MB of (original, unencoded) block data.

Next, consider propagation delay. This is twice the network latency, so 2 · 100ms = 200ms
under our assumptions. To make things more concrete, let us choose a block size that roughly
balances transmission and propagation delay, so a block size of 8MB. With a block size this
large, and for n ≈ 100, the size of each fragment is ≈ 240KB, large enough to make the
simple “packet-switching pipeline” strategy feasible (with packets of size ≈ 1KB, a party
can transmit one packet to each other party in time under 1ms).

Third, consider computation delay. There are several components to this:
erasure coding: the leader encodes β bytes of data, and then each receiving party decodes
and encodes the same amount of data; with our given estimates (for n = 97), this takes
2 · 4ms + 16ms = 24ms. Using multiple cores, this could likely be reduced significantly.
hashing: the leader hashes 3β bytes of data, and then each receiving party hashes the
same amount of data; with our given estimates, this takes 2 · 12ms = 24ms. However,
the hashing done by the leader can overlap entirely with the transmission delay (the
hashing can be done concurrently with the transmission of the fragments). For the
receiving parties, in a typical execution, of the 3β bytes of data they need to hash, at
least 2β bytes of hashing can overlap with the transmission delay (assuming the hashing
is done as packets are received). If they receive support shares from all other parties, no
more hashing needs to be done. In the worst case, they need to hash β bytes (after the
re-encoding step), and with our given estimates, this takes 4ms. Using multiple cores,
this could likely be reduced even more.
signing and aggregating: each party generates a support share and then forms a support
certificate. With our given estimates, this takes a total of 2ms. However, the 1ms of
time spent forming a support certificate easily overlap the above 4ms of hashing time
(assuming multiple cores). We do not count here the cost of processing commit shares
and certificates, as these can be performed on a separate core.

This all adds up to a computation delay of 24ms + 4ms + 1ms = 29ms, and we will round this
up to 40ms to be conservative (although by exploiting multiple cores, it could be much less).

With these parameters, we estimate the total delay per slot as: 200ms for transmission,
200ms for propagation, 40ms for computation. This translates to a throughput of 8MB every
440ms, so about 18MB per second. The optimistic consecutive-proposal latency is 440ms
and the optimistic proposal-commit latency is that plus about 100ms, so about 540ms.

To get a better understanding of this setting, consider the following example timeline.
Suppose that at time T a leader starts transmitting the packets of a block. By time (roughly)
T + 100ms the other parties start echoing these packets. By time (again, roughly) T + 200ms
the leader finishes transmitting packets and transmits the remaining elements of its block



V. Shoup 37:13

proposal. By time T + 300ms all of these packets and remaining elements have been echoed
by the other parties; moreover, by this same time, the other parties have validated the block
proposal and have broadcast a signature share on a corresponding support message. By time
T + 400ms, the other parties have received all the fragments and other data they need, and
then perform 40ms of computation to finish the slot with a block in the complete block tree
by time T + 440ms.

Note that all of the above estimates are essentially independent of n. Indeed, the
component of propagation and computation delay that depends on n will be a very small
fraction of the total for block sizes of at least 1MB and for n up to several hundred.

Appendix B briefly presents some minor implementation details and simple variations of
DispersedSimplex.

4 Stable leaders

In many settings, it makes sense to keep a leader that is doing a good job in place for an
extended number of slots. There are a number of advantages to this. For example, whenever
such a crashed party is selected as a leader, the protocol has to wait sufficiently long to “time
out” and move to the next slot, effectively wasting the equivalent of a few slots. In contrast,
if a leader by default stays in place for, say, 1000 slots, when we come to a crashed leader,
we will still waste the equivalent of a few slots, but this will be a much smaller percentage of
all slots. Another advantage is that if transactions are being submitted to the system by
external clients, then (just as in classical PBFT) these transactions can typically just be sent
to a stable leader. Yet another advantage, as we will discuss below, is that a stable leader
can drive the protocol even faster, achieving both higher throughput and lower latency.

The Simplex protocol has such a very natural internal logic to it that the logic for
maintaining stable leaders suggests itself almost immediately. Let us say that by default a
leader will stay in place for a certain number of consecutive slots, which we call an epoch.
For example, one epoch might be 1000 consecutive slots.

So that we can move to the next epoch as soon as we detect a faulty leader, we shall
adopt the convention that a complaint certificate for a slot v effectively covers the rest of
the epoch containing v.
In order to maintain safety, this means that any party that issues a complaint share for a
slot v must abstain from issuing a commit certificate in slot v and all remaining slots of
the interval containing v.
This means that once one honest party issues a complaint share for a slot v, it may not
be possible to commit a block in slot v or in any of the remaining slots of the interval
containing v, even though blocks may continue to be supported and added to the complete
block tree.
Therefore, in order to maintain liveness, we introduce logic that prevents parties from
moving too far ahead of the slot of the last committed block in an epoch.

The details of our protocol, which we call StableDispersedSimplex, are in Fig. 2. Note
that for any slot number v, begin(v) denotes the first slot number of the epoch containing v,
while end(v) denotes the last slot number in an epoch. The value k is a constant parameter,
which can be set to 1 or any other small positive integer. The logic to go to the next slot
on seeing an approved block ensures that the approved blocks do not get more than k slots
ahead of the committed blocks (and if the network is well behaved and the leader is honest,
it should never get more than 1 slot ahead).

DISC 2024



37:14 Sing a Song of Simplex

StableDispersedSimplex: main loop for party Pj

vlast ← 0, v ← 1
repeat forever

Tstart ← clock(), done← proposed← supported← complained← false
if v = begin(v) then complainedInEpoch← false // new epoch
while not done do

wait until either:
the certificate pool contains a complaint certificate for any slot in [begin(v) . . v]⇒

done← true, v ← end(v) + 1 // go to next epoch
the complete block tree contains a block for slot v and

( v = end(v) or there is a committed block for all slots in [begin(v) . . v − k] ) ⇒
if not complainedInEpoch then broadcast a commit share for v
done← true, vlast ← v, v ← v + 1 // go to next slot

not complained and ( complainedInEpoch or clock() > Tstart + ∆timeout ) ⇒
complained← complainedInEpoch← true
broadcast a complaint share for slot v

// The rest is the same as in Fig. 1

Figure 2 Logic for main loop of StableDispersedSimplex protocol for party Pj

The protocol makes use of the identical subprotocols for maintaining the certificate pool
and complete block tree. The logic for generating block proposals is identical to that in the
basic protocol.

The logic for validating block proposals is the same as in the basic protocol, except as
follows. First, if v > begin(v), we require that v = v′ + 1, which enshrines the fact that
an honest leader should propose blocks with consecutive slot numbers. Second, instead of
checking that the certificate pool contains complaint certificates for slots v′ + 1, . . . , v − 1,
we check that it contains complaint certificates that effectively cover this interval – that
is, for each w ∈ [v′ + 1 . . v − 1], there exists a complaint certificate for a slot u such that
w ∈ [u . . end(u)]. It is an easy exercise to generalize the data structures and algorithms in
Appendix B.1 to work in this setting. One sees that this protocol is identical to the basic
protocol if all epochs are of size 1.

4.1 Analysis
We sketch here the main ideas of the safety and liveness analysis for this protocol.

The basic properties in Section 3.1 hold here as well, except that the Incompatibility of
Complaint and Commit Property generalizes here as follows: if a complaint certificate for a
slot v has been produced, then it is impossible to produce a commit certificate for any slot
in [v . . end(v)]. This follows from the Quorum Intersection Property and the fact that if an
honest party issues a complaint share in slot v, it will not issue a complaint share in v or any
subsequent round in the same epoch as v.

Lemma 1 holds for this protocol as stated. The proof of Lemma 1 go through with
essentially no change, other than to note the fact that we use complain certificates that cover
the interval [v′ + 1 . . v − 1]. Lemma 2 may be adjusted as follows (proof in Appendix A.4):

▶ Lemma 4 (Liveness I – stable leader version). Consider a particular slot v ≥ 1 and suppose
the leader for slot v is an honest party Q. Suppose that the first honest party P to enter the
loop iteration for slot v does so at time T . Further suppose that the network is δ-synchronous
over the interval [T, T + 3δ] for some δ with ∆timeout ≥ 3δ. Then before time T + 3δ, each
honest party will reach a loop iteration ≥ v. In addition, if each honest party issues a commit



V. Shoup 37:15

share in rounds begin(v), . . . , v − 1, then each honest party will finish loop iteration v before
time T + 3δ, by adding Q’s proposed block B to its complete block tree and issuing a commit
share for round v.

The lemma is stated as it is so that by repeated application of the lemma, it follows that
so long as the network remains appropriately synchronous, an honest leader will continue to
get all of its proposals committed.

Lemma 3 holds for this protocol essentially as stated – the conclusion would be better
worded as “all honest parties have entered the loop iteration for some slot w > v”. The
proof only needs to be changed to reflect the fact that before time T + δ, every honest party
either enters the loop iteration for slot v or moves to the next epoch because of a complaint
certificate for some round in [begin(v) . . v − 1]. In the latter case, before time T + 2δ, all
honest parties will have moved to the next epoch.

4.2 Improved performance through stability
As mentioned above, performance can be improved by having stable leaders. To see how, let
us return to the concrete example in Section 3.5, with the parameters used there: n ≈ 100
parties connected over a WAN, 1Gb/s bandwidth, 100ms latency, and an 8MB block size.

In the example timeline we gave there, if the leader starts transmitting the packets of
a block at time T , then by time (roughly) T + 200ms the leader stops transmitting, but
the other parties will not finish the slot until time (again, roughly) T + 440ms. With a
constantly rotating leader, the leader for the next slot will wait until this time before it
begins transmitting the packets of its block. However, a stable leader can start transmitting
these packets already at time T + 200ms. Indeed, between time T and T + 200ms, it could
have gathered the transactions for its next block (and even performed the erasure encoding of
that block), so that it can start transmitting the these packets right away at time T + 200ms.

Thus, throughout an epoch where the leader is honest and the network is synchronous,
we basically get another level of pipelining, with the leader starting a new slot every 200ms.
Note that in these circumstances, all parties will essentially fully utilize all available network
bandwidth. (Achieving all this assumes multi-threading on a few cores.) This translates to a
throughput of 8MB every 200ms, so about 40MB per second. The optimistic consecutive-
proposal latency is 200ms. The optimistic proposal-commit latency remains the same as in
the rotating leaders version, so about 540ms.

Finally, we note that while the stable leader may nearly saturate its upload bandwidth, it
is not consuming very much download bandwidth, which leaves plenty of bandwidth available
for downloading transactions that are submitted directly to the stable leader by external
clients.

See Appendix B.3 for simple variations on StableDispersedSimplex. In the full version
[22], we (i) give a more extended version of the above example timeline, (ii) show how to
double the throughput to 80MB per second using the improved data dissemination techniques
in [17] without impacting latency, and (iii) discuss performance, quality, and censorship
attacks on StableDispersedSimplex, and ways of mitigating against them.

References
1 Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzantine

broadcast: A complete categorization, 2021. arXiv:2102.07240, http://arxiv.org/abs/2102.
07240.

DISC 2024

http://arxiv.org/abs/2102.07240
http://arxiv.org/abs/2102.07240


37:16 Sing a Song of Simplex

2 Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. Succinct erasure coding proof
systems. Cryptology ePrint Archive, Paper 2021/1500, 2021. URL: https://eprint.iacr.
org/2021/1500.

3 Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, Public Key Cryptography
- PKC 2003, 6th International Workshop on Theory and Practice in Public Key Cryptography,
Miami, FL, USA, January 6-8, 2003, Proceedings, volume 2567 of Lecture Notes in Computer
Science, pages 31–46. Springer, 2003. doi:10.1007/3-540-36288-6_3.

4 Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. Cryptology ePrint Archive, Paper 2018/483, 2018. URL: https://eprint.iacr.
org/2018/483.

5 Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin
Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on
the Theory and Application of Cryptology and Information Security, Gold Coast, Australia,
December 9-13, 2001, Proceedings, volume 2248 of Lecture Notes in Computer Science, pages
514–532. Springer, 2001. doi:10.1007/3-540-45682-1_30.

6 Christian Cachin and Stefano Tessaro. Asynchronous verifiable information dispersal. In Pierre
Fraigniaud, editor, Distributed Computing, 19th International Conference, DISC 2005, Cracow,
Poland, September 26-29, 2005, Proceedings, volume 3724 of Lecture Notes in Computer
Science, pages 503–504. Springer, 2005. doi:10.1007/11561927_42.

7 Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor Shoup, and
Dominic Williams. Internet computer consensus. Cryptology ePrint Archive, Report 2021/632,
2021. URL: https://ia.cr/2021/632.

8 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Margo I. Seltzer and
Paul J. Leach, editors, Proceedings of the Third USENIX Symposium on Operating Systems
Design and Implementation (OSDI), New Orleans, Louisiana, USA, February 22-25, 1999,
pages 173–186. USENIX Association, 1999. URL: https://dl.acm.org/citation.cfm?id=
296824.

9 Benjamin Y. Chan and Rafael Pass. Simplex consensus: A simple and fast consensus
protocol. In Guy N. Rothblum and Hoeteck Wee, editors, Theory of Cryptography - 21st
International Conference, TCC 2023, volume 14372 of Lecture Notes in Computer Science,
pages 452–479. Springer, 2023. Also at https://eprint.iacr.org/2023/463. doi:10.1007/
978-3-031-48624-1_17.

10 George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal
and Tusk: a DAG-based mempool and efficient BFT consensus. In Yérom-David Bromberg,
Anne-Marie Kermarrec, and Christos Kozyrakis, editors, EuroSys ’22: Seventeenth European
Conference on Computer Systems, Rennes, France, April 5 - 8, 2022, pages 34–50. ACM,
2022. Also at arXiv:2105.11827, http://arxiv.org/abs/2105.11827. doi:10.1145/3492321.
3519594.

11 S. Dolev and Z. Wang. SodsBC: Stream of distributed secrets for quantum-safe blockchain. In
2020 IEEE International Conference on Blockchain (Blockchain), pages 247–256, Los Alamitos,
CA, USA, 2020. IEEE Computer Society.

12 Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, 1988. doi:10.1145/42282.42283.

13 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need is
DAG. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM
Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021,
pages 165–175. ACM, 2021. Also at arXiv:2102.08325, http://arxiv.org/abs/2102.08325.
doi:10.1145/3465084.3467905.

14 Sian-Jheng Lin, Tareq Y. Al-Naffouri, Yunghsiang S. Han, and Wei-Ho Chung. Novel poly-
nomial basis with fast Fourier transform and its application to Reed-Solomon erasure codes.
IEEE Trans. Inf. Theory, 62(11):6284–6299, 2016. doi:10.1109/TIT.2016.2608892.

https://eprint.iacr.org/2021/1500
https://eprint.iacr.org/2021/1500
https://doi.org/10.1007/3-540-36288-6_3
https://eprint.iacr.org/2018/483
https://eprint.iacr.org/2018/483
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/11561927_42
https://ia.cr/2021/632
https://dl.acm.org/citation.cfm?id=296824
https://dl.acm.org/citation.cfm?id=296824
https://eprint.iacr.org/2023/463
https://doi.org/10.1007/978-3-031-48624-1_17
https://doi.org/10.1007/978-3-031-48624-1_17
http://arxiv.org/abs/2105.11827
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/42282.42283
http://arxiv.org/abs/2102.08325
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.1109/TIT.2016.2608892


V. Shoup 37:17

15 Sian-Jheng Lin and Wei-Ho Chung. An efficient (n, k) information dispersal algorithm for
high code rate system over Fermat fields. IEEE Commun. Lett., 16(12):2036–2039, 2012.
doi:10.1109/LCOMM.2012.112012.121322.

16 Thomas Locher. Byzantine reliable broadcast with low communication and time complexity,
2024. arXiv:2404.08070, http://arxiv.org/abs/2404.08070.

17 Thomas Locher and Victor Shoup. MiniCast: Minimizing the communication complexity
of reliable broadcast. Cryptology ePrint Archive, Paper 2024/571, 2024. URL: https:
//eprint.iacr.org/2024/571.

18 Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-MVBA: Optimal multi-valued
validated asynchronous byzantine agreement, revisited. In Yuval Emek and Christian Cachin,
editors, PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event,
Italy, August 3-7, 2020, pages 129–138. ACM, 2020. doi:10.1145/3382734.3405707.

19 Dahlia Malkhi and Kartik Nayak. Extended abstract: HotStuff-2: Optimal two-phase respon-
sive BFT. Cryptology ePrint Archive, Paper 2023/397, 2023. URL: https://eprint.iacr.
org/2023/397.

20 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of BFT
protocols. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages 31–42. ACM, 2016.
Also at https://eprint.iacr.org/2016/199. doi:10.1145/2976749.2978399.

21 Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299–319, 1990. doi:10.1145/98163.98167.

22 Victor Shoup. Sing a song of simplex. Cryptology ePrint Archive, Paper 2023/1916, 2023.
URL: https://eprint.iacr.org/2023/1916.

23 Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and Zekun Li. Shoal: Improving dag-bft
latency and robustness, 2023. arXiv:2306.03058, http://arxiv.org/abs/2306.03058.

24 Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bull-
shark: DAG BFT protocols made practical. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022,
pages 2705–2718. ACM, 2022. Also at arXiv:2201.05677, http://arxiv.org/abs/2201.05677.
doi:10.1145/3548606.3559361.

25 Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, and Marko Vukolić. Mir-BFT:
High-throughput robust bft for decentralized networks, 2019. arXiv:1906.05552, http://arxiv.
org/abs/1906.05552.

26 Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse. Dis-
persedLedger: High-throughput byzantine consensus on variable bandwidth networks, 2021.
arXiv:2110.04371, http://arxiv.org/abs/2110.04371.

27 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. HotStuff:
BFT consensus in the lens of blockchain, 2018. arXiv:1803.05069, http://arxiv.org/abs/
1803.05069.

A Some proofs

A.1 Proof of Lemma 1
By the Incompatibility of Complaint and Commit Property, no complaint certificate for slot
v can be produced. Let C ′ be the parent of C and suppose w′ is the slot number of C ′.
Since C ′ is in Q’s complete block tree, a support certificate for C ′ must have been produced,
which means at least one honest party must have issued a support share for C ′, which means
v ≤ w′ < w. The inequality v ≤ w′ follows from the fact that there is no complaint certificate
for slot v, and an honest party will issue a support share for C only if it has complaint
certificates for slots w′ + 1, . . . , w − 1.

DISC 2024

https://doi.org/10.1109/LCOMM.2012.112012.121322
http://arxiv.org/abs/2404.08070
https://eprint.iacr.org/2024/571
https://eprint.iacr.org/2024/571
https://doi.org/10.1145/3382734.3405707
https://eprint.iacr.org/2023/397
https://eprint.iacr.org/2023/397
https://eprint.iacr.org/2016/199
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/98163.98167
https://eprint.iacr.org/2023/1916
http://arxiv.org/abs/2306.03058
http://arxiv.org/abs/2201.05677
https://doi.org/10.1145/3548606.3559361
http://arxiv.org/abs/1906.05552
http://arxiv.org/abs/1906.05552
http://arxiv.org/abs/2110.04371
http://arxiv.org/abs/1803.05069
http://arxiv.org/abs/1803.05069


37:18 Sing a Song of Simplex

If v = w′, we are done by the (first part of the) Uniqueness and Validity Property, and if
v < w′, we can repeat the argument inductively with C ′ in place of C.

A.2 Proof of Lemma 2
By the Completeness Property, before time T + δ, each honest party will enter the loop
iteration for slot v by time T + δ, having either a complaint certificate for slot v − 1 or a
block for slot v− 1 in its complete block tree. So before time T + δ, the leader Q will propose
a block B that extends a block B′ with slot number v′ < v. By the logic of the protocol, we
know that Q must have complaint certificates for slots v′ + 1, . . . , v − 1 at the time it makes
its proposal. Again by the Completeness Property, before time T + 2δ, each honest party
will have B′ in its complete block tree and all of these complaint certificates in its certificate
pool, and moreover, will receive Q’s proposal before this time, and hence will broadcast a
support share for Q’s proposal by this time. Therefore, before time T + 3δ, each honest party
will have added B to its complete block tree. By the assumption that ∆timeout ≥ 3δ, when
each honest party adds B to its complete block tree, the complaint condition will not have
been met, and therefore, each honest party will issue a commit share for v at this time. If
the network remains δ-synchronous, the commit shares will be received by all honest parties
before time T + 4δ.

A.3 Proof of Lemma 3
By the Completeness Property, every honest party will enter the loop iteration for slot v

before time T + δ. By time T + δ + ∆timeout, every honest party will have either added a
block for slot v to its complete block tree or broadcast a complaint share for slot v. In either
case, less than δ time units later all honest parties will have finished the loop iteration for
slot v.

A.4 Proof of Lemma 4
The proof goes through with essentially no change in the case where v is the first slot in an
epoch. For later slots in the epoch, we need to add the extra assumption that each honest
party issued a commit share for all previous slots in the epoch – and so did not issue a
complaint share in those slots. This guarantees that before time T + δ all honest parties
will enter the loop iteration for slot v, and that before time T + 2δ, not only will all honest
parties issue support shares for Q’s proposal but will also commit the block for slot v − 1.
Therefore, before time T + 3δ, each party will finish the loop iteration for slot v as stated.

B Some implementation details and minor variations

B.1 Implementing the block proposal validation logic
To validate a proposal for a block B in slot v whose parent is a block B′ in slot v′, a party
needs to check if its complaint pool contains complaint certificates for slots v′ + 1, . . . , v − 1.
Here is a simple, practical way to do this.

Suppose that when a party enters the loop iteration for slot v, the highest slot number for
which it has committed is vcom. We know by the Incompatibility of Complaint and Commit
Property, there can never be a complaint certificate for slot vcom. So the party can maintain
two data structures.



V. Shoup 37:19

A doubly linked list of those slots in the range {vcom, . . . , v − 1} for which it does not
have a complaint certificate, in order from lowest to highest.
A lookup table from {vcom, . . . , v−1} to nodes in this doubly linked list – this table could
just be a dynamic, circular array.

Then, the party can perform the following operations:
Whenever a new complaint certificate appears for a slot in the range {vcom, . . . , v − 1}, it
accesses the corresponding node via the lookup table and removes it from the linked list.
When the value of vcom or v is increased, it updates both the lookup table and linked list
in the obvious way.

For each slot, a constant amount of work is performed to maintain this data structure.
Moreover, at any point in time, a party can find in constant time the highest slot number
v∗ < v for which it has complaint certificates for slots v∗ + 1, . . . , v − 1.

B.2 Simple variations
We mention here a few simple variations of DispersedSimplex.

Choice of parent block. In the protocol, the leader in slot v proposes a new block whose
parent is Bprev. In fact, the leader is free to choose as the parent block any block B′ for
a slot v′ such that v′ < v and the leader’s complaint pool contains complaint certificates
for each slot v′ + 1, . . . , v − 1.
Moving on from bad blocks. In the protocol, in managing the complete block tree, when a
party reconstructs the payload and finds that it is bad (either ⊥ or otherwise invalid),
it effectively just ignores the block and the slot will eventually time out. In a variation,
parties could simply issue a complaint share right away, without waiting to time out.
Withholding support after complaining. As we described the protocol, a party may issue a
support share in a slot even if it has already issued a complaint share in that slot. This
rule is not essential and the protocol would also provide both safety and liveness if a
party chose not to issue a support share in this case.
Optimizing small payloads. For small payloads, instead of erasure coding the payload and
dispersing fragments, the leader could just disperse the payload directly. A support share
would also contain the payload as well. Alternatively, we could use an erasure code with
different parameters that was more suitable for small payloads.

B.3 Simple variations on StableDispersedSimplex
The variations discussed in Appendix B.2 can be adapted to StableDispersedSimplex as well.
Note that the variation in which support is withheld after complaining may be implemented
so that after a party issues complaint share in an epoch, that party will not issue any more
support shares in the epoch. This implementation will have the effect of dislodging the
leader somewhat earlier. However, with this as well as with all of the other variations in
Appendix B.2, the results for StableDispersedSimplex still hold.

C Comparison to other protocols

C.1 Simplex
As already mentioned above in Section 3.4.2, the optimistic proposal-commit latency (3δ)
and the optimistic consecutive-proposal latency (2δ) of DispersedSimplex are the same as
for Simplex. A proper comparison of the communication complexity of DispersedSimplex
and Simplex is not really possible. This is because description of Simplex in [9] is a bit

DISC 2024



37:20 Sing a Song of Simplex

problematic. Taking the description of the protocol in Section 2.1 of [9] literally, in each
slot, every party sends a copy of the entire blockchain, along with a support or complaint
certificate for every slot from genesis, to every other party. This is clearly entirely impractical,
and one must assume the authors of [9] mean this only in some figurative sense, although
very little guidance is given as to what it should mean literally. Elsewhere (in particular in
Section 3.4 of [9]) it is suggested that messages are much smaller (but without any details).

The variant of DispersedSimplex discussed in Appendix B.2 for small payloads, with
no erasure coding, can be viewed as a fully specified, practical version of Simplex. The
DispersedSimplex protocol itself then shows how to get even better communication complexity
through erasure codes, but without increasing latency. Note that DispersedSimplex is
optimistically responsive, just like Simplex.

C.2 HotStuff and HotStuff-2
We may also compare DispersedSimplex to HotStuff [27] and the recently proposed improve-
ment HotStuff-2 [19].

C.2.1 Latency
HotStuff-2 has an optimistic proposal-commit latency of 5δ while HotStuff has a an optimistic
proposal-commit latency of 7δ. Pipelined versions of these protocols can achieve an optimistic
consecutive-proposal latency 2δ. Thus, (pipelined versions of) HotStuff and HotStuff-2 have
the same optimistic consecutive-proposal latency of DispersedSimplex, but have worse
optimistic proposal-commit latency (which is just 3δ for DispersedSimplex).

We note that HotStuff and HotStuff-2 are optimistically responsive, just like Dispersed-
Simplex and Simplex.

C.2.2 Communication complexity
The reported communication complexity of HotStuff and HotStuff-2 is O(n(β + κ + λ)).
Recall that β bounds the block size, κ the signature share/certificate size, and λ the hash
size. For small blocks, specifically if β ≪ n(κ + λ log n), this communication complexity is
better than that of DispersedSimplex, which is O(nβ +n2(κ+λ log n)), as we discussed above
in Section 3.4.1. However, this reported communication cost does not actually take into
account the cost of reliable block dissemination. In these protocols, the leader is (apparently)
supposed to simply send its proposed block to each party – at least, that is what is written
in [27].

This creates two problems. First, there is no mechanism specified that ensures that all
honest parties obtain the payloads of committed blocks. Naive mechanisms in which parties
simply poll other parties for missing blocks can easily degenerate into O(n2β) communication
complexity: all corrupt parties could simply ask for a block from all honest parties. If
information dispersal techniques are used to ensure data availability, this would again make
the communication complexity quadratic in n. So at best, the communication complexity
of these protocols is better only for small blocks and only assuming corrupt parties do not
misbehave too much.

Second, if the description in [27] is taken literally, the communication load in HotStuff
(and apparently HotStuff-2) is very unbalanced. This can create a communication bottleneck
at the leader. Indeed, as demonstrated empirically in [20, 25], it seems that for systems
with moderate network size (n up to a hundred or so) and large block sizes, taking care



V. Shoup 37:21

to disseminate blocks to all parties in a way that does not create a bottleneck at the
leader is more important in practice than worrying about the quadratic dependence on n

in the communication complexity. In contrast, as mentioned above in Section 3.4.1, the
communication load of DispersedSimplex is balanced. That is, each party, including the leader,
transmits roughly the same about of data over the network. Thus, while in HotStuff (and
HotStuff-2), the leader has to transmit O(nβ) bytes across the network, in DispersedSimplex,
the leader (and every party) transmits O(β) bytes across the network.

C.2.3 Concrete estimates
It would be interesting to perform a careful empirical investigation to compare the real-
world performance of DispersedSimplex and (pipelined) HotStuff/HotStuff-2 under various
parameter settings. However, we can attempt to make a “back of the envelope” calculation,
similar to what we did in Section 3.5. With the parameters we used there (1Gb/s network
bandwidth and 100ms network latency), the propagation delay per slot would be the same,
so about 200ms, and the computation delay would be less. As for the transmission delay,
if the block size is β bytes, then in each slot the leader has to transmit a total of nβ bytes
across the network. As a specific example, let us say n ≈ 100, so the transmission delay
would be about 800ms for every 1MB of block data. This is obviously much worse than the
25ms per 1MB of block data for DispersedSimplex. With these estimates, the best possible
throughput that could be achieved is 1.25MB of block data per second. More concretely,
suppose we set the block size to 1MB. So ignoring computation delay (which is just a few
ms),

the throughput is about 1MB per second (vs 18MB per second for DispersedSimplex,
or 40MB per second for StableDispersedSimplex discussed in Section 4.2, or 80MB per
second for the improved version of StableDispersedSimplex in the full version [22]),
the optimistic consecutive-proposal latency is 1s (vs 440ms for DispersedSimplex, or
200ms for StableDispersedSimplex), and
(for HotStuff-2) the optimistic proposal-commit latency is that plus about 300ms, so
about 1.3s (vs 540ms for any of the variants of DispersedSimplex discussed here).

In the above calculations, we saw that for an unbalanced protocol like HotStuff (or
PBFT), as n increases, the throughput should decrease, and the latency should increase,
while in a balanced protocol like DispersedSimplex, throughput and latency should not
depend very much on n. This type of behavior has been confirmed experimentally in papers
such as [20, 25], although not for the exact protocols considered here. Also, while we focused
on throughput and latency, there are other costs to consider – namely, the monetary (or
other) costs associated with transmitting a certain amount of data. These costs are directly
proportional to the overall communication complexity, and it is indeed true that erasure
coding does inflate these costs by a factor of 3 (although this can be reduced to a factor of 1.5
as discussed in the full version [22]). Another factor to potentially consider is the fact that
for a balanced protocol like DispersedSimplex, the rate at which each party is transmitting
is fairy constant, while for protocols like HotStuff, it is very bursty.

C.3 ICC
The Simplex protocol bears a passing resemblance to the ICC protocols ICC in [7]. The main
difference is that for the ICC protocols, if the leader for a slot v is perceived to fail, then
instead of simply timing out, a (somewhat complicated) fail-over mechanism is triggered
that will eventually add a block to the complete block tree for slot v that is proposed by

DISC 2024



37:22 Sing a Song of Simplex

a different party. Latency and communication costs in the optimistic setting for protocols
ICC0 and ICC1 in [7] are very similar to that of Simplex. We note that protocol ICC2 in [7]
employs information dispersal techniques to get better communication complexity, but at
the expense extra latency. Thus, DispersedSimplex is both simpler and more efficient than
that any of the ICC protocols.

C.4 DAG-based atomic broadcast protocols
Recently, there has been a flurry of papers on DAG-based atomic broadcast protocols
[13, 10, 24, 23]. One of the attractions of these protocols is that, by design, they are
leaderless and thereby avoid the bandwidth bottleneck that some leader-based protocols can
exhibit. Indeed, as stated in [10]: “decoupling transaction dissemination from the critical
path of consensus is the key to blockchain scalability”. As mentioned above, the papers
[20, 25] already demonstrated the importance of taking care to disseminate blocks to all
parties in a way that does not create such a bottleneck. We also mentioned above that
protocol ICC2 in [7] shows how to do this in a leader-based protocol, and we have shown
in this paper how DispersedSimplex achieves this in a leader-based protocol with optimal
proposal-commit latency. As shown in Section 4, a stable-leader variant of DispersedSimplex
can achieve even better performance, and specifically, when the leader is honest and the
network is synchronous, all parties will essentially fully utilize all available network bandwidth.
Thus, it is not entirely clear to us that the leader-bottleneck problem exhibited by some
earlier leader-based protocols is a valid reason to abandon leader-based protocols entirely,
especially since leader-based protocols (such as DispersedSimplex) still exhibit superior (and
essentially optimal) latency characteristics. Moreover, it is also not entirely clear to us that
“decoupling transaction dissemination from the critical path of consensus” is an inherently
good idea: while such a decoupling may be good from a software engineering point of view, as
we demonstrate with DispersedSimplex, it is precisely by tightly coupling dissemination with
consensus that we can fully utilize network bandwidth without sacrificing optimal latency,
using a quite simple and elegant protocol.

There are many metrics on which consensus protocols may be compared. While DAG-
based consensus protocols may well be superior on some metrics, it does not appear (based on
our analysis) that the core metrics of common-case throughput and latency are among them.



Near-Linear Time Dispersion of Mobile Agents
Yuichi Sudo #

Hosei University, Tokyo, Japan

Masahiro Shibata #

Kyushu Institute of Technology, Fukuoka, Japan

Junya Nakamura #

Toyohashi University of Technology, Aichi, Japan

Yonghwan Kim #

Nagoya Institute of Technology, Aichi, Japan

Toshimitsu Masuzawa #

Osaka University, Osaka, Japan

Abstract
Consider that there are k ≤ n agents in a simple, connected, and undirected graph G = (V,E) with
n nodes and m edges. The goal of the dispersion problem is to move these k agents to mutually
distinct nodes. Agents can communicate only when they are at the same node, and no other
communication means, such as whiteboards, are available. We assume that the agents operate
synchronously. We consider two scenarios: when all agents are initially located at a single node
(rooted setting) and when they are initially distributed over one or more nodes (general setting).
Kshemkalyani and Sharma presented a dispersion algorithm for the general setting, which uses
O(mk) time and log(k + ∆) bits of memory per agent [OPODIS 2021], where mk is the maximum
number of edges in any induced subgraph of G with k nodes, and ∆ is the maximum degree of
G. This algorithm is currently the fastest in the literature, as no o(mk)-time algorithm has been
discovered, even for the rooted setting. In this paper, we present significantly faster algorithms for
both the rooted and the general settings. First, we present an algorithm for the rooted setting that
solves the dispersion problem in O(k log min(k,∆)) = O(k log k) time using O(log(k + ∆)) bits of
memory per agent. Next, we propose an algorithm for the general setting that achieves dispersion in
O(k log k · log min(k,∆)) = O(k log2 k) time using O(log(k+ ∆)) bits. Finally, for the rooted setting,
we give a time-optimal (i.e., O(k)-time) algorithm with O(∆ + log k) bits of space per agent. All
algorithms presented in this paper work only in the synchronous setting, while several algorithms in
the literature, including the one given by Kshemkalyani and Sharma at OPODIS 2021, work in the
asynchronous setting.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases mobile agents, autonomous robots, dispersion

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.38

Related Version Full Version: https://doi.org/10.48550/arXiv.2310.04376 [19]

Funding JSPS KAKENHI 20KK0232.
Yuichi Sudo: JSPS KAKENHI 20H04140, JST FOREST Program JPMJFR226U.
Masahiro Shibata: JSPS KAKENHI 21K17706 and 23K28037.
Junya Nakamura: JSPS KAKENHI 22K11971.

1 Introduction

In this paper, we focus on the dispersion problem involving mobile entities, referred to
as mobile agents, or simply, agents. At the start of an execution, k agents are arbitrarily
positioned at nodes of an undirected graph G = (V,E) with n nodes and m edges. The
objective is to ensure that all agents are located at mutually distinct nodes. This problem

© Yuichi Sudo, Masahiro Shibata, Junya Nakamura, Yonghwan Kim, and Toshimitsu Masuzawa;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 38; pp. 38:1–38:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sudo@hosei.ac.jp
https://orcid.org/0000-0002-4442-1750
mailto:shibata@csn.kyutech.ac.jp
https://orcid.org/0000-0003-1414-8033
mailto:junya@imc.tut.ac.jp
https://orcid.org/0000-0002-1363-4358
mailto:kim@nitech.ac.jp
https://orcid.org/0000-0002-5437-7626
mailto:masuzawa@ist.osaka-u.ac.jp
https://orcid.org/0000-0003-4628-6393
https://doi.org/10.4230/LIPIcs.DISC.2024.38
https://doi.org/10.48550/arXiv.2310.04376
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


38:2 Near-Linear Time Dispersion of Mobile Agents

Table 1 Dispersion of mobile agents on an arbitrary graph (τ = min(k,∆)) The algorithm of [7]
needs to know an asymptotically tight upper bound on mk in advance. (Since mk ≤ min(m, k∆,

(
k
2

)
),

knowing tight upper bounds on m, k, and ∆ is sufficient, but it increases the running time to
O(min(m, k∆,

(
k
2

)
) log k).) The log k term can be eliminated from the space complexities marked

with daggers (†) if you choose to disregard the memory space required for each agent to store its own
identifier. For example, the proposed algorithm mentioned in Theorem 8 requires only O(log ∆) bits
per agent. The space complexity of the first algorithm given by [6], which is marked with a double
dagger (‡), can be decreased to O(k log ∆) if we assume that the number of possible agent-identifiers
is O(k). All algorithms listed in this table are deterministic.

Memory per agent Time General/Rooted Async./Sync.
[2] O(log(k + ∆)) † O(mk) rooted async.
[10] O(D + ∆ log k) O(D∆(D + ∆)) rooted async.

Theorem 8 O(log(k + ∆)) † O(k log τ) rooted sync.
Theorem 12 O(∆ + log k) † O(k) rooted sync.

[6] O(k log(k + ∆)) ‡ O(mk) general async.
[6] O(D log ∆ + log k) † O(∆D) general async.
[6] O(log(k + ∆)) O(mk · k) general async.
[7] O(log(k + ∆)) O(mk log k) general sync.
[16] O(log(k + ∆)) O(mk log k) general sync.
[11] O(log(k + ∆)) O(mk) general async.

Theorem 10 O(log(k + ∆)) O(k log2 k) general sync.
Lower bound any Ω(k) any any

was originally proposed by Augustine and Moses Jr. [2] in 2018. A particularly intriguing
aspect of this problem is the unique computation model. Unlike many other models involving
mobile agents on graphs, we do not have access to node identifiers, nor can we use local
memory at each node. In this setting, an agent cannot retrieve or store any information from
or on a node when it visits. However, each of the k agents possesses a unique identifier and
can communicate with each other when they are at the same node in the graph. The agents
must collaboratively solve the dispersion problem through this direct communication.

Several algorithms have been introduced in the literature to solve the dispersion problem.
This problem has been examined in two different contexts within the literature: the rooted
setting and the general setting. In the rooted setting, all k agents initially reside at a single
node. On the other hand, the general setting imposes no restrictions on the initial placement
of the k agents. For any i ∈ [1, n], we define mi as the maximum number of edges in any
i-node induced subgraph of G. The parameter mk, where k is the number of agents, serves
as an upper bound on the number of edges connecting two nodes, each hosting at least one
agent, in any configuration. Consequently, mk frequently appears in the time complexities
of dispersion algorithms. This is because (i) solving the dispersion problem essentially
requires finding k distinct nodes, and (ii) the simple depth-first search (DFS), employed as a
submodule by many dispersion algorithms, needs to explore mk edges to find k nodes.

Table 1 provides a summary of various dispersion algorithms found in the literature, all
designed for arbitrary graphs. Here, ∆ and D are the maximum degree and the diameter of
a graph, respectively, and τ = min(k,∆). Augustine and Moses Jr. [2] introduced a simple
algorithm, based on depth-first search (DFS), for the rooted setting. This algorithm solves
the dispersion problem in O(mk) time using O(log ∆) bits of space per agent. Kshemkalyani
and Ali [6] provides two algorithms that accomplish dispersion in the general setting: an
O(mk)-time and O(k log(k+ ∆))-space algorithm, and an O(mk · k)-time and O(log(k+ ∆))-



Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa 38:3

space algorithm, offering a trade-off between time and space. The first is faster but needs
more space, while the second is slower but more memory-efficient. Kshemkalyani, Molla,
and Sharma [7] found a middle ground with an algorithm that runs in O(mk log k) time and
uses O(log(k + ∆)) bits of each agent’s memory. This algorithm, however, requires a priori
global knowledge, asymptotically tight upper bounds on mk, to attain its time upper bound.
Shintaku, Sudo, Kakugawa, and Masuzawa [16] managed to eliminate this requirement for
global knowledge. More recently, Kshemkalyani and Sharma [11] removed the log k factor
from the running time. This algorithm also works in an asynchronous setting, meaning the
agents do not need to share a common clock. Any dispersion algorithm requires at least
Ω(k) time, which is almost trivial, but we will provide a proof for completeness in this paper.
No other lower bounds on the time complexity of dispersion have been established in the
literature. Thus, there is still a significant gap between the best known upper bound O(mk)
and this lower bound of Ω(k) because mk = Θ(k2) holds in many graph classes. Note that
mk = Θ(k2) may hold even in a sparse graph when k = O(

√
n).

All the algorithms mentioned above are based on DFS. However, a few algorithms
[6, 10] are designed based on BFS (breadth-first search) and exhibit different performance
characteristics. Notably, their upper bounds on running time do not depend on the number
of agents k, but depend on diameter D and the maximum degree ∆ of a graph.
▶ Note 1 (Space Complexity). Conforming to the convention in the studies of mobile agents
[5], this paper, including Table 1, evaluates the space complexity of an algorithm as the
maximum size of persistent memory needed by an agent during its execution. Persistent
memory refers to the information an agent carries when it moves from one node to another
and does not include the working memory used for local computations at nodes. This
persistent memory includes the space required to store its own identifier. Since the k agents
are labeled with unique identifiers, every algorithm requires O(log k) bits per agent.
▶ Note 2 (Parameter mk). The parameter mk is introduced in this paper and has not been
previously utilized in the literature. Traditionally, the running times of DFS-based algorithms
are represented using the parameter min(m, k∆) or min(m, k∆,

(
k
2
)
), which are always greater

than or equal to mk. The parameter mk may be better to represent them because there are
some graph classes where mk = o(k2) while min(m, k∆,

(
k
2
)
) = Ω(k2).

1.1 Our Contribution
In this paper, we drastically reduce the gap between the upper bound O(mk) and the lower
bound Ω(k) mentioned earlier. As previously noted, mk = Θ(k2) may hold even in sparse
graphs, making this gap significant. Let τ = min(k,∆). We present two algorithms: one for
the rooted setting that achieves dispersion in O(k log τ) = O(k log k) time using O(log ∆) bits,
and the other for the general setting that achieves dispersion in O(k log k · log τ) = O(k log2 k)
time using O(log(k + ∆)) bits. The upper bounds obtained here match the lower bounds in
both the rooted and the general settings when ignoring poly-logarithmic factors.

To achieve this upper bound, we introduce a new technique. Like many existing algorithms,
our algorithms are based on Depth-First Search (DFS). That is, we let agents run DFS on a
graph and place or settle an agent at each unvisited node they find. Each time unsettled
agents find an unvisited node v, one of the agents settles at v, and the others try to find
an unvisited neighbor of v. If such a neighbor exists, they move to it. If no such neighbor
exists, they go back to the parent of v in the DFS tree. To find an unvisited neighbor, all
DFS-based dispersion algorithms in the literature make the unsettled agents visit those
neighbors sequentially, i.e., one by one. This process obviously requires Ω(τ) time. We break
this barrier and find an unvisited neighbor of v in O(log τ) = O(log k) time, with the help of
the agents already settled at neighbors of the current location v.

DISC 2024



38:4 Near-Linear Time Dispersion of Mobile Agents

Our goal here is to find any one unvisited neighbor of v if it exists, not to find all of them.
Consider the case where there are only two agents a and b at v, a is settled at v, and b is still
an unsettled agent. Agent b visits a neighbor of v and if b finds a settled agent at that node,
b brings that agent to v. Consequently, there are two agents on v, excluding a, so we can use
these two to visit two neighbors of v in parallel. Again, if there are settled agents on both
nodes, those agents will be brought to v. Importantly, the number of agents at v, excluding
a, doubles each time this process is repeated until an unvisited neighbor is found. Therefore,
over time, we can check neighbors of v in parallel with an exponentially increasing number of
agents. As a result, we can finish this search or probing process in O(log τ) time. Thereafter,
we allow the helping agents we brought to v to return to their original nodes, or their homes.
Since we perform the probing process only O(k) times in total throughout DFS, a simple
analysis shows that dispersion can be achieved in O(k log τ) time in the rooted setting. We
call the resulting DFS the HEO (Helping Each Other)-DFS in this paper.

In the general setting, like in existing studies, we conduct multiple DFSs in parallel, each
starting from a different node. While the DFS performed in existing research requires Θ(mk)
time, we use HEO-DFS, thus each DFS completes in O(k log τ) time. Thus, at first glance,
it seems that dispersion can be achieved in O(k log τ) time. However, this analysis does
not work so simply because each DFS interferes with each other. Our proposed algorithm
employs the method devised by Shintaku et al. [16] to efficiently merge multiple DFSs and
run HEO-DFSs in parallel with this method. The merge process incurs an O(log k) overhead,
so we solve the dispersion problem in O(k(log k) · (log τ)) = O(k log2 k) time.

It might seem that the overhead can be eliminated by using the DFS parallelization
method proposed by Kshemkalyani and Sharma [11], instead of the method of Shintaku et
al. [16]. However, this is not the case because our HEO-DFS is not compatible with the
parallelization method of Kshemkalyani and Sharma. Specifically, their method entails a
process such that one DFS absorbs another when multiple DFSs collide. During this process,
it is necessary to gather the agents in the absorbed side to a single node, which requires
Θ(mk) time. Our speed-up idea effectively works for finding an unvisited neighbor, but it
does not work for the acceleration of gathering agents dispersed on multiple nodes. Therefore,
it is unlikely that our HEO-DFS can be combined with the method of Kshemkalyani and
Sharma.

The two algorithms mentioned above are nearly time-optimal, i.e., requiring O(k · logc k)
time for some constant c. We also demonstrate that in the rooted setting, a time-optimal
algorithm based on the HEO-DFS can be achieved if significantly more space is available,
specifically O(∆) bits per agent.

To the best of our knowledge, HEO-DFS is a novel approach, and no similar techniques
have been used in the literature concerning mobile agents and mobile robots. While we
demonstrate that HEO-DFS significantly reduces the running time of dispersion algorithms,
this technique may also prove useful for addressing other fundamental problems such as
exploration and gathering.

A drawback of our HEO-DFS is that it fundamentally requires a synchronous model, even
in the rooted setting; i.e., it does not function in an asynchronous model. In HEO-DFS, we
attempt to find an unvisited neighbor of the current location with the help of agents settled
on other neighbors. These agents must return to their homes once the probing process is
completed. In an asynchronous model, unsettled agents (and/or helping agents) may visit
those homes before their owners return, disrupting the consistent behavior of HEO-DFS.
Therefore, the algorithm provided by Kshemkalyani and Sharma [11] remains the fastest
for the asynchronous model. It is still an open question whether there exists a o(k2)-time
algorithm that accommodates asynchronicity.



Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa 38:5

▶ Note 3 (Termination). In this paper, we do not explicitly mention how the agents terminate
the execution of a given algorithm. In many cases, termination is straightforward without
any additional assumptions in the rooted setting, while in the general setting, additional
assumptions are required. Specifically, in the general setting, all algorithms listed in Table 1,
except for the O(∆d)-time algorithm presented in [8] 1, require both a synchronous setting
and global knowledge such as (asymptotically tight upper bounds on) mk and k. With
these assumptions, the agents can easily terminate simultaneously after a sufficiently large
number of steps, e.g., Θ(k log2 k) steps in our algorithm for the general setting. Thus,
when termination is required, our general setting algorithm no longer exhibits disadvantages
compared to existing algorithms: all existing algorithms, except for the O(∆D)-time one [8],
also require a synchronous setting (and some global knowledge).

For completeness, we present how the agents terminate in our algorithms for the rooted
setting, which is almost trivial, in the arXiv version [19].

1.2 Further Related Work

The dispersion problem has been studied not only for arbitrary undirected graphs but also
for graphs with restricted topologies such as trees [2], grids [7, 9], and dynamic rings [1].
Additionally, several studies have explored randomized algorithms to minimize the space
complexity of dispersion [13, 4], and others have focused on fault-tolerant dispersion [12, 3].
Kshemkalyani et al. [10] introduced the global communication model, where all agents can
communicate with each other regardless of their locations. In contrast, the standard model,
where only the agents co-located at the same node can communicate with each other, is
sometimes referred to as the local communication model. All algorithms listed in Table 1
assume the local communication model and are deterministic.

Exploration by a single mobile agent is closely related to the dispersion problem. The
exploration problem requires an agent to visit all nodes of a graph. Many studies have
addressed the exploration problem, and numerous efficient algorithms, both in terms of time
and space, have been presented in the literature [15, 14, 17, 18]. In contrast to exploration,
the dispersion problem only requires finding k nodes, and we can use k agents to achieve this.
Our HEO-DFS take advantage of these differences to solve the dispersion problem efficiently.

2 Preliminaries

Let G = (V,E) be any simple, undirected, and connected graph. Let n = |V | and m = |E|.
We denote the set of neighbors of node v ∈ V by N(v) = {u ∈ V | {u, v} ∈ E} and the
degree of a node v by δv = |N(v)|. Let ∆ = maxv∈V δv, i.e., ∆ is the maximum degree of
G. The nodes are anonymous, i.e., they do not have unique identifiers. However, the edges
incident to a node v are locally labeled at v so that an agent located at v can distinguish
those edges. Specifically, those edges have distinct labels 0, 1, . . . , δv − 1 at node v. We call
these local labels port numbers. We denote the port number assigned at v for edge {v, u} by
pv(u). Each edge {v, u} has two endpoints, thus has labels pu(v) and pv(u). Note that these
labels are independent, i.e., pu(v) ̸= pv(u) may hold. For any v ∈ V , we define N(v, i) as the
node u ∈ N(v) such that pv(u) = i. For simplicity, we define N(v,⊥) = v for all v ∈ V .

1 However, in this algorithm, the agents do not terminate simultaneously, and they require the ability to
detect whether or not there is a terminated agent at the current location.

DISC 2024



38:6 Near-Linear Time Dispersion of Mobile Agents

We consider that k agents exist in graph G, where k ≤ n. The set of all agents is denoted
by A. Each agent is always located at some node in G, i.e., the move of an agent is atomic and
an agent is never located at an edge at any time step (or just step). The agents have unique
identifiers, i.e., each agent a has a positive integer as its identifier a.ID such that a.ID ̸= b.ID
for any b ∈ A\{a}. The agents know a common upper bound idmax ≥ maxa∈A a.ID such that
idmax = poly(k), thus the agents can store the identifier of any agent on O(log k) space. Each
agent has a read-only variable a.pin ∈ {0, 1, . . . ,∆− 1} ∪ {⊥}. At time step 0, a.pin = ⊥
holds. For any t ≥ 1, if a moves from u to v at step t− 1, a.pin is set to pv(u) (or the port
of v incoming from u) at the beginning of step t. If a does not move at step t− 1, a.pin is
set to ⊥. We call the value of a.pin the incoming port of a. The values of all variables in
agent a, excluding its identifier a.ID and special variables a.pin, a.pout, constitute the state
of a. (We will see what is a.pout later.)

The agents are synchronous and are given a common algorithm A. An algorithm A
must specify the initial state sinit of agents. All agents are in state sinit at time step 0. Let
A(v, t) ⊆ A denote the set of agents located at node v at time step t ≥ 0. At each time step
t ≥ 0, each agent a ∈ A(v, t) is given the following information as the inputs: (i) the degree
of v, (ii) its identifier a.ID, and (iii) a sequence of triples ((b.ID, sb, b.pin))b∈A(v,t), where sb

is the current state of b. Note that each a ∈ A(v, t) can obtain its current state sa and a.pin
from the sequence of triples since a is given its ID as the second information. Then, it updates
the variables in its memory space in step t, including a variable a.pout ∈ {⊥, 0, 1, . . . , δv− 1},
according to algorithm A. Finally, each agent a ∈ A(v, t) moves to node N(v, a.pout). Since
we defined N(v,⊥) = v above, agent a with a.pout = ⊥ stays in v in step t.

A node does not have any local memory accessible by the agents. Thus, the agents can
coordinate only by communicating with the co-located agents. No agents are given any
global knowledge such as m, ∆, k, and mk in advance.

A function C : A→MA× V ×{⊥, 0, 1, . . . ,∆− 1} is called a global state of the network
or a configuration if C(a) = (s, v, q) yields q = ⊥ or q < δv for any a ∈ A, where MA is the
(possibly infinite) set of all agent-states. A configuration specifies the state, location, and
incoming port of each a ∈ A. In this paper, we consider only deterministic algorithms. Thus,
if the network is in a configuration C at a time step t, a configuration C ′ in the next step
t+ 1 is uniquely determined. We denote this configuration C ′ by nextA(C). The execution
ΞA(C0) of algorithm A starting from a configuration C0 is defined as an infinite sequence
C0, C1, . . . of configurations such that Ct+1 = nextA(Ct) for all t = 0, 1, . . . . We say that a
configuration C0 is initial if the states of all agents are sinit and the incoming ports of all
agents are ⊥ in C0. Moreover, in the rooted setting, we restrict the initial configurations to
those where all agents are located at a single node.

▶ Definition 4 (Dispersion Problem). A configuration C of an algorithm A is called legitimate
if (i) all agents in A are located in different nodes in C, and (ii) no agent changes its location
in execution ΞA(C). We say that A solves the dispersion problem if execution ΞA(C0) reaches
a legitimate configuration for any initial configuration C0.

We evaluate the time complexity or running time of algorithm A as the maximum number
of steps until ΞA(C0) reaches a legitimate configuration, where the maximum is taken over
all initial configurations C0. Let M′

A ⊆MA be the set of all agent-states that can appear
in any possible execution of A starting from any initial configuration. We evaluate the space
complexity or memory space of algorithm A as log2 |M′

A| + log2 idmax, i.e., the maximum
number of bits required to represent an agent-state that may appear in those executions,
plus the number of bits required for each agent to store its own identifier. This implies that
we exclude the size of the working memory used for deciding the destination and updating
states, as well as the space for storing input information, except for the agent’s own identifier.



Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa 38:7

Throughout this paper, we denote by [i, j] the set of integers {i, i + 1, ..., j}. We have
[i, j] = ∅ when j < i. When the base of a logarithm is not specified, it is assumed to be 2.
We frequently use τ = min(k,∆). We define ν(a, t) as the node where agent a resides at time
step t. We also omit time step t from any function in the form f(∗, t) and just write f(∗) if t
is clear from the context. For example, we just write A(v) and ν(a) instead of A(v, t) and
ν(a, t).

We have the following remark considering the fact that G can be a simple path.

▶ Remark 5. For any dispersion algorithm A, there exists a graph G such that an execution
of A requires Ω(k) time steps to achieve dispersion on both the rooted and the general
settings.

In the two algorithms we present in this paper, RootedDisp and GeneralDisp, each
agent maintains a variable a.settled ∈ {⊥,⊤}. We say that an agent a is a settler when
a.settled = ⊤, and an explorer otherwise. All agents are explorers initially. Once an
explorer becomes a settler, it never becomes an explorer again. Let t be the time at which
an agent a becomes a settler. Thereafter, we call the location of a at that time, i.e., ν(a, t),
the home of a. Formally, a’s home at t′ ≥ 0, denoted by ξ(a, t′), is defined as ξ(a, t′) = ⊥ if
t′ < t and ξ(a, t′) = ν(a, t) otherwise. It is worth mentioning that a settler may temporarily
leave its home. Hence ξ(a, t′) = ν(a, t′) may not always hold even after a becomes a settler,
i.e., even if t′ ≥ t. However, by definition, no agent changes its home. We say that an agent
a settles when it becomes a settler.

When a node u is a home of an agent at time step t, we call this agent the settler of
u and denote it as ψ(u, t). Formally, if there exists an agent a such that ξ(a, t) = u, then
ψ(u, t) = a; otherwise, ψ(u, t) = ⊥. This function ψ is well defined for the two presentented
algorithms because they ensure that no two agents share a common home. We say that a
node u is unsettled at time step t if ψ(u, t) = ⊥, and settled otherwise.

3 Rooted Dispersion

In this section, we present an algorithm, RootedDisp, that solves the dispersion problem
in the rooted setting. That is, it operates under the assumption that all agents are initially
located at a single node s ∈ V . This algorithm straightforwardly implements the strategy of
the HEO-DFS, which we presented in Section 1. The time and space complexities of this
algorithm are O(k log τ) steps and O(log(k + ∆)) bits, respectively.

In an execution of Algorithm RootedDisp, the agent with the largest ID, denoted as
amax, serves as the leader. Note that every agent can easily determine whether it is amax or
not at time step 0 by comparing the IDs of all agents. Then, amax conducts a depth-first
search (DFS), while the other agents move with the leader and one of them settles at
an unsettled node when they visit it. If amax encounters an unsettled node without any
accompanying agents, amax settles itself on that node, achieving dispersion. During a DFS,
amax must determine (i) whether there is an unsettled neighbor of the current location, and
(ii) if so, which neighbor is unsettled. To make this decision, all DFS-based algorithms in the
literature have amax visit neighbors one by one until it finds an unsettled node, which clearly
requires Ω(τ) steps. RootedDisp, in contrast, makes this decision in O(log τ) steps with
the help of the agents that have already settled on the neighbors of the current location.

The pseudocode for Algorithm RootedDisp is shown in Algorithm 1. This pseudocode
consists of two parts: the main function (lines 1–12) and the function Probe() (lines 13–23).
As mentioned in the previous section, every agent a maintains a variable a.settled ∈ {⊥,⊤},
which decides whether a is an explorer or a settler. In addition, the settler ψ(w) of a node w

DISC 2024



38:8 Near-Linear Time Dispersion of Mobile Agents

1
0

2
34

5
6
7

×𝟑 ×𝟕 ×8
detect

Figure 1 The behavior of the agents when the leader amax invokes Probe() at the center node
w in RootedDisp. A black circle, triangle, and rectangle represent a leader (amax), a non-leader
explorer, and a settler, respectively. The integers in the leftmost figure represents port numbers. In
every two time steps, the number of agents on w excluding ψ(w) doubles (i.e., 2 → 4 → 8) until
some agent detects an unsettled neighbor of w. After that, amax lets the helping settlers go back to
their homes.

maintains two variables, ψ(w).parent, ψ(w).next ∈ [0, δw − 1]∪⊥ for the main function. As
we will see later, the following are guaranteed each time amax invokes Probe() at node w:

If there exists an unsettled node in N(w), the corresponding port number will be stored in
ψ(w).next. More precisely, an integer i such that N(w, i) = u and ψ(u) = ⊥ is assigned
to ψ(w).next.
If all neighbors are settled, ψ(w).next will be set to ⊥.
Probe() will return in O(log τ) time.

The main function performs a depth-first search using function Probe() to achieve
dispersion. At the beginning of the execution, all agents are located at the same node s.
Initially, the agent with the smallest ID settles at node s, and ψ(s).parent is set to ⊥ (lines
1–2). Then, as long as there are unsettled nodes in N(ν(amax)), all explorers move to one
of those nodes together (lines 7–8). We call this kind of movements forward moves. After
each forward move from a node w to u, the agent with the smallest ID among A(u) settles
on u, and ψ(u).parent is set to i with N(u, i) = w (lines 9–10). For any node u ∈ V , if
ψ(u).parent ≠ ⊥, we say that w = N(u, ψ(u).parent) is a parent of u. By line 9–10, each
of the nodes except for the starting node s will have its parent as soon as it becomes settled.
When the current location has no unsettled neighbors, all explorers move to the parent of the
current location (lines 11–12). We call this kind of movements backward moves or retreats.
Finally, amax terminates when it settles (line 3).

Since the number of agents is k, the DFS-traversal stops after amax makes a forward move
k− 1 times. The agent amax makes a backward move at most once from any node. Therefore,
excluding the execution time of Probe(), the execution of the main function completes in
O(k) time. Furthermore, the function Probe() is invoked at most 2(k − 1) times, once
after each forward move and once after each backward move. Since a single invocation of
Probe() requires O(log τ) time, the overall execution time of RootedDisp can be bounded
by O(k log τ) time.

Let us describe the behavior of the function Probe(), assuming that it is invoked on
node w at time step t. Figure 1 may help the readers to understand the behavior. In the
execution of Probe(), the leader amax employs the explorers present on w and (a portion of)
the settlers at N(w) to search for an unsettled node in N(w). We implement this process
with a variable ψ(w).checked ∈ [−1, δw − 1] for the settler ψ(w). Specifically, explorers
at node w verify whether the neighbors of w are unsettled or not in the order of port
numbers and store the most recently checked port number in ψ(w).checked. Consequently,
ψ(w).checked = ℓ implies that the neighbors N(w, 0), N(w, 1), . . . , N(w, ℓ) are settled. Let
x = |A(w, t) \ {ψ(w)}|, i.e., there are x agents at w when Probe() is invoked, excluding ψ(w).



Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa 38:9

Algorithm 1 RootedDisp.

1 b.settled← ⊤, where b is the agent with the smallest ID in A(s)
// b settles at the starting node s

2 b.parent← ⊥
3 while amax.settled = ⊥ do
4 Probe()
5 Let w = ν(amax)
6 if ψ(w).next ̸= ⊥ then
7 Let u = N(w,ψ(w).next) // u is an unsetteled node here
8 All explorers in A(w) go to u
9 b′.settled← ⊤, where b′ is the agent with the smallest ID in A(u)

10 b′.parent← amax.pin
11 else
12 All explorers in A(w) go back to node N(w,ψ(w).parent).

13 function Probe():
14 Let w = ν(amax).
15 (ψ(w).next, ψ(w).checked)← (⊥,−1)
16 while ψ(w).checked ̸= δw − 1 do
17 Let a1, a2, . . . , ax be the agents in A(w) \ {ψ(w)}, and let

∆′ = min(x, δw − 1− ψ(w).checked). For each i = 1, 2, . . . ,∆′, assign ai to
the neighboring node ui = N(w, i+ ψ(w).checked), and let ai make a round
trip between w and ui. In other words, make ai move in the order
w → ui → w. If ai finds a settler at ui, it will bring the settler ψ(ui) back to
w.

18 if there exists ai that did not bring ψ(ui) back to w then
19 ψ(w).next← i+ ψ(w).checked // ui must be unsettled
20 Break the while loop.
21 else
22 ψ(w).checked← ψ(w).checked + ∆′

23 Let all settlers except for ψ(w) go back to their homes.

In the first iteration of the while loop (lines 16–22), the min(x, δw) agents concurrently visit
min(x, δw) neighbors and then return to w (lines 17–18). This entire process takes exactly
two time steps. These agents bring back all the settlers, at most one for each neighbor, they
find. If there is an agent that does not find a settler, then the node visited by that agent must
be unsettled. In such a case, the port used by one of these agents is stored in ψ(w).next,
and the while loop terminates (lines 20–21).2 If all x agents bring back one agent each, then
there are 2x agents on w, excluding ψ(w). In the second iteration of the while loop, these 2x
agents visit the next 2x neighbors and search for unsettled neighbors in a similar way. As
long as no unsettled neighbors are discovered, the number of agents on w, excluding ψ(w),

2 For simplicity, we reset ψ(w).checked to −1 each time we invoke Probe() at w, so we do not use the
information about which ports were already checked in the past invocation of Probe(). As a result, the
value of ψ(w).next computed by Probe does not have to be the minimum port leading to an unsettled
neighbor of w.

DISC 2024



38:10 Near-Linear Time Dispersion of Mobile Agents

doubles with each iteration of the while loop. Since there are at most τ = min(k,∆) settled
nodes in N(w), after running the while loop at most O(log(τ/x)) = O(log τ) times, either an
unsettled node will be found, or the search will be concluded without finding any unsettled
nodes. In the latter case, since ψ(w).next is initialized to ⊥ when Probe() is called (line 15),
ψ(w).next = ⊥ will also be valid at the end of the while loop, allowing amax to verify that all
neighbors of w are settled. After the while loop ends, the settlers brought back to w return
to their homes (line 23). This process of “returning to their homes” requires the agents to
remember the port number leading to their home from w. However, we exclude this process
from the pseudocode because it can be implemented in a straightforward manner, and it
requires only O(log ∆) bits of each agent’s memory. In conclusion, we have the following
lemma.

▶ Lemma 6. Each time Probe() is invoked on node w ∈ V , Probe() finishes in O(log τ)
time. At the end of Probe(), it is guaranteed that: (i) if there exists an unsettled node in
N(w), then N(w,ψ(w).next) is unsettled, and (ii) if there are no unsettled nodes in N(w),
then ψ(w).next = ⊥ holds true.

▶ Lemma 7. Each agent requires O(log(k + ∆)) bits of memory to execute RootedDisp.

Proof. In this algorithm, an agent handles several O(log ∆)-bit variable, next, checked,
parent, as well as the port number that the settler ψ(u) needs to remember in order to
return to node u from node w at line 23 after coming at line 17. Every other variable can be
stored in a constant space. Therefore, the space complexity is O(log(k + ∆)) bits, adding
the memory space to store the agent’s identifier. ◀

▶ Theorem 8. In the rooted setting, algorithm RootedDisp solves the dispersion problem
within O(k log τ) time using O(log(k + ∆)) bits of space per agent.

Proof. As long as there is an unsettled neighbor of the current location, amax makes a forward
move to one of those nodes. If there is no such neighbor, amax makes a backward move to
the parent node of the current location. Since the graph is connected, this DFS-traversal
clearly visits k nodes with exactly k − 1 forward moves and at most k − 1 backward moves.
Thus, the number of calls to Probe() is at most 2(k − 1) times. By Lemma 6, the execution
of RootedDisp achieves dispersion within O(k log τ) time. ◀

4 General Dispersion

4.1 Overview
In this section, we present an algorithm GeneralDisp that solves the dispersion problem
in O(k log τ · log k) = O(k log2 k) time, using O(log(k + ∆)) bits of each agent’s memory,
in the general setting. Unlike the rooted setting, the agents are deployed arbitrarily. In
GeneralDisp, we view the agents located at the same starting node as a single group and
achieve rapid dispersion by having each group perform a HEO-DFS in parallel, sometimes
merging groups. We show that by employing the group merge method given by Shintaku et
al. [16], say Zombie Method, we can parallelize HEO-DFS by accepting an additive factor of
log k to the space complexity and a multiplicative factor of log k to the time complexity. We
have made substantial modifications to the Zombie Method to avoid conflicts between the
function Probe() of HEO-DFS and the behavior of the Zombie Method.

As defined in Section 2, agents a with a.settled = ⊤ are called settlers, and the other
agents are called explorers. In addition, in GeneralDisp, we classify explorers to two
classes, leaders and zombies, depending on a variable leader ∈ [0, idmax]. We call an



Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa 38:11

explorer a a leader if a.leader = a.ID, otherwise a zombie. Each agent a initially has
a.leader = a.ID, so all agents are leaders at the start of an execution of GeneralDisp. As
we will see later, a leader may become a zombie and a zombie will eventually become a
settler, whereas a zombie never becomes a leader again, and a settler never becomes a leader
or zombie again. Among the agents in A(v, t), the set of leaders (resp., zombies, settlers)
staying at v in time step t is denoted by AL(v, t) (resp., AZ(v, t), AS(v, t)). By definition,
A(v, t) = AL(v, t) ∪AZ(v, t) ∪AS(v, t).

We introduce a variable level ∈ N to bound the execution time of GeneralDisp. We
call the value of a.level the level of agent a. The level of every agent is 1 initially. The
pair (a.leader, a.level) serves as the group identifier: when agent a is a leader or settler,
we say that a belongs to a group (a.leader, a.level). By definition, for any (ℓ, i) ∈ N2, a
group (ℓ, i) has at most one leader. A zombie does not belong to any group. However, when
it accompanies a leader, it joins the HEO-DFS of that leader. We define a relationship ≺
between any two non-zombies a and b using these group identifiers as follows:

a ≺ b ⇔ (a.level < b.level) ∨ (a.level = b.level ∧ a.leader < b.leader).

We say that agent a is weaker than b if a ≺ b, and that a is stronger than b otherwise.
Initially, all agents are leaders and each forms a group of size one. In the first time step,

the strongest agent at each node turns all the other co-located agents into zombies (if exists).
From then on, each leader performs a HEO-DFS while leading those zombies. For any leader
a, we define the territory of a as

Va = {v ∈ V | ∃b ∈ A : ψ(v) = b ∧ b.leader = a.ID ∧ b.level = a.level}.

Each time a leader a visits an unsettled node, it settles one of the accompanying zombies (if
exists), giving it a’s group identifier (a.leader, a.level). That is, a expands its territory. If
a node outside a’s territory is detected during the probing process of HEO-DFS, that node
is considered unsettled even though it belongs to the territory of another leader. As a result,
a may move forward to a node u that is inside another leader’s territory. If that node u
belongs to the territory of a weaker group, a incorporates the settler ψ(u) into its own group
by giving ψ(u) its group identifier (a.leader, a.level). If a leader a encounters a stronger
leader or a stronger settler during its HEO-DFS, a becomes a zombie and terminates its
own HEO-DFS. If there is a leader at the current location ν(a) when a becomes a zombie, a
joins the HEO-DFS of that leader. Otherwise, the agent a, now a zombie, chases a stronger
leader by moving through the port ψ(v).next at each node v. Unlike RootedDisp, a leader
updates ψ(v).next with the most recently used port even when it makes a backward move.
This ensures that a catches up to a leader eventually, at which point a joins the HEO-DFS
led by the leader.

Unlike RootedDisp, a leader does not settle itself at a node in the final stage of HEO-
DFS. The leader a suspends the HEO-DFS if it visits an unsettled node but it has no
accompanying zombies to settle at that time. A leader who has suspended the HEO-DFS due
to the absence of accompanying zombies is called a waiting leader. Conversely, a leader with
accompanying zombies is called an active leader. A waiting leader a resumes the HEO-DFS
when a zombie catches up to a at ν(a). As we will see later, the execution of GeneralDisp
ensures that all agents eventually become either waiting leaders or settlers, each residing at
a distinct node. The agents have solved the dispersion once such a configuration is reached
because thereafter no agent moves and no two agents are co-located.

When a leader a encounters a zombie z with the same level, a increments its level by one,
and z resets its level to zero. This “level up” changes the identifier of a’s group, i.e., from
(a.ID, i) to (a.ID, i+ 1) for some i. By the definition of the territory, at this point, a loses

DISC 2024



38:12 Near-Linear Time Dispersion of Mobile Agents

Table 2 Slot Assignments.

Slot Number Role Initiative Pseudocode
Slot 1 Leader election Leaders 2
Slot 2 Settle, increment level, etc. Leaders 3
Slots 3 Move to join Probe() Settlers 4

Slots 4–8 Probe() Leaders 3
Slot 9–10 Chase for leaders Zombies 5
Slot 11–12 Move forward/backward Leaders 2

all nodes from its territory except for the current location. That is, each time a leader a
increases its level, it restarts its HEO-DFS from the beginning. Note that this “level up”
event also occurs when two leaders a, b (b ≺ a) with the same level meet (and there is no
stronger agent at the location) because then b becomes a zombie after it finds a stronger
leader a, which results in the event that a leader a encounters a zombie with the same level,
say b. We have the following lemma here.

▶ Lemma 9. The level of an agent is always at most log2 k + 1.

Proof. A level-up event requires one leader a and one zombie b with the same level. That
zombie b will get level 0. Thereafter, b never triggers a level-up event again because the level
of a leader is monotonically non-decreasing starting from level 1. Therefore, for any i ≥ 1,
the number of agents that can reach level i is at most ⌊k/2i−1⌋, leading the lemma. ◀

Therefore, each leader performs HEO-DFS at most O(log k) times. According to the
analysis in Section 3, each HEO-DFS completes in O(k log τ) time, which seems to imply that
GeneralDisp finishes in O((log k) · (k log τ)) = O(k log2 k) time. However, this analysis does
not take into account the length of the period during which leaders suspend their HEO-DFS.
Thus, it is not clear whether a naive implementation of the strategy described above would
achieve the dispersion in O(k log2 k) time. Following Shintaku et al. [16], we vary the speed
of zombies chasing leaders based on a certain condition, which bounds the execution time by
O(k log2 k) time.

We give zombies different chasing speeds as follows. First, we classify zombies based
on two variables levelL and levelS that each zombie manages. For any zombie z, we
call z.levelL and z.levelS the location level and swarm level of z. When a leader z
becomes a zombie, it initializes both z.levelL and z.levelS with its level, i.e., z.level.
Thereafter, a zombie z copies the level of ψ(ν(z)) to z.levelL and updates z.levelS to be
max{b.level | b ∈ AZ(ν(z))} in every O(1) time steps. Since a zombie only chases a leader
with an equal or greater level, z.levelS ≤ z.levelL always holds. We say that a zombie z
is strong if z.levelS = z.levelL; z is weak otherwise. Then, we exploit the assumption that
the agents are synchronous and let weak zombies move twice as frequently as strong zombies
to chase a leader. As we will prove later, this difference in chasing speed results in a desirable
property of GeneralDisp, namely that min({a.level | a ∈ AAL} ∪ {z.levelL | z ∈ AZ})
is monotone non-decreasing and increases by at least one in every O(k log τ) steps, where
AAL is the set of active leaders and AZ is the set of zombies both in the whole graph, until
AAL ∪AZ becomes empty. Thus, by Lemma 9, AAL ∪AZ becomes empty and the dispersion
is achieved in O(k log τ · log k) = O(k log2 k) steps.



Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa 38:13

1
0

2
34

5
6
7

Slots 3-5 Slots 6-7 Slot 8

Slot 3 Slot 8Slots 6-7Slots 4-5

×𝟑 ×𝟑×𝟑

detect

Slot 3

×𝟔

Slot 4

×𝟔

Slot 5 Slots 6-8

Figure 2 The behavior of explorers when their leader invokes Probe() at the center node w in
GeneralDisp. A black circle, triangle, and rectangle represent a leader, a zombie, and a settler,
respectively. The integers in the top left figure represents port numbers.

4.2 Implementation

In GeneralDisp, we group every 12 time steps into one unit, with each unit consisting of
twelve slots. In other words, time steps 0, 1, 2, . . . are classified into twelve slots. Specifically,
each time step t ≥ 0 is assigned to slot (t mod 12) + 1. For example, time step 26 is in slot 3,
and time step 47 is in slot 12. Dividing all time steps into twelve slots helps to reduce the
interference of multiple HEO-DFSs and allows us to set different “chasing speeds” for weak
and strong zombies. Table 2 summarizes the roles of each slot.

Essentially, slots 1–2 are designated for leader election (i.e., group merging), slots 3–8 for
probing, slots 9–10 for zombie chasing, and slots 11–12 for forward and backward movement
in DFS traversal. It is important to note that settlers always stay at their home during slots
1–2 and 9–12. Hence, once a settler leaves its home, it returns within O(1) steps. This is not
the case in RootedDisp, where a settler in helping mode does not return home until its
leader completes the probing process. In GeneralDisp, this frequent return home enables
leaders to detect collisions with other groups: if a leader enters another group’s territory, it
will certainly notice the intrusion during the next slot 1, as it encounters a settler from that
group.

Thus, the probing process in GeneralDisp slightly differs from that in RootedDisp.
Consider a leader al starting the probing process at a node w (refer to Figure 2). The
objective here is to identify any neighboring node of w that lies outside al’s territory, if
such exists. During slots 6–7, explorers at w visit its neighbors and return in parallel. If an
explorer b encounters a settler s at a node u ∈ N(w) in slot 6, b does not bring s back to w
in slot 7. Instead, b requests s to enter helping mode, wherein s records the port number to
w in the variable s.help ∈ N ∪ ⊥ (A settler s is in helping mode if and only if s.mode ̸= ⊥).
The helping settler s moves to w via port s.help in the subsequent slot 3, joins the probing
in slots 6-7, and returns to its home u again in slot 8. Leader al expects that the exact
ψ(w).checked helping settlers arrives at w in each slot 3. If this does not occur, al detects
a non-territorial neighbor in slot 4 by checking the pin variable of the helping settlers at

DISC 2024



38:14 Near-Linear Time Dispersion of Mobile Agents

w. Similar to RootedDisp’s probing process, the total number of explorers and helping
settlers at w doubles until such a neighbor is detected, concluding the process in O(log τ)
steps. Subsequently, al reverts the helping settlers at w to non-helping mode by setting their
help variable to ⊥ and instructs them to return to their homes in slot 5.

As mentioned earlier, we differentiate the chasing speed of weak zombies and strong
zombies. Specifically, weak zombies move in both slots 9 and 10, while strong zombies move
only in slot 10.

We left the detailed implementation of GeneralDisp including pseudocodes and the
complete proofs of its correctness and time complexity to the appendix due to space constraints.
We give only a proof sketch here for the following main theorem.

▶ Theorem 10. In the general setting, there exists an algorithm that solves the dispersion
problem within O(k log τ · log k) time using O(log(k + ∆)) bits of space per agent.

▶ Proof Sketch. It suffices to show that AAL ∪AZ becomes empty within O(k log τ · log k)
steps, at which point every agent is either a waiting leader or a settler, thereby achieving
dispersion. We obtain this bound from Lemma 9 and the fact that α = min({a.level |
a ∈ AAL} ∪ {z.levelL | z ∈ AZ}) increases by at least one in every O(k log τ) time steps
unless AAL ∪AZ becomes empty (Lemma 15 in Appendix). We can prove Lemma 15 roughly
as follows. Suppose α = i. First, all weak zombies at location level i vanish within O(k)
steps as they move faster than leaders and strong zombies, eventually encountering a leader,
higher-level settlers or stronger zombies. Thereafter, no new weak zombies at location level i
are created. Subsequently, without weak zombies at location level i, waiting leaders at level i
do not resume active HEO-DFS without increasing its level, which leads to the disappearance
of active leaders at level i within O(k log τ) steps. Finally, strong zombies chasing leaders at
level i catch up to those leaders within O(k) steps or find higher-level settlers, resulting in
the increase of their location level. Hence, all zombies with location level i and active leaders
at level i are eliminated within O(k log τ) steps. ◀

5 For Further Improvement in Time Complexities

In the previous sections, we introduced nearly time-optimal dispersion algorithms: an
O(k log τ)-time algorithm for the rooted setting and an O(k log2 k)-time algorithm for the
general setting. This raises a crucial question: is it possible to develop a truly time-optimal
algorithm, specifically an O(k)-time algorithm, even if it requires much more space? In this
section, we affirmatively answer this question for the rooted setting. We present an O(k)-time
algorithm that utilizes O(∆ + log k) bits of space per agent. However, the feasibility of an
O(k)-time algorithm in the general setting remains open.

We refer to the new algorithm as RootedOpt in this section. In RootedDisp, with
O(log(k + ∆)) bits of space, each settler ψ(w) cannot memorize the exact set of settled
neighbors of w. Instead, it only remembers the maximum i such that the first i neighbors
of w are settled. In contrast, RootedOpt allows each settler ψ(w) to remember all settled
neighbors of w using O(∆) bits, which significantly helps to eliminate an O(log τ) factor from
the time complexity. However, somewhat surprisingly, both the design of the new algorithm
and the analysis of its execution time are non-trivial.

Below, we outline the modifications made to RootedDisp to obtain RootedOpt. We
expect that most readers will grasp the behavior of RootedOpt simply by reviewing the
following key differences, while we provide the pseudocode for RootedOpt in the arXiv
version [19].



Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa 38:15

In RootedOpt, each settler ψ(w) maintains an array variable ψ(w).checked of size δw.
Each element of ψ(w).checked[i] takes a value from the set {0, 1,⊥}. The assignment
ψ(w).checked[i] = 0 (respectively, 1) indicates that the neighbor N(w, i) is unsettled
(respectively, settled). The value ⊥ is utilized exclusively during the probing process,
meaning that the neighbor N(w, i) has yet to be checked for its settled status. For any
c ∈ {0, 1,⊥}, we define Uc(u) = {N(u, i) | i ∈ [0, δw − 1], ψ(w).checked[i] = c}.
Consider that the unique leader amax invokes the probing process Probe() at a node
w. (Remember that amax is the unique leader that has the maximum identifier at the
beginning of the execution.) In RootedDisp, the probing process terminates as soon
as any agent finds an unsettled neighbor. However, in RootedOpt, the process only
ends when all of w’s neighbors are probed or when at least ℓ unsettled neighbors are
found, where ℓ is the number of explorers. In the former case, the probing process is
now complete: U⊥(w) is empty, and U0(w) equals the set of unsettled neighbors of w. In
the latter case, the explorers go to distinct ℓ unsettled nodes and settle there, thereby
achieving dispersion.
Consider an agent a making a round trip w → u→ w during Probe(), where u = N(w, p)
for some p ∈ [0, δw−1]. If a does not encounter a settler at u, it simply sets ψ(w).checked[i]
to 0. On the other hand, if a settler is found at u, a sets ψ(w).checked[i] to 1 and
additionally sets ψ(u).checked[q] to 1, where q ∈ [0, δu − 1] is the port number such that
w = N(u, q). This modification ensures that U0(u) remains equal to the set of unsettled
neighbors of u when the explorers go back to u.
In RootedDisp, the leader amax invokes Probe() after each forward or backward move.
However, in RootedOpt, amax only invokes Probe() after making a forward move. This
change does not compromise the correctness of RootedOpt because when amax makes a
backward move to a node w, ψ(w) accurately remembers its unsettled neighbors due to
the modification mentioned earlier.

One might think that the probing process Probe() in RootedOpt could take longer time
than in RootedDisp, as it only finishes after all neighbors of the current location have been
probed or after finding ℓ unsettled neighbors, where ℓ is the number of explorers. Particularly,
there seems to be a concern that during the probing at a node w, the number of agents,
excluding ψ(w), may not always double: this event occurs when some agents discover an
unsettled neighbor. Despite that, we deny this conjecture at least asymptotically, that is, we
have the following lemma.

▶ Lemma 11. Assume that amax invokes Probe() at node w during the execution of
RootedOpt, and exactly ℓ explorers including amax exists at the time. Then, Probe()
finishes within O(1) + max(0, 2⌈log τ − log ℓ⌉) time.

Proof. If ℓ ≥ τ , we have ℓ ≥ min(∆, k) = ∆ because ℓ < k. Then, the lemma trivially holds:
Probe() finishes in a constant time. Thus, we consider the case ℓ < τ . Let t be the time step
at which amax invokes Probe() at a node w, and let z = ⌈log τ − log ℓ⌉ + 1. It suffices to
show that U⊥(w, t′) = ∅ or |U0(w, t′)| ≥ ℓ holds for some t′ ∈ [t, t+ 2z +O(1)]. Assume for
contradiction that this does not hold. For any r ∈ [0, z], we define f(r) = Xr ·2r−1 +Yr, where
Xr = |U0(w, t+ 2r)| and Yr = |A(w, t+ 2r) \ {ψ(w)}|. By definition, f(0) = 0 · 20−1 + ℓ = ℓ.
Under the above assumption, for any r = 0, 1, . . . , z − 1, the agents in A(w, t+ 2r) move to
distinct neighbors in U⊥(w, t+ 2r) in time step t+ 2r, and bring back all settlers they find,
at most one for each neighbor, in time step t+ 2r + 1. Let α be the number of those settlers
i.e., α = Yr+1 − Yr. Note that Xr+1 −Xr = Yr − α holds here. Then, irrespective of α, we

DISC 2024



38:16 Near-Linear Time Dispersion of Mobile Agents

obtain

f(r + 1) = Xr+1 · 2r + Yr+1 = (Xr + Yr − α) · 2r + Yr + α

= Xr · 2r + (2r − 1)(Yr − α) + 2 · Yr ≥ 2(Xr · 2r−1 + Yr) = 2f(r),

where we use 2r ≥ 1 and Yr−α = Xr+1−Xr ≥ 0 in the above inequality. Therefore, we have
f(z) ≥ ℓ · 2z, whereas we have assumed (for contradiction) that Xz = |U0(w, t + 2z)| < ℓ,
thus f(z) = Xz · 2z−1 + Yz ≤ (ℓ− 1)2z−1 + Yz holds. This yields |A(w, t+ 2z) \ {ψ(w)}| =
Yz ≥ ℓ · 2z − (ℓ − 1)2z−1 = (ℓ + 1)2z−1 ≥ (ℓ + 1)τ/ℓ > τ . Since τ = min(∆, k), we have
τ = ∆ or τ = k. In the former case, Yk > ∆ agents at w are enough to visit all neighbors in
U⊥(w, t+ 2z) in time step t+ 2z, thus U⊥(w, t+ 2z + 2) = ∅ holds, a contradiction. In the
latter case, there are |A(w, t+ 2z)| ≥ k + 2 agents in w at time step t+ 2z, a contradiction.
Therefore, U⊥(w, t′) = ∅ or |U0(w, t′)| ≥ ℓ holds at time step t′ ≤ t+ 2z + 2. ◀

▶ Theorem 12. In the rooted setting, algorithm RootedOpt solves the dispersion problem
within O(k) time using O(∆ + log k) bits of space per agent.

Proof. The unique leader amax invokes Probe() only when it settles an agent, except for when
amax itself becomes settled. Therefore, amax invokes Probe exactly k−1 times, with precisely
k−i explorers present at the i-th invocation. By Lemma 11, the total number of steps required
for the k−1 executions of Probe() is at most

∑k−1
ℓ=1 (log k− log ℓ+O(1)) = k log k− (log(k!)−

log k) +O(k) = O(k), where we apply Stirling’s formula, i.e., log(k!) = k log k− k+O(log k).
As demonstrated in Section 3, both forward and backward moves also require a total time of
O(k). Thus, RootedOpt completes in O(k) time. Regarding space complexity, the array
variable checked is the primary factor, needing O(∆) bits per agent. Other variables require
only O(log ∆) bits. ◀

6 Discussion

It is worth mentioning that while HEO-DFS does not function in a fully asynchronous model,
where movement between two nodes may require an unbounded period, it does not require a
fully synchronous model in the rooted setting. Specifically, RootedDisp and RootedOpt
can operate under an asynchronous scheduler if every movement of agents between nodes is
atomic, i.e., each agent is always located at a node and never on an edge at any time step.
Under this scheduler, after the probing process is completed at a node v, unsettled agents can
wait for all helping settlers to leave v before they themselves depart. Since every movement
is atomic, when unsettled agents visit the home node of one of these settlers, the settler has
already returned. Thus, RootedDisp and RootedOpt functions under any fair scheduler
that guarantees every movement is atomic. However, this move-atomicity is not sufficient
for GeneralDisp, because this algorithm, designed for the general setting, differentiates
the moving speeds of agents based on their roles – leader, strong zombie, or weak zombie –
which inherently requires a fully synchronous scheduler.

References
1 Ankush Agarwalla, John Augustine, William K Moses Jr, Sankar K Madhav, and Arvind Kr-

ishna Sridhar. Deterministic dispersion of mobile robots in dynamic rings. In Proceedings of
the 19th International Conference on Distributed Computing and Networking, pages 1–4, 2018.
doi:10.1145/3154273.3154294.

2 John Augustine and William K. Moses Jr. Dispersion of mobile robots. Proceedings of the
19th International Conference on Distributed Computing and Networking, January 2018.

https://doi.org/10.1145/3154273.3154294


Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa 38:17

3 Prabhat Kumar Chand, Manish Kumar, Anisur Rahaman Molla, and Sumathi Sivasubrama-
niam. Fault-tolerant dispersion of mobile robots. In Conference on Algorithms and Discrete
Applied Mathematics, pages 28–40, 2023. doi:10.1007/978-3-031-25211-2_3.

4 Archak Das, Kaustav Bose, and Buddhadeb Sau. Memory optimal dispersion by anonymous
mobile robots. Discrete Applied Mathematics, 340:171–182, 2023. doi:10.1016/J.DAM.2023.
07.005.

5 Shantanu Das. Graph explorations with mobile agents. Distributed Computing by Mobile
Entities: Current Research in Moving and Computing, pages 403–422, 2019. doi:10.1007/
978-3-030-11072-7_16.

6 Ajay D Kshemkalyani and Faizan Ali. Efficient dispersion of mobile robots on graphs. In
Proceedings of the 20th International Conference on Distributed Computing and Networking,
pages 218–227, 2019. doi:10.1145/3288599.3288610.

7 Ajay D Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Fast dispersion of
mobile robots on arbitrary graphs. In International Symposium on Algorithms and Experiments
for Sensor Systems, Wireless Networks and Distributed Robotics, pages 23–40. Springer, 2019.
doi:10.1007/978-3-030-34405-4_2.

8 Ajay D Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Dispersion of mobile
robots in the global communication model. In Proceedings of the 21st International Conference
on Distributed Computing and Networking, pages 1–10, 2020. doi:10.1145/3369740.3369775.

9 Ajay D Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Dispersion of mobile
robots on grids. In International Workshop on Algorithms and Computation, pages 183–197.
Springer, 2020. doi:10.1007/978-3-030-39881-1_16.

10 Ajay D Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Dispersion of mobile
robots using global communication. Journal of Parallel and Distributed Computing, 161:100–
117, 2022. doi:10.1016/J.JPDC.2021.11.007.

11 Ajay D. Kshemkalyani and Gokarna Sharma. Near-Optimal Dispersion on Arbitrary Anony-
mous Graphs. In 25th International Conference on Principles of Distributed Systems (OPODIS
2021), pages 8:1–8:19, 2021. doi:10.4230/LIPICS.OPODIS.2021.8.

12 Anisur Rahaman Molla, Kaushik Mondal, and William K Moses. Byzantine dispersion on
graphs. In 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 942–951. IEEE, 2021.

13 Anisur Rahaman Molla and William K Moses Jr. Dispersion of mobile robots: The power of
randomness. In International Conference on Theory and Applications of Models of Computation,
pages 481–500, 2019. doi:10.1007/978-3-030-14812-6_30.

14 Petrişor Panaite and Andrzej Pelc. Exploring unknown undirected graphs. Journal of
Algorithms, 33(2):281–295, 1999. doi:10.1006/JAGM.1999.1043.

15 Vyatcheslav B Priezzhev, Deepak Dhar, Abhishek Dhar, and Supriya Krishnamurthy. Eulerian
walkers as a model of self-organized criticality. Physical Review Letters, 77(25):5079, 1996.

16 Takahiro Shintaku, Yuichi Sudo, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Efficient
dispersion of mobile agents without global knowledge. In 22nd International Symposium
on Stabilization, Safety, and Security of Distributed Systems, pages 280–294, 2020. doi:
10.1007/978-3-030-64348-5_22.

17 Yuichi Sudo, Daisuke Baba, Junya Nakamura, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa. A single agent exploration in unknown undirected graphs with
whiteboards. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, 98(10):2117–2128, 2015. doi:10.1587/TRANSFUN.E98.A.2117.

18 Yuichi Sudo, Fukuhito Ooshita, and Sayaka Kamei. Brief announcement: Self-stabilizing graph
exploration by a single agent. In 38th International Symposium on Distributed Computing,
2024.

19 Yuichi Sudo, Masahiro Shibata, Junya Nakamura, Yonghwan Kim, and Toshimitsu Masuzawa.
Near-linear time dispersion of mobile agents, 2024. arXiv:2310.04376, doi:10.48550/arXiv.
2310.04376.

DISC 2024

https://doi.org/10.1007/978-3-031-25211-2_3
https://doi.org/10.1016/J.DAM.2023.07.005
https://doi.org/10.1016/J.DAM.2023.07.005
https://doi.org/10.1007/978-3-030-11072-7_16
https://doi.org/10.1007/978-3-030-11072-7_16
https://doi.org/10.1145/3288599.3288610
https://doi.org/10.1007/978-3-030-34405-4_2
https://doi.org/10.1145/3369740.3369775
https://doi.org/10.1007/978-3-030-39881-1_16
https://doi.org/10.1016/J.JPDC.2021.11.007
https://doi.org/10.4230/LIPICS.OPODIS.2021.8
https://doi.org/10.1007/978-3-030-14812-6_30
https://doi.org/10.1006/JAGM.1999.1043
https://doi.org/10.1007/978-3-030-64348-5_22
https://doi.org/10.1007/978-3-030-64348-5_22
https://doi.org/10.1587/TRANSFUN.E98.A.2117
https://arxiv.org/abs/2310.04376
https://doi.org/10.48550/arXiv.2310.04376
https://doi.org/10.48550/arXiv.2310.04376


38:18 Near-Linear Time Dispersion of Mobile Agents

Algorithm 2 The behavior of a leader a.

1 while true do
2 /*************** Slot 1 begins ***************/
3 Let w = ν(a).
4 if ∃b ∈ AL(w) ∪AS(w) : a ≺ b then
5 a.levelL ← a.levelS ← a.level
6 a.leader← b.leader // a becomes a zombie and stops Algorithm 2

7 /*************** Slot 2 begins ***************/
8 if A(w) ̸= {a} then // a is an active leader if A(w) ̸= {a}
9 if ψ(w) = ⊥ ∨ ψ(w) ≺ a then

10 if ψ(w) = ⊥ then
11 Settle one zombie in AZ(w) at w
12 ψ(w).parent← a.parent // Initially, a.parent = ⊥
13 if ∃b ∈ AZ(w) : a.level = b.level then
14 (a.level, b.level)← (a.level + 1, 0)
15 ψ(w).parent← ⊥
16 a.InitProbe← true
17 (ψ(w).leader, ψ(w).level)← (a.ID, a.level)
18 if a.InitProbe = true then // Initially, a.InitProbe = true
19 (ψ(w).next, ψ(w).checked, ψ(w).help, ψ(w).done)← (⊥,−1,⊥, false)
20 a.InitProbe← false
21 Probe(a) // See Algorithm 3
22 if ψ(w).done = true then
23 /*************** Slot 11 begins ***************/
24 if ψ(w).next = ⊥ then
25 ψ(w).next← ψ(w).parent // for backward move

26 All agents in A(w) \ {ψ(w)} move to N(w,ψ(w).next)
27 /*************** Slot 12 begins ***************/
28 a.parent← a.pin
29 a.InitProbe← true

A Detail Implementation of General Dispersion

The pseudocode for the GeneralDisp algorithm is shown in Algorithms 2, 3, 4, and 5. In
slots 1, 2, 4–8, 11, and 12, agents operate only under the instruction of a leader. Algorithms
2 and 3 define how each leader a operates and gives instructions in those slots. Algorithm
4 defines the behavior of settlers in slot 3. Algorithm 5 specifies the behavior of zombies
in slots 9 and 10. Note that each agent needs to manage an O(1)-bit variable to identify
the slot of the current time step, but for simplicity, the process related to its update is not
included in the pseudocode because it can be implemented in a naive way.

First, we explain the behavior of a leader a. Let w be the node where a is located in slot
1. We make leader election in slot 1 (lines 4–6). Leader a becomes a zombie when it finds a
stronger leader or settler on w. If a becomes a zombie, it no longer runs Algorithms 2 and 3,
and runs only Algorithm 5. Consider that a survives the leader election in slot 1. In slot 2, if
there are no agents other than a on w, a is a waiting leader and does nothing until the next
slot 1. Otherwise, the leader a (i) settles one of the accompanying zombies if w is unsettled,



Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa 38:19

Algorithm 3 Probe(a).

30 /*************** Slot 4 begins ***************/
31 Let w = ν(a).

32 ψ(w).next(w)←
{

minP if P ̸= ∅
⊥ otherwise,

33 where P = [0, ψ(w).checked] \ {b.pin | b ∈ AS(w) \ {ψ(a)}}
34 b.help← ⊥ for all b ∈ AS(w) with b ≺ a.
35 Let all agents b ∈ AS(w) with b ≺ a go back to their homes
36 if ψ(w).next ̸= ⊥ ∨ ψ(w).checked = δw − 1 then
37 /*************** Slot 5 begins ***************/
38 Execute b.help← ⊥ for each b ∈ AS(w) \ {ψ(w)}
39 Let all agents in AS(w) \ {ψ(w)} go back to their homes.
40 ψ(w).done← true
41 else
42 /*************** Slot 6 begins ***************/
43 Let {a1, a2, . . . , ax} be the set of agents in A(w) \ {ψ(w)}
44 Let ∆′ = min(x, δw − 1− ψ(w).checked)
45 Let ui = N(w, i+ ψ(w).checked) for i = 1, 2, . . . ,∆′

46 for each ai ∈ {a1, a2, . . . , a∆′} in parallel do
47 ai moves to ui.
48 /*************** Slot 7 begins ***************/
49 if (ai.leader, ai.level) = (ψ(ui).leader, ψ(ui).level) then
50 ai.found← true
51 ψ(ui).help← ai.pin
52 else
53 ai.found← false
54 Move to N(ui, ai.pin)
55 /*************** Slot 8 begins ***************/
56 if ∃i ∈ [1,∆′] : ai.found = false then
57 ψ(w).next← i+ ψ(w).checked

58 ψ(w).checked← ψ(w).checked + ∆′

59 Let all agents in AS(w) \ {ψ(w)} go back to their homes.

Algorithm 4 The behavior of a settler s in Slot 3.

60 /*************** Slot 3 begins ***************/
61 Move to N(ν(s), s.help) if s.help ̸= ⊥.

DISC 2024



38:20 Near-Linear Time Dispersion of Mobile Agents

Algorithm 5 The behavior of a zombie z in Slots 9 and 10.

62 /*************** Slot 9 begins ***************/
63 (z.levelL, z.levelS)← (ψ(w).level,max{z′.level | z′ ∈ AZ(ν(z)})
64 if AL(ν(z)) = ∅ and z is a weak zombie then
65 Move to N(ν(z), ψ(ν(z)).next)
66 /*************** Slot 10 begins ***************/
67 if AL(ν(z)) = ∅ then
68 Move to N(ν(z), ψ(ν(z)).next)

(ii) updates its level if it finds a zombie with the same level, and (iii) gives the settler ψ(w) its
group identifier (a.ID, a.level) (lines 9–17). Note that settlers may leave their homes only
in slots 3–8 (to join Probe()), thus a can correctly determine whether ψ(w) = ⊥ or not here
(lines 9–10). If ψ(w) ≺ a, this procedure incorporates ψ(w) into a’s group, i.e., expands the
territory of a. Each leader a manages a flag variable a.InitProbe ∈ {false, true}, initially
set to true. This flag is raised each time a requires probing, i.e., after it makes a forward
or backward move (line 29), and when it increases its level (line 16). If the flag is raised,
it initializes the variables used for Probe(), say ψ(w).next, ψ(w).checked, ψ(w).help, and
ψ(w).done in slot 2 (line 19).

Thereafter, a invokes Probe() at the end of slot 2. This subroutine runs in slots 4–8.
While Probe() in RootedDisp returns the control to the main function after completing
the probing, i.e., determining whether or not an unsettled neighbor exists, Probe() in
GeneralDisp returns the control each time slot 8 ends even if it does not complete the
probing. Consider that there are x− 1 accompanying zombies when a leader a begins the
probing. First, a leader a and the x− 1 accompanying zombies join the probing. Each of
them, say b, moves from a node w to one of its neighbors u ∈ N(w) in slot 6 (line 47) and goes
back to w in slot 7 (line 54). If b finds a settler in the same group at u, it sets ψ(u).help to
b.pin (line 51). As long as s.help ≠ ⊥, a settler s at a node v goes to a neighbor N(v, s.help)
in slot 3 (line 60, Algorithm 4). Hence, in the next slot 3, that settler ψ(u) goes to w. If
there are 2x agents at w excluding ψ(w), those 2x agents perform the same process in the
next slots 6 and 7, that is, they go to unprobed neighbors, update the help of settlers in
the same group (if exists), and go back to w. In slot 8, a sends the helping settlers back to
their home. The number of agents joining the probing at w, i.e., |A(w) \ {ψ(w)}|, doubles
at each iteration of this process until they find a node without a settler in the same group
or finish probing all neighbors in N(w). Thus, like RootedDisp, the probing finishes in
O(log τ) time steps. At this time, ψ(w).next = ⊥ holds if all neighbors in N(w) are settled
by settlers in the same group. Otherwise, N(w,ψ(w).next) is unsettled or settled by a settler
in another group. Then, in the next slot 5, a resets the help of all settlers at w to ⊥ except
for ψ(w), lets them go back to their homes, and sets ψ(w).done to true, indicating that
the probing is done (lines 38–40). The probing process described above may be prevented
by a stronger leader b when b visits a node v ∈ N(w) such that ψ(v) belongs to a’s group
and ψ(v).help ̸= ⊥. Then, b incorporates ψ(v) into b’s group, and set ψ(v).help to ⊥ (line
19), so ψ(v) never goes to w to help a’s probing. However, this event actually speeds up a’s
probing: a identifies this event when noticing that ψ(v) does not arrive at w in the next slot
4. As a result, a can set ψ(w).next to p where N(w, p) = v (lines 32–34).

Note that, even during the probing process at node w, leader a might become a zombie if
it meets a stronger leader b in slot 1. Some settlers might then move to w in the next slot 3
to help a, not knowing a is now a zombie. In these situations, b changes the help of these



Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa 38:21

settlers to ⊥ and sends them back to their homes in slot 4. Thereafter, those settlers remain
at their home at least until they are incorporated into another group.

If a leader a at w observes ψ(w).done = true, it makes a forward or backward move
in slot 11 (lines 22–29). Each time a makes a forward or backward move to a node u, it
remembers a.pin in a.parent after the move (line 28). This port number will be stored
on the variable ψ(u).parent when a settles a zombie on u or a incorporates ψ(u) from the
territory of another group. Note that this event occurs only when the last move is forward.
Thus, like RootedDisp, a constructs a DFS tree in its territory. It is inevitable to use a
variable a.parent tentatively since a.pin is updated every step by definition of a special
variable pin and a may become a waiting leader after moving to u. Unlike RootedDisp, a
records the most recently used port to move in ψ(ν(a)).next even when it makes a backward
move (lines 24–25). This allows a zombie to chase a leader.

The behavior of zombies in slots 9 and 10 is very simple (lines 61–67). A zombie always
updates its location and swarm levels in slot 9 (line 62). A zombie z not accompanying
a leader always chases a leader by moving through the port ψ(ν(z)).next. As mentioned
earlier, we differentiate the chasing speed of weak zombies and strong zombies. Specifically,
weak zombies move in both slots 9 and 10, while strong zombies move only in slot 10 (lines
63–67).

▶ Lemma 13. The location level of a zombie is monotonically non-decreasing.

Proof. Neither a leader nor a settler decreases its level in GeneralDisp. When a zombie
z does not accompany a leader, it chases a leader through port ψ(ν(z)).next. This port
ψ(ν(z)).next is updated only if a leader makes a forward or backward move from ν(z), and
the leader updates the level of ψ(N(ν(z), ψ(ν(z)).next)) if it is smaller than its level. Thus,
a zombie never decreases its location level by chasing a leader. When a zombie z accompanies
a leader, the leader copies its level to ψ(ν(z)).level in slot 2, which is copied to z.levelL in
slot 8. The leader that z accompanies may change but does not change to a weaker leader.
Thus, a zombie never decreases its location level when accompanying a leader. ◀

B Proofs of Theorem 10

Remember that AZ and AAL are the set of zombies and the set of active leaders, respectively,
in the whole graph. We have the following lemma.

▶ Lemma 14. For any i ≥ 0, the number of weak zombies with a location level i is
monotonically non-increasing starting from any configuration where min({a.level | a ∈
AAL} ∪ {z.levelL | z ∈ AZ}) = i.

Proof. Let C be a configuration where min({a.level | a ∈ AAL}∪{z.levelL | z ∈ AZ}) = i.
When a leader with level i becomes a zombie, its location level is i (line 5). So, a leader
with level i may become a strong zombie with a location level i but never becomes a weak
zombie with a location level i. The swarm level of a zombie decreases only when the zombie
accompanies a leader (and this leader settles another zombie). Thus, a strong zombie with a
location level i that does not accompany a leader cannot become a weak zombie without
increasing its location level. Moreover, starting from C, a strong zombie with location level i
must increase its location level when it encounters a leader in slot 1. Hence, the number of
weak zombies with a location level i is monotonically decreasing. ◀

▶ Lemma 15. min({a.level | a ∈ AAL}∪{z.levelL | z ∈ AZ}) is monotone non-decreasing
and increases by at least one in every O(k log τ) time steps unless AAL ∪AZ becomes empty.

DISC 2024



38:22 Near-Linear Time Dispersion of Mobile Agents

Proof. Let i be an integer i ≥ 0 and C a configuration where min({a.level | a ∈ AAL} ∪
{z.levelL | z ∈ AZ}) = i. It suffices to show that leaders with level i and zombies with
location level i disappear in O(k log τ) time steps starting from C.

Consider an execution starting from C. By Lemma 14, a weak zombie with location
level i is never newly created in this execution. Let z be any weak zombie with a location
level i that does not accompany a leader in a configuration C. In every 12 slots, z moves
twice, while a strong zombie and a leader move only once, excluding the movement for the
probing. Therefore, z catches up to a strong zombie and becomes strong too, catches up to
a leader with level i, or increases its location level in O(k) time steps. When z catches up
to a leader, it joins the HEO-DFS of the leader, or this leader becomes a zombie. In the
latter case, z becomes a strong zombie. Thus, z settles or becomes a strong zombie (with
the current leader) in O(k log τ) time steps. Therefore, the number of weak zombies with
location level i becomes zero in O(k log τ) steps. After that, no waiting leader with level
i resumes its HEO-DFS without increasing its level because there is no weak zombie with
location level i. Therefore, every active leader with location level i becomes a zombie with
location level at least i+ 1 or a waiting leader in O(k log τ) steps. Thus, active leaders with
location level i also disappear in O(k log τ) steps. From this time, no leader moves in the
territory of a group with level i or less. Hence, every strong zombie with location level i
increases its location level or catches up to a waiting leader. Since the level of a waiting
leader is at least i, the latter event also increases z’s level by at least one. ◀

Since an agent in GeneralDisp manages only a constant number of variables, each with
O(log(k + ∆)) bits, Lemmas 9 and 15 yield Theorem 10.



The Power of Abstract MAC Layer: A
Fault-Tolerance Perspective
Qinzi Zhang #

Boston University, MA, USA

Lewis Tseng #

UMass-Lowell, MA, USA

Abstract
This paper studies the power of the “abstract MAC layer” model in a single-hop asynchronous
network. The model captures primitive properties of modern wireless MAC protocols. In this model,
Newport [PODC ’14] proves that it is impossible to achieve deterministic consensus when nodes may
crash. Subsequently, Newport and Robinson [DISC ’18] present randomized consensus algorithms
that terminate with O(n3 log n) expected broadcasts in a system of n nodes. We are not aware of
any results on other fault-tolerant distributed tasks in this model.

We first study the computability aspect of the abstract MAC layer. We present a wait-free
algorithm that implements an atomic register. Furthermore, we show that in general, k-set consensus
is impossible. Second, we aim to minimize storage complexity. Existing algorithms require Ω(n log n)
bits. We propose two wait-free approximate consensus and two wait-free randomized binary consensus
algorithms that only need constant storage complexity (except for the phase index). One randomized
algorithm terminates with O(n log n) expected broadcasts. All our algorithms are anonymous,
meaning that at the algorithm level, nodes do not need to have a unique identifier.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Abstract MAC Layer, Computation Power, Consensus

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.39

Related Version Full Version: https://arxiv.org/abs/2408.10779 [42]

Funding Lewis Tseng: This material is based upon work partially supported by the National Science
Foundation under Grant CNS-2334021.

Acknowledgements The authors want to thank the anonymous reviewers for insightful comments.
The work was partially done when Lewis Tseng was affiliated with Boston College and Clark
University.

1 Introduction

This paper studies fault-tolerant primitives, with the focus on the aspect of wireless links in
a single-hop asynchronous network. We adopt the “abstract MAC layer” model [33, 34, 25],
which captures the basic properties guaranteed by existing wireless MAC (medium access
control) layers such as TDMA (time-division multiple access) or CSMA (carrier-sense multiple
access). Even though the abstraction does not model after any specific existing MAC protocol,
the abstract MAC layer still serves an important goal – the separation of high-level algorithm
design and low-level logic of handling the wireless medium and managing participating nodes.
This separation helps identify principles that fills the gap between theory and practice in
designing algorithms that can be readily deployed onto existing MAC protocols [33, 34].
In fact, recent works in the networking community propose approaches to implement the
abstract MAC layer in more realistic network conditions, e.g., dynamic systems [41], dynamic
SINR channels [40], and Rayleigh-Fading channels [39].

© Qinzi Zhang and Lewis Tseng;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 39; pp. 39:1–39:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:qinziz@bu.edu
https://orcid.org/0000-0002-2243-5107
mailto:lewistseng@acm.org
https://orcid.org/0000-0002-4717-4038
https://doi.org/10.4230/LIPIcs.DISC.2024.39
https://arxiv.org/abs/2408.10779
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


39:2 The Power of Abstract MAC Layer: A Fault-Tolerance Perspective

Consider an asynchronous network [10, 31] in which messages may suffer an arbitrary
delay. Compared to conventional message-passing models [10, 31], the abstract MAC layer
has two key characteristics (formal definition in Section 2):

Nodes use a broadcast primitive which sends a message to all nodes that have not crashed
yet, and triggers an acknowledgement upon the completion of the broadcast.
Nodes do not have a priori information on other participating nodes.

The second characteristic is inspired by the observation that in a practical large-scale
deployment, it is difficult to configure and manage all the connected devices so that they
have the necessary information about other nodes. This assumption makes it difficult to
port algorithms from conventional message-passing models to the abstract MAC layer, as
these algorithms typically require the knowledge of other nodes and/or the size of the system.
In fact, Newport and Robinson prove [33] that in message-passing models it is impossible
to solve deterministic and randomized consensus, even if there is no fault, and nodes are
assumed to have a constant-factor approximation of the network size.

In the abstract MAC layer model, Newport [34] proves that deterministic consensus
is impossible when nodes may crash. Subsequently, Newport and Robinson [33] propose
randomized consensus algorithms. We are not aware of any study on other fault-tolerant
primitives. This paper answers the following two fundamental problems:

Can we implement other fault-tolerant primitives?
How do we minimize storage complexity when designing fault-tolerant primitives?

First Contribution. In Herlihy’s wait-free hierarchy [23], the consensus number defines
the “power” of a shared object (or primitive). An object has a consensus number c, if it is
possible for ≤ c nodes to achieve consensus using the object and atomic registers, and it is
not possible for c + 1 nodes to do so. For example, an atomic register has consensus number
1, whereas consensus and compare-and-swap have consensus number ∞. The proof in [34]
implies that any objects with consensus number ≥ 2 cannot be implemented in the abstract
MAC layer. The natural next step is to understand whether objects with consensus number
1 can be implemented in the abstract MAC layer.

We first show that the abstract MAC layer is fundamentally related to the store-collect
object [7, 8] by presenting a simple wait-free algorithm to implement the object in the
abstract MAC layer. “Stacking” the constructions in [8] on top of our store-collect object
solves many well-known computation tasks, e.g., registers, counters, atomic snapshot objects,
and approximate, and randomized consensus. That is, we provide a wait-free approach to
implement some primitives with consensus number 1 in the abstract MAC layer.

Next, we identify that not all primitives with consensus number 1 can be implemented.
In particular, we prove that in a system of n nodes, (n − 1)-set consensus is impossible
to achieve in the abstract MAC layer model. This implies that other similar objects, like
write-and-read-next objects [16], cannot be implemented as well.

Second Contribution. From a more practical perspective, we study anonymous and storage-
efficient fault-tolerant primitives. First, anonymous algorithms do not assume unique node
identity, and thus lower efforts in device configuration and deployment. Second, most wireless
devices are made small; hence, naturally, they are not equipped with abundant storage
capacity, and storage-efficiency is an important factor in practical deployment.

Table 1 compares the state-of-the-art algorithm NR18 [33] and our algorithms. All the
randomized consensus algorithms work for binary inputs and all algorithms are wait-free. The
time complexity is measured as the expected number of broadcasts needed for all fault-free
nodes to output a value. For our algorithms, “values” can be implemented using an integer
or a float data type in practice. The exact size of the values will become clear later.



Q. Zhang and L. Tseng 39:3

Table 1 Consensus in abstract MAC layer.
• The bottom four rows present our algorithms, whereas NR18 is the algorithm from DISC ’18 [33].
• For approximate consensus, the convergence rate identifies the ratio that the range of fault-free nodes’
states decreases after each asynchronous round. The smaller the ratio, the faster the convergence.

consensus storage complexity note
NR18 [33] randomized Θ(n log n) bits O(n3 log n) expected broadcasts
MAC-RBC randomized 8 values, 4 Booleans O(2n) expected broadcasts
MAC-RBC2 randomized 12 values, 5 Booleans O(n log n) expected broadcasts
MAC-AC approximate 4 values, 1 Boolean convergence rate 1/2
MAC-AC2 approximate 2 values, 1 Boolean convergence rate 1− 2−n

Due to space limits, we focus only on our randomized algorithms and present our
approximate agreement algorithms along with the full analysis in the technical report [42].

2 Preliminary

Related Work. We first discuss prior works in the abstract MAC layer model. The model
is proposed by Kuhn, Lynch and Newport [25]. They present algorithms for multi-message
broadcast, in which multiple messages may be sent at different times and locations in a multi-
hop network communicating using the abstract MAC layer. Subsequent works [32, 24, 20]
focus on non-fault-tolerant tasks, including leader election and MIS.

The closest works are by Newport [34] and Newport and Robinson [33]. Newport presents
several impossibilities for achieving deterministic consensus when nodes may crash [34].
Newport and Robinson [33] present a randomized consensus algorithm that terminates
after O(n3 log n) broadcasts w.h.p. In their algorithm, nodes need to count the number
of acknowledgements received from unique nodes and determine when to safely output a
value. As a result, their algorithm requires storage space Θ(n log n) bits and the knowledge
of identities to keep track of unique messages. An accompanied (randomized) approach of
assigning node identities with high probability is also proposed in [33]. Tseng and Sardina [36]
present Byzantine consensus algorithms in the abstract MAC layer model, but they assume
the knowledge of an upper bound on n and unique identities. Our consensus algorithms do
not rely on identities; hence, fundamentally use different techniques.

Fault-tolerant consensus has been studied in various models that assume message-passing
communication links [10, 31]. We consider a different communication model; hence, the
techniques are quite different. An important distinction is that with asynchronous message-
passing, it is impossible to implement a wait-free algorithm [23]. Furthermore, nodes require
accurate information on the network size [33].

Di Luna et al. have a series of works on anonymous dynamic network [27, 28, 30, 29, 18, 17].
They do not assume any failures. A series of papers [21, 2, 13] study a related problem, called
consensus with unknown participants (CUPs), where nodes are only allowed to communicate
with other nodes whose identities have been provided by some external mechanism. Our
consensus algorithms do not need unique node identities. Failure detectors are used in
[1, 35, 12] to solve consensus with anonymous nodes. We do not assume a failure detector.

Model. We consider a static asynchronous system consisting of n nodes, i.e., we do not
consider node churn. Each node is assumed to have a unique identifier; hence, the set of nodes
is also denoted as the set of their identifiers, i.e., {1, . . . , n}. For brevity, we often denote
it by [n]. Our construction of store-collect requires identifiers due to its semantics. Our
approximate and randomized algorithms are anonymous, and do not assume node identifiers.
The identifiers are used only for analysis.

DISC 2024



39:4 The Power of Abstract MAC Layer: A Fault-Tolerance Perspective

We consider the crash fault model in which any number of nodes may fail. A faulty node
may crash and stop execution at any point of time. The adversary may control faulty
behaviors and the message delays. Nodes that are not faulty are called fault-free nodes.

In a single-hop network with abstract MAC layer [25, 34, 33], nodes communicate using
the mac-broadcast primitive, which eventually delivers the message to all the nodes that
have not crashed yet, including i itself. Moreover, at some point after the mac-broadcast
has succeeded in delivering the message, the broadcaster receives an acknowledgement,
representing that the mac-broadcast is complete. The broadcaster cannot infer any other
information from the acknowledgment, not the system size n, nor the identities of other
nodes. A crash may occur during the mac-broadcast, which leads to inconsistency. That is,
if a broadcaster crashes, then some nodes might receive the message while others do not.

The key difference between message-passing and abstract MAC layer models is that in
the message-passing model, sender requires explicit responses, which is the main reason
that this model does not support wait-free algorithms and requires a priori information on
participating nodes. In other words, abstract MAC layer allows us to design primitives with
stronger properties due to the implication from the acknowledgement. This paper is the first
to identify how to use its “power” to implement (some) primitives with consensus number 1.

For our store-collect and approximate consensus algorithms, the adversary may enforce
an arbitrary schedule for message delivery and crashes. For our randomized algorithms, we
assume the message oblivious (or value oblivious) adversary as in [33]. That is, the adversary
does not know the private states of each node (process states or message content).

Algorithm Presentation and Message Processing. Each node is assumed to take steps
sequentially (a single-thread process). Each line of the pseudo-code is executed atomically,
except when calling mac-broadcast, since this primitive is handled by the underlying abstract
MAC layer. Each algorithm also has a message handler that processes incoming messages.
Our algorithms assume that (i) the message handler is triggered whenever the underlying
layer receives a message and sends an interrupt; (ii) there is only one message handler thread,
which processes messages one by one, i.e., the underlying layer has a queue of pending
messages; and (iii) the handler has a priority over the execution of the main thread. The
third assumption implies the following observation, which is important for ensuring the
correctness of our algorithms:

▶ Remark 1. At the point of time when the main thread starts executing a line of the
pseudo-code, there is no pending message to be processed by the handler.1

It is possible that during the execution of a line in the main thread, the underlying layer
sends an interrupt. The message handler will process these messages after the completion of
that particular line of code due to the assumption of atomic execution. The only exception is
the call to mac-broadcast. Messages can still be received and processed when a broadcaster
is waiting for the acknowledgement from the abstract MAC layer.

1 This assumption is not needed in prior works [34, 33], because their algorithm design is fundamentally
different from ours. On a high-level, their algorithms proceed in an atomic block, whereas our algorithms
have shared variables between the main thread and multiple message handlers. The assumption captures
the subtle interaction between them.



Q. Zhang and L. Tseng 39:5

3 Abstract MAC Layer: Computability

From the perspective of computability, asynchronous point-to-point message-passing model
is fundamentally related to linearizable shared objects [22]. However, it was pointed out that
register simulation in conventional point-to-point models like ABD [6] is “thwarted” [33]. In
other words, this observation indicated that the computability of the abstract MAC layer
remained an open problem. We fill the gap by presenting a framework of implementing some
linearizable shared objects with consensus number 1.

Our Insight. In the point-to-point model, ABD requires the communication among a quorum,
because “information kept by a quorum” ensures that the information is durable and timely
in quorum-based fault-tolerant designs. Durable information means that the information is
not lost, even after node crashes. Timely information means that the information satisfies
the real-time constraint, i.e., after the communication with a quorum is completed, others
can learn the information by contacting any quorum of nodes.

Our important observation is that the mac-broadcast achieves both goals upon learning
the acknowledgement. That is, after the broadcaster learns that the broadcast is completed,
it can infer that the message is both durable and timely.

Durability and timeliness are indeed sufficient for ensuring “regularity,” which can then
be used to implement linearizable shared objects (as will be seen in Theorem 3). We next
present a construction of store-collect objects.

Store-Collect Object. A store-collect object [7, 8] provides two operations (or interfaces)
at node i: (i) Storei(v): store value v into the object; and (ii) Collecti(): collect the set
of “most recent” values (of the object) from each node. The returned value is a view V –
a set of (vj , j) tuples where j is a node identity and vj is its most recent stored value. For
each j, there is at most one tuple of (∗, j) in V . With a slight abuse of notation, V (j) = vj

if (vj , j) ∈ V ; otherwise, V (j) =⊥.
To formally define store-collect, we first discuss a useful notion. A history is an execution

of the store-collect object, which can be represented using a partially ordered set (H, <H).
Here, H is the set of invocation (inv) and response (resp) events of the Store and Collect
operations, and <H is an irreflexive transitive relation that captures the real-time “occur-
before” relation of events in H. Formally, for any two events e and f , we say e <H f if e

occurs before f in the execution. For two operations op1 and op2, we say that op1 precedes
op2 if resp(op1) <H inv(op2).

Every value in Store is assumed to be unique (this can be achieved using sequence
numbers and node identifiers). A node can have at most one pending operation. Given views
V1 and V2 returned by two Collect operations, we denote V1 ⪯ V2, if for every (v1, j) ∈ V1,
there exists a v2 such that (i) (v2, j) ∈ V2; and (ii) either v1 = v2 or the invocation of
Storej(v2) occurs after the response of Storej(v1). That is, from the perspective of node
j, v2 is more recent than v1. We then say that a history σ satisfies regularity if:

For each Collect() c ∈ σ that returns V and for each node j, (i) if V (j) =⊥, then no
Store by j precedes c in σ; and (ii) if V (j) = v, then Storej(v)’s invocation precedes
c’s response, and there does not exist Storej(v′) such that v′ ̸= v, and Storej(v′)’s
response occurs after Storej(v)’s response and before c’s invocation.
Consider any pair of two Collect’s in history σ, c1 and c2, which return views V1 and
V2, respectively. If c1 precedes c2, then V1 ⪯ V2.

DISC 2024



39:6 The Power of Abstract MAC Layer: A Fault-Tolerance Perspective

▶ Definition 2 (Store-Collect). An algorithm correctly implements the store-collect object if
every execution of the algorithm results into a history that satisfies regularity.

Our Wait-free Construction of Store-Collect. To achieve regularity, each stored value has
to be durable and timely. If a value is not durable, then the first condition for regularity may
be violated. If a value is not timely, then the second condition may be violated. Moreover,
any current information needs to be known by subsequent Collect’s, potentially at other
nodes. These observations together with the aforementioned insight of the mac-broadcast
primitive give us a surprisingly straightforward construction. Our algorithm MAC-SC is
presented in Algorithm 1.

Each node i keeps a local variable viewi, which is a set of values – one value for each
node (that is known to node i so far). With a slight abuse of terminology, we use C = A ∪ B

to denote the merge operation of two views A and B, which returns a view C that contains
the newer value from each node. Since each node can have at most one pending operation
and each value is unique, the notion of “newer” is well-defined. For brevity, the sequence
number is omitted in the notation.

For Storei(v), node i first adds the value v to form a new view, and uses mac-broadcast
to inform others about the new view. Because this information is both durable and timely
upon the completion of the broadcast, regularity is satisfied. Since the broadcast delivers the
message to the broadcaster as well, (v, i) is added to viewi at line 8. For Collecti(), it is
similar except that the broadcast view is the current local view at node i. Upon receiving a
new view (from the incoming message with the Store tag), i simply merges the new view
and its local view viewi.

Algorithm 1 MAC-SC: Steps at each node i.

Local Variable: /* It can be accessed by any thread at i. */
viewi ▷view, initialized to ∅

When Storei(v) is invoked:
1: currentV iewi ← viewi ∪ {(v, i)}
2: mac-broadcast(STORE, currentV iewi)
3: return ACK ▷Store is completed

When Collecti() is invoked:
4: currentV iew ← viewi

5: mac-broadcast(STORE, currentV iew)
6: return currentV iew

// Background message handler
7: Upon receive(STORE, view) do
8: viewi ← viewi ∪ view

▶ Theorem 3. MAC-SC implements the store-collect object.

Proof Sketch.

Property I. Consider a Collecti() operation c that returns V . For each node j, consider
two cases:

V (j) =⊥: this means that node i has not received any message from j’s mac-broadcast.
This implies that either mac-broadcast by j is not yet completed, or node j has not
invoked any mac-broadcast. In both cases, no Store by j precedes c.
V (j) = v: by construction, v is in V (j) because Storej(v) is invoked before c completes.
Next we show that there is no other Store by node j that completes between two events:
the response event of Storej(v) and the invocation of c. Assume by way of contradiction
that Storej(v′) completes between these two events. Now observe that: (i) By definition,
Storej(v) precedes Storej(v′), so v′ is more recent than v from the perspective of node
j; and (ii) By the assumption of the abstract MAC layer, when Storej(v′) completes,



Q. Zhang and L. Tseng 39:7

node i must have received the value v′. These two observations together imply that node
i will add v′ into its view at line 8 before the invocation of c. Consequently, V (j) = v′ in
the view returned by c, a contradiction.

Property II. Suppose c1 and c2 are two Collect’s such that c1 returns view V1, c2 returns
view V2, and c1 precedes c2. By assumption, when mac-broadcast completes, all the nodes
that have not crashed yet have received the broadcast message. Therefore, V1 ⪯ V2. ◀

From Store-Collect to Linearizable Objects. Constructions of several linearizable shared
objects over store-collect are presented in [8]. These constructions only use Store and
Collect without relying on other assumptions; hence, can be directly applied on top of
MAC-SC. More concretely, Attiya et al. [8] consider a dynamic message-passing system,
where nodes continually enter and leave. Similar to our model, their constructions do not
assume any information on other participating nodes. All the necessary coordination is
through the store-collect object.

This stacked approach sheds light on the computability of the abstract MAC layer. We can
use the approach in [8] to implement an atomic register on top of MAC-SC in abstract MAC
layer in a wait-free manner. Consequently, MAC-SC opens the door for the implementation
of many shared objects with consensus number 1. In particular, any implementation on
atomic register that does not require a priori information on participating nodes can be
immediately applied, e.g., linearizable abort flags, sets, and max registers [26, 8].

Interestingly, despite the strong guarantee, not all objects with consensus number 1 can
be implemented in the abstract MAC layer. In particular, we prove that (n−1)-set consensus
is impossible to achieve in our technical report [42]. Our proof follows the structure of the
counting-based argument developed by Attiya and Paz (for the shared memory model) [9].

4 Anonymous Storage-Efficient Randomized Binary Consensus

While general, the stacked approach comes with two drawbacks in practice – assumption of
unique identities and high storage complexity. Stacking prior shared-memory algorithms on
top of MAC-SC requires Ω(n log n) due to the usage of store-collect. Prior message-passing
algorithms (e.g., [19, 38, 11]) usually require the assumption of unique identities.

This section considers anonymous storage-efficient randomized binary consensus. Recall
that deterministic consensus is impossible under our assumptions [34], so the randomized
version is the best we can achieve. As shown in Table 1, the state-of-the-art algorithm NR18
[33] requires O(n3 log n) time complexity w.h.p. and Θ(n log n) storage complexity. We
present two anonymous wait-free algorithms using only constant storage complexity.

Our Techniques. Our algorithms are inspired by Aspnes’s framework [3] of alternating
adopt-commit objects and conciliator objects. The framework is designed for the shared
memory model, requiring both node identity and the knowledge of n. Moreover, it requires
O(log n) atomic multi-writer registers in expectation.

To address these limitations, we have two key technical contributions. First, we replace
atomic multi-writer registers by mac-broadcast, while using only constant storage complexity.
Second, we integrate the “doubling technique,” for estimating the system size n, with the
framework and present an accompanied analysis to bound the expected round complexity.

More concretely, we combine the technique from [37] and Aspnes’s framework to avoid
using new objects in a new phase. More precisely, we borrow the “jump” technique from [37],
which allows nodes to skip phases (and related messages), to reduce storage complexity. This

DISC 2024



39:8 The Power of Abstract MAC Layer: A Fault-Tolerance Perspective

Algorithm 2 MAC-AdoptCommit Algorithm: Steps at each node i with input vi.

Local Variables: /* These can be accessed by any thread at i. */
seeni[0] ▷Boolean, initialized to false
seeni[1] ▷Boolean, initialized to false
proposali ▷value, initialized to ⊥

1: mac-broadcast(VALUE, vi)
2: if proposali ̸=⊥ then
3: vi ← proposali
4: mac-broadcast(PROPOSAL, vi)
5: if seeni[−vi] = false then
6: return (commit, vi)
7: else
8: return (adopt, vi)

// Background message handler
9: Upon receive(VALUE, v) do

10: seeni[v]← true

11: Upon receive(PROPOSAL, v) do
12: proposali ← v

comes with two technical challenges. First, our proofs are quite different from the one in
[37], because nodes progress in a different dynamic due to the characteristics of the abstract
MAC layer. In particular, we need to carefully analyze which broadcast message has been
processed to ensure that the nodes are in the right phase in our proof. This is also where
we need to rely on Remark 1, which is usually not needed in the proofs for point-to-point
message-passing models. Second, compared to [3], our proofs are more subtle in the sense
that we need to make sure that concurrent broadcast events and “jumps” do not affect the
probability analysis. The proof in [3] mainly relies on the atomicity of the underlying shared
memory, whereas our proofs need to carefully analyze the timing of broadcast events. (Recall
that we choose not to use MAC-SC, since it requires nodes to have unique identities.)

Prior solutions rely on the knowledge of network size n [14, 15, 3] or an estimation of n

[33] to improve time complexity. For anonymous storage-efficient algorithms, nodes do not
know n, and there is no unique node identity. The solution for estimating the network size in
the abstract MAC layer in [33] only works correctly with a large n (i.e., with high probability).
We integrate a “doubling technique” to locally estimate n which does not require any message
exchange. For our second randomized binary consensus algorithm MAC-RBC2, nodes double
the estimated system size n′ every c phases for some constant c, if they have not terminated
yet. We identify a proper value of c so that n′ is within a constant factor of n, and nodes
achieve agreement using O(n log n) broadcasts on expectation.

Randomized Binary Consensus and Adopt-Commit.

▶ Definition 4 (Randomized Binary Consensus). A correct randomized binary consensus
algorithm satisfies: (i) Probabilistic Termination: Each fault-free node decides an output
value with probability 1 in the limit; (ii) Validity: Each output is some input value; and
(iii) Agreement: The outputs are identical.

▶ Definition 5 (Adopt-Commit Object). A correct adopt-commit algorithm satisfies: (i)
Termination: Each fault-free node outputs either (commit, v) or (adopt, v) within a finite
amount of time; (ii) Validity: The v in the output tuple must be an input value; (iii) Co-
herence: If a node outputs (commit, v), then any output is either (adopt, v) or (commit, v);
and (iv) Convergence: If all inputs are v, then all fault-free nodes output (commit, v).

4.1 Algorithm MAC-AdoptCommit
We present MAC-AdoptCommit, which implements a wait-free adopt-commit object for
binary inputs in the abstract MAC layer model. The pseudo-code is presented in Algorithm
2, and the algorithm is inspired by the construction in shared memory [4]. Following the
convention, we will use −v to denote the opposite (or complement) value of value v.



Q. Zhang and L. Tseng 39:9

Each node i has two Booleans, seeni[0] and seeni[1], and a value proposali. The former
variables are initialized to false, and used to denote whether a node i has seen input value 0
and 1, respectively. The last variable proposali is initialized to ⊥, and used to record the
“proposed” output from some node. The algorithm has two types of messages:

A VALUE type message (VALUE, vi) that is used to exchange input values.
A PROPOSAL type message (PROPOSAL, vi) that is to announce a proposed value.

Upon receiving the message (VALUE, v), node i updates seeni[v] to true (line 11), denoting
that it has seen the value v. Upon receiving the message (PROPOSAL, v), i updates proposali
to v (line 13), denoting that it has recorded the proposed value, by either itself or another
node. Due to concurrency and asynchrony, it is possible that there are multiple proposal
messages; thus, node i may overwrite existing value in proposali with an opposite value.

Node i first broadcasts input vi. After mac-broadcast completes (line 1), i checks
whether it has received any PROPOSAL message. If so, it updates its state vi to the value (line
5). Otherwise, it becomes a proposer and broadcast PROPOSAL message with its own input
vi (line 3). After Line 5, the state vi could be i’s original input, or a state copied from the
proposed value (from another node). Finally, if node i has not observed any VALUE message
with the opposite state (−vi), then it outputs (commit, vi); otherwise, it outputs (adopt, vi).

Correctness. Validity, termination and convergence are obvious. To see how MAC-
AdoptCommit achieves coherence, first observe that it is impossible for some node to
output (commit, v), and the others to output (commit, −v). It is due to the property
of mac-broadcast: if some node outputs (commit, v), then every node must observe
seen[v] = true when executing line 6. Second, if a node outputs (commit, v), then it
must be the case that there has already been a proposer that has broadcast both message
(VALUE, v) and message (PROPOSAL, v). Therefore, it is impossible for a node to output
(adopt, −v). For completeness, we present the proof of correctness in Appendix A.

4.2 Algorithm MAC-RBC
We present MAC-RBC in Algorithm 3. The algorithm uses a sequence of adopt-commit and
conciliator objects. A conciliator object helps nodes to reach the same state, and an adopt-
commit is used to determine whether it is safe to output a value, and choose a value for the
next phase when one cannot “commit” to an output. We adapt MAC-AdoptCommit to store
phase index, which allows nodes to jump to a higher phase. Effectively, any adopt-commit
object with a phase < p can be interpreted as having ⊥ in phase p. This also allows us to
“reuse” the object. For the conciliator object, we use Ben-Or’s local coin [11], which achieves
expected exponential time complexity.

In Algorithm 3, line 3 to line 10 effectively implement a reusable adopt-commit object
using VALUE and PROPOSAL messages. Line 12 to line 17 implement a conciliator object using
the VALUE2 message. The seen variables store both a Boolean and a phase index. Nodes only
update these variables when receiving a corresponding message from the same or a higher
phase. A node i flips a local coin to decide the state for the next phase at line 17 only if it
can safely infer that both 0 and 1 are some node’s state at the beginning of the phase, i.e., it
flips a coin when it has not seen a VALUE2 message from a higher phase (line 13), and it has
observed a VALUE2 message with value −vi from the same phase (line 16).

Correctness Proof. It is straightforward to see that MAC-RBC satisfies validity, since the
state is either one’s input or a value learned from received messages (which must be an input
value) and there is no Byzantine fault. We then prove the agreement property.

DISC 2024



39:10 The Power of Abstract MAC Layer: A Fault-Tolerance Perspective

Algorithm 3 MAC-RBC Algorithm: Steps at each node i with input xi.

Local Variables: /* These variables can be accessed and modified by any thread at node i. */
seeni[0] ▷(Boolean, phase), initialized to (false, 0)
seeni[1] ▷(Boolean, phase), initialized to (false, 0)
seen2

i [0] ▷(Boolean, phase), initialized to (false, 0)
seen2

i [1] ▷(Boolean, phase), initialized to (false, 0)
vi ▷state, initialized to xi, the input at node i
pi ▷phase, initialized to 0
proposali ▷(value, phase), initialized to (⊥, 0)

1: while true do
2: pold ← pi

3: mac-broadcast(VALUE, vi, pi)
4: if proposali.phase ≥ pi then
5: (vi, pi)← proposali
6: mac-broadcast(PROPOSAL, vi, pi)
7: if pold ̸= pi then
8: go to line 2 in pi ▷“Jump” to pi

9: else if seeni[−vi].phase < pi then
10: output vi

11: else
12: mac-broadcast(VALUE2, vi, pi)
13: if seen2

i [−vi].phase > pi then
14: (vi, pi)← seen2

i [−vi]
15: go to line 2 in pi ▷“Jump” to pi

16: else if seen2
i [−vi] = (true, pi) then

17: vi ←FlipLocalCoin()
18: pi ← pi + 1 ▷“Move” to pi

// Background message handler
19: Upon receive(VALUE, v, p) do
20: if p ≥ pi then
21: seeni[v]← (true, p)

22: Upon receive(VALUE2, v, p) do
23: if p ≥ pi then
24: seen2

i [v]← (true, p)

25: Upon receive(PROPOSAL, v, p) do
26: if p ≥ pi then
27: proposali ← (v, p)

▶ Lemma 6. Suppose node i is the first node that makes an output and it outputs v in phase
p, then all the other nodes either output v in phase p or phase p + 1.

Proof. Suppose node i outputs v in phase p at time T3. Then it must have seeni[−v].phase <

p. Assume this holds true at time T2. Furthermore, assume line 6 was executed at time T1
by node i at time T1 such that T1 < T2 < T3.

We first make the observation, namely Obs1, no node with −v in phase p′ ≥ p has
completed line 3 at time ≤ T2. Suppose node j has state −v in some phase p′ ≥ p. By
assumption (in Section 2), before node i starts to execute line 9 at time T2, its message handler
has processed all the messages received by the abstract MAC layer. Therefore, the fact that
seeni[−v].phase < pi at time T2 implies that node i has not receive any message of the form
(VALUE, −v, p′) at time T2. Consequently, node j has not completed mac-broadcast(VALUE,
−v, p′) (line 1) at time T2.

Consider the time T when the first mac-broadcast(VALUE, −v, p) is completed (if there
is any). At time T , there are two cases for node k that has not crashed yet:

Node k has not moved beyond phase p:
k must have already received (PROPOSAL, v) at some earlier time than T , because (i)
Obs1 implies that T > T2; and (ii) by time T , node i has already completed line 6 (which
occurred at time T1). Consider two scenarios: (s1) k executes line 4 after receiving
(PROPOSAL, v): k sets proposalk to value v before executing line 6 (potentially at some
later point than T ); and (s2) k executes line 4 before receiving (PROPOSAL, v): in this case:
k’s input at phase p must be v; otherwise, T cannot be the first mac-broadcast(VALUE,
−v, p′) that is completed. (Observe that by assumption of this case, k executes line 4
before node i completes its line 6 at time T1.)
Node k has moved beyond phase p:
By assumption, time T is the time that the first mac-broadcast(VALUE, −v, p) is com-
pleted. Thus, it is impossible for node k to have set (vk, pk) to (−v, p′) for some p′ ≥ p.



Q. Zhang and L. Tseng 39:11

In both cases, right before executing line 6, node k can only mac-broadcast(PROPOSAL, v, p′),
for p′ ≥ p, i.e., no mac-broadcast(PROPOSAL, −v, p′) is possible. Consequently, the lemma
then follows by a simple induction on the order of nodes moving to phase p + 1. ◀

Since we assume a message oblivious adversary, the termination and exponential time
complexity follow the standard argument of using local coins [11]. In particular, we have the
following Theorem, which implies that MAC-RBC requires, on expectation, an exponential
number of broadcasts. The proof is deferred to Appendix B.

▶ Theorem 7. For any δ ∈ (0, 1), let p = ⌈2n−1 ln(1/δ)⌉. Then with probability at least 1 − δ,
MAC-RBC terminates within p phases. (In other words, all nodes have phase ≤ p.)

4.3 MAC-RBC2: Improving Time Complexity
There are several solutions for an efficient conciliator object, such as a shared coin [5] and
the “first-mover-win” strategy [14, 15, 3]. The first-mover-win strategy was developed for a
single multi-writer register in shared memory such that agreement is achieved when only one
winning node (the first mover) successfully writes to the register. If there are concurrent
operations, then agreement might be violated. On a high-level, this strategy translates to
the “first-broadcaster-win” design in the abstract MAC layer. One challenge in our analysis
is the lack of the atomicity of the register. We need to ensure that even in the presence of
concurrent broadcast and failure events, there is still a constant probability for achieving
agreement, after nodes have a “good enough” estimated system size n′.

Conciliator and Integration. Our conciliator object is presented in Algorithm 4, which
is inspired by the ImpatientFirstMover strategy [3]. The key difference from [3] is that
MAC-FirstMover uses an estimated size n′, instead of the actual network size n (as in [3]),
which makes the analysis more complicated, as our analysis depends on both n and n′.
Algorithm 4 presents a standalone conciliator implementation. We will later describe how to
integrate it with Algorithm 3 by adding the field of phase index and extra message handlers.

In our design, each node proceeds in rounds and increases the probability of revealing
their coin-flip after each round k, if it has not learned any coin flip at line 2. To prevent
the message adversary from scheduling concurrent messages with conflicting values, nodes
have two types of messages: COIN and DUMMY. The first message is used to reveal node’s
input vi, whereas the second is used as a “decoy” that has no real effect. At line 3, node i

draws a local random number between [0, 1) to decide which message to broadcast. Since
the adversary is oblivious, it cannot choose its scheduling based on the message type.

MAC-RBC2 can be obtained by integrating Alg. 4 (MAC-FirstMover) with Alg. 3
(MAC-RBC) with the changes below. The complete algorithm is presented in Appendix C.

FlipLocalCoin() is replaced by MAC-FirstMover(2⌊ pi
c ⌋n0), where c is a constant to

be defined later and n0 is a constant that denotes the initial guess of the system size. All
nodes have an identical information of c and n0 in advance. Therefore, nodes in the same
phase call MAC-FirstMover with the same estimated system size n′. Recall that pi is the
phase index local at node i. Hence, effectively in our design, each node i is doubling the
estimated size n′ every c phases.
To save space, coini consists of two fields (value, phase), and is used in a fashion similar
to how proposali is used in MAC-RBC. That is, if coini has a phase field lower than the
current phase pi, then the value field is treated as ⊥.

DISC 2024



39:12 The Power of Abstract MAC Layer: A Fault-Tolerance Perspective

Algorithm 4 MAC-FirstMover Algorithm: Steps at each node i with input vi.

Local Variables: /* These variables can be accessed by any thread at node i. */
coini ▷value, initialized to ⊥

Input: n′ ▷estimated system size, given as an input to MAC-FirstMover

1: k ← 0
2: while coini =⊥ do
3: if a local random number < 2k

2n′ then
4: mac-broadcast(COIN, vi)
5: else
6: mac-broadcast(DUMMY)
7: k ← k + 1
8: mac-broadcast(COIN, coini)
9: return coini

// Background message handler
10: Upon receive(COIN, v) do
11: if coini =⊥ then
12: coini ← v

13: Upon receive(DUMMY) do
14: do nothing

The messages by node i are tagged with its current phase pi. That is, the two messages
in Algorithm 4 have the following form: (COIN, v, pi) and (DUMMY, pi).
MAC-RBC2 needs to have two extra message handlers to process DUMMY and COIN
messages. The COIN message handler only considers messages with phase ≤ pi.
In MAC-RBC2, nodes jump to a higher phase upon receiving a coin broadcast. More
precisely, if a node i receives a coin broadcast m from a phase p > pi, then i updates vi

to the value in m and jumps to phase p + 1.

Correctness and Time Complexity. Correctness follows from the prior correctness proof,
as MAC-FirstMover is a valid conciliator object that returns only 0 or 1. To analyze time
complexity, we start with several useful notions.

▶ Definition 8 (Active Nodes). We say a node is an active node in phase p if it ever executes
MAC-FirstMover in phase p. Let Ap denote the set of all active nodes in phase p.

Due to asynchrony, different nodes might execute MAC-FirstMover in phase p at different
times. Moreover, nodes may “jump” to a higher phase in our design. Consequently, not all
nodes would execute MAC-FirstMover in phase p for every p.

▶ Definition 9 (Broadcast). We distinguish different types of broadcasts, which will later be
useful for our probability analysis:

A broadcast is a phase-p broadcast if it is tagged with phase p. By definition, only active
nodes in phase p (i.e., nodes in Ap) make phase-p broadcasts.
A broadcast made in MAC-FirstMover (Algorithm 4) is a coin broadcast if its message
has the COIN tag; otherwise, it is a dummy broadcast.
A broadcast is an original broadcast if it is made in the while loop (Line 4 and Line 6
in Algorithm 4). It is a follow-up broadcast if it is made after coini becomes non-empty
(line 8 of Algorithm 4). By design, a follow-up broadcast must be a coin broadcast.
Consider an original broadcast m = (COIN, v, p) by node i. The broadcast is said to be
successful in phase p if there exists a node j that completes a follow-up broadcast with
coinj = v in phase p, i.e., node j receives the acknowledgement for its broadcast at line
8 of Algorithm 4. Note that i may not equal to j, and both i and j might be faulty
(potentially crash at a future point of time).

Recall that we define a broadcast to be “completed” if a node making the broadcast
receives the acknowledge from the abstract MAC layer. This notion should not be confused
with the notion of “successful.” In particular, we have (i) a broadcast might be completed, but



Q. Zhang and L. Tseng 39:13

not successful – this is possible if there are multiple original coin broadcasts with different v;
(ii) a broadcast might be successful, but not completed – this is possible if a node j receives
an original coin broadcast by a faulty node and node j completes the follow-up broadcast.

We will apply the following important observation in our proofs. The observation directly
follows from our definition of different broadcasts.
▶ Remark 10. If there is a completed original coin broadcast in phase p, then there must be
at least one successful original coin broadcast in phase p.

▶ Definition 11. A node completes MAC-FirstMover of phase p if it receives a coin broadcast
of the form (COIN, ∗, p′) with p′ ≥ p.2 Let Cp denote the set of all nodes that complete
MAC-FirstMover of phase p.

By definition, a node not in Ap can still complete MAC-FirstMover of phase p, if it receives
a coin broadcast from a higher phase.

We first bound the number of expected original broadcasts in order for nodes to complete
MAC-FirstMover. Recall that k in Algorithm 4 denotes the round index. In our analysis
below, we only bound the number of broadcasts made by fault-free nodes.

▶ Lemma 12. With probability ≥ 1 − δ, all fault-free nodes complete MAC-FirstMover in
phase p, after ≤ 2n′ ln(1/δ) original broadcasts are made by fault-free nodes in phase p.

Proof. We begin with the following claim. It follows from the definition of successful coin
broadcasts. For completeness, we include the proof in Appendix D.

▷ Claim 13. All fault-free nodes complete MAC-FirstMover of phase p if there exists
at least one successful coin broadcast in phase p.

Every broadcast in phase p has probability ≥ 1
2n′ to be a coin broadcast (by line 3 of

Algorithm 4). Since we only care about the number of original broadcasts made by fault-free
nodes, all these broadcasts must be eventually completed. Consequently, for all the fault-free
nodes in Ap, we have the probability that first t completed broadcasts by any fault-free node
in Ap are all dummy, denoted by P , bounded by

P ≤
t∏

i=1

(
1 − 1

2n′

)
≤ exp

(
− t

2n′

)
.

Equivalently, for any t ≥ 2n′ ln(1/δ), with probability at least 1 − δ, there exists at least one
completed coin broadcast among the first t completed broadcasts in phase p, which further
implies the existence of at least one successful broadcast by Remark 10. This, together with
Claim 13, conclude the proof. (Note that there could be a successful coin broadcast by a
faulty node in Ap, but this does not affect the lower bound we derived.) ◀

▶ Lemma 14. Consider the case when all active nodes in phase p (i.e., nodes in Ap) execute
MAC-FirstMover of phase p with parameter n′ ≥ n. With probability ≥ 0.05, each node
j ∈ Cp must reach the same state vj in either phase p or phase p + 1.

Proof. We begin with the following claim. The proof is presented in Appendix E.

▷ Claim 15. If there is exactly one successful original coin broadcast in phase p, then all
nodes in Cp must achieve the same state in either phase p or phase p + 1.

2 This coin broadcast can be an original or a follow-up coin broadcast.

DISC 2024



39:14 The Power of Abstract MAC Layer: A Fault-Tolerance Perspective

The analysis below aims to identify the lower bound on the probability of the event that
there exists exactly one successful original coin broadcast in phase p.

Consider any message scheduling by the adversary. Since we assume it is oblivious, we
can define ri as the probability that the i-th completed original broadcast in phase p, across
the entire set of nodes in Ap, is a coin broadcast given this unknown message scheduling.
That is, since the schedule by the adversary is chosen a priori, ri is a fixed number. Next,
we introduce two variables:

Let T − 1 denote the number of completed original dummy broadcasts in phase p before
the first completed original coin broadcasts in phase p, given the message scheduling; and
Let kj denote the number of completed original dummy broadcasts by a node j ∈ A,
among these T − 1 broadcasts. Note that only kj is defined with respect to a single node.

The first definition implies that the T -th completed original broadcast is a coin broadcast.
Without loss of generality, assume that in the given schedule, the i-th completed original

broadcasts across the entire set of nodes in Ap is the k-th completed original broadcast made
by node j. Then by Line 3 of Algorithm 4, we can quantify ri as follows:

ri = 2k−1

2n′ (1)

Observe that if some node j ∈ Ap fails to complete an original broadcast, then it cannot
make any further broadcasts. This is because if j is not able to complete a broadcast, then it
must be a faulty node. Consequently, the k-th “completed” original broadcast made by node
j must also be the k-th original broadcast by j. Hence, Equation (1) still holds for a faulty j.

Define t∗ = min{t :
∑t

i=1 ri ≥ 1
4 }. Then we have

P{T > t∗} =
t∗∏

i=1
(1 − ri) ≤ exp

(
−

t∗∑
i=1

ri

)
≤ exp(−1/4). (2)

Define A′
p as the nodes in Ap that have completed at least one original dummy broadcast

among the first T − 1 completed original dummy broadcasts in phase p. In other words,
j ∈ A′

p iff kj ≥ 1. Then we can derive the following equality, based on the nodes that have
made the completed original broadcast(s):

T −1∑
i=1

ri =
∑

j∈A′
p

kj∑
k=1

2k−1

2n′ =
∑

j∈A′
p

2kj − 1
2n′ . (3)

The first equality follows from the definition that the first T − 1 broadcasts are all
dummy, and thus ri must “correspond” to the k-th completed original broadcast (for some
1 ≤ k ≤ kj) by some node j, whose prior broadcasts are all dummy as well. Furthermore, the
kj-th completed original dummy broadcast is the last one by node j (among the first T − 1
broadcasts across the system). Note that by definition, ri is a constant for all i. However,
the summation

∑T −1
i=1 ri is indeed a random variable whose randomness comes from each

coin flip. This explains why the first equality is valid.
Next, we upper bound the probability that there are multiple original coin broadcasts in

one phase. Note that every active node in Ap can make at most one original coin broadcast in
phase p because a node that makes a original coin broadcast must receive that coin broadcast
from itself and thus terminate Algorithm 4. Since by definition, the T -th completed original
broadcast is the first completed original coin broadcast in the entire system, any original
coin broadcast made by some node j ∈ Ap must be the (kj + 1)-th original broadcast by
node j. Equation (1) implies that the probability of the (kj + 1)-th original broadcast being
a coin broadcast is 2kj

2n′ .



Q. Zhang and L. Tseng 39:15

Let Ep denote the event that there are strictly more than one original coin broadcast
in phase p – these coin broadcasts may or may not be successful. Let Ec

p denote its comple-
ment. By union bound, we have

P{Ep} ≤
∑

j∈Ap

P{node j makes an original coin broadcast} =
∑

j∈Ap

2kj

2n′ .

Consequently, by Equation (3), the definition of t∗ such that
∑t

i=1 ri < 1
4 for all t < t∗, and

the assumption that n′ ≥ n ≥ |Ap|, we have

P{Ep | T ≤ t∗} ≤
∑

j∈Ap

2kj

2n′ =
∑

j∈A′
p

2kj

2n′ +
∑

j∈Ap−A′
p

1
2n′ (kj = 0 for j /∈ A′

p)

=

∑
j∈A′

p

2kj − 1
2n′ +

∑
j∈A′

p

1
2n′

+
∑

j∈Ap−A′
p

1
2n′

=
T −1∑
i=1

ri +
∑

j∈Ap

1
2n′ =

T −1∑
i=1

ri + |Ap|
2n′ ≤ 3

4 .

By Remark 10, T ≤ t∗, which denotes the event that there is at least one completed original
coin broadcast in the first t∗ completed original broadcasts, implies that there is at least one
successful original broadcast in the first t∗ completed original broadcasts. Therefore, the fact
that T ≤ t∗ together with Ec

p is a subset of the events that there is exactly one successful
original coin broadcast in phase p. Consequently, together with Equation (2), we have

P{exactly one successful original coin broadcast in phase p}
≥ P{Ec

p, T ≤ t∗} ≥ (1 − exp(−1/4))(1 − 3/4) ≥ 0.05.

This combined with Claim 15 prove the lemma. ◀

Define the constant c as follows: c = ln(2/δ)
0.05 . Using c in MAC-FirstMover (Algorithm 4),

we can derive the following theorem. The full proof is presented in Appendix F. Roughly
speaking, nodes need O(log n) phases to have a large enough estimated system size n′. After
that, nodes need a constant number of phases to reach agreement and terminate, due to
Lemma 14. Next, Lemma 12 states that each phase needs O(n) broadcasts on expectation.
These give us the desired result.

▶ Theorem 16. With probability ≥ 1 − δ, MAC-RBC2 terminates and achieves agreement
using O(n log n) total broadcasts across the entire system.

References
1 Mohssen Abboud, Carole Delporte-Gallet, and Hugues Fauconnier. Agreement without

knowing everybody: a first step to dynamicity. In Djamal Benslimane and Aris M. Ouksel,
editors, Proceedings of the 8th international conference on New technologies in distributed
systems, NOTERE ’08, Lyon, France, June 23-27, 2008, pages 49:1–49:5. ACM, 2008. doi:
10.1145/1416729.1416792.

2 Eduardo Adílio Pelinson Alchieri, Alysson Neves Bessani, Joni da Silva Fraga, and Fabíola
Greve. Byzantine consensus with unknown participants. In Theodore P. Baker, Alain Bui, and
Sébastien Tixeuil, editors, Principles of Distributed Systems, 12th International Conference,
OPODIS 2008, Luxor, Egypt, December 15-18, 2008. Proceedings, volume 5401 of Lecture Notes
in Computer Science, pages 22–40. Springer, 2008. doi:10.1007/978-3-540-92221-6_4.

DISC 2024

https://doi.org/10.1145/1416729.1416792
https://doi.org/10.1145/1416729.1416792
https://doi.org/10.1007/978-3-540-92221-6_4


39:16 The Power of Abstract MAC Layer: A Fault-Tolerance Perspective

3 James Aspnes. A modular approach to shared-memory consensus, with applications to
the probabilistic-write model. Distributed Comput., 25(2):179–188, 2012. doi:10.1007/
s00446-011-0134-8.

4 James Aspnes and Faith Ellen. Tight bounds for anonymous adopt-commit objects. In
Rajmohan Rajaraman and Friedhelm Meyer auf der Heide, editors, SPAA 2011: Proceedings
of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures, San
Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC 2011), pages 317–324. ACM, 2011.
doi:10.1145/1989493.1989548.

5 James Aspnes and Maurice Herlihy. Wait-free data structures in the asynchronous pram model.
In Proceedings of the second annual ACM symposium on Parallel algorithms and architectures,
pages 340–349, 1990. doi:10.1145/97444.97701.

6 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing
systems. J. ACM, 42(1):124–142, 1995. doi:10.1145/200836.200869.

7 Hagit Attiya, Arie Fouren, and Eli Gafni. An adaptive collect algorithm with applications.
Distributed Comput., 15(2):87–96, 2002. doi:10.1007/s004460100067.

8 Hagit Attiya, Sweta Kumari, Archit Somani, and Jennifer L. Welch. Store-collect in the presence
of continuous churn with application to snapshots and lattice agreement. In Stéphane Devismes
and Neeraj Mittal, editors, Stabilization, Safety, and Security of Distributed Systems - 22nd
International Symposium, SSS 2020, Austin, TX, USA, November 18-21, 2020, Proceedings,
volume 12514 of Lecture Notes in Computer Science, pages 1–15. Springer, 2020. doi:
10.1007/978-3-030-64348-5_1.

9 Hagit Attiya and Ami Paz. Counting-based impossibility proofs for renaming and set agreement.
In Marcos K. Aguilera, editor, Distributed Computing - 26th International Symposium, DISC
2012, Salvador, Brazil, October 16-18, 2012. Proceedings, volume 7611 of Lecture Notes in
Computer Science, pages 356–370. Springer, 2012. doi:10.1007/978-3-642-33651-5_25.

10 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley Series on Parallel and Distributed Computing, 2004.

11 Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. In Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, PODC ’83, pages 27–30, New York, NY, USA, 1983.
ACM. doi:10.1145/800221.806707.

12 François Bonnet and Michel Raynal. Anonymous asynchronous systems: the case of failure
detectors. Distributed Comput., 26(3):141–158, 2013. doi:10.1007/s00446-012-0169-5.

13 David Cavin, Yoav Sasson, and André Schiper. Consensus with unknown participants or
fundamental self-organization. In Ioanis Nikolaidis, Michel Barbeau, and Evangelos Kranakis,
editors, Ad-Hoc, Mobile, and Wireless Networks: Third International Conference, ADHOC-
NOW 2004, Vancouver, Canada, July 22-24, 2004. Proceedings, volume 3158 of Lecture Notes
in Computer Science, pages 135–148. Springer, 2004. doi:10.1007/978-3-540-28634-9_11.

14 Ling Cheung. Randomized wait-free consensus using an atomicity assumption. In James H.
Anderson, Giuseppe Prencipe, and Roger Wattenhofer, editors, Principles of Distributed
Systems, 9th International Conference, OPODIS 2005, Pisa, Italy, December 12-14, 2005,
Revised Selected Papers, volume 3974 of Lecture Notes in Computer Science, pages 47–60.
Springer, 2005. doi:10.1007/11795490_6.

15 Benny Chor, Amos Israeli, and Ming Li. Wait-free consensus using asynchronous hardware.
SIAM J. Comput., 23(4):701–712, 1994. doi:10.1137/S0097539790192635.

16 Eli Daian, Giuliano Losa, Yehuda Afek, and Eli Gafni. A wealth of sub-consensus deterministic
objects. In Ulrich Schmid and Josef Widder, editors, 32nd International Symposium on
Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume
121 of LIPIcs, pages 17:1–17:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPICS.DISC.2018.17.

17 Giuseppe Di Luna and Roberto Baldoni. Non Trivial Computations in Anonymous Dynamic
Networks. In Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Butucaru, editors,

https://doi.org/10.1007/s00446-011-0134-8
https://doi.org/10.1007/s00446-011-0134-8
https://doi.org/10.1145/1989493.1989548
https://doi.org/10.1145/97444.97701
https://doi.org/10.1145/200836.200869
https://doi.org/10.1007/s004460100067
https://doi.org/10.1007/978-3-030-64348-5_1
https://doi.org/10.1007/978-3-030-64348-5_1
https://doi.org/10.1007/978-3-642-33651-5_25
https://doi.org/10.1145/800221.806707
https://doi.org/10.1007/s00446-012-0169-5
https://doi.org/10.1007/978-3-540-28634-9_11
https://doi.org/10.1007/11795490_6
https://doi.org/10.1137/S0097539790192635
https://doi.org/10.4230/LIPICS.DISC.2018.17


Q. Zhang and L. Tseng 39:17

19th International Conference on Principles of Distributed Systems (OPODIS 2015), volume 46
of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–33:16, Dagstuhl,
Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
OPODIS.2015.33.

18 Giuseppe Antonio Di Luna and Roberto Baldoni. Brief announcement: Investigating the cost
of anonymity on dynamic networks. In Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing, PODC ’15, pages 339–341, New York, NY, USA, 2015. Association
for Computing Machinery. doi:10.1145/2767386.2767442.

19 Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl.
Reaching approximate agreement in the presence of faults. J. ACM, 33:499–516, May 1986.
doi:10.1145/5925.5931.

20 Mohsen Ghaffari, Erez Kantor, Nancy A. Lynch, and Calvin C. Newport. Multi-message
broadcast with abstract MAC layers and unreliable links. In Magnús M. Halldórsson and
Shlomi Dolev, editors, ACM Symposium on Principles of Distributed Computing, PODC ’14,
Paris, France, July 15-18, 2014, pages 56–65. ACM, 2014. doi:10.1145/2611462.2611492.

21 Fabíola Greve and Sébastien Tixeuil. Knowledge connectivity vs. synchrony requirements for
fault-tolerant agreement in unknown networks. In The 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007, Edinburgh,
UK, Proceedings, pages 82–91. IEEE Computer Society, 2007. doi:10.1109/DSN.2007.61.

22 D. Hendler, F. Fich, and N. Shavit. Linear lower bounds on real-world implementations of
concurrent objects. In Proc. 46th Annual IEEE Symposium on Foundations of Computer
Science, 2005.

23 M. Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1), January 1991. doi:10.1145/
114005.102808.

24 Majid Khabbazian, Dariusz R. Kowalski, Fabian Kuhn, and Nancy A. Lynch. Decomposing
broadcast algorithms using abstract MAC layers. Ad Hoc Networks, 12:219–242, 2014. doi:
10.1016/j.adhoc.2011.12.001.

25 Fabian Kuhn, Nancy A. Lynch, and Calvin C. Newport. The abstract MAC layer. Distributed
Comput., 24(3-4):187–206, 2011. doi:10.1007/s00446-010-0118-0.

26 Petr Kuznetsov, Thibault Rieutord, and Sara Tucci Piergiovanni. Reconfigurable lattice
agreement and applications. In Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller,
editors, 23rd International Conference on Principles of Distributed Systems, OPODIS 2019,
December 17-19, 2019, Neuchâtel, Switzerland, volume 153 of LIPIcs, pages 31:1–31:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.OPODIS.2019.31.

27 Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis Chatzigiannakis.
Conscious and unconscious counting on anonymous dynamic networks. In Mainak Chatterjee,
Jiannong Cao, Kishore Kothapalli, and Sergio Rajsbaum, editors, Distributed Computing and
Networking - 15th International Conference, ICDCN 2014, Coimbatore, India, January 4-7,
2014. Proceedings, volume 8314 of Lecture Notes in Computer Science, pages 257–271. Springer,
2014. doi:10.1007/978-3-642-45249-9_17.

28 Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis Chatzigiannakis.
Counting in anonymous dynamic networks under worst-case adversary. In IEEE 34th Interna-
tional Conference on Distributed Computing Systems, ICDCS 2014, Madrid, Spain, June 30 -
July 3, 2014, pages 338–347. IEEE Computer Society, 2014. doi:10.1109/ICDCS.2014.42.

29 Giuseppe Antonio Di Luna and Giovanni Viglietta. Brief announcement: Efficient computation
in congested anonymous dynamic networks. In Rotem Oshman, Alexandre Nolin, Magnús M.
Halldórsson, and Alkida Balliu, editors, Proceedings of the 2023 ACM Symposium on Principles
of Distributed Computing, PODC 2023, Orlando, FL, USA, June 19-23, 2023, pages 176–179.
ACM, 2023. doi:10.1145/3583668.3594590.

30 Giuseppe Antonio Di Luna and Giovanni Viglietta. Optimal computation in leaderless
and multi-leader disconnected anonymous dynamic networks. In Rotem Oshman, editor,
37th International Symposium on Distributed Computing, DISC 2023, October 10-12, 2023,

DISC 2024

https://doi.org/10.4230/LIPIcs.OPODIS.2015.33
https://doi.org/10.4230/LIPIcs.OPODIS.2015.33
https://doi.org/10.1145/2767386.2767442
https://doi.org/10.1145/5925.5931
https://doi.org/10.1145/2611462.2611492
https://doi.org/10.1109/DSN.2007.61
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/114005.102808
https://doi.org/10.1016/j.adhoc.2011.12.001
https://doi.org/10.1016/j.adhoc.2011.12.001
https://doi.org/10.1007/s00446-010-0118-0
https://doi.org/10.4230/LIPIcs.OPODIS.2019.31
https://doi.org/10.1007/978-3-642-45249-9_17
https://doi.org/10.1109/ICDCS.2014.42
https://doi.org/10.1145/3583668.3594590


39:18 The Power of Abstract MAC Layer: A Fault-Tolerance Perspective

L’Aquila, Italy, volume 281 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPICS.DISC.2023.18.

31 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

32 Nancy A. Lynch, Tsvetomira Radeva, and Srikanth Sastry. Asynchronous leader election
and MIS using abstract MAC layer. In Fabian Kuhn and Calvin C. Newport, editors,
FOMC’12, The Eighth ACM International Workshop on Foundations of Mobile Computing
(part of PODC 2012), Funchal, Portugal, July 19, 2012, Proceedings, page 3. ACM, 2012.
doi:10.1145/2335470.2335473.

33 Calvin Newport and Peter Robinson. Fault-tolerant consensus with an abstract MAC layer.
In Ulrich Schmid and Josef Widder, editors, 32nd International Symposium on Distributed
Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume 121 of LIPIcs,
pages 38:1–38:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.DISC.2018.38.

34 Calvin C. Newport. Consensus with an abstract MAC layer. In Magnús M. Halldórsson and
Shlomi Dolev, editors, ACM Symposium on Principles of Distributed Computing, PODC ’14,
Paris, France, July 15-18, 2014, pages 66–75. ACM, 2014. doi:10.1145/2611462.2611479.

35 Eric Ruppert. The anonymous consensus hierarchy and naming problems. In Eduardo
Tovar, Philippas Tsigas, and Hacène Fouchal, editors, Principles of Distributed Systems, 11th
International Conference, OPODIS 2007, Guadeloupe, French West Indies, December 17-20,
2007. Proceedings, volume 4878 of Lecture Notes in Computer Science, pages 386–400. Springer,
2007. doi:10.1007/978-3-540-77096-1_28.

36 Lewis Tseng and Callie Sardina. Byzantine Consensus in Abstract MAC Layer. In Alysson
Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi, editors, 27th
International Conference on Principles of Distributed Systems (OPODIS 2023), volume 286 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:16, Dagstuhl, Germany,
2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.OPODIS.2023.
9.

37 Lewis Tseng, Qinzi Zhang, and Yifan Zhang. Brief announcement: Reaching approximate
consensus when everyone may crash. In Hagit Attiya, editor, 34th International Symposium
on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume
179 of LIPIcs, pages 53:1–53:3. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.DISC.2020.53.

38 Nitin H. Vaidya, Lewis Tseng, and Guanfeng Liang. Iterative approximate Byzantine consensus
in arbitrary directed graphs. In Proceedings of the thirty-first annual ACM symposium on
Principles of distributed computing, PODC ’12. ACM, 2012. doi:10.1145/2332432.2332505.

39 Dongxiao Yu, Yifei Zou, Yuexuan Wang, Jiguo Yu, Xiuzhen Cheng, and Francis C. M. Lau.
Implementing the abstract MAC layer via inductive coloring under the rayleigh-fading model.
IEEE Trans. Wirel. Commun., 20(9):6167–6178, 2021. doi:10.1109/TWC.2021.3072236.

40 Dongxiao Yu, Yifei Zou, Jiguo Yu, Yong Zhang, Feng Li, Xiuzhen Cheng, Falko Dressler, and
Francis C. M. Lau. Implementing the abstract MAC layer in dynamic networks. IEEE Trans.
Mob. Comput., 20(5):1832–1845, 2021. doi:10.1109/TMC.2020.2971599.

41 Dongxiao Yu, Yifei Zou, Yong Zhang, Hao Sheng, Weifeng Lv, and Xiuzhen Cheng. An
exact implementation of the abstract MAC layer via carrier sensing in dynamic networks.
IEEE/ACM Trans. Netw., 29(3):994–1007, 2021. doi:10.1109/TNET.2021.3057890.

42 Qinzi Zhang and Lewis Tseng. The power of abstract mac layer: A fault-tolerance perspective,
2024. arXiv:2408.10779.

https://doi.org/10.4230/LIPICS.DISC.2023.18
https://doi.org/10.1145/2335470.2335473
https://doi.org/10.4230/LIPIcs.DISC.2018.38
https://doi.org/10.4230/LIPIcs.DISC.2018.38
https://doi.org/10.1145/2611462.2611479
https://doi.org/10.1007/978-3-540-77096-1_28
https://doi.org/10.4230/LIPIcs.OPODIS.2023.9
https://doi.org/10.4230/LIPIcs.OPODIS.2023.9
https://doi.org/10.4230/LIPIcs.DISC.2020.53
https://doi.org/10.1145/2332432.2332505
https://doi.org/10.1109/TWC.2021.3072236
https://doi.org/10.1109/TMC.2020.2971599
https://doi.org/10.1109/TNET.2021.3057890
https://arxiv.org/abs/2408.10779


Q. Zhang and L. Tseng 39:19

A Correctness Proof of MAC-AdoptCommit

▶ Theorem 17. MAC-AdoptCommit is correct for binary inputs.

Proof. MAC-AdoptCommit satisfies validity, because vi is either an input at node i or a
value from proposali, which must be an input from another node.

MAC-AdoptCommit satisfies termination, because all the steps are non-blocking.
MAC-AdoptCommit satisfies coherence. Suppose node i outputs (commit, v) at time T3,

and completes line 5 at T2, and line 4 at T1 such that T1 < T2 < T3.
We first make the following observation, namely Obs1, no node with input −v has

completed line 1 at any time ≤ T2. Suppose node j has input −v. By Remark 1 in Section
2, before node i starts to execute line 5, its message handler has processed all the messages
received by the abstract MAC layer. Therefore, the fact that seeni[−v] = false at time
T2 implies that node i has not receive any message of the form (VALUE, −v) at time T2.
Consequently, node j has not completed mac-broadcast(VALUE, −v) (line 1) at time T2.

Consider the time T when the first mac-broadcast(VALUE, −v) is completed (if there is
any). At time T , any node k that has not crashed yet must have already received (PROPOSAL,
v) at some earlier time than T , because (i) Obs1 implies that T > T2; and (ii) by time T ,
node i has already completed line 4 (which occurred at time T1). Consider two cases:

k executes line 2 after receiving (PROPOSAL, v): in this case, k sets proposalk to value v

before executing line 3 (potentially at some later point that T ).
k executes line 2 before receiving (PROPOSAL, v): in this case: k’s input must be v;
otherwise, T cannot be the first mac-broadcast(VALUE, −v) that is completed. (Observe
that by assumption of this case, k executes line 2 before node i completes its line 4 at
time T1.)

In both cases, at line 4, node k can only mac-broadcast(PROPOSAL, v). That is, no
mac-broadcast(PROPOSAL, −v) is possible. Consequently, coherence is satisfied.

MAC-AdoptCommit satisfies convergence. If all the inputs are v, then the only value that
can appear in proposali is v for each node i. Moreover, none of the nodes would broadcast −v;
hence, seeni[−v] will always be false. Consequently, all nodes would output (commit, v). ◀

B Proof of Theorem 7

Proof. Recall that we assume the message oblivious adversary; hence, termination proof
is more straightforward. This is because if no node outputs a value, then all nodes rely
on the conciliator (flipping a local coin) to reach the same states for the next phase. By
construction, nodes may (i) jump to a higher phase with a copied state, (ii) obtain a state
that is equivalent to the proposed value from a PROPOSAL message, or (iii) choose its new
state randomly. Therefore, there is a non-zero probability that all of these random choices
equal to the unique state value obtained using approach (i) or (ii). The reason that these
obtained states are identical is due to the coherence property of the adopt-commit object (as
proved in Appendix A).

In the worst case, all nodes “move in sync,” i.e., they enter the same phase concurrently
without using the jump, and have their states randomly generated. Otherwise if there is
some “fast” node that is in a higher phase, it may force all other nodes to jump to its state
after it becomes the “proposer” at line 6. We denote the probability that all states are equal
after flipping a local coin by r∗. Clearly, r∗ = 2−(n−1) > 0. Let P be the random variable
that denotes the termination phase of MAC-RBC, and note that P > p only if the states are

DISC 2024



39:20 The Power of Abstract MAC Layer: A Fault-Tolerance Perspective

not equal in the first p rounds. Therefore, P{P > p} ≤ (1 − r∗)p. Finally, we conclude the
proof by showing that for all p ≥ ln(1/δ)/r∗ = 2n−1 ln(1/δ),

(1 − r∗)p ≤ (1 − r∗)ln(1/δ)/r∗
≤ exp(− ln(1/δ)) = δ.

The inequality follows from the identity that 1 − x ≤ exp(−x) for all x > 0. ◀

C MAC-RBC2

Algorithm 5 MAC-RBC2 Algorithm: Steps at each node i with input xi.

Local Variables: /* These variables can be accessed and modified by any thread at node i. */
seeni[0] ▷(Boolean, phase), initialized to (false, 0)
seeni[1] ▷(Boolean, phase), initialized to (false, 0)
seen2

i [0] ▷(Boolean, phase), initialized to (false, 0)
seen2

i [1] ▷(Boolean, phase), initialized to (false, 0)
vi ▷state, initialized to xi, the input at node i
pi ▷phase, initialized to 0
proposali ▷(value, phase), initialized to (⊥, 0)
n0 ▷an initial guess of system size, initialized to some constant natural number
n′ ▷estimated system size, initialized to 1
c ▷a constant defined as c = ln(2/δ)

0.05
coini ▷(Boolean, phase), initialized to (⊥,−1)

1: mac-broadcast(ID, i)
2: while true do
3: pold ← pi

4: mac-broadcast(VALUE, vi, pi)
5: if proposali.phase ≥ pi then
6: (vi, pi)← proposali
7: mac-broadcast(PROPOSAL, vi, pi)
8: if pold ̸= pi then
9: go to line 2 ▷“Jump” to pi

10: else if seeni[−vi].phase < pi then
11: output vi

12: mac-broadcast(VALUE2, vi, pi)
13: if seen2

i [−vi].phase > pi then
14: (vi, pi)← (−vi, seen2

i [−vi].phase)
15: go to line 2 ▷“Jump” to pi

16: else if seen2
i [−vi] = (true, pi) then

17: // MAC-FirstMover
18: n′ ← 2⌊ pi

c
⌋n0

19: k ← 0
20: while coini.phase < pi do
21: if a local random number < 2k

2n′

then
22: mac-broadcast(COIN, vi, pi)
23: else
24: mac-broadcast(DUMMY)
25: k ← k + 1
26: mac-broadcast(COIN, v, p)
27: (vi, pi)← coini

28: pi ← pi + 1 ▷“Move” to pi

// Background message handlers
29: Upon receive(VALUE, v, p) do
30: if p ≥ seeni[v].phase then
31: seeni[v]← (true, p)

32: Upon receive(VALUE2, v, p) do
33: if p ≥ seen2

i [v].phase then
34: seen2

i [v]← (true, p)

35: Upon receive(PROPOSAL, v, p) do
36: if p ≥ proposali.phase then
37: proposali ← (v, p)

// Message handlers for MAC-FirstMover
38: Upon receive(COIN, v, p) do
39: if p = pi and p > coini.phase then
40: coini ← (v, p)
41: else if p > pi then
42: (vi, pi)← (v, p + 1)
43: go to line 2 ▷“Jump” to pi

44: Upon receive(DUMMY) do
45: do nothing

We can get rid of the coin variable and directly use vi and pi. However, we choose to
reserve the variable so that it is more obvious how MAC-RBC2 utilizes MAC-FirstMover.

The reasons that we need to have the condition p > coini.phase are: (i) coini.phase may
be decoupled from pi; and (ii) each node i has at most two coin broadcasts for a phase p.



Q. Zhang and L. Tseng 39:21

D Proof of Claim 13

Proof of Claim 13. Let m = (COIN, v, p) be a successful coin broadcast in phase p. Recall
that m is successful because there exists a node j that completes the follow-up broadcast
with (COIN, v, p) at some time t. Now, consider three groups of nodes:

For any node i that was in Ap before time t: i completes MAC-FirstMover for phase p

after receiving and processing m or j’s follow-up broadcast.
For any node i that has not executed MAC-FirstMover of phase p by time t: i would
“jump” to phase p after receiving and processing m or j’s follow-up broadcast.
For any node i that has already completed MAC-FirstMover of phase p before time t:
this is trivial. Note that this is possible if i processes message(s) faster than j does, or
there is a coin broadcast other than m. ◁

E Proof of Claim 15

Proof of Claim 15. In the framework of [3], if every node that has not crashed obtains the
same output from the conciliator object, then all the fault-free nodes are guaranteed to
terminate in the next phase. This design, the definition of a successful coin broadcast, and
the ability to jump to a higher phase in MAC-RBC2 imply the claim. This is because for
all nodes that update its state vi in phase p, they must use the same outcome from the
conciliator object (the value field of the successful coin broadcast). For the other nodes that
jump to phase p + 1 (from a phase < p), they must either receive phase-p coin broadcast(s)
or receive the messages from the adopt-commit object in phase p + 1. These messages and
phase-p coin broadcasts (both the one and only original coin broadcast and follow-up coin
broadcasts) must contain exactly the same value. ◁

F Proof of Theorem 16

Proof. First, we can decompose the total number of broadcasts by all fault-free nodes,
denoted by N , into three components N = NRBC + NO + NF , where (i) NRBC denotes the
number of broadcasts required by the part of adopt-commit (i.e., all the communication in
Algorithm 3); (ii) NO denotes the number of original broadcasts used in MAC-FirstMover for
all phases; and (iii) NF denotes the number of follow-up broadcasts used in MAC-FirstMover
for all phases.

Let P denote the random variable of the first phase index in which the agreement is
achieved, i.e., all nodes that have not crashed begin with same v in this phase.

First observe that in each phase, each node makes O(1) broadcasts for adopt-commit and
one follow-up broadcast in for MAC-FirstMover. Therefore, NRBC + NF = O(nP ). The
rest of the proof focuses on bounding NO.

Let n′
p = 2⌊p/c⌋n0 denote the input to MAC-FirstMover, namely the estimated system

size in phase p. Then n′
p ≥ n for all p ≥ c(1 + log2(n/n0)). Therefore, Lemma 14 implies

that the event Ep of no agreement in phase p has bounded probability P{Ep} ≤ 1 − 0.05 for
all p ≥ c(1 + log2(n/n0)). Consequently,

P{P > c(1 + log2(n/n0)) + q} ≤
q∏

i=1

P{E⌊c(1+log2(n/n0)⌋+i} ≤
q∏

i=1

(1− 0.05) ≤ exp(−0.05q).

DISC 2024



39:22 The Power of Abstract MAC Layer: A Fault-Tolerance Perspective

Consequently, let p∗ = c(1 + log2(n/n0)) + ln(2/δ)
0.05 . Upon substituting q = ln(2/δ)

0.05 into the
previous bound, we have

P {P > p∗} ≤ δ/2. (4)

Note that with c = ln(2/δ)
0.05 , p∗ = ln(2/δ)

0.05 (2 + log2(n/n0)) = O(ln(n) ln(1/δ)).
Let NO

p denote the number of original broadcasts made byfault-free nodes in MAC-
FirstMover of phase p. Lemma 12 implies that with probability ≥ 1 − δ, NO

p ≤ 2n′
p ln(1/δ).

Therefore, upon applying union bound, we have with probability ≥ 1 − δ/2,

p∗∑
p=1

NO
p ≤

p∗∑
p=1

2n′
p ln(2p∗/δ) (recall that n′

p = 2⌊p/c⌋n0)

≤ 2cn0 ln(2p∗/δ)
⌈p∗/c⌉∑

q=1
2p

≤ 4cn0 ln(2p∗/δ)2⌈p∗/c⌉ (substitute definition of p∗)

= 4n0
ln(2/δ)

0.05 ln
(

2 ln(2/δ)(2 + log2(n/n0))
0.05δ

)
exp2 (2 + log2(n/n0))

= 320n ln(2/δ) ln
(

2 ln(2/δ)(2 + log2(n/n0))
0.05δ

)
= O

(
n ln(1/δ) ln

(
ln(n) ln(1/δ)

δ

))
.

Equivalently, we have

P


p∗∑

p=1
NO

p > 320n ln(2/δ) ln
(

2 ln(2/δ)(2 + log2(n/n0))
0.05δ

) ≤ δ/2. (5)

Upon combining Equations (4), (5) and applying union bound, we have with probability
≥ 1 − δ, MAC-RBC2 achieves agreement (and thus termination) with

N = NRBC + NO + NF = O (n ln(n) ln(1/δ)) ◀



Brief Announcement: Distributed Maximum Flow
in Planar Graphs
Yaseen Abd-Elhaleem #

Department of Computer Science, University of Haifa, Israel

Michal Dory #

Department of Computer Science, University of Haifa, Israel

Merav Parter #

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

Oren Weimann #

Department of Computer Science, University of Haifa, Israel

Abstract
The dual of a planar graph G is a planar graph G∗ that has a vertex for each face of G and an
edge for each pair of adjacent faces of G. The profound relationship between a planar graph and its
dual has been the algorithmic basis for solving numerous (centralized) classical problems on planar
graphs involving distances, flows, and cuts. In the distributed setting however, the only use of planar
duality is for finding a recursive decomposition of G [DISC 2017, STOC 2019].

In this paper, we extend the distributed algorithmic toolkit (such as recursive decompositions
and minor-aggregations) to work on the dual graph G∗. These tools can then facilitate various
algorithms on G by solving a suitable dual problem on G∗. Given a directed planar graph G with
hop-diameter D, our key result is an Õ(D2)-round algorithm1 for Single Source Shortest Paths on
G∗, which then implies an Õ(D2)-round algorithm for Maximum st-Flow on G. Prior to our work, no
Õ(Poly(D))-round algorithm was known for Maximum st-Flow. We further obtain a D · no(1)-rounds
(1 + ϵ)-approximation algorithm for Maximum st-Flow on G when G is undirected and s and t lie on
the same face. Finally, we give a near optimal Õ(D)-round algorithm for computing the weighted
girth of G.

The main challenges in our work are that G∗ is not the communication graph (e.g., a vertex of G

is mapped to multiple vertices of G∗), and that the diameter of G∗ can be much larger than D (i.e.,
possibly by a linear factor). We overcome these challenges by carefully defining and maintaining
subgraphs of the dual graph G∗ while applying the recursive decomposition on the primal graph G.
The main technical difficulty, is that along the recursive decomposition, a face of G gets shattered
into (disconnected) components yet we still need to treat it as a dual node.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Maximum flow, shortest paths, planar graphs, distributed computing

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.40

Funding O. Weimann was supported in part by Israel Science Foundation grant 810/21.

1 Introduction

Distributed algorithms for network optimization problems have a long and rich history.
These problems are commonly studied under the CONGEST model [18] where the network is
abstracted as an n-vertex graph G = (V, E) with hop-diameter D; communications occur in
synchronous rounds, and per round, O(log n) bits can be sent along each edge. A sequence of

1 The Õ(·) notation is used to omit poly log n factors.

© Yaseen Abd-Elhaleem, Michal Dory, Merav Parter, and Oren Weimann;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 40; pp. 40:1–40:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yaseenuniacc@gmail.com
https://orcid.org/0009-0003-5450-9910
mailto:mdory@ds.haifa.ac.il
https://orcid.org/0000-0002-8565-9642
mailto:merav.parter@weizmann.ac.il
https://orcid.org/0000-0002-2357-2445
mailto:oren@cs.haifa.ac.il
https://orcid.org/0000-0002-4510-7552
https://doi.org/10.4230/LIPIcs.DISC.2024.40
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


40:2 Brief Announcement: Distributed Maximum Flow in Planar Graphs

breakthrough results provided Õ(D +
√

n)-round algorithms for fundamental graph problems,
such as minimum spanning tree (MST) [6], approximate shortest-paths [16], minimum cuts [3],
and approximate flow [9]. For general n-vertex graphs Õ(D +

√
n) rounds is known to be

near optimal, existentially [20].
A major and concentrated effort has been invested in designing improved solutions for

special graph families that escape the topology of the worst-case lower bound graphs of [20].
The lower bound graph is sparse, and of arboricity two, so it belongs to many graph families.
Arguably, one of the most interesting non-trivial families that escapes it, is the family of
planar graphs. Thus, a significant focus has been given to the family of planar graphs,
due to their frequent appearance in practice and because of their rich structural properties.
In their seminal work, Ghaffari and Haeupler [7, 8] initiated the line of distributed planar
graph algorithms based on the notion of low-congestion shortcuts. The latter serves the
communication backbone for obtaining Õ(D)-round algorithms for MST [8], minimum cut
[8, 11] and approximate shortest paths [21,22] in planar graphs.

An additional key tool in working with planar graphs, starting with the seminal work of
Lipton and Tarjan [15], is that of a planar separator path: a path whose removal from the
graph leaves connected components that are a constant factor smaller. Ghaffari and Parter
[10] presented a Õ(D)-round randomized algorithm for computing a cycle separator of size
O(D) which consists of a separator path plus one additional edge (that is possibly a virtual
edge that is not in G). By now, planar separators are a key ingredient in a collection of
Õ(poly(D))-round solutions for problems such as DFS [10], distance computation [14], and
reachability [17]. An important aspect of the planar separator algorithm of [10] is that it
employs a computation on the dual graph, by communicating over the primal graph.

Primal maximum flow via dual SSSP. Our goal in this paper is to expand the algorithmic
toolkit for performing computation on the dual graph. This allows us to exploit the profound
algorithmic duality in planar graphs, in which solving a problem A in the dual graph provides
a solution for problem B in the primal graph. Within this context, our focus is on the
Maximum st-Flow problem (in directed planar graphs with edge capacities) which asks to
compute the maximum amount of flow that can be sent from a source vertex s to a target
vertex t while respecting edge capacities. The Maximum st-flow problem is arguably one of
the most classical problems in theoretical computer science, extensively studied since the
50’s, and still admitting breakthrough results in the sequential setting, such as the recent
almost linear time algorithm by Chen, Kyng, Liu, Peng, Gutenberg and Sachdeva [1]. Despite
persistent attempts over the years, our understanding of the distributed complexity of the
Maximum st-flow problem is still quite lacking. For general undirected n-vertex graphs, there
is a (1 + o(1))-approximation algorithm that runs in (

√
n + D)no(1) rounds, by Ghaffari,

Karrenbauer, Kuhn, Lenzen and Patt-Shamir [9]. For directed n-vertex planar graphs, a
D · n1/2+o(1)-round exact algorithm has been given by de Vos [2]. No better tradeoffs are
known for undirected planar graphs. In lack of any Õ(poly(D))-round maximum st-flow
algorithm for directed planar graphs (not even when allowing approximation) we ask:

▶ Question 1.1. Is it possible to compute the maximum st-flow in directed planar graphs
within Õ(poly(D)) rounds?

In directed planar graphs with integral edge-capacities, it is known from the 80’s [23]
that the maximum st-flow can be found by solving at most log λ instances of Single Source
Shortest Paths (SSSP) with positive and negative edge-lengths on the dual graph G∗, where λ

is the maximum st-flow value. Their algorithm exploits the fact that any capacity-respecting



Y. Abd-Elhaleem, M. Dory, M. Parter, and O. Weimann 40:3

flow in G can be decomposed into (1) a not necessarily capacity-respecting st-flow of the
same value, and (2) a feasible circulation. Since G is planar, a feasible circulation can be
obtained by a feasible potential over its faces (i.e., nodes of G∗); It is known that distances
in G∗ from any source constitute a feasible potential over its nodes. Hence, dual SSSP
immediately implies primal maximum st-flow. We answer Question 1.1 in the affirmative
by designing a Õ(D2)-round SSSP algorithm on the dual graph G∗. Our algorithm works
in the most general setting (i.e. when G∗ is directed and has positive and negative integral
edge-lengths) and matches the fastest known exact SSSP algorithm in the primal graph. We
show:

▶ Theorem 1.2 (Exact Maximum st-Flow in Directed Planar Graph). There is a randomized
distributed algorithm that given an n-vertex directed planar communication network G with
hop-diameter D and integral edge-capacities, and two vertices s, t, computes the maximum
st-flow value and assignment in Õ(D2) rounds.

No prior Õ(poly(D)) algorithm has been known for this problem, not even when allowing
a constant approximation. We further improve the running time to D · no(1) rounds for the
case of a (1 + ϵ)-approximation, provided that G is undirected and that s and t both lie on
the same face:

▶ Theorem 1.3 (Approximate Maximum st-Flow in Undirected st-Planar Graphs). There is a
randomized distributed algorithm that given an n-vertex undirected planar communication
network G with hop-diameter D and integral edge-capacities, and two vertices s, t lying on the
same face, computes a (1 + ϵ)-approximation of the maximum st-flow value and a matching
assignment in D · no(1) rounds.

This latter result is also obtained by exploiting the duality between flows and distances.
Our algorithm is based on an approximate SSSP algorithm that runs in D · no(1) rounds in
planar graphs [22]. Our implementation of the algorithm on the dual graph matches its round
complexity in the primal graph. Our almost-optimal round complexity improves significantly
over the current algorithm for general graphs that runs in (

√
n + D)no(1) rounds [9].

Primal weighted girth via dual cuts. A distance parameter of considerable interest is the
network girth. For unweighted graphs, the girth is the length of the smallest cycle in the
graph. For weighted graphs, the girth is the cycle of minimal total edge weight. Distributed
girth computation has been studied over the years mainly for general n-vertex unweighted
graphs. Frischknecht, Holzer and Wattenhofer [5] provided an Ω(

√
n)-round lower bound

for computing a (2 − ϵ) approximation of the unweighted girth. The state-of-the-art upper
bound for the unweighted girth problem is a (2 − ϵ) approximation in Õ(n2/3 + D) rounds,
obtained by combining the works of Peleg, Roditty and Tal [19] and Holzer and Wattenhofer
[12]. The weighted girth problem has been shown to admit a near-optimal lower bound of
Ω̃(n) rounds in general graphs by Hua, Qian, Yu, Shi and Jin [13]. Turning to planar graphs,
Parter [17] devised a Õ(D2) round algorithm for computing the weighted girth in directed
planar graphs via SSSP computations. For undirected and unweighted planar graphs, the
(unweighted) girth can be computed in Õ(D) rounds by replacing the Õ(D2)-round SSSP
algorithm by a O(D)-round BFS algorithm. In light of this gap, we ask:

▶ Question 1.4. Is it possible to compute the weighted girth of an undirected weighted planar
graph within (near-optimal) Õ(D) rounds?

We answer this question in the affirmative by taking a different, non distance-related,
approach than that taken in prior work. Our Õ(D) round algorithm exploits the useful
duality between cuts and cycles. We present a dual framework of the minor-aggregation

DISC 2024



40:4 Brief Announcement: Distributed Maximum Flow in Planar Graphs

model. Using it, we can simulate the primal exact minimum cut algorithm of Ghaffari and
Zuzic [11] on the dual graph. This dual simulation matches the primal round complexity.
The solution to the dual cut problem immediately yields a solution to the primal weighted
girth problem. We show:

▶ Theorem 1.5 (Planar Weighted Girth). There is a randomized distributed algorithm that
given an n-vertex undirected weighted planar communication network G with hop-diameter
D, computes the weighted girth (and finds a corresponding cycle) in Õ(D) rounds.

As the algorithmic power of the minor-aggregation model is currently limited to undirected
graphs, it will be interesting to devise improved girth algorithms for directed planar graphs
as well.

2 Technical Overview

Our results are based on two main (primal) tools that we extend to work on the dual graph:
Minor Aggregation and Bounded Diameter Decomposition. We highlight the key ideas of
these techniques and the challenges encountered in their dual implementation. For all the
algorithms that we implement in the dual graph, we match the primal round complexity.

2.1 Minor-Aggregations in the Dual

An important recent development in the field of distributed computing was a new model
of computation, called the minor-aggregation model introduced by Zuzic r⃝2 Goranci r⃝
Ye r⃝ Haeupler r⃝ Sun [22], then extended by Ghaffari and Zuzic [11] to support working
with virtual nodes added to the input graph. Recent state-of-art algorithms for various
classical problems can be formulated in the minor-aggregation model (e.g., the exact min-cut
algorithm of [11], and the undirected shortest paths approximation algorithms of [21,22]).
Motivated by the algorithmic power of this model, we provide an implementation of the
minor aggregation model in the dual graph. The round complexity of our implementation
matches its primal complexity. As noted by [22], minor aggregations can be implemented by
solving the (simpler) part-wise aggregation task, where one needs to compute an aggregate
function in a collection of vertex-disjoint connected parts of the graph. The planar separator
algorithm of [10] implicitly implements a part-wise aggregation algorithm in the dual graph.
Our contribution is in providing an explicit and generalized implementation of the dual
part-wise aggregation problem and using it to implement the minor-aggregation model in
the dual graph. We then use this algorithm for computing the exact minimum weighted cut
in the dual graph, which by duality provides a solution to the weighted girth problem in
the primal graph. We also use it to simulate the recent approximate SSSP by [22] in the
dual graph, leading to our approximate max st-flow algorithm. Since currently there are fast
SSSP minor-aggregation algorithms only for undirected graphs with positive weights, this
approach leads to an approximate max st-flow algorithm in undirected planar graphs when s

and t are on the same face. To solve the more general version of the max flow problem, we
need additional tools described next.

2 r⃝ is used to denote that the authors’ ordering is randomized, as the authors ask to cite their work this
way.



Y. Abd-Elhaleem, M. Dory, M. Parter, and O. Weimann 40:5

2.2 SSSP in the Dual
Bounded diameter decompositions. The Bounded Diameter Decomposition (BDD), in-
troduced by Li and Parter [14] is an algorithmic tool for solving graph problems in a
divide-and-conquer manner, in the CONGEST model. Intuitively, the BDD plays an analo-
gous role to planar separator decomposition in the centralized setting, in the following sense.
The centralized divide-and-conquer approach repetitively removes the separator vertices from
the graph and recurses on the remaining subgraphs that are (a constant factor) smaller in
size. For the algorithmic applications it is only important that the size of the separator
and the remaining subgraphs are small. In the distributed setting, it is desired to obtain
a separator of O(D) size in all recursive subgraphs, allowing a fast (Õ(poly(D))-round)
broadcast of separator related information (e.g. pairwise distances), which is in particular
useful for a divide-and-conquer approach. While this can be obtained in the first recursion
level, once we remove the first separator, the remaining subgraphs are smaller in size, but
they may have considerably larger diameter, even up to Θ(n). Allowing the algorithm to
use the other subgraphs, to provide shortcut paths, creates the possibility of congestion
as now many subproblems may need to use the same edge. These two opposing dilation
and congestion forces are settled by the BDD algorithm, in a near optimal manner. The
BDD provides a hierarchical graph decomposition of O(log n) layers. The subgraphs (called
bags) obtained in each recursive level are nearly edge-disjoint (sharing only the edges of the
separator) and of diameter Õ(D). I.e., allowing one to apply an algorithm on all bags of the
same level simultaneously without incurring more than a poly log n factor overhead in the
round complexity of running the same algorithm on the original network of communication
(which has a small diameter of D). There might be as many as Õ(D) children of a bag (all a
constant factor smaller than their parent bag). However, the number of child bags has no
importance, as we can work on all of them in parallel. BDDs have proven to be useful for
divide-and-conquer CONGEST algorithms on the (primal) graph G (e.g. distance labeling,
diameter approximation, routing schemes and reachability [4, 14,17]).

Our approach: recurse on primal, solve on dual. Due to the wide applicability of BDDs
for solving graph problems in planar graphs, we would like to exploit them also for solving
problems on the dual graph. A natural approach could be to simulate a BDD algorithm on
the dual network. However, there are several barriers. First, it is unclear how to simulate a
general algorithm on the dual network, as this is not our communication network. Second,
the diameter of the dual graph can be large (possibly linear) and the running time of the
algorithm depends on the graph diameter. To overcome it we take a different approach. We
apply a divide-and-conquer approach on the dual graph G∗ by using the BDD computation
on the primal graph G. Taking a dual lens on the primal BDD introduces several challenges
that arise when one needs to define the dual bags from the given primal bags. This primal
to dual translation is rather non-trivial due to critical gaps that arise when one needs to
maintain information w.r.t faces of G, rather than vertices of G, over the recursive BDD
procedure, as we elaborate next.

Challenge I: shattered faces. Throughout, we refer to faces of the primal graph G as nodes
(rather than vertices) of the dual graph G∗. In the primal graph, a vertex is an atomic unit,
which keeps its identity throughout the computation. The situation in the dual graph is
considerably more involved. Consider a constant diameter (primal) graph with a face f

with Θ(n) edges. Throughout the recursive BDD, the vertices of the face f are split among
multiple faces, and eventually f is shattered among possibly a linear number of leaf bags.

DISC 2024



40:6 Brief Announcement: Distributed Maximum Flow in Planar Graphs

This means that a node in a dual bag does no longer correspond to a face f of the primal
bag, but rather to a subset of edges of f . This creates a challenge in the divide-and-conquer
computation, where one needs to assemble fragments of information from multiple bags.

Challenge II: virtual edges. For the BDD implementation, it is crucial for the separator
to be a simple cycle. This was obtained in [10] by adding a single artificial (virtual) edge.
The virtual edges are embedded in a way that preserve planarity, but they require special
treatment since they are not part of the communication graph. In the primal BDD, the role
of the virtual edge is limited to defining the child bags, and can be discarded afterwards. This
use-and-forget mindset can no longer be applied in our setting. We elaborate. In a primal
divide-and-conquer algorithm, the separator is thought of as a subset of vertices where each
path in G from one side of the separator to the other side must intersect the separator at a
vertex. In our case, since we are working with the dual graph, we have that paths in G∗ from
one side of separator to the other side must intersect the separator at an edge. That is, we
view the separator as an edge-separator (i.e., a cut in the dual graph) not a vertex-separator.
This is challenging because now we need to take into account the virtual edge that is not a
real edge of G but is an edge of the separator.

Our approach. To deal with the above challenges, we work as follows. First, we analyze the
way faces are partitioned during the BDD algorithm. We prove that in each bag X of the
BDD there is at most one face of G that can be partitioned between the different child bags
of X and was not partitioned in previous levels, this is exactly the face f that contains the
virtual edge of the bag. We call the different parts of f that appear in different child bags
face-parts. Since the decomposition has O(log n) levels, overall we have at most O(log n)
face-parts in each bag. For a bag X, we define a dual bag X∗ as follows. The nodes of X∗

are the faces and face-parts of G that appear in X, where two nodes are connected by a dual
edge if they share a primal edge in X. If X = G, this is exactly the dual graph G∗. The
nodes g in X∗ will be simulated by the vertices of the corresponding face or face-part, and
each dual edge adjacent to g will be known by one of these vertices.

Our next goal is to use the decomposition in order to compute distances in the dual graph.
More concretely, we compute distance labels. Each node in a bag X∗ gets a short label of size
Õ(D), such that given the labels of two nodes in X∗ we can deduce their distance. We take a
recursive approach. We first compute distance labels in the child bags of a dual bag X∗ and
then combine them to compute distances in X∗. To do so, we identify a set of Õ(D) special
nodes F

X
in X∗, that contain nodes adjacent to the separator, as well as nodes corresponding

to faces or face-parts that are partitioned between child bags of X∗. We prove that any
shortest path in X∗ is either entirely contained in one of the child bags (and hence we already
computed the distances recursively), or has a special node in F

X
. Hence, it is enough to store

in the label of a node g its distances from nodes in F
X

and its label in the child bag of X∗

that contains g (if g is partitioned to several child bags, g is in F
X

, and in this case we just
store the distances to nodes in F

X
without a recursive label). Finally, we broadcast Õ(D2)

information that includes labels of nodes in F
X

(or corresponding face-parts) in the child
bags, and the edges of the separator, and prove that based on this information nodes can
deduce locally their distance label in X∗. This follows as each shortest path is either entirely
contained in a child bag, or can be broken up to subpaths whose endpoints are in F

X
, and

are either entirely contained in a child bag (and hence their distance can be deduced from
the labels we broadcast), or use a separator edge between different child bags (we broadcast
all these edges), or use face-parts of the same face that are contained in different child bags
(in this case, we connect the corresponding face-parts with a zero weight edge).



Y. Abd-Elhaleem, M. Dory, M. Parter, and O. Weimann 40:7

References
1 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and

Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 63rd
FOCS, pages 612–623, 2022. doi:10.1109/FOCS54457.2022.00064.

2 Tijn de Vos. Minimum cost flow in the congest model. In 30th SIROCCO, pages 406–426,
2023. doi:10.1007/978-3-031-32733-9_18.

3 Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai. Distributed
weighted min-cut in nearly-optimal time. In 53rd STOC, pages 1144–1153, 2021. doi:
10.1145/3406325.3451020.

4 Jinfeng Dou, Thorsten Götte, Henning Hillebrandt, Christian Scheideler, and Julian Werth-
mann. Brief announcement: Distributed construction of near-optimal compact routing schemes
for planar graphs. In 41tst PODC, pages 67–70, 2023. doi:10.1145/3583668.3594561.

5 Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute
their diameter in sublinear time. In 23rd SODA, pages 1150–1162, 2012. doi:10.1137/1.
9781611973099.91.

6 Juan A. Garay, Shay Kutten, and David Peleg. A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM J. Comput., 27(1):302–316, 1998. doi:10.1137/
S0097539794261118.

7 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks I: planar
embedding. In 34th PODC, pages 29–38, 2016. doi:10.1145/2933057.2933109.

8 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
low-congestion shortcuts, mst, and min-cut. In 27th SODA, pages 202–219, 2016. doi:
10.1137/1.9781611974331.CH16.

9 Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-
Shamir. Near-optimal distributed maximum flow. In 33rd PODC, pages 81–90, 2015.

10 Mohsen Ghaffari and Merav Parter. Near-Optimal Distributed DFS in Planar Graphs. In
31st DISC, pages 21:1–21:16, 2017. doi:10.4230/LIPICS.DISC.2017.21.

11 Mohsen Ghaffari and Goran Zuzic. Universally-optimal distributed exact min-cut. In 40th
PODC, pages 281–291, 2022. doi:10.1145/3519270.3538429.

12 Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs shortest paths and
applications. In 30th PODC, pages 355–364, 2012. doi:10.1145/2332432.2332504.

13 Qiang-Sheng Hua, Lixiang Qian, Dongxiao Yu, Xuanhua Shi, and Hai Jin. A nearly optimal
distributed algorithm for computing the weighted girth. Sci. China Inf. Sci., 64(11), 2021.
doi:10.1007/S11432-020-2931-X.

14 Jason Li and Merav Parter. Planar diameter via metric compression. In 51st STOC, pages
152–163, 2019. doi:10.1145/3313276.3316358.

15 Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

16 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In
46th STOC, pages 565–573, 2014. doi:10.1145/2591796.2591850.

17 Merav Parter. Distributed planar reachability in nearly optimal time. In 34th DISC, volume
179, pages 38:1–38:17, 2020. doi:10.4230/LIPICS.DISC.2020.38.

18 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000.

19 David Peleg, Liam Roditty, and Elad Tal. Distributed algorithms for network diameter and
girth. In 39th ICALP, pages 660–672, 2012. doi:10.1007/978-3-642-31585-5_58.

20 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. In 43rd STOC, pages 363–372, 2011. doi:10.1145/1993636.
1993686.

DISC 2024

https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1007/978-3-031-32733-9_18
https://doi.org/10.1145/3406325.3451020
https://doi.org/10.1145/3406325.3451020
https://doi.org/10.1145/3583668.3594561
https://doi.org/10.1137/1.9781611973099.91
https://doi.org/10.1137/1.9781611973099.91
https://doi.org/10.1137/S0097539794261118
https://doi.org/10.1137/S0097539794261118
https://doi.org/10.1145/2933057.2933109
https://doi.org/10.1137/1.9781611974331.CH16
https://doi.org/10.1137/1.9781611974331.CH16
https://doi.org/10.4230/LIPICS.DISC.2017.21
https://doi.org/10.1145/3519270.3538429
https://doi.org/10.1145/2332432.2332504
https://doi.org/10.1007/S11432-020-2931-X
https://doi.org/10.1145/3313276.3316358
https://doi.org/10.1145/2591796.2591850
https://doi.org/10.4230/LIPICS.DISC.2020.38
https://doi.org/10.1007/978-3-642-31585-5_58
https://doi.org/10.1145/1993636.1993686
https://doi.org/10.1145/1993636.1993686


40:8 Brief Announcement: Distributed Maximum Flow in Planar Graphs

21 Václav Rozhon r⃝ Christoph Grunau r⃝ Bernhard Haeupler r⃝ Goran Zuzic r⃝ Jason Li.
Undirected (1+ϵ)-shortest paths via minor-aggregates: near-optimal deterministic parallel and
distributed algorithms. In 54th STOC, pages 478–487, 2022.

22 Goran Zuzic r⃝ Gramoz Goranci r⃝ Mingquan Ye r⃝ Bernhard Haeupler r⃝ Xiaorui Sun.
Universally-optimal distributed shortest paths and transshipment via graph-based l1-oblivious
routing. In 33rd SODA, pages 2549–2579, 2022.

23 Shankar M. Venkatesan. Algorithms for network flows. Ph.D. thesis, Pennsylvania State
University, 1983.



Brief Announcement: Towards Optimal
Communication Byzantine Reliable Broadcast
Under a Message Adversary
Timothé Albouy #

Univ Rennes, Inria, CNRS, IRISA,
35042 Rennes-cedex, France

Davide Frey #

Univ Rennes, Inria, CNRS, IRISA,
35042 Rennes-cedex, France

Ran Gelles #

Bar-Ilan University, Ramat Gan, Israel
Carmit Hazay #

Bar-Ilan University, Ramat Gan, Israel

Michel Raynal #

Univ Rennes, Inria, CNRS, IRISA,
35042 Rennes-cedex, France

Elad Michael Schiller #

Chalmers University of Technology,
Gothenburg, Sweden

François Taïani #

Univ Rennes, Inria, CNRS, IRISA,
35042 Rennes-cedex, France

Vassilis Zikas #

Purdue University, West Lafayette, IN, USA

Abstract
We address the problem of Reliable Broadcast in asynchronous message-passing systems with n

nodes, of which up to t are malicious (faulty), in addition to a message adversary that can drop
some of the messages sent by correct (non-faulty) nodes. We present a Message-Adversary-Tolerant
Byzantine Reliable Broadcast (MBRB) algorithm that communicates an almost optimal amount
of O(|m| + n2κ) bits per node, where |m| represents the length of the application message and
κ = Ω(log n) is a security parameter. This improves upon the state-of-the-art MBRB solution
(Albouy, Frey, Raynal, and Taïani, TCS 2023), which incurs communication of O(n|m| + n2κ) bits
per node. Our solution sends at most 4n2 messages overall, which is asymptotically optimal. Reduced
communication is achieved by employing coding techniques that replace the need for all nodes to
(re-)broadcast the entire application message m. Instead, nodes forward authenticated fragments of
the encoding of m using an erasure-correcting code. Under the cryptographic assumptions of PKI
and collision-resistant hash, and assuming n > 3t+2d, where the adversary drops at most d messages
per broadcast, our algorithm allows at least ℓ = n − t − (1 + ϵ)d (for any ϵ > 0) correct nodes to
reconstruct m, despite missing fragments caused by the malicious nodes and the message adversary.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Asynchronous message-passing, Byzantine fault-tolerance, Message adversary,
Reliable Broadcast

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.41

Related Version Full Version: https://arxiv.org/abs/2312.16253 [1]

Funding This work was partially supported by the French ANR projects ByBloS (ANR-20-CE25-
0002-01) and PriCLeSS (ANR-10-LABX-07-81), devoted to the modular design of building blocks for
large-scale Byzantine-tolerant multi-users applications. Research supported in part by the United
States-Israel Binational Science Foundation (BSF) through Grant No. 2020277.

Acknowledgements R. Gelles would like to thank Paderborn University and CISPA – Helmholtz
Center for Information Security for hosting him while part of this research was done.

© Timothé Albouy, Davide Frey, Ran Gelles, Carmit Hazay, Michel Raynal, Elad Michael Schiller,
François Taïani, and Vassilis Zikas;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 41; pp. 41:1–41:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:timothe.albouy@irisa.fr
https://orcid.org/0000-0001-9419-6646
mailto:davide.frey@inria.fr
https://orcid.org/0000-0002-6730-5744
mailto:ran.gelles@biu.ac.il
https://orcid.org/0000-0003-3615-3239
mailto:carmit.hazay@biu.ac.il
https://orcid.org/0000-0002-8951-5099
mailto:michel.raynal@irisa.fr
https://orcid.org/0000-0002-3355-8719
mailto:elad.schiller@chalmers.se
https://orcid.org/0000-0003-3258-3696
mailto:francois.taiani@irisa.fr
https://orcid.org/0000-0002-9692-5678
mailto:vassilis.zikas@gmail.com
https://orcid.org/0000-0002-5422-7572
https://doi.org/10.4230/LIPIcs.DISC.2024.41
https://arxiv.org/abs/2312.16253
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


41:2 Brief Announcement: Towards Optimal Communication BRB Under an MA

1 Introduction

Byzantine Reliable Broadcast (BRB for short) allows n asynchronous nodes to agree eventually
on a message sent by a designated node, the sender, despite the possible malicious (Byzantine)
behavior by some nodes and the transmission network [4]. Byzantine reliable broadcast plays
a crucial role in several key applications, including consensus algorithms, replication, event
notification, and distributed file systems, among others. These systems sometimes require
broadcasting large messages or files (e.g., permissioned blockchains), and thus, reducing
the communication overhead to a minimum is an important aspect of achieving scalability.
In that vein, this work aims at providing communication efficient solutions for the task of
reliable broadcast in the presence of node and link faults.

A significant challenge to reliable broadcast algorithms arises when the message-passing
system is unreliable and possibly cooperates with the Byzantine nodes. Link faults [11, 12]
give Byzantine nodes (potentially limited) control over certain network links, enabling them to
omit or corrupt messages (an ability captured under the umbrella term message adversary [9]).
This work focuses on a specific type of message adversary [9] that can only omit messages
sent by correct nodes, but that cannot alter their content. This message adversary abstracts
cases related to silent churn, where nodes may voluntarily or involuntarily disconnect from
the network without explicitly notifying other nodes.

Problem overview. We assume n nodes over an asynchronous network, where a message
can be delayed for an arbitrary yet finite amount of time (unless omitted by the message
adversary). We assume the existence of t Byzantine nodes and a message adversary capable
of omitting up to d messages per node’s broadcast. To be more precise, a node communicates
through a comm primitive (or a similar multicast/unicast primitive that targets a dynamically
defined subset of processes), which results in the transmission of n messages, with each
node being sent one message, including the sender. The message adversary can choose
to omit messages in transit to a subset of at most d correct processes. The adversary is
only limited by the size of that subset. For instance, between different comm invocations,
the adversary has the freedom to modify the set of correct processes to which messages
are omitted. Furthermore, a designated sender node holds a message m that it wishes to
broadcast to all the nodes.

An algorithm that satisfies the requirements of reliable broadcast despite Byzantine nodes
and a message adversary is called a Message-adversary Byzantine Reliable Broadcast (MBRB)
algorithm. The detailed version of MBRB’s requirements was formulated in [2], see Section 2.

Background. Albouy, Frey, Raynal, and Taïani [2] recently proposed a Message-adversary
Byzantine Reliable Broadcast algorithm (which we denote AFRT for short) for asynchronous
networks that withstands the presence of t Byzantine nodes and a message adversary capable
of omitting up to d messages per node’s broadcast. AFRT guarantees the reliable delivery of
any message when n > 3t+2d. Moreover, they demonstrate the necessity of this bound on
the number of Byzantine nodes and omitted messages, as no reliable broadcast algorithm
exists otherwise.

One caveat of AFRT regards its communication efficiency. While it achieves an optimal
number of O(n2) messages, and an optimal delivery power ℓ = n − t − d, each node’s
communication requires O(n · (|m|+ nκ)) bits, where |m| represents the number of bits in
the broadcast message and κ is the length of the digital signatures used in their algorithm.
In the current work, we design an algorithm that significantly reduces the communication
cost per node while preserving the total number of messages communicated. Our solution
features at most 4n messages per correct node (corresponding to 4n2 messages overall), and
only O(|m|+ n2κ) bits per correct node. Overall, O(n|m|+ n3κ) bits are communicated by



T. Albouy et al. 41:3

correct nodes. Reducing the second term to (n2 log n)κ can be done by employing standard
techniques of threshold signatures, which replace the need to communicate a quorum of
signatures; see, e.g., [3]. Note that Ω(n|m|+ n2κ) is a straightforward lower bound on the
overall communication for deterministic algorithms using signatures (up to the size of the
signature), see [5, 8], as every correct node must receive the message m, and as the reliable
broadcast of a single bit necessitates at least Ω(n2) messages [6].

Contributions. This work is the first to present an MBRB algorithm tolerating an hybrid
adversary combining t Byzantine nodes and a Message Adversary of power d, while providing
optimal Byzantine resilience, near-optimal communication, and near-optimal delivery power ℓ.

2 Preliminaries
General notations and conventions. For a positive integer n, let [n] denote the set {1, 2, . . . , n}.
A sequence of elements (x1, . . . , xn) is shorthanded as (xi)i∈[n]. We use the symbol ‘-’ to
indicate any possible value. That is, (h, -) means a tuple where the second index includes
any arbitrary value which we do not care about. All logarithms are base 2.

Nodes and Network. We focus on asynchronous message-passing systems that have no
guarantees of communication delay. Also, the algorithm cannot explicitly access the clock
or use timeouts. The system consists of a set, P = {p1, . . . , pn}, of n fail-prone nodes (or
processes). We identify party i with pi.
Communication means. Any ordered pair of nodes pi, pj ∈ P has access to a communication
channel, channeli,j . Each node can send messages to all nodes (possibly by sending a differ-
ent message to each node). That is, any node, pi ∈ P, can invoke the transmission macro,
comm(m1, . . . , mn), that communicates the message mj to pj over channeli,j . The mes-
sage mj can also be empty, in which case nothing will be sent to pj . However, in our algorithms,
all messages sent in a single comm activation will have the same length. Furthermore, when
a node sends the same message m to all nodes, we write broadcast(m) = comm(m, m, . . . , m)
for shorthand. We call each message mj transmitted by the protocol an implementation
message (or simply, a message) to distinguish such messages from the application-level
messages, i.e., the one the sender wishes to broadcast.
Byzantine nodes. Faulty nodes are called Byzantine and their adversarial behavior can
deviate from the proposed algorithm in any manner. They might perform any arbitrary
computation, and we assume their computing power is at least as strong as that of non-faulty
nodes, yet not as strong as to undermine the security of the cryptographic signatures we use
(see below). We assume that, at most, t nodes are faulty, where t is a value known to the
nodes. Non-faulty nodes are called correct nodes. The set of correct nodes contains c nodes
where n− t ≤ c ≤ n. The value of c is unknown.
Message adversary. This entity can remove implementation messages from the communi-
cation channels used by correct nodes when they invoke comm(·). More precisely, during
each comm(m1, . . . , mn) call, the adversary has the discretion to eliminate up to d messages
in the set {mi} from their corresponding communication channels where they were queued.
Similar to [2], we assume n > 3t+2d.

Error Correction Codes. A central tool used in our algorithm is an error-correction code
(ECC) [10]. Intuitively speaking, an ECC takes a message as input and adds redundancy to
create a codeword from which the original message can be recovered even when parts of the
codeword are corrupted. In this work, we focus on erasures, a corruption that replaces a
symbol of the codeword with a special erasure mark ⊥.

DISC 2024



41:4 Brief Announcement: Towards Optimal Communication BRB Under an MA

Cryptographic Primitives. Our algorithm relies on cryptographic assumptions. We assume
that the Byzantine nodes are computationally bounded with respect to the security parameter,
denoted by κ. That is, all cryptographic algorithms are polynomially bounded in the input 1κ.
We assume that κ = Ω(log n).
Hash functions. A collision-resistant hash is a function1 hash : {0, 1}∗ → {0, 1}κ that satisfies
the following collision resistance property: For any computationally bounded algorithm A

and any x ∈ {0, 1}∗, Pr[A(x) = x′ ∧ hash(x′) = hash(x)] < 2−Ω(κ). I.e., finding a pair x, x′

with the same hash is infeasible, except with negligible probability in the security parameter.
Signature schemes. A digital signature scheme is a pair of possibly randomized algorithms
SIG = (sign, Verify). The signing algorithm executed by node pi (denoted, signi) takes a
message m and implicitly a private key. It then produces a signature σ = signi(m). The
verifying algorithm takes a message, its corresponding signature, and the identity of the
signer (and implicitly a public key), and outputs a single bit, b = Verify(m, σ, i), which
indicates whether the signature is valid or not, b ∈ {valid, invalid}.
Merkle Trees [7]. These are means to commit to a message composed of several fragments
so that one can prove, for each fragment independently, that it belongs to the committed
message. This primitive is parameterized by a security parameter κ and consists of two
functions: MerkleTree(·) which generates the proofs for each fragment of the message, and
VerifyMerkle(·), which given a fragment along with its proof, verifies that the fragment indeed
belongs to the committed message.

Specification of the MBRB primitive. The Objective of MBRB is to guarantee a reliable
delivery of a message while upholding specific safety and liveness criteria, despite actions
taken by Byzantine nodes and the message adversary An MBRB algorithm contains the
MBRB-broadcast and MBRB-deliver operations.

Definition 1 specifies the safety and liveness properties. Safety ensures that messages
are delivered correctly without spurious messages, duplication, or duplicity. The liveness
guarantee that if a correct node broadcasts a message, it will eventually be delivered by at
least one correct node (MBRB-Local-delivery), and that if a correct node delivers a message
from any specific sender, that message will eventually be delivered by a sufficient number, ℓ,
of correct nodes (MBRB-Global-delivery), where ℓ is a measure of the delivery power of the
MBRB algorithm and might depend on the adversary’s power, i.e., on t and d.

▶ Definition 1. An MBRB is an algorithm that satisfies the following properties.
MBRB-Validity. Suppose ps is correct and a correct node, pi, MBRB-delivers an
application message m. Then, node ps has MBRB-broadcast m (before that MBRB-
delivery).
MBRB-No-duplication. A correct node pi MBRB-delivers at most one application
message m.
MBRB-No-duplicity. No two different correct nodes MBRB-deliver different applica-
tion messages from node ps.
MBRB-Local-delivery. Suppose ps is correct and MBRB-broadcasts an application
message m. At least one correct node, pj, eventually MBRB-delivers m from node ps.
MBRB-Global-delivery. Suppose a correct node, pi, MBRB-delivers an application
message m from ps. Then, at least ℓ correct nodes MBRB-deliver m from ps.

1 Formally speaking, a hash function must be chosen randomly from a family of possible hash functions.
Otherwise, an adversarial algorithm A exists. We avoid a formal treatment of this issue in our paper.
In practice, a fixed function is used (e.g., SHA2 or SHA3).



T. Albouy et al. 41:5

3 The Coded-MBRB algorithm

The proposed solution, named Coded MBRB (Algorithm 2), allows a distinguished sender ps

to disseminate one specific application message m. In the description below, we assume there
is a single sender, ps, and all nodes know its identity ps. In the full version [1], we discuss
how to extend this algorithm so that it implements a general MBRB algorithm, allowing any
node to be the sender, as well as allowing multiple instances of the MBRB, either with the
same or different senders, to run concurrently.

Algorithm description. MBRB-broadcast(m) (line 6) allows the sender to start dissemi-
nating the application message, m. It is designed to be executed by the sender process, ps.
The initial step of the sender (line 7) invokes computeFragMerkleTree(m) (Algo-
rithm 1), which encodes the message m using an error-correction code, divides it into n

fragments and constructs a Merkle tree that includes the different fragments. The function
returns several essential values: the Merkle root hash h, and the fragment details (m̃j , πj , j),
which contains the fragment data itself m̃j (the j-th part of the codeword ECC(m)), a proof
of inclusion πj for that part, and the respective index j of each fragment.

The sender node, ps, is responsible for signing the computed Merkle root hash h and
generating a signature, denoted sigs (line 8). Notably, this signature includes ps’s identifier.
The sender then initiates m’s propagation by employing the operation comm (line 9), which
sends to each process pj the Merkle root hash h, the j-th fragment details (m̃j , πj , j), and the
signature sigs (line 8). When this message (or later messages communicated in the algorithm)
is received by some node pi, it first verifies that all the signatures and the Merkle proofs that
the message contains are valid, and that ps’s signature is included in the messages; otherwise,
the message is ignored. This action is encapsulated by IsValid() (lines 11, 17, and 33).

The rest of the algorithm progresses in two phases. The first phase is responsible for
message dissemination, which forwards message fragments received by the sender. The
other role of this phase is reaching a quorum of nodes that vouch for the same message.
A node vouches for a single message by signing its hash value. Nodes collect and store
signatures until it is evident that sufficiently many nodes agree on the same message. The
subsequent phase focuses on disseminating the quorum of signatures so that it is observed by
at least ℓ correct nodes, and on successfully terminating while ensuring the delivery of the
reconstructed message.

Algorithm 1 The computeFragMerkleTree(m) function.

1 Function computeFragMerkleTree(m) is
2 m̃← ECC(m) ▷Such that m is recoverable from k = Ω(n) fragments
3 let m̃1, . . . , m̃n be n equal size fragments of m̃

4 (h, π1, . . . , πn)← MerkleTree(m̃1, . . . , m̃n) ;
5 return

(
h, (m̃j , πj , j)j∈[n]

)
Analysis. The following theorem states that our algorithm is correct. Due to page limit,
the complete proof and discussion on the assumptions appear in the full version [1].

▶ Theorem 2 (Main). Assume n > 3t + 2d, k ≤ (n − t − 2d) and ε > 0. Algorithm 2
implements an MBRB solution with ℓ > n− t− (1 + ε)d. Any algorithm activation on the
input message m communicates 4n2 messages, where each node communicates O(|m|+ n2κ)
bits overall.

DISC 2024



Algorithm 2 The Coded MBRB Algorithm (code for pi, single-shot, single-sender).

6 Function MBRBbroadcast(m) is ▷only executed by the sender, ps

7
(
h, (m̃j , πj , j)j

)
← computeFragMerkleTree(m)

8 sigs ←
(
signs(h), s

)
9 comm(v1, . . . , vn) where vj = ⟨send, h, (m̃j , πj), sigs⟩

Phase I: Message dissemination

10 Upon ⟨send, h′, (m̃i, πi, i), sigs⟩ arrival from ps do
11 if ¬isValid

(
h′, {(m̃i, πi, i)}, {sigs}

)
then return ▷discard invalid messages

12 if pi already executed l. 15 or signed a msg from ps with hash h′′ ̸= h′ then return
13 store m̃i and sigs for h′

14 sigi ←
(
signi(h′), i

)
; store sigi for h′

15 broadcast ⟨forward, h′, (m̃i, πi, i), {sigs, sigi}⟩

16 Upon ⟨forward, h′, fragtuplej , sigsj = {sigs, sigj}⟩ arrival from pj do
17 if ¬isValid

(
h′, {fragtuplej}, sigsj

)
then return ▷discard invalid messages

18 if pi already signed a message from ps with hash h′′ ̸= h′ then return
19 store sigsj for h′

20 if fragtuplej ̸= ⊥ then
21 (m̃j , πj , j)← fragtuplej ; store m̃j for h′

22 if no forward message sent yet then
23 sigi ←

(
signi(h′), i

)
; store sigi for h′

24 broadcast ⟨forward, h′,⊥, {sigs, sigi}⟩

Phase II: Reaching Quorum and Termination

25 When
{
∃h′ :

∣∣{stored signatures for h′}
∣∣ > n+t

2 ∧
∣∣{stored m̃j for h′}

∣∣ ≥ k

∧ no message has been MBRB-delivered yet

}
do

26 mi ← ECC−1(m̃1, . . . , m̃n),
{

where m̃j are taken from line 25;
when a fragment is missing use ⊥.

27
(
h, (m̃′

j , π′
j , j)j

)
← computeFragMerkleTree(mi)

28 if h′ = h then
29 sigsh ← {all stored signatures for h}
30 comm(v1, . . . , vn) where vj = ⟨bundle, h, (m̃′

i, π′
i, i), (m̃′

j , π′
j , j), sigsh⟩

31 MBRBdeliver(mi)

32 Upon ⟨bundle, h′, (m̃′
j , π′

j , j), fragtuple′
i, sigs⟩ arrival from pj do

33 if ¬isValid
(
h′,

{
(m̃′

j , π′
j , j), fragtuple′

i

}
, sigs

)
then return ▷discard invalid msgs

34 if |sigs| ≤ n+t
2 then return ▷discard msgs with no quorum

35 store (m̃′
j , π′

j , j) and sigs for h′

36 if no bundle message has been sent yet ∧ fragtuple′
i ̸= ⊥ then

37 (m̃′
i, π′

i, i)← fragtuple′
i

38 store (m̃′
i, π′

i, i) for h′

39 broadcast ⟨bundle, h′, (m̃′
i, π′

i, i),⊥, sigs⟩



T. Albouy et al. 41:7

References
1 Timothé Albouy, Davide Frey, Ran Gelles, Carmit Hazay, Michel Raynal, Elad Michael

Schiller, François Taïani, and Vassilis Zikas. Towards optimal communication Byzantine
reliable broadcast under a message adversary. CoRR, abs/2312.16253, 2023. doi:10.48550/
arXiv.2312.16253.

2 Timothé Albouy, Davide Frey, Michel Raynal, and François Taïani. Asynchronous Byzantine
reliable broadcast with a message adversary. Theor. Comput. Sci., 978:114110, 2023. doi:
10.1016/J.TCS.2023.114110.

3 Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and
Haibin Zhang. Balanced Byzantine reliable broadcast with near-optimal communication
and improved computation. In Proceedings of the 2022 ACM Symposium on Principles of
Distributed Computing, PODC’22, pages 399–417, 2022. doi:10.1145/3519270.3538475.

4 Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130–143,
1987. doi:10.1016/0890-5401(87)90054-X.

5 Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its applica-
tions. In CCS, pages 2705–2721. ACM, 2021. doi:10.1145/3460120.3484808.

6 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for Byzantine agreement.
J. ACM, 32(1):191–204, January 1985. doi:10.1145/2455.214112.

7 Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in
Cryptology — CRYPTO’ 89 Proceedings, pages 218–238, New York, NY, 1990. Springer New
York. doi:10.1007/0-387-34805-0_21.

8 Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. Improved extension
protocols for Byzantine broadcast and agreement. In 34th International Symposium on
Distributed Computing (DISC 2020), volume 179, pages 28:1–28:17, 2020. doi:10.4230/
LIPIcs.DISC.2020.28.

9 Michel Raynal. Message adversaries. In Encyclopedia of Algorithms, pages 1272–1276. Springer,
2016. doi:10.1007/978-1-4939-2864-4_609.

10 Ron M. Roth. Introduction to coding theory. Cambridge University Press, 2006.
11 Nicola Santoro and Peter Widmayer. Time is not a healer. In STACS 89, pages 304–313,

Berlin, Heidelberg, 1989. Springer Berlin Heidelberg. doi:10.1007/BFb0028994.
12 Nicola Santoro and Peter Widmayer. Agreement in synchronous networks with ubiquitous

faults. Theor. Comput. Sci., 384(2-3):232–249, 2007. doi:10.1016/J.TCS.2007.04.036.

DISC 2024

https://doi.org/10.48550/arXiv.2312.16253
https://doi.org/10.48550/arXiv.2312.16253
https://doi.org/10.1016/J.TCS.2023.114110
https://doi.org/10.1016/J.TCS.2023.114110
https://doi.org/10.1145/3519270.3538475
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1145/3460120.3484808
https://doi.org/10.1145/2455.214112
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.1007/978-1-4939-2864-4_609
https://doi.org/10.1007/BFb0028994
https://doi.org/10.1016/J.TCS.2007.04.036




Brief Announcement: Solvability of Three-Process
General Tasks
Hagit Attiya #

Department of Computer Science, Technion, Haifa, Israel

Pierre Fraigniaud #

IRIF – CNRS & Université Paris Cité, France

Ami Paz #

LISN – CNRS & Université Paris-Saclay, France

Sergio Rajsbaum #

Instituto de Matemáticas, UNAM, Mexico City, Mexico

Abstract
The topological view on distributed computing represents a task T as a relation ∆ between the
complex I of its inputs and the complex O of its outputs. A cornerstone result in the field is an
elegant computability characterization of the solvability of colorless tasks in terms of I, O and ∆.
Essentially, a colorless task is wait-free solvable if and only if there is a continuous map from the
geometric realization of I to that of O that respects ∆.

This paper makes headway towards providing an analogous characterization for general tasks,
which are not necessarily colorless, by concentrating on the case of three-process inputless tasks. Our
key contribution is identifying local articulation points as an obstacle for the solvability of general
tasks, and defining a topological deformation on the output complex of a task T , which eliminates
these points by splitting them, to obtain a new task T ′, with an adjusted relation ∆′ between
the input complex I and an output complex O′ without articulation points. We obtain a new
characterization of wait-free solvability of three-process general tasks: T is wait-free solvable if and
only if there is a continuous map from the geometric realization of I to that of O′ that respects ∆′.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Wait-free computing, lower bounds, topology

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.42

Related Version
Full Version: https://hagit.net.technion.ac.il/files/2024/10/DISC2024BA-long.pdf

Funding Hagit Attiya: partially supported by the Israel Science Foundation (22/1425).
Pierre Fraigniaud : partially supported by the ANR projects DUCAT (ANR-20-CE48-0006), FREDDA
(ANR-17-CE40-0013), and QuData (ANR-18-CE47-0010).
Sergio Rajsbaum: Partially done while visiting IRIF-France and supported by the ANR project
DUCAT (ANR-20-CE48-0006).

1 Introduction

For more than thirty years, distributed computing has been studied through the lens of
topology, developing a deep understanding of the solvability of tasks. In this approach, a
simplex represents a configuration as a set of vertexes, each representing the state of one
process. In general, each vertex has an associated process id, sometimes referred to as its
color. Tasks are triples (I, O, ∆), where I and O are simplicial complexes modelling the
inputs and outputs of the task, and ∆ is a relation specifying the possible valid outputs,
∆(σ), for each input simplex σ ∈ I. For any initial configuration σ of I, each process starts
with an input vertex of σ colored by its ID, and must decide on an output vertex with its
color, such that the vertices decided by the processes form a simplex τ of ∆(σ).

© Hagit Attiya, Pierre Fraigniaud, Ami Paz, and Sergio Rajsbaum;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 42; pp. 42:1–42:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hagit@cs.technion.ac.il
https://orcid.org/0000-0002-8017-6457
mailto:pierre.fraigniaud@irif.fr
https://orcid.org/0000-0003-4534-4803
mailto:ami.paz@lisn.fr
https://orcid.org/0000-0002-6629-8335
mailto:rajsbaum@im.unam.mx
https://orcid.org/0000-0002-0009-5287
https://doi.org/10.4230/LIPIcs.DISC.2024.42
https://hagit.net.technion.ac.il/files/2024/10/DISC2024BA-long.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


42:2 Brief Announcement: Solvability of Three-Process General Tasks

0

1 1

0

1

1

0

0

1

<latexit sha1_base64="uzRPpMwlS4qmLmXI4nbq7Lfp1VM=">AAAB8XicbVBNSwMxFHxbv2r9qnr0EiyCp7IrUj0WetFbBVuL7VLeptk2NJtdkqxQSv+FFw+KePXfePPfmG33oK0DgWHmPTJvgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TRVmLxiJWnQA1E1yyluFGsE6iGEaBYA/BuJH5D09MaR7LezNJmB/hUPKQUzRWeuxFaEYUBbntlytu1Z2DrBIvJxXI0eyXv3qDmKYRk4YK1LrruYnxp6gMp4LNSr1UswTpGIesa6nEiGl/Ok88I2dWGZAwVvZJQ+bq740pRlpPosBOZgn1speJ/3nd1ITX/pTLJDVM0sVHYSqIiUl2PhlwxagRE0uQKm6zEjpChdTYkkq2BG/55FXSvqh6tWrt7rJSb+R1FOEETuEcPLiCOtxAE1pAQcIzvMKbo50X5935WIwWnHznGP7A+fwBD5uQiQ==</latexit>

I
<latexit sha1_base64="FS5FiNpPLfpX1bJJtuIZcG2fKXM=">AAAB8XicbVBNSwMxFHxbv2r9qnr0EiyCp7IrUj0WevFmBVuL7VLeptk2NJtdkqxQSv+FFw+KePXfePPfmG33oK0DgWHmPTJvgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TRVmLxiJWnQA1E1yyluFGsE6iGEaBYA/BuJH5D09MaR7LezNJmB/hUPKQUzRWeuxFaEYUBbntlytu1Z2DrBIvJxXI0eyXv3qDmKYRk4YK1LrruYnxp6gMp4LNSr1UswTpGIesa6nEiGl/Ok88I2dWGZAwVvZJQ+bq740pRlpPosBOZgn1speJ/3nd1ITX/pTLJDVM0sVHYSqIiUl2PhlwxagRE0uQKm6zEjpChdTYkkq2BG/55FXSvqh6tWrt7rJSb+R1FOEETuEcPLiCOtxAE1pAQcIzvMKbo50X5935WIwWnHznGP7A+fwBGLOQjw==</latexit>

O
<latexit sha1_base64="QdXOY0wTTKDNpdIOf1i3tWnwSIU=">AAAB8nicbVBNSwMxFMzWr1q/qh69BIvoqeyKVI+FXrxZwdrCdinZNNuGZpMleSuUpT/DiwdFvPprvPlvzLZ70NaBwDDzHpk3YSK4Adf9dkpr6xubW+Xtys7u3v5B9fDo0ahUU9ahSijdC4lhgkvWAQ6C9RLNSBwK1g0nrdzvPjFtuJIPME1YEJOR5BGnBKzk92MCY0oEvjsfVGtu3Z0DrxKvIDVUoD2ofvWHiqYxk0AFMcb33ASCjGjgVLBZpZ8alhA6ISPmWypJzEyQzSPP8JlVhjhS2j4JeK7+3shIbMw0Du1kHtEse7n4n+enEN0EGZdJCkzSxUdRKjAonN+Ph1wzCmJqCaGa26yYjokmFGxLFVuCt3zyKnm8rHuNeuP+qtZsFXWU0Qk6RRfIQ9eoiW5RG3UQRQo9o1f05oDz4rw7H4vRklPsHKM/cD5/AHxqkMA=</latexit>

O
0

0

1

0

0

1

11’

1’

1’

1

Figure 1 The majority consensus task: input complex (left), output complex (center) and output
complex after splitting (right).

A major contribution of the topological approach is a set of novel impossibility results
and algorithms for specific tasks, through fundamental characterizations of solvable tasks in
various distributed computing models. Beyond telling us what is solvable and what is not,
characterization results tell us what makes tasks unsolvable, indicating the obstructions to
solvability, and sometimes pointing how these obstructions can be avoided.

The focus of this work is on wait-free protocols for solving a task in a read/write shared
memory system. A cornerstone result for this model is the asynchronous computability
theorem (ACT) of Herlihy and Shavit [18] (see also [14, Theorem 11.2.1]). The remarkable
insight of this theorem is that a protocol solving a task in this model corresponds to a
color-preserving simplicial mapping from a chromatic subdivision of the input complex into
allowable outputs in the output complex.

As stated, however, the ACT does not provide us with a direct connection to standard
topology notions relating the topology of the input and the output complexes. Such a
characterization is so far known only for colorless tasks [7, 15]. A colorless task is defined
only in terms of input and output values, regardless of the number of processes involved,
and regardless of which process has a particular input or output value; accordingly, I and
O consist of sets of values, without process IDs. Well-known examples are the consensus
task [10] and its generalization to set consensus [8]. Colorless tasks are simpler to analyze
and in particular, they have an elegant computability characterization in terms of their
input and output complexes [14, 17]: a colorless task is wait-free solvable if and only if there
is a continuous map from |I| to |O| respecting ∆. Recall that |K| denotes the geometric
realization of a simplicial complex.

A similar characterization for general tasks, which are not necessarily colorless, has eluded
researchers. General tasks that cannot be stated as colorless tasks are sometimes called
chromatic. Several such tasks have been studied, notably renaming [3]. A simple example
is the majority consensus task. In this weaker form of binary consensus, it is allowed to
decide different values (when processes do not all start with the same input), but only if
more processes decide 0 than 1. Figure 1 illustrates this task for a single three-process input
configuration: two processes start with 1 and the other with 0. Tasks whose input complex
contains a single facet are called inputless in the literature. Impossibility results are usually
achieved using inputless versions of tasks, which is also the case in our examples, and we
concentrate on such tasks in this work. In our figures, processes are identified by black, grey
and white colors, and their respective inputs are inside the vertices, and with the analogous
convention for output values, the output complex, where the respective output values are
inside vertices.

Researchers have tried to characterize the solvability of general tasks in terms of continuous
maps, analogous to the colorless characterization. The value of such a characterization would
not only be due to its direct nature from the input complex to the output complex, but also
due to the direct connection to topology: continuous maps between spaces.



H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 42:3

<latexit sha1_base64="uzRPpMwlS4qmLmXI4nbq7Lfp1VM=">AAAB8XicbVBNSwMxFHxbv2r9qnr0EiyCp7IrUj0WetFbBVuL7VLeptk2NJtdkqxQSv+FFw+KePXfePPfmG33oK0DgWHmPTJvgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TRVmLxiJWnQA1E1yyluFGsE6iGEaBYA/BuJH5D09MaR7LezNJmB/hUPKQUzRWeuxFaEYUBbntlytu1Z2DrBIvJxXI0eyXv3qDmKYRk4YK1LrruYnxp6gMp4LNSr1UswTpGIesa6nEiGl/Ok88I2dWGZAwVvZJQ+bq740pRlpPosBOZgn1speJ/3nd1ITX/pTLJDVM0sVHYSqIiUl2PhlwxagRE0uQKm6zEjpChdTYkkq2BG/55FXSvqh6tWrt7rJSb+R1FOEETuEcPLiCOtxAE1pAQcIzvMKbo50X5935WIwWnHznGP7A+fwBD5uQiQ==</latexit>

I <latexit sha1_base64="FS5FiNpPLfpX1bJJtuIZcG2fKXM=">AAAB8XicbVBNSwMxFHxbv2r9qnr0EiyCp7IrUj0WevFmBVuL7VLeptk2NJtdkqxQSv+FFw+KePXfePPfmG33oK0DgWHmPTJvgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TRVmLxiJWnQA1E1yyluFGsE6iGEaBYA/BuJH5D09MaR7LezNJmB/hUPKQUzRWeuxFaEYUBbntlytu1Z2DrBIvJxXI0eyXv3qDmKYRk4YK1LrruYnxp6gMp4LNSr1UswTpGIesa6nEiGl/Ok88I2dWGZAwVvZJQ+bq740pRlpPosBOZgn1speJ/3nd1ITX/pTLJDVM0sVHYSqIiUl2PhlwxagRE0uQKm6zEjpChdTYkkq2BG/55FXSvqh6tWrt7rJSb+R1FOEETuEcPLiCOtxAE1pAQcIzvMKbo50X5935WIwWnHznGP7A+fwBGLOQjw==</latexit>O <latexit sha1_base64="QdXOY0wTTKDNpdIOf1i3tWnwSIU=">AAAB8nicbVBNSwMxFMzWr1q/qh69BIvoqeyKVI+FXrxZwdrCdinZNNuGZpMleSuUpT/DiwdFvPprvPlvzLZ70NaBwDDzHpk3YSK4Adf9dkpr6xubW+Xtys7u3v5B9fDo0ahUU9ahSijdC4lhgkvWAQ6C9RLNSBwK1g0nrdzvPjFtuJIPME1YEJOR5BGnBKzk92MCY0oEvjsfVGtu3Z0DrxKvIDVUoD2ofvWHiqYxk0AFMcb33ASCjGjgVLBZpZ8alhA6ISPmWypJzEyQzSPP8JlVhjhS2j4JeK7+3shIbMw0Du1kHtEse7n4n+enEN0EGZdJCkzSxUdRKjAonN+Ph1wzCmJqCaGa26yYjokmFGxLFVuCt3zyKnm8rHuNeuP+qtZsFXWU0Qk6RRfIQ9eoiW5RG3UQRQo9o1f05oDz4rw7H4vRklPsHKM/cD5/AHxqkMA=</latexit>O0

0

1 1

1

0 2 2 0

0

1 1

1

0 2 2 0

1’

0

0 0

1 1

0 2 2 0

<latexit sha1_base64="RjQAuRSdw/ilsAAGONF6XuBD9ao=">AAAB8nicbVBNSwMxEM36WetX1aOXYBEqSNkVqR4rXjx4qGA/YLuUbJptQ7PJkswKZenP8OJBEa/+Gm/+G9N2D9r6YODx3gwz88JEcAOu++2srK6tb2wWtorbO7t7+6WDw5ZRqaasSZVQuhMSwwSXrAkcBOskmpE4FKwdjm6nfvuJacOVfIRxwoKYDCSPOCVgJf+ey1Gl0fPOvbNeqexW3RnwMvFyUkY5Gr3SV7evaBozCVQQY3zPTSDIiAZOBZsUu6lhCaEjMmC+pZLEzATZ7OQJPrVKH0dK25KAZ+rviYzExozj0HbGBIZm0ZuK/3l+CtF1kHGZpMAknS+KUoFB4en/uM81oyDGlhCqub0V0yHRhIJNqWhD8BZfXiati6pXq9YeLsv1mzyOAjpGJ6iCPHSF6ugONVATUaTQM3pFbw44L8678zFvXXHymSP0B87nD23IkA4=</latexit>

Link(P1, 1)

Figure 2 The hourglass task: input complex (left), output complex (center left), output complex
after splitting (center right) and the link of the local articulation point (right).

The quest for such a characterization has failed, because it is not true that a chromatic
task is solvable if and only if there is a continuous map from the input to the output complex.
This has been demonstrated with the hourglass task (Figure 2) in [14, Section 11.1]. The
hourglass task is an inputless task, where each process running solo decides on 0. Process P0
(black) running concurrently with either P1 or P2 can also (in addition to their solo values)
decide on their respective vertexes, with output 1. While P1 and P2 running concurrently can
additionally decide their respective vertices with value 2. When all three run concurrently,
any triangle is a valid output simplex. Despite there being a continuous map from the input
to the output complex respecting the input/output relation for the hourglass task, the task
is unsolvable. The same holds for the majority consensus task, as proved in our paper.

2 Our Results

This paper proves a necessary and sufficient condition for the solvability of colored three-
process inputless tasks, (I, O, ∆), directly from the input complex, not to the output complex,
O, since this is impossible, but to an output complex O′, easily derived from O.

Our study goes through identifying a notion of a local articulation point (LAP) in
the output complex: a vertex whose neighborhood, its link in the topological parlance, is
disconnected. Figure 2(right) depicts the link of a vertex in the hourglass task, which is a
graph consisting of two connected components: the output edges compatible with the vertex
of P1 deciding 1.

We show a novel method for dealing with each local articulation point by splitting the
output complex around it, eventually creating a link-connected output complex O′. See
the right-hand side of Figure 1, for splitting the majority consensus task, and Figure 2, for
splitting the hourglass task. This yields a task T ′, with the same input complex I as the
original task and an adjusted relation ∆′ between I and O′. We show that the solvability
of the original general task is equivalent to the solvability of the task derived from T by
eliminating all the LAPs.

▶ Theorem 1 (informal). T is solvable if and only if T ′ is solvable.

When T is inputless, this implies that it is wait-free solvable if and only if there is a
continuous map from the geometric realization of I to that of O′, which respects ∆′.

▶ Theorem 2 (informal). A general inputless task T = (I, O, ∆) is solvable if and only if
there is a continuous map from |I| to |O′| carried by ∆′.

The following necessary condition is useful when considering specific tasks:

DISC 2024



42:4 Brief Announcement: Solvability of Three-Process General Tasks

▶ Corollary 3. A general task (I, O, ∆) is not solvable if there is an edge {x, x′} ∈ I such
that for every y ∈ ∆(x) and y′ ∈ ∆(x′), any path from y to y′ in ∆({x, x′}) goes through a
LAP.

This corollary can be used to prove the impossibility of solving the majority consensus
task, the hourglass task, and of the pinwheel task, which we define in the full paper.

Three-Process Tasks as a Stepping-Stone for Future Investigation. The restriction to
three processes could be seen as a limitation of our results, and indeed it is a stepping-stone
for future investigation. However, there are several reasons for concentrating on this case.

First, in this case there is no need to use algebraic topology, making the paper accessible
to a wider audience.

Second, the case of three processes has played an important role in past research, because
it is the smallest dimension where topological properties beyond graph connectivity appear.
In this case, two types of obstructions – local articulation points and contractibility – are
neatly identifiable. In smaller dimensions, e.g., for two-process tasks, if the output complex
has a local articulation point then it is also not connected (in the graph-theoretic sense), and
hence, it is not solvable. Indeed, for two-process general tasks, there is a characterization
based on continuous maps (a consequence of [14, Theorem 2.5.2], analogous to the seminal
one for message passing models [5]). On the other hand, in dimensions higher than 2, i.e.,
with four or more processes, a disconnected link may be connected (in the graph-theoretic
sense).

Finally, undecidability results such as [11,16] are proved using colorless loop agreement
tasks [15,16,21], defined using an output complex O, and a loop in it. Roughly, each process
starts on one of three distinguished vertexes of the loop; if they start on the same vertex, they
decide on this vertex; if they start on two distinct distinguished vertexes, then they decide
vertices belonging to the same edge along the path linking their starting vertexes; finally,
if they start on all three distinguished vertices, then they can decide vertexes belonging to
any simplex of O. Like all colorless tasks, loop agreement is defined independently of the
number of processes. Notice however that it is defined on two-dimensional input and output
complexes, and hence, all the arguments are essentially in the three-process case. Moreover,
some results [15, Theorem 5.4] do not generalize to more than three processes. Note that
our approach is different from the one used in [11], where the undecidability of three-process
tasks was proved by a reduction from the contractibility problem to the task-solvability
problem. The contractibility problem asks whether a given loop of a simplicial complex can
be continuously transformed into a point, a problem which is known to be undecidable even
for 2-dimensional simplicial complexes (see, e.g., [23]). Gafni and Koutsoupias prove the
reduction by showing that contractibility is undecidable for the special case of chromatic
complexes and loops of length 3. To do so, they first show that the contractibility problem is
undecidable for link-connected two-dimensional complexes. We instead transform the output
complex to be link-connected, and can then argue directly about colorless tasks.

3 Discussion and Related Work

This paper provides a new characterization for wait-free solvability of general three-process
tasks, which is based on splitting local articulation points. We prove that the task T is
wait-free solvable if and only if there is a continuous map from the geometric realization of
the input complex of T to the geometric realization of the deformed output complex, which
respects the deformed task mapping.



H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 42:5

Our characterization exposes two types of obstructions to solvability: The first, which
exists only in chromatic tasks, are local articulation points; these obstructions can be
effectively detected (and removed). The second is identical to the one that exists for colorless
tasks, namely, the existence of a continuous map from the geometric realization of I to that of
O′ carried by ∆′. The locality of the former obstruction makes it an ideal target for extension-
based impossibility proofs [2, 4]. The latter obstruction is known to be undecidable [11,15],
as it is closely related to the topological notion of loop contractibility.

Link connectivity has showed up in previous papers about chromatic tasks, starting with
the work of Herlihy and Shavit [18]. Nevertheless, our paper is the first to identify the precise
role of link connectivity, by concentrating on the special case of three process.

There are two previous approximations to continuous characterization. First, when
assuming link connectivity, there are sufficiency results for general tasks ( [22] and [14,
Section 11.5]), without a matching necessary condition. Another related notion are continuous
tasks [12], which have an input/output specification that is a continuous function between
the geometric realizations of the input and output complex. The characterization is that a
task is solvable if and only if there exists a chromatic function (a notion introduced in this
paper) from the input complex I to the output complex O respecting the task specification.
Our characterization is in contrast more explicit about the obstructions (since it exposes the
role of local articulation points), and establishes a direct connection with colorless solvability
(after removing articulation points, colored and colorless solvability are the same).

Havlicek [13] have studied the goal of identifying computable obstructions to wait-free
solvability, taking into account that any such mechanism must be necessarily incomplete,
due to the known undecidability of this problem [11, 15]. The mechanism presented by
Havlicek can nevertheless find obstructions for consensus and other tasks, but only those
related to homology groups. It would be interesting to extend it to deal with the type of link
connectivity obstructions studied here.

The full paper presents new chromatic versions of consensus, majority consensus, ap-
proximate agreement, majority approximate agreement, and set agreement, pinwheel task,
that may be of interest on their own. They are obtained by removing some output triangles.
Notice that removing output simplexes is the opposite of what is done in the condition-based
approach [20], where instead input simplexes are removed to obtain an easier task, instead of
a harder one.

Removing output simplexes to obtain our new tasks perturbs the symmetry of the original
tasks, so that the chromatic version can no longer be defined without referring to ids. It
would be interesting to derive a systematic way of transforming any colorless task in this
way. It would be also interesting to consider the same idea but for any number of processes,
n, and investigate the simplexes than need to be removed to obtain a decidable obstruction.
That is, removing some output simplexes of k ≤ n processes, while otherwise leaving the
task unchanged. For what value of k the obstruction becomes decidable?

Pseudospheres [1] are a succinct mathematical notation that was used in the topological
approach of distributed computing to state that any process can take any value. Our examples
leave intact all the pseudospheres of dimension 1, while destroying those of dimension 2.
It would be nice to generalize the examples to higher dimensions (and more than three
processes).

Our splitting deformation draws upon work on modelling of real-world objects, used
in computer-aided design (CAD) [19]. There is a long line of papers studying splitting
deformations mostly of two and three-dimensional simplicial complexes, because these are
the dimensions of most graphics applications (and for technical reasons, as discussed in,

DISC 2024



42:6 Brief Announcement: Solvability of Three-Process General Tasks

Leila De Floriani, Mostefa M. Mesmoudi, Franco Morando and 
Enrico Puppo, Decomposing non-manifold objects in arbitrary 
dimensions, Graphical Models, 2003

Figure 3 [9, Figure 1] An example (a) of a non-manifold object (described by a 3D simplicial
complex made of tetrahedra, triangles, and edges) with a dangling edge (A) and a dangling surface
formed by two triangles (B) and (C) and its decomposition (b) into “simple” components.

e.g. [6]), although there is also work on higher dimensional complexes. The same splitting we
do has been used (e.g. [9, Fig.1], replicated in Figure 3), but not to fix a disconnected link;
instead, the interest has been in doing additional splittings, even of edges, because the goal
in this research line is to decompose a non-manifold complex into an assembly of manifolds,
or at least into components that belong to simpler, well-understood class of complexes where
efficient data structures are known.

References
1 Luis Alberto. Pseudospheres: combinatorics, topology and distributed systems. Journal of

Applied and Computational Topology, 2024. doi:10.1007/s41468-023-00162-5.
2 Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. Why extension-based

proofs fail. SIAM Journal on Computing, 52(4):913–944, 2023. doi:10.1137/20M1375851.
3 Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rüdiger Reischuk. Renaming

in an asynchronous environment. J. ACM, 37(3):524–548, 1990. doi:10.1145/79147.79158.
4 Hagit Attiya, Armando Castañeda, and Sergio Rajsbaum. Locally solvable tasks and the

limitations of valency arguments. In 24th International Conference on Principles of Distributed
Systems (OPODIS), volume 184, pages 18:1–18:16, 2020. doi:10.4230/LIPIcs.OPODIS.2020.
18.

5 Ofer Biran, Shlomo Moran, and Shmuel Zaks. A combinatorial characterization of the
distributed 1-solvable tasks. Journal of algorithms, 11(3):420–440, 1990. doi:10.1016/
0196-6774(90)90020-F.

6 Dobrina Boltcheva, David Canino, Sara Merino Aceituno, Jean-Claude Léon, Leila De Floriani,
and Franck Hétroy. An iterative algorithm for homology computation on simplicial shapes.
Computer-Aided Design, 43(11):1457–1467, 2011. Solid and Physical Modeling 2011. doi:
10.1016/j.cad.2011.08.015.

7 Elizabeth Borowsky, Eli Gafni, Nancy A. Lynch, and Sergio Rajsbaum. The BG distributed
simulation algorithm. Distributed Comput., 14(3):127–146, 2001. doi:10.1007/PL00008933.

8 Soma Chaudhuri. More choices allow more faults: Set consensus problems in totally asyn-
chronous systems. Inf. Comput., 105(1):132–158, 1993. doi:10.1006/INCO.1993.1043.

9 Leila De Floriani, Mostefa M. Mesmoudi, Franco Morando, and Enrico Puppo. Decomposing
non-manifold objects in arbitrary dimensions. Graphical Models, 65(1):2–22, 2003. doi:
10.1016/S1524-0703(03)00006-7.

10 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

https://doi.org/10.1007/s41468-023-00162-5
https://doi.org/10.1137/20M1375851
https://doi.org/10.1145/79147.79158
https://doi.org/10.4230/LIPIcs.OPODIS.2020.18
https://doi.org/10.4230/LIPIcs.OPODIS.2020.18
https://doi.org/10.1016/0196-6774(90)90020-F
https://doi.org/10.1016/0196-6774(90)90020-F
https://doi.org/10.1016/j.cad.2011.08.015
https://doi.org/10.1016/j.cad.2011.08.015
https://doi.org/10.1007/PL00008933
https://doi.org/10.1006/INCO.1993.1043
https://doi.org/10.1016/S1524-0703(03)00006-7
https://doi.org/10.1016/S1524-0703(03)00006-7
https://doi.org/10.1145/3149.214121


H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 42:7

11 Eli Gafni and Elias Koutsoupias. Three-processor tasks are undecidable. SIAM Journal on
Computing, 28(3):970–983, 1998. doi:10.1137/S0097539796305766.

12 Hugo Rincon Galeana, Sergio Rajsbaum, and Ulrich Schmid. Continuous tasks and the
asynchronous computability theorem. In 13th Innovations in Theoretical Computer Science
Conference, ITCS, pages 73:1–73:27, 2022. doi:10.4230/LIPICS.ITCS.2022.73.

13 John Havlicek. Computable obstructions to wait-free computability. Distributed Computing,
13(2):59–83, 2000. doi:10.1007/s004460050068.

14 Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2013.

15 Maurice Herlihy and Sergio Rajsbaum. The decidability of distributed decision tasks. In
Proceedings of the 29th annual ACM symposium on Theory of computing, pages 589–598, 1997.

16 Maurice Herlihy and Sergio Rajsbaum. A classification of wait-free loop agreement tasks.
Theoretical Computer Science, 291(1):55–77, 2003. doi:10.1016/S0304-3975(01)00396-6.

17 Maurice Herlihy, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. From wait-free to
arbitrary concurrent solo executions in colorless distributed computing. Theor. Comput. Sci.,
683:1–21, 2017. doi:10.1016/J.TCS.2017.04.007.

18 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.
ACM, 46(6):858–923, 1999. doi:10.1145/331524.331529.

19 Annie Hui and Leila De Floriani. A two-level topological decomposition for non-manifold
simplicial shapes. In Proceedings of the 2007 ACM symposium on Solid and Physical Modeling,
pages 355–360, 2007. doi:10.1145/1236246.1236297.

20 Achour Mostéfaoui, Sergio Rajsbaum, and Michel Raynal. Conditions on input vectors for
consensus solvability in asynchronous distributed systems. J. ACM, 50(6):922–954, 2003.
doi:10.1145/950620.950624.

21 Vikram Saraph and Maurice Herlihy. The relative power of composite loop agreement tasks. In
19th International Conference on Principles of Distributed Systems, OPODIS, pages 13:1–13:16,
2015. doi:10.4230/LIPICS.OPODIS.2015.13.

22 Vikram Saraph, Maurice Herlihy, and Eli Gafni. An algorithmic approach to the asyn-
chronous computability theorem. J. Appl. Comput. Topol., 1(3-4):451–474, 2018. doi:
10.1007/S41468-018-0014-4.

23 John C. Stillwell. Classical topology and combinatorial group theory, volume 72 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1980.

DISC 2024

https://doi.org/10.1137/S0097539796305766
https://doi.org/10.4230/LIPICS.ITCS.2022.73
https://doi.org/10.1007/s004460050068
https://doi.org/10.1016/S0304-3975(01)00396-6
https://doi.org/10.1016/J.TCS.2017.04.007
https://doi.org/10.1145/331524.331529
https://doi.org/10.1145/1236246.1236297
https://doi.org/10.1145/950620.950624
https://doi.org/10.4230/LIPICS.OPODIS.2015.13
https://doi.org/10.1007/S41468-018-0014-4
https://doi.org/10.1007/S41468-018-0014-4




Brief Announcement: Unifying Partial Synchrony
Andrei Constantinescu #

ETH Zürich, Switzerland

Diana Ghinea #

ETH Zürich, Switzerland

Jakub Sliwinski #

ETH Zürich, Switzerland

Roger Wattenhofer #

ETH Zürich, Switzerland

Abstract
The distributed computing literature considers multiple options for modeling communication. Most
simply, communication is categorized as either synchronous or asynchronous. Synchronous commu-
nication assumes that messages get delivered within a publicly known timeframe and that parties’
clocks are synchronized. Asynchronous communication, on the other hand, only assumes that
messages get delivered eventually. A more nuanced approach, or a middle ground between the two
extremes, is given by the partially synchronous model, which is arguably the most realistic option.
This model comes in two commonly considered flavors:

(i) The Global Stabilization Time (GST) model: after an (unknown) amount of time, the network
becomes synchronous. This captures scenarios where network issues are transient.

(ii) The Unknown Latency (UL) model: the network is, in fact, synchronous, but the message
delay bound is unknown.

This work formally establishes that any time-agnostic property that can be achieved by a protocol
in the UL model can also be achieved by a (possibly different) protocol in the GST model. By
time-agnostic, we mean properties that can depend on the order in which events happen but not
on time as measured by the parties. Most properties considered in distributed computing are
time-agnostic. The converse was already known, even without the time-agnostic requirement, so our
result shows that the two network conditions are, under one sensible assumption, equally demanding.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases partial synchrony, unknown latency, global stabilization time

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.43

1 Introduction

Distributed computing systems underpin a vast array of contemporary technological ad-
vancements, ranging from cloud computing platforms to blockchain networks. These systems
rely on protocols to ensure consistency and reliability even when faced with challenges such
as message delays and node failures. A cornerstone of designing robust protocols lies in
understanding the communication model assumed by the distributed system. Within the
distributed computing literature, the synchronous and asynchronous communication models
remain the two best-established paradigms. The synchronous model assumes a publicly
known upper bound ∆ on message delays and that parties hold synchronized clocks. This
idealized setting facilitates the design of elegant round-based protocols that often achieve
very high resilience thresholds. However, the synchronous model exhibits a fundamental
limitation: any deviation from the assumed message delay bound ∆ can render synchronous
protocols entirely ineffective, potentially leading to complete breakdowns of the protocols.

© Andrei Constantinescu, Diana Ghinea, Jakub Sliwinski, and Roger Wattenhofer;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 43; pp. 43:1–43:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aconstantine@ethz.ch
https://orcid.org/0009-0005-1708-9376
mailto:ghinead@ethz.ch
https://orcid.org/0000-0002-5294-9459
mailto:jsliwinski@ethz.ch
https://orcid.org/0000-0003-3534-5941
mailto:wattenhofer@ethz.ch
https://orcid.org/0000-0002-6339-3134
https://doi.org/10.4230/LIPIcs.DISC.2024.43
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


43:2 Brief Announcement: Unifying Partial Synchrony

The asynchronous model, on the other hand, only assumes that messages get delivered
eventually. This inherent flexibility empowers the asynchronous model to support protocols
that can gracefully adapt to any network conditions. However, asynchronous protocols
typically exhibit lower resilience thresholds compared to their synchronous counterparts, and
even achieving agreement when parties might crash is impossible without randomization [3].
Hence, neither of these two extremes perfectly captures real-world systems: the synchronous
model’s assumptions are too strong, while the asynchronous model is too pessimistic. In this
work, we are concerned with a middle ground between the two: the partially synchronous
model, a nuanced paradigm that bridges the gap between the two, introduced by Dwork,
Lynch, and Stockmeyer [2]. The work of [2] proposes two definitions for the partially
synchronous model, described below (see the next section for the formal definitions).

The Global Stabilization Time (GST) model. This variant acknowledges that there might
be periods of unpredictable delays due to network congestion or outages but also assumes
that these disruptions eventually resolve and the system stabilizes. [2] explains how this
intuition can be faithfully captured with a simple model, known as the Global Stabilization
Time (GST) model: there is an unknown “Global Stabilization Time” T after which the
system behaves synchronously for a publicly-known message delivery bound ∆. In particular,
there is a publicly known amount of time ∆ such that every message sent at time t is delivered
by time max(t, T) + ∆.

The Unknown Latency (UL) model. In this variant, the system is, in fact, always syn-
chronous: there is a value ∆ such that every message sent by time t is delivered by time
t + ∆. However, as opposed to the synchronous model, the value of ∆ is unknown to the
protocol.

The relationship between the two. The two models are conjectured to be equivalent, in the
sense that any property that can be achieved by a protocol in one can also be achieved in the
other. In fact, there is an elegant folklore reduction from the UL model to the GST model,
presented in [1], which we explain next. Consider a protocol Π achieving some property
X in the UL model. Let us run Π in the GST model, where a value of ∆ is provided and
guaranteed to hold eventually, but Π ignores it. Consider any execution ε of Π in this setting:
the model ensures that there is a time T such that all messages in ε sent at time t get
delivered by time max(t, T) + ∆. Hence, in ε all messages get delivered within time T + ∆,
so from the parties’ perspective, they might just as well be running in UL with the unknown
bound on message delay being T + ∆. Hence, ε is also a legal execution of Π in UL. As a
result, the set of executions of Π in GST is a subset of its set of executions in UL. Since Π

satisfies X in UL, it also satisfies X in GST.
The same blog post [1] also explains the reverse direction: a protocol designed for the

GST model can be transformed into an equivalent protocol for the UL model, but only if
it satisfies a certain property, namely, that the protocol’s guarantees are still maintained if
the assumed value of ∆ changes dynamically. This way, one may increment the assumed ∆

whenever a timeout of the protocol expires, and eventually, the assumed ∆ exceeds the real
one. However, as [1] points out, assuming this property is with loss of generality. Whether
the converse holds is still an open question.1

1 The incorrect proof also implicitly assumes the time-agnostic property which we introduce in the next
paragraph.



A. Constantinescu, D. Ghinea, J. Sliwinski, and R. Wattenhofer 43:3

Our contribution. In this work, we answer this question in the affirmative under the
relatively minor technical assumption of only considering “time-agnostic” properties. A
protocol property is time-agnostic if whether it holds for a given execution of a protocol can
only depend on the relative order in which events happened, but not on time as measured
by the parties in the execution. We note that most properties considered in distributed
computing are indeed time-agnostic; e.g., whether some consensus protocol satisfies a given
agreement conditions. Bounds on message complexity can also be accommodated, but the
same is not true about running time. Additionally, we will only show our result assuming
that the environment provides a global perfect clock to the parties, that is their only way
of telling time. On a similar note, we consider randomized protocols, but do not consider
probabilistic properties, such as “with probability at least 0.5 all parties terminate”. We
leave a formal argument considering imperfect clocks and probabilistic properties for future
work. On the other hand, our proof works in adversarial settings, i.e., crashes or byzantine
behavior. The key idea in our proof is that, instead of estimating the actual value of ∆ in
the UL model, like in the argument of [1], we continuously slow down the parties’ clocks.
This is achieved by the parties applying a wrapper function on top of the time measurements
returned by the system clock. This way, the parties simulate running the GST protocol with
a continuously increasing value of ∆, which eventually exceeds the actual unknown ∆ of the
UL model, hence allowing the guarantees of the GST protocol that we are running to apply.

2 Preliminaries

We consider a fixed set of n parties in a network, where links model communication channels.
The parties are running a (possibly randomized) protocol over the network. For each party,
the protocol is specified by a state transition diagram, where a party’s state is defined by its
local variables. The initial state of a party is then defined by any initial inputs and random
coins. The transitions are deterministic (but may depend on the party’s random coins).
Without loss of generality, a party’s transition to another state is triggered by the receipt
of a message, or specific changes in time (e.g., waiting a predefined amount of time). State
changes are instantaneous and include all required local computations and the corresponding
sending of messages (i.e., these instructions are executed atomically). The receipt of messages,
on the other hand, will be controlled by the message system, which we discuss below.

Messages. Messages are held in a global message system: this maintains a set containing
tuples (Ps,Pr,m, c), where Ps is the sender of the message, Pr is a receiver of the message,
m is the content of the message, and c is a unique identifier assigned by the message system.
The message system is controlled by the adversary and may decide when to deliver these
messages (subject to the constraints of the communication model). For simplicity, we assume
that the message system keeps delivering messages even after the receivers have terminated
(if the protocol allows it) or crashed. Otherwise, claims of the form “eventually all messages
get delivered within ∆ time units” would not be meaningful for terminated receivers.

Global clock. We assume that parties have access to a common global clock denoted
by Clock, which is their only source of time. Abstractly, Clock is represented by an
increasing and continuous function Clock : R⩾0 → R⩾0 that maps real time to system
time. In particular, at real time t, the parties can atomically query the global clock to read
off a “system time” of Clock(t). Neither the parties nor the adversary have access to the
actual definition of the function Clock. Instead, they can only use the global clock as an

DISC 2024



43:4 Brief Announcement: Unifying Partial Synchrony

oracle to receive the current system time. Depending on the environment, the system time
may coincide with real time, in which case Clock is RealClock(t) = t, but this is not
necessarily the case.

Protocol execution models. A protocol execution model M captures all requirements and
guarantees of the environment under which a protocol runs. For our scope, communication
in M always happens through message passing as already described. Moreover, M specifies a
global clock function Clock that the parties use to tell time. Other aspects of the execution
environment can appear as part of the guarantees of M, such as message delay bounds
or other timing constraints. Two examples of such models M are GST(∆, Clock) and
UL(∆, Clock), formally introduced below. Note that the guarantees of a fixed model M are
concrete: e.g., messages are delivered within ∆ time units for a fixed ∆; in contrast, often in
the literature, models usually refer to families of models (in this particular case, parameterized
by ∆). Last but not least, M specifies the power of the adversary. On top of controlling the
scheduler within the model’s timing constraints, the adversary might, for instance, make
parties crash, fail to send certain messages or deviate from the protocol arbitrarily (i.e.,
byzantine behavior). Model M should specify precisely which faults are possible and under
what circumstances (e.g., if the adversary is adaptive, computationally bounded, and how
many parties it can corrupt). The parties are not aware of the clock function used: this
is supplied by the environment as an oracle, with no access to its implementation. More
abstractly, a model M specifies for each protocol Π its set of legal executions ε, defined next.

Executions. Consider a protocol Π running in a model M where parties measure time using
function Clock. An execution of Π is defined by the parties’ initial states and a (possibly
infinite) collection of events, denoted by events(ε). Each event in events(ε) is a tuple (t,
ReceivedMsgs, P, q, SentMsgs) signifying that, at system time t (i.e., as observed by the
parties using function Clock), party P received the (possibly empty) multiset of messages
ReceivedMsgs from the message system, P’s state became q (possibly the same state it was
already in), and P sent the (possibly empty) multiset of messages SentMsgs to the message
system. We say that a message msg = (Ps,Pr,m, c) was sent at system time t in execu-
tion ε if events(ε) contains some event (t, ReceivedMsgs,Ps,q, SentMsgs) with msg ∈
SentMsgs. Similarly, we say that a message msg = (Ps,Pr,m, c) was received at system
time t in execution ε if events(ε) contains some event (t, ReceivedMsgs,Pr,q, SentMsgs)
with msg ∈ ReceivedMsgs. Note that a message sent/received at system time t is sen-
t/received at real time Clock−1(t). We have made the deliberate choice to timestamp
executions in system time as this is the perspective that parties perceive them from. This
will allow us to map between executions with different clock functions in our main result.

The GST model. The GST model has as parameters a clock function Clock that the
environment provides to the parties to tell the time when running a protocol, and ∆, to be
supplied to protocols designed for the model when instantiated for a specific ∆. We write
GST(∆, Clock) for the model instantiated with specific parameters ∆ and Clock. The
model guarantees that, for every protocol Π and every execution ε of Π in the model, there
exists a time T measured in real time such that every message in ε sent at real time t is
received by real time max(t, T) + ∆. The model can be altered to give the adversary more
power than controlling the scheduler; e.g., to corrupt parties.



A. Constantinescu, D. Ghinea, J. Sliwinski, and R. Wattenhofer 43:5

The UL model. The UL model has as parameters a clock function Clock that the
environment similarly provides to the parties, and ∆, not to be supplied to protocols designed
for the model. We write UL(∆, Clock) for the model instantiated with specific parameters
∆ and Clock. The model guarantees that, for every protocol Π and every execution ε of Π
in the model, any message in ε sent at real time t is received by real time t+∆. This model
can also be altered to give more power to the adversary.

Protocol properties. We define a protocol property as a set of allowed executions; e.g.,
the property that all parties eventually terminate, or that they produce some outputs. A
protocol achieves a property in a model M if all its legal executions in that model satisfy
the property, i.e., are in the set of executions allowed by the property. Note that modeling
certain properties this way is non-trivial, as executions alone do not contain, e.g., who are
the byzantine parties and when they were corrupted. However, even such properties can be
modeled: executions may contain changes of states that do not follow from the protocol’s
state transition to model parties misbehaving, or one can modify executions to include
corruption events to make the process more transparent. In this paper, we are concerned with
time-agnostic properties, defined next. We call two executions ε, ε ′ equivalent if they differ
only in the timestamps of the events and agree on the relative order of the events. A property
X is time-agnostic if for any two equivalent executions ε, ε ′ it holds that ε ∈ X ⇐⇒ ε ′ ∈ X.

Augmented models. Our result will be very general: we will consider an arbitrary protocol
Π designed for the GST model, instantiated with a publicly-known eventual message delay
bound of 1, that satisfies a given time-agnostic property in GST(1, RealClock). We will
show how Π can be transformed into a protocol Π ′ that only depends on Π that satisfies
the same property in UL(∆, RealClock), irrespective of the value of ∆. Moreover, if we
augment both the GST model and the UL model with the same kind of additional power
for the adversary, the same statement holds, with the same proof. For simplicity, in the
following, we assume the basic models, but we note that we also get the result for a plethora
of more interesting fault settings, e.g., byzantine faults and crashes.

3 Our Reduction

This section presents the proof of our main result, stated below.

▶ Theorem 1. Any time-agnostic property that can be achieved by a protocol in the GST
model can also be achieved by a protocol in the UL model.

As previously mentioned, the key idea behind our reduction will be slowing down time.
Given a protocol Π achieving a time-agnostic property X in GST(1, RealClock), we
construct a protocol Π ′ such that any execution ε ′ of Π ′ in UL(∆, RealClock) for some ∆

unbeknownst to the protocol is equivalent to a legal execution ε of Π in GST(1, RealClock),
hence also achieving property X. Protocol Π ′ will simulate running Π with a modified system
clock that continuously slows down, so that equal intervals of time measured in the simulated
system will represent longer and longer spans of real time. Moreover, we need that the
modified system clock eventually gets arbitrarily slow. This way, since Π is designed to
have property X if, once sufficient time passes, every message gets delivered within 1 unit of
system time, this will eventually be the case: the clock gets slow enough for 1 unit of system
time to correspond to a span of real time exceeding the unknown message delay bound.

DISC 2024



43:6 Brief Announcement: Unifying Partial Synchrony

More specifically, Π ′ will simulate Π running with system clock SlowClock : R⩾0 → R⩾0
given by SlowClock(t) =

√
t (any increasing function whose derivative tends to 0 as t → ∞

will suffice). Whenever a party in the simulated Π queries the global clock and the answer
would have normally been (real time) t, Π ′ replaces the answer with SlowClock(t): from
the perspective of the simulated Π, the system clock is SlowClock.

The first lemma below shows the required result assuming that Π is running standalone
but with system clock SlowClock. The second lemma lifts it to the protocol Π ′ that runs
with system clock RealClock, but simulates Π running with system clock SlowClock.
A short discussion of why this implies Theorem 1 follows.

▶ Lemma 2. Consider a protocol Π and a legal execution ε of Π in UL(∆, SlowClock).
Then, ε is a legal execution of Π in GST(1, RealClock).

Proof. Consider an execution ε of Π in UL(∆, SlowClock), which guarantees that any
message sent at real time t is delivered by real time t+∆. From the perspective of the parties,
however, time is measured using SlowClock, so in ε, the parties observe that any message
sent at system time SlowClock(t) is delivered by system time SlowClock(t+∆). Let us
consider SlowClock(t+∆)−SlowClock(t) =

√
t+ ∆−

√
t to understand how the message

delay observed by the parties evolves with t. Taking the derivative, the function is strictly
decreasing with t, so the observed network delay gets smaller and smaller as time passes.
Subsequently, let us find a bound t0 on t such that starting at real time t0, the observed
network delay is bounded by 1; i.e., let us solve

√
t+ ∆−

√
t ⩽ 1. If ∆ < 1, this happens for

t ⩾ 0. Otherwise, ∆ ⩾ 1, and this happens for t ⩾ 1
4 (∆− 1)2. Hence, starting at real time

1
4 (max{1,∆}−1)2, the observed (system) network delay is bounded by 1. Writing the same in
terms of system time, starting at system time T :=

√
1
4 (max{1,∆}− 1)2 = 1

2 (max{1,∆}− 1),
the system network delay is bounded by 1. In particular, this means that a message sent
at system time t in ε is delivered by system time max{t, T }+ 1. Hence, ε could just as well
be an execution of Π in GST(1, RealClock) with global stabilization time T because the
parties and the adversary are unaware of the clock function used. ◀

▶ Lemma 3. If protocol Π achieves a time-agnostic property X in GST(1, RealClock),
there is a protocol Π ′ depending only on Π that achieves X in UL(∆, RealClock) ∀∆ ⩾ 0.

Proof. In protocol Π ′ parties run protocol Π but apply the function SlowClock : R⩾0 →
R⩾0 as a wrapper over the global clock’s responses to the queries. In particular, whenever
a party queries the global clock in Π and the time returned is t, the party evaluates
SlowClock(t) and takes this as the answer instead. Every execution ε ′ of Π ′ in some
model M corresponds to an equivalent execution ε of Π in M where the clock function
provided by the environment is composed with SlowClock. Namely, every event e present
in ε and ε ′ is timestamped t in ε and SlowClock(t) in ε ′.

Hence, for any ∆ ⩾ 0, any legal execution ε ′ of Π ′ in UL(∆, RealClock) corresponds
to a legal execution ε of Π in UL(∆, SlowClock) that is equivalent to ε ′. By Lemma 2,
ε is also a legal execution of Π in GST(1, RealClock). Since Π achieves property X in
GST(1, RealClock), it follows that ε ∈ X, and hence, since X is time-agnostic, ε ′ ∈ X.
Since ε ′ was an arbitrary execution of Π ′ in UL(∆, RealClock) and ∆ ⩾ 0 was arbitrary,
it follows that Π ′ satisfies property X in UL(∆, RealClock) for all ∆ ⩾ 0. ◀

Proof of Theorem 1. If Π denotes the set of all protocols, a protocol designed for the GST
model is, in fact, a protocol family Π : R⩾0 → Π, one for each potential value of the publicly-
known eventual message delay bound. Π achieves a property in GST(∆, RealClock) for
some ∆ ⩾ 0 iff all executions of Π(∆) achieve this property in GST(∆, RealClock).



A. Constantinescu, D. Ghinea, J. Sliwinski, and R. Wattenhofer 43:7

Let Π be a protocol achieving a time-agnostic property X in the GST model. We only
need that Π(1) satisfies X in GST(1, RealClock): applying Lemma 3 to Π(1), we get that
Π ′ satisfies X in UL(∆, RealClock) for all ∆ ⩾ 0, implying the conclusion. ◀

References
1 Ittai Abraham. Flavours of partial synchrony, 2019. URL: https://decentralizedthoughts.

github.io/2019-09-13-flavours-of-partial-synchrony/.
2 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial

synchrony. J. ACM, 35(2):288–323, April 1988. doi:10.1145/42282.42283.
3 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed

consensus with one faulty process. J. ACM, 32(2):374–382, April 1985. doi:10.1145/3149.
214121.

DISC 2024

https://decentralizedthoughts.github.io/2019-09-13-flavours-of-partial-synchrony/
https://decentralizedthoughts.github.io/2019-09-13-flavours-of-partial-synchrony/
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121




Brief Announcement: The Expressive Power of
Uniform Population Protocols with Logarithmic
Space
Philipp Czerner # Ñ

Technical University of Munich, Germany

Vincent Fischer #

Technical University of Munich, Germany

Roland Guttenberg #

Technical University of Munich, Germany

Abstract
Population protocols are a model of computation in which indistinguishable mobile agents interact
in pairs to decide a property of their initial configuration. Originally introduced by Angluin et. al.
in 2004 with a constant number of states, research nowadays focuses on protocols where the space
usage depends on the number of agents. The expressive power of population protocols has so far
however only been determined for protocols using o(log n) states, which compute only semilinear
predicates, and for Ω(n) states. This leaves a significant gap, particularly concerning protocols with
Θ(log n) or Θ(polylog n) states, which are the most common constructions in the literature. In this
paper we close the gap and prove that for any ε > 0 and f ∈ Ω(log n) ∩ O(n1−ε), both uniform and
non-uniform population protocols with Θ(f(n)) states can decide exactly NSPACE(f(n) log n).

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Population Protocols, Uniform, Expressive Power

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.44

Related Version Full Version: https://arxiv.org/abs/2408.10027 [15]

1 Introduction

Population protocols are a model of computation in which indistinguishable mobile agents
randomly interact in pairs to decide whether their initial configuration satisfies a given
property. The decision is taken by stable consensus; eventually all agents agree on whether
the property holds or not, and never change their mind again. While originally introduced
to model sensor networks [4], population protocols are also very close to chemical reaction
networks [23], a model in which agents are molecules and interactions are chemical reactions.

Originally agents were assumed to have a finite number of states [4, 5, 6], however
many predicates then provably require at least Ω(n) time to decide [21, 7, 1], as opposed to
recent breakthroughs of O(log n) time using O(log n) number of states (in some cases even
O(log log n) states) for important tasks like leader election [9] and majority [19]. Limiting
the number of states to logarithmic is important in most applications, especially the chemical
reaction setting, since a linear in n number of states would imply the unrealistic number of
approximately 1023 different chemical species. Therefore most recent literature focusses on
the polylogarithmic time and space setting, and determines time-space tradeoffs for various
important tasks like majority [3, 1, 2, 22, 8, 19], leader election [1, 22, 9] or estimating/counting
the population size [20, 16, 10, 17, 18].

© Philipp Czerner, Vincent Fischer, and Roland Guttenberg;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 44; pp. 44:1–44:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:czerner@in.tum.de
https://nicze.de/philipp
https://orcid.org/0000-0002-1786-9592
mailto:vincent.fischer@tum.de
https://orcid.org/0009-0009-3071-0736
mailto:guttenbe@in.tum.de
https://orcid.org/0000-0001-6140-6707
https://doi.org/10.4230/LIPIcs.DISC.2024.44
https://arxiv.org/abs/2408.10027
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


44:2 The Expressive Power of Uniform Population Protocols with Logarithmic Space

This leads to the interesting open problem of characterizing the class of predicates which
can be computed in polylogarithmic time using a logarithmic or polylogarithmic number of
states. There is however a fundamental problem with working on this question: Despite the
focus on O(log n) number of states in recent times, the expressive power for this number of
states (regardless of time) is still unknown.

More precisely, there is a gap in the existing literature: protocols with f(n) ∈ Ω(n) states
are known to have expressive power SNSPACE(n log f(n)) [14], i.e. symmetric predicates in
NSPACE(n log f(n)), while a subclass of protocols with o(log n) states can only compute
semilinear predicates [6, 14]. The latter result applies only to uniform population protocols,
i.e. protocols where the transitions are independent of the size of the population.

However, many constructions in the literature have e.g. Θ(log n) or Θ(polylog n) states.
This important case is not covered by the existing results. To the best of our knowledge,
the only research in this direction is [12], where the expressive power is characterised for
polylog(n) number of states for a similar model – not population protocols themselves. Most
importantly, their results do not lead to a complete characterization for Θ(log n) states since
they lose some log factors in their characterization of polylog(n).

In this paper, we fill the gap by proving that for functions f(n) ∈ Ω(log n) ∩ O(n1−ε),
where ε > 0, population protocol with f(n) states compute exactly SNSPACE(f(n) · log n),
i.e. the symmetric predicates computable by a non-deterministic Turing machine using
O(f(n) · log n) space. This result applies to both uniform and non-uniform protocols. (The
function f needs to fulfil some technical conditions.)

With this result, the expressive power of uniform population protocols is characterised in
all cases, and for non-uniform protocols it is characterised in the case of Ω(log n) states. (A
slight gap between O(n1−ε) and Ω(n) remains.)

2 Preliminaries

▶ Definition 1. A protocol scheme P is a 5-tuple (Q, Σ, δ, I, O) of
a (not necessarily finite) set of states Q,
a finite input alphabet Σ,
a (partial) transition function δ : Q × Q → Q × Q,
an injective input mapping I : Σ → Q,
an output mapping O : Q → {0, 1}.

A configuration of P is a finite multiset C ∈ NQ, which represents a collection of agents
with states in Q. A step C → C ′ in P occurs by choosing two agents from C and letting
them interact via δ, i.e. if their states are p, q in C, then their new states in C ′ will be δ(p, q).

We write →∗ for the reflexive and transitive closure of →, and say that a configuration C ′

is reachable from C if C →∗ C ′. The input to P consists of a multiset w ∈ NΣ. Every input
w can be mapped to its corresponding initial configuration by applying I to every letter in w

A configuration C is a b-consensus for b ∈ {0, 1} if O(q) = b for all q such that C(q) ̸= 0,
i.e. if every state which occurs in the configuration has output b. A configuration C is stable
with output b if every configuration C ′ reachable from C is a b-consensus.

A run ρ is an infinite sequence of configurations ρ = (C0, C1, . . . ) such that Ci → Ci+1
for all i ∈ N. A run is fair if for all configurations C which occur infinitely often in ρ, i.e.
such that there are infinitely many i with Ci = C, every configuration C ′ reachable from
C occurs infinitely often in ρ. A run has output b if some configuration Ci along the run is
stable with output b (and hence all Cj for j ≥ i are also stable with output b).



P. Czerner, V. Fischer, and R. Guttenberg 44:3

An input w ∈ NΣ has output b if every fair run starting at its corresponding initial
configuration Î(w) has output b. The protocol scheme P computes a predicate φ : NΣ → {0, 1}
if every input w has output φ(w).

Let us provide an example which also shows how to treat infinite sets Q.

▶ Example 2. Consider Q := {0}∪{2i | i ∈ N}, and define δ(2i, 2i) = (2i+1, 0). Let Σ = {x},
and let x 7→ 20 be the input mapping. Then a configuration is initial if every agent is in state
20. Intuitively this protocol will eventually end up with the binary representation of the
number of agents. Namely each transition preserves the total sum of all agents’ values, and
every transition increases the number of agents in 0, so this protocol in fact always reaches a
terminal configuration.

Regarding the infinite state space, intuitively the protocol uses ⌊log n⌋ + 2 states, namely
⌊log n⌋ + 1 powers of two and 0. The other states cannot be reached with n agents.

Accordingly we now define the state complexity of a protocol scheme. A state q ∈ Q is
coverable from some initial configuration C0 if there exists a configuration C reachable from
C0 which fulfils C(q) > 0. The state complexity S(n) of P for n agents is the number of
states q ∈ Q which are coverable from some initial configuration with n agents.

▶ Example 3. In the scheme of Example 2, let Cn be the unique initial configuration with n

agents, i.e. Cn(20) = n and Cn(q) = 0 otherwise. For n ≥ 2, the states coverable from Cn

are exactly {0} ∪ {2i | i ≤ log n}. Hence the state complexity is S(n) = ⌊log n⌋ + 2.

As defined so far, protocol schemes are not necessarily computable. Hence actual
population protocols require some uniformity condition.

▶ Definition 4. A uniform population protocol P = (Q, Σ, δ, I, O) is a protocol scheme
together with a bijection Q → {0, 1}∗ to represent Q via binary strings, such that the functions
δ, I, O are computable by linear space Turing-machines (TMs).

We remark that “linear space” then in terms of our n, the number of agents, is O(log S(n))
space (since the input of the machine is a representation of a state).

In the literature on uniform population protocols, e.g. [13, 14, 20, 16], often agents are
defined as TMs and states hence automatically assumed to be represented as binary strings.
We avoid talking about the exact implementation of a protocol via TMs because it introduces
an additional logarithm in the number of states and potentially confuses the reader, while
most examples are clearly computable.

▶ Example 5. In the protocol scheme of Example 2 we represent states by the binary
representation of the exponent. Clearly incrementing natural numbers or setting the number
to a fixed value are possible by a linear space TM, hence this is a uniform population protocol.

Next we define a more general class of population protocols, which we call weakly uniform.
This class includes all known population protocols, and our results also hold for this class,
which shows that having a different protocol for every n does not strengthen the model.

▶ Definition 6. A finite population protocol is a protocol scheme with a finite set Q.
A population protocol P is an infinite family (Pn)n∈N = (Qn, Σ, δn, In, On)n of finite

population protocols. The state complexity for inputs of size n is S(n) := |Qn|.
P is weakly uniform if there exist TMs Mδ, MI , MO using O(S(n)) space which compute

δn, In and On, respectively, taking n as additional input.

DISC 2024



44:4 The Expressive Power of Uniform Population Protocols with Logarithmic Space

The configurations of P with n agents are exactly the configurations of Pn with n agents,
and accordingly the semantics of steps, runs and acceptance are inherited from Pn.

The protocol for a given population size n is allowed to differ completely from the protocol
for n − 1 agents, as long as TMs are still able to evaluate transitions, input and output.
Usually this is not fully utilised, with the most common case of a non-uniform protocol being
that log n is encoded into the transition function [19].

Clearly uniform population protocols are weakly uniform. Namely let P = (Q, Σ, δ, I, O)
be a protocol scheme. Then for every n ∈ N we let Qn be the set of states coverable by some
initial configuration with n agents, similar to the definition of state complexity, and define
Pn := (Qn, Σ, δn|Q2

n
, I, O|Qn

), where f |A is the restriction of f to inputs in A. This protocol
family computes the same predicate, and is weakly-uniform with the same state complexity.

Next we define the complexity classes for our main result. Let f : N → N be a function.
f is space-constructible if there exists a TM M which computes f using O(f(n)) space.
Given a space-constructible function f : N → N, we denote by NSPACE(f(n)) the class
of predicates computable by a non-deterministic Turing-machine in O(f(n)) space, and
by SNSPACE(f(n)) the class of symmetric (i.e. only depending on the count of letters)
predicates in NSPACE(f(n)). Similarly, let UPP(f(n)) be the class of predicates computable
by uniform population protocols with O(f(n)) space, and WUPP(f(n)) be the class of
predicates computable by weakly-uniform population protocols with O(f(n)) space.

3 Main Result

We give a characterisation for the expressive power of both uniform and weakly uniform
population protocols with f(n) states, where f ∈ Ω(log n) ∩ O(n1−ε), for some ε > 0. For
technical reasons, we must place a few limitations on f(n) (see the full paper [15] for details).
We will refer to a function f fulfilling these requirements as reasonable.

Our bound applies to uniform and weakly uniform protocols. As mentioned in the previous
section, the latter includes, to the best of our knowledge, all non-uniform constructions from
the literature.

▶ Theorem 7. Let ε > 0 and let f ∈ Ω(log n) ∩ O(n1−ε) be reasonable. Then

UPP(f(n)) = WUPP(f(n)) = SNSPACE(f(n) · log n)

Proof. This will follow from Proposition 8 and Theorem 9. ◀

In particular, we have UPP(log n) = WUPP(log n) = SNSPACE(log2 n).

▶ Proposition 8 (Upper Bound). Let ε > 0 and let f ∈ Ω(log n) ∩ O(n1−ε) be space-
constructible. Then

UPP(f(n)) ⊆ WUPP(f(n)) ⊆ SNSPACE(f(n) log n)

Proof (sketch). UPP(f(n)) ⊆ WUPP(f(n)) is trivial/was explained in Section 2.
WUPP(f(n)) ⊆ SNSPACE(f(n) log n) can be shown using a reduction to a reachability
problem in the configuration graph as in [11]. ◀

Our main contribution is the proof of the lower bound:

▶ Theorem 9 (Lower Bound). Let ε > 0 and let f ∈ Ω(log n) ∩ O(n1−ε) be reasonable. Then

SNSPACE(f(n) log n) ⊆ UPP(f(n))



P. Czerner, V. Fischer, and R. Guttenberg 44:5

Proof (sketch). We construct a uniform population protocol P = (Q, Σ, δ, I, O), simulating
a counter machine with |Σ| input counters using space O(2f(n) log n), which is equivalent to a
O(f(n) log n) space-bounded Turing machine.

Initialisation. Our first goal is to reach a configuration where the number of agents n is
known. By this we mean, that we want to have ⌊log n⌋ + 1 uniquely indentifiable “counter
agents”, each of which stores one bit of the binary representation of n. We use a similar
approach as in Example 2 to achieve this:

(Ctr, i, 1), (Ctr, i, 1) 7→ (Ctr, i + 1, 1), (Ctr, i, 0) for i ∈ N
(Ctr, i, 0), (Ctr, i, b) 7→ (Ctr, i, b), (Ldr, i + 1) for i ∈ N

〈counter〉

Here (Ctr, i, 1) encodes that the i-th bit in the binary representation of n is set, while (Ctr, i, 0)
represents an unset bit. The first transition is analogous to Example 2, but instead of simply
sending the second agent to state 0, it also remembers which bit it represents. The second
transition gets rid of additional agents storing the same bit.

Among the remaining agents we now want to elect one leader, who knows how many bits
n has. We will refer to all agents which are neither counters nor a leader as free:

(Ldr, i), (Ldr, j) 7→ (Ldr, j), Free for i, j ∈ N, i ≤ j

(Ldr, i), (Ctr, j, b) 7→ (Ldr, j), (Ctr, j, b) for i, j ∈ N, i ≤ j
〈leader〉

The first transition here is a standard leader election, the second informs the leader of the
number of bits required to store n.

At some point a configuration will be reached, where the binary counting and leader
elections have been completed. Note that there is no way of telling for certain when this is
the case. For now, we will assume that we have reached such a configuration and describe
how to solve this problem later on.

Once n is known, we gain the ability to loop over all agents: each of the counter agents
stores an additional, initially unset, bit. Every agent stores a marker flag. The Leader can
then apply operations to all agents by sequentially interacting with them and setting the
marker flag. Each time the leader interacts with an agent which has the marker flag unset,
it increments the second value stored in the counter agents. If at some point both values
match, then, as the first value is n, all of the agents must have been marked. In particular
this allows the leader to check if an agent with a certain state does not exist. Normally this
is quite difficult for population protocols, as agents in the queried state might not take part
in any interactions for an arbitrarily long time.

Simulating Counter Machines. Often, when population protocols need to simulate some
type of counter, either a unary [5], or binary encoding [12], is used. Neither approach works
for us, as we need to be able to count up to 2f(n) log n, but a unary encoding with n agents is
bounded by n, and a binary encoding with f(n) distinguishable digits is bounded by 2f(n).
Instead we use a mixed-radix positional encoding with the base bi ∈ Ω( n

f(n) ) for every digit
i. To achieve this, the leader evenly divides the remaining free agents into Ω(f(n)) groups,
each encoding one digit. Recall that the leader can detect when no free agents remain, so it
will know when this process is finished. Within each digit unary counting is used, that is,
each agent in that digit stores one counter bit and the overall value of the digit is the sum of
all counter bits. The commands of the counter machine involve manipulating these digits, by
either incrementing, or decrementing the encoded values, as well as checking whether they
are zero. For the latter, the leader again uses the ability to detect whether a state is present
in the population.

DISC 2024



44:6 The Expressive Power of Uniform Population Protocols with Logarithmic Space

Resets. The counter machine simulation described in the previous section relies on the
looping and absence checks enabled by the data structures set up during initialisation.
However, there is no way of being certain that the initialisation has finished. We solve this
by raising a dirty flag each time a transition from the initialisation phase occurs. When seen
by the leader, this will trigger a reset, where the leader will move all agents back to state
Free, once again relying on being able to count the number of agents. When the last reset
occurs, the counter agents must encode the correct value of n, and the leader is thus able to
iterate over all agents. Care must be taken s.t. other agents do not interact with agents in
Free while the reset is ongoing, e.g. when only half of the agents have moved to Free, and the
others are still some intermediate states. ◀

References
1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-

space trade-offs in population protocols. In SODA 2017, pages 2560–2579. SIAM, 2017.
doi:10.1137/1.9781611974782.169.

2 Dan Alistarh and Rati Gelashvili. Recent algorithmic advances in population protocols.
SIGACT News, 49(3):63–73, 2018. doi:10.1145/3289137.3289150.

3 Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast and exact majority in population
protocols. In PODC, pages 47–56. ACM, 2015. doi:10.1145/2767386.2767429.

4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. In PODC 2004, pages 290–299. ACM,
2004. doi:10.1145/1011767.1011810.

5 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols
with a leader. In DISC, volume 4167 of Lecture Notes in Computer Science, pages 61–75.
Springer, 2006. doi:10.1007/11864219_5.

6 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Comput., 20(4):279–304, 2007. doi:10.1007/
S00446-007-0040-2.

7 Amanda Belleville, David Doty, and David Soloveichik. Hardness of computing and approxim-
ating predicates and functions with leaderless population protocols. In ICALP, volume 80
of LIPIcs, pages 141:1–141:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPICS.ICALP.2017.141.

8 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. Time-space trade-offs in population protocols for the majority problem. Distributed
Comput., 34(2):91–111, 2021. doi:10.1007/S00446-020-00385-0.

9 Petra Berenbrink, George Giakkoupis, and Peter Kling. Optimal time and space leader
election in population protocols. In STOC, pages 119–129. ACM, 2020. doi:10.1145/3357713.
3384312.

10 Petra Berenbrink, Dominik Kaaser, and Tomasz Radzik. On counting the population size. In
PODC, pages 43–52. ACM, 2019. doi:10.1145/3293611.3331631.

11 Michael Blondin, Javier Esparza, and Stefan Jaax. Expressive power of broadcast consensus
protocols. In CONCUR, volume 140 of LIPIcs, pages 31:1–31:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/LIPICS.CONCUR.2019.31.

12 Olivier Bournez, Johanne Cohen, and Mikaël Rabie. Homonym population protocols. Theory
Comput. Syst., 62(5):1318–1346, 2018. doi:10.1007/S00224-017-9833-2.

13 Ioannis Chatzigiannakis, Othon Michail, Stavros Nikolaou, Andreas Pavlogiannis, and Paul G.
Spirakis. Passively mobile communicating logarithmic space machines. CoRR, abs/1004.3395,
2010. arXiv:1004.3395.

14 Ioannis Chatzigiannakis, Othon Michail, Stavros Nikolaou, Andreas Pavlogiannis, and Paul G.
Spirakis. Passively mobile communicating machines that use restricted space. Theor. Comput.
Sci., 412(46):6469–6483, 2011. doi:10.1016/J.TCS.2011.07.001.

https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1145/3289137.3289150
https://doi.org/10.1145/2767386.2767429
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1007/11864219_5
https://doi.org/10.1007/S00446-007-0040-2
https://doi.org/10.1007/S00446-007-0040-2
https://doi.org/10.4230/LIPICS.ICALP.2017.141
https://doi.org/10.1007/S00446-020-00385-0
https://doi.org/10.1145/3357713.3384312
https://doi.org/10.1145/3357713.3384312
https://doi.org/10.1145/3293611.3331631
https://doi.org/10.4230/LIPICS.CONCUR.2019.31
https://doi.org/10.1007/S00224-017-9833-2
https://arxiv.org/abs/1004.3395
https://doi.org/10.1016/J.TCS.2011.07.001


P. Czerner, V. Fischer, and R. Guttenberg 44:7

15 Philipp Czerner, Vincent Fischer, and Roland Guttenberg. The expressive power of uniform
population protocols with logarithmic space, 2024. arXiv:2408.10027.

16 David Doty and Mahsa Eftekhari. Efficient size estimation and impossibility of termination
in uniform dense population protocols. In PODC, pages 34–42. ACM, 2019. doi:10.1145/
3293611.3331627.

17 David Doty and Mahsa Eftekhari. A survey of size counting in population protocols. Theor.
Comput. Sci., 894:91–102, 2021. doi:10.1016/J.TCS.2021.08.038.

18 David Doty and Mahsa Eftekhari. Dynamic size counting in population protocols. In SAND,
volume 221 of LIPIcs, pages 13:1–13:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPICS.SAND.2022.13.

19 David Doty, Mahsa Eftekhari, Leszek Gasieniec, Eric E. Severson, Przemyslaw Uznanski, and
Grzegorz Stachowiak. A time and space optimal stable population protocol solving exact
majority. In FOCS, pages 1044–1055. IEEE, 2021. doi:10.1109/FOCS52979.2021.00104.

20 David Doty, Mahsa Eftekhari, Othon Michail, Paul G. Spirakis, and Michail Theofilatos. Brief
announcement: Exact size counting in uniform population protocols in nearly logarithmic
time. In DISC, volume 121 of LIPIcs, pages 46:1–46:3. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPICS.DISC.2018.46.

21 David Doty and David Soloveichik. Stable leader election in population protocols requires
linear time. In DISC, volume 9363 of Lecture Notes in Computer Science, pages 602–616.
Springer, 2015. doi:10.1007/978-3-662-48653-5_40.

22 Robert Elsässer and Tomasz Radzik. Recent results in population protocols for exact majority
and leader election. Bull. EATCS, 126, 2018. URL: http://bulletin.eatcs.org/index.php/
beatcs/article/view/549/546.

23 David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with
finite stochastic chemical reaction networks. Nat. Comput., 7(4):615–633, 2008. doi:10.1007/
S11047-008-9067-Y.

DISC 2024

https://arxiv.org/abs/2408.10027
https://doi.org/10.1145/3293611.3331627
https://doi.org/10.1145/3293611.3331627
https://doi.org/10.1016/J.TCS.2021.08.038
https://doi.org/10.4230/LIPICS.SAND.2022.13
https://doi.org/10.1109/FOCS52979.2021.00104
https://doi.org/10.4230/LIPICS.DISC.2018.46
https://doi.org/10.1007/978-3-662-48653-5_40
http://bulletin.eatcs.org/index.php/beatcs/article/view/549/546
http://bulletin.eatcs.org/index.php/beatcs/article/view/549/546
https://doi.org/10.1007/S11047-008-9067-Y
https://doi.org/10.1007/S11047-008-9067-Y




Brief Announcement: Best-Possible Unpredictable
Proof-Of-Stake
Lei Fan #

Shanghai Jiao Tong University, China

Jonathan Katz #

Google, Washington DC, USA
University of Maryland, College Park, MD, USA

Zhenghao Lu #

Shanghai Jiao Tong University, China

Phuc Thai #

Sky Mavis, Ho Chi Minh City, Vietnam

Hong-Sheng Zhou #

Virginia Commonwealth University, Richmond, VA, USA

Abstract
The proof-of-stake (PoS) protocols aim to reduce the unnecessary computing power waste seen
in Bitcoin. Various practical and provably secure designs have been proposed, like Ouroboros
Praos (Eurocrypt 2018) and Snow White (FC 2019). However, the essential security property
of unpredictability in these protocols remains insufficiently explored. This paper delves into this
property in the cryptographic setting to achieve the “best possible” unpredictability for PoS.

We first present an impossibility result for all PoS protocols under the single-extension design
framework, where each honest player extends one chain per round. The state-of-the-art permissionless
PoS protocols (e.g., Praos, Snow White, and more), are all under this single-extension framework.
Our impossibility result states that, if a single-extension PoS protocol achieves the best possible
unpredictability, then this protocol cannot be proven secure unless more than 73% of stake is honest.
To overcome this impossibility, we introduce a new design framework called multi-extension PoS,
allowing each honest player to extend multiple chains using a greedy strategy in a round. This
strategy allows us to construct a class of PoS protocols that achieve the best possible unpredictability.
It is noteworthy that these protocols can be proven secure, assuming a much smaller fraction (e.g.,
57%) of stake to be honest.

2012 ACM Subject Classification Computing methodologies→ Distributed computing methodologies

Keywords and phrases blockchain, consensus, proof-of-stake, unpredictability

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.45

Related Version Full Version: https://eprint.iacr.org/2021/660

Funding Phuc Thai and Hong-Sheng Zhou were supported in part by NSF grant CNS-1801470.

Acknowledgements This project was conducted during Phuc Thai’s time as a PhD student at
Virginia Commonwealth University.

1 Introduction

Cryptocurrencies like Bitcoin [13] have proven to be a phenomenal success. These protocols
are executed by a large-size peer-to-peer network of nodes using the proof-of-work (PoW)
mechanism [9, 2]. They provide a trustworthy, append-only, and always-available public
ledger, facilitating the implementation of a global payment system (e.g., Bitcoin) or a
global computer (e.g., Ethereum). However, the PoW-based consensus requires substantial

© Lei Fan, Jonathan Katz, Zhenghao Lu, Phuc Thai, and Hong-Sheng Zhou;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 45; pp. 45:1–45:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fanlei@sjtu.edu.cn
mailto:jkatz@cs.umd.edu
mailto:zhenghao.lu.sh@gmail.com
mailto:phuc.thai@skymavis.com
mailto:hszhou@vcu.edu
https://doi.org/10.4230/LIPIcs.DISC.2024.45
https://eprint.iacr.org/2021/660
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


45:2 Brief Announcement: Best-Possible Unpredictable Proof-Of-Stake

computing power. Utilizing alternative resources like coins (also known as stake) to secure a
blockchain is desirable. If successful, the new system would be environmentally friendly, as it
would not rely on extensive computing power for security. Several attempts have been made,
with PoS mechanisms widely discussed in the cryptocurrency community (e.g., [1, 12, 15, 4]).
In a PoS-based blockchain protocol, players must prove ownership of a specified number of
stakes; only those who can provide such proofs are permitted to participate in maintaining
the blockchain. Compared with PoW mechanisms, the computational cost of finding solutions
in PoS mechanisms is very “cheap.”

Early PoS designs (e.g., [1, 12, 15, 4]) and PoW-based designs, such as the original Bitcoin,
were initially crafted in an ad hoc style. However, the contemporary trend leans towards
a more rigorous approach where security concerns are precisely defined, and the designed
protocols undergo mathematical analysis. Notable contributions include the work by Garay
et al. [10] and Pass et al. [14], analyzing the PoW-based blockchain in Bitcoin within the
cryptographic setting. The analysis demonstrated that the Bitcoin blockchain can achieve
crucial security properties, such as common prefix, chain quality, and chain growth. Indeed,
research efforts have also been devoted to PoS-based and Bitcoin-like consensus, as seen
in [8, 7, 3]. Nevertheless, these protocols are vulnerable to attacks due to predictability.

Intuitively, predictability in a protocol implies that certain players are aware they will
be selected to generate blockchain blocks before actually doing so. Brown-Cohen et al. [5]
explored the predictability of PoS in incentive-driven scenarios, where players may deviate
from the protocol for higher profits. The power of predictability can be exploited by attackers
to reduce the difficulty or cost of incentive-driven attacks like selfish-mining [5] or bribery [3].
Therefore, it is crucial for a PoS protocol to minimize predictability and mitigate the risks
of these attacks. Ideally, a PoS protocol should aim for the best possible unpredictability,
enabling effective counteraction of predictability-based attacks. Achieving this goal ensures
the maintenance of blockchain fairness and incentivizes honest players to participate in the
protocol.

Our first result is that we formally define (the best possible) unpredictability in the
cryptographic setting. We assert that a protocol achieves the best possible unpredictability
if it only allows players to predict whether they can generate the next block, and nothing
more. Based on the definition of the best possible unpredictability, we identify an interesting
impossibility for a class of PoS protocols following a single-extension design framework.
Existing provably secure Bitcoin-like PoS protocols (e.g., [8, 7, 3]) are all within the single-
extension framework. Finally, to overcome the impossibility, we develop a novel D-distance-
greedy strategy in the multi-extension framework, which allows us to design a provably secure
Bitcoin-like PoS protocol.

2 Security Model

The security of Bitcoin-like PoW-based protocols has been rigorously investigated by Garay
et al. [10] and then by Pass et al. [14] in the cryptographic setting.

The execution of a PoS blockchain protocol. Following Canetti’s formulation[6], we
present an abstract model for a PoS blockchain protocol Π in the hybrid world of the
semi-synchronous network communication functionality, the random oracles, and certain
initialization functionality, similarly drawn from [14].

We consider the execution of blockchain protocol Π that is directed by an environment
Z(1κ), where κ is a security parameter. A necessary condition in all common blockchain
systems is that all players agree on the first, i.e., the genesis block, which consists of the



L. Fan, J. Katz, Z. Lu, P. Thai, and H.-S. Zhou 45:3

identities (e.g., public keys) and the stake distribution of the players. The environment Z
can “manage” players through an adversary A that can dynamically corrupt honest players.
In any round r, each PoS-player P ∈ P , with a local state st, receives a message from Z, and
potentially receives messages from other players. Then, it executes the protocol, broadcasts
a message to other players, and updates its local state. Note that the network is under
the control of A, meaning that A is responsible for delivering all messages sent by players.
Let EXECΠ,A,Z be a random variable denoting the joint view of all players in the above
protocol execution; note that this joint view fully determines the execution. More details of
the formulation can be found in the full version of our paper.

Block and blockchain basics. A blockchain C consists of a sequence of ℓ concatenated
blocks B0∥B1∥B2∥ · · · ∥Bℓ, where ℓ ≥ 0 and B0 is the genesis block. We use len(C) to denote
blockchain length, i.e., the number of blocks in blockchain C; and here len(C) = ℓ. (Note that
since all chains must consist of the genesis block, we do not count it as part of the chain’s
length.) We use sub blockchain (or subchain) for referring to a segment of a chain; here for
example, C[j, m], with j ≥ 0 and m ≤ ℓ would refer to a sub blockchain Bj∥ · · · ∥Bm. We
use C[i] to denote the i-th block, Bi in blockchain C; here i denotes the block height of Bi in
chain C. If blockchain C is a prefix of another blockchain C1, we write C ⪯ C1.

Chain growth, common prefix, and chain quality. Previously, several fundamental secur-
ity properties for Bitcoin-like PoW-based blockchain protocols have been defined: chain
growth [11], common prefix [10, 14], and chain quality [10]. Intuitively, the chain growth
property states that the chains of honest players should grow linearly to the number of rounds.
The common prefix property indicates the consistency of any two honest chains except the
last κ blocks. The chain quality property, characterized by the parameter µ ∈ (0, 1), aims to
indicate the ratio of contributions from honest players that are contained in a sufficiently
long and continuous part of an honest chain, is at least µ.

Unpredictability. At a high level, predictability means that (certain) protocol players are
aware that they will be selected to generate blocks of the blockchain, before they actually
generate the blocks. We investigate the unpredictability in the cryptographic setting.

Consider a malicious player P ∈ P at round r. Let viewr be the view of all players at
round r, and Cr be the best (valid) chain of all players in viewr. At round r, the adversary
A attempts to predict if the (malicious) player P can extend the best chain at a future round
r′, where r′ > r. Let zr′

P ∈ {0, 1} be a prediction: zr′

P = 1 means that A predicts that player
P can extend the best chain at round r′. Now we introduce another random variable z̄r′

P to
indicate if P indeed can extend the best chain at round r′ (as the adversary predicated at an
early-round r) or not. Let viewr′ be the view of all players at round r′, and Cr′ be the best
valid chain of all players in viewr′ . We set z̄r′

P = 1 if there exists a chain C = Cr′∥B in view
with a block B generated by player P at round r′, otherwise we set z̄r′

P = 0.
Consider a view view, protocol round r, and a malicious player P . For a prediction zr′

P

where r′ > r, we define the predicate predictable to be true if the prediction zr′

P accurately
predicts whether or not player P can generate a new chain at round r′ that is 2 blocks longer
than the longest chain at round r. (In any PoS protocol, all players can always predict
whether or not they can generate the next block, so we consider 2 blocks.) More concretely,
we define predictable(view, P, r, r′, zr′

P ) = 1 if and only if the following three conditions hold:
(i) r′ > r; (ii) len(Cr′) + 1− len(Cr) = 2; and (iii) zr′

P = z̄r′

P .

DISC 2024



45:4 Brief Announcement: Best-Possible Unpredictable Proof-Of-Stake

▶ Definition 1 (The best possible unpredictability). Consider a blockchain protocol Π. We say
protocol Π achieves the best possible unpredictability if for all ppt Z,A, for any malicious
player P at any round r, we have,

Pr
[

view← EXECΠ,A,Z ; (r′, zr′

P )← A(P, r, viewr) predictable(view, P, r, r′, zr′

P ) = 0
]

> 1−neg(κ),

where neg(·) is a negligible function.

3 An Impossibility Result

In this section, we present an impossibility result for a class of PoS protocols in the single-
extension PoS framework. Intuitively, for Bitcoin-like PoS protocol in the single-extension
framework, in each round, each honest player identifies only a single “best chain,” and then
extends this chain. The formal definition of this framework is presented in the full version
of our paper. We remark that the state-of-the-art PoS protocols (e.g., [7, 8, 3]) can be
categorized as single-extension PoS protocols.

Then we present an impossibility result for single-extension PoS protocols. Concretely,
consider a PoS protocol in the single-extension framework, we can show that, if the PoS
protocol achieves the best possible unpredictability, then the protocol cannot maintain
security properties, such as the common prefix, when honest players control less than 73% of
the stake. Let N be the number of players and ρ be the fraction of malicious players in the
protocol execution. Let p be the probability that a player can extend a chain in a round. The
probability that honest players extend a chain in a round is α = 1− (1− p)N ·(1−ρ). Similarly,
the probability that the adversary extends a given chain is β = 1− (1− p)N ·ρ ≈ ρ

1−ρ · α, if p

is sufficiently small. The impossibility theorem is stated as follows, and the proof can be
found in the full version.

▶ Theorem 2. Consider a single-extension PoS protocol Π achieves the best possible unpre-
dictability. If α < e · β, where e = 2.72, then Π cannot achieve common prefix property.

4 Greedy Strategies: How to overcome the impossibility

In the previous section, we have obtained the impossibility of single-extension PoS protocols.
In this section, we will introduce greedy strategies that follow a multi-extension framework.
In these strategies, honest players are allowed to extend multiple chains that are “close” to
each other. Our protocol can achieve the best possible unpredictability while requiring a
much smaller fraction (e.g., 57%) of honest stake to achieve security properties.

Specifically, we allow the players to take a greedy strategy to extend the chains in a
protocol execution: instead of extending a single best chain (i.e., the longest chain), the
players are allowed to extend a set of best chains, expecting to extend the best chain faster.
This is possible because extending chains in a PoS protocol is “very cheap.” We remark
that the set of best chains should be carefully chosen; otherwise, the protocol may not be
secure. In our greedy strategy, the honest player extends the set of chains that share the
same common prefix after removing the last few blocks. With this strategy, the security of
the protocol is guaranteed.

Distance-greedy strategies. Consider a protocol execution. In each player’s local view,
there are multiple chains, which can be viewed as a tree. Concretely, the genesis block is
the root of the tree, and each path from the root to a node is essentially a chain. The tree
will “grow”: the length of each existing chain may increase, and new chains may be created,



L. Fan, J. Katz, Z. Lu, P. Thai, and H.-S. Zhou 45:5

round after round. First, we define the “distance” between two chains in a tree. Intuitively,
we say the distance from a “branch” chain to a “reference” chain is d if we can obtain a
prefix of the reference chain by removing the last d blocks of the branch chain.

▶ Definition 3 (Distance between two chains). Let C be a chain of length ℓ, and C1 be a chain
of length ℓ1. We view C as the “reference” chain, and C1 to be the “branch” chain. Next, we
define the distance between C and C1, and we use distance(branch chain→ reference chain),
i.e., distance(C1 → C) to denote the distance. More formally, if d is the smallest non-negative
integer so that C1[0, ℓ1 − d] ⪯ C, then we say the distance between the reference chain C and
the branch C1 is d, and we write distance(C1 → C) = d.

Now we are ready to define the distance-greedy strategies. Intuitively, a player following
a distance-greedy strategy will try to extend a set of best chains, where the distance between
the best chain and the chains in this set is quite small. Here, we consider the best chain as
the branch chain and all other chains in the set of best chains as the reference chains. By the
definition of the distance, we can obtain a common prefix of all reference chains by removing
the last few blocks of the branch chain. Formally, we have the following definition.

▶ Definition 4 (D-distance-greedy strategy). Consider a blockchain protocol execution. Let
P be a player of the protocol execution, and let C be the set of chains in player P ’s local
view. Let Cbest be the longest chain at round r, where ℓ = len(Cbest). Let D be non-negative
integers. Define a set of chains Cbest as

Cbest =
{
C ∈ C

∣∣ distance(Cbest → C) ≤ D
}

.

We say P is D-distance-greedy if, for all r, P makes attempts to extend all chains C ∈ Cbest.

Our protocol. We present a new protocol Π• to achieve the best possible unpredictability
while only requiring a much smaller fraction (e.g., 57%) of honest stake to achieve the security
properties. For simplicity, we consider the payloads in all blocks to be empty. Protocol Π•

uses a unique digital signature scheme and a hash function as building blocks.
In the blockchain initialization phase, the genesis block B0 will be created. Given a

group of PoS-players P = {P1, P2, . . . , Pn}, a security parameter κ, and a unique digital
signature scheme (uKeyGen, uKeyVer, uSign, uVerify), the initialization is as follows: each
Pj ∈ P generates (skj , pkj)← uKeyGen(1κ), publishes pkj and keeps skj secret. The public
keys are stored in B0. In addition, an independent randomness rand ∈ {0, 1}κ will also be
stored in B0. That is B0 = ⟨(pk1, pk2, · · · , pkn), rand⟩. For simplicity, we assume the flat
model and omit the stake distribution in the genesis block.

In the blockchain extension phase, our protocol is parameterized by Context•, Mining•,
Validate•, and D-BestChainSet•. The algorithm Validate• takes a chain C (with length ℓ) and
the current round number r as inputs and evaluates every block of C. Starting from the head
of C, for every block C[i], where i ∈ [ℓ], the procedure Validate• verifies that 1) C[i] is linked
to the previous block C[i− 1] correctly, 2) the hash inequality is correct, and 3) the signature
is correct. The algorithm D-BestChainSet• selects the best (longest) chain Cbest and iterates
through the set of chains in the local state to find all the chains in which the distances
from Cbest to those chains do not exceed D, and outputs the set of best chains Cbest. For a
chain C = B0∥B1∥B2∥ . . . ∥Bi in Cbest, some honest player P , with key pair (sk, pk), tries
to extend C at round r as follows. First, P computes the context η := Context•(C). Here,
algorithm Context• returns the hash value of the last block on C, i.e., Context•(C) = h(Bi).
Then, P tries to obtain a new block using the Mining• algorithm. Concretely, a new block

DISC 2024



45:6 Brief Announcement: Best-Possible Unpredictable Proof-Of-Stake

Algorithm 1 Protocol Π•.
State : Initially, the set of chains C only consists of the genesis block. At round r, the

PoS-player P ∈ P, with (sk, pk) and local set of chains C, proceeds as follows.
Upon receiving a chain C′, set C := C ∪ {C′} after verifying Validate•(C′, r) = 1;
Compute Cbest := D-BestChainSet•(C);
for C ∈ Cbest do

η := Context•(C); B := Mining•(η, r, sk, pk);
if B ̸=⊥ then
C1 := C∥B; Broadcast C1;

end
end

// Algorithms Context•, Mining•, Validate•, and D-BestChainSet•.
Context•(C):

ℓ := len(C); η := h(C[ℓ]); Return η;
Mining•(η, r, sk, pk):

σ := uSign(sk, ⟨η, r⟩)
if H(η, r, pk, σ) < T then Create new block B := ⟨η, r, pk, σ⟩; Return B;
else Return ⊥

Validate•(C, r):
Parse C into B0∥B1∥ · · · ∥Bℓ;
for i ∈ [1, ℓ] do

Parse Bi into ⟨ηi, ri, pki, σi⟩;
if h(Bi−1) ̸= ηi or H(ηi, ri, pki, σi) ≥ T or uVerify(pki, ⟨ηi, ri⟩, σi) = 0 or ri > r

then Return 0;
end
Return 1;

D-BestChainSet•:
Set Cbest as the longest chain in C and Cbest = {Cbest};
for C ∈ C do

if distance(Cbest → C) ≤ D then Cbest := Cbest ∪ {C};
end

could be returned by Mining• if the following hash inequality holds: H(η, r, pk, σ) < T,
where σ := uSign(sk, ⟨η, r⟩). The new block Bi+1 is defined as Bi+1 := ⟨η, r, pk, σ⟩. The
pseudocode of our protocol Π• can be found in Algorithm 1.

Security analysis. The security analysis techniques outlined in [10, 14, 8, 3] can offer valuable
insights for analyzing the security properties of protocols based on the single-extension design
framework. However, our protocol Π• does not adhere to this framework, requiring new
analysis techniques to establish its security properties.

We can prove the security properties of protocol Π• under the assumption of honest
majority of effective stake. Recall that in Section 3, we obtain that the adversary can amplify
its stake by a factor e = 2.72, so we define the effective stake of the adversary as β• = 2.72β.
Similarly, following the D-distance-greedy strategy, honest players can amplify their stake by
an amplification ratio Â•

D, and we define α• = Â•
D · α. Now, we formally state the theorem.

▶ Theorem 5. Consider an execution of multi-extension protocol Π• in the random oracle
model, where honest players follow the D-distance-greedy strategy while adversarial players
could follow any arbitrary strategy. Additionally, all players have their stake registered at
the beginning of the execution. Assume (uKeyGen, uKeyVer, uSign, uVerify) is a unique digital
signature scheme, and α• = λβ•, λ > 1. Then protocol Π• achieves 1) chain growth, 2)
common prefix, 3) chain quality, and 4) the best possible unpredictability properties.

The proof is shown in the full version of our paper.



L. Fan, J. Katz, Z. Lu, P. Thai, and H.-S. Zhou 45:7

References
1 NXT whitepaper, 2014. URL: https://www.dropbox.com/s/cbuwrorf672c0yy/

NxtWhitepaper_v122_rev4.pdf.
2 Adam Back. Hashcash – A denial of service counter-measure, 2002. URL: http://hashcash.

org/papers/hashcash.pdf.
3 Vivek Bagaria, Amir Dembo, Sreeram Kannan, Sewoong Oh, David Tse, Pramod Viswanath,

Xuechao Wang, and Ofer Zeitouni. Proof-of-stake longest chain protocols: Security vs
predictability. arXiv preprint, 2019. arXiv:1910.02218.

4 Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Currencies without proof of work. In Bitcoin
Workshop, 2016.

5 Jonah Brown-Cohen, Arvind Narayanan, Alexandros Psomas, and S Matthew Weinberg.
Formal barriers to longest-chain proof-of-stake protocols. In Proceedings of the 2019 ACM
Conference on Economics and Computation, pages 459–473, 2019. doi:10.1145/3328526.
3329567.

6 Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 13(1):143–202, January 2000. doi:10.1007/s001459910006.

7 Phil Daian, Rafael Pass, and Elaine Shi. Snow White: Robustly reconfigurable consensus
and applications to provably secure proof of stake. In Ian Goldberg and Tyler Moore,
editors, FC 2019, volume 11598 of LNCS, pages 23–41. Springer, Heidelberg, February 2019.
doi:10.1007/978-3-030-32101-7_2.

8 Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros Praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98.
Springer, Heidelberg, April / May 2018. doi:10.1007/978-3-319-78375-8_3.

9 Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F.
Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 139–147. Springer, Heidelberg,
August 1993. doi:10.1007/3-540-48071-4_10.

10 Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 281–310. Springer, Heidelberg, April 2015. doi:10.1007/
978-3-662-46803-6_10.

11 Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in blockchain protocols.
Cryptology ePrint Archive, Report 2015/1019, 2015. URL: https://eprint.iacr.org/2015/
1019.

12 Jae Kwon. Tendermint: Consensus without mining, 2014. URL: https://tendermint.com/
static/docs/tendermint.pdf.

13 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: https:
//bitcoin.org/bitcoin.pdf.

14 Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous
networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pages 643–673. Springer, Heidelberg, April / May 2017.
doi:10.1007/978-3-319-56614-6_22.

15 Pavel Vasin. Blackcoin’s proof-of-stake protocol v2, 2014. URL: http://blackcoin.org/
blackcoin-pos-protocol-v2-whitepaper.pdf.

DISC 2024

https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
http://hashcash.org/papers/hashcash.pdf
http://hashcash.org/papers/hashcash.pdf
https://arxiv.org/abs/1910.02218
https://doi.org/10.1145/3328526.3329567
https://doi.org/10.1145/3328526.3329567
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://eprint.iacr.org/2015/1019
https://eprint.iacr.org/2015/1019
https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-56614-6_22
http://blackcoin.org/blackcoin-pos-protocol-v2-whitepaper.pdf
http://blackcoin.org/blackcoin-pos-protocol-v2-whitepaper.pdf




Brief Announcement: Optimal Uniform Circle
Formation by Asynchronous Luminous Robots
Caterina Feletti #

Department of Computer Science, Università degli Studi di Milano, Italy

Debasish Pattanayak #

School of Computer Science, Carleton University, Ottawa, Canada

Gokarna Sharma #

Department of Computer Science, Kent State University, OH, USA

Abstract
We study the Uniform Circle Formation (UCF) problem for a swarm of n autonomous mobile
robots operating in Look-Compute-Move (LCM) cycles on the Euclidean plane. We assume our
robots are luminous, i.e. equipped with a persistent light that can assume a color chosen from a
fixed palette, and opaque, i.e. not able to see beyond a collinear robot. Robots are said to collide if
they share positions or their paths intersect within concurrent LCM cycles. To solve UCF, a swarm
of n robots must autonomously arrange themselves so that each robot occupies a vertex of the same
regular n-gon not fixed in advance. In terms of efficiency, the goal is to design an algorithm that
optimizes (or provides a tradeoff between) two fundamental performance metrics: (i) the execution
time and (ii) the size of the color palette.

In this paper, we develop a deterministic algorithm solving UCF avoiding collisions in O(1)-time
with O(1) colors under the asynchronous scheduler, which is asymptotically optimal with respect to
both time and number of colors used, the first such result. Furthermore, the algorithm proposed
here minimizes for the first time what we call the computational SEC, i.e. the smallest circular area
where robots operate throughout the whole algorithm.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Uniform Circle Formation, Robots with Lights, Autonomous Robots, Rank
Encoding, Time and Color Complexities, Computational SEC

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.46

Related Version Full Version: https://doi.org/10.48550/arXiv.2405.06617 [12]

Acknowledgements C. Feletti is member of the Gruppo Nazionale Calcolo Scientifico-Istituto
Nazionale di Alta Matematica (GNCS-INdAM).

1 Introduction

The Look-Compute-Move (LCM) model [13, 14] is a theoretical model used to study swarms
of mobile robots and design distributed algorithms for solving collaborative problems for such
systems. Robots are idle by default, but they can be activated by a scheduler. When a robot
is activated, it performs an LCM cycle: it first obtains a snapshot of its surroundings (Look),
then computes the new destination based on the snapshot (Compute), and finally moves
straight to the computed destination (Move). After that, the robot becomes idle again. The
scheduler can be fully synchronous (FSYN C), semi-synchronous (SSYN C), or asynchronous
(ASYN C). Most of the literature considers very simple and limited robots: they are assumed
to be punctiform agents that can operate in the Euclidean plane, autonomous (no external
control), anonymous (no internal identifiers), indistinguishable (no external identifiers),
homogeneous (execute the same algorithm), and disoriented robots (each robot has its local
coordinate system without any assumption of global orientation).

© Caterina Feletti, Debasish Pattanayak, and Gokarna Sharma;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 46; pp. 46:1–46:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:caterina.feletti@unimi.it
https://orcid.org/0009-0004-1813-8056
mailto:drdebmath@gmail.com
https://orcid.org/0000-0003-2862-2795
mailto:gsharma2@kent.edu
https://orcid.org/0000-0002-4930-4609
https://doi.org/10.4230/LIPIcs.DISC.2024.46
https://doi.org/10.48550/arXiv.2405.06617
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


46:2 Optimal Uniform Circle Formation by Async Luminous Robots

Table 1 Existing UCF deterministic solutions for n ≥ 1 luminous-opaque robots on the plane,
avoiding collisions. x ∈ [1, O(log log n)].

Algorithm Time (in epochs) Number of Colors Computational SEC Scheduler

[8] O(1) O(1) Not minimized FSYN C

[11] O(1) O(1) Not minimized SSYN C

[11] O(n) O(1) Not minimized

ASYN C

[9] O(log n) O(1) Not minimized

Generic [20] O(x) O
Ä
n1/2xä

Not minimized

OptTime [20] O(1) O(
√

n) Not minimized

OptColor [20] O(log log n) O(1) Not minimized

OptTime&Color (this paper) O(1) O(1) Minimized

In this work, we consider opaque robots [1, 7, 8, 9, 20, 22, 23] thus they experience
obstructed visibility in case of collinearities (if robots a, b, c are collinear, then a and c cannot
see each other). To cope with this restrictive condition, we assume each robot is equipped
with a light whose color can be updated at the beginning of its Move step choosing it from a
fixed palette and persists until its next update. Since such a light is visible to both the robot
itself and the other robots, the luminous model [3, 9, 16, 20, 21, 22, 23] grants robots both
a persistent internal state (memory) and a direct communication means with other robots.
Except for lights, robots have no other persistent memory or communication means. We say
that two robots collide if either (i) they share the same position at a given time or (ii) their
paths towards their destinations intersect within concurrent LCM cycles. We assume that
our robots do not tolerate collisions and that robot movements are rigid, i.e., in each Move,
the robot stops only after reaching its computed destination.

Contributions. We consider the Uniform Circle Formation (UCF) problem [4, 5, 6, 15,
17, 18, 19, 24]: starting from an arbitrary configuration where n robots lie on distinct points on
a plane, robots must autonomously arrange themselves to form a regular n-gon, independently
of its position, orientation, and scale. We propose a deterministic algorithm solving UCF in
the luminous-opaque model under ASYN C, avoiding collisions. Our algorithm runs in O(1)
time using a O(1)-size palette, and it minimizes a spatial metric that we call computational
SEC, i.e. the smallest circle containing all the points the robots touch during the execution
of the algorithm. Note that forcing the swarm to act within the circular area delimited
by their initial configuration may represent a realistic requirement in critical scenarios (e.g.
lack of space or no guarantee about the safety of the space around robots). Previous works
[8, 9, 10, 11, 20] have investigated UCF under the same model: their results are summarized
in Table 1 in comparison with our contribution.

Challenge and techniques. The main challenge of this work was to make robots exploit
parallelism (thus achieving a O(1) runtime) even in conditions of asynchrony and obstructed
visibility, always keeping the size of the color palette constant and avoiding collisions among
robots. For this purpose, the key techniques adopted along our algorithm include the
arrangement of robots along an (inner) circle in a mirror-symmetric pattern, the Beacon
Directed Curve Positioning procedure [22], and a novel rank encoding technique (existing
techniques in [2, 9] do not fit our assumptions and requirements).



C. Feletti, D. Pattanayak, and G. Sharma 46:3

2 Algorithm Overview

Table 2 Sub-problems composing Uniform Circle Formation.

Initial Configuration Complete Visibility Circle Formation Uniform Transformation

Confinit Confconvex Confcircle Confregular

Let Confinit be an arbitrary initial configuration of n robots on distinct points on R2,
all with the same color off. Given a configuration Conf , we indicate with SEC(Conf) the
smallest circle enclosing all the robots in Conf . Our algorithm ensures that any robot acts
within the circular area delimited by SEC(Confinit), thus minimizing the computational
SEC. We now provide an overview of the different phases and procedures composing our
algorithm which transforms Confinit into a regular configuration Confregular (see Figure 1).
Such procedures work in O(1) time and use a O(1)-size palette of colors.

We factorize UCF into three sub-problems (see Table 2): (i) Complete Visibility, (ii)
Circle Formation, and lastly (iii) Uniform Transformation. Starting from Confinit,
we (i) exploit the Complete Visibility solution in [22] to arrange robots on the vertices of
a convex polygon, forming the configuration Confconvex. After that, (ii) a simple procedure
safely transforms Confconvex into Confcircle where all the robots lie on SEC(Confconvex).
From now on, let us call this circle as Cir: no robot will move out from Cir. Step (iii) aims
to equally distribute the robots on the perimeter of Cir, thus solving UCF.

Our Uniform Transformation solution entails a different algorithmic approach accord-
ing to the geometric properties of Confcircle. Specifically, we classify Confcircle into three
categories: Confregular (where robots already form a regular polygon, so they do nothing),
Confbiangular (biangular configuration presented in [5], where there exist two different angles
α, β such that each robot forms a central angle α with one of its two adjacent robots and β

with the other one), and Confperiodic. Confbiangular (see Figure 2a) can be converted into
a regular configuration through a similar approach to the strategy introduced in [5]: our
approach guarantees robots to minimize the computational SEC. The most challenging case
is the periodic configuration Confperiodic, for which we developed a sequence of multi-step
procedures to form the target regular polygon, as depicted in Figure 1.

Confinit

Confconvex

Confcircle

Confperiodic Confunisect Confoddblock Confsmallcircle

Confbiangular

Confregular

C
om

pl
et

e
V

isi
bi

li
ty C

ircle
Formation

Split Odd Block (q ≥ 12)

Sequential Match (q < 12)

Small Circle

Biangular

Slice1⃝ 2⃝

3⃝

4⃝ 5⃝ 6⃝

7⃝

8⃝

Figure 1 Transition diagram among configurations while solving UCF. The arrows without
numbering denote a transition with only color change (no robot moves). The parameter q is the
number of robots in each uniform sector of Confunisect.

DISC 2024



46:4 Optimal Uniform Circle Formation by Async Luminous Robots

3 Uniform Transformation

Biangular case
We propose a new approach to transform Confbiangular into Confregular, taking inspiration
from [5]. Let P be the n-gon formed by the robots in Confbiangular. In [5], robots spot the
target regular n-gon P ′ which encloses P , such that robots lie on alternative edges of P ′,
and then slide on the edges of P ′ until they stop on its vertices (Figure 2b). This simple
approach however does not guarantee to minimize the computational SEC. Thus, we make
robots spot a n-gon P ′′ inscribed in P , so that robots can slide on the larger edges of P until
they reach the vertices of P ′′, without moving outside SEC(Confbiangular) (Figure 2c).

a
b

a

b
a

b

a

b

(a) Confbiangular . (b) Regular n-gon P ′ [5]. (c) Regular n-gon P ′′.

Figure 2 Arrangement of Confbiangular in a regular n-gon.

Periodic case
We propose a sequence of procedures to transform Confperiodic into Confregular. In
Confperiodic, all the n robots non-uniformly lie on the same circle Cir, in a periodic pattern1,
without forming a biangular configuration.

Procedure Split. Confperiodic is partitioned into k ≥ 2 circular sectors Υ0, . . . , Υk−1 such
that (i) they have the same arc length and (ii) they are size-balanced (i.e. containing
the same number of robots), and (iii) they are chiral (i.e. the robots are arranged in an
asymmetric pattern along the arc of each Υi). The number of sectors k depends on the
degree of periodicity of Confperiodic. We call such sectors as uniform sectors. Within each
Υi, some robots will be elected as leaders to fix its boundaries Bi, Bi+1, whereas two other
robots (left- and right-colored) will be elected and made to move to fix the chirality of Υi.
Let q be the number of robots inside each Υi (except for its boundaries). From now on, each
group of q robots works independently and in parallel within each Υi. The next procedures
aim to uniformly arrange the q robots of each Υi along the arc of Υi, in order to cover the
vertices of the target regular n-gon (also called uniform positions).

Procedure Sequential Match. This procedure is executed if q < 12, i.e., the number
of robots is relatively small compared to the number of robots involved along the other
procedures of the algorithm. In this case, we adopt a sequential schema to make robots
reach their uniform positions along the arc of Υi. Specifically, following the orientation of
Υi, robots reach their target vertex in turn.

1 We consider an asymmetric configuration as a special case of Confperiodic.



C. Feletti, D. Pattanayak, and G. Sharma 46:5

Procedure Odd Block. This procedure (and the following ones) is executed if q ≥ 12.
Within each sector Υi, two robots are elected as guards to fix the boundaries and chirality of
a structure called odd block. An odd block for Υi is a circular sector completely contained in
Υi, having the same origin and radius as Υi. Moreover, the arc of the odd block contains an
odd number of uniform positions. Let L be the chord joining the left guard (blockL-colored)
with the right guard (blockR-colored) of the odd block. One robot is elected as the median
robot and reaches the midpoint of the arc cut by L. The other robots on the sector arc
of Υi are now moved to the chord L by implementing the Beacon Directed Curve
Positioning strategy (BDCP) [22], setting their color as chord. See Figure 3.

Bi Bi+1

median

blockL blockR
L

Figure 3 Odd block built inside Υi, delimited by the guards blockL and blockR. All the robots
of the sector (except for the median one) have migrated to the block chord L.

Procedure Small Circle. Let C be the circle within the odd block such that it passes
through the median robot and such that L becomes its tangent. This procedure aims to place
all the chord robots on L on the two halves of C, Cw and Ce, in perfect mirror-symmetry.
Firstly, all the chord robots reach C traveling along the trajectories connecting their initial
position on L with the median robot. After that, all the robots on Cw migrate towards Ce by
implementing BDCP. Eventually, the robots on Ce split into two equal groups, and one of
the groups comes back to Cw forming a mirror symmetric configuration on C. See Figure 4.

ρ

ΓeΓw

L

CeCw

w1 e1
w2 e2

w3 e3

w4 e4
w5 e5

w6 e6

Figure 4 The small circle C built inside the odd block. All the robots (except for the block
guards) are equally distributed on Cw and Ce.

Procedure Slice. Let ρ be the diameter of C passing through the median robot. Let Γw

and Γe be the left and right halves of the odd-block arc, cut by ρ. This procedure aims to
uniformly arrange robots from C on the arc of the odd block. We now use a strategy to
provide a rank to the robots on Ce (Cw, resp.) so that a robot with rank j moves to the j-th
uniform position on Γe (Γw, resp.). In particular, the robots on Cw move to new positions
on Cw to encode their rank using the angular distance with a fixed robot. Thus, the robots
from Ce can obtain their ranks using the Cw group as a reference. Then, the robots of each
group (first the right one, then the left one) migrate on ρ on their projections, then they
recompute their rank and reach their target vertices on Γe and Γw. See Figure 5.

DISC 2024



46:6 Optimal Uniform Circle Formation by Async Luminous Robots

U ′
1U ′

2
U ′

3

U ′
4

U ′
5

U ′
6

w3

w4
w5
w6

Figure 5 Each robot on ρ uses the two robots on Ce (here green) to recompute its rank j and its
target uniform position U ′

j .

After each uniform sector Υi completes the algorithm, the n robots are equally distributed
on Cir, thus solving UCF. Theorem 1 summarizes our result.

▶ Theorem 1 (Uniform Circle Formation). Given any Confinit of n off-colored robots
on distinct points on a plane, the robots reposition to Confregular solving UCF in O(1)
epochs using O(1) colors under ASYN C, avoiding collisions, always performing within
SEC(Confinit).

As a corollary, our UCF algorithm asymptotically optimizes both the computational time
(number of epochs) and the size of the palette (number of colors), and minimizes the
computational SEC.

References
1 Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary, and Buddhadeb Sau. Arbitrary

pattern formation by asynchronous opaque robots with lights. Theor. Comput. Sci., 849:138–
158, 2021. doi:10.1016/J.TCS.2020.10.015.

2 Quentin Bramas, Anissa Lamani, and Sébastien Tixeuil. Stand up indulgent gathering.
Theoretical Computer Science, 939:63–77, 2023. doi:10.1016/j.tcs.2022.10.015.

3 Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Yamashita.
Autonomous mobile robots with lights. Theor. Comput. Sci., 609:171–184, 2016. doi:
10.1016/J.TCS.2015.09.018.

4 Yoann Dieudonne, Ouiddad Labbani-Igbida, and Franck Petit. Circle formation of weak
mobile robots. ACM Transactions on Autonomous and Adaptive Systems, 3, August 2006.
doi:10.1145/1452001.1452006.

5 Yoann Dieudonné and Franck Petit. Swing words to make circle formation quiescent. In
SIROCCO, volume 4474, pages 166–179, 2007. doi:10.1007/978-3-540-72951-8_14.

6 Yoann Dieudonné and Franck Petit. Squaring the circle with weak mobile robots. In ISAAC,
pages 354–365, 2008. doi:10.1007/978-3-540-92182-0_33.

7 Caterina Feletti, Lucia Mambretti, Carlo Mereghetti, and Beatrice Palano. Computational
power of opaque robots. In 3rd Symposium on Algorithmic Foundations of Dynamic Networks,
SAND 2024, volume 292, pages 13:1–13:19, 2024. doi:10.4230/LIPICS.SAND.2024.13.

8 Caterina Feletti, Carlo Mereghetti, and Beatrice Palano. Uniform circle formation for swarms
of opaque robots with lights. In 20th International Symposium on Stabilization, Safety, and
Security of Distributed Systems, SSS, volume 11201 of Lecture Notes in Computer Science,
pages 317–332. Springer, 2018. doi:10.1007/978-3-030-03232-6_21.

9 Caterina Feletti, Carlo Mereghetti, and Beatrice Palano. O(log n)-time uniform circle formation
for asynchronous opaque luminous robots. In 27th International Conference on Principles of
Distributed Systems, OPODIS, volume 286 of LIPIcs, pages 5:1–5:21, 2023. doi:10.4230/
LIPICS.OPODIS.2023.5.

https://doi.org/10.1016/J.TCS.2020.10.015
https://doi.org/10.1016/j.tcs.2022.10.015
https://doi.org/10.1016/J.TCS.2015.09.018
https://doi.org/10.1016/J.TCS.2015.09.018
https://doi.org/10.1145/1452001.1452006
https://doi.org/10.1007/978-3-540-72951-8_14
https://doi.org/10.1007/978-3-540-92182-0_33
https://doi.org/10.4230/LIPICS.SAND.2024.13
https://doi.org/10.1007/978-3-030-03232-6_21
https://doi.org/10.4230/LIPICS.OPODIS.2023.5
https://doi.org/10.4230/LIPICS.OPODIS.2023.5


C. Feletti, D. Pattanayak, and G. Sharma 46:7

10 Caterina Feletti, Carlo Mereghetti, and Beatrice Palano. Uniform Circle Formation for Fully,
Semi-, and Asynchronous Opaque Robots with Lights. Applied Sciences, 13(13):7991, 2023.
doi:10.3390/app13137991.

11 Caterina Feletti, Carlo Mereghetti, Beatrice Palano, and Priscilla Raucci. Uniform circle
formation for fully semi-, and asynchronous opaque robots with lights. In 23rd Italian
Conference on Theoretical Computer Science, ICTCS 2022, volume 3284, pages 207–221, 2022.
URL: https://ceur-ws.org/Vol-3284/8511.pdf.

12 Caterina Feletti, Debasish Pattanayak, and Gokarna Sharma. Optimal uniform circle formation
by asynchronous luminous robots. CoRR, abs/2405.06617, 2024. doi:10.48550/arXiv.2405.
06617.

13 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2012. doi:10.2200/S00440ED1V01Y201208DCT010.

14 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by
Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes
in Computer Science. Springer, 2019. doi:10.1007/978-3-030-11072-7.

15 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni Viglietta. Distributed
computing by mobile robots: uniform circle formation. Distributed Comput., 30(6):413–457,
2017. doi:10.1007/S00446-016-0291-X.

16 Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri, Nicola Santoro, and
Giovanni Viglietta. Robots with lights: Overcoming obstructed visibility without colliding.
In Pascal Felber and Vijay K. Garg, editors, 16th International Symposium on Stabilization,
Safety, and Security of Distributed Systems, SSS 2014, volume 8756 of Lecture Notes in
Computer Science, pages 150–164. Springer, 2014. doi:10.1007/978-3-319-11764-5_11.

17 Marcello Mamino and Giovanni Viglietta. Square formation by asynchronous oblivious robots.
In CCCG, pages 1–6. Simon Fraser University, Vancouver, British Columbia, Canada, 2016.

18 Moumita Mondal and Sruti Gan Chaudhuri. Uniform circle formation by mobile robots. In
ICDCN, pages 20:1–20:2. ACM, 2018. doi:10.1145/3170521.3170541.

19 Moumita Mondal and Sruti Gan Chaudhuri. Uniform circle formation by fat robots under
non-uniform visibility ranges. In ICDCN, pages 58:1–58:5. ACM, 2020. doi:10.1145/3369740.
3372779.

20 Debasish Pattanayak and Gokarna Sharma. Time-color tradeoff on uniform circle formation by
asynchronous robots. In IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2024, pages 987–997. IEEE, 2024. doi:10.1109/IPDPS57955.2024.00092.

21 David Peleg. Distributed coordination algorithms for mobile robot swarms: New directions
and challenges. In IWDC, pages 1–12, 2005. doi:10.1007/11603771_1.

22 Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L. Trahan. Constant-time complete
visibility for asynchronous robots with lights. In Paul G. Spirakis and Philippas Tsigas, editors,
19th International Symposium on Stabilization, Safety, and Security of Distributed Systems,
SSS 2017, volume 10616 of Lecture Notes in Computer Science, pages 265–281. Springer, 2017.
doi:10.1007/978-3-319-69084-1_18.

23 Gokarna Sharma, Ramachandran Vaidyanathan, Jerry L. Trahan, Costas Busch, and Suresh
Rai. O(log n)-time complete visibility for asynchronous robots with lights. In IEEE Inter-
national Parallel and Distributed Processing Symposium, IPDPS 2017, pages 513–522. IEEE
Computer Society, 2017. doi:10.1109/IPDPS.2017.51.

24 Giovanni Viglietta. Uniform circle formation. Chapter 5 of [14], pages 83–108, 2019. doi:
10.1007/978-3-030-11072-7_5.

DISC 2024

https://doi.org/10.3390/app13137991
https://ceur-ws.org/Vol-3284/8511.pdf
https://doi.org/10.48550/arXiv.2405.06617
https://doi.org/10.48550/arXiv.2405.06617
https://doi.org/10.2200/S00440ED1V01Y201208DCT010
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/S00446-016-0291-X
https://doi.org/10.1007/978-3-319-11764-5_11
https://doi.org/10.1145/3170521.3170541
https://doi.org/10.1145/3369740.3372779
https://doi.org/10.1145/3369740.3372779
https://doi.org/10.1109/IPDPS57955.2024.00092
https://doi.org/10.1007/11603771_1
https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1109/IPDPS.2017.51
https://doi.org/10.1007/978-3-030-11072-7_5
https://doi.org/10.1007/978-3-030-11072-7_5




Brief Announcement: Agreement Tasks in
Fault-Prone Synchronous Networks of Arbitrary
Structures
Pierre Fraigniaud # Ñ

Institut de Recherche en Informatique Fondamentale (IRIF)
CNRS and Université Paris Cité, France

Minh Hang Nguyen # Ñ

Institut de Recherche en Informatique Fondamentale (IRIF)
CNRS and Université Paris Cité, France

Ami Paz # Ñ

Interdisciplinaire des Sciences du Numérique (LISN)
CNRS and Université Paris-Saclay, France

Abstract
Consensus is arguably the most studied problem in distributed computing as a whole, and particularly
in distributed message-passing settings. Research on consensus has considered various failure types,
memory constraints, and much more. Surprisingly, almost all of this work assumes that messages
are passed in a complete network, i.e., each process has a direct link to every other process. Set
agreement, a relaxed variant of consensus, has also been heavily studied in different settings, yet
research on it has also been limited to complete networks. We address this situation by considering
consensus and set agreement in general networks, i.e., that can have an arbitrary graph G as
their communication graph. We focus on fault-prone networks, where up to t nodes may crash
and irrevocably stop communicating, and present upper and lower bounds for such networks. We
establish the following collection of results:

The consensus algorithm by [Castañeda et al., 2023] is optimal for all graphs, and not only for
symmetric graphs.
This algorithm can be extended to a generic algorithm for k-set agreement, for every k ≥ 1. For
k = 1, our generic algorithm coincides with the existing one for consensus.
All these algorithms can be extended to the case where the number t of failures exceeds the
connectivity κ of the graph, while the existing consensus algorithm assumed that t < κ.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Consensus, set-agreement, fault tolerance, crash failures

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.47

Funding ANR projects DUCAT (ANR-20-CE48-0006), QuDATA (ANR-18-CE47-0010), and TEM-
PORAL (ANR-22-CE48-0001); the European Union’s Horizon 2020 program H2020-MSCA
-COFUND-2019 Grant agreement n° 945332.
Pierre Fraigniaud: Additional support from ANR projects DUCAT (ANR-20-CE48-0006) and
QuDATA (ANR-18-CE47-0010).
Minh Hang Nguyen: Additional support from ANR projects DUCAT (ANR-20-CE48-0006), TEM-
PORAL (ANR-22-CE48-0001), and the European Union’s Horizon 2020 program H2020-MSCA
-COFUND-2019 Grant agreement n° 945332.

Acknowledgements The authors want to thank Mikaël Rabie for early discussions on the subject.

© Pierre Fraigniaud, Minh Hang Nguyen, and Ami Paz;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 47; pp. 47:1–47:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.fraigniaud@irif.fr
https://www.irif.fr/~pierref
https://orcid.org/0000-0003-4534-4803
mailto:mhnguyen@irif.fr
https://www.irif.fr/~mhnguyen/
https://orcid.org/0009-0008-2391-029X
mailto:ami.paz@lisn.fr
https://sites.google.com/view/amipaz/
https://orcid.org/0000-0002-6629-8335
https://doi.org/10.4230/LIPIcs.DISC.2024.47
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


47:2 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structures

1 Introduction

The standard synchronous t-resilient message-passing model, for t ≥ 0, assumes n ≥ 2 nodes
labeled from 1 to n and connected as a clique, i.e., as a complete graph Kn. Computation
proceeds in synchronous rounds, during which every node can send a message to every other
node, receive the message sent by every other node, and perform some local computation. Up
to t nodes may crash during the execution of an algorithm, and when a node v crashes at some
round r ≥ 1 it stops functioning after round r and never recovers. Moreover, some (possibly
all) of the messages sent by v at round r may be lost. This model has been extensively
studied in the literature [2, 7]. In particular, it is known that consensus can be solved in
t + 1 rounds in the t-resilient model [6], and this is optimal for every t < n − 1 as far as the
worst-case complexity is concerned [1, 6]. Similarly, k-set agreement, in which the cardinality
of the set of output values decided by the (correct) nodes must not exceed k, is known to be
solvable in ⌊t/k⌋ + 1 rounds, which are also necessary [4].

It is only very recently that the synchronous t-resilient model has been extended to settings
in which the complete communication graph Kn is replaced by an arbitrary communication
graph G [3, 5]. Specifically, let κ(G) denote the node-connectivity of G, which is the smallest
number of nodes whose removal disconnects G. If the number of failures is smaller than the
connectivity of the graph, i.e., if t < κ(G), then consensus in G can be solved in radius(G, t)
rounds in the t-resilient model [3], where radius(G, t) generalizes the standard notion of
graph radius to the scenarios in which up to t nodes may crash. For t = 0, radius(G, 0) is
the standard radius of the graph G, and, for the complete graph Kn, radius(Kn, t) = t + 1
for every 0 ≤ t < n − 1 (while radius(Kn, n − 1) = n − 1). Therefore, the radius(G, t) upper
bound for consensus in G in the t-resilient model generalizes the seminal t + 1 upper bound
for consensus in Kn in the same model. The algorithm of [3] is oblivious, that is, the output
of a node is solely based on the set of pairs (node-identifier, input-value) collected by that
node during radius(G, t) rounds (and not, e.g., from whom, when, and how many times it
received each of these pairs). In other words, the consensus algorithm of [3] is generic, i.e., it
applies to any graph G.

For a fixed graph G, the optimality of the consensus algorithm performing in radius(G, t)
rounds is left as an open question in [3]. It was conjectured there that for every graph G and
every 0 ≤ t < κ(G), no oblivious algorithms can solve consensus in G in less than radius(G, t)
rounds, but this was only proved for the specific case of symmetric (a.k.a. vertex-transitive)
graphs. This lower bound does not come entirely as a surprise since all nodes of a symmetric
graph have the same eccentricity (i.e., maximum distance to any other node), even when
generalized to include crash failures. The fact that all nodes have the same eccentricity
implies that they can merely be ordered according to their identifiers for selecting the output
value from the received pairs (node-identifier, input-value). Instead, if the graph is not
symmetric, a node that received a pair (node-identifier, input-value) after radius(G, t) rounds
does not known whether all the nodes have received this pair, and thus the choice of the
output value from the set of received pairs is more subtle. This not only complicates the
design of an upper bound but also makes the determination of a lower bound more involved.

2 The Model

We use the (synchronous) t-resilient model for networks as defined in [3]. Let G = (V, E)
be an n-node undirected graph, which is also connected and simple (i.e., no multiple edges
nor self-loops). Initially, every node knows the graph G, that is, it knows the identifiers of
all nodes and how they are connected. The uncertainty is thus not related to the initial



P. Fraigniaud, M. H. Nguyen, and A. Paz 47:3

structure of the connections, but is only due to the presence of potential failures. More
specifically, computation in G proceeds as a sequence of synchronous rounds, and each node
may fail by crashing – when a node crashes, it stops functioning and never recover. However,
if a node v crashes at round r it may still succeeds in sending messages to a subset of its
set N(v) of neighbors.

For every positive integer t ≥ 0, the t-resilient model assumes that at most t nodes may
crash. A failure pattern is thus defined as a set φ = {(v, Fv, fv) | v ∈ F} where F ⊂ V ,
0 ≤ |F | ≤ t, is the set of faulty nodes in φ, and a triplet (v, Fv, fv) designates that v ∈ F

fails at round fv and fails to send messages to the nodes of Fv, ∅ ̸= Fv ⊆ N(v), at this
round. In any execution of an algorithm in the t-resilient model, the nodes know t, but do
not know in advance which failure pattern occurs. The set of all failure patterns in which at
most t nodes fail is denoted by Φ(t)

all .
The eccentricity of a node v in G with respect to a failure pattern φ, denoted by ecc(v, φ),

is the minimum number of rounds for broadcasting a message from v to all correct nodes
of G under φ. The broadcast protocol is by flooding, i.e., when a node receives a message
at round r, it forwards it to all its neighbors at round r + 1. Note that ecc(v, φ) might be
infinite, in case v cannot broadcast to all correct nodes in G under φ. Let

Φ⋆
v = {φ ∈ Φ(t)

all | ecc(v, φ) < ∞}

denote the set of failure patterns in the t-resilient model in which v eventually manages to
broadcast to all correct nodes. The t-resilient radius of G is then defined as

radius(G, t) = min
v∈V

max
φ∈Φ⋆

v

ecc(v, φ).

Castañeda et al. [3] have designed a generic oblivious consensus algorithm which, for every
graph G, and every number t of failures with t < κ(G), runs in radius(G, t) rounds. In
addition, they have shown that, for every symmetric graph G, and every t < κ(G), no
oblivious algorithms can solve consensus in G with t crash failures in less than radius(G, t)
rounds.

3 Our Results

We extend the investigation of the t-resilient model in arbitrary graphs, in various com-
plementary directions. The proofs of these results can be found in the full version of the
paper.

3.1 Lower Bounds
We establish a general lower bound for consensus in the aforementioned synchronous t-resilient
model for network, which states that the oblivious consensus algorithm from [3] is optimal
among oblivious algorithms for every graph G, and not only for symmetric graphs.

▶ Theorem 1. For every graph G and every t < κ(G), consensus in G cannot be solved in
less than radius(G, t) rounds by an oblivious algorithm in the t-resilient model.

3.2 Set-Agreement
We demonstrate the existence of a generic oblivious algorithm for k-set agreement. This
algorithm is generic in the sense that it obeys a general structure: (1) flooding the graph with
the inputs of a predetermined “core set” of nodes C(G) ⊆ V , for R(G) rounds, and (2) after

DISC 2024



47:4 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structures

R(G) rounds, letting every node v ∈ V pick the input of the node u ∈ C(G) with smallest
identifier among all the nodes in C(G) received by v. We show that for every graph G,
every t < κ(G), and every k ≥ 1, k-set agreement is solved in radius(G, t, k) rounds, where
radius(G, t, k) extends the standard notion of graph radius to the case in which there are k

centers, and whenever up to t nodes can crash. For t = 0 and k = 1, radius(G, t, k) coincides
with the standard radius of G. Moreover, for k = 1, radius(G, t, 1) = radius(G, t).

More concretely, like in the k-center problem, we consider broadcast in G from a set
S ⊆ V of k nodes by flooding, and radius(G, t, k) essentially denotes the minimum, taken
over all sets S of k nodes, of the broadcast time of S, i.e., of the smallest number of rounds
sufficient to guarantee that every non-faulty node receives information from at least one node
in S. The definition is a bit more subtle though, as the broadcast time of S actually depend
on the failure pattern (i.e., which nodes crash and when), and it may even be the case that
S cannot broadcast at all for some failure patterns (e.g., whenever all nodes in S crash at
the first round without sending any messages to their neighbors). More specifically, for every
set S ⊆ V of size at most k, let the eccentricity of S with respect to a failure pattern φ,
denoted by ecc(S, φ), be the minimum number of rounds such that whenever every node in
S broadcasts information, every correct node of G under φ receives the information sent by
at least one of the nodes in S. Let

Φ∞
S = {φ ∈ Φ(t)

all | ecc(S, φ) = ∞},

and let Φ⋆
S = Φ(t)

all ∖ Φ∞
S . The k-center t-resilient radius of G is then defined as

radius(G, t, k) = min
S⊆V
|S|≤k

max
φ∈Φ⋆

S

ecc(S, φ).

▶ Theorem 2. For every graph G, every k ≥ 1, and every t < κ(G), k-set agreement in G

can be solved in radius(G, t, k) rounds by an oblivious algorithm in the t-resilient model.

3.3 Beyond the Connectivity Threshold
Finally, inspired by [5], we extend the study of consensus and set agreement in the t-resilient
model in arbitrary graphs to the case where the number t of crash failures is arbitrary, i.e.,
not necessarily lower than the connectivity κ(G) of the considered graph G. We show that
our generic k-set agreement algorithm, which include the case of consensus for k = 1, can
be extended to this framework, at the mere cost of relaxing consensus and k-set agreement
to impose agreement to hold within each connected component of the graph resulting from
removing the faulty nodes from G. Under this somehow unavoidable relaxation, we present
extension of the consensus algorithm from [3] in particular, and of our k-set agreement
algorithm in general, to t-resilient models for t ≥ κ(G), and express the round complexities of
these algorithms in term of a straightforward extension of the radius notion to disconnected
graphs.

4 Discussion

We have completed the picture for consensus in the t-resilient model for arbitrary graphs, by
proving that the consensus algorithm in [3] is optimal among oblivious algorithms. Moreover,
we have designed a generic (oblivious) algorithm for k-set agreement in arbitrary graph G

performing in radius(G, t, k) rounds under the t-resilient model, for t < κ(G).



P. Fraigniaud, M. H. Nguyen, and A. Paz 47:5

Our results open a vast domain for further investigations. In particular, what could
be said for sets of failure patterns Φ other than Φ(t)

all ? Another intriguing and potentially
challenging area for further research is exploring scenarios where no upper bound on the
number of failing nodes is assumed, while concentrating solely on failure patterns that do
not result in the disconnection of the graph. Finally, the design of early-stopping algorithms
in the t-resilient model for arbitrary graphs is also highly desirable. The algorithms in [5],
early stopping and others, are very promising, but their analysis must be refined to a grain
finer than the stretches of the failure patterns, by focusing, e.g., on eccentricities and radii.

References
1 Marcos Kawazoe Aguilera and Sam Toueg. A simple bivalency proof that t-resilient consensus

requires t+ 1 rounds. Information Processing Letters, 71(3-4):155–158, 1999. doi:10.1016/
S0020-0190(99)00100-3.

2 Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and
advanced topics, volume 19. John Wiley & Sons, 2004.

3 Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, and
Corentin Travers. Synchronous t-resilient consensus in arbitrary graphs. Inf. Comput.,
292:105035, 2023. doi:10.1016/J.IC.2023.105035.

4 Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tuttle. Tight bounds for
k-set agreement. J. ACM, 47(5):912–943, 2000. doi:10.1145/355483.355489.

5 Bogdan S. Chlebus, Dariusz R. Kowalski, Jan Olkowski, and Jedrzej Olkowski. Disconnected
agreement in networks prone to link failures. In SSS, volume 14310 of LNCS, pages 207–222.
Springer, 2023. doi:10.1007/978-3-031-44274-2_16.

6 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983. doi:10.1137/0212045.

7 Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2013.

DISC 2024

https://doi.org/10.1016/S0020-0190(99)00100-3
https://doi.org/10.1016/S0020-0190(99)00100-3
https://doi.org/10.1016/J.IC.2023.105035
https://doi.org/10.1145/355483.355489
https://doi.org/10.1007/978-3-031-44274-2_16
https://doi.org/10.1137/0212045




Brief Announcement: Distinct Gathering Under
Round Robin
Fabian Frei #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Department of Computer Science, ETH Zürich, Switzerland

Koichi Wada #

Hosei University, Tokyo, Japan

Abstract
We resolve one of the longest-standing questions about autonomous mobile robots in a surprising
way.

Distinct Gathering is the fundamental cooperation task of letting robots, initially scattered
across the plane in distinct locations, gather in an arbitrary single point. The scheduler Round
Robin cyclically activates the robots one by one in a fixed order. When activated, a robot perceives
all robot locations and moves wherever it wants based only on this information. For n = 2 robots,
the task is trivial. What happens for n ≥ 3 has remained an open problem for decades by now.
The established conjecture declares the task to be impossible in this case. We prove that it is
indeed impossible for n = 3 but, to great surprise, possible again for any n ≥ 4. We go beyond the
standard requirements by providing a very robust algorithm that does not require any consistency
or self-consistency for the local Cartesian maps perceived by the robots and works even for non-rigid
movement, that is, if robots may be unpredictably stopped and deactivated during a movement.

2012 ACM Subject Classification Computer systems organization → Robotic autonomy

Keywords and phrases Autonomous mobile robots, Distinct Gathering, Round Robin

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.48

Funding Koichi Wada: Supported by JSPS KAKENHI Grants 20K11685 and 21K11748.

Acknowledgements We are very grateful to all reviewers who helped us to improve this paper.

1 Introduction

Mobile robotics is an active field that studies which cooperation tasks can be performed
by simplistic mobile robots. The underlying motivation is to develop cheap, reliable, and
robust robots to be employed in disaster relief, for example. Suzuki and Yamashita [25]
introduced the default Look-Compute-Move model: The robots are all identical, oblivious,
and represented by points in the Euclidean plane. Whenever activated by some scheduler, a
robot observes all robot locations in a local Cartesian coordinate system (which might be
arbitrarily scaled, rotated, and mirrored with respect to the global coordinate system) and
then moves wherever it wants. This model is sometimes referred to as Oblot (for oblivious
robots), and has been the object of intensive study [1, 2, 3, 4, 5, 6, 11, 12, 15, 16, 18, 23].
The simplest scheduler is the fully synchronous one, which always activates all robots
synchronously. The second most basic and simple scheduler is arguably Round Robin, which
lets the all robots move in orderly turns, one by one, always in the same order. The standard
textbook by Flocchini et al. [13] and the newer textbook [10] provide an excellent overview
of the basic models and literature.

Gathering all robots in a single point is arguably the most fundamental cooperation task
and has consequently garnered the attention of many researchers [1, 2, 3, 4, 5, 6, 7, 8, 11,
14, 17, 18, 19, 20, 22, 24]. Gathering is trivial under the fully synchronous scheduler; each

© Fabian Frei and Koichi Wada;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 48; pp. 48:1–48:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabian.frei@inf.ethz.ch
https://orcid.org/0000-0002-1368-3205
mailto:wada@hosei.ac.jp
https://orcid.org/0000-0002-5351-1459
https://doi.org/10.4230/LIPIcs.DISC.2024.48
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


48:2 Brief Announcement: Distinct Gathering Under Round Robin

robot moves to the center of gravity, where they meet after a single activation. This strategy
fails for Round Robin; the robots will converge but never meet. Instead, the easy solution is
to target a point of maximum multiplicity [25, Thm. 3.4]. Without multiplicity detection,
gathering more than two robots is much more difficult. Indeed, it becomes impossible, at
least if we weaken the model such to allow for initial configurations where some robots
occupy the same location [21, Sec. 3]. This task variant is sometimes called Self-Stabilizing
Gathering to distinguish it from the original task introduced in Suzuki and Yamashita’s
seminal paper [25], which assumes that the robots all start from distinct locations. This
original version used to be called just Gathering, but is nowadays often referred to as Distinct
Gathering to avoid ambiguity. It is an obvious and by now decades-old research problem
whether Distinct Gathering is still possible for more than two robots under Round Robin,
the simplest scheduler besides the fully synchronous one. Most recently, it was tackled again
by an algorithm that solves the problem at least under the two additional assumptions that
the robots have some internal memory and share a unit distance [26, Sect. 4, Alg. 10]. But
the general consensus remained that Distinct Gathering is likely impossible under Round
Robin without additional assumptions. A conjecture by Défago et al. made this explicit. [9,
Conj. 2]. They corroborated their conjecture by proving the impossibility under the plausible
assumption that any successful algorithm is a so-called rapid-gathering algorithm [9, Conj. 1].
Our results disprove both of these conjectures and resolve the open question by showing
that Distinct Gathering under Round Robin, while indeed impossible for three robots,
unexpectedly becomes feasible again for four and more robots. We go beyond the default
robustness requirements by considering non-rigid movement with an unknown minimum
movement distance: Any robot may be stopped at arbitrary times after some unknown
minimal movement distance (e.g., due to overheating). This causes it to lose all of its memory
and leaves it to wait for its next activation by the scheduler. We can provide an algorithm
that works even under these exceptionally adverse conditions.

2 Detailed Model Description

In this section, we define the task to be solved, the robot model, and the considered scheduler.

▶ Definition 1 (Gathering and Distinct Gathering). Gathering is the task to gather n robots,
which are initially scattered arbitrarily across the Euclidean plane in unknown locations. The
gathering is achieved if after a finite number of activation steps all robots stay co-located
in a single point forever – which point of the plane the robots choose as their gathering
point is irrelevant. Distinct gathering is the same task with the additional guarantee that all
robots occupy different locations in the initial configuration. We call a configuration with this
property that no two robots share a location, a distinct configuration.

▶ Definition 2 (Robot Model). The robots are all identical and anonymous (so they are
indistinguishable and do not even have any internal ID) and all run the same algorithm.
They are very simplistic and can see and move only when activated by an external scheduler.
Upon activation a robot always executes a so-called Look-Compute-Move cycle:

Look-Compute-Move Cycle. The robot first looks around and detects all current robot
locations. Then it uses this information, which is sometimes called a snapshot, to decide
where to move and what trajectory to follow. For the upper bounds announced in this paper,
we even restrict ourselves to robots moving on straight lines towards the computed target.
Finally, the robot moves to its target along the pre-computed path, ignoring everything else.



F. Frei and K. Wada 48:3

In particular, the robots are crash-resistant; there movement is not affected in any way
by them passing each other or being collocated with each other. Under the often standard
assumption of rigid movement, the robot always reaches its target, which concludes the
Look-Compute-Move cycle.

Local Maps. Our robots are located in the Euclidean plane and assumed to be dimensionless;
they can thus be represented by points. The robots perceive the locations of the other robots
with absolute precision, but only relative to a Cartesian map (i.e., a map with two orthogonal
axes that have the same unit length) with the observing robot at the origin. Importantly,
there are no further guarantees for consistency between the robots, neither for the perceived
unit length nor the rotation of the axes nor the chirality. (Gathering would indeed be trivial
with fully consistent maps.) Moreover, we do not even assume any self-consistency for these
properties either. In other words, an adversary may arbitrarily scale, rotate, and mirror the
map perceived by the robot upon each activation.

No Multiplicity Detection. We assume that the robots cannot detect multiplicity, that is,
whether any perceived location is shared by multiple robots or not. This includes the location
of the observing robot itself; it cannot sense directly whether or not it is accompanied.

Obliviousness. The robots are stateless (often referred to as oblivious): They possess no
persistent memory and can thus only use the location information gathered upon activation to
compute their movement path, and as soon as a robot stops, it forgets this information, too.

We now define the scheduler under which Distinct Gathering is examined in this paper.

▶ Definition 3 (Round Robin). Round Robin is the scheduler the activates the robots one
by one, according to a fixed but previously unknown order, in an ever-continuing cycle
covering all robots. We call any consecutive activation of all n robots a round. Just as the
fully-synchronous scheduler, Round Robin is a natural special case of the semi-synchronous
scheduler; that is, it always waits with the activation of a robot until all robots have stopped
moving.

Finally, we distinguish between the standard model of rigid movement and the assumption
of the less reliable non-rigid movement, which models various adverse situations such as
robots overheating or running out of energy during their movement.

▶ Definition 4 (Rigid and Non-Rigid Movement). Robots with so-called rigid movement always
reach their target when executing a Look-Compute-Move. The opposite is non-rigid movement,
where a robot’s movement may be stopped at any time by an adversary, as long as the robot
has moved some minimum distance during its current cycle. This prematurely ends the robot’s
Look-Compute-Move cycle. For our algorithm, we assume the harshest variant of non-rigid
movement where the robots have no knowledge of the minimum movement distances.

3 Previous Results and Conjectures

Distinct Gathering is trivial under Round Robin for the case of n = 2 robots, often referred
to as Rendezvous: It suffices for every activated robot to target to location of the other robot.
The task becomes far more interesting and challenging for n ≥ 3, however. Whether it is
feasible or not has remained a prominent open question in the field for over two decades by
now. It has been tackled repeatedly, most recently in a paper by Terai et al., who showed how

DISC 2024



48:4 Brief Announcement: Distinct Gathering Under Round Robin

to solve the problem at least using the quite strong additional assumptions that the robots
have some internal memory, share a unit distance, and that all movements are rigid [26,
Sect. 4, Alg. 10]. But the general consensus has remained that Distinct Gathering is most
likely impossible under Round Robin under the standard assumptions outlined above. The
following conjecture by Défago et al. makes this explicit. [9, Conj. 2].

▶ Conjecture 5 (Cf. Défago et al. [9, Conj. 2]). There is no algorithm solving Distinct
Gathering under Round Robin for n ≥ 3 robots under the default assumptions detailed in
Section 2.

They corroborate their assumption by proving [9, Thm. 16] the impossibility of Distinct
Gathering under Round Robin under the assumption that any algorithm solving this problem
is a so-called rapid-gathering algorithm [9, Conj. 1].

▶ Definition 6 (Rapid-gathering algorithm, cf. Défago et al. [9, Def. 1]). Any algorithm is a
rapid-gathering algorithm if there is an initial configuration of n robots in distinct locations
and a Round Robin activation order such that the algorithm gathers all robots within n − 1
activations.

▶ Conjecture 7 (Cf. Défago et al. [9, Conj. 1]). Every algorithm for Gathering under Round
Robin is a rapid-gathering algorithm.

They further substantiate this plausible claim by considering a series of convincing examples.

4 New Results

We are able to resolve the open question about the feasibility of Distinct Gathering under
Round Robin, giving a quite surprising answer that might seem contradictory at first sight.

On the one hand, we prove with Theorem 8 that the problem is indeed impossible to
solve for the case of n = 3. On the other hand, we show with Theorem 9 that it unexpectedly
becomes feasible again for four and more robots, even though these robots have to pass
through three-point configurations during the execution of their algorithm. We first formally
state the result for three robots.

▶ Theorem 8. Distinct Gathering under the Round Robin is impossible for n = 3 robots
under the default model detailed in Section 2.

Proof Sketch. Due to the space constraints, we can unfortunately not even provide a
full proof sketch here since some of the details are quite subtle and require an extensive
description. We restrict ourselves to mentioning here the following. The proof relies on
first assuming towards contradiction that there is a gathering algorithm, then choosing an
arbitrary initial configuration and a schedule, then considering the last configuration before
last transition from a three-point configuration to a two-point configuration by the given
algorithm under this schedule, and then considering both what could or could not have
happened with this mentioned configuration as an alternative initial configuration under the
different possible schedules and how the algorithm must further behave under the originally
chosen schedule. ◀

We remark that Theorem 8 unifies and strengthens two separate impossibility results
by Défago et al. [9, Theorems 14 and 15] at the same time for n = 3, extending one from
(Self-Stabilizing) Gathering to Distinct Gathering and the other from so-called k-bounded



F. Frei and K. Wada 48:5

schedulers to the heavily restricted Round Robin scheduler1. It confirms both Conjecture 5
and Conjecture 7 in the case n = 3. The natural assumption would now be that this result
extends beyond three robots to the case of n ≥ 4 because gathering more robots seems to
only increase the difficulty of the problem. Indeed, any initial distinct configuration with
four or more robots is forced to pass through a three-point configuration under Round Robin
before a gathering can be achieved. Surprisingly, we can show that this argumentation is
flawed by providing an algorithm that solves the problems for any given n ≥ 4.

▶ Theorem 9. Distinct Gathering under Round Robin can be solved for any given n ≥ 4
under the default model detailed in Section 2. The result holds even for robots restricted to
moving to their target in a straight line and assuming non-rigid movement with an unknown
minimal movement distance.

Theorem 9 disproves the established Conjectures 5 and 7 and resolves the long-standing open
question about the feasibility of Distinct Gathering under Round Robin.

Proof Sketch. It is possible to distinguish seven main phases of the algorithm. It typically
passes through these phases in the given order, but some phases may be skipped depending
on the initial configuration. Moreover, in some cases it becomes necessary for the algorithm
to restart the current phase or even return to previous phases. A graphic representation of
the phases and the possible transitions between them is given in Figure 1.

Due to the space restrictions we can only provide a brief outline of the purpose of each
phase.

The purpose of the first phase is to create a configuration whose robot locations form at
most one isosceles right triangle or multiple isosceles right triangles with one robot that is
part of all of them. The first phase ends once such a configuration is attained. The second
phase has a very similar goal, namely a configuration with exactly one isosceles right triangle
or multiple isosceles right triangles with one robot that is part of all of them. The third
phase creates a configuration with exactly one isosceles right triangle. Everything up to start
of the fourth phase maintains distinct locations for all the robots. In the fourth phase, all
robots except for the one located at the vertex of the isosceles right triangle move to the
closer one of the two endpoints of the base of this triangle. In the fifth phase, the robot at
the vertex moves down along the altitude to the midpoint of the triangle’s base, resulting in
a midpoint configuration, which means that one robot is exactly at the midpoint between
two other ones. In the sixth phase, all robots start targeting this midpoint. This phase ends
as soon as a two-point configuration is created or a robot fails to reach its target. In the
latter case, a non-midpoint three-point configuration may result, which triggers the start
of the eighth phase that restores a midpoint configuration. If a four-point configuration
results at the end of the sixth phase, then the seventh phase begins and ends by creating
another unique isosceles right triangle, leading back to the fourth phase. The last option at
the end of the sixth phase is that a two-point configuration is created, which starts the ninth
phase. In this phase, all robots target the opposite observed location. This can either end in
a gathering or create another three-point configuration, which means moving back to the
sixth or eighth phase. One might suspect that the algorithm could be stuck in an infinite

1 Note that the cited paper implicitly assumes neither consistency nor self-consistency in the maps of the
robots, not even for the unit distance, as evidenced by the remark in the proof of Theorem 14 that all
two-point configurations are indistinguishable. For the cited proofs, this assumption is insubstantial
and easily removed by considering not arbitrary, but a very specific two-point configurations. In other
cases, however, it might be crucial whether the perceived unit distance is self-consistent for each robot.

DISC 2024



48:6 Brief Announcement: Distinct Gathering Under Round Robin

loop of robots swapping locations in the ninth phase. The proof that this does not happen
relies an a sequence of invariants maintained through the execution of the previous phases.
To prove termination of the algorithm, we need to show the termination of each phase, but
also that looping back to previous phases can happen only a finite number of times. This
is possible by showing that the configuration’s diameter decreases substantially with every
throwback to a previous phase, which lets us assume rigid movement after a finite number of
phase transitions. Rigid movement prevents any transition back to the sixth, seventh, or
eighth phase, and thus guarantees that the robots eventually all gather at the end of the
ninth phase. ◀

Initial
Configuration

Phase 1

Phase 2Phase 3

Phase 4

Phase 5 Phase 6

Phase 7

Phase 8

Number
of points?

Phase 9

Gathering

3

4

3

2

1

Figure 1 The phase transition diagram for the algorithm solving Distinct Gathering for more
than three robots under Round Robin. Typical configurations that might occur at the start of each
phase are shown. The arrows indicate the possible phase transitions. It is proved that no infinite
loops can occur.



F. Frei and K. Wada 48:7

References
1 N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous mobile robots.

SIAM Journal on Computing, 36(1):56–82, 2006. doi:10.1137/050645221.
2 H. Ando, Y. Osawa, I. Suzuki, and M. Yamashita. A distributed memoryless point convergence

algorithm for mobile robots with limited visivility. IEEE Transactions on Robotics and
Automation, 15(5):818–828, 1999. doi:10.1109/70.795787.

3 Z. Bouzid, S. Das, and S. Tixeuil. Gathering of mobile robots tolerating multiple crash faults.
In the 33rd Int. Conf. on Distributed Computing Systems, pages 334–346, 2013.

4 S. Cicerone, Di Stefano, and A. Navarra. Gathering of robots on meeting-points. Distributed
Computing, 31(1):1–50, 2018.

5 M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by
mobile robots: Gathering. SIAM Journal on Computing, 41(4):829–879, 2012. doi:
10.1137/100796534.

6 R. Cohen and D. Peleg. Convergence properties of the gravitational algorithms in asyn-
chronous robot systems. SIAM J. on Computing, 34(15):1516–1528, 2005. doi:10.1137/
S0097539704446475.

7 S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. Autonomous mobile robots
with lights. Theoretical Computer Science, 609:171–184, 2016. doi:10.1016/J.TCS.2015.09.
018.

8 X. Défago, M. Potop-Butucaru, and Philippe Raipin-Parvédy. Self-stabilizing gathering of
mobile robots under crash or byzantine faults. Distributed Computing, 33(5):393–421, 2020.
doi:10.1007/S00446-019-00359-X.

9 Xavier Défago, Maria Potop-Butucaru, and Philippe Raipin Parvédy. Self-stabilizing gathering
of mobile robots under crash or byzantine faults. Distributed Comput., 33(5):393–421, 2020.
doi:10.1007/s00446-019-00359-x.

10 P. Flocchini, G. Prencipe, and N. Santoro (Eds). Distributed Computing by Mobile Entities.
Springer, 2019.

11 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous robots
with limited visibility. Theoretical Computer Science, 337(1–3):147–169, 2005. doi:10.1016/
J.TCS.2005.01.001.

12 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern formation by
asynchronous oblivious robots. Theoretical Computer Science, 407:412–447, 2008.

13 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan and Claypool
Publishers, 2012.

14 Paola Flocchini, Nicola Santoro, and Koichi Wada. On memory, communication, and syn-
chronous schedulers when moving and computing. In Proceeding of the 23rd International
Conference on Principles of Distributed Systems (OPODIS 2019), volume 153 of LIPIcs, pages
25:1–25:17, 2019. doi:10.4230/LIPICS.OPODIS.2019.25.

15 N. Fujinaga, Y. Yamauchi, H. Ono, S. Kijima, and M. Yamashita. Pattern formation by
oblivious asynchronous mobile robots. SIAM Journal on Computing, 44(3):740–785, 2015.
doi:10.1137/140958682.

16 V. Gervasi and G. Prencipe. Coordination without communication: The case of the flocking
problem. Discrete Applied Mathematics, 144(3):324–344, 2004. doi:10.1016/J.DAM.2003.11.
010.

17 T. Izumi, Y. Katayama, N. Inuzuka, and K. Wada. Gathering autonomous mobile robots with
dynamic compasses: An optimal result. In 21st DISC, pages 298–312, 2007.

18 T. Izumi, S. Souissi, Y. Katayama, N. Inuzuka, X. Défago, K. Wada, and M. Yamashita.
The gathering problem for two oblivious robots with unreliable compasses. SIAM Journal on
Computing, 41(1):26–46, 2012. doi:10.1137/100797916.

19 J. Lin, A.S. Morse, and B.D.O. Anderson. The multi-agent rendezvous problem. parts 1 and
2. SIAM Journal on Computing, 46(6):2096–2147, 2007.

DISC 2024

https://doi.org/10.1137/050645221
https://doi.org/10.1109/70.795787
https://doi.org/10.1137/100796534
https://doi.org/10.1137/100796534
https://doi.org/10.1137/S0097539704446475
https://doi.org/10.1137/S0097539704446475
https://doi.org/10.1016/J.TCS.2015.09.018
https://doi.org/10.1016/J.TCS.2015.09.018
https://doi.org/10.1007/S00446-019-00359-X
https://doi.org/10.1007/s00446-019-00359-x
https://doi.org/10.1016/J.TCS.2005.01.001
https://doi.org/10.1016/J.TCS.2005.01.001
https://doi.org/10.4230/LIPICS.OPODIS.2019.25
https://doi.org/10.1137/140958682
https://doi.org/10.1016/J.DAM.2003.11.010
https://doi.org/10.1016/J.DAM.2003.11.010
https://doi.org/10.1137/100797916


48:8 Brief Announcement: Distinct Gathering Under Round Robin

20 T. Okumura, K. Wada, and X. Défago. Optimal rendezvous L-algorithms for asynchronous
mobile robots with external-lights. Theoretical Computer Science, 979(114198), 2023.

21 Giuseppe Prencipe. On the feasibility of gathering by autonomous mobile robots. In Andrzej
Pelc and Michel Raynal, editors, Proceedings of the 12th International Colloquium on Structural
Information and Communication Complexity (SIROCCO 2005), volume 3499 of Lecture Notes
in Computer Science, pages 246–261. Springer, 2005. doi:10.1007/11429647_20.

22 S. Souissi, X. Défago, and M. Yamashita. Using eventually consistent compasses to gather
memory-less mobile robots with limited visibility. ACM Transactions on Autonomous and
Adaptive Systems, 4(1):1–27, 2009. doi:10.1145/1462187.1462196.

23 S. Souissi, T. Izumi, and K. Wada. Oracle-based flocking of mobile robots in crash-recovery
model. In Proc. 11th Int. Symp. on Stabilization, Safety, and Security of Distributed Systems
(SSS), pages 683–697, 2009.

24 I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric pat-
terns. SIAM Journal on Computing, 28:1347–1363, 1999. doi:10.1137/S009753979628292X.

25 Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Forma-
tion of geometric patterns. SIAM J. Comput., 28(4):1347–1363, 1999. doi:10.1137/
S009753979628292X.

26 Satoshi Terai, Koichi Wada, and Yoshiaki Katayama. Gathering problems for autonomous
mobile robots with lights. Theor. Comput. Sci., 941:241–261, 2023. doi:10.1016/j.tcs.2022.
11.018.

https://doi.org/10.1007/11429647_20
https://doi.org/10.1145/1462187.1462196
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1016/j.tcs.2022.11.018
https://doi.org/10.1016/j.tcs.2022.11.018


Brief Announcement: Decreasing Verification
Radius in Local Certification
Jan Matyáš Křišťan # Ñ

Faculty of Information Technology, Czech Technical University in Prague, Czech Republic

Josef Erik Sedláček #

Faculty of Information Technology, Czech Technical University in Prague, Czech Republic

Abstract
This paper deals with local certification, specifically locally checkable proofs: given a graph property,
the task is to certify whether a graph satisfies the property. The verification of this certification
needs to be done locally without the knowledge of the whole graph.

We examine the trade-off between the visibility radius and the size of certificates. We describe a
procedure that decreases the radius by encoding the neighbourhood of each vertex into its certificate.
We also provide a corresponding lower bound on the required certificate size increase, showing that
such an approach is close to optimal.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Graph algorithms analysis

Keywords and phrases Local certification, locally checkable proofs, proof-labeling schemes, graphs,
distributed computing

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.49

Related Version Full Version: https://arxiv.org/abs/2408.10757

Funding This work was supported by the Grant Agency of the Czech Technical University in Prague,
grant No. SGS23/205/OHK3/3T/18 and by the Czech Science Foundation Grant no. 24-12046S.

Acknowledgements We would like to thank Laurent Feuilloley for his helpful discussions and
suggestions.

1 Introduction

The problem studied in this paper involves certifying a global graph property without having
complete knowledge of the entire graph. In particular, we study the model of locally checkable
proofs of Göös and Suomela [4].

In this model, an algorithm called a verifier examines the local neighbourhood of each
vertex up to some fixed distance, called the radius. On each vertex, the verifier either accepts
if it cannot deny that the graph has the desired property, or rejects if it is certain that the
property does not hold. The final decision about the property is then made as follows: If the
verifier rejected on at least one vertex, the decision is that the property does not hold. If it
accepts on all vertices, the decision is that the property holds.

To enhance the decision-making capabilities of the model, the vertices are equipped with
unique identifiers and possibly more general labels. Furthermore, each vertex is given a
certificate. Certificates are bit-strings that are used to help the verifier in deciding the answer
about the property. The verifier reads the certificates in its local view as a part of its input.
For each graph that satisfies the property, the verifier must accept for at least one assignment
of certificates. If the graph does not satisfy the property, the verifier must reject every
assignment.

© Jan Matyáš Křišťan and Josef Erik Sedláček;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 49; pp. 49:1–49:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kristja6@fit.cvut.cz
https://kristja6.pages.fit/website/
https://orcid.org/0000-0001-6657-0020
mailto:sedlajo5@fit.cvut.cz
https://orcid.org/0009-0001-7429-2937
https://doi.org/10.4230/LIPIcs.DISC.2024.49
https://arxiv.org/abs/2408.10757
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


49:2 Brief Announcement: Decreasing Verification Radius in Local Certification

The key notion of local certification is that of a proof labeling scheme, which is a pair (f, A),
where A is the verifier and f gives each graph with the property a certificate assignment
that is accepted by A. An intuitive example is k-colorability. If k is a constant the coloring
can be provided in the certificates.

Previous work and our contribution

Similar models have been studied under different names [5, 6]. The name local certification
is a general term used for the similar models [1].

It has been previously shown how, and under which conditions, certificate size can be
decreased at the cost of increasing the visibility radius [2, 3]. We provide a similar result,
showing how the visibility radius can be decreased at the cost of increasing the certificate
size. We also provide a corresponding lower bound on the necessary certificate size increase.

There is a crucial distinction between these two problems. While the mentioned results
allow increasing the radius while decreasing the size of certificates in the general case, the
implied inverse procedure of decreasing the radius works only for the very particular type of
proof labeling schemes that result from the original procedure. The novelty of our results
lies in allowing the decrease of the radius of any proof labeling schemes.

2 Preliminaries

All the graphs are assumed to be undirected and simple with possible labels. We also assume
that all graphs are connected, as two different connected components have no way to interact
with each other. Formally G = (V, E, L) where L : V → {0, 1}∗. The vertices are assigned
integer identifiers, and we assume that V = {1, . . . , n}. The set of neighbours of a vertex v is
denoted as NG(v), distance between u, v as dG(u, v), and the set of vertices within distance
r from v as V [v, r], also called the r-local neighborhood of v.

A graph property is a set of graphs that is closed under isomorphism, that is, its membership
does not depend on the choice of identifiers. A certificate assignment P for G is a function
P : V (G) → {0, 1}∗ that associates a certificate with each vertex. We say that P has size s

if |P (v)| ≤ s(n) for every v. A verifier is a function that takes as an input a graph G, its
certificate assignment P and v ∈ V (G) and outputs either 0 or 1.

We denote the induced subgraph G[V [v, r]] as G[v, r], and the restriction of P to
V [v, r] as P [v, r], that is P [v, r] : V [v, r] → {0, 1}∗. A verifier A is r-local if A(G, P, v) =
A(G[v, r], P [v, r], v) for all G, P , and v. An r-local proof labeling scheme certifying a property
of labeled graphs P is a pair (f, A), where A is an r-local verifier and f assigns to each
G ∈ P a certificate assignment such that the following properties hold.

Completeness: If G ∈ P , then A(G[v, r], P [v, r], v) = 1 for all v, where P = f(G).
Soundness: If G /∈ P, then for every certificate assignment P ′, there is v such that
A(G[v, r], P ′[v, r], v) = 0.

We say that (f, A) has a size s : N → N if |f(G)(v)| ≤ s(|V (G)|) for all G ∈ P and v ∈ V (G).

3 Decreasing the radius of a proof labeling scheme

In this section, we state that given an r-local (fr, Ar) certifying a property P, we can
construct an (r − δ)-local (f, A) certifying P for any δ < r at the cost of increasing the
certificate size. The increase of the certificate size can be expressed as a function of the size
of the input graph and its maximum degree. The result is precisely formulated as follows.



J. M. Křišťan and J. E. Sedláček 49:3

▶ Theorem 1. Given an r-local proof labeling scheme (fr, Ar) of size s certifying a graph
property P, for every δ < r, we can construct an (r − δ)-local proof labeling scheme certifying
P with certificates of the size O((∆ − 1)δ(∆ log(n) + s(n) + ℓ(n))) where ℓ(n) is the maximum
size of a label and ∆ ≥ 3 is the maximum degree of the input graph.

Note that in the case of ∆ = 2, the maximum size of a δ-neighborhood of a vertex grows only
linearly with δ and we may obtain the bound on certificate size of O(δ(∆ log(n)+s(n)+ℓ(n))).

While the idea is simple, the proof is technical; therefore, due to space constraints, we
decided to omit the proof from this brief announcement. The complete proof is available
in the full version of the paper. Here we provide only the following overview of the proof
technique.

When the verifier Ar is invoked on v, it is given G[v, r] and P [v, r] on its input. If we
want to reduce that information to G[v, r − δ], P [v, r − δ], a first step can be to move the
now missing information into the certificates. The first obstacle comes from the fact that
information in the certificates may not be true (as opposed to G[v, r] provided on the input)
and must be verified.

The essential idea is to have each vertex hold its δ-neighbourhood in its certificate. This
allows other vertices within distance r − δ to gain information about the entire distance r

neighbourhood and feed this information to the original r-local verifier.

4 Lower bound on the increase of certificate size

This section aims to show that there are proof labeling schemes for which the radius can
be decreased by δ only if we also increase the certificate size by C(∆ − 1)δ−1, where C is a
fixed constant. We present a property of labeled graphs, for which we also provide a proof
labeling scheme and both an upper and a lower bound on its size.

Let ∆ ≥ 3, then we define P∆ so that a labeled G ∈ P∆ if and only if it satisfies all of
the following three properties. For an example of a graph with the property, see Figure 1.

Property 1 (Tree structure): G has a single vertex of degree 2, denoted as R(G) (or just R),
which is adjacent to two complete (∆ − 1)-nary trees of the same size.

Property 2 (Label structure): For every vertex v except for the root R(G), the label L(v)
encodes an integer a ∈ {1, 2, . . . , ∆ − 1} that uniquely defines its order among its siblings.
Additionally, if deg(v) = 1, then L(v) also encodes one bit b ∈ {0, 1}. Therefore, on leaves
L(v) encodes a pair (a, b). The label L(R(G)) is empty.

This allows us to define LT (G) and RT (G) as the the subtrees rooted at the first and second
child of R(G) respectively. Furthermore, it allows us to naturally order the leaves of G.
We denote as S(v) the binary string created by taking the values of b on all leaves in their
natural order in the subtree rooted at v. We define S(G) = S(R(G)).

Property 3 (String structure): S(G) = XX for some binary string X, i.e. S(G) is a result of
concatenating a string X with itself once.

Now we describe a proof labeling scheme of P∆.

▶ Lemma 2. Graph property P∆ has an r-local proof labeling scheme of size C · n/(∆ − 1)r−1

for every r ≥ 1 and a fixed C.

The lemma provides an upper bound on the optimal certificate size for a given radius. This
is then used together with a corresponding lower bound, to show a lower bound on the
necessary increase of the certificate size of P∆ when decreasing the radius.

DISC 2024



49:4 Brief Announcement: Decreasing Verification Radius in Local Certification

1 1 1 1 1 1 1 1 10 0 0 0 0 0 0

R(G)
LT (G) RT (G)

S(G)

T (Hi)

1 1 1 1 1 1 1 1 10 0 0 0 0 0 0

1001
1100 0010

1111 1001 1111
1100 0010

Figure 1 An example of a graph with property P∆ with ∆ = 5. Here, R(G) is the root, LT (G)
and RT (G) are the left and the right subtrees, S(G) is the sequence in the leaves, and the red strings
are certificates. The subgraph T (Hi) is used in the proof of Lemma 3 and corresponds to r = 2.

The proof is straightforward but lengthy. The main idea is to encode for each vertex v in
its certificate the string S(v) of the whole subtree rooted in v. Since the verifier can see up
to distance r, it is not necessary to encode the string in the vertices for which d(v, R) < r.
See Figure 1 for an example and the full paper for the whole proof.

Now, we show a lower bound on the required certificate size to locally certify P∆.

▶ Lemma 3. For all r-local proof labeling schemes certifying P∆ of size s, it holds that
s(n) ≥ (n · ε)/(12(∆ − 1)r) for a large enough n and all ε < 1.

Proof. The idea is inspired by the proof of Theorem 6.1 of Göös and Suomela [4]. Following
their approach, we will show that for every supposed proof labeling scheme of size less
than (n · ε)/(12(∆ − 1)r), we can construct an instance not in P∆ which the verifier would
necessarily accept.

Suppose there exists an r-local proof labeling scheme (A, f) certifying P∆ such that
for every n′ there exists n ≥ n′ such that s(n) < (n · ε)/(12(∆ − 1)r). For an instance
Hi ∈ P∆, let T (Hi) denote V [R(Hi), r]. Let ∼ be a binary relation on P∆ defined so that
Hi ∼ Hj if and only if f(Hi)[T (Hi)] = f(Hj)[T (Hj)] and Hi[T (Hi)] = Hj [T (Hj)], that is
both the subgraphs on T (Hi), T (Hj), and their certificates as assigned by f are the same.
The equality of induced subgraphs here means the equality of the identifiers, the labels, and
the edges. Note that ∼ is an equivalence. See again Figure 1 for an illustration.

Let P∆[n] be the set of instances in P∆ on n vertices with a fixed identifier assignment,
meaning the identifier of a vertex with a given position in the tree is the same in all the
instances.

▷ Claim 4. For all n′, there exists n ≥ n′ and H1, H2 ∈ P∆[n] such that H1 ∼ H2 and
S(H1) ̸= S(H2).

Proof. We will show that for large enough n, the number of possible binary sequences in
the leaves of instances in P∆[n] is greater than the number of equivalence classes of ∼
when restricted to P∆[n]. By the assumption, each vertex has less than (n · ε)/(12(∆ − 1)r)
certificate bits, thus for an instance Hi ∈ P∆[n], there are at most 2(n·ε)/(12(∆−1)r)·|T (Hi)|

different certificate assignments on T (Hi), and at most (∆ − 1)|T (Hi)| different assignments
of labels on T (Hi). The rest of the structure on T (Hi), including the identifiers is fixed by
the fact that Hi ∈ P∆[n].

Furthermore, observe that |T (Hi)| = 1 + 2
∑r−1

i=0 (∆ − 1)i ≤ 3(∆ − 1)r as ∆ ≥ 3. In total,
we have that ∼ has on P∆[n] at most 2(n·ε)/4 · (∆ − 1)3(∆−1)r different classes.

On the other hand, each instance has at least n/4 leaves in the left subtree and thus
there are at least 2n/4 different possible binary strings in the left subtree. It remains to
observe that 2(n·ε)/4 · (∆ − 1)3(∆−1)r

< 2n/4 for large enough n. Therefore by the pigeonhole
principle, there are H1, H2 ∈ P∆[n] such that S(H1) ̸= S(H2) and H1 ∼ H2. ◁



J. M. Křišťan and J. E. Sedláček 49:5

Now, we take H1, H2 ∈ P∆[n] such that H1 ∼ H2 and S(H1) ̸= S(H2) and construct
H ′ = (V ′, E′, L′) by starting with H1[T (H1)] = H2[T (H2)] and completing the left subtree
by LT (H1) and the right subtree by RT (H2). Formally, let LS(G) be the neighbour of R(G)
in LT (G) and RS(G) the neighbour in RT (G). Then

V ′ = V (LT (H1)) ∪ V (RT (H2)) ∪ {R(H1)}
E′ = E(LT (H1)) ∪ E(RT (H2)) ∪ {R(H ′), LS(H1)} ∪ {R(H ′), RS(H2)}).

Observe that the identifier assignment of H ′ is the same as those of H1 and H2, hence by
construction, we have that H ′ satisfies Properties 1 and 2 and the verifier can not reject
H ′ on their basis. Furthermore, observe that H ′ /∈ P∆ as the string in the leaves does not
satisfy Property 3.

Now, we choose the certificate assignment on H ′ as

P (v) =
{

f(H1)(v) if v ∈ LT (H ′) ∪ {R(H ′)}
f(H2)(v) otherwise

▷ Claim 5. For all v ∈ V (H ′) it holds A[H ′[v, r], P [v, r]] = 1.

It follows from the construction that the local neighbourhood of any v with is exactly the
same as in the original graph. For the complete proof see the full version of the paper.

We have demonstrated that there is an instance H ′ /∈ P∆ which is accepted by A,
contradicting the assumption that (f, A) certifies P∆. This finishes the proof. ◀

Now, we are ready to prove there are proof labeling schemes, such that the increase of
certificate size by C(∆ − 1)δ−1 is necessary when decreasing the radius by δ.

▶ Theorem 6. There is an r-local proof labeling scheme of size sr such that after decreasing
its radius by δ, for any possible resulting r − δ-local proof labeling scheme of size s′

r−δ and
every large enough n, it holds that s′

r−δ(n) ≥ sr(n) · C(∆ − 1)δ−1 where ∆ is the maximum
degree of the input graph and C is a fixed constant.

Proof. Consider the property P∆. By Lemma 2, it can be certified by a proof labeling
scheme of size sr with sr(n) ≤ C ′ · n/(∆ − 1)r−1 for every large enough n. By Lemma 3, for
every large enough n and a fixed C, we have:

s′
r−δ(n) ≥ (n · ε)/(12(∆ − 1)r−δ) ≥ ε

12C ′ · sr(n) · (∆ − 1)r−1−(r−δ) = sr(n) · C(∆ − 1)δ−1◀

5 Conclusion

A question to consider is the price of decreasing radius depending on the properties being
certified. While our approach works in general, there may be more efficient certification
methods for specific properties.

In Section 4, the presented results require that we allow labels on the vertices of the
input graph. We believe that the same results can be achieved for graphs without labels, by
substituting the labels with an appropriate construction.

DISC 2024



49:6 Brief Announcement: Decreasing Verification Radius in Local Certification

References
1 Laurent Feuilloley. Introduction to local certification. Discrete Mathematics & Theoretical

Computer Science, 23(Distributed Computing and Networking), 2021. doi:10.46298/dmtcs.
6280.

2 Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry. Redun-
dancy in distributed proofs. Distributed Comput., 34(2):113–132, 2021. doi:10.1007/
S00446-020-00386-Z.

3 Orr Fischer, Rotem Oshman, and Dana Shamir. Explicit space-time tradeoffs for proof
labeling schemes in graphs with small separators. In Quentin Bramas, Vincent Gramoli, and
Alessia Milani, editors, 25th International Conference on Principles of Distributed Systems
(OPODIS 2021), volume 217 of LIPIcs, pages 21:1–21:22. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/
LIPIcs.OPODIS.2021.21.

4 Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory of
Computing, 12(1):1–33, 2016. doi:10.4086/toc.2016.v012a019.

5 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Comput.,
22(4):215–233, 2010. doi:10.1007/S00446-010-0095-3.

6 David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000. doi:10.1137/
1.9780898719772.

https://doi.org/10.46298/dmtcs.6280
https://doi.org/10.46298/dmtcs.6280
https://doi.org/10.1007/S00446-020-00386-Z
https://doi.org/10.1007/S00446-020-00386-Z
https://doi.org/10.4230/LIPIcs.OPODIS.2021.21
https://doi.org/10.4230/LIPIcs.OPODIS.2021.21
https://doi.org/10.4086/toc.2016.v012a019
https://doi.org/10.1007/S00446-010-0095-3
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1137/1.9780898719772


Brief Announcement: Agent-Based Leader
Election, MST, and Beyond
Ajay D. Kshemkalyani #

Department of Computer Science, University of Illinois at Chicago, IL, USA

Manish Kumar #

Department of Computer Science & Engineering Indian Institute of Technology, Madras, India

Anisur Rahaman Molla #

R. C. Bose Centre for Cryptology and Security, Indian Statistical Institute, Kolkata, India

Gokarna Sharma #

Department of Computer Science, Kent State University, OH, USA

Abstract
Leader election is one of the fundamental and well-studied problems in distributed computing. In this
paper, we initiate the study of leader election using mobile agents. Suppose n agents are positioned
initially arbitrarily on the nodes of an arbitrary, anonymous, n-node, m-edge graph G. The agents
relocate themselves autonomously on the nodes of G and elect an agent as a leader such that the
leader agent knows it is a leader and the other agents know they are not leaders. The objective is to
minimize time and memory requirements. Following the literature, we consider the synchronous
setting in which each agent performs its operations synchronously with others and hence the time
complexity can be measured in rounds. The quest in this paper is to provide solutions without agents
knowing any graph parameter, such as n, a priori. We first establish that, without agents knowing
any graph parameter a priori, there exists a deterministic algorithm to elect an agent as a leader
in O(m) rounds with O(n log n) bits at each agent. Using this leader election result, we develop a
deterministic algorithm for agents to construct a minimum spanning tree of G in O(m + n log n)
rounds using O(n log n) bits memory at each agent, without agents knowing any graph parameter a
priori. Finally, using the same leader election result, we provide improved time/memory results for
other fundamental distributed graph problems, namely, gathering, maximal independent set, and
minimal dominating sets, removing the assumptions on agents knowing graph parameters a priori.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed algorithms, mobile agents, local communication, leader election,
MST, MIS, gathering, minimal dominating sets, time and memory complexity, graph parameters

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.50

Related Version Full Version: https://doi.org/10.48550/arXiv.2403.13716 [6]

1 Introduction

The well-studied message-passing distributed computing model assumes an underlying
distributed network represented as an undirected graph G = (V, E), where each vertex/node
corresponds to a computational device (such as a computer or a processor), and each edge
corresponds to a bi-directional communication link. Each node v ∈ G has a distinct Θ(log n)-
bit identifier, n = |V |. The structure of G (topology, latency) is assumed to be not known in
advance, and each node typically knows only its neighboring nodes. The nodes interact with
one another by sending messages (hence the name message-passing) to achieve a common
goal. The computation proceeds according to synchronized rounds. In each round, each node
v can perform unlimited local computation and may send a distinct message to each of its
neighbors. Additionally, each node v is assumed to have no limit on storage. In the LOCAL

© Ajay D. Kshemkalyani, Manish Kumar, Anisur Rahaman Molla, and Gokarna Sharma;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 50; pp. 50:1–50:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ajay@uic.edu
https://orcid.org/0000-0003-2451-7306
mailto:manishsky27@gmail.com
https://orcid.org/0000-0002-0414-7910
mailto:anisurpm@gmail.com
https://orcid.org/0000-0002-1537-3462
mailto:gsharma2@kent.edu
https://orcid.org/0000-0002-4930-4609
https://doi.org/10.4230/LIPIcs.DISC.2024.50
https://doi.org/10.48550/arXiv.2403.13716
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


50:2 Agent-Based Leader Election, MST, and Beyond

Table 1 Comparison of the message-passing and agent-based models.

Model Devices Local Device Neighbor
computation storage communication

Message-passing Static Unlimited No restriction Messages
Agent-based Mobile Unlimited Limited Relocation

variant of this model, there is no limit on bandwidth, i.e., a node can send any size message
to each of its neighbors. In the CONGEST variant, bandwidth is taken into account, i.e., a
node may send only a, possibly distinct, O(log n)-bit message to each of its neighbors.

In this paper, we consider the agent-based distributed computing model where the
computational devices are modeled as relocatable or mobile computational devices (which we
call agents). Departing from the notion of vertex/node as a static device in the message-
passing model, the vertices/nodes serve as containers for the devices in the agent-based
model. The agent-based model has two major differences with the message-passing model
(Table 1 compares the properties of the two models).

Difference I. The graph nodes do not have identifiers, computation ability, and storage, but
the devices are assumed to have distinct O(log n)-bit identifiers, computation ability, and
(limited) storage.

Difference II. The devices cannot send messages to other devices except the ones co-located
at the same node. To send a message to a device positioned at a neighboring node, a
device needs to relocate to the neighbor and can exchange information if a device is
positioned at the neighbor.

Difference II is the major problem for the agent-based model. To complicate further, while a
device relocates to a neighbor, the device at that neighbor might relocate to another neighbor.
Therefore, the devices need to coordinate to achieve the common goal.

In this paper, we initiate the study of a graph-level task of leader election in a distributed
network under the agent-based model. Leader election is one of the fundamental and well-
studied problems in distributed computing due to its applications in numerous problems,
such as resource allocation, reliable replication, load balancing, synchronization, membership
maintenance, crash recovery, etc. Leader election can also be seen as a form of symmetry
breaking, where exactly one special process or node (say a leader) is allowed to make some
critical decisions. The problem of leader election in the agent-based model requires a set of
agents operating in the distributed network to elect a unique leader among themselves, i.e.,
exactly one agent must output the decision that it is the leader.

1.1 Motivation
The agent-based model has recently found its use in multiple areas of computing. One
prominent example is Martinkus et al. [8] which proposes AgentNet – a graph neural network
(GNN) architecture, in which a collection of (neural) relocatable devices (called neural agents)
walk the graph and collectively classify the graph-level tasks, such as triangles, cliques, and
cycles. The model allows the neural agents to retrieve information from the node they
are occupying, their neighboring nodes (when they visit those nodes), and the co-located
devices. They showed that this agent-based model was able to detect cliques and cycles,
which was shown to be impossible in the widely-studied GNN architectures based on the
message-passing model (i.e., devices are static and communication is via passing messages).



A. D. Kshemkalyani, M. Kumar, A. R. Molla, and G. Sharma 50:3

Additionally, a recent study [1] has shown that the fundamental graph-level task of triangle
detection can be solved in the agent-based model by a deterministic algorithm in O(∆ log n)
rounds with O(∆ log n) bits at each device. In contrast, it is known that in the CONGEST
message-passing model it takes O(n1/3 polylog(n)) rounds to solve triangle detection by a
randomized algorithm [4], which is almost tight since there is the Ω(n1/3/ log n) lower bound
[5, 10], and hence the agent-based model provides a clear advantage when ∆ < n1/3 polylog(n)
despite restriction on communication through device relocation.

1.2 Contributions
Table 2 summarizes the problems studied and bounds obtained as well as comparison with
the previous results. Specifically, we develop a deterministic algorithm for leader election with
provable guarantees on two performance metrics that are fundamental to the agent-based
model: time complexity of a solution and storage requirement per agent. We focus on the
deterministic algorithms since they may be more suitable for relocatable devices. Our quest
is to provide an algorithm that does not ask the agents to rely on any knowledge (neither
exact nor an upper bound) on graph parameters, such as n (the network size and also the
number of agents), ∆ (the maximum degree of G), and D (diameter of G). This is in contrast
to the message-passing model which typically assumes that n (exact n or an upper bound
N on n) is known to the nodes/devices, and may be additionally ∆ and D [3]. This also
contrasts research in the agent-based model with known parameters (e.g., [2, 9, 11]). On the
one hand, not knowing these parameters has its own merits as the solutions designed are
more resilient to network changes and device faults. On the other hand, algorithm design
becomes challenging since devices may not know how long to run a procedure to guarantee a
solution.

Moreover, the agent-based model treats storage requirement as the first order performance
metric in addition to time complexity. This is in contrast to the message-passing model
where storage complexity was often neglected with the implicit assumption that the devices
have no restriction on the amount of storage needed to successfully run the algorithm; in
the message-passing model, the focus was given on message complexity (the total number
of messages sent by all nodes for a solution [10]) as the first order performance metric in
addition to time complexity. The goal is to use storage as small as possible (comparable to
the device identifier size of O(log n) bits per device). The limited storage makes it impossible
for the relocatable devices to first traverse the graph to learn the topology and then run
graph computation as a second step.

Using the proposed deterministic leader election algorithm with provable guarantees on
time and storage, we construct a minimum spanning tree (MST) of G, another fundamental
and well-studied problem in distributed computing, for the first time in the agent-based model,
without agents knowing any graph parameter a priori. We provide both time and memory
complexities. Finally, as an application, using the same leader election result, we provide
improved time/memory complexity algorithms for many other fundamental distributed graph
problems, namely gathering, maximal independent set (MIS), and minimal dominating sets
(MDS), removing the parameter assumptions in the literature.

1.3 Challenges
The message-passing model allows the nodes (processors) to send/receive messages to/from
their neighbors, i.e., in a single round, a node can send a message to all its neighbors and
receive messages from all its neighbors. In contrast, in the agent-based model, the messages

DISC 2024



50:4 Agent-Based Leader Election, MST, and Beyond

Table 2 Summary of previous and our results in the agent-based model. M is the memory
required for the Universal Exploration Sequence (UXS) [13] and γ is the number of clusters of agents
in the initial configuration. Previous results have parameter assumptions as outlined above. Our
results do not have such assumptions. “−” means no previous result for the corresponding problem.
“D” denotes the dispersed initial configuration.

problem previous result our result (no parameter known)
time memory/agent known time memory/agent

leader − − − O(m) O(n log n)
O(log2 n) (D)

MST − − − O(m+ O(n log n)
n log n) O(log n min{∆, log n}) (D)

gathering O(n3) O(M + m log n) n [9] O(m) O(n log n)
O(log2 n) (D)

MIS O(n∆ log n) O(log n) n, ∆ [11] O(n∆) O(n log n)
O(log2 n) (D)

MDS O(γ∆ log n+ O(log n) n, ∆, O(m) O(n log n)
nγ + m) m, γ [2] O(log2 n) (D)

from an agent, if any, that are to be sent to the other agents in the neighboring nodes have
to be delivered by the agent visiting those neighbors. Furthermore, it might be the case
that when the agent reaches that node, the agent at that node may have already moved
to another node. Therefore, any algorithm in the agent-based model needs to guarantee
message delivery by synchronizing sender and receiver agents to be co-located at a node.

Additionally, the graph-level tasks (such as MST) demand each node of G to have an
agent positioned on it to be able to provide a solution, i.e., if agents are not in a dispersed
configuration, then MST constructed may not the MST of whole G but its sub-graph.
Additionally, the MST computed may be the MST forest of graph components formed by
agent positions. Notice that the initial configuration of n agents in a n-node graph G may
not be dispersed.

Suppose initially the agent configuration is dispersed. Surprisingly, even in this initial
configuration, the agent positioned at a node does not know this configuration. Therefore,
irrespective of whether the nodes have zero, single, or multiple agents initially, it seems
highly advantageous to reach a dispersed configuration.

Suppose the agents are in a dispersed configuration and the goal is to construct MST.
The question is which agent starts MST construction and when. The leader election problem
handles this symmetry breaking issue, since if a leader can be elected, then the authority
can be given to the leader agent to initiate MST construction. The remaining agents do not
participate in MST construction until the leader grants them authority to do so. Although
having a leader seems to make MST construction easier and possibly other problems too,
electing a leader itself turned out to be a difficult task.

2 Algorithm Overview

Initially, a graph node may have zero, one, or multiple agents. All these agents are “candidates”
to become leader. A candidate needs to first become a “local leader” before becoming a
“global leader”. Each candidate that cannot become a “local leader” (also each “local leader”
that cannot become a “global leader”) will become a “non_candidate”.



A. D. Kshemkalyani, M. Kumar, A. R. Molla, and G. Sharma 50:5

If an agent is initially singleton at a node, then it runs Singleton_Election proce-
dure to become a local leader. If an agent is not initially non-singleton then it runs
Multiplicity_Election procedure to become a local leader. After an agent becomes a local
leader, it runs Global_Election procedure to become a global leader.

An agent ru running Singleton_Election procedure at a node u will be successful in
becoming a local leader if and only if all u’s neighbors have initially a singleton agent
positioned on them and u has the smallest degree compared to the neighboring nodes. Each
initially singleton agent ru at node u running Singleton_Election procedure visits the
neighbors of u one by one which finishes in 2δu rounds, where δu is the degree of u. If not all
neighbors have initially singleton agents positioned, the agent gets to know it cannot become
a local leader. It then stops executing the Singleton_Election procedure and becomes
“non_candidate”.

An agent ru initially at node u running Multiplicity_Election procedure will be successful
in becoming a local leader if and only if it has the smallest ID among the ones positioned
with it initially at u. To achieve so, Multiplicity_Election procdure executes a Depth First
Search (DFS) traversal ans settles the robots on each empty node visited the the traversal
until there is only a singleton agent left. As soon as this condition satisfies (the smallest ID
agent becomes a singleton at node w), it declares itself as a local leader1 Except one robot,
all the other robots in the Multiplicity_Election procedure become “non_candidate”.

To make sure that Multiplicity_Election procedure meets the Singleton_Election

procedure (if it is running), Multiplicity_Election procedure waits at a node for a round.
Singleton_Election stops and the agent becomes “non_candidate” when it knows about
Multiplicity_Election.

After becoming a local leader (irrespective of whether through Singleton_Election or
Multiplicity_Election, the local leader agent runs Global_Election procedure to become
a global leader. Global_Election procedure is again a DFS traversal as in Multiplicity_
Election but with the goal to visit all the edges of G. To make it easier for other local leaders
or Multiplicity_Election procedure from another agent to not mistakenly put an agent on the
home node (the node where an agent becomes a local leader running Singleton_Election or
Multiplicity_Election) of a local leader the neighbor nodes are asked to store the information
about a home node. The agents running Multiplicity_Election and Global_Election check
the neighbors to confirm whether the visited empty node is in fact a home node of a
local leader (or a node of an agent that is waiting to possibly become a local leader).
This confirmation is obtained running Confirm_Empty procedure. If an empty node
is a home node (or possible home node of an agent waiting to possibly become a local
leader), Multiplicity_Election and Global_Election continue leaving that node empty as
is. Otherwise, Multiplicity_Election puts an agent and continues, and Global_Election

stops as it knows that Multiplicity_Election procedure from at least one agent has not
finished yet.

There may be the case that while running Global_Election, DFS(roundNoi, ri) of local
leader ri may meet DFS(roundNoj , rj) of local leader rj . In this case, DFS(roundNoi, ri)
continues if roundNoi > roundNoj (if same round number, use agent IDs), otherwise
DFS(roundNoj , rj). If DFS(roundNoj , rj) stops, then rj becomes “non_candidate” and
returns to its home node following parent pointers in DFS(roundNoj , rj).

After a leader is elected, as an application, we use it to solve other fundamental problems.
One is MST construction which was not considered in the agent-based model before. The

1 There are cases where the parent node of w in the DFS tree built is empty and it demands the eligible
robot to wait at w to decide later whether to become a local leader or a non-candidate.

DISC 2024



50:6 Agent-Based Leader Election, MST, and Beyond

rest are gathering, MIS, and MDS problems which were considered in the agent-based model
before but solved assuming that the agents know one or more graph parameters a priori.
We lift those assumptions and additionally provide improved time/memory bounds. This
is possible by combining the leader election result with the techniques developed on the
previous work under known graph parameters. The results are in Table 2.

For the MST construction, the leader plays a crucial role in synchronizing the agents.
The leader ranks the agents and starts constructing an MST. It keeps its rank the highest.
The leader, once its job is done, informs that second ranked agent to continue constructing
MST. The second informs the third, and so on, until (n − 1)-ranked agents pass the token to
the n-th ranked. The n-th ranked agent passes the token back to the leader and one phase
of MST construction finishes. It is guaranteed that at the end of this phase, there will be at
least n/2 edges of the MST identified. Therefore, repeating this process for O(log n) phases,
we have all n − 1 edges of MST correctly identified, giving an MST of G.

2.1 Discussion on Memory Requirement
In our leader election algorithm, if n and ∆ are known, a dispersed configuration can
be achieved starting from any initial configuration in either O(n log2 n) rounds using the
algorithm of Sudo et al. [12] or in O(m) rounds using the algorithm of Kshemkalyani and
Sharma [7], with O(log n) bits per agent. After that, Singleton_Election can finish in
O(∆ log2 n) rounds with O(log n) bits per agent. Then finally Global_Election procedure
finishes electing a unique global leader in O(m) rounds with O(log n) bits per agent. Therefore,
leader election can be done with only O(log n) bits per agent (n factor improvement compared
to our algorithm non-dispersed configurations). For the MST construction, a node may need
to remember multiple of its neighboring edges as a part of MST and hence the total memory
needed would be O(∆ log n) bits per agent. However, notice that this memory improvement
assume known n and ∆. The proposed leader election algorithm does not rely on any known
graph parameters. Therefore, the proposed leader election algorithms is interesting despite
O(n log n) bits memory requirement as it helped to achieve for the first time results for MST
in the agent-based model and also to provide improved time/memory results for gathering,
MIS, and MDS in the agent-based model, lifting the assumptions on known graph parameters.

References
1 Prabhat Kumar Chand, Apurba Das, and Anisur Rahaman Molla. Agent-based triangle

counting and its applications in anonymous graphs. In AAMAS, 2024. doi:10.48550/arXiv.
2402.03653.

2 Prabhat Kumar Chand, Anisur Rahaman Molla, and Sumathi Sivasubramaniam. Run for
cover: Dominating set via mobile agents. In ALGOWIN, pages 133–150. Springer, 2023.
doi:10.1007/978-3-031-48882-5_10.

3 Yi-Jun Chang, Seth Pettie, and Hengjie Zhang. Distributed triangle detection via expander
decomposition. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 821–840. SIAM, 2019. doi:10.1137/1.9781611975482.51.

4 Yi-Jun Chang and Thatchaphol Saranurak. Improved distributed expander decomposition and
nearly optimal triangle enumeration. In Peter Robinson and Faith Ellen, editors, Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 66–73. ACM, 2019. doi:10.1145/3293611.3331618.

5 Taisuke Izumi and François Le Gall. Triangle finding and listing in CONGEST networks.
In Elad Michael Schiller and Alexander A. Schwarzmann, editors, Proceedings of the ACM

https://doi.org/10.48550/arXiv.2402.03653
https://doi.org/10.48550/arXiv.2402.03653
https://doi.org/10.1007/978-3-031-48882-5_10
https://doi.org/10.1137/1.9781611975482.51
https://doi.org/10.1145/3293611.3331618


A. D. Kshemkalyani, M. Kumar, A. R. Molla, and G. Sharma 50:7

Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July
25-27, 2017, pages 381–389. ACM, 2017. doi:10.1145/3087801.3087811.

6 Ajay D. Kshemkalyani, Manish Kumar, Anisur Rahaman Molla, and Gokarna Sharma. Agent-
based MST construction. CoRR, abs/2403.13716, 2024. doi:10.48550/arXiv.2403.13716.

7 Ajay D. Kshemkalyani and Gokarna Sharma. Near-optimal dispersion on arbitrary anonymous
graphs. In 25th International Conference on Principles of Distributed Systems, OPODIS,
pages 8:1–8:19, 2021. doi:10.4230/LIPICS.OPODIS.2021.8.

8 Karolis Martinkus, Pál András Papp, Benedikt Schesch, and Roger Wattenhofer. Agent-
based graph neural networks. In The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL:
https://openreview.net/pdf?id=8WTAh0tj2jC.

9 Anisur Rahaman Molla, Kaushik Mondal, and William K. Moses Jr. Byzantine dispersion on
graphs. In IPDPS, pages 1–10, 2021.

10 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. On the distributed complexity
of large-scale graph computations. In Christian Scheideler and Jeremy T. Fineman, editors,
Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures, SPAA
2018, Vienna, Austria, July 16-18, 2018, pages 405–414. ACM, 2018. doi:10.1145/3210377.
3210409.

11 Debasish Pattanayak, Subhash Bhagat, Sruti Gan Chaudhuri, and Anisur Rahaman Molla.
Maximal independet set via mobile agents. In ICDCN, pages 74–83. ACM, 2024. doi:
10.1145/3631461.3631543.

12 Yuichi Sudo, Masahiro Shibata, Junya Nakamura, Yonghwan Kim, and Toshimitsu Masuzawa.
Near-linear time dispersion of mobile agents, 2023. arXiv:2310.04376, doi:10.48550/arXiv.
2310.04376.

13 Amnon Ta-Shma and Uri Zwick. Deterministic rendezvous, treasure hunts, and strongly
universal exploration sequences. ACM Trans. Algorithms, 10(3):12:1–12:15, 2014. doi:
10.1145/2601068.

DISC 2024

https://doi.org/10.1145/3087801.3087811
https://doi.org/10.48550/arXiv.2403.13716
https://doi.org/10.4230/LIPICS.OPODIS.2021.8
https://openreview.net/pdf?id=8WTAh0tj2jC
https://doi.org/10.1145/3210377.3210409
https://doi.org/10.1145/3210377.3210409
https://doi.org/10.1145/3631461.3631543
https://doi.org/10.1145/3631461.3631543
https://arxiv.org/abs/2310.04376
https://doi.org/10.48550/arXiv.2310.04376
https://doi.org/10.48550/arXiv.2310.04376
https://doi.org/10.1145/2601068
https://doi.org/10.1145/2601068




Brief Announcement: Clock Distribution with
Gradient TRIX
Christoph Lenzen # Ñ

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Shreyas Srinivas1 #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract
Gradient clock synchronisation (GCS) algorithms minimise the worst-case clock offset between the
nodes in a distributed network of diameter D and size n. They achieve optimal offsets of Θ(log D)
locally, i.e. between adjacent nodes [8], and Θ(D) globally [1]. A key open problem in this area is to
achieve fault tolerance at minimal overhead in terms of the number of edges.

In this work, we achieve this goal under the assumption of an average-case distribution of faults,
i.e., nodes fail with independent probability p ∈ o(n−1/2). In more detail, we present a self-stabilising
GCS algorithm for a grid-like directed graph with in- and out-degrees of 3. Note that even for
tolerating a single fault, this degree is necessary. Moreover, the failure probability p is the largest
possible ensuring the necessary condition that for each node at most one in-neighbour fails with
probability 1 − o(1). Our algorithm achieves asymptotically optimal local skew of Θ(log D) with
probability 1 − o(1); this holds under general worst-case assumptions on link delay and clock speed
variations, provided they change slowly relative to the speed of the system.

On the one hand, our results are of practical interest. As we discuss with care, the fault model
is suitable for synchronously clocked hardware. Since our algorithm can simultaneously sustain
a constant number of arbitrary changes due to faults in each clock cycle, it achieves sufficient
robustness to dramatically increase the size of synchronously clocked Systems-on-Chip.

On the other hand, our result is of a theoretical and algorithmic nature. We show that for a
worst-case distribution of f 1-local faulty nodes within our fault model’s locality constraints, our
algorithm achieves a local skew of O(5f log D), while for our model with probabilistic distribution of
faults the algorithm achieves O(log D). Our work raises questions for further theoretical investigation
on techniques for fault tolerance and trade-offs between fault distribution and edge density of graphs.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Hardware →
Fault tolerance

Keywords and phrases local skew, gradient clock synchronisation, average-case fault-tolerance,
self-stabilisation, Systems-on-Chip

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.51

Related Version Full Version: https://arxiv.org/abs/2301.05073 [9]

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement 716562).

Acknowledgements Shreyas Srinivas is a doctoral student at the Graduate School of Computer
Science, Saarbrücken.

1 The Basic Problem

The problems of distributed clock synchronisation and distribution are concerned with
getting nodes in a network to agree on a common notion of time, expressed by their output
logical clocks. The extent of disagreement is quantified by clock skews i.e. the maximum

1 corresponding author
© Christoph Lenzen and Shreyas Srinivas;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 51; pp. 51:1–51:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lenzen@cispa.de
https://sites.google.com/view/christoph-lenzen
mailto:shreyas.srinivas@cispa.de
https://orcid.org/0000-0002-3993-1596
https://doi.org/10.4230/LIPIcs.DISC.2024.51
https://arxiv.org/abs/2301.05073
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


51:2 Brief Announcement: Clock Distribution with Gradient TRIX

instantaneous difference in the output clock values of two nodes. An algorithm for this
problem must seek to minimise two kinds of skew: local skew, i.e. clock skews between
adjacent nodes, and global skew,i.e. clock skews between any pair of nodes in the network.
Equally such an algorithm must be resilient to faults, both permanent and transient. From a
pragmatic standpoint, we would like to achieve all the above properties without cluttering
up our graph with replicated nodes and edges.

In this work we study the problem of distributing clock signals through a grid like graph
of diameter D with optimal global and local clock skews of respectively O(D) and O(log D),
which is self stabilising and resilient to a reasonable distribution of faults. Finally, we would
like to achieve the aforementioned resilience to faults by adding the minimum possible amount
of edge and vertex redundancy into our network. While this last requirement arises from
our desire to clock VLSI systems, the question is of independent theoretical interest since
edge connectivity is an expensive resource in several domains. Our results challenge the
notion that fault tolerance always requires masses of edge and vertex replication, by showing
that reasonable levels of fault tolerance can be achieved at little loss of optimal performance
without excessive edge replication. We summarise our desiderata below:

Fault-Tolerant Clock Synchronisation Problem (Informal)

Compute at each node of a distributed system a logical clock with the following
properties.

Minimising Global Skew: The skew between any pair of nodes i.e. Global Skew
is minimised as a function of the network diameter D: Θ(D).
Minimising Local Skew: The skew between adjacent pairs of nodes i.e. Local
Skew is minimised as a function of the network diameter D: Θ(log D).
Fault Tolerance: A set of at most f permanently faulty processes according to
a given fault model does not increase clock skews (up to a constant factor).
Self-Stabilisation: After system-wide transient (i.e., temporary) faults, the
processes re-converge to optimal skews.
Optimal Edge Density: Achieve the above in a network topology with minimal
node degree.

2 Our Model

We describe a slightly simplified model and leave the motivation behind it to Section 4.

Our Network: We describe our grid-like network here. Starting with a simple connected
base graph H = (V, E) of minimum degree 2 and diameter D, we derive the graph G =
(VG, EG) for synchronisation as follows: for each ℓ ∈ N we create a copy Vℓ of V . Denoting
by (v, ℓ) the copy of v ∈ V in Vℓ, we define Eℓ := {((v, ℓ), (w, ℓ + 1)) | {v, w} ∈ E ∨v = w}.
We now obtain G by setting VG :=

⋃
ℓ∈N Vℓ and EG :=

⋃
ℓ∈N Eℓ. That is, for each layer

ℓ ∈ N we have a copy of v ∈ V , which has outgoing edges to the copies of itself and all its
neighbours on layer ℓ + 1, where ℓ is bounded from above by some value in Θ(

√
n). Since

VG is a DAG, we refer to out-neighbours as successors and in-neighbours as predecessors.
An example base graph and the construction of two layers from it are shown in Figure 1.



C. Lenzen and S. Srinivas 51:3

Figure 1 The figure on the bottom shows an example base graph and the figure on the top shows
a two layer example of the grid graph constructed from the base graph.

Fault Model: An unknown subset F ⊂ VG is faulty, meaning that these nodes do not
adhere to the clock distribution protocol. We assume that each node fails independently
with probability p ∈ o(1/

√
n).2 In particular, this entails that with probability 1 − o(1),

no node has two faulty predecessors, i.e., faults are 1-local.
Communication: Each node can broadcast pulse messages on its out-edges. If node
vℓ ∈ Vℓ broadcasts at time tv,ℓ, its successors receive its message at (potentially different)
times from [tv,ℓ + d − u, tv,ℓ + d]. The maximum end-to-end delay d includes computation-
induced ones. Typically, the delay uncertainty u is much smaller than d. We assume
delays change much slower than the output clock frequency. Faulty nodes can send pulses
at arbitrarily.
Local Clocks and Computations: Each node (v, ℓ) has an imperfect local time
reference by query access to a hardware clock Hv,ℓ : R≥0 → R≥0 satisfying

∀t < t′ ∈ R≥0, t′ − t ≤ Hv,ℓ(t′) − Hv,ℓ(t) ≤ ϑ(t′ − t)

for a drift parameter ϑ > 1. No phase relation is assumed between the hardware clocks.
Hardware clock speeds change slowly relative to the frequency of the output clocks.
Computations are deterministic and can be triggered by arrival of messages or timers off
the hardware clocks.
Output and Skew: The algorithm outputs logical clocks in the form of pulses such
the pulses generated by correct nodes are synchronised. For simplicity, we assume that
correct nodes on layer 0 generate well-synchronised pulses at times tk

v,0 for k ∈ N>0 at a
frequency we control. Other correct nodes generate pulses tk

v,ℓ, k ∈ N>0, based on the
pulse messages received from their predecessors. We seek to minimise the worst-case
local skew that the algorithm guarantees. The local skew is defined as the largest offset
between the k-th pulses of adjacent nodes on the same layer or pulses k and k + 1 of
adjacent nodes on layers ℓ and ℓ + 1, whichever is larger. Formally, for ℓ ∈ N, we define

Lℓ := sup
k∈N

max
{v,w}∈E

(v,ℓ),(w,ℓ)/∈F

{|tk
v,ℓ − tk

w,ℓ|}, Lℓ,ℓ+1 := sup
k∈N

max
((v,ℓ),(w,ℓ+1))∈Eℓ

(v,ℓ),(w,ℓ+1)/∈F

{|tk+1
v,ℓ − tk

w,ℓ+1|},

and L := supℓ∈N max{Lℓ, Lℓ,ℓ+1}.
Between consecutive layers, we synchronise consecutive pulses. After initialisation, which
is complete once the first pulse propagated through the grid, this is equivalent to a
layer-dependent index shift of pulse numbers.

2 We stress that this requirement is not stronger than that of [3, 10] and [2] for f = 1 in any practical
sense. If faults correlate in a way clustering them together, it is likely that neighbours fail. Assuming
independence (or, more generally, negative correlation) captures “faults do not cluster” in the most
straightforward way that allows us to exploit this property beyond immediate neighbours.

DISC 2024



51:4 Brief Announcement: Clock Distribution with Gradient TRIX

3 The Key Technical Ingredients and Results

Our results are obtained from a medley of two lines of results, see Table 1 for a summary.

Clock Synchronisation and Optimal Skews: This line dates back to the work of
Fan and Lynch [4], who introduced the problem of gradient clock synchronisation (hereon
the GCS problem), which expanded the clock synchronisation problem to general graphs.
A fruitful line of work [1, 7, 8] established both lower and upper bounds of Θ(log D)
on skews that could be achieved. In fact the aptly named GCS (family of) algorithms
additionally guaranteed the property of resilience to transient faults i.e. self-stabilisation.
However the GCS algorithm is stubbornly intolerant of even a single faulty node that can
lie to different neighbours which are otherwise distantly connected. In [2], the authors
achieved resilience to 1-local faults by a massive replication of the vertices and edges
in the original network (based on a general scheme with factor-O(f2) edge overhead),
but requiring 20-fold edge replication and 4-fold vertex replication renders the scheme
impractical.
Fault Tolerance Clock Distribution in Sparse Grids: The other line of work [3, 10]
focused on protocols for distributing a signal generated from a fault tolerant base network
across a grid with fault tolerance and optimal edge connectivity. In these schemes, the
nodes have no local hardware clocks of their own. They forward pulses as they received
them according to the forwarding protocol. TRIX [10] has a simple pulse forwarding
rule: Each node receives 3 copies of each pulse from 3 grid-adjacent in-neighbours and
forwards the median copy. It achieves 1-local fault tolerance at the cost of 2 extra edges
per node, but with O(D) local skew.

Our Idea. It is useful to think of the pulses output by clock synchronisation and distribution
schemes as discrete time points in a logical clock value they generate for each time instant.
Thus we can speak of our logical clock functions being set forward or backward or have its
rate of change altered. In the actual algorithm this is handled by altering the time at which
successive pulses of the output clock are emitted.

We seek the best of both worlds described above. The GCS algorithm follows a “move
slowly to the midpoint of all your neighbours’ clocks up to a discrete value κ” rule, i.e.
the gradient rule. Here κ is a constant picked by the algorithm designer that subsumes
measurement errors from all the potential sources of uncertainty, that arise when nodes
estimate their neighbours’ logical clock values. The GCS algorithm offers optimal local skew,
but poor fault tolerance.

In the TRIX distribution scheme nodes adjust their logical clocks immediately per a
“jump immediately to the median clock of three” rule to pick one of three pulses as reference,
i.e. the median rule. These nodes have no local reference and they merely forward pulses as
they receive the second copy of each pulse. This scheme offers excellent 1-local fault tolerance
but has sub-optimal O(D) local skew.

Gradient TRIX. Our scheme Gradient TRIX attempts to combine these two rules as follows:
It adapts a generalisation of the TRIX grid, described in Section 2. In particular, unlike
TRIX, the nodes now have local clock references.
The simple median pulse forwarding rule is replaced by a wait and forward rule configurable
according to a parameter Λ that dictates the time period we seek to achieve for the
output pulses. This fixes Λ as well as κ = Ω

(
u +

(
1 − 1

ϑ

)
(Λ − d)

)
.



C. Lenzen and S. Srinivas 51:5

The pulse forwarding rule is a variant of the GCS algorithm that safely and consistently
combines the gradient rule with a modified median rule. More specifically, in addition
to discrete adaptations of traditional GCS, typically called Slow and Fast conditions [9,
Definition 9 and 10], we have a third set of Jump Conditions [9, Definition 11].

Intuitively, each row of the grid is playing a pass the GCS parcel game. For the duration of
forwarding one pulse, each row is pretending to simulate a variation of the GCS algorithm
on the base graph and then pass the baton to the next row. It is in this intuition that one
can glimpse the idea behind the skew result of Theorem 1.

▶ Theorem 1. If there are no faults, then Lℓ ≤ 4κ(2 + log D) for all ℓ ∈ N.

This bound also accounts for suitable parameter choices that ensure that adjacent rows are
closely synchronised, while a much more challenging version of the gradient property ensures
synchronisation within the rows of the grid-like graph.

Up to technical details, the algorithm’s self-stabilisation property is an immediate con-
sequence of the directed propagation of pulses through the grid; once the first layer starts
generating pulses at the right frequency with small local skew, the other layers follow.

▶ Theorem 2. The pulse propagation algorithm can be implemented in a self-stabilising way.
It stabilises within O(

√
n) pulses.

Further, f permanent 1-local faults in the grid become temporary faults from the
perspective of the GCS algorithm simulated on the base graph. However, for each row
containing such a faulty node, the local skew might be increased by a constant factor in
the worst case. Thus, we get what appears to be a substantial skew build up in the worst
situation that f 1-local faults permit.

▶ Theorem 3. If there are at most f faulty nodes and none in layer 0, then Lℓ ∈ O(5f κ log D).

However, when faults are uniformly randomly distributed with each node being faulty
with probability i.i.d. o(1/

√
n), the faults are sufficiently sparse that self-stabilisation of

the simulated GCS algorithm will reduce the local skew fast enough to prevent the above
exponential increase.

▶ Theorem 4. With probability 1 − o(1), Lℓ ∈ O(κ log D) for all ℓ ∈ N.

A limitation of our results inherent to the directed propagation of pulses that ensures
self-stabilisation of the overall scheme is that sudden changes in the timing of many links
disrupt synchronisation.

▶ Theorem 5. If faulty nodes do not change the timing of their output pulses, then L ∈
O(κ log D) with probability 1 − o(1).

On the other hand, in the considered application scenario of clock distribution on chips,
the scheme is strong enough to handle the expected limited changes that occur in a clock
cycle, i.e., a sub-nanosecond timescale.

▶ Corollary 6. With probability 1 − o(1), L ∈ O(κ log D) even when in each pulse (i) a
constant number of faulty nodes change their output behaviour and timing, (ii) link delays
vary by up to n−1/2u log D, and (iii) hardware clock speeds vary by up to n−1/2(ϑ − 1) log D.

3 Given a graph topology G, the augmented graph contains a 3f + 1-clique of replica vertices for each
node v in G and Θ(f2) copies of each edge {v, w} ∈ G corresponding to all the possible pairs of the
replicas of v and w

DISC 2024



51:6 Brief Announcement: Clock Distribution with Gradient TRIX

Table 1 Comparison with related work. Except GCS, “resilience” refers to Byzantine fault-
tolerance, i.e., worst-case behaviour of faulty nodes. However, in our work the fault model is
restricted: Only a few faulty nodes change their behaviour within a short amount of time. In turn,
we are the first to simultaneously achieve optimal skew bounds, self-stabilisation, and minimal
degrees.

method global skew local skew resilience self-stab. graph topology
LW [11] O(1) O(1) < n/3 no complete (D = 1)
KL [6] O(1) O(1) < n/3 yes complete (D = 1)
HEX [3] O(dD) d+O(u2D/d) 1-local yes grid-like,

suboptimal degree
TRIX [10] O(uD2) O(uD) 1-local yes grid-like,

optimal degree
GCS [8] O(uD) O(u log D) crashes only yes arbitrary
Fault-tolerant
GCS [2]

O(uD) O(u log D) f -local yes Θ(f2)-augmented
arbitrary graph3

Gradient TRIX
(this work)

O(uD) O(u log D) independent
p ∈ o(n−1/2)

yes grid-like,
optimal degree

Gradient TRIX
(this work)

O(uD) O(5f u log D) 1-local,
f faults

yes grid-like,
optimal degree

4 Motivating our Model: An Exercise in Theory Building

In this final section, we take a closer look at some of our modelling choices that might appear
strange at first glance. A key motivation of this work is to produce theoretically correct
algorithms which can be applied to the synchronous clocking of VLSI systems. This guides
our modelling choices on two fronts:

Our Topology: At a very high level, we would like to synchronise so-called clock islands
on modern VLSI systems that currently rely on expensive asynchronous communication.
This naturally suggests a grid-like topology. However, a simple grid does not suffice.
Even with our extremely sparse network connectivity, we require each node in every row
to have three neighbours in adjacent rows, meaning that the nodes at the right and left
boundary “miss” a neighbour. Mathematically, the most elegant solution would be a
cylinder, but embedding it on a rectangular grid induces a wasteful factor 2 overhead.
Instead, we fall back to replicating each node on the right and left boundary once and
connecting the two copies. Our scheme is phrased in a more general way, allowing for
arbitrary base graphs of minimum degree 2. Our approach achieves this at asymptotically
negligible overhead.
Our Fault Model: Here, we strike a fine balance between practical viability and the
theoretical optimum. A large class of permanent faults can be chalked up to manufacturing
process variations and ageing. While there are correlations, the dominant contributing
factors are approximately i.i.d. Further variations due to long voltage droops and
temperature variations happen over times ranging a few microseconds to milliseconds [5,
chp. 7]; orders of magnitude longer than the typical clock cycle. This justifies assuming
that most delays do not change dramatically between consecutive pulses. Note that local
oscillators are, ultimately, timed by such delays, so this applies to changes in hardware
clock speeds as well.



C. Lenzen and S. Srinivas 51:7

References
1 Saâd Biaz and Jennifer Lundelius Welch. Closed Form Bounds for Clock Synchronization

under Simple Uncertainty Assumptions. Information Processing Letters, 80:151–157, 2001.
doi:10.1016/S0020-0190(01)00151-X.

2 Johannes Bund, Christoph Lenzen, and Will Rosenbaum. Fault Tolerant Gradient Clock
Synchronization. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 357–365,
2019. doi:10.1145/3293611.3331637.

3 Danny Dolev, Matthias Függer, Christoph Lenzen, Martin Perner, and Ulrich Schmid. HEX:
Scaling honeycombs is easier than scaling clock trees. Journal of Computer and System
Sciences, 82(5):929–956, 2016. doi:10.1016/j.jcss.2016.03.001.

4 Rui Fan and Nancy Lynch. Gradient Clock Synchronization. In Symposium on Principles of
Distributed Computing (PODC), pages 320–327, 2004. doi:10.1145/1011767.1011815.

5 David Harris and N Weste. Cmos vlsi design. ed: Pearson Education, Inc, 2010.
6 Pankaj Khanchandani and Christoph Lenzen. Self-Stabilizing Byzantine Clock Synchronization

with Optimal Precision. Theory of Computing Systems, 2018.
7 Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Clock Synchronization with

Bounded Global and Local Skew. In Symposium on Foundations of Computer Science (FOCS),
pages 509–518, 2008. doi:10.1109/FOCS.2008.10.

8 Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight Bounds for Clock Syn-
chronization. J. ACM, 57(2), 2010. doi:10.1145/1667053.1667057.

9 Christoph Lenzen and Shreyas Srinivas. Gradient trix, 2023. arXiv:2301.05073, doi:10.
48550/arXiv.2301.05073.

10 Christoph Lenzen and Ben Wiederhake. TRIX: Low-Skew Pulse Propagation for Fault-Tolerant
Hardware, 2020. arXiv:2010.01415.

11 Jennifer Lundelius Welch and Nancy A. Lynch. A New Fault-Tolerant Algorithm for Clock Syn-
chronization. Information and Computation, 77(1):1–36, 1988. doi:10.1016/0890-5401(88)
90043-0.

DISC 2024

https://doi.org/10.1016/S0020-0190(01)00151-X
https://doi.org/10.1145/3293611.3331637
https://doi.org/10.1016/j.jcss.2016.03.001
https://doi.org/10.1145/1011767.1011815
https://doi.org/10.1109/FOCS.2008.10
https://doi.org/10.1145/1667053.1667057
https://arxiv.org/abs/2301.05073
https://doi.org/10.48550/arXiv.2301.05073
https://doi.org/10.48550/arXiv.2301.05073
https://arxiv.org/abs/2010.01415
https://doi.org/10.1016/0890-5401(88)90043-0
https://doi.org/10.1016/0890-5401(88)90043-0




Brief Announcement: Reconfigurable
Heterogeneous Quorum Systems
Xiao Li #

University of California, Riverside, CA, USA

Mohsen Lesani #

University of California, Santa Cruz, CA, USA

Abstract
In contrast to proof-of-work replication, Byzantine quorum systems maintain consistency across
replicas with higher throughput, modest energy consumption, and deterministic liveness guarantees.
If complemented with heterogeneous trust and open membership, they have the potential to serve as
blockchains backbone. This paper presents a general model of heterogeneous quorum systems where
each participant can declare its own quorums, and captures the consistency, availability and inclusion
properties of these systems. In order to support open membership, it then presents reconfiguration
protocols for heterogeneous quorum systems including joining and leaving of a process, and adding
and removing of a quorum, and further, proves their correctness in the face of Byzantine attacks.
The design of the protocols is informed by the trade-offs that the paper proves for the properties that
reconfigurations can preserve. The paper further presents a graph characterization of heterogeneous
quorum systems, and its application for reconfiguration optimization.

2012 ACM Subject Classification Computer systems organization → Reliability; Computer systems
organization → Availability; Computing methodologies → Distributed algorithms

Keywords and phrases Quorum Systems, Reconfiguration, Heterogeneity

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.52

Related Version Full Version: https://arxiv.org/abs/2304.02156

1 Introduction

Banks have been traditionally closed; only established institutions could hold accounts and
execute transactions. With regulations in place, this centralized model can preserve the
integrity of transactions. However, it makes transactions across these institutions costly
and slow; further, it keeps the power in the hands of a few. In pursuit of decentralization,
Bitcoin [17] provided open membership: any node can join the Bitcoin network, and validate
and process transactions. It maintains a consistent replication of an append-only ledger,
called the blockchain, on a dynamic set of global hosts including potentially malicious ones.
However, it suffers from a few drawbacks: low throughput, high energy consumption, and
only probabilistic guarantees of commitment [9, 10].

Maintaining consistent replication in the presence of malicious processes has been the
topic of Byzantine replicated systems for decades. PBFT [5] and its numerous following
variants [21, 16, 22, 19, 2, 20] can maintain consistent replication when the network size
is at least three times the size of potentially Byzantine coalitions, have higher throughput
than Bitcoin, have modest energy consumption, give participants equal power, and provide
deterministic liveness guarantees. Unfortunately, however, their quorums are uniform and
their membership is closed. Their trust preferences, i.e., the quorums of processes are fixed
and homogeneous across the network. Further, their set of participants are fixed; thus,
in contrast to proof-of-work replication that provides permissionless blockchains, classical
Byzantine replication only provides permissioned blockchains.

© Xiao Li and Mohsen Lesani;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 52; pp. 52:1–52:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xli289@ucr.edu
https://orcid.org/0000-0003-1449-9140
mailto:mlesani@ucsc.edu
https://orcid.org/0000-0002-3165-2322
https://doi.org/10.4230/LIPIcs.DISC.2024.52
https://arxiv .org/abs/2304.02156
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


52:2 Brief Announcement: Reconfigurable Heterogeneous Quorum Systems

Can the best of both worlds come together? Can we keep the consistency, throughput,
modest energy consumption and equity of Byzantine replicated systems, and bring hetero-
geneous trust [6, 4, 1] and open membership to it? Openness challenges classical assumptions.
With global information about the processes and their quorums, classical quorum systems
could be configured at the outset to satisfy consistency and availability properties. However,
open quorum systems relinquish global information as processes specify their own quorums,
and can further join, leave, and reconfigure their quorums. As the other processes may be
unaware of these changes, consistency and availability may be violated after and even while
these reconfigurations happen.

Projects such as Ripple [18] and Stellar [15] pioneered, and follow-up research [14, 13, 8, 3]
moved towards this goal, and presented quorum systems where nodes can specify their own
quorums, and can join and leave. In fact, the Stellar network has a high churn. In previous
works, the consistency of the network is either assumed to be maintained by user preferences
or a structured hierarchy of nodes, is provided only in divided clusters of processes, or can
be temporarily violated and is periodically checked across the network. Reconfigurations can
compromise the consistency or availability of the replicated system. The loss of consistency
can be the antecedent to a fork and double-spending. An important open problem is
reconfiguration protocols for heterogeneous quorum systems with provable security guarantees.
The protocols are expected to avoid external central oracles, or downtime.

In this paper, we first present a general model of heterogeneous quorum systems where
each process declares its individual set of quorums, and then formally capture the properties
of these systems: consistency, availability and inclusion. We then consider the reconfiguration
of heterogeneous quorum systems: joining and leaving of a process, and adding and removing
of a quorum. To cater for the protocols such as broadcast and consensus that use the quorum
system, the reconfiguration protocols are expected to preserve the above properties.

The safety of consensus naturally relies on the consistency (or quorum intersection)
property: every pair of quorums intersect at a well-behaved process. Intuitively, if an
operation communicates with a quorum, and a later operation communicates with another
quorum, only a well-behaved process in their intersection can make the second aware of the
first. A quorum system is available for a process if it has a well-behaved quorum for that
process. Intuitively, the quorum system is responsive to that process through that quorum.
The less known property is quorum inclusion. Roughly speaking, every quorum should
include a quorum of each of its members. This property trivially holds for homogeneous
quorum systems where every quorum is uniformly a quorum of all its members, but should
be explicitly maintained for heterogeneous quorum systems. We show that quorum inclusion
interestingly lets processes in the included quorum make local decisions while preserving
properties of the including quorum. We precisely capture and illustrate these properties.

We then present quorum graphs, a graph characterization of heterogeneous quorum
systems with the above properties. It is known that strongly connected components of a
graph form a directed acyclic graph (DAG). We prove that a quorum graph has only one
sink component, and preserving consistency reduces to preserving quorum intersections in
this component. This fact has an important implication for optimization of reconfiguration
protocols. Any change outside the sink component preserves consistency, and therefore, can
avoid synchronization with other processes. Thus, we present a decentralized sink discovery
protocol that can find whether a process is in the sink.

In addition to consistency, availability and inclusion, reconfiguration protocols are expected
to preserve policies. Each process declares its own trust policy: it specifies the quorums that
it trusts. In particular, it does not trust strict subsets of its individual quorums. Thus, a



X. Li and M. Lesani 52:3

policy-preserving reconfiguration should not shrink any quorum. We present a join protocol
that preserves all the above properties. We present trade-offs for the properties that the
leave, remove and add reconfiguration protocols can preserve. We show that there is no leave
or remove protocol that can preserve both the policies and availability. Thus, we present two
protocols: a protocol that preserves policies, and another that preserves availability. Both
preserve consistency and inclusion. Then, we show that there is no add protocol that can
preserve both the policies and consistency. Therefore, since we never sacrifice consistency,
we present a protocol that preserves all properties except the policies.

We observe that under reconfiguration, quorum inclusion is critical to preserve not
only availability but also consistency. Sometimes, reconfigurations can only eventually
reconstruct inclusion, but can preserve weaker notions of inclusion that are sufficient to
preserve consistency and availability. We capture these notions, prove that they are preserved,
and use them to prove that the other properties are preserved.

In summary, this project makes the following contributions.
A graph characterization of heterogeneous quorum systems, and its application to optimize
reconfiguration and a sink discovery protocol
Trade-offs between reconfiguration guarantees
Reconfiguration protocols for joining and leaving of a process, and adding and removing
of a quorum, and their proofs of correctness

In this short paper, we present an overview of the leave protocol. The full paper [12]
presents all the above contributions more coherently.

2 Quorum Systems

Processes. A quorum system is hosted on a set of processes P. In each execution, P is
partitioned into Byzantine B and well-behaved W = P \ B processes. Well-behaved processes
follow the given protocols; however, Byzantine processes can deviate from the protocols
arbitrarily. Furthermore, a well-behaved process does not know the set of well-behaved
processes W or Byzantine processes B. The active processes A ⊆ P are the current members
of the system. As we will see, quorum systems can be reconfigured, and the active set can
change: processes can join and the active set grows, and conversely, processes can leave, and
the active set shrinks. We consider partially synchronous networks [7], i.e., if both the sender
and receiver are well-behaved, the message will be eventually delivered within a bounded
delay after an unknown GST (Global stabilization Time). Processes can exchange messages
on authenticated point-to-point links.

Individual Quorums. Processes can have different trust assumptions: trust is a subjective
matter, and therefore, heterogeneous. We capture a heterogeneous model of quorum systems
where each process can specify its individual set of quorums.

An individual quorum q of a process p is a non-empty subset of processes in P that p

trusts to collectively perform an operation. Every quorum of a process p naturally contains p

itself. (However, this is not necessary for any theorem in this paper.) By the above definition,
any superset of a quorum of p is also a quorum of p. Thus, the set of quorums of p is
superset-closed and has minimal members. (Consider a set of sets S = {s}. We say that
S is superset-closed, if any superset s′ of any member s of S is a member of S as well.) A
process p doesn’t need to keep any quorum other than its minimal quorums: any of its other
quorums include extra processes that p can perform operations without. Thus, we consider
only the (individual) minimal quorums of p. Any superset of such a quorum is a quorum for
p. We denote a set of quorums as Q. We denote the union of a set of quorums Q as ∪Q.

DISC 2024



52:4 Brief Announcement: Reconfigurable Heterogeneous Quorum Systems

▶ Definition 1 (Quorum System). A heterogeneous quorum system (HQS) Q maps each
active process to a non-empty set of individual minimal quorums.

The mapping models the fact that each process has only a local view of its own individual
minimal quorums. Further, since the behavior of Byzantine processes can be arbitrary, we
leave their individual quorums unspecified.

W
P

p
q′ q

Figure 1 Quorum inclusion of q for P . Process p is a member of q that falls inside P , and q′ is a
quorum of p. Well-behaved processes of q′ (shown as green) should be a subset of q.

The consistency, availability and inclusion properties are expected to be provided by a
quorum system, and maintained by a reconfiguration protocol. We adapt consistency and
availability for HQS [11], and define the new notion of inclusion.

▶ Definition 2 (Consistency, Quorum Intersection). A quorum system Q is consistent (i.e.,
has quorum intersection) at a set of well-behaved processes P iff the quorums of well-behaved
processes have quorum intersection at P , i.e., ∀p, p′ ∈ W . ∀q ∈ Q(p), q′ ∈ Q(p′). q∩q′∩P ̸= ∅.

▶ Definition 3 (Availability). A quorum system is available for processes P at a set of
well-behaved processes P ′ iff every process in P has at least a quorum that is a subset of P ′.
We say that a quorum system is available inside P iff it is available for P at P .

▶ Definition 4 (Blocking Set). A set of processes P is a blocking set for a process p (or is
p-blocking) iff P intersects every quorum of p.

▶ Lemma 5. In every quorum system that is available inside a set of processes P , every
blocking set of every process in P intersects P .

▶ Definition 6 (Quorum inclusion). Consider a quorum system Q, and a subset P of its
well-behaved processes. A quorum q is quorum including for P iff for every process p in the
intersection of q and P , there is a quorum q′ of p such that well-behaved processes of q′ are
a subset of q, i.e., including(q, P ) := ∀p ∈ q ∩ P. ∃q′ ∈ Q(p). q′ ∩ W ⊆ q. A quorum system
Q is quorum including for P iff every quorum of well-behaved processes of Q is quorum
including for P , i.e., ∀p ∈ W . ∀q ∈ Q(p). including(q, P ).

The set P is often implicitly the set of all well-behaved processes W. Quorum inclusion
was inspired by and weakens quorum sharing [14]. Quorum sharing requires conditions on
the Byzantine processes in q and q′, and is too strong to maintain. We presented quorum
inclusion that is weaker than quorum sharing. It requires a quorum q′ only for well-behaved
processes of q, and requires only the well-behaved subset of q′ to be a subset of q. We will
see in Section 3 that quorum inclusion is sufficient to support quorum intersection.

▶ Definition 7 (Outlived). A quorum system Q is outlived for a set of well-behaved processes
O iff (1) Q is consistent at O, (2) available inside O, and (3) quorum including for O.

The safety and liveness properties of outlived processes outlive Byzantine attacks, hence
the name. The protocols reconfigure an outlived quorum system into another.



X. Li and M. Lesani 52:5

3 Leave Protocol

Based on the trade-offs presented in the full paper, we present the availability-preserving
and consistency-preserving protocols (AC protocols) in Algorithm 1. We then intuitively
explain how it preserves the properties of the quorum system.

Algorithm 1 Leave Protocol.
1 Implements: Leave and Remove
2 request : Leave
3 response : LeaveComplete | LeaveFail
4 Variables:
5 Q ▷ Individual minimal quorums of self
6 tomb : 2P ← ∅
7 (in-sink : Boolean, F : 2P)← Discovery(Q)
8 Uses:
9 tob : TotalOrderBroadcast

10 apl : (∪Q) ∪ F 7→ AuthPPoint2PointLink
11 upon request Leave
12 if in-sink then
13 if ∀q1, q2 ∈ Q, (q1 ∩ q2)\{self} is self -blocking then
14 tob request Check(self , Q)
15 else
16 response LeaveFail
17 else
18 response LeaveComplete
19 apl(p) request Left(self) for each p ∈ F

20 upon response tob, Check(p′, Q′)
21 if ∃q1, q2 ∈ Q′. (q1 ∩ q2) \ ({p′} ∪ tomb) is not p′-blocking then
22 if p′ = self then
23 response LeaveFail
24 else
25 tomb ← tomb ∪ {p′}
26 if p′ = self then
27 response LeaveComplete
28 apl(p) request Left(self) for each p ∈ F

29 upon response apl(p), Left(p)
30 Q← {q \ {p} | q ∈ Q}

Variables and sub-protocols. Each process keeps its own set of individual minimal quorums
Q. It also keeps the set tomb that records the processes that might have left. The full paper
presents an optimization opportunity for the coordination needed to preserve consistency:
when the quorum system has quorum sharing, only processes in the sink component need
coordination. Therefore, each process stores whether it is in the sink component as the
in-sink boolean, and its follower processes (i.e., processes that have this process in their
quorums) as the set F . (The sink information is just used for an optimization, and the
protocol can execute without it.)

The protocol uses a total-order broadcast tob, and authenticated point-to-point links apl
(to processes in the quorums Q and followers F ). Total-order broadcast provides a broadcast
interface on top of consensus [15, 14, 8, 11]. The consensus and total-order broadcast
abstractions [11] require quorum intersection for safety, and quorum availability and inclusion
for liveness. As we will show, the reconfiguration protocols preserve both of these properties
for outlived quorum systems. We note that if a protocol naively uses tob to globally order
and process reconfigurations, then since each process only knows its own quorums, it cannot
independently check if the properties of the quorum system are preserved.

DISC 2024



52:6 Brief Announcement: Reconfigurable Heterogeneous Quorum Systems

Protocol. When a process requests to leave (at L. 11), it first checks whether it is in the
sink component (at L. 12). If it is not in the sink, then it can apply the optimizations
that are shown with the blue color. The process can simply leave without synchronization
(at L. 18); it only needs to inform its follower set so that they can preserve their quorum
availability. It sends a Left message to its followers (at L. 19). Every well-behaved process
that receives the message (at L. 29) removes the sender from its quorums (at L. 30). If the
quorum system does not have quorum sharing or the sink information is not available, the
protocol can be conservative (remove the blue lines) and always perform the coordination
that we will consider next.

On the other hand, when the requesting process is in the sink component, its absence
can put quorum intersection in danger. Therefore, it first locally checks a condition (at
L. 13). The check is just an optimization not to attempt leave requests that are locally
known to fail. We will consider this condition in the next subsection. If the check fails,
the leave request fails (at L. 16). If the local check passes, the process broadcasts a Check
request together with its quorums (at L. 14). If processes receive and check concurrent leave
requests in different orders, they may concurrently approve leave requests for all processes in
a quorum intersection. Therefore, a total-order broadcast tob is used to enforce a total order
for processing of Check messages. When a process receives a Check request with a set of
quorums Q, it locally checks a condition for Q (at L. 21). This check is similar to the check
above but is repeated in the total order of deliveries by the tob. If the condition fails, the
leave request fails (at L. 23). If it passes, the leaving process is added to the tomb set (at
L. 25), and the leaving process informs its followers, and leaves (at lines 27 and 28). Let’s
now consider the condition and see how it preserves quorum intersection and inclusion.

p∗p1 p2
q∗

1 q∗
2

q1 q2

Figure 2 The Leave Protocol, Preserving Quorum Intersection.

Quorum Intersection. Let us first see an intuitive explanation of the condition, and why it
preserves quorum intersection. We assume that the quorum system is outlived: there is a set
of processes O such that the quorum system has quorum intersection at O, quorum inclusion
for O, and quorum availability inside O. As shown in Figure 2, consider well-behaved
processes p1 and p2 with quorums q1 and q2 respectively, and let p∗ be a process at the
intersection of q1 and q2 in O. The goal is to allow p∗ to leave only if the intersection of q1
and q2 contains another process in O. By the quorum inclusion property, p∗ should have
quorums q∗

1 and q∗
2 such that their well-behaved processes are included inside q1 and q2

respectively. Each process adds to its tomb set every process whose Check request passes.
The total-order-broadcast tob delivers the Check requests in the same order across processes.
Therefore, the result of the check and the updated tomb set is the same across processes after
processing each request. Consider a Check request of a process p′ which is ordered before
that of p∗. If the check for p′ is passed and it leaves, then the tomb set of p∗ contains p′.
Consider when the Check request of p∗ is processed. The check ensures that p∗ is approved
to leave only if the intersection of q∗

1 and q∗
2 modulo the tomb set and p∗ is p∗-blocking. By

Lemma 5, since the quorum system is available inside O, this means that the intersection



X. Li and M. Lesani 52:7

of q∗
1 and q∗

2 after both p′ and p∗ leave still intersects O. A process p in O remains in the
intersection of q∗

1 and q∗
2 . Therefore, by quorum inclusion, p remains in the intersection of q1

and q2. Thus, outlived quorum intersection is preserved for q1 and q2.
Once the tob delivers the Check message of the leaving process p∗ to p∗ itself, it can locally

decide whether it is safe to leave. We note that the local check ensures a global property:
quorum intersection for the whole quorum system. We also note that both quorum inclusion
and quorum availability are needed to preserve quorum intersection. Further, we note that
outlived quorum intersection is not affected if a Byzantine process leaves: the outlived
processes where quorums intersect are by definition a subset of well-behaved processes.

Quorum inclusion. Now let us elaborate on the quorum inclusion property that we just
used. When a process p′ leaves, it sends Left messages to its followers (at either L. 19 or
L. 28). The followers later remove p′ from their quorums (at L. 29-L. 30). These updates are
not atomic and happen over time. Therefore, there might be a window when a process p′ is
removed from the quorum q1 (that we saw above), but not yet removed from q∗

1 . Therefore,
quorum inclusion only eventually holds. However, we observe that in the meanwhile, a
weaker notion of quorum inclusion, that we call active quorum inclusion, is preserved. It
considers inclusion only for the active set of processes A = P \ L, i.e., it excludes the subset
L of processes that have already left. It requires the quorum q∗

1 to be a subset of q1 modulo
L. More precisely, it requires q∗

1 ∩ W \ L ⊆ q1. This weaker notion is enough to preserve
quorum intersection. In the above discussion for quorum intersection, the process p that
remains in the intersection is not in the tomb set; therefore, it is an active process. Since it
is in q∗

1 and q∗
2 , by active quorum inclusion, it will be in q1 and q2 as well.

References
1 Orestis Alpos, Christian Cachin, and Luca Zanolini. How to trust strangers: Composition of

byzantine quorum systems. In 2021 40th International Symposium on Reliable Distributed
Systems (SRDS), pages 120–131. IEEE, 2021. doi:10.1109/SRDS53918.2021.00021.

2 Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. In
Proceedings of the thirteenth EuroSys conference, pages 1–15, 2018.

3 Andrea Bracciali, Davide Grossi, and Ronald de Haan. Decentralization in open quorum
systems: Limitative results for ripple and stellar. In 2nd International Conference on Blockchain
Economics, Security and Protocols (Tokenomics 2020). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021.

4 Christian Cachin and Luca Zanolini. From symmetric to asymmetric asynchronous byzantine
consensus. arXiv preprint, 2020. arXiv:2005.08795.

5 Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173–186, 1999.

6 Ivan Damgård, Yvo Desmedt, Matthias Fitzi, and Jesper Buus Nielsen. Secure protocols
with asymmetric trust. In Advances in Cryptology–ASIACRYPT 2007: 13th International
Conference on the Theory and Application of Cryptology and Information Security, Kuching,
Malaysia, December 2-6, 2007. Proceedings 13, pages 357–375. Springer, 2007. doi:10.1007/
978-3-540-76900-2_22.

7 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988. doi:10.1145/42282.42283.

8 Álvaro García-Pérez and Maria A Schett. Deconstructing stellar consensus (extended version).
arXiv preprint, 2019. arXiv:1911.05145.

DISC 2024

https://doi.org/10.1109/SRDS53918.2021.00021
https://arxiv.org/abs/2005.08795
https://doi.org/10.1007/978-3-540-76900-2_22
https://doi.org/10.1007/978-3-540-76900-2_22
https://doi.org/10.1145/42282.42283
https://arxiv.org/abs/1911.05145


52:8 Brief Announcement: Reconfigurable Heterogeneous Quorum Systems

9 Andrew Lewis-Pye and Tim Roughgarden. Byzantine generals in the permissionless setting.
arXiv preprint, 2021. arXiv:2101.07095.

10 Andrew Lewis-Pye and Tim Roughgarden. Permissionless consensus. arXiv preprint, 2023.
arXiv:2304.14701.

11 Xiao Li, Eric Chan, and Mohsen Lesani. Quorum subsumption for heterogeneous quorum
systems. In 37th International Symposium on Distributed Computing (DISC 2023). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik, 2023.

12 Xiao Li and Mohsen Lesani. Reconfigurable heterogeneous quorum systems. arXiv:2304.
02156.

13 Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry, Eli Gafni,
Jonathan Jove, Rafał Malinowsky, and Jed McCaleb. Fast and secure global payments with
stellar. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, pages
80–96, 2019.

14 Giuliano Losa, Eli Gafni, and David Mazières. Stellar consensus by instantiation. In 33rd
International Symposium on Distributed Computing (DISC 2019). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2019.

15 David Mazieres. The stellar consensus protocol: A federated model for internet-level consensus.
Stellar Development Foundation, 32:1–45, 2015.

16 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of bft protocols. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 31–42, 2016. doi:10.1145/2976749.2978399.

17 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. White paper, 2008.
18 David Schwartz, Noah Youngs, and Arthur Britto. The ripple protocol consensus algorithm.

Ripple Labs Inc White Paper, 5(8):151, 2014.
19 Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias.

Bullshark: Dag bft protocols made practical. In Proceedings of the 2022 ACM SIG-
SAC Conference on Computer and Communications Security, pages 2705–2718, 2022. doi:
10.1145/3548606.3559361.

20 Chrysoula Stathakopoulou, Tudor David, and Marko Vukolic. Mir-bft: High-throughput bft
for blockchains. arXiv preprint, page 92, 2019. arXiv:1906.05552.

21 Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and Paulo
Verissimo. Efficient byzantine fault-tolerance. IEEE Transactions on Computers, 62(1):16–30,
2011.

22 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 347–356, 2019. doi:10.1145/3293611.3331591.

https://arxiv.org/abs/2101.07095
https://arxiv.org/abs/2304.14701
https://arxiv.org/abs/2304.02156
https://arxiv.org/abs/2304.02156
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/3548606.3559361
https://arxiv.org/abs/1906.05552
https://doi.org/10.1145/3293611.3331591


Brief Announcement: Concurrent Aggregate
Queries
Gal Sela #

Technion, Haifa, Israel

Erez Petrank #

Technion, Haifa, Israel

Abstract
Concurrent data structures serve as fundamental building blocks for concurrent computing. Many
concurrent counterparts have been designed for basic sequential algorithms; however, one notable
omission is a concurrent tree that supports aggregate queries. Aggregate queries essentially compile
succinct information about a range of data items. Such queries play an essential role in various
applications and are commonly taught in undergraduate data structures courses. In this paper,
we formalize a type of aggregate queries that can be efficiently supported by concurrent trees and
present a design for implementing these queries on concurrent lock-based trees. We present two
algorithms implementing this design, where one optimizes for tree update time, while the other
optimizes for aggregate query time.

2012 ACM Subject Classification Computing methodologies → Shared memory algorithms; Com-
puting methodologies → Concurrent algorithms; Theory of computation → Data structures design
and analysis

Keywords and phrases Concurrent Algorithms, Concurrent Data Structures, Aggregate queries,
Range queries, Binary Search Tree, Linearizability

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.53

Related Version Full Version: https://arxiv.org/abs/2405.07434 [13]

Funding This work was supported by the Israel Science Foundation Grant No. 1102/21.

1 Introduction

Concurrent programs rely on concurrent data structures as a foundational component.
Considerable effort has been dedicated to developing efficient concurrent data structures.
However, not all sequential functionalities have been extended to the concurrent setting. In
this paper we look at such a functionality whose concurrent version has not been addressed:
efficient aggregate queries. An aggregate query is a query whose answer summarizes a range
of elements with consecutive keys in the data structure into a succinct value. For instance, a
data structure holding employee records sorted by age may be queried regarding the average
salary of employees in a certain age range.

It is desirable to build efficient concurrent algorithms for aggregate queries, as sequential
aggregate queries are used in various applications, and a concurrent extension may scale
their execution on a multi-core machine. For instance, order-statistic trees [2], which support
the select(i) and rank(key) aggregate queries (returning the element with the i-th smallest
key, and the position of key, respectively), are used in Python libraries for sorted containers
[14, 8] to efficiently support the basic operations of accessing collection[i] and querying
collection.index(key) respectively.

Naively, one could answer an aggregate query on a sequential data structure by traversing
the relevant elements. The concurrent counterpart would be taking a linearizable snapshot
of the data structure and traversing it. Previous works on range queries accomplished that

© Gal Sela and Erez Petrank;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 53; pp. 53:1–53:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:galy@cs.technion.ac.il
https://orcid.org/0000-0003-2342-6955
mailto:erez@cs.technion.ac.il
https://orcid.org/0000-0002-6353-956X
https://doi.org/10.4230/LIPIcs.DISC.2024.53
https://arxiv.org/abs/2405.07434
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


53:2 Brief Announcement: Concurrent Aggregate Queries

[15, 11, 10, 1], but the traversal in this approach costs time linear in the number of elements
in the queried range, which is highly inefficient for aggregate queries that may be answered
using some metadata without traversing all the relevant elements. There has been work on
implementing specific concurrent aggregate queries more efficiently: [7] proposed a concurrent
array supporting a query that aggregates the values of all cells (and not of an input key
range). They addressed only simple static arrays without supporting element insertion or
deletion, whereas we address dynamic data sets. [12] proposed a way to efficiently support a
size query returning the total number of elements in a concurrent set or dictionary. They
utilize central metadata regarding the data structure’s size to allow aggregate queries to
return an answer without accessing the data structure’s elements themselves. We, however,
aim to efficiently answer queries about an arbitrary key range provided as input to the query.
For this, one central metadata that aggregates information about all the keys is insufficient.

We focus our attention on aggregate queries on trees. We look at external binary search
trees (where external means they hold the elements in the leaves) though our work could
be extended to other trees as well. For efficiently answering aggregate queries on sequential
trees, one could place in each tree node suitable metadata that is a function of the elements
in the leaves of the node’s subtree. For instance, an order-statistic tree augments a tree
with a size field expressing the number of elements in the node’s subtree. The metadata
function should be chosen to be one that effectual operations (we call an operation that
modifies the data structure, like a successful insert or delete, an effectual operation) could
maintain during their root-to-target-leaf traversal for not harming their asymptotic time
complexity, and also one that aggregate queries could use to get an answer via root-to-leaf
traversals (instead of naively traversing the relevant elements), thus executing in time linear
in the traversed path length instead of at the number of elements in the query’s range. We
formalize the addressed aggregate functions and queries in Section 2.

The challenge in designing a linearizable [6] extension for such augmented trees stems
from the fact that each effectual operation affects multiple locations (its target-leaf area
and metadata fields in the nodes along its root-to-leaf path), and yet aggregate queries
should obtain a consistent view of the parts they traverse in the data structure, as if each
concurrent effectual operation has completely taken place or did not start at all. We employ
two mechanisms to achieve that: multi-versioning, and announcements of ongoing effectual
operations. The first enables queries to ignore effectual operations that are considered to
occur after them, and the second enables them to take into account all effects of effectual
operations that are considered to occur before them. These enable support for non-aggregate
range queries as well. We demonstrate our design on the lock-based binary search tree of
[3, 4], and present two algorithms that implement this design, highlighting the trade-offs
between query time and update time. In the full version of the paper [13], we present all
details of our design and algorithms, along with a correctness and complexity analysis.

Two independent concurrent works propose other solutions to the problem of concurrent
aggregate queries. [9] suggests that all operations add themselves to a queue of operations in
each tree node they traverse, and then help all preceding operations in the queue to advance
to the appropriate child before proceeding to the next node in their own traversal. This
way, a query sees a virtual snapshot of the tree, as if all previous operations have already
been executed and none of the subsequent operations have. [9] do not support a failure
option for the insert and delete operations, which may require traversing the tree twice,
posing additional challenges. They also optimize only for aggregate query performance while
our approach also includes an algorithm that optimizes the performance of the original tree
operations. They offer an improved space complexity over the current work as they do



G. Sela and E. Petrank 53:3

not employ multi-versioning, but multi-versioning does come with substantial benefits. It
allows to reduce contention, as demonstrated by our contains operation that does not help
concurrent operations throughout its traversal and by concurrent aggregate queries that do
not help each other. Multi-versioning also enables to support aggregate queries that require
several serial traversals (e.g., for querying the median key of a given input key range).

Another concurrent work [5] supports aggregate queries using an alternative multi-
versioning mechanism. Every insert and delete operation builds from bottom up a tree of
immutable version objects mirroring the tree itself, and links each version object to the
corresponding tree node. Queries obtain a tree of versions from the root’s version pointer,
and operate on this tree. Running queries on an immutable copy of the tree allows for simpler
concurrency. However, it comes with the cost of excessive allocations: each modification of a
leaf by an insert operation or a delete operation requires creating new version objects for all
ancestors of that leaf.

2 Aggregate metadata and aggregate queries

We look at aggregate queries on binary trees, using metadata placed in each node aggregating
information about its subtree. The basic idea is to use this metadata to answer queries
efficiently without traversing all the elements in the query’s range, while ensuring that the
asymptotic time complexity of insertions and deletions is not substantially harmed. These
operations should be able to maintain the metadata during their root-to-leaf traversal, as
the only affected metadata should lie along their path to the target key.

The aggregate metadata we will add to tree nodes is the value of an aggregate function f

applied to the set of (key, value) elements in the leaves of the node’s subtree. An aggregate
function is a function f : P(A) \ {ϕ} → B, where A, B are non-empty sets. Our aggregate
functions’ domain would be all the non-empty subsets of the set of possible (key, value)
elements in the tree’s leaves (denoted by A), and the nodes’ metadata type is denoted by B.
Next we present a definition that will provide a useful property for aggregate functions:

▶ Definition 1 (additive aggregate function). An aggregate function f : P(A) \ {ϕ} → B is
additive if there exists a binary operation ⊕f : B×B → B such that (B, ⊕f ) is a commutative
semigroup (namely, ⊕f is associative and commutative) and for every X ∈ P(A) \ {ϕ},
f(X) = ⊕f a∈Xf({a}).

We require the metadata in tree nodes to be a value of an additive aggregate function
over the set of (key, value) elements in the leaves of the node’s subtree. This ensures that the
metadata in each node may be directly updated upon an insertion of a (key, value) element
to its subtree, to be old ⊕f f({(key, value)}) where old is the old metadata value. To be
able to similarly update the nodes’ metadata during a root-to-leaf traversal upon deletion,
we require that the metadata function satisfy the following property:

▶ Definition 2 (subtractive aggregate function). We say that an aggregate function f :
P(A) \ {ϕ} → B is subtractive if it is additive, and there exists a subtractive binary
operation ⊖f : B × B → B such that for every disjoint X1, X2 ∈ P(A) \ {ϕ}, f(X2) =
f(X1 ∪ X2) ⊖f f(X1).

Being able to directly update the metadata in a certain node to reflect a deletion in its
subtree, without re-calculating the metadata node by node from the deleted leaf upwards, is
required by our algorithms. This is because not only the deletion initiator needs to calculate
its effect on the metadata in the deleted leaf’s ancestors. Concurrent operations linearized

DISC 2024



53:4 Brief Announcement: Concurrent Aggregate Queries

after the deletion might need to do so as well in ancestors mutual with this deletion, and
they should not traverse all the way from the deleted leaf to the relevant ancestor which
might be costly.

An aggregate query on an augmented tree returns a result based on multiple data elements
of the data structure by executing merely root-to-leaf traversals. Metadata obtained during
the traversals may be used both to navigate through the tree and to calculate the query’s
result. Some queries require multiple root-to-leaf traversals for computing their answer.
These traversals may be independent of each other, which means they could be executed
concurrently, followed by a central calculation of the query’s answer using their results. But
there are also queries that require a serial execution of traversals, which is the case when each
traversal depends on the result of the previous traversal. Accordingly, we define a simple
aggregate query, which executes only independent traversals. In contrast, a general aggregate
query is a chain of one or more simple aggregate queries composed with one another: the
user’s input is the input to the first simple query in the chain, the output of the i-th simple
query in the chain is the input to the (i + 1)-st query, and the output of the last simple query
is the output of the whole query.

A simple aggregate query performs one or more independent root-to-leaf traversals to
gather the information required to answer the query, and then computes the answer using
the traversals’ results. The traversals may be executed concurrently as they are independent
of each other. All traversals perform a root-to-leaf traversal on the tree as follows. They
maintain the prefix sum f using ⊕f on the set of (key, value) pairs of all leaves found in
subtrees that the traversal has jumped over so far (namely, descended to the right while
they were in the left subtree). For each traversed node, this value and the aggregate value
of the current left subtree are added using ⊕f to yield the prefix sum on all leaves with
keys smaller than the current key. The computation of this value is made possible using
one simple ⊕f operation thanks to using an additive aggregate function on the subtree’s
leaves as the node’s metadata. Then a query-specific method shouldDescendRight is called
to determine to which child the traversal should proceed. It takes as inputs the prefix sum
up to the current key and the current node’s key. In case of descending to the right, the
prefix sum is updated to include the leaves of the current left subtree. The traversal stops
when it reaches a leaf node, and returns this leaf and the prefix sum which is now the value
of the metadata subtractive aggregate function on the set of (key, value) pairs of all leaves
with keys smaller than the reached key. A simple aggregate query is defined by as many
shouldDescendRight methods as the traversals it needs and a method that takes the list of
the traversals’ outputs and computes the query’s answer.

3 Our design for concurrent aggregate queries

We look at binary search trees implementing a dictionary, which is a collection of distinct
keys with associated values, supporting an insertion of an input key with the associated input
value if the key does not exist or else returns a failure; a deletion which deletes an input key
and its value if the key exists and returns the value or else returns a failure; and a contains
operation which returns the input key’s value if it exists else returns NOT_FOUND. We
look specifically at external trees, i.e., trees whose items are found in the leaves.

To make sure aggregate queries obtain a consistent view of the parts they traverse in the
data structure, even though each concurrent effectual operation modifies multiple locations,
each effectual operation and each aggregate query obtains a timestamp. We will ensure that
every query observes all modifications related to effectual operations with timestamps ≤



G. Sela and E. Petrank 53:5

its timestamp, and does not see modifications related to effectual operations with a greater
timestamp. Our algorithms are linearizable, and the linearization order of effectual operations
and aggregate queries respects the timestamp order, where aggregate queries are linearized
after effectual operations with the same timestamp.

For a query to consider all modifications by concurrent effectual operations with times-
tamp ≤ its timestamp, ongoing effectual operations announce themselves by adding an
announcement object with their details (including their timestamp) to a global announce-
ments object. Queries read these announcements to fill in missing details about them by
themselves, and form the desired full view of their traversed path.

To prevent effectual operations, which run concurrently with a query and have a greater
timestamp than the query’s timestamp, from overriding data the query is about to use with
new data, we employ versioning in the spirit of the multi-versioning of [15] for modifiable
fields in the tree’s nodes. Effectual operations leave old versions of the data for concurrent
queries to inspect, and write the new values in new versions they create for the relevant
fields. More specifically, we use timestamped version lists for both the child pointers and the
added aggregate metadata field in the tree nodes. These versioned fields consist of a linked
list of values tagged with descending timestamps. Each query grabs a timestamp and then
builds its view of the query path by reading object versions tagged with this timestamp (to
be precise, with the biggest timestamp that is ≤ this timestamp).

We apply our design to the lock-based binary search tree of [3, 4]. Effectual operations
(successful insert and delete) acquire the necessary locks, and then, before applying the
operation to the tree, they globally announce themselves including obtaining a timestamp
and update affected aggregate metadata in a root-to-leaf traversal. Failing insert and
delete and contains operate as in the base algorithm, but then in the end verify that no
ongoing operation has already announced itself and logically deleted the node they found /
inserted a node with the key they have not found. Aggregate queries grab a timestamp and
gather the announced effectual operations, and then traverse the tree based on the aggregate
metadata similarly to a sequential aggregate query, but while obtaining versions of child
pointers and of aggregate metadata according to the obtained timestamp and announced
effectual operations.

4 The two algorithms implementing our design

Different approaches could be taken toward the implementation of our design, specifically
the operations announcement and the aggregate metadata representation, optimizing for
the time complexity of either effectual operations or aggregate queries. We present two
algorithms implementing our design: FastUpdateTree optimizes for tree update time, in
fact incurring zero additional asymptotic time on the original tree operations when they do
not face concurrent effectual operations on the same key. FastQueryTree offers a better
worst-time complexity for aggregate queries, which is a function of their traversal length and
the number of concurrent operations (and does not depend on the number of elements in the
queried range as in the naive implementation).

In our design, effectual operations have to perform several additional steps in which
they might potentially contend with operations of other threads: globally announce and
unannounce themselves and update the metadata fields affected by the operation. To reduce
contention on effectual operations, FastUpdateTree lets them work mostly on single-writer
fields written only by the thread that performs the operation. The object in which threads
announce their effectual operations and the aggregate metadata field in each tree node are
both arrays with a single-writer cell per thread. This demonstrates a time-space trade-off, as
effectual operations can execute faster by paying in more space.

DISC 2024



53:6 Brief Announcement: Concurrent Aggregate Queries

When effectual operations announce themselves in the announcements array in
FastUpdateTree, they do not order themselves with respect to each other, and there is no
variable they serialize on (like obtaining a unique timestamp). Aggregate queries are the ones
to grab a timestamp while incrementing a global Timestamp field using a fetch-and-increment.
Effectual operations only need to obtain a timestamp bigger than the last query’s timestamp,
for writing their updates of versioned fields in newer versions, not overriding data the query
needs. For that, an effectual operation first announces itself with an unset timestamp and
then obtains the global timestamp value and sets it in the announcement’s timestamp field. It
sets it using a CAS because a concurrent aggregate query might have already set it: aggregate
queries obtain the global timestamp value and CAS it into the announcement’s timestamp of
each effectual operation with an unset timestamp they encounter in their traversal of the
announcements array.

As for the aggregate metadata array in each FastUpdateTree node, each of its cells is a
versioned field (namely, holds a linked list of versions with timestamps) containing metadata
regarding operations on the node’s subtree by the thread associated with this cell. Aggregate
queries can calculate the total aggregate value from the per-thread values using ⊕f (the
aggregate function’s binary operation).

FastQueryTree on the other hand favors the performance of aggregate queries, hence
does not let them gather values from a per-thread metadata array; instead, it allocates
a single versioned metadata field in each tree node. To update such a field, an effectual
operation needs to know which effectual operations are ordered before it, in order to update
the metadata to reflect all relevant operations that occurred so far. To this end, all effectual
operations serialize by enqueueing their announcement object to a global queue, with a
timestamp greater by 1 than the timestamp of the preceding announcement in the queue.
The timestamps induce a total order on all effectual operations. Aggregate queries obtain
a timestamp (that determines which effectual operations they take into account) from the
end of the announcements queue. Equipped with this timestamp, they know which version
of each aggregate metadata field to obtain and which announced effectual operations they
should consider.

References
1 Maya Arbel-Raviv and Trevor Brown. Harnessing epoch-based reclamation for efficient range

queries. In PPoPP, 2018. doi:10.1145/3178487.3178489.
2 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to

algorithms. MIT press, 2022.
3 Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized concurrency: The

secret to scaling concurrent search data structures. In ASPLOS, 2015. doi:10.1145/2694344.
2694359.

4 Tudor Alexandru David, Rachid Guerraoui, Tong Che, and Vasileios Trigonakis. Designing
ASCY-compliant concurrent search data structures. Technical report, EPFL, 2014.

5 Panagiota Fatourou and Eric Ruppert. Lock-free augmented trees. In DISC, 2024.
6 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent

objects. TOPLAS, 12(3), 1990. doi:10.1145/78969.78972.
7 Prasad Jayanti. f-arrays: Implementation and applications. In PODC, 2002. doi:10.1145/

571825.571875.
8 Grant Jenks. Python sorted containers, 2019. URL: https://grantjenks.com/docs/

sortedcontainers.
9 Ilya Kokorin, Dan Alistarh, and Vitaly Aksenov. Wait-free trees with asymptotically-efficient

range queries. In IPDPS, 2024. doi:10.1109/IPDPS57955.2024.00023.

https://doi.org/10.1145/3178487.3178489
https://doi.org/10.1145/2694344.2694359
https://doi.org/10.1145/2694344.2694359
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/571825.571875
https://doi.org/10.1145/571825.571875
https://grantjenks.com/docs/sortedcontainers
https://grantjenks.com/docs/sortedcontainers
https://doi.org/10.1109/IPDPS57955.2024.00023


G. Sela and E. Petrank 53:7

10 Jacob Nelson-Slivon, Ahmed Hassan, and Roberto Palmieri. Bundling linked data structures
for linearizable range queries. In PPoPP, 2022. doi:10.1145/3503221.3508412.

11 Erez Petrank and Shahar Timnat. Lock-free data-structure iterators. In DISC, 2013. doi:
10.1007/978-3-642-41527-2_16.

12 Gal Sela and Erez Petrank. Concurrent size. PACMPL, 6(OOPSLA2), 2022. doi:10.1145/
3563300.

13 Gal Sela and Erez Petrank. Concurrent aggregate queries. arXiv preprint, 2024. doi:
10.48550/arXiv.2405.07434.

14 Daniel Stutzbach. blist: an asymptotically faster list-like type for Python, 2010. URL:
http://stutzbachenterprises.com/blist.

15 Yuanhao Wei, Naama Ben-David, Guy E Blelloch, Panagiota Fatourou, Eric Ruppert, and
Yihan Sun. Constant-time snapshots with applications to concurrent data structures. In
PPoPP, 2021. doi:10.1145/3437801.3441602.

DISC 2024

https://doi.org/10.1145/3503221.3508412
https://doi.org/10.1007/978-3-642-41527-2_16
https://doi.org/10.1007/978-3-642-41527-2_16
https://doi.org/10.1145/3563300
https://doi.org/10.1145/3563300
https://doi.org/10.48550/arXiv.2405.07434
https://doi.org/10.48550/arXiv.2405.07434
http://stutzbachenterprises.com/blist
https://doi.org/10.1145/3437801.3441602




Brief Announcement: Colorless Tasks and
Extension-Based Proofs
Yusong Shi #

Department of Computer Science and Technology, Tsinghua University, Beijing, China

Weidong Liu #

Department of Computer Science and Technology, Tsinghua University, Beijing, China
Zhongguancun Laboratory, Beijing, China

Abstract
The concept of extension-based proofs models the idea of a valency argument, which is widely used
in distributed computing. Extension-based proofs are limited in power: it has been shown that there
is no extension-based proof of the impossibility of a wait-free protocol for (n, k)-set agreement among
n > k ≥ 2 processes. There are only a few tasks that have been proven to have no extension-based
proof of the impossibility, since the techniques in these works are closely related to the specific task.

We give a necessary and sufficient condition for colorless tasks to have no extension-based proofs
of the impossibility of wait-free protocols in the NIIS model. We introduce a general adversarial
strategy decoupled from any concrete task specification. In this strategy, some properties of the
chromatic subdivision that is widely used in distributed computing are proved.

2012 ACM Subject Classification Theory of computation → Interactive proof systems; Theory of
computation → Distributed algorithms; Theory of computation → Distributed computing models;
Theory of computation → Problems, reductions and completeness

Keywords and phrases Colorless tasks, Impossibility proofs, Extension-based proof

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.54

Related Version Extended Version: https://arxiv.org/abs/2303.14769 [12]

Acknowledgements We would like to thank Faith Ellen and Shihao Liu for helpful discussions and
the anonymous reviewers for their comments.

1 Introduction

One of the most important results in distributed computing, due to Fischer, Lynch, and
Paterson [7], is that there is no deterministic protocol that solves the consensus task in
the asynchronous message passing system. The key idea of their proof is called a valency
argument, which proves the existence of an infinite execution in which no process terminates.

The (n, k)-set agreement task, which is a generalization of the consensus task, was first
proposed by Chaudhuri [6]. The (n, k)-set agreement task was independently shown to have
no wait-free protocol by Borowsky and Gafni [4], Herlihy and Shavit [8], and Saks and
Zaharoglou [11]. Topological techniques were used to prove these results.

In [1], Alistarh, Aspnes, Ellen, Gelashvili and Zhu pointed out the differences between
valency arguments and combinatorial or topological techniques. In the proof by Fischer,
Lynch and Paterson, an infinite execution can be constructed by extending an initial execution
infinitely often. In contrast, in those proofs using combinatorial techniques, the existence of
a bad execution is proved, but not explicitly constructed. [1] generalized this type of proof
and called it an extension-based proof. An extension-based proof is defined as an interaction
between a prover and a protocol that claims to solve a task. The prover tries to find out
some errors in the protocol by submitting queries to the protocol. If the prover manages
to do so, then the prover wins against the protocol. If there exists a prover that can win

© Yusong Shi and Weidong Liu;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 54; pp. 54:1–54:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shiys20@mails.tsinghua.edu.cn
https://orcid.org/0009-0008-4482-1819
mailto:liuwd@mail.tsinghua.edu.cn
https://orcid.org/0000-0002-1260-4982
https://doi.org/10.4230/LIPIcs.DISC.2024.54
https://arxiv.org/abs/2303.14769
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


54:2 Brief Announcement: Colorless Tasks and Extension-Based Proofs

against any protocol that claims to solve a task, we say that this task has an extension-based
impossibility proof. The proof of the impossibility of consensus is an example of an extension-
based proof. In the same paper, they showed that there are no extension-based proofs for the
impossibility of a wait-free protocol for the (n, k)-set agreement in the non-uniform iterated
immediate snapshot (NIIS) model. The same result was proved in the non-uniform iterated
snapshot (NIS) model in the journal version [2]. Some tasks [3, 10] that are closely related
to the set agreement task and 1-dimensional colorless tasks have also been shown to have no
extension-based proofs.

Do other tasks also have no extension-based impossibility proofs? One way to generate
new results is to find a condition that characterizes the tasks that have extension-based
impossibility proofs. A task is specified by a tuple (I, O, ∆) . A protocol solves a task
(I, O, ∆) if, starting with any input values in I, processes decide on output values in O after
communicating with each other for some steps according to the protocol, respecting the
input/output relation ∆. Both I and O are closed under containment, since processes are
assumed to be faulty and may crash at any time. We can show that a task (I, O, ∆) has
no extension-based proofs if we can design an adversarial strategy that can construct an
adaptive protocol that wins against any extension-based prover.

In this paper, we focus on a subset of tasks called colorless tasks. A colorless task is
defined only in terms of input and output values, without process ids. All our discussions
use the definition and related consequences of tasks rather than those specified for colorless
tasks. So why do we talk about colorless tasks while adopting the form of general tasks?
Part of our design needs a property (Property 1) of the input/output relation ∆.

▶ Property 1. In any possible execution, if a process is allowed to output a value v, then
any other process that has seen a superset of the values seen by this process is also allowed to
output the value v.

This property is intrinsic for colorless tasks.

2 Model

An immediate snapshot (IS) object, introduced by Borowsky and Gafni in [5] consists of an
array and supports only one type of operation, called a writeread operation, where a process
with id i writes a value to the i-th cell of the array and returns a snapshot of the array
immediately following the write. The writeread operations performed to some IS object by
different processes are said to be concurrent if all snapshots occur after all writes to the array
are finished.

The NIIS model assumes an unbounded sequence of IS objects IS1, IS2 · · · . (n + 1)
sequential threads of control, called processes, Π = {p0, p1 . . . pn} , communicate through IS
objects to solve decision tasks. A protocol is a distributed program to solve a task. In any
execution of a protocol in the NIIS model, each process pi performs a writeread operation on
each IS object starting from IS1. Initially, pi’s state contains its identifier i and its input
value. Each time pi performs a writeread operation on some IS object ISj using its current
state si as argument, and sets its current state si to its identifier i and the response of its
writeread operation. Then pi consults a map δ to determine whether it should terminate
and output a value. If δ(si) ̸=⊥, pi outputs δ(si) and terminates. Otherwise, it continues to
access this next IS object. Therefore, each NIIS protocol is determined by a decision map δ

from a local state to output values or ⊥.
A configuration C consists of the contents of each shared object and the state of each

process. However, since each process remembers its entire history and only process pi can
write to the i-th component of each IS object, a configuration is fully determined by the



Y. Shi and W. Liu 54:3

states of processes in this configuration. An initial configuration consists of the input values
and process ids of all processes. A process is active in a configuration if it has not terminated.
A configuration is terminated if all processes have terminated.

A scheduler repeatedly chooses a set of processes that are poised to perform writeread
operations on the same IS object concurrently. A schedule α is an ordered sequence of
sets of processes chosen by the scheduler. Let C be a reachable configuration in which all
active processes have accessed the same number of IS objects. For any set P of processes, a
P -only 1-round schedule from C is an ordered partition of processes in P that are active in
C. A P -only r-round schedule from C is a schedule α1α2 · · · αr such that each αi is a P -only
1-round schedule from Cα1 · · · αi−1. A full r-round schedule from C is a P -only r-round
schedule from C where P = Π.

An (abstract) simplex is the set of all subsets of some finite set. There is a natural
geometric interpretation of an (abstract) simplex. In this paper, we use the two definitions
interchangeably. An n-simplex S spanned by a set of affinely independent vertices {v⃗0, . . . v⃗n}
is defined to be the set of all points x such that x =

∑n
i=0 tiv⃗i where

∑n
i=0 ti = 1 and ti ≥ 0

for all i. Any simplex T spanned by a subset of {v⃗0, . . . v⃗n} is called a face of S. An (abstract)
simplicial complex is a finite collection K of sets that is closed under subset: for any set
S ∈ K, if S

′ ⊆ S, then S
′ ∈ K.

For a task, all possible input or output values can be represented by a simplicial complex,
called an input complex I or an output complex O. Each vertex s⃗ of these simplices is labeled
with a process id and a value that are denoted by ids(v⃗) and vals(s⃗), respectively. The
topological task specification is defined as a carrier map that carries each simplex S of the
input complex to a subcomplex of the output complex.

Like tasks, protocols can be represented in terms of combinatorial topology. The i-th
protocol complex consists of all simplices, represents configurations that are reachable from
some initial configuration by a i-round schedule. The i-th execution map is a carrier map
that carries each initial configuration to all configurations reached from it in the i-th protocol
complex. A protocol is represented by (I, P, Ξ) and a simplicial map δ : P → O where I is
the input complex, P is the i-th protocol complex, and Ξ is the i-th execution map, for some
non-negative integer i. We say that a protocol (I, P, Ξ) solves a task (I, O, ∆) if δ(Ξ(sk)) is
in ∆(sk) for each sk ∈ I.

Hoest and Shavit [9] showed that the i-th protocol complex of an NIIS protocol is equal
to χi(I, δ), where χ is the non-uniform chromatic subdivision constructed from the NIIS
protocol. Let U be any simplex in I. A partial protocol δU with respect to U specifies
whether a process should output a value(and which output if so) in each configuration reached
from an initial configuration that contains U , by a schedule in which ids(U) is the first set
of processes. The i-th protocol complex of a partial protocol δU with respect to U is defined
as follows.

F0(U) is the set of all simplices in I that contain U .
F1(U) is the subcomplex of χ(F0(U), δU ) consisting of all simplices representing configur-
ations reachable via 1-round schedules in which the processes in ids(U) have the input
values vals(U) and ids(U) is the first set of processes to take a step.
For i ≥ 1, Fi+1(U) = χ(Fi(U), δU ) consists of all simplices representing configurations
reachable via (i + 1)-round schedules in which the processes in ids(U) have the input
values vals(U) and ids(U) is the first set of processes to take a step.
Similarly, a partial protocol with respect to U can be represented topologically as

(F0(U),Fi(U), Ξ). The i-th execution map Ξ is a carrier map that carries each initial
configuration in F0(U) to all configurations reached from it in Fi(U). We say that a partial
protocol δU with respect to U satisfies the task specification ∆ if δU (Ξ(sk)) is in ∆(sk) for
each sk ∈ I where Ξ(sk) is not empty.

DISC 2024



54:4 Brief Announcement: Colorless Tasks and Extension-Based Proofs

3 Motivation and summary

In this section, we give a description of the motivation behind our necessary and sufficient
condition for a colorless task defined by (I, O, ∆) to have no restricted extension-based
proofs.

The (n, k)-set agreement task is the first task that was shown to have no extension-based
impossibility proofs. As shown in [1], given any extension-based prover, the adversary will
pretend to have a protocol for the (n, k)-set agreement task during phase 1 of the interaction.
But after the prover chooses a schedule at the end of phase 1, the adversary can assign a
valid output value to each undefined configuration that the prover can reach in the later
phases. In other words, the adversary has a partial protocol compatible with the existing
assigned values that satisfies the task specification of the (n, k)-set agreement after phase 1.
We divide the adversarial strategy into two parts: In this first part, the adversary adaptively
defines a protocol in response to any specific prover’s queries during the first r phases. In
the second part, the adversary designs a partial protocol after the end of phase r so that the
prover is doomed to lose.

If the adversary can prevent the prover from finding a problem in the first r phases and
construct a partial protocol after phase r, no matter what queries the prover makes during
the first r phases and which configurations the prover has chosen at the end of the first r
phases, we say that the adversary can finalize after phase r. We can show that the adversary
can win against any extension-based prover, if and only if the adversary can finalize after
phase r for some positive integer r.

In this paper, we introduce the idea behind our necessary and sufficient condition for
finalization after phase 1. Most of the techniques used in the proof for larger values of r are
introduced in the proof of this case.

We start with a necessary condition assuming that no queries are submitted by the prover
during phase 1: there must exist a partial protocol with respect to any possible simplex
U ∈ I. We use the asynchronous computability theorem to give a topological condition for a
task to have a partial protocol with respect to each U ∈ I.

Then we allow the prover to submit queries in phase 1. In the protocol complex of
a partial protocol, the output values of some configurations may already be determined
during the interaction of phase 1. For two simplices U1 and U2 in I and each simplex S in
F1(U1) ∩ F1(U2), we consider the configuration, denoted by CEN(S) , reached from S via a
schedule that repeats the set of processes ids(S) until all processes in ids(S) terminate. We
say that two partial protocols δU1 and δU2 are compatible if the output values of CEN(S)
are the same under δU1 and δU2 for each possible S. A set of partial protocols is compatible
if any two partial protocols are compatible. We show that an enhanced necessary condition
for finalization after phase 1 is that the set of partial protocols is compatible.

Then we prove that a task (I, O, ∆) has a set of compatible partial protocols {δU |U ∈ I}
then the adversary can always finalize after phase 1, by showing how the adversary can
construct an adaptive protocol to win against any prover using this set of compatible partial
protocols which can be assumed to terminate after rm rounds.

The adversary uses an infinite sequence of complexes S0, S1... and an integer t (current
complex) to represent the adaptive protocol, in which S0 = I. Our adversary maintains
three invariants in the interaction with an extension-based prover. For each 0 ≤ r < t and
each vertex v ∈ Sr , δ(v) is defined. If v is a vertex in St, then δ(v) is undefined or δ(v) ̸=⊥.
If a vertex s represents the state of a process in a configuration that the prover has reached,
then δ(v) is defined. The second invariant is about the safety of the adaptive protocol. The



Y. Shi and W. Liu 54:5

output values defined by the adaptive protocol will not violate the task specification. To
achieve this, the adversary defines the δ values using the output values obtained from the set
of partial protocols. The third invariant is that the active distance between a configuration
terminated with output values given by δU1 and a configuration terminated with output
values given by δU2 , where U2 ̸= U1 is at least 3.

The adversary sets δ(v) =⊥ for each vertex in Sr where r ≤ rm. The only question is
to decide δ for a vertex in Sr where r > rm. Each terminated vertex has a simplex U of I
as its label, indicating which partial protocol its δ value is from. If v is reached from some
n-simplex sn in Frm

(U) and has a label U , the adversary can use the value of δU (v′) where
sn ∈ Frm(U) and v

′ is the vertex of sn with the same process id as v. A problem here is that
sometimes the adversary has to terminate v with a different label U

′ to avoid an infinite
execution.

If an n-simplex sn in Chrm(I) is not in Frm(U ′), but shares a simplex ss with Frm(U ′),
we define an n-simplex in Frm

(U ′) as the canonical neighbor of sn with the label U
′ . If v

has the label U
′ ̸= U , the adversary can use the value of δU ′ (N(sn, U

′)) where sn ∈ Frm
(U)

and v
′ is the vertex of sn with the same process id as v. An implementation of canonical

neighbors is provided such that this assignment of output values does not violate the carrier
map.

We show that using our adversarial strategy, the prover cannot win in phase 1, which
means that the prover has chosen some configuration to end phase 1. Let U be the simplex
in I representing the first set of processes in the schedule from some initial configuration
to the chosen configuration and their input values. In the subdivision of each n-simplex
sn ∈ Frm

(U), the δ values of terminated vertices are obtained from δU (sn) or δU ′ (N(sn, U
′)).

Configurations with different labels are separated according to invariant (3). Although
δU or δU ′ are two different partial protocols, they have the same output values for some
configuration CEN(S) since they are compatible by assumption for some shared simplex
S ∈ F1(U) ∩ F1(U ′). There is a sequence of output assignments from δU ′ (τ) to δU (CEN(S))
and then to δU (sn) for some shared simplex S such that only one process changes its
output values in two adjacent output assignments, where τ is a dim(CEN(S))-dimensional
subsimplex of N(sn, U

′). The colorless condition is used here since the dimension of CEN(S)
is less than n = dim(sn). The adversary terminates the vertices adjacent to the vertices
terminated with the label U

′ using the output assignments of this sequence until the output
values of the outermost layer are in δU (sn). Finally, the adversary can define the δ value
of each remaining undefined vertex using δU (sn). A partial protocol with respect to U is
constructed.

▶ Theorem 1. For a colorless task (I, O, ∆), there exists an adversary that can finalize after
the first round to win against any restricted extension-based prover if and only if there exists
a compatible set of partial protocols, each of which corresponds to a simplex U ∈ I.

References
1 Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. Why extension-based

proofs fail. Proceedings of the 51’st Annual ACM Symposium on Theory of Computing (STOC),
pages 986–996, 2019. doi:10.1145/3313276.3316407.

2 Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. Why extension-based
proofs fail. SIAM Journal on Computing, 52(4):913–944, 2023. doi:10.1137/20M1375851.

3 Dan Alistarh, Faith Ellen, and Joel Rybicki. Wait-free approximate agreement on graphs.
In Structural Information and Communication Complexity: 28th International Colloquium,
SIROCCO 2021, Wrocław, Poland, June 28 – July 1, 2021, Proceedings, pages 87–105, Berlin,
Heidelberg, 2021. Springer-Verlag. doi:10.1007/978-3-030-79527-6_6.

DISC 2024

https://doi.org/10.1145/3313276.3316407
https://doi.org/10.1137/20M1375851
https://doi.org/10.1007/978-3-030-79527-6_6


54:6 Brief Announcement: Colorless Tasks and Extension-Based Proofs

4 Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for t-resilient asynchron-
ous computations. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, STOC ’93, pages 91–100, New York, NY, USA, 1993. Association for Computing
Machinery. doi:10.1145/167088.167119.

5 Elizabeth Borowsky and Eli Gafni. Immediate atomic snapshots and fast renaming. In
Proceedings of the Twelfth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’93, pages 41–51, New York, NY, USA, 1993. Association for Computing Machinery.
doi:10.1145/164051.164056.

6 Soma Chaudhuri. More choices allow more faults: Set consensus problems in totally asyn-
chronous systems. Inf. Comput., 105(1):132–158, July 1993. doi:10.1006/inco.1993.1043.

7 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985. doi:10.1145/3149.
214121.

8 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.
ACM, 46(6):858–923, November 1999. doi:10.1145/331524.331529.

9 Gunnar Hoest and Nir Shavit. Toward a topological characterization of asynchronous complex-
ity. SIAM Journal on Computing, 36(2):457–497, 2006. doi:10.1137/S0097539701397412.

10 Shihao Liu. The Impossibility of Approximate Agreement on a Larger Class of Graphs. In
Eshcar Hillel, Roberto Palmieri, and Etienne Rivière, editors, 26th International Conference
on Principles of Distributed Systems (OPODIS 2022), volume 253 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 22:1–22:20, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.OPODIS.2022.22.

11 Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The to-
pology of public knowledge. SIAM J. Comput., 29(5):1449–1483, March 2000. doi:
10.1137/S0097539796307698.

12 Yusong Shi and Weidong Liu. Colorless tasks and extension-based proofs, 2023. arXiv:
2303.14769.

https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/164051.164056
https://doi.org/10.1006/inco.1993.1043
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/331524.331529
https://doi.org/10.1137/S0097539701397412
https://doi.org/10.4230/LIPIcs.OPODIS.2022.22
https://doi.org/10.1137/S0097539796307698
https://doi.org/10.1137/S0097539796307698
https://arxiv.org/abs/2303.14769
https://arxiv.org/abs/2303.14769


Brief Announcement: Self-Stabilizing Graph
Exploration by a Single Agent
Yuichi Sudo #

Hosei University, Tokyo, Japan

Fukuhito Ooshita #

Fukui University of Technology, Fukui, Japan

Sayaka Kamei #

Hiroshima University, Hiroshima, Japan

Abstract
In this paper, we present two self-stabilizing algorithms that enable a single (mobile) agent to explore
graphs. The agent visits all nodes starting from any configuration, i.e., regardless of the initial state
of the agent, the initial states of all nodes, and the initial location of the agent. We evaluate the
algorithms using two metrics: cover time, which is the number of moves required to visit all nodes,
and memory usage, which includes the storage needed for the state of the agent and the state of each
node. The first algorithm is randomized. Given an integer c = Ω(n), the cover time of this algorithm
is optimal, i.e., O(m) in expectation, and the memory requirements for the agent and each node
v are O(log c) and O(log(c + δv)) bits, respectively, where n and m are the numbers of nodes and
edges, respectively, and δv is the degree of v. The second algorithm is deterministic. It requires an
input integer k ≥ max(D, δmax), where D and δmax are the diameter and the maximum degree of
the graph, respectively. The cover time of this algorithm is O(m + nD), and it uses O(log k) bits
both for agent memory and each node.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases mobile agents, self-stabilization, graph exploration

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.55

Related Version Full Version: https://doi.org/10.48550/arXiv.2010.08929 [16]

Funding Yuichi Sudo: JSPS KAKENHI 20H04140 and 20KK0232, and JST FOREST Program
JPMJFR226U.
Fukuhito Ooshita: JSPS KAKENHI 22K11903.
Sayaka Kamei: JSPS KAKENHI 23K11059 and 23K28037.

1 Introduction

We focus on the exploration problem involving a single mobile entity, referred to as a mobile
agent or simply an agent, within any undirected, simple, and connected graph G = (V, E).
This agent, functioning as a finite state machine, migrates from node to node via edges at
each time step. Upon visiting a node, the agent can access and modify the node’s local
memory, known as a whiteboard. The graph is anonymous, i.e., nodes lack unique identifiers.
Our objective is to enable the agent to visit every node in the graph in as few steps as possible
while minimizing the memory usage of both the agent and the whiteboards. This exploration
problem, fundamental in the study of mobile computing entities, has been extensively studied
[13, 11, 18, 7, 8, 15]. Exploration algorithms have frequently served as a foundation for
solving other fundamental problems such as rendezvous, gathering, dispersion, and gossip
sharing.

© Yuichi Sudo, Fukuhito Ooshita, and Sayaka Kamei;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 55; pp. 55:1–55:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sudo@hosei.ac.jp
https://orcid.org/0000-0002-4442-1750
mailto:f-oosita@fukui-ut.ac.jp
https://orcid.org/0000-0001-9400-1095
mailto:s10kamei@hiroshima-u.ac.jp
https://orcid.org/0000-0003-1716-3028
https://doi.org/10.4230/LIPIcs.DISC.2024.55
https://doi.org/10.48550/arXiv.2010.08929
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


55:2 Brief Announcement: Self-Stabilizing Graph Exploration by a Single Agent

In this paper, we tackle the exploration problem under a more challenging setting: self-
stabilizing exploration [13, 8]. We do not presuppose any specific initial global state (or
configuration) of the network. This means that at the start of the exploration, (i) the agent’s
location within G is arbitrary, (ii) the agent’s state is arbitrary, and (iii) the content of each
whiteboard is arbitrary. The agent is required to visit all nodes in G from any potentially
inconsistent configuration. Generally, an algorithm is considered self-stabilizing [4] for
problem P if it can solve P starting from any configuration. Self-stabilizing algorithms are
capable of handling any type of transient faults, such as temporary memory corruption,
making their design both practically and theoretically significant.

Generally speaking, several studies tackle a variety of problems involving mobile agents
in the self-stabilizing setting [2, 8, 10]. In this setting, the number of agents in the graph is
fixed. In our case (i.e., self-stabilizing exploration by a single agent), the number of agents is
always exactly one: we do not consider configurations where no agent exists, or where two or
more agents are present. Therefore, this setting may be particularly suitable for applications
where physical robots operates in a field represented by an undirected graph, and the robots
can leave information in some way at each intersection in the field.

One might think that this problem, self-stabilizing exploration by a single agent, fall
outside the scope of distributed computing because only a single mobile agent is considered.
However, we believe this is not the case, as the information accessible to the single agent is
distributed throughout the entire graph. When minimizing agent memory, the agent must
manage the necessary information distributed across the whiteboards throughout the graph.
This situation often illustrates the trade-off between time complexity and agent memory,
which is one of the essential aspects of distributed computing. Moreover, as mentioned earlier,
exploration algorithms often serve as a fundamental building block for addressing other
problems related to mobile agents. Therefore, our randomized and deterministic algorithms,
introduced in this paper, could be used to solve various (more distributed) problems, such as
rendezvous, gathering, gossiping, and leader election, in a self-stabilizing manner.

Throughout this paper, we denote the number of nodes, the number of edges, the diameter
of a graph by n, m, and D, respectively. We denote the degree of a node v by δv, and define
δmin = minv∈V δv and δmax = maxv∈V δv.

1.1 Related Work
If we are allowed to use randomization, we can easily solve the self-stabilizing exploration
with a well known strategy called the simple random walk. When the agent visits a node
v ∈ V , it simply chooses a node as the next destination uniformly at random among N(v),
where N(v) is the set of all neighbors of v in G. In other words, it moves to any node
u ∈ N(v) with probability Pv,u = 1/δv. It is well known that the agent running this simple
algorithm visits all nodes in G within O(min(mn, mD log n)) steps in expectation where
n = |V |, m = |E|, and D is the diameter of G. (See [1, 9].) Since the agent is oblivious (i.e.,
the agent does not bring any information at a migration between two nodes) and does not
use whiteboards, the simple random walk is obviously a self-stabilizing exploration algorithm.

Ikeda, Kubo, and Yamashita [7] improved the cover time (i.e., the number of steps
to visit all nodes) of the simple random walk by setting the transition probability as
P ′

v,u = δ
−1/2
u /

∑
w∈N(v) δ

−1/2
w for any u ∈ N(v). They proved that the cover time of this biased

random walk is O(n2 log n) steps in expectation. However, we cannot use this result directly
in our setting because the agent must know the degrees of all neighbors of the current node to
compute the next destination. We can implement this random walk, for example, as follows:
every time the agent visits node v, it first obtains (δu)u∈N(v) by visiting all v’s neighbors



Y. Sudo, F. Ooshita, and S. Kamei 55:3

in 2δv steps, and then decides the next destination according to probability (P ′
v,u)u∈N(v),

which is now computable with (δu)u∈N(v). However, this implementation increases the cover
time by a factor of at least δmin and at most δmax. Whereas n2δmax log n > mn always holds,
n2δmin log n < min(mn, mD log n) may also hold. Thus, we cannot determine which random
walk has smaller cover time without detailed analysis. To bound the space complexity, we
must know an upper bound ∆ on δmax to implement this random walk. If the agent stores
(δu)u∈N(v) on v’s whiteboard, it uses O(log ∆) bits in the agent-memory and O(δv log ∆) bits
in the whiteboard of each node v. If the agent stores (δu)u∈N(v) only on the agent-memory,
it uses O(∆ log ∆) bits in the agent-memory.

The algorithm given by Priezzhev, Dhar, Dhar, and Krishnamurthy [13], which is nowadays
well known as the rotor-router, solves the self-stabilizing exploration deterministically. The
agent is oblivious, but it uses only O(log δv) bits in the whiteboard of each node v ∈ V . The
edges ({v, u})u∈N(v) are assumed to be locally labeled by 0, 1, . . . , δv − 1 in a node v. The
whiteboard of each node v has one variable v.last ∈ {0, 1, . . . , δv − 1}. Every time the agent
visits a node v, it increases v.last by one modulo δv and moves to the next node via the
edge labeled by the updated value of v.last. This simple algorithm guarantees that starting
from any configuration, the agent visits all nodes within O(mD) steps [18]. Masuzawa and
Tixeuil [8] also gave a deterministic self-stabilizing exploration algorithm. This algorithm
itself is designed to solve the gossiping problem where two or more agents have to share their
given information with each other. However, this algorithm has a mechanism to visit all the
nodes starting from any configuration, which can be seen as a self-stabilizing exploration
algorithm. The cover time and the space complexity for the whiteboards of this algorithm
are asymptotically the same as those of the rotor-router, while it uses a constant space of
the agent-memory, unlike oblivious algorithms such as the rotor-router.

In his seminal paper, Reingold [14] proved that given positive integer N , a Universal
Exploration Sequence (UXS) with length poly(N) for (possibly non-simple) connected d-
regular graphs with a size of at most N can be explicitly constructed in log-space and, hence,
in polynomial time. Although we omit the definition of UXS here, from this result, we
can immediately derive a self-stabilizing exploration algorithm for arbitrary graphs whose
size is at most N , whose cover time is polynomial in N , with memory requirements of
O(log N) bits for the agent and zero for the whiteboards. One might think that Reingold’s
UXS was designed for regular graphs, thus questioning its applicability to arbitrary graphs.
However, this difference is not significant because we can virtually transform any arbitrary
graph into a regular graph by adding self-loops (see [17] for details). Later, Ta-shma and
Zwick [17] introduced the concept of a Strongly Universal Exploration Sequence (SUXS) and
obtained results similar to those of Reingold, which allow us to improve the cover time of
the above-mentioned self-stabilizing exploration algorithm from poly(N) to poly(n). Thus,
the cover time no longer depends on a given upper bound N but only on the actual size n.

A few self-stabilizing algorithms were given for mobile agents to solve problems other than
exploration. Blin, Potop-Butucaru, and Tixeuil [2] studied the self-stabilizing naming and
leader election problem. Masuzawa and Tixeuil [8] gave a self-stabilizing gossiping algorithm.
Ooshita, Datta, and Masuzawa [10] gave self-stabilizing rendezvous algorithms.

If we assume a specific initial configuration, that is, if we do not require a self-stabilizing
solution, the agent can easily visit all nodes within 2m steps with a simple depth first
traversal (DFT). Panaite and Pelc [11] gave a faster algorithm, whose cover time is m + 3n

steps. They assume that the nodes are labeled by the unique identifiers. Their algorithm
uses O(m log n) bits in the agent-memory, while it does not use whiteboards. Sudo, Baba,
Nakamura, Ooshita, Kakugawa, and Masuzawa [15] gave another implementation of this

DISC 2024



55:4 Brief Announcement: Self-Stabilizing Graph Exploration by a Single Agent

Table 1 Randomized self-stabilizing graph exploration algorithms for a single agent.

Expected Cover Time Agent
Memory

Memory on
node v

Simple Random Walk O(min(mn, mD log n)) 0 0
Biased Random Walk [7]

(require ∆ ≥ δmax ) O(n2δmax log n) O(log ∆) O(δv log ∆)
O(∆ log ∆) 0

Rc (require c ≥ 2) O
(
m · min

(
D, n

c
+ 1, D

c
+ log n

))
O(log c) O(log(δv + c))

Table 2 Deterministic self-stabilizing graph exploration algorithms for a single agent.

Cover Time Agent Memory Memory on node v

Rotor-router [13] O(mD) 0 O(log δv)
UXSN [14] (require N ≥ n) polynomial in N O(log N) 0
SUXSN [17] (require N ≥ n) polynomial in n O(log N) 0

2-color DFT [8] O(mD) O(1) O(log δv)
Dk (require k ≥ max(D, δmax)) O(m + nD) O(log k) O(log k)

algorithm: they removed the assumption of the unique identifiers and reduced the space
complexity on the agent-memory from O(m log n) bits to O(n) bits by using O(n) bits in
each whiteboard. It is worthwhile to mention that these algorithms [11, 15] guarantee the
termination of the agent after exploration is completed, whereas designing a self-stabilizing
exploration algorithm with termination is impossible. Self-stabilization and termination
contradict each other by definition: if an agent-state that yields termination exists, the agent
never completes exploration when starting exploration with this state. If such state does not
exist, the agent never terminates the exploration.

In the classical or standard distributed computing model (excluding mobile agents),
the self-stabilizing token circulation problem, particularly self-stabilizing depth-first token
circulation (DFTC), has been extensively studied [6, 3, 12]. Introduced by Huang and
Chen [6], this problem was addressed with a self-stabilizing DFTC algorithm using O(log n)
bits per process, which was later reduced to O(log δmax) bits by Datta, Johnen, Petit,
and Villain[3]. Petit [12] developed a time-optimal (i.e., O(n)-time) self-stabilizing DFTC
algorithm that also requires O(log n) bits per process. However, these algorithms are not
directly applicable to self-stabilizing exploration by a single agent because the network
models are fundamentally different. In the standard model, n computational processes can
communicate with each other via communication links in parallel, whereas in our model,
only a single agent computes and updates the states of nodes in the network, potentially
requiring more time to solve problems. On the other hand, one of the main challenges for
self-stabilizing token circulation in the standard model is maintaining exactly one token
starting from any configuration where there maybe no tokens or where two or more tokens
may exist. As mentioned above, this challenge does not apply to our model, where there is
always a single agent in any configuration. Yet, many techniques from standard distributed
computing might be adaptable for mobile agent algorithms. For example, our self-stabilizing
exploration algorithms employ the technique of repeatedly recoloring graph nodes to resolve
variable inconsistencies, a common approach in the design of self-stabilizing algorithms (see
Dolev, Israeli, and Moran [5]).



Y. Sudo, F. Ooshita, and S. Kamei 55:5

1.2 Our Contribution
In this paper, we investigate how short a cover time we can achieve in a self-stabilizing
setting. One can easily observe that the cover time is lower bounded by Ω(m): any
deterministic algorithm requires Ω(m) steps and any randomized algorithm requires Ω(m)
steps in expectation before the agent visits all nodes. (For completeness, we will prove this
lower bound as Theorem 3) Our goal is to give an algorithm whose cover time is close to this
lower bound with as small complexity of agent-memory and whiteboards as possible.

We give two self-stabilizing exploration algorithms Rc and Dk, where c and k are the
design parameters. The cover times and the space complexities of the proposed algorithms
and the existing algorithms are summarized in Tables 1 and 2.

Algorithm Rc is a randomized algorithm, where the agent visits all nodes within
O

(
m · min

(
D, n

c + 1, D
c + log n

))
steps in expectation and uses O(log c) bits in the agent-

memory and O(log δ +log c) bits of the whiteboard of each node with degree δ. Thus, we have
trade-off between the cover time and the space complexity. The larger c we use, the smaller
cover time we obtain. In particular, the expected cover time is O(m log n) steps if we set
c = Ω(D/ log n), and it becomes optimal (i.e., O(m) steps) if we set c = Ω(n). This means
that we require the knowledge of Ω(n) value to make Rc time-optimal. Fortunately, this
assumption can be ignored from a practical point of view: even if c is extremely larger than n,
the overhead will be just an additive factor of log c in the space complexity. Thus, any large
c ∈ poly(n) ∩ Ω(n) is enough to obtain the optimal cover time and the space complexity of
O(log n) bits both in the agent memory and whiteboards. Moreover, irrespective of parameter
c ≥ 2, the cover time is O(mD) steps with probability 1.

Algorithm Dk is a deterministic algorithm. The cover time of Dk is O(m + nD) steps,
which does not depend on parameter k, while the agent uses O(log k) bits both for the
agent-memory and the whiteboard of each node. Thus, we do not have trade-off between the
cover time and the space complexity. However, unlike Rc, we require an upper bound on the
diameter and the maximum degree of the graph, that is, Dk requires k ≥ max(D, δmax) to
solve a self-stabilizing exploration. If k < max(D, δmax), the correctness of Dk is no longer
guaranteed. However, the knowledge of an upper bound on max(D, δmax) is not a strong
assumption because the space complexity increases only logarithmically in k: we can assign
any large poly(n) value for k to satisfy k ≥ max(D, δmax) while keeping the space complexity
of the agent-memory and v’s whiteboard bounded by O(log n) bits. For example, consider
the case that we set k = 2500. Then, Dk can fail only if D ≥ 2500, which is too large to
consider in practice. This extremely large value for k results in the increase of the memory
usage only by 500 bits in the agent and whiteboards.

It remains open if there is a deterministic self-stabilizing exploration algorithm with
optimal cover time, i.e., O(m) steps.

2 Preliminaries

Let G = (V, E, p) be a simple, undirected, and connected graph where V is the set of nodes
and E is the set of edges. The edges are locally labeled at each node: we have a family of
functions p = (pv)v∈V such that each pv : {{v, u} | u ∈ N(v)} → {0, 1, . . . , δv − 1} uniquely
assigns a port number to every edge incident to node v. Two port numbers pu(e) and pv(e)
are independent of each other for edge e = {u, v} ∈ E.

An algorithm is defined as a 3-tuple P = (ϕ, M, W), where M is the set of states for the
agent, W = (Wk)k∈N is the family such that Wk is the set of states for each node with degree
k, and ϕ is a function that determines how the agent updates its state (i.e., agent memory)

DISC 2024



55:6 Brief Announcement: Self-Stabilizing Graph Exploration by a Single Agent

and the state of the current node (i.e., whiteboard). At each time step, the agent is located
at exactly one node v ∈ V , and moves through an edge incident to v. Every node v ∈ V has
a whiteboard w(v) ∈ Wδv

, which the agent can access freely when it visits v. The function ϕ

is invoked every time the agent visits a node or when the exploration begins. Suppose that
the agent with state s ∈ M has moved to node v with state w(v) = x ∈ Wδv

from u ∈ N(v).
Let pin = pv({u, v}). The function ϕ takes 4-tuple (δv, pin, s, x) as the input and returns
3-tuple (pout, s′, x′) as the output. Then, the agent updates its state to s′ and w(v) to x′,
after which it moves via port pout, that is, it moves to v′ such that pout = pv({v, v′}). At
the beginning of an execution, we let pin be an arbitrary integer in {0, 1, . . . , δv − 1} where v

is the node that the agent exists on. Note that if algorithm P is randomized one, function ϕ

returns the probabilistic distributions for (pout, s′, x′).
Given a graph G = (V, E), a configuration (or a global state) consists of the location

of the agent, the state of the agent (including pin), and the states of all the nodes in V .
Algorithm P is a self-stabilizing exploration algorithm for a class G of graphs if for any graph
G = (V, E, p) ∈ G, the agent running P on G eventually visits all the nodes in V at least
once starting from any configuration. Note that, by the above definition, any self-stabilizing
exploration algorithm ensures that the single agent visits every node infinitely often.

We measure the efficiency of algorithm P by three metrics: the cover time, the agent
memory space, and the whiteboard memory space. All the above metrics are evaluated in the
worst-case manner with respect to graph G and an initial configuration. The cover time is
defined as the number of moves that the agent makes before it visits all nodes. If algorithm
P is a randomized one, the cover time is evaluated in expectation. The memory spaces of the
agent and the whiteboard on node v are just defined as log2 |M| and log2 |Wδv

|, respectively.

3 Main Theorems

The main theorems of this paper are listed below. Due to page limitations, we omit the
descriptions of algorithms Rc and Dk, as well as the proofs for these theorems. Please see
the arXiv version [16] for the detailed algorithms and proofs.

▶ Theorem 1. Algorithm Rc is a randomized self-stabilizing exploration algorithm for all
simple, undirected, and connected graphs. Irrespective of c, the cover time is O(mD) steps
with probability 1. The expected cover time is O

(
m · min

(
D, n

c + 1, D
c + log n

))
steps. The

agent memory space is O(log c) and the memory space of each node v is O(log c + log δv).

▶ Theorem 2. Algorithm Dk is a deterministic self-stabilizing exploration algorithm for all
simple, undirected, and connected graphs with a diameter and maximum degree of at most k.
The cover time is O(m + nD) steps, regardless of the value of k. The memory requirement is
O(log k) for both the agent and each node.

▶ Theorem 3. Let P be any exploration algorithm. For any positive integers n, m such that
n ≥ 3 and n − 1 ≤ m ≤ n(n + 1)/2, there exits a simple, undirected, and connected graph
G = (V, E) with |V | = n and |E| = m such that the agent running P on G starting from
some node in V requires at least (m − 1)/4 steps to visit all nodes in V in expectation.

References
1 Romas Aleliunas, Richard M Karp, Richard J Lipton, Laszlo Lovasz, and Charles Rackoff.

Random walks, universal traversal sequences, and the complexity of maze problems. In 20th
Annual Symposium on Foundations of Computer Science (sfcs 1979), pages 218–223. IEEE,
1979.



Y. Sudo, F. Ooshita, and S. Kamei 55:7

2 Lélia Blin, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. On the self-stabilization
of mobile robots in graphs. In International Conference On Principles Of Distributed Systems,
pages 301–314. Springer, 2007. doi:10.1007/978-3-540-77096-1_22.

3 Ajoy K Datta, Colette Johnen, Franck Petit, and Vincent Villain. Self-stabilizing depth-first
token circulation in arbitrary rooted networks. Distributed Computing, 13(4):207–218, 2000.
doi:10.1007/PL00008919.

4 Edsger W Dijkstra. Self-stabilization in spite of distributed control. In Selected writings on
computing: a personal perspective, pages 41–46. Springer, 1982.

5 Shlomi Dolev, Amos Israeli, and Shlomo Moran. Uniform dynamic self-stabilizing leader
election. IEEE Transactions on Parallel and Distributed Systems, 8(4):424–440, 1997. doi:
10.1109/71.588622.

6 Shing-Tsaan Huang and Nian-Shing Chen. Self-stabilizing depth-first token circulation on
networks. Distributed Computing, 7(1):61–66, 1993. doi:10.1007/BF02278857.

7 Satoshi Ikeda, Izumi Kubo, and Masafumi Yamashita. The hitting and cover times of random
walks on finite graphs using local degree information. Theoretical Computer Science, 410(1):94–
100, 2009. doi:10.1016/J.TCS.2008.10.020.

8 Toshimitsu Masuzawa and Sébastien Tixeuil. Quiescence of self-stabilizing gossiping among
mobile agents in graphs. Theoretical computer science, 411(14-15):1567–1582, 2010. doi:
10.1016/J.TCS.2010.01.006.

9 Peter Matthews. Covering problems for markov chains. The Annals of Probability, 16(3):1215–
1228, 1988.

10 Fukuhito Ooshita, Ajoy K Datta, and Toshimitsu Masuzawa. Self-stabilizing rendezvous of syn-
chronous mobile agents in graphs. In International Symposium on Stabilization, Safety, and Se-
curity of Distributed Systems, pages 18–32. Springer, 2017. doi:10.1007/978-3-319-69084-1_
2.

11 P. Panaite and A. Pelc. Exploring unknown undirected graphs. Journal of Algorithms,
33(2):281–295, 1999. doi:10.1006/JAGM.1999.1043.

12 Franck Petit. Fast self-stabilizing depth-first token circulation. In International Workshop on
Self-Stabilizing Systems, pages 200–215. Springer, 2001. doi:10.1007/3-540-45438-1_14.

13 Vyatcheslav B Priezzhev, Deepak Dhar, Abhishek Dhar, and Supriya Krishnamurthy. Eulerian
walkers as a model of self-organized criticality. Physical Review Letters, 77(25):5079, 1996.

14 O Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):1–24,
2008. doi:10.1145/1391289.1391291.

15 Yuichi Sudo, Daisuke Baba, Junya Nakamura, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa. A single agent exploration in unknown undirected graphs with
whiteboards. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, 98(10):2117–2128, 2015. doi:10.1587/TRANSFUN.E98.A.2117.

16 Yuichi Sudo, Fukuhito Ooshita, and Sayaka Kamei. Self-stabilizing graph exploration by a
single agent, 2020. arXiv:2010.08929.

17 Amnon Ta-Shma and Uri Zwick. Deterministic rendezvous, treasure hunts, and strongly
universal exploration sequences. ACM Transactions on Algorithms (TALG), 10(3):1–15, 2014.
doi:10.1145/2601068.

18 Vladimir Yanovski, Israel A Wagner, and Alfred M Bruckstein. A distributed ant al-
gorithm for efficiently patrolling a network. Algorithmica, 37(3):165–186, 2003. doi:
10.1007/S00453-003-1030-9.

DISC 2024

https://doi.org/10.1007/978-3-540-77096-1_22
https://doi.org/10.1007/PL00008919
https://doi.org/10.1109/71.588622
https://doi.org/10.1109/71.588622
https://doi.org/10.1007/BF02278857
https://doi.org/10.1016/J.TCS.2008.10.020
https://doi.org/10.1016/J.TCS.2010.01.006
https://doi.org/10.1016/J.TCS.2010.01.006
https://doi.org/10.1007/978-3-319-69084-1_2
https://doi.org/10.1007/978-3-319-69084-1_2
https://doi.org/10.1006/JAGM.1999.1043
https://doi.org/10.1007/3-540-45438-1_14
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1587/TRANSFUN.E98.A.2117
https://arxiv.org/abs/2010.08929
https://doi.org/10.1145/2601068
https://doi.org/10.1007/S00453-003-1030-9
https://doi.org/10.1007/S00453-003-1030-9



	p000-Frontmatter
	Preface
	Organization
	Distinguished Paper Awards
	2024 Principles of Distributed Computing Doctoral Dissertation Awards
	2024 Edsger W. Dijkstra Prize in Distributed Computing

	p001-AldemaTshuva
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	3 Technical Overview
	3.1 Local Distributed Merkle Trees
	3.2 Constructing the Distributed Argument
	3.3 The Soundness of Our Construction

	A Full Syntax, Formal Definitions and Statements
	A.1 Distributed Merkle Trees
	A.2 Somewhere Extractable Batch Arguments (seBARGs)
	A.3 Low-Diameter Edge Cover
	A.4 Fully Local Distributed SNARG

	B G2 Strong-Diameter Decomposition in the CONGEST Model

	p002-Alpturer
	1 Introduction
	2 Reasoning about knowledge
	3 Information-exchange protocols
	4 Adversary model
	5 Intersection Contexts
	6 Unnecessary waiting and optimality
	7 Intersection policies
	8 A Knowledge-Based Program with Lexicographically Optimal Implementations
	8.1 Implementing P when there is no communication
	8.2 Implementing P in a context with limited communication

	9 Discussion

	p003-Augustine
	1 Introduction
	2 Methods
	3 Results on the Download Problem
	3.1 Deterministic Setting
	3.2 Randomized setting

	4 Results on the Disjunction Problem
	5 Related Work
	6 Directions for future work
	A Some missing proofs

	p004-Bai
	1 Introduction
	1.1 Results and contribution
	1.2 Related work and discussion

	2 Preliminary
	3 The Deterministic Algorithm
	4 Analysis of the Deterministic Algorithm
	4.1 Correctness
	4.2 Complexity
	4.3 Proof of the main theorem

	5 Generalizing the Deterministic Algorithm when Tokens are Large
	5.1 Algorithm description
	5.2 Analysis

	6 Impossibility Result and Lower Bound for Deterministic Algorithms
	A Pseudocode of the Deterministic Algorithms
	B Token Collision for the Randomized Scenario

	p005-Balliu
	1 Introduction
	1.1 Asynchrony, Failures, and Networks
	1.2 The ASYNC LOCAL Model
	1.3 Our results
	1.3.1 Proper Coloring
	1.3.2 Lower Bounds and Impossibility Results
	1.3.3 Reduction from Weak Symmetry-Breaking with Inputs

	1.4 Related Work

	2 Model and Definitions
	2.1 The ASYNC LOCAL model
	2.2 Algorithm Description

	3 Results and Road Map
	3.1 Algorithms for ASYNC LOCAL
	3.2 Impossibility Results

	4 Coloring General Graphs with O(Delta^2) Colors
	5 Reducing the Colors to (Delta+1)(Delta+2)/2
	6 Saving One More Color
	6.1 Intuition of the algorithm
	6.2 Formal Description

	7 Open Questions
	A Example of an execution of an algorithm for 6-coloring cycles
	B A Counterexample for an Existing Algorithm for 5-Coloring Cycles

	p006-Barenboim
	1 Introduction
	1.1 Model and Results
	1.2 Our Techniques
	1.3 Related Work

	2 Distance-two coloring G with Delta_4 colors in Delta_time rounds
	2.1 High level description
	2.2 Proof and run time analysis

	3 Distance-two coloring with Delta_square colors in time rounds
	3.1 High level description
	3.2 Detailed description of the algorithm
	3.2.1 Our variant for distance-two defective coloring
	3.2.2 Algorithm for Distance-two Arbdefective Coloring
	3.2.3 Iterative Algorithm for Distance-two Proper Coloring
	3.2.4 Coloring G^2 using (Delta^2 + 1) colors in O(Delta^{3/2} * log Delta + log* n) rounds


	4 Speedup technique for algorithms on G_power_k in the CONGEST model
	4.1 Idempotent functions
	4.2 High level description of our technique for g_power_k

	A Appendix
	A.1 Computations with non-idempotent functions
	A.2 Applications of the speedup technique for g_power_k


	p007-Bashari
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	3.1 Bashari and Woelfel's Single-Writer Snapshot
	3.2 Outline of our Algorithm
	3.3 Low Level Description
	3.3.1 HelpScan()
	3.3.2 HelpObserve()
	3.3.3 HelpUpdate()
	3.3.4 Click()
	3.3.5 Observe()
	3.3.6 Invoke()


	4 Proof of Correctness
	A Additional Proofs

	p008-BenShimon
	1 Introduction
	2 Motivating Examples: A Tale of Four Registers
	3 Preliminaries
	3.1 Objects, Implementations, and Programs
	3.2 Hyperproperties Preservation via Strong Observational Refinement

	4 Complete Implementations for Linearizability Classes
	5 Complete Implementation for Write Strong Linearizability
	6 Complete Implementation for Decisive Linearizability
	7 Related and Future Work
	A Proof Sketches

	p009-Bonichon
	1 Introduction
	2 Preliminaries: from cones to triangles and squares
	3 The makespan for L_1 is at most 5
	3.1 Proof of Theorem 1
	3.2 Lemmas 3 and 4: monotonic paths
	3.3 Lemma 5: recursive wake-up in triangles

	4 Linear time algorithm
	4.1 Heap-Strategy and linear time for L_1
	4.2 Linear time for arbitrary norms

	5 Wake-up constants for other norms
	5.1 Split-Cone-Strategy
	5.2 Lower bounds
	5.3 Upper bounds, l_p-norms, and the conjecture

	6 Conclusion

	p010-Bravo
	1 Introduction
	2 System Model
	3 Specification
	4 The Vertical Atomic Broadcast Protocol
	5 Passive Replication
	5.1 Passive Replication vs Atomic Broadcast
	5.2 Primary-Order Atomic Broadcast

	6 Speculative Primary-Order Atomic Broadcast
	7 Related Work

	p011-Castaneda
	1 Introduction
	2 Weak Memory Models
	2.1 Formalizing Weak Memory Models

	3 Mergeability Results for Memory Models
	4 A Recipe for Merge-Based Impossibility Results
	4.1 Objects and Their Implementations
	4.2 The Merge Theorem

	5 Implementability of Objects on Weak Memory Models
	5.1 One-Sided Non-Commutative Operations
	5.2 Two-Sided Non-Commutative Operations and Mutual Exclusion
	5.3 Snapshot and Counter

	6 Related Work
	A Fence-optimal Max Register Under {RA}
	B Mutual Exclusion
	C Lower and Upper Bounds for Snapshot and Counter

	p012-Censor-Hillel
	1 Introduction
	1.1 Our Contributions and Technical Overview

	2 Preliminaries
	2.1 Additional Tools

	3 Fast Matrix Multiplication in Congested Clique
	3.1 Preliminaries and Balanced Products
	3.2 Multiple Products of Random Submatrices
	3.3 Rectangular Matrices

	Bibliography
	A h-Cycle Detection
	A.1 The Algorithm Find-Vertex-In-Cycle
	A.2 The Algorithm Find-Cycle
	A.3 Wrap-Up: Fast Cycle Detection


	p013-Chalopin
	1 Introduction
	1.1 Our results
	1.2 Related Work

	2 Model
	3 A Proof Labelling Scheme for Leader Election
	4 A Self-Stabilising Algorithm for Leader Election
	5 Proof of Theorem 6 and Theorem 7
	6 Further Remarks

	p014-Civit
	1 Introduction
	1.1 Contributions
	1.2 Overview & Technical Challenges

	2 System Model & Preliminaries
	2.1 System Model
	2.2 Complexity Measures
	2.3 Building Blocks

	3 HashExt: Optimal Early-Stopping Hash-Based Solution
	3.1 Building Blocks
	3.2 Pseudocode
	3.3 Proof Sketch

	4 ErrorFreeExt: Near-Optimal Early-Stopping Error-Free Solution
	4.1 Building Blocks
	4.2 SlowExt: Achieving Near-Optimality Without Early-Stopping
	4.3 ErrorFreeExt: Overview
	4.4 Proof Sketch

	5 Concluding Remarks

	p015-Constantinescu
	1 Introduction
	1.1 Our contributions
	1.2 Related work

	2 Preliminaries
	3 Resilience Lower Bounds Using the Helly Number
	4 Achieving Optimal-Resilience Convex Consensus
	5 Agreement on a Core-Set
	6 Conclusions
	A Comparison with [33, Theorems 17 and 13]
	B Gather
	C Analysis of Pi_{ACS}

	p016-Coutouly
	1 Introduction
	1.1 Related Work in Distributed Computability for IIS and Submodels
	1.2 Our Contributions

	2 Models of Computation and Definitions
	2.1 Models of Computation
	2.2 Iterated Immediate Snapshot Message Adversary
	2.3 Execution of a Distributed Algorithm

	3 Task Definition
	4 Geometric Definition of Simplicial Complexes
	4.1 Standard Definitions
	4.2 Geometric Encoding of Iterated Immediate Snapshots Configurations
	4.3 A Topology for IIS_n

	5 A Generalisation of the Asynchronous Computability Theorem
	5.1 From continuous function to eta-star condition
	5.2 From eta-star condition to semi-simplicial approximation
	5.3 From semi-simplicial approximation to an algorithm
	5.4 From an algorithm to a continuous function

	6 Application to Set-Agreement
	7 Application to Adversaries Submodels
	8 Conclusion
	A A Counter-Example about Geometric Realizations
	B The Standard Chromatic Subdivision
	B.1 Colorless Algorithms in the Iterated Immediate Snapshots Model

	C Proof that an IIS-terminating subdivision is a simplicial complex
	D Additional figure 
	E Example of simple fiber bundle and link to distributed system

	p017-Czerner
	1 Introduction
	2 Main result
	3 Preliminaries
	4 Population Programs
	5 High-level Overview
	5.1 Double-exponential counting
	5.2 Error detection

	6 A Succinct Population Program
	7 Converting Population Programs into Protocols
	7.1 Formal Model
	7.2 From Population Programs to Machines
	7.3 Conversion to Population Protocols

	8 Robustness of Threshold Protocols
	9 Conclusions

	p018-DArchivio
	1 Introduction
	1.1 Problem Definition
	1.2 Our Results
	1.3 Other Related Works

	2 Preliminaries
	3 An Intermediate Result on Markov Chains
	4 The Main Proof
	4.1 The Voter Dynamics
	4.2 General Case

	5 Discussion and Future Works
	A Well-known Dynamics
	B Probabilistic Tools
	C Upper Bound for the Voter Dynamics
	D Missing Proofs

	p019-Dhulipala
	1 Introduction
	1.1 Our Contribution
	1.2 Further Related Work
	1.3 Outline

	2 Preliminaries
	3 Technical Overview
	3.1 Fixing the Random Choices Upfront
	3.2 MPC Algorithms
	3.3 PRAM algorithms
	3.4 HypergraphMatching in MPC

	4 Approximation Analysis of the Algorithms
	A Analysis of the Set Sampling Process
	A.1 Probability of the Sampled Element Being Not Unique


	p020-Doty
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Chemical Reaction Networks
	2.3 Stable computation with CRNs
	2.4 Time model
	2.5 Semilinear sets, predicates, functions

	3 Execution bounded chemical reaction networks
	4 Execution bounded CRDs stably decide all semilinear sets
	5 Execution bounded CRCs stably compute all semilinear functions
	6 Limitations of execution bounded CRNs
	6.1 Linear potential functions
	6.2 Impossibility of stably deciding majority and parity
	6.3 Impossibility of stably deciding not eventually constant predicates

	7 Conclusion

	p021-El-Hayek
	1 Introduction
	1.1 Model
	1.2 Our Results

	2 Related Work
	3 Technical Overview
	3.1 Counting rooted trees
	3.2 Analysis of the information dissemination


	p022-Emek
	1 Introduction
	1.1 The GRC Model
	1.2 Our Contribution
	1.3 Paper's Outline

	2 Technical Overview
	3 Preliminaries
	3.1 Auxiliary Procedures

	4 A Fast Minimum Spanning Tree Algorithm
	4.1 Analysis

	5 A Sparse Spanner Algorithm
	5.1 Analysis


	p023-Fatourou
	1 Introduction
	2 Related Work
	3 Augmented Static Trie
	3.1 Wait-Free Implementation
	3.2 Correctness
	3.3 Complexity and Optimizations
	3.4 Variants and Other Applications
	3.5 Improving Query Step Complexity to O(log |S|)

	4 Augmented Binary Search Tree
	4.1 Basic Lock-free BST
	4.2 Lock-free Augmentation
	4.3 Complexity
	4.4 Extensions

	5 Future Work
	A Pseudocode for Lock-Free Augmented BST
	B Sketch of Proof of Correctness for Augmented BST

	p024-Flin
	1 Introduction
	1.1 Virtual Graphs
	1.2 Our Contributions
	1.3 Technical Overview
	1.4 Related Work
	1.5 Outline of Paper
	1.6 Preliminaries

	2 Virtual Graphs
	2.1 Implications
	2.1.1 Application 1: Cluster Graphs
	2.1.2 Application 2: Coloring Power Graphs


	3 Lower Bounds: Overview
	4 Coloring Algorithm
	4.1 Slack
	4.2 Almost-Clique Decomposition
	4.3 The High-Level Algorithm

	5 Open Problems
	A Color Trials
	B Pseudo-Code

	p025-Fomin
	1 Introduction
	1.1 Our Results
	1.2 Other Related Work

	2 Treedepth and treewidth
	3 Tree decompositions and w-terminal recursive graphs
	4 MSO logic and Courcelle's theorem
	4.1 Regular Predicates, Homorphism Classes, and Composition
	4.2 Sequential Model-Checking and optimization

	5 Distributed construction of the elimination tree
	6 Distributed model checking and optimization
	7 Applications to H-freeness for graphs of bounded expansion
	8 Conclusion

	p026-Frei
	1 Introduction
	1.1 Quiescence and Composability
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 Leader Election in an Oriented Ring
	3.1 Warm-up: Leader Election Without Termination
	3.2 Leader Election With Quiescent Termination

	4 Leader Election in Non-Oriented Rings
	5 Anonymous Rings
	6 Lower Bound on Message Complexity in Content-Oblivious Rings
	7 Conclusion and Open Questions

	p027-Gelles
	1 Introduction
	1.1 Deterministic Sorting
	1.2 Randomized Sorting
	1.2.1 Techniques: The binary tree of deferred randomness

	1.3 Related Work
	1.4 Organization
	1.5 Conclusions and Future Directions

	2 Preliminaries
	3 Sorting n elements in a single deterministic round
	3.1 The case of a large t
	3.2 Minimal sorting for a variety of parameters via design theory
	3.3 A Composition Theorem

	4 Optimally sorting n elements in d=2 randomized rounds
	4.1 Lower bounds
	4.2 The simple special case of n=t²
	4.3 The general case: supporting any n,t

	A Simulations: Our algorithm and the state-of-the-art algorithm

	p028-Giakkoupis
	1 Introduction
	1.1 Our Contribution

	2 The Algorithm
	3 Definitions and Analysis Outline
	3.1 Analysis Overview

	4 Knowledge of Maximum Degree Delta (Proof of Theorem 2)
	5 Knowledge of Own Degree (Proof of Theorem 3)
	6 Proof of Key Lemmas
	6.1 Lower Bound on Platinum Rounds (Proof of Lemma Lower Bound Platinum
	6.1.1 Lower Bound on Golden Rounds
	6.1.2 From Golden to Platinum Rounds

	6.2 Stopping Times for Platinum Rounds (Proof of Lemma Stopping Time Platinum

	7 Conclusion
	A Tools
	B Two Beeping Channels (Proof of Corollary 4)
	C Omitted Proofs
	D Illustration of Beeping Probability

	p029-Giliberti
	1 Introduction
	1.1 Our Contribution
	1.2 2-Ruling Sets: Technical Overview
	1.2.1 Linear Memory Regime
	1.2.2 Strongly Sublinear Memory Regime


	2 Preliminaries
	3 Deterministic 2-Ruling Set in Linear MPC
	3.1 The Algorithm
	3.2 Analysis

	4 Deterministic 2-Ruling Set in Sublinear MPC
	A Missing Proofs for Linear MPC Result
	B Missing Proofs for Low-Memory MPC Result
	B.1 Coloring of G^2


	p030-Giridharan
	1 Introduction
	2 Model and Definitions
	3 CFT Consensus in Granular Partial Synchrony
	3.1 Necessity
	3.2 Protocol
	3.3 Analysis

	4 CFT Consensus in Granular Asynchrony
	4.1 Necessity
	4.2 Protocol
	4.3 Analysis

	5 BFT Consensus in Granular Partial Synchrony
	5.1 Necessary
	5.2 Protocol
	5.3 Analysis

	6 Related Work
	7 Conclusion
	A BFT Consensus in Granular Asynchrony
	A.1 Protocol
	A.2 Analysis

	B Comparison with [4]
	C BFT Unanimity Validity

	p031-Halldorsson
	1 Introduction
	1.1 Technical Overview on Previous Approaches
	1.2 Our Technical Approach

	2 Preliminaries: d1LC, Slack, Almost-Clique Decomposition, Graytone
	3 Delta-Coloring in CONGEST
	3.1 Fine-Grained ACD Partition
	3.2 Algorithm for Delta-coloring
	3.2.1 Phase 1: Partitioning the Nodes
	3.2.2 Phase 2: Sparse and Ordinary Nodes (Delta gglog n)
	3.2.3 Phase 3: Nice ACs
	3.2.4 Phase 4: Difficult ACs in a Non-Maximum Level
	3.2.5 Phase 5: Difficult ACs in the Maximum Level

	3.3 Proof of Theorem 1

	4 Phase 2 (Delta = O(log n)): Sparse Nodes and Ordinary Cliques
	A Details of Phase 2
	B Computing the ACD

	p032-Li
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Related Work
	3 Preliminaries
	3.1 Quantum Computation
	3.2 Byzantine Agreement Problem
	3.3 Helper lemmas

	4 Proof of Main Theorem
	4.1 Synchronous Model
	4.1.1 Fail-stop adversary
	4.1.2 Byzantine adversary

	4.2 Asynchronous Model

	5 Discussions
	A Proofs of helper lemmas
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2

	B Proof of Lemma 5
	C Proof of Lemma 8

	p033-Nataf
	1 Introduction
	2 Related Work
	3 Model and Preliminary Definitions
	3.1 Model
	3.2 Message Chains, Real-time Ordering and Local Equivalence

	4 Delaying the Future while Maintaining the Past
	5 Operations
	6 Registers and Linearizability
	7 Communication Requirements for Linearizable Registers
	8 Failures and Quorums
	A Detailed Model

	p034-Oh
	1 Introduction
	1.1 Related work
	1.2 Overview of our results

	2 The Bridging Occupancy Chain
	2.1 The model
	2.2 The algorithm

	3 Equilibrium properties of the occupancy chain
	3.1 Precluding the formation of multiple bridges
	3.2 Conditions for bridge formation
	3.3 Layer sequences

	4 Conclusion
	A Additional details of the technical lemmas
	A.1 Further inputs to Theorem 5
	A.2 Further inputs to Theorem 10


	p035-Parzych
	1 Introduction
	1.1 Model
	1.2 Related Work

	2 Impossibility Results for Termination Detection
	3 Memory Lower Bound for Termination Detection
	4 Memory Lower Bound for Stabilizing Termination from Idle-Start
	5 A Logspace Algorithm for Stabilizing Termination
	6 Conclusion

	p036-Petruschka
	1 Introduction
	1.1 Our Results
	1.1.1 Single Color Fault (f = 1)
	1.1.2 f Color Faults
	1.1.3 Equivalence Between All-Pairs and Single-Source Connectivity

	1.2 Discussion and Future Directions

	2 Preliminaries
	3 Single Color Fault
	3.1 Our Labeling Scheme and the Ball Packing Number
	3.2 A Ball-Packing Lower Bound
	3.3 Forbidden Color Routing
	3.3.1 Basic Tools

	3.4 Construction of Routing Tables and Labels
	3.4.1 Overview of the Routing Scheme

	3.5 Centralized Oracles and Nearest Colored Ancestors

	4 Reduction from All-Pairs to Single-Source
	A Single Color Fault: Proof of Theorem 12
	B Forbidden Color Routing 
	C Nearest Colored Ancestor Labels

	p037-Shoup
	1 Introduction
	2 The DispersedSimplex protocol
	2.1 Preliminaries
	2.1.1 Signatures
	2.1.2 Information dispersal

	2.2 Protocol data objects
	2.2.1 Blocks
	2.2.2 Support, commit, and complaint shares and certificates

	2.3 Subprotocols
	2.3.1 Certificate pool
	2.3.2 Complete block tree
	2.3.3 Block commitment

	2.4 The main protocol
	2.4.1 Generating block proposals
	2.4.2 Validating block proposals


	3 Analysis
	3.1 Initial observations
	3.2 Safety
	3.3 Liveness
	3.4 Complexity estimates
	3.4.1 Communication complexity
	3.4.2 Latency

	3.5 Other costs and concrete estimates

	4 Stable leaders
	4.1 Analysis
	4.2 Improved performance through stability

	A Some proofs
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2
	A.3 Proof of Lemma 3
	A.4 Proof of Lemma 4

	B Some implementation details and minor variations
	B.1 Implementing the block proposal validation logic
	B.2 Simple variations
	B.3 Simple variations on StableDispersedSimplex

	C Comparison to other protocols
	C.1 Simplex
	C.2 HotStuff and HotStuff-2
	C.2.1 Latency
	C.2.2 Communication complexity
	C.2.3 Concrete estimates

	C.3 ICC
	C.4 DAG-based atomic broadcast protocols


	p038-Sudo
	1 Introduction
	1.1 Our Contribution
	1.2 Further Related Work

	2 Preliminaries
	3 Rooted Dispersion
	4 General Dispersion
	4.1 Overview
	4.2 Implementation

	5 For Further Improvement in Time Complexities
	6 Discussion
	A Detail Implementation of General Dispersion
	B Proofs of Theorem 10

	p039-Zhang
	1 Introduction
	2 Preliminary
	3 Abstract MAC Layer: Computability
	4 Anonymous Storage-Efficient Randomized Binary Consensus
	4.1 Algorithm MAC-AdoptCommit
	4.2 Algorithm MAC-RBC
	4.3 MAC-RBC2: Improving Time Complexity

	A Correctness Proof of MAC-AdoptCommit
	B Proof of Theorem 7
	C MAC-RBC2
	D Proof of Claim 13
	E Proof of Claim 15
	F Proof of Theorem 16

	p040-Abd-Elhaleem
	1 Introduction
	2 Technical Overview
	2.1 Minor-Aggregations in the Dual
	2.2 SSSP in the Dual


	p041-Albouy
	1 Introduction
	2 Preliminaries
	3 The Coded-MBRB algorithm

	p042-Attiya
	1 Introduction
	2 Our Results
	3 Discussion and Related Work

	p043-Constantinescu
	1 Introduction
	2 Preliminaries
	3 Our Reduction

	p044-Czerner
	1 Introduction
	2 Preliminaries
	3 Main Result

	p045-Fan
	1 Introduction
	2 Security Model
	3 An Impossibility Result
	4 Greedy Strategies: How to overcome the impossibility

	p046-Feletti
	1 Introduction
	2 Algorithm Overview
	3 Uniform Transformation

	p047-Fraigniaud
	1 Introduction
	2 The Model
	3 Our Results
	3.1 Lower Bounds
	3.2 Set-Agreement
	3.3 Beyond the Connectivity Threshold

	4 Discussion

	p048-Frei
	1 Introduction
	2 Detailed Model Description
	3 Previous Results and Conjectures
	4 New Results

	p049-Kristan
	1 Introduction
	2 Preliminaries
	3 Decreasing the radius of a proof labeling scheme
	4 Lower bound on the increase of certificate size
	5 Conclusion

	p050-Kshemkalyani
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Challenges

	2 Algorithm Overview
	2.1 Discussion on Memory Requirement


	p051-Lenzen
	1 The Basic Problem
	2 Our Model
	3 The Key Technical Ingredients and Results
	4 Motivating our Model: An Exercise in Theory Building

	p052-Li
	1 Introduction
	2 Quorum Systems
	3 Leave Protocol

	p053-Sela
	1 Introduction
	2 Aggregate metadata and aggregate queries
	3 Our design for concurrent aggregate queries
	4 The two algorithms implementing our design

	p054-Shi
	1 Introduction
	2 Model
	3 Motivation and summary

	p055-Sudo
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 Main Theorems


