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Preface

DISC 2024, the 38th International Symposium on Distributed Computing, was held between
October 28th and November 1st, 2024, in Madrid, Spain. DISC is an international forum
on the theory, design, analysis, and implementation of distributed systems and networks,
focusing on distributed computing. DISC is organized in cooperation with the European
Association for Theoretical Computer Science (EATCS).

Statistics

DISC 2024 received 170 submissions in the “regular paper” category, and 9 submissions in the
“brief announcement” category. The program was selected by a program committee consisting
of 37 full members and 2 half-load members. The program committee was assisted by 111
external reviewers. As usual for DISC, the committee used a relaxed form of double-blind
reviewing, where the submissions themselves were anonymous, but authors were permitted to
disseminate their work by uploading it to online repositories or by giving talks about it. Each
submission was evaluated by at least three reviewers, and final decisions were made during a
2-day virtual PC meeting, during which approximately 30 submissions were discussed.
The final statistics are as follows:

39 submissions were accepted as regular papers, for an acceptance rate of ~ 23%;

16 brief announcements were accepted, of which two were submitted in this form, and 14
are short versions of full paper submissions.

The keynote talks at DISC 2024 were given by Stephanie Gil (Harvard University), Stefan
Schmid (TU Berlin), and by Gauri Joshi (Carnegie Mellon University).

Awards

The following two awards are jointly sponsored by DISC and the ACM Symposium on
Principles of Distributed Computing (PODC):

The 2024 Edsger W. Dijkstra Prize in Distributed Computing was awarded
to Nicola Santoro and Peter Widmayer for their paper: “Time is Not a Healer” which
originally appeared in the Proceedings of the 6th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pages 304-313, 1989. The paper introduced the
fundamental notion of dynamic transmission faults, with the goal of modeling message
losses on a communication channel, in an otherwise synchronous system. As such, it
was the first to investigate the impact of a changing communication topology during the
execution of the algorithm on the solvability of distributed agreement tasks, enriching
our understanding of this area, and leading to significant follow-up work. The prize was
awarded to the authors at PODC 2024 in Nantes.

The 2024 Principles of Distributed Computing Doctoral Dissertation Award
was presented at DISC 2024. The committee decided to share the award between two
recipients: Dr. Robin Vacus for his dissertation “Algorithmic Perspectives to Collective
Natural Phenomena,” and Dr. Yaunhao Wei for his dissertation “General Techniques for
Efficient Concurrent Data Structures.”
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Preface

This volume also includes the citations the best paper and best student paper awards at
DISC 2024, as well as the citations for the 2024 Edsger W. Dijkstra Prize in Distributed
Computing, which was presented at PODC 2024, and for the Best Dissertation Awards,
which were presented at DISC 2024.
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The International Symposium on Distributed Computing (DISC), is an annual forum for the
presentation of research on all aspects of distributed computing. It is organized in cooperation
with the European Association for Theoretical Computer Science (EATCS). The symposium
was established in 1985 as a biannual International Workshop on Distributed Algorithms on
Graphs (WDAG). The scope was soon extended to cover all aspects of distributed algorithms
and WDAG came to stand for International Workshop on Distributed AlGorithms, becoming
an annual symposium in 1989. To reflect the expansion of its area of interest, the name was
changed to DISC (International Symposium on DIStributed Computing) in 1998, opening
the symposium to all aspects of distributed computing. The aim of DISC is to reflect the
exciting and rapid developments in this field.
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Distinguished Paper Awards

Best Papers

The DISC Program Committee has selected the following two papers to share the DISC 2024
best paper award:

Hyperproperty-Preserving Register Specifications
by Yoav Ben Shimon, Ori Lahav, and Sharon Shoham.

Reasoning about hyperproperties of concurrent implementations, such as the guarantees
these implementations provide to “client” programs, has been a central area in distributed
computing. This paper makes significant contributions to this area by introducing novel
concepts such as “complete” implementations and “decisive linearizability.” The authors
provide a comprehensive framework for understanding and analyzing the preservation of
hyperproperties in shared object implementations, extending beyond traditional linearizability.
This research opens up new avenues for simplifying reasoning about concurrent systems and
their complex behaviors. The paper’s clear presentation, technical depth, and potential for
far-reaching impact in both theory and practice make it a standout contribution to this
year’s program. This work also receives this year’s Best Student Paper award.

Lock-Free Augmented Trees
by Panagiota Fatourou and Eric Ruppert.

The paper introduces an elegant and efficient method for maintaining aggregate informa-
tion in concurrent tree data structures, addressing a critical challenge in parallel computing.
The authors’ ingenious propagation technique enables the augmentation of both static and
dynamic tree structures with powerful query capabilities while preserving lock-free concur-
rency and linearizability. The work demonstrates the technique’s applicability to tries and
binary search trees, rigorously proving its correctness and efficiency. The work could have
significant impact on both theoretical and practical aspects of concurrent programming.
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2024 Principles of Distributed Computing
Doctoral Dissertation Awards

The committee for the 2024 Principles of Distributed Computing Doctoral Dissertation
Award decided to share the award between two recipients:

Dr. Robin Vacus for his dissertation “Algorithmic Perspectives to Collective Natural
Phenomena.”

Dr. Yaunhao Wei for his dissertation “General Techniques for Efficient Concurrent Data
Structures.”

Dr. Vacus's Dissertation

Dr. Vacus completed bis PhD under the supervision of Amos Korman and Pierre Fraigniaud,
at the Université Paris Cité. His thesis applies a distributed systems approach to problems
and models inspired by biology and sociology. The first part of the thesis considers solutions
to two agreement-related problems in a setting in which agents have very limited resources,
as one would expect in an algorithm that may be executed by animals or even biological cells.
It starts by studying a “bit dissemination” problem in which the agents need to decide among
two alternatives. Each starts with an opinion but only one of the agents knows the correct
choice and will insist on it. Agents exchange opinions with a small sample of peers. The
analysis shows an exponential gap beween convergence times in the case in which agents move
simultaneously vs. moving sequentially, and a similar gap between memoryless solutions and
ones that employ strong separation between the simultaneous and the sequential activation
models, and between memory-less solutions and ones in which agents use a small amount of
memory. The next problem tacked in this part involves a continuous setting, in which agents
try to come as close to their center of mass as possible, while they suffer from Gaussian
drift over time and from noisy distance measurements. Somewhat unexpectedly, it is shown
that an algorithm using all-to-all communication is not significantly better than one that
employs no communication whatsoever. The second part of the thesis considers the role
and impact of altruism vs free riding on cooperation in a game-theoretic setting. In one
game, it is shown that players’ motivation to work to increase their payoffs can sometimes be
positively be affected by the amount of easily accessible resources (“low hanging fruit”), while
in other cases it may be negatively correlated to that amount. The final question studied
in the thesis is a variant of the “tragedy-of-the-commons” in which besides cooperating or
defecting players may opt to behave hypocritically, meaning that they perform the least
amount of work needed in order to appear to be cooperating. An original mechanism that
uses moderate social pressure on non-cooperators is shown to cause defectors to be more
cooperative. Dr. Vacus’ thesis provides an inspiring overview of the questions studied, and
employs a wide range of tools and techniques, involving probabilistic analysis, control theory,
statistics and game theory, and computer simulations.

Dr. Wei's Dissertation

Dr. Wei completed his PhD under the supervision of Prof. Guy E. Blelloch, at CMU. In his
thesis, Dr. Wei proposes general techniques for improving existing concurrent data structures
by simplifying their design and enhancing their performance. The goal of the thesis is to
offer techniques that are easy to use to non-experts, even though their implementation
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behind-the-scenes is complicated and subtle. The techniques presented in the thesis are:
(a) Lock-free locks, an automated and general method for converting lock-based concurrent
code into lock-free code, requiring no involvement from the programmer; (b) Consistent
snapshots: a method for enriching any data structure with a linearizable snapshot operation,
which provides a global copy of the state of the object as it existed at some point during the
snapshot operation; and (c) Safe memory reclamation: a combination of manual safe-memory
reclamation and automated reference counting, which is simpler than existing techniques,
and is shown to be competitive in its performance. The thesis also includes implementations
and a rigorous empirical evaluation of the techniques it contributes, including applications to
a variety of concurrent data structures. The implementations are offered as libraries which
are freely available to the public. Given the growing importance of concurrency, and the
well-known difficulty of writing correct and efficient concurrent code, the thesis is well-poised
to find practical impact in the programming world.

The 2024 Principles of Distributed Computing Doctoral Dissertation Award Committee:
Magnts M. Halldérsson, Reykjavik University

Yoram Moses (chair), Technion

Rotem Oshman, Tel-Aviv University

Paul Spirakis, University of Liverpool and University of Patras



2024 Edsger W. Dijkstra Prize in Distributed
Computing

The Edsger W. Dijkstra Prize in Distributed Computing is awarded for outstanding papers
on the principles of distributed computing, whose significance and impact on the theory or
practice of distributed computing have been evident for at least a decade. It is sponsored
jointly by the ACM Symposium on Principles of Distributed Computing (PODC) and the
EATCS Symposium on Distributed Computing (DISC). The prize is presented annually, with
the presentation taking place alternately at PODC and DISC.

The committee decided to award the 2024 Edsger W. Dijkstra Prize in Distributed
Computing to Nicola Santoro and Peter Widmayer for their paper:

“Time is Not a Healer”
appearing in
Proceedings of the 6th Annual Symposium on Theoretical Aspects of Computer Science,
pages 304-313, 1989.

The paper introduced the fundamental notion of dynamic transmission faults, with the
goal of modeling message losses on a communication channel, in an otherwise synchronous
system. As such, it was the first to investigate the impact of a changing communication
topology during the execution of the algorithm on the solvability of distributed agreement
tasks, complementing the classic processor crash fault model.

Beyond this modeling contribution, the paper also showed, via an elegant proof, the
surprising technical fact that, in a system with sufficiently many dynamic transmission faults,
a weak version of the Consensus problem is “either trivial or impossible.” More precisely,
Consensus is unsolvable in a synchronous system if an adversary is able to cause up to n — 1
messages to be lost in every communication round. This illustrated, for the first time, that
the impossibility of Consensus can be also caused by insufficient communication, rather than
just the lack of synchrony.

These insights have been very impactful over time, highlighting the connection between
the communication topology and the computational power of a distributed system. In turn,
the paper has had broad influence across diverse areas such as fault-tolerance, agreement prob-
lems, dynamic communication networks, and even topological understanding of distributed
computing. The paper has also become a classic text thanks to its excellent exposition.

In summary, the seminal paper by Santoro and Widmayer combines original conceptual
contributions with deep theoretical insights, and stands out as a significant stepping stone in
our theoretical understanding of distributed computing.

The 2024 Award Committee:

Dan Alistarh (chair), ISTA

Shlomi Dolev, Ben-Gurion University of the Negev

Faith Ellen, University of Toronto

Fabian Kuhn, University of Freiburg

Petr Kuznetsov, Telecom Paris & Institut Polytechnique Paris
Jukka Suomela, Aalto University
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—— Abstract

Distributed certification is a proof system for detecting illegal network states or improper execution
of distributed algorithms. A certification scheme consists of a proving algorithm, which assigns a
certificate to each node, and a verification algorithm where nodes use these certificates to decide
whether to accept or reject. The system must ensure that all nodes accept if and only if the network
is in a legal state, adhering to the principles of completeness and soundness. The main goal is to
design a scheme where the verification process is local and the certificates are succinct, while using
as efficient as possible proving algorithm.

In cryptographic proof systems, the soundness requirement is often relaxed to computational
soundness, where soundness is guaranteed only against computationally bounded adversaries. Com-
putationally sound proof systems are called arguments. Recently, Aldema Tshuva, Boyle, Cohen,
Moran, and Oshman (TCC 2023) showed that succinct distributed arguments can be used to
enable any polynomially bounded distributed algorithm to certify its execution with polylogarithmic-
length certificates. However, their approach required a global communication phase, adding O(D)
communication rounds in networks of diameter D, which limits its applicability to local algorithms.

In this work, we give the first construction of a fully local succinct distributed argument system,
where the prover and the verifier are both local. We show that a distributed algorithm that runs
in R rounds, has polynomial local computation, and messages of B bits each can be compiled
into a self-certifying algorithm that runs in R + polylog(n) rounds and sends messages of size
B + polylog(n), with certificates of length polylog(n). This construction has several applications,
including self-certification for local algorithms, ongoing certification of long-lived algorithms, and
efficient local mending of the certificates when the network changes.

2012 ACM Subject Classification Theory of computation — Cryptographic protocols
Keywords and phrases distributed certification, proof labeling schemes, SNARG
Digital Object Identifier 10.4230/LIPIcs.DISC.2024.1
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1 Introduction

In this work we study distributed certification, a mechanism that is useful for ensuring
correctness and fault-tolerance in distributed algorithms: the goal is to efficiently check, on
demand, whether the system is in a legal state or not. To that end, the network computes in
advance auxiliary information in the form of certificates stored at the nodes of the network,
and we design an efficient verification procedure that allows the nodes to interact with one
another and use their certificates to verify that the system is in a legal state. Since we do
not trust that the system is in a legal state at verification time, we think of the certificates
as being provided by an untrusted prover, whose goal is to convince us that the system is
in a legal state even when it is not. One can therefore view distributed certification as a
distributed analog of NP.
? Eden Aldema Tshgva and Rotem Qshman;
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Distributed certification was implicit in early work on fault detection and self-stabilization
(e.g., [4]), as a mechanism for detecting that the network has changed (for instance, due to
the failure of a communication link) and action must be taken to address the change. It was
formalized as an object of independent interest in [34], and has since received significant
attention in distributed computing literature (e.g., [32, 33, 12, 20, 25, 22, 17, 42, 40, 23, 22,
30, 41, 9]). Almost all work in the area is solely concerned with optimizing the length of
the certificates, which is viewed as a proxy for the efficiency of the verification algorithm:
in [34] and most of the follow-up work, the verification algorithm consists of a single round
of communication, where nodes send their certificates to their neighbors, and then output a
local decision whether to accept or reject. Our work departs from most of the literature on
distributed certification in two important ways: first, in addition to the certificate length, we
are also concerned with the efficiency of the prover algorithm, that is, the algorithm that
computes the certificates; and second, following [2], we relax the correctness requirement
from perfect soundness to computational soundness. Next we discuss these two aspects of our
work and lay out our motivation for departing from the approach taken by most prior work.

Proving as fast as computing. In the field of delegation of computation (the sequential
notion analogous to distributed certification), a great amount of effort has been devoted to
constructing provers that add minimal overhead on top of the algorithm whose correctness
they aim to certify [44, 3, 26, 24, 10, 49, 50, 11, 35]. This is referred to as “proving as fast
as computing”. Efficient provers are needed for any practical deployment of a delegation
scheme, and therefore designing proof systems where the prover is efficient is a key element
in applications such as proofs on the blockchain; for instance, [8, 7] have made great progress
in the efficiency of the prover and are used in practice. See [47] for a survey of the subject.

In the distributed setting the need for efficient provers is much the same: in order for
distributed certification to serve as a practical mechanism for fault tolerance, we must be
able to compute the certificates efficiently. Thus, the goal of our work is proving as fast as
distributed computing:

Given a distributed algorithm D that runs in polynomial communication rounds and
local computation steps, construct a prover that runs alongside D, adding at most a
polylogarithmic overhead to the rounds and local computation steps.

In other words, our goal is to obtain distributed certification schemes where both the verifier
and the prover are local (in terms of the overhead they add to the system), in contrast to
traditional distributed certification, where only the verifier is a local distributed algorithm,
and the prover is all-powerful.

Computational soundness. Most of the work on distributed certification is set in the
information theoretic world, where the prover and the network nodes are computationally
unbounded. The two requirements from a certification scheme for a network property L are:
Completeness: if the property £ holds, then there exists a certificate assignment that
convinces all nodes to accept; and
Soundness: if the property £ does not hold, then no certificate assignment convinces all
nodes to accept.
Unfortunately, the information-theoretic setting inherits some powerful lower bounds from
nondeterministic two-party communication complexity: for example, it is known that some
network properties require (n?)-bit certificates [25], and some simple and natural properties
such as proving that the network has a given diameter require Q(n)-bit certificates, even
when the verifier is randomized [22].
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This motivates us to consider the following relaxation of the soundness requirement,
known as computational soundness ([39]):

Computational soundness: if the property £ does not hold, then no poly-size prover! can

construct a certificate assignment that convinces all nodes to accept.

A proof system that has computational soundness is called an argument, and in the distributed
setting we call it a distributed argument.

One might ask whether computational soundness indeed captures the type of faults from
which the network wishes to protect itself. We argue that the answer is yes, in most if not all
practical scenarios, if one is willing to assume standard cryptographic assumptions hold. The
key here is that any fault that could be simulated by an efficient algorithm, cannot break
computational soundness, since if it could, that would mean that an efficient algorithm can
solve believed-to-be hard problems, such as the discrete logarithm. For example, if we wish
to protect against hardware or software faults, then we should demand soundness against all
certificates generated generated for an illegal state due to a buggy execution of a distributed
algorithm in the network, or against those generated by a buggy version of the honest prover
algorithm. But even a buggy prover is still an efficient algorithm. Similarly, faults caused by
topology changes can also be simulated by an efficient algorithm, which again means that
such faults cannot break a computationally sound certification scheme.

We remark that although in this work we weaken the soundness requirement, and construct
a local distributed proving algorithm, we still require soundness against global provers: the
argument that we construct is sound against any polynomial-size “cheating prover” that sees
the entire network and tries to produce certificates that fool the network into accepting even
though the network is not in a legal state.

Distributed SNARGs. In delegation of computation (the sequential notion analogous to
distributed certification), the gold standard is to construct a succinct non-interactive argument
(SNARG) whose security relies on standard cryptographic hardness assumptions, such as
learning with errors [16] or, bilinear maps [48], and decisional Diffie-Hellman [14].2 A SNARG
is a computationally sound proof system in which a polynomial-size prover P certifies a
statement of the form “z € L£,” where z is an input of size n and L is a language, by providing
a computationally weak verifier V with a proof =, of length |7| = polylog(n). The verifier
then examines the input z and the proof 7, and decides in linear time in n whether to accept
or reject.® It is guaranteed that the honest prover P can convince the verifier V to accept
any true statement with probability 1 (perfect completeness), and at the same time, no
poly-size cheating prover can convince the verifier to accept with non-negligible probability
(computational soundness). The requirement that the proof 7 be of polylogarithmic length is
called succinctness.

In recent years, the fruitful line of work on delegation of computation has culminated
in the construction of SNARGs for all properties in P [16, 48, 27, 14, 28]. In [2], this was
extended to distributed network algorithms. A distributed SNARG [2] for a property L is a
computationally sound proof system (P, V), consisting of

Computational soundness, like other computational hardness notions, models the adversary as a
non-uniform machine of polynomial size, as it is at least as strong as randomized.

Throughout this work, we refer to SNARGs for deterministic computations, which prove that some
polynomial-time computation was executed correctly, and not SNARGs for NP, which are a much
stronger cryptographic primitive that is not known to exist under standard cryptographic assumptions.
Technically, the prover and the verifier take as input a security parameter A\, and their running time is
polynomial in A. We defer the discussion of the security parameter to Section 2.
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A prover P, which may or may not be a distributed algorithm (both options were
considered in [2]). Given a network graph G = (V| F) and an input assignment  : V. — X
specifying the input z(v) to each node v € V, the prover constructs a proof in the form
of a certificate assignment 7 : V' — {0,1}", with each node v receiving a certificate (v)
of length polylog(n) (where n = |V|).
A verification procedure V, which is a one-round distributed algorithm where every node
v € V initially knows its UID, its input z(v), its neighbors in G, and its certificate m(v).
Each node sends a (possibly different) message on each one of its edges, receives the
messages sent by its neighbors, carries out some local computation, and then outputs
accept or reject. The proof is considered accepted if and only if all nodes accept.
It was recently shown in [2] that any network property in P admits a distributed SNARG.
Moreover, [2] constructed a distributed prover, which allows a polynomial-time distributed
algorithm to certify the correctness of its output using certificates of size polylog(n). However,
the prover constructed in [2] is global: although it is a distributed algorithm, it collects
information from all the nodes of the network, which requires Q(D) rounds in networks of
diameter D (using messages of polylogarithmic size). This means that in some cases the
prover’s overhead may eclipse the running time of the distributed algorithm whose correctness
it certifies, e.g., if the original algorithm is a local algorithm.

1.1 Qur Contribution

In this work, we construct a fully local distributed argument that certifies the correctness of
any polynomial distributed algorithm. That is, for a polynomial distributed algorithm D, it
certifies the following property:

Lp— {(G, 2y D produces output y : V' — Y when executed in } .

the network G = (V, E) with input assignment z : V — X

Our construction uses two cryptographic primitives: collision-resistant hash functions
and batch arguments for NP. These are known to exist under several standard cryptographic
assumptions: subexponential hardness of Diffie-Hellman [18, 14]; polynomial hardness of
learning with errors [1, 15]; and polynomial hardness of bilinear maps [48].

» Theorem 1. Assume collision-resistant hash functions and batch arguments for NP exist.
Then for any distributed algorithm D that runs in poly(n) rounds local computation time,
there is a distributed argument (P,V) certifying the property Lp, where the prover P is a
distributed algorithm that adds an overhead of polylog(n) rounds to the execution of D, sends
polylog(n)-bit messages, and produces certificates of length polylog(n), and the verifier V
runs in one round and sends polylog(n)-bit messages.

Our construction relies on low-diameter network decompositions, and represents a novel
connection between this highly useful primitive and distributed certification.

Applications of our construction. Fully local distributed arguments have several applica-
tions. First, they enable efficient certification of local algorithms, where previous constructions
either had an overhead of ©(D) rounds or produced very long certificates (or both). That is, a
distributed algorithm that runs in a small number of rounds but still has high communication
complexity (i.e., it uses long messages), could now be certified in a few more rounds, using
low communication complexity, and be verified in one round, with one message on each
edge. Second, a local prover can be used to efficiently mend a proof of correctness, instead



E. Aldema Tshuva and R. Oshman

Table 1 Generic distributed certification schemes, and the costs they incur when certifying an
algorithm that runs for R rounds and sends B-bit messages in networks with n nodes, maximum
degree A and diameter D.

Soundness Certificate Verifier Message | Prover Overhead
PLS [34] Perfect R-B-A R-B-A No overhead
LCP [25]* Perfect 0(n?) O(n?) Not distributed
RPLS [23] Statistical R-B-A? O(logn) 1 round
LVD-SNARGs [2]° | Computational | poly(\,logn) poly(A, logn) Not distributed
LVD-SNARGS [2] | Computational | poly(),logn) poly (X, logn) O(D)
This Work Computational | poly()\,logn) poly (A, logn) polylogn

of re-computing it from scratch when a change occurs in the network. Many distributed
algorithms support local correction (also called fizing, mending or healing) of their output,
that is, if a change in the network causes the output of the algorithm to become incorrect,
there is a local procedure that executes only in the area of the network where the change
occurred and “fixes” the output of the algorithm (see, e.g., [5, 19, 36, 6, 31] and the references
therein). Following the execution of the local correction procedure, our fully local prover can
also mend the correctness certificate, by executing the prover to re-certify correctness in the
area of the network that was modified by the correction procedure. This application of our
work creates a new tie between local correction and distributed certification, areas that both
arose originally from fault tolerance and self-stabilization but have drifted apart over time.

Finally, fully local distributed arguments are an important step towards incrementally
verifiable distributed computation. In sequential computing, incrementally verifiable compu-
tation (IVC, [46, 43]) allows for the incremental construction of a certificate of correctness,
which is updated after each step taken by the sequential algorithm, and does not require
storing the entire trace of the computation in memory. Incrementally verifiable computation
is especially relevant in distributed systems, which are often long-lived and reactive. As a
first step towards incrementally verifiable distributed computation, it is necessary to have a
low-overhead prover that can be called many times during the computation without blocking
for a long time, and our construction takes the first step in this direction.

1.2 Related Work

There are several known approaches to obtain generic schemes for certifying the correctness
of any given distributed algorithm, although as we mentioned above, most of the focus
in prior work has been on the efficiency of the verifier, not the prover. In Table 1 we
summarize the tradeoffs that each approach achieves between the length of the certificates,
the communication of the verifier, and the complexity of the prover. The table covers
only schemes where the verifier runs for one round; it is sometimes possible to trade off
certificate size against verifier rounds (see, e.g. [21, 42]), but the total communication over
all verification rounds in the information-theoretic setting remains, in general, high. Next,
we give a brief overview of each approach.

4 In [25], the certificate and message size also depend on the size of the input to each node. That is,
O(n?) refers to the case where there is no input to the nodes or the input is of constant size.
5 In [2], the property is assumed to be in P, and R and B are assumed to be at most polynomial in n.
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In the first work to introduce proof labeling schemes [34] it is pointed out that any
distributed algorithm can be certified by storing the entire transcript of the algorithm at
each node. This can result in long certificates. In [23] it is shown that randomization can
be used to exponentially decrease the communication of the verifier, but this comes at the
cost of even longer certificates (as well as weakening soundness from perfect soundness to
statistical soundness, where the verifier has some small probability of accepting an invalid
proof). Another generic approach is to store a description of the entire network as the
certificate at each node [25]. In addition to long certificates, this approach requires the
prover to know the entire network, which rules out an efficient distributed implementation.
However, it has the advantage of not being dependent on the communication complexity of
the distributed algorithm to be certified, which could be useful for the certification of highly
expensive algorithms.

The first work to introduce computationally sound distributed certification is [2], which
showed that any network property in P can be certified using certificates of polylogarithmic
length in this setting, assuming the prover knows the entire network. In addition, [2]
constructs a generic scheme with a distributed prover that can certify the correctness of any
given distributed algorithm that runs in polynomial rounds and local computation time.
However, the prover in this case requires O(D) rounds in networks of diameter D.

2 Preliminaries

In this section, we describe our network model (which is fairly standard) and the common
reference string model, and then go over the two cryptographic primitives used in our
construction; hash families with local openings and batch arguments for NP. The description
of a batch argument is brief and the full syntax and definition can be found in Appendix A.2.
Distributed Merkle trees, which are another existing construct we use, are discussed in
Section 3.1, and defined formally in Appendix A.1. Moreover, for lack of space, we defer the
full definition of our fully local distributed SNARG (fl-DSNARG) to Appendix A.4.

Network model. A synchronous distributed network is modeled as an undirected, connected
graph G = (V, E), where the nodes V are the processors participating in the computation,
and the edges F represent bidirectional communication links between them. Each network
node has a unique identifier v from some UID domain [n2], and we assume that the size of the
UID domain is polynomial in the network size n, so that a UID can be encoded in O(logn)
bits. We often conflate the UID of a node with the vertex representing it in the network
graph. In each communication round, each node sends a message to each of its neighbors;
the nodes then receive the messages sent to them, carry out some internal computation, and
then the next round begins. The input to the computation is represented by an assignment
x:V — X, and the output by an assignment y : V' — ), where X', ) are some input and
output domains (respectively). Initially, each network node v € V knows its UID, its input
x(v), its neighborhood N (v) in G, and the size n of the network (or a polynomial upper
bound on the size, such as 1). Each node v eventually produces the output y(v). We restrict
attention to algorithms where the round complexity, the message length and the internal
computation are polynomial in the size of the network.

The common reference string model and computational hardness. Our work is set in
the common reference string (CRS) model, which is also the model in which the SNARG
constructions of [16, 48, 27, 14] are set. In this model, all parties — in our case, the prover and
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all the network nodes — have access to a string that is sampled randomly by a trusted setup
process, denoted by Gen, which takes a security parameter A in unary representation. (This
can be viewed as public randomness.) The security parameter governs the computational
resources that must be invested to break the security or soundness of the protocol: we say
that a task that involves the CRS is hard (or computationally hard) if given a CRS sampled
using Gen(1*), no poly-size (in )\) adversary can succeed in the task, except with negligible
probability — that is, probability smaller than 1/\¢ for any constant ¢. Batch arguments,
described below, are defined in the CRS model and their soundness properties hold with
respect to such a security parameter.

Collision resistance and hash families with local openings. A hash family with local
openings, also sometimes known as a hash tree, allows a party that holds a vector (x1,...,2,)
to compute a short hash of the vector, and later to locally open specific locations i € [n],
producing a certificate that convinces another party that the value hashed in location ¢ is x;.
The interface is as follows:

Gen(1%) — hk: a trusted, randomized setup procedure that takes a security parameter A

and outputs a hash key hk. The hash key can be thought of as a descriptor for a hash

function chosen at random from a collision-resistant hash family,® which will be used in
the computation of the hash value and its local openings.

Hash(hk,z) — val: takes a hash key hk and a bit vector z € {0,1}", and returns a hash

value val.

Open(hk,z,i) — (b, p): takes a hash key hk, a bit vector = € {0,1}" and an index i € [|z[],

and produces a bit b and an opening p, which is meant to serve as a certificate that

Verify(hk,val,i,b,p) € {0,1}: takes a hash key hk, a hash value val, an index i, a bit

b, and an opening p, and outputs an acceptance bit b. This procedure is meant to be

executed by the other party, which does not know the value hashed, and wishes to verify

that it has b in location 1.

Our requirements of a hash family with local openings are as follows:

Efficiency and succinctness: the procedures above run in time polynomial in their input,

and output values of length at most poly(}, log |z|).

Completeness: for every hk generated by Gen, every input « and every index ¢ € [|z|], if

val = Hash(hk, z) and (b, p) = Open(hk, z,4), then Verify(hk,val,i,b, p) = 1.

Collision-resistance with respect to openings: it is computationally hard, given a hash

key hk generated by Gen, to find a hash value val, an index i, and two openings pg, p1,

such that both Verify(hk,val,,0, pg) = 1 and Verify(hk,val,i,1, p1) = 1.

We often describe the existence of an opening p such that Verify(hk,val,4,b, py) = 1 by saying
that the hash value val opens to b in location/indez i.

Merkle tree [38] is a tree-based hash family with local openings that can be constructed
from any collision-resistant hash family. Since collision-resistant hash families are known to
exist under the assumption of either the hardness of the discrete logarithm problem [18] or
the learning with errors problem [1], Merkle trees — and hash families with local openings
in general — are also guaranteed to exist under the same assumptions. A Merkle tree over
values (z1,...,2,) is a binary tree, where the leaves are x1,...,x,, and each inner node is

5 A collision-resistant hash family is a family of functions #, such that it is computationally hard, given
a random function from the family h € H, to find colliding inputs: z,y such that h(z) = h(y).
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the hash of the concatenation of its two children.” Merkle trees form the foundation for

the distributed Merkle tree construction of [2], which is utilized in our construction of an
fl-DSNARG (see Section 3.1).

Batch arguments for NP (BARGs) and their use in SNARG constructions. In the SNARG
constructions of [16, 48, 27, 14], to prove that « € L for a language £ that is decided by
a Turing machine M, the prover essentially proves the following statement:“there exist
configurations cfy, ..., cfr such that cfq is the initial configuration of M on input x, cfp is
an accepting configuration, and for each ¢ = 0,...,7 — 1, the machine M transitions from
cf; to cf;11”. This highly-structured statement is a special case of T" instances of an index
language: an NP-language of the form £ = {(C, ) : Jw. C(i,w) = 1}, where C' is a circuit (in
this case, verifying the transitions of the Turing machine), and ¢ is an index. To prove such
statements, [16, 48, 27, 14] use batch arguments for NP (BARGSs), which we describe next, as
they also serve as the basis for our construction in the current paper.

A batch argument for an index language £ allows a prover to convince a verifier of a
conjunction of the form ¢(C) = /\f:1 Jw;. C(i,w;) = 1, where the circuit C is known to
both the prover and the verifier, but only the prover knows the witnesses wy, ..., wg. To
prove this statement, the prover produces a short proof 7, which the verifier is able to check.
Crucially, the length of the proof 7 is linear in the length of a single witness |w;|, but only
polylogarithmic in the number of statements &.%

The BARGs we use in this work, like the BARGs used to construct SNARGs for P, are
of a special type, called a somewhere-extractable BARG (seBARG). We give here a brief
description of a seBARG. See Appendix A.2 for the full syntax and definition. A seBARG
allows for the extraction of one witness from a convincing proof m, as follows:

The procedure Gen that generates the CRS for the BARG can be called either in regular
mode or in trapdoor mode. In trapdoor mode, Gen takes in addition to the security
parameter A an index i € [k], called the binding index. It outputs a pair (crs, td), where
td is a trapdoor that can later be used to recover the i-th witness.

In trapdoor mode, the Gen procedure has a property called index hiding: it is computa-
tionally hard to find the binding index 4, given crs. This means that the prover, which is
given only crs and not the trapdoor td, “cannot tell” which index we are interested in. In
fact, it is hard to even tell whether Gen was called in regular mode or in trapdoor mode,
as the distributions of the resulting string crs are computationally indistinguishable.

The seBARG has an auxiliary extraction procedure, £(td, C, ), which takes a trapdoor
td, a circuit C' and a proof 7, and extracts one witness w.

The seBARG has the somewhere argument of knowledge property: suppose we call Gen
in trapdoor mode with a binding index ¢, and obtain (crs,td). Given only crs, it is
computationally hard to find a proof 7 that is accepted by the verifier, such that when we
extract a witness w; using £(td, C, ), we have C(i,w) # 1. In other words, it is hard for
a poly-size adversary to fool the verifier into accepting a proof 7 if when we extract the
i-th witness we find an inconsistency: the witness is not an NP-witness matching index 1.

" More accurately, the leafs of a Merkle tree over (z1,...,z,) are hash values of z1, ..., xy, taken by a
hash function collision-resistant hash family.

8 Batch arguments for general NP languages allow proving a conjunction of NP statements. A batch
argument for an index language allows for a highly efficient verification, as the verifier does not have to
read k instances.
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3 Technical Overview

In this section, we give a high-level overview of our construction of a fully local distributed
SNARG (fl-DSNARG). This overview is somewhat informal, and some technical details are
glossed over or omitted. The full construction and analysis are deferred to the full version of
this paper.

Given a distributed algorithm D, an input assignment x and an output assignment y,
we wish to construct an argument that certifies the execution of each node, to prove that
each node v indeed outputs y(v) when D is executed with input . We must take into
consideration both the local computation of the node and the messages it sends and receives.
A naive approach would be to have each individual node construct a SNARG proof attesting
to the internal computation steps that it takes while executing D, but this is not enough: the
challenge is that from the perspective of each node, the messages it receives from other nodes
are essentially inputs to its computation, and the messages it sends are outputs. We must
verify the consistency of these messages across each edge: messages that node u “attests to
sending” to v should indeed be received at node v (i.e., they should be reflected correctly in
the proof attesting to v’s internal computation).

Unfortunately, while the real input « and output y of the distributed algorithm we are
trying to certify are available at verification time, the messages sent by the algorithm are
not: we cannot afford to store all messages sent and received as part of the certificate, as
this would require far too much space. The solution is to carefully construct a hash of the
messages, and use it to have nodes verify that the messages are consistent with the rest of
their internal computation.

Recall from Section 2 that current centralized SNARG constructions consist of a batch
argument for NP (a BARG) asserting the conjunction of T statements Si,...,Sr, each
describing a single transition of a Turing machine. The configurations of the Turing machine
are not available explicitly at verification — they are not part of the SNARG proof; instead,
only a hash of the configurations is included in the proof. The proof consists (informally) of a
batch argument proving that for each step ¢, the configuration hash opens in the appropriate
locations to two configurations cf;, cf;; 1, such that the Turing machine indeed transitions
from cf; to cf;4 1.7 (The openings are part of the witness encoded inside the batch argument.)

We use a similar idea to handle the messages of the distributed algorithm: we construct
multiple local distributed Merkle trees, which together are analogous to a hash tree of the
messages, in such a way that each node v can compute openings to all the messages it sent
or received. Intuitively, the message-hash has a “slot” (an index) for each directed edge
u — v and round r, which is meant to record the message m*~" that is sent from node u
to node v in round r. We use the message-hash and the openings to construct two batch
arguments: one attesting to the correctness of the internal computation steps at node 7, and
the second attesting to the consistency between the messages recorded “inside” the internal
computation of node v, and the message-hash.

Consistency is verified at both endpoints of every directed edge u — v: node w verifies
that the message that it sent to node v in round r is indeed recorded in the message-hash in
the slot for message m ", and node v verifies that the message that it received from node v
in round r is recorded in the message-hash in the slot for message m» . This ties together
the messages sent and received, and ensures that our proof captures the true execution of
the distributed algorithm.

9 Technically, we work with a hash of a hash of the configurations (two levels of hashing), so this description
is not quite accurate. We give a more detailed one in Section 3.2.

1:9
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Next we describe distributed Merkle trees, as introduced in [2], and our way of constructing
multiply such trees where each one is local, using a new notion of low-diameter edge cover.

3.1 Local Distributed Merkle Trees

Distributed Merkle trees. As mentioned above, the idea of hashing together all the messages
and using this hash to construct succinct arguments for distributed algorithms was introduced
in [2], and implemented in the form of a distributed Merkle tree (DMT). We introduce DMTs
here in a concise manner, see Appendix A.1 for the full syntax and definition.

A DMT is a hash with local openings for a collection of values {2, } {(v,u}eE> One value
for every directed edge v — w such that {v,u} € E. The values are initially unordered, but
an order will be imposed on them when the DMT is constructed. Initially, each node v knows
all values x,_,, such that v = v or w = v, that is, all values corresponding to edges that
touch v. The DMT is essentially a hash of hashes:

First, each node v computes a hash rt(v) (specifically, a Merkle tree) of its own “outgoing”

values, {Zy—uw e n(; We call rt(v) the local root of node v.

Then, the nodes compute together a global hash, rt, of the individual hashes {rt(v) : v € V'}.

We call rt the global root of the DMT.

Recall that the values {xy_y} {uw}eE Are initially unordered. As the network constructs
the DMT, it imposes an order over the nodes, and each node learns the index I(v) where
its own local root is hashed inside the DMT. Since node v constructed its own local root
rt(v), it already knows the index I,_,,, where it hashed each value x,_,,,. We think of the
concatenation of these indices, I(v) || Iy, as the index of X, in the DMT.

A DMT acts much like a regular Merkle tree over the values {xv_,u}{v,u}eE. With the
information that node v obtains during the construction of the DMT, it can produce an
opening from the global root rt to any value x,_, or ,—,, where u € N(v). The DMT serves
in [2] as a hash of all the messages sent in the network: each value x,_,,, is itself a hash of
all the messages that node v sent to node u during the execution of the algorithm.

In [2] it is shown that a DMT can be constructed in O(D) rounds in networks of diameter
D, using messages of polylogarithmic length. In other words, the DMT construction algorithm
of [2] is global in nature: it first constructs a spanning tree of the entire network, and then
computes the DMT by aggregating hash values up the tree and propagating openings down
the tree.!® This seems unavoidable, as the DMT is a hash of a collection of values that are
initially spread across the entire network. However, one of our main technical contributions
is to show that succinct distributed SNARGs do not require a global DMT; rather, we can
get away with using a collection of local DMTs, each applied to a low-diameter subgraph
of the original network graph, and thereby reduce the overhead of the prover from O(D)
rounds to polylog(n).

Using local DMTs. The key observation that enables us to construct a local prover is that
both during the proving stage and at verification, each node requires access only to its own
messages (sent or received).!!
entire network graph and providing all nodes with a single hash of all the messages; instead,

Thus, there is no need to have a single DMT covering the

10 However, the algorithm in [2] is still more communication-efficient than simply gathering the entire
network’s transcript in one location to compute the hash tree, as it uses polylogarithmic messages.

" The nodes do not actually require access to the messages themselves, but need to be able to verify
consistency of them against some hash value.



E. Aldema Tshuva and R. Oshman

we can compute many “small” DMTs, each covering a small neighborhood and providing the
nodes of that neighborhood with one hash that they can use to access the messages they
sent or received within that neighborhood. Moreover, we do not even need all edges of a
given node to be covered by the same DMT: the crucial property we require is that every
edge must be covered by at least one DMT, so that the messages that flow across the edge
can be incorporated into the certificates of the two nodes at the endpoints of the edge.

With this observation in mind, our goal is to cover all edges of the network by a collection
of subgraphs Hi, ..., Hi, with each subgraph H; maintaining its own DMT. The trade-off
that governs our construction is a familiar one for distributed graph algorithms:

On the one hand, we would like each subgraph H; to have a small diameter, so that we

can compute the DMT for the subgraph in a small number of rounds.

On the other hand, each node should belong to only a small number of subgraphs, as each

subgraph corresponds to a separate DMT and increases both the length of the certificate

that the node eventually computes and the number (or alternatively, the size) of messages

that the node must route during the proving stage, when the DMTs are constructed.
We call the cover Hy, ..., Hy a low-diameter edge cover (defined formally in Appendix A.3),
and show below that it can easily be constructed from a low-diameter decomposition of
G?, the power-2 graph induced by our network graph G. (In G2, two nodes u,v € V are
neighbors if and only if their distance in G is at most 2.) We discuss how existing low-diameter
decomposition constructions [45, 13] can be extended to handle G? while remaining in the
CONGEST model in Appendix B.

In each cluster H;, we compute a DMT over all messages sent over edges of H;. Each
such “local” DMT has a similar structure to the global DMT from [2]. The local DMT for
cluster H; requires O(diam(H;)) rounds to construct, and this is why we require a small
diameter for each cluster.

Constructing a low-diameter edge cover. Suppose we are given an (¢, m)-low diameter

decomposition of G*> = (V, E'): a partition of the nodes V into clusters Uy,...,U; C V, and

a coloring ¢ : {1,...,¢} — {1,...,m} of the clusters, such that:

1. The subgraph G?[U;] induced by each U; has diameter at most d, and

2. The coloring ¢ is a proper coloring of the cluster graph: for any i # j such that for nodes
u € U; and v € U; there is an edge {u,v} € E’ we have c(i) # c(j).

Then we can obtain a low-diameter edge cover by defining subgraphs H; = G[S41],..., Hy =

G[S,] that each includes one cluster and all the nodes that are adjacent to it in G:

S;i=U;U{veV : Juel.{v,u} € E}.

For each node v, denote by C(v) C {Si,...,S¢} the set of clusters to which v belongs.
We have the following properties:
The diameter of each subgraph H; is at most 2d + 2: the original cluster G2[U;] has
diameter at most d with respect to G2, which translates to diameter at most 2d with
respect to GG. Adding nodes adjacent to U; in G increases the diameter to at most 2d + 2.
Every edge {u,v} € E is covered by some cluster H; = G[S;]: since Uy,...,U; is a
partition of V, there is some i € [¢] such that v € U; C S;, and consequently v € S;.
Thus, {u,v} is covered by S;.
Each node belongs to at most m clusters of the edge cover: if v belongs two clusters .5;
and S; where i # j, then there exist nodes u; € S;,u; € S; that are both at distance
at most 1 from v in G. But this means that u; and u; are neighbors in G2, and hence
clusters U;, U; are adjacent in G2, and must have a different color (c(i) # c(j)). This
implies that |C(v)| < m.

1:11
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3.2 Constructing the Distributed Argument

To construct our fully local distributed SNARG, we first need to fix a concrete model for
the internal computation carried out by the network nodes, as the argument will need to
refer to these computation steps. We begin by presenting such a model, and then outline the
construction of the fl-DSNARG.

Modeling polynomial-time distributed algorithms. Consider a distributed algorithm D
that runs in R rounds, with each node taking T local computation steps in each round
(including steps required to read or produce messages). For the sake of concreteness, we
model D as a Turing machine'? Mp, which has three tapes:

The first tape of Mp at node v contains the information available to node v throughout

the computation: its UID, its neighbors, and its input z(v).

On the second tape, Mp writes and receives messages. At the beginning of each round 7,

the messages that were sent to node v in round r — 1 appear on this tape; during the

round, Mp erases these messages and instead writes the messages that node v sends in

round r. For simplicity, we assume in this overview that each message consists of a single

bit. (In the full version of this paper, we allow messages to be of polynomial size.)

The third tape is a work tape, and stores the current internal state of node v.
We denote by cf, . (v) the configuration of Mp at node v in the ¢-th computation step
of round r. For each t < T, the configuration cf,;4+1(v) is obtained from cf,((v) by a
computation step of Mp, representing an internal computation step of node v. However,
configuration cf,41 1(v) is obtained from cf, r(v) by writing on the first tape the messages
that v’s neighbors sent to node v in round r, as recorded in the third tape of their final
round-r configurations, {cf, r(u) : u € N(v)}. This represents the receipt of these messages
by node v at the end of round r.

We refer to the sequence cfg(v),...,cfrr(v) as the trace of the computation at node v,
and denote it by Trace(v).

Constructing the distributed argument. Fix a distributed algorithm D where each node
executes a Turing machine Mp, a network graph G = (V, E), an input assignment  : V' — X
and an output assignment y : V. — ). Let R,T be the number of rounds and the local
computation time of D, respectively. As it runs alongside the original algorithm D, the prover
records the execution of D at each node v: it stores the trace Trace(v) = cfgo(v),...,cfrr(v)
of the Turing machine Mp executed at node v, and the messages {m2 =% m*~"}

r , M
sent and received by v (respectively) on each edge {v,u} € E in each round r.!

ueN (v),r€[R]

After D terminates, the prover begins constructing the certificates. The first step is to
compute a low-diameter edge cover of the network graph G, as described in Section 3.1. Let
S1,...,8¢ CV be the resulting clusters, and for each node v, let S(v) C {1,...,¢} be the
indices of clusters to which node v belongs. In each cluster S;, we compute a DMT of all
messages sent over edges belonging to G[S;], as described above. In the sequel, we use the
notation (-);(v) for the DMT associated with cluster ¢ at node v; for example, rt;(v) is the
local root of node v in the DMT for cluster 1.

12 For simplicity, we assume that all nodes execute the same Turing machine, which takes the UID of the
node as input. However, this is not essential; we could have each node v execute a different machine M,,.

13We believe that the space requirement of our prover can be reduced to have polylogarithmic overhead
on top of the original algorithm D, but this is technically non-trivial, and we defer it to future work.
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The remainder of the prover’s computation is local: each node uses the information it
stored while D was running, and the DMTs that we constructed, to compute a certificate
m(v), consists of the following (see Figure 1 for an illustration).

A hash with local openings hTrace(v) of the vector (hCfy o(v), ..., hCfgrr(v)), where each
hCf, ;(v) is itself a hash with local openings of the configuration cf,. ;(v).
The set S(v) of clusters to which node v belongs.
For each cluster ¢ € S(v), the root rt; of the DMT for cluster S;, as well as the index and
the opening from the root rt; down to the local root rt;(v), which hashes all messages
sent by node v over edges belonging to cluster i.
A BARG proof "(v) asserting that the internal computation of node v is correct,
namely, that each configuration cf, ;41 (v) in the trace of v is obtained from the preceding
configuration cf,;+(v) by a transition of Mp.!* This is a conjunction of R - (T — 1)
statements, with the (r,7)-th statement asserting (roughly) that there exist two hashed
configurations hCf, hCf’ such that:
hTrace(v) opens to hCf in the index corresponding to step (r,t) of the computation,
and to hCf’ in the index corresponding to step (r,t + 1).
The configuration hashes hCf and hCf’ are of successive configurations cf, cf’ (respec-
tively), such that cf’ is obtained from cf by one step of Mp. This statement is delicate
to prove, since it concerns the configurations “under the hash” and not the hashes
hCf, hCf’ themselves (at least not directly), but it can be done using a technique
from [29]. In short, it involves proving that the hashes hCf, hCf’ are of configurations
that are only different in one location, and this could be done for a locally-openable
hash.
A BARG proof 5" (v) asserting the consistency of the messages written in v’s trace with
the messages recorded in the DMTs to which v belongs. This is a conjunction of R -n?
statements, where 7 is the size of the UID space: statement (r,u,w) € [R] x [n] x [7]
asserts that if the edge (u,w) exists in the network, then for each of its ends v € {u,w},
the same message is recorded in the appropriate index (corresponding to round r and
edge (u,w)) of the DMT and trace of node v (which again is u or w).
In more detail, we require that if the edge (u,w) exists and v € {u,w} is one of its ends,
then there exist a message m € {0,1} and a configuration hash hCf such that:
The DMT for the cluster covering edge {u, w} opens to m in the location corresponding
to round r and directed edge (u,w),
hTrace opens to the configuration hash hCf in location (r,T) if v is the sender (i.e.,
u =), or in location (r 4+ 1,1) if v is the receiver (i.e., w = v), and
hCf opens to m in the location where the message sent/received on edge (u,v) is
recorded.
If the edge (u,w) does not exist, or is not adjacent to node v, then the statement (r, u, w)
is simply true (i.e., it imposes no requirements). The mechanism for checking inside the
BARG whether or not the edge (u,w) exists and touches node v is somewhat subtle, and
we defer the details to the full version of this paper.

14 Recall that the transition from step (r,T) to step (r 4 1, 1) involves receiving messages; it is not a local
computation step. It must still be attested to, for example to ensure that the internal state of the
machine does not change between these two steps, but we omit the details here.
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We note that despite the fact that our construction uses multiple local DMTs, the
argument presented above is simpler than the argument constructed using the global DMT
in [2]: separating the requirements into internal correctness and message consistency, and
creating a separate BARG for each, simplifies both the structure of the argument and the
proof of its soundness.

For technical reasons related to the proof of soundness, we actually need two copies of
each BARG: (" (v)7 and 5" (v)7, for j € {1,2}. Each of the four BARGs uses its own crs,
and we will see that this helps us “catch a cheating prover in a lie”. This is discussed in
Section 3.3 below.

Verifying the certificates. At verification time, each node v informs its neighbors of the
clusters S(v) to which it belongs, and also sends a collection {(p.(v),I.(v)):c € S(v)}
consisting of v’s local root and index inside the local DMT for each cluster to which v belongs.
This allows each neighbor u € N(v) to compute the location in the DMT of each message
sent on the edge (v,u).

Next, each node v verifies the four BARGs, f"(v)? and <" (v)? for j = 1,2, stored in
its certificate 7(v). At this point it has all the information needed to do so. If the BARG
verification succeeds, node v outputs accept, and otherwise it outputs reject.

DMT for cluster i

Local DMT rti(v)

... Trace atnode u

rootatv
Local DMT s s
rt;(u) root atu s N
N ’ vl vou vou
L .. my_1|[My ri1
u-v u-v u-v H
mi2y | m¥>v (mEt /Co_nswtency atv
Individual - : |
meseagos™ CONSistency atu L Pl
i Do Ctrr || Clr+1,1 |Clr+1,2
i JEEEEIE 111 |
cfrr |ctranr |cfre Trace atnode v Internal—

_.eoffectness at v

Figure 1 The figure shows the DMT for the cluster i that covers edge {u, v}, and “under the hash”,
the messages sent from node u to node v and vice-versa, under the respective local roots rt;(u), rt; (v).
The figure also shows the trace at each node, “under the hash”. Inside each configuration, small
boxes indicate messages written on the second tape. In configuration cf, r(v), these are the messages
sent by node v in round r; in configuration cf,+1,1(v), these are the messages received by node v in
round 7 (and similarly for node w). The internal correctness BARG at node v (in red) asserts that
each configuration cf, ¢41(v) is the successor to cf,(v) according to Mp. The consistency BARGs
at node v and at node u (in blue) together assert that each message hashed inside the DMT matches
the corresponding messages in the traces of u and of v.
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3.3 The Soundness of Our Construction

In this section, we give the main ideas for our proof of computational soundness.

Fix a distributed algorithm D, and let Lp be the language of all annotated graphs
(G, z,y) such that when D executes in the network G with input assignment z, the output it
produces is y. Let (Gen, P, V) be our f-DSNARG for the language Lp, as described above.

Recall that computational soundness requires that no poly-size adversary can fool the
verifier into accepting the proof of an incorrect statement, except with negligible probability
(in the security parameter and in the size of the graph). We capture this requirement in the
form of the following experiment, which we call ExpSound, where a poly-size adversary A
tries to break the soundness of the argument:

A crs is sampled by calling the trusted setup procedure Gen of the fl-DSNARG. In our
construction, several of the primitives that we use require a common reference string:
the DMT uses a CRS to select a hash function, and the BARGs use their own internal
hash functions as well. The Gen procedure of our fl-DSNARG instantiates these common
reference strings by calling the Gen procedures of the respective primitives, and returns
one value, crs, consisting of all of them together.

The adversary A is given crs, and outputs an annotated graph (G, x,y), and a certificate

assignment 7 to the nodes of G.

We say that A wins the experiment if it can produce a network G, an input « and output y
such that the algorithm D does not output y on (G, x), and a certificate assignment 7 that
convinces all nodes to accept, nonetheless. If there is a poly-size adversary that can win the
experiment with non-negligible probability, then soundness is broken.

To prove the soundness of our argument we assume towards contradiction that there is a
poly-size adversary A that can win experiment ExpSound. We use A to construct a poly-size
adversary A’ that breaks the soundness of one of our building blocks: the collision-resistance
with respect to openings property of the hash family, the index-hiding property of the BARG,
or the somewhere argument of knowledge property of the BARG. Since we assume that these
properties hold for the primitives we use, this is a contradiction.

We consider each computation step (r,t) € [R] x [T] of the distributed algorithm D, and
define an experiment ExpSound, ;, which is the same as ExpSound, except that the crs for the
two BARGs S"(v)! and 3°°"(v)! is generated in trapdoor mode, binding the crs to index
(r,t), while the other two copies, 3 (v)? and 3°°"(v)?, are set up in regular mode (without
a trapdoor). By the index-hiding property of the BARG, no poly-size adversary can tell
whether the Gen procedure is called in regular mode or in trapdoor mode; therefore, our
cheating adversary A wins the new experiment ExpSound,. ;, with almost the same probability
that it wins the original experiment, ExpSound, where all four BARGs were set up in regular
mode. (If the probability was noticeably different, then we could break the index-hiding
property by running A and checking whether it wins. The noticeable difference between the
winning probability for ExpSound and for ExpSound, , translates to a noticeable advantage
in guessing whether crs was generated in trapdoor mode or not.)

Next we use the somewhere argument of knowledge property of the BARG to claim that
whenever A wins the experiment ExpSound,. ,;, we can use the trapdoor associated with the
binding index (r,t) to extract NP-witnesses wj"; (v), w(v) to the (r,t)-th statement of the
BARGs f"(v)! and B (v)!, again with a very close probability to the original winning
probability of A. These witnesses are accepted by the circuit of the respective BARGs.

We would now like to argue that these witnesses reflect the true state of the distributed
algorithm after the t-th computation step of round r: that is, they match the witnesses that
would be generated by an honest prover P, and contain, e.g., the true hash values of internal
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configurations and messages that the algorithm D generates at this point in its computation.
We will then use the collision resistance to openings property of the hash family to reach
a contradiction. If we could claim this for every r € [R] and ¢ € [T], then in particular
it would be true for the final state of the network, in step (R,T), where the output y is
produced. Since the output is encoded in the internal configuration of the network nodes,
whenever the adversary A wins ExpSoundp, 7, we can use it to find a collision in the hash of
the internal configurations: if A wins, then for some node v € V, the output y(v) produced
by A does not match the true output y’(v) of the algorithm D. The witness wilng(v) contains
a hash hCfg 1 (v) of the false final configuration cfg r(v)’, which includes the false output
y(v). But we know that this witness matches what the honest prover would produce, that
is, the hash of the true final configuration cfg r(v), including the true output y'(v). Thus,
the true configuration cf g r(v) and the false configuration cf g r(v)" hash to the same value,
hCf g 1 (v), and we found a collision.

To prove that the witnesses extracted from the certificates in each experiment ExpSound,.,
are the true witnesses that would be generated by the honest prover, we define hybrid

experiments {ExpSound;,t} ( where we use two trapdoors: the first two copies of

rt)E[R]x[T]’
the BARGs are set up with a binding index of (r,t), while the second two copies are set up
with a binding index of (r, ¢+ 1). The winning condition for experiment ExpSound;}t requires

the adversary to output certificates 7(v) at each node v such that
All certificates are accepted.

For each node, upon extracting the witnesses for indices (r,t) and (r,t 4+ 1) from the
respective BARGs, all four witnesses are accepted by the respective BARG circuits.'?

For each node, the witnesses for index (r,t) are the true witnesses that would be generated
by the honest prover. And finally,

There exists a node where the witnesses for index (r,t 4+ 1) are not the true witnesses

that would be generated by the honest prover.
Winning this experiment with non-negligible probability again breaks the index-hiding
property of the BARG, because it essentially means that the adversary can tell whether the
binding index is (r,¢), in which case it produces true witnesses matching the honest prover
at all nodes, or (r,t + 1), in which case it produces a false witness at some node. Proving
this step also relies on the fact that the witnesses are accepted by the BARG circuit, which
asserts that the transition from step (r,t) to step (r,t + 1) is legal. This means that if the
witness for step (r,t) is the true witness, then either the witness for step (r,¢ + 1) is also the
true witness, or we have broken the somewhere proof of knowledge property of the BARG (it
accepts, despite the extraction of an inappropriate witness).

After proving that the adversary cannot win experiment ExpSound;’,5 except with negligible
probability, we chain together the entire sequence ExpSou nd'l’17 ..., ExpSou “le,T and argue
that since the adversary does not win any of these experiments with non-negligible probability,
either it produces false witnesses for the initial state of the network, or it produces true
witnesses for all computation steps (in which case we are done, as we explained above).
However, the prover cannot lie about the initial state of the network without breaking
collision resistance, for reasons similar to those we outlined for the final configuration.

15 Recall that the BARG circuit is simply the circuit that verifies (¢, w;), not to be confused with the BARG
verifier, which verifies the BARG proof.
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Syntax. An efficient distributed Merkle tree DMT is associated with a recursive hash family

with local openings
MT = (MT.Gen, MT.Hash, MT.Open, MT .Verify)

and consists of the following algorithms:

Gen(1*) — hk. A randomized algorithm that takes as input the security parameter A and
outputs a hash key hk = MT.Gen(1*).

DistMake(hk; G; z) — {(val,, rtU,I,U,pU,BU)}UeV(G). A distributed algorithm that executes
in a distributed network G, with all nodes receiving the same hash key hk, and each
node v € V(@) initially holding a collection of inputs x(v) = {Zv—u},en () (one input
Zy—sy for each neighbor u € N(v)). The output at each node v consists of:

A hash value val,, which is the same at all nodes,

A local MT-root rt,,6

An index I, € {0,1}7,

An opening path p,, and

A set 8, of openings (p,—) of index and opening path for every neighbor u € N (v).

» Definition 2 (DMT). A DMT s required to satisfy the following properties:

Well-formedness.
All nodes v € V(G) output the same value val,,
All indices I, are of length c - [logn], for some constant c,

MT-functionality. Fix a hash key hk, a network G of size n and input assignment to it
z: V(G) — {0,1}", where for every v € V(G), x(v) = {zvsutuen(w)s such that for

every edge {v,u} € E(G), Ty € {0,1}". Let

{(valv, rtv,Iv,pv,pU,Fv,Bv)}vev(c) = DistMake(hk, G, z),
where By = {pv—sutuen(w) - For each directed edge (v,u), let Index(v,u) = I, | id(u),
and Opening(v,u) = py || pv—u. We say that the DMT satisfies MT-functionality
if for every such output, there exists a constant ¢ and a vector T of length at most
< ¢ Mlognl+flogni+Mlogll yhere 77 denotes the size of the UID domain) such that:
For every v € V(G) and u € N(v) we have Tindex(v,u) = Tv—u;
For every v € V(G), val, = MT.Hash(hk, Z),
For every v € V(G) and u € N(v) we have:
(Zy—u, Opening(v,u)) = MT.Open(hk, Z, Index(v, u)).

Efficiency. At each mode, the local computation executed by DistMake runs in time

poly(A,m,m).

6 Throughout this section and the sequel, we use both val and rt to denote MT-values, which are also
themselves MT-roots (the construction is recursive). We use val to denote a “final” value, the root
of the entire network, which is later exposed to the algorithm using the DMT; we typically use rt for
intermediate values handled inside the distributed Merkle.
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Low round complexity and low communication complexity. DistMake runs in O(D)
synchronized communication rounds on networks of diameter D, and uses messages of
length poly (A, logn).

» Remark 3. In [2], the set 8, returned from the algorithm DistMake also contain indices
{1 [l To—u}yen(v) and the MT-functionality property is defined with respect to Index(v, u) =
L, || Iy—u, where I, || I,—, is the port number of u as represented in the node v. In this
work, we simplify this by considering the UIDs instead of port numbers of the nodes. This
means that the hash value val now depends on the size of the UID domain n = |U|, where it
used to depend on the maximal degree, but this does not come with a meaningful cost as (1)
we assume 1 = poly(n) and (2) the dependency (of previously A and now n) is logarithmic.

» Theorem 4 ([2]). For every recursive hash family with local openings, there exists a
respective distributed Merkle tree.

A.2 Somewhere Extractable Batch Arguments (seBARGs)

Syntax. A seBARG for index language consists of the following algorithms:

Gen(1*,k,1%,4) — (crs,td). A randomized setup procedure that takes a security parameter
A, the number of statements k, the size of the circuit 1°, and an optional index ¢, and
generates a common reference string crs and if provided an index 4, a trapdoor td.

P(crs,Cywy,...,w,) — (b,7). A polynomial-time prover algorithm that takes the crs, a
circuit C and a list of witnesses wq,...,wg, and outputs a bit b and a proof .

V(crs,C,m) — b. A polynomial-time verification algorithm that takes the crs, a circuit C,
and a proof 7 and outputs an acceptance bit.

E(td,C, ) = w;. A polynomial-time extraction algorithm that takes a trapdoor td, a circuit
C, and a proof 7, and outputs a witness w;.

» Definition 5 (seBARG). A seBARG satisfies the following requirements.
Succinctness. The length of the crs and of the proof m is at most poly(s, \,logk).
Verifier Efficiency. The verifier runs in time poly(s, A, log k).

Completeness. For any A\ € N and s = s(\) of size at most 2*, for any circuit
C : [k] x {0,1}™ — {0,1} of size at most s, any witnesses wy, ..., wy € {0,1}" and
any index i* € [k]

(crs,td) < Gen(1*, k,1%,4%)
P =1
r| Viers,Cm) m < Plers, Cwy, . .., wy)
Index hiding. For any poly-size adversary A and polynomials k = k(\) and s = s(\),
there exists a negligible function negl(-) such that for every A € N

(io,i1) « A(1%)
b+« {0,1} <
(crs,td) « Gen(1*, k, 1%, 4y)

Pr 10,11 €£]€

Alers) + negl(\).

N | =

]
b
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Somewhere argument of knowledge. For any poly-size adversary A, polynomials
k=k(\) and s = s(N), and index i* = i*(X) € [k(N)], there exists a negligible function
negl(+) such that for every A € N

(crs,td) « Gen(1*, k, 15,4%)
(C, ) « Alcrs) < negl(A).
w <+ E(td, C, )

V(ers,C,m) =1

Prl e w) =0

» Theorem 6 ([15, 48, 27, 14]). seBARGs for NP, and in particular, for the index languages,
exist assuming either: (1) LWE, (2) DLIN, or (3) subexponential DDH.

A.3 Low-Diameter Edge Cover

For a graph G = (V, E) and a mapping S from V to subsets of U, denote by Ts the image of
S (that is, the set {t e | v €V : t € S(v)}), and for every t € T, denote by V; the set
of nodes which have ¢ in their image: V,° = {v € V |t € S(v)}.

» Definition 7 ((D, s)-edge-cover). For a graph G, we say a mapping S : V. — U is an edge
cover of G if for every edge {v,u} € E, we have S(v) N S(u) # 0.

We say S is diameter-D if for every t € T, we have that the graph induced by V5, G[V;]
is of strong-diameter at most D.

We say S is s-succinct if for every node v € V., we have |S(v)| < s.

» Remark 8. We remark that unlike the classical definition of graph decomposition, here
we think of the clusters from the point of view of the nodes; and for that reason define the
edge-cover to be a mapping from nodes to all of the sets it belongs to, rather than simply a
set of subsets of the graph nodes.

» Theorem 9. There exists a (polylog(n), polylog(n))-edge-cover algorithm in the CONGEST
model.

A.4 Fully Local Distributed SNARG

We give here the full definition of a fully local distributed SNARG (fl-DSNARG), which is
mostly adopted from [2], with the only difference being the improved efficiency requirement
from the prover.

Syntax. A locally verifiable distributed SNARG with a round-efficient distributed prover
for a distributed algorithm D and corresponding graph language Lp consists of the following
algorithms.

Gen(1*,n) — crs. A randomized algorithm that takes as input a security parameter 1* and
a graph size n, and outputs a common reference string crs.

Plers; Gsx) — (y,m). A distributed algorithm that runs in the network G, where all of the
nodes have access to the common reference string crs obtained from Gen, and each node
v € V(G) inputs x(v), and outputs (1) an assignment of outputs y : V(G) — {0,1}"
of D when executed in G, and (2) an assignment of proofs 7 : V(G) — {0,1}".
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V(ers; Gsx,m) — b. A distributed decision algorithm that takes as a common input to
the entire network a common reference string crs, executes in the network G, where
each node v € V(G) is assigned with an input z(v) and a proof m(v), and outputs
acceptance bits b: V — {0,1}".

» Definition 10 (fl-DSNARG). Let D be a distributed algorithm, and let Lp be its cor-
responding graph language. An fl-DSNARG (Gen, P, V) for D must satisfy the following
properties:

Completeness. For any (G,z) € Lp,

Pr { V(ers; Gyz,m) =1

crs + Gen(1*,n) | .
7« Plers;Gyx) | 7

Soundness. For any poly-size algorithm P* and polynomial n = n(\), there exists a
negligible function negl(-) such that

o[ (C2) ¢ Lo
A V(ers;Gya,m) =1

crs <+ Gen(1*,n)
(G,z,m) < P*(crs)

} < negl(\).

Succinctness. The crs and the proof w(v) at each node v are of length at most
poly(\,logn).

Verifier efficiency. V runs in a single synchronized communication round, during which
each node sends a (possibly different) message of length poly(A,logn) to each neighbor.
At each node v, the local computation executed by V runs in time

pOly(Av |7T(’U)|, |1’(’U)|, deg(v)) = pOIY(/\v n)

Prover efficiency. P adds an overhead of polylog(n) communication rounds to the
rounds of D, where in each of these rounds, each node sends a message of length
poly(A,logn) to each neighbor. At each node, the local computation executed by P
runs in time poly(\,n).

The following theorem states the existence of fl-DSNARG, assuming the existence of the
ingredients we used, to complement Theorem 1.

» Theorem 11. Assume the existence of a (D, c)-edge-cover algorithm in the CONGEST
model, a distributed Merkle tree, and a somewhere extractable argument of knowledge for NP.

Then, for every distributed algorithm D that runs in polynomial rounds and local compu-
tation time, there exists an fl-DSNARG.

B G? Strong-Diameter Decomposition in the CONGEST Model

We require a (polylog(n), polylog(n))-decomposition algorithm that satisfies the following
properties:

It is a strong-diameter decomposition algorithm,

it is in the CONGEST model, and

it can be extended to graph powers while remaining in the CONGEST model.
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While the first two requirements are rather obvious, the last one may seem trivial given the
second requirement, but it is in fact more delicate. It is true that given an algorithm in the
LOCAL model, to simulate its execution on G2, is rather simple; each node could start by
collecting its distance-2 neighborhood and then simulate each step of the original algorithm
as if it was operating on G2, while suffering a factor of 2 in the number of rounds. However,
this does not generally work in the CONGEST model, as the distance-2 neighborhood of
each node might be much larger than the number of connections it can use to collect the
information.

In [45], a CONGEST algorithm for weak-diameter is constructed using the building block
of weak-diameter ball-carving algorithm. Their weak-diameter ball-carving is then extended
to be simulatable on G* in the CONGEST model for any constant k, while preserving the
round complexity. It then uses a classical CONGEST reduction from ball-carving to graph
decomposition [37], where the ball-carving algorithm is executed logn times.

In [13], a strong-diameter decomposition is constructed using a transformation from
weak-diameter ball carving to strong-diameter ball carving in the CONGEST model, following
by the same classical reduction from ball-carving to decomposition. Their transformation
satisfies the property that if the original algorithm runs in polylogn rounds and produces
polylog n-diameter clusters, then the new algorithm also runs in polylogn rounds and
produces polylog n-diameter clusters (with different polynomial dependencies in logn). Then,
combining this transformation with the weak-diameter CONGEST ball-carving of [45], they
obtain a polylogn rounds polylogn strong-diameter ball-carving in the CONGEST model,
followed by a corresponding strong-diameter decomposition in the CONGEST model.

Since the weak-diameter ball carving of [45] could be simulated on G? in the CONGEST
model, to see that the strong-diameter decomposition of [13] could be simulated on G? in the
CONGEST model it remains to show that their weak-diameter to strong diameter ball-carving
transformation could be also simulated in G? in the CONGEST model. We observe that the
transformation of [13] uses communication between the nodes in the following two ways,
which both could be simulated on G? in the CONGEST model:

Counting the number of nodes in a cluster, by gathering information over Steiner trees.

This could be simulated for G? since each node has to transfer only a number of nodes,

where this number is still bounded by n in G2, and so could be described in O(logn) bits.

Computing a radius around a node v such that the ratio between the number of nodes

in the cluster within that radius around v and the number of nodes beyond that radius

exceeds some parameter. This is done by growing a BFS tree around v and gathering the
number of nodes within each distance. Here as well, we have that nodes only transfer
numbers, which are bounded by n, and thus their description is of size O(logn).
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1 Introduction

Traffic lights can slow down traffic significantly, due to their lack of responsiveness to real-time
traffic. If vehicles can communicate with each other (which is already quite feasible with
today’s wireless technology), the door is open for improved protocols, where vehicles can
determine right of way among themselves, depending on traffic conditions, and thereby
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significantly increase throughput at an intersection. In this paper, we formally define the
intersection problem: we assume that agents can communicate with each other via radio
broadcasts, and design protocols that take advantage of this communication to allow agents
to go through the intersection while satisfying safety (no collisions) and liveness (every
vehicle eventually goes through). In addition, we consider optimal protocols, which means,
roughly speaking, that the protocol allows as many vehicles as possible to go through the
intersection at any given time. Finally, we consider the extent to which we can tolerate
communication failures and (older) vehicles that are not equipped with wireless, so cannot
broadcast messages. (It turns out that these two possibilities can be dealt with essentially
the same way.)

While the inefficiencies of traffic-light-based intersection management have long been
recognized [7], prior approaches have mainly focused on specific intersection scenarios [15, 16]
or relied on executing leader-election protocols without considering communication failures
[9, 10]. Furthermore, the protocols have often been evaluated based on simulations of specific
intersections, rather than being proved correct [10, 15]. Given the implications of this
problem for traffic safety, as well as its potential for greatly improving energy efficiency and
productivity, there is a need for formal guarantees on both correctness and optimality.

To the best of our knowledge, prior work did not consider optimality, especially in the
presence of various faults. In designing these protocols, to the extent possible, we want them
to be robust to a variety of communication failures, such as contexts with crash failures,!
where an agent may fail by ceasing to participate in the protocol at a given time, and
omission failures, where arbitrary messages can fail to be broadcast.

Epistemic logic has been shown to provide a high-level abstraction that can be used to
design distributed protocols independent of particular assumptions on the communication
environment and type of failures [8]. Most analyses of distributed-computing problems that
use epistemic logic have used full-information protocols to derive time-optimal algorithms, at
the cost of large message size and memory requirements. Given the limitations of wireless
networks, it is also desirable to bound the amount of information that needs to be exchanged
between agents, while still ensuring that the formal guarantees are still met. To address
this, following [1], we separate the part of the protocol that determines what information
is exchanged between the agents, and the part that determines what action to take based
on the agent’s information. Thus, when we consider optimality, we do so with respect to
protocols that limit information exchange in the same way.

We model the intersection problem as the following scenario. There is a (possibly infinite)
set of agents Ag C N. The intersection has ¢ lanes, represented by £ = {0,...,¢ —1}. The
set of lanes is partitioned into a set of lanes L;, = {0,...,k — 1}, where 1 < k < ¢ by which
vehicles approach the intersection, and a set of lanes L,,; by which they depart from the
intersection. Each lane in £;, has a queue of agents waiting to go through the intersection;
at each point in time at most one agent arrives at each of these queues. A move through the
intersection is represented by a pair (Is,{;) € Lin X Loy Intuitively, executing (s, l;) means
that the agent arrives through lane I3 and departs through lane ;. The symmetric relation
O C (Lin X Lout)? describes which moves of the agents are compatible; ((Is,1;), (I,,1;)) € O
means that both (I,1;) and (I,1}) can be executed in the same round. Broadcasts have a
limited range, given by p > 0. We assume that, provided there are no failures, all broadcasts
sent by an agent ¢ will be received by all agents that are within a distance p of i.  The

L We follow the distributed-algorithms literature’s interpretation of “crash failure” here: it is not meant
to imply a physical collision.
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Figure 1 An intersection with £ = {1,...,8} where L = {1,...,4} and Low = {5,...,8}.
There are currently 4 agents that have arrived in incoming lanes 2 and 3.

problem is then to maximize the rate at which cars move through the intersection while
guaranteeing safety (it is never the case that agents with incompatible moves go through the
intersection simultaneously) and liveness (all agents that arrive at the intersection eventually
move through it). The problem can be thought of as a generalization of distributed mutual
exclusion, where the intersection is the critical section.

The rest of the paper is organized as follows: In Section 2, we briefly review the knowledge-
based framework of [8]. In Section 3, we modify the information-exchange model of [1] and
introduce the sensor model. Section 4 defines models for the adversary which determine the
arrival schedule of vehicles and communication failures. Section 5 combines the information-
exchange and the adversary model, fully specializing the general model of Section 2 to
intersections. Section 6 introduces the various notions of optimality we care about such as
eliminating unnecessary waiting and lexicographical optimality. In Section 7, intersection
policies are introduced as a global view of the intersection. Section 8 proves a construction that
results in an optimal policy even with failures, and explores applications of the construction
in two limited-information contexts. Section 9 concludes with a discussion on connections to
distributed mutual exclusion. We defer most proofs to the full paper.

2 Reasoning about knowledge

In order to reason about the knowledge of the vehicles in the intersection problem, we use
the standard runs-and-systems model [8]. An interpreted system Z = (R, ) consists of a
system R, which is a set of runs, and an interpretation 7 : R x N — P(Prop). Each run
r:N— L. x II;cagL; describes a particular infinite execution of the system where r(m) is
the global state of the system in run r at time m. The global states consist of an environment
state drawn from L. and local states for each agent ¢ drawn from each L;. The local state of
agent ¢ at point (r,m) is denoted r;(m). We call a run and time pair (r,m) a point. The
interpretation 7 describes which atomic propositions hold at each point in a system R.

We write Z, (r,m) |= ¢ if the formula ¢ holds (is satisfied) at point (r,m) in interpreted
system Z. A formula ¢ is valid in an interpreted system I, denoted Z |= ¢, if ¢ holds at all
points in Z; the formula ¢ is wvalid if it is valid in all interpreted systems. Satisfaction of
formulas is inductively defined as follows:

Z,(r,m) Epiff pe n(r,m).

Z,(rrm)E Ny T, (r,m) E¢and Z,(r,m) E ¢

Z,(rym) E ¢ iff Z, (r,m) & ¢.

2:3
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Z,(r,m) = K;¢ it Z,(r',m’) = ¢ for all points (', m’) such that r;(m) = ri(m').

Z, (r,m) | O¢ iff for some m’ > m, I, (r,m’) = ¢.

Z,(r,m)E Q¢ it Z,(r,m+1) = ¢.
Agent i knows a formula ¢ at (r,m) if Z, (r,m) | K;¢. Intuitively, agent i knows ¢ if ¢
holds at all points where agent ¢ has the same local state. We say that agent ¢ considers
the point (r',m’) possible at point (r,m) if r;(m) = ri(m’). The relation ~; is defined as
(rym) ~; (r',m’) iff r;(m) = ri(m'). The formula (¢ means that ¢ holds at the next time,
and Q¢ means that ¢ holds eventually. In later sections, we formalize how interpreted systems
for the intersection problem are specified.

3 Information-exchange protocols

Our framework for modeling limited information exchange is similar to that used by Alpturer
et al. [1] to analyze consensus protocols, but we make a number of changes due to the
differences in our setting. Here, global states represent not just the result of messages sent
between the agents, but also facts about a changing external world, from which the agents
obtain sensor readings (e.g., information about their own position and that of nearby vehicles,
from GPS, visual, lidar, or radar sensors). We modify the definition of information-exchange
protocols from [1] to accommodate these sensor readings. Specifically, assume that we are
given a set L. of environment states. Define a sensor model for L. to be a collection of
mappings S = {.%; }icay, where .7 : L, — E; maps states of the environment to a set ¥; of
possible sensor readings for agent 1.

An information-exchange protocol £ for agents Ag and sensor model S is given by the
collection {&;}icaq consisting of a local information-exchange protocol &; for each agent 1.
Each local information-exchange protocol &; is a tuple (L;, Mem;:mt, A, My, i, 6;), where

L; = Mem; x ¥; is a set of local states, where each local state consists of a memory state

from a set Mem,; and a sensor reading from ¥;;

Mem!"™™ C Mem, is a set of initial memory states. (Typically, there might be a single

initial memory state, containing information such as the agent’s identity.)

M; is the set of messages that can be sent by agent 4;

i+ Ly x A; x 3; — M; U{L} is a function mapping a local state s, an action a, and

a sensor reading o to the message to be broadcast (intuitively, p;(s,a,0) = m means

that when agent i performs action «a in state s and obtains new sensor reading o, the

information-exchange protocol broadcasts the message m to the other agents; if m = L,

then no message is sent by 4);

0t Ly x A; X P(UjeagM;) — Mem,; is a function that updates the local memory as a

function of the previous local state (comprised of the previous memory state and the

previous sensor reading), an action, and a set of messages received.

An action protocol P for an information-exchange protocol &, is a tuple {P; }ic a4 contain-
ing, for each agent i, P; : L; — A; mapping the local states L; for agent 7 in &; to actions in
A,

4  Adversary model

Intersection protocols need to operate in an environment with several forms of nondeterminism:
how messages are broadcast through the environment, failures of transmitters and receivers,
and the arrival pattern of vehicles. We model these aspects of the environment in terms of
an adversary.
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The precise physics of the intersection may affect how broadcasts are transmitted through
the environment. Rather than attempt to model Euclidean distances and obstacles, we
abstract the effects of these factors on transmission. A transmission environment is a
relation T' C (L, x N)2. Intuitively, ((¢,p), (¢/,p')) € T represents that, provided the agents’
transmitters and receivers do not fail, a message broadcast by an agent at position p in lane
¢, will be received by an agent at position p’ in lane ¢/. Transmission environments encode
our assumption that the communication range is p. We make one assumption about this
relation: that for all £,¢" € L,,, we have ((£,0), (¢',0)) € T. That is, messages broadcast by
an agent at the front of some lanes are received (barring failure) by all agents that are at the
front of any lane.

An adversary model F is a set of adversaries; formally, an adversary is a tuple o =
(1, T, Fy, F,.), where 7 : Ag — N X L, X Ly, T is a transmission environment, F; : Nx Ag —
{0,1}, and F, : N x Ag — {0, 1}. Intuitively, 7 is an arrival schedule, which describes when
each agent arrives in the system (i.e., enters a queue), its lane of arrival, and its intended
departure lane. The function F; represents failures of agents’ transmitters and the function
F,. represents failures of agents’ receivers. Fi(k,i) = 1 means that if ¢ tries to broadcast in
round k + 1 (i.e., between time k and time k + 1), then the broadcast will be sent to all
agents within range (i.e., within p of ), and perhaps others; similarly, F.(k,j) = 1 means
that j receives all broadcasts sent in round & + 1 by agents within range (but again, it may
receive other broadcasts as well). Thus, a broadcast by agent ¢ in round k + 1 is received
by a j within range of ¢ in round k + 1 iff Fy(k,i) = F.(k,j) = 1. The function 7 describes
when agents arrive in the system (which we assume is under the control of the adversary).
In more detail, if 7(j) = (k, (l1,12)), then at time k, agent j arrives in the system on lane
l; with the intention of departing on lane l,. We assume that 7 is conflict-free in the sense
that, for all agents i # j, if 7(i) = (k, (I1,12)) and 7(j) = (k, (I1,13)), then I3 # I}. This
ensures that we do not have a conflict of two agents wanting to enter the same queue for lane
l; simultaneously. (Exactly how this mutual exclusion of queue entry is assured is outside
the scope of the model. One way that it may come about is that vehicles approaching the
intersection are already ordered along an approaching lane.)

We consider adversary models that involve the following types of failures:

No failures (NF): the set of all adversaries (7, T, Fy, F,.) where F,.(k,i) = Fy(k,i) =1 for

all i € Ag and k € N.

Crash failures (CR): the set of all adversaries (7, T, F}, F,.) where for all i € Ag and k € N,

(1) Fi(k,i) = 0 implies Fy(k',i) =0 for all ¥’ > k, and (2) F,.(k,i) =1 for all k and 1.

Sending omissions (SO): the set of all adversaries (7,T, F}, F;.) where for all i € Ag and

keN, F.(k,i) = 1.

An adversary model F has a fized transmission environment if all adversaries in F include
the same transmission environment 7. We believe that our techniques can be applied without
change to the general omissions case.

5 Intersection Contexts

A context is a triple (€, F, ) consisting of an information-exchange protocol £, an adversary
model F, and an interpretation 7. To deal with intersections, we restrict information-
exchange protocols and interpretations so that they satisfy certain conditions. (€, F, ) is an
intersection context if it satisfies the following conditions:

2:5
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The set of environment states L. consists of states of the form s, =
(a7t7Q17~--,CI|Lm\7 done) where o € F is an adversary, ¢ € N is a time, for each ap-
proach lane I € L;,, g is a queue (list) of agents, intuitively the ones who have lane ¢
and not yet departed, and a set done C Ag, representing the agents that have already
passed through the intersection.
The sensor model, in principle, could be defined to include information from a large
variety of sensors and information sources, such as GPS, in-road or road-side beacons,
lidar, radar, or vision systems. We start with a minimal location-based sensor model,
and leave it open for other fields to be added. Our minimal sensor model S = {7} }ic a4
is defined so that the sensor function .#; maps environment states to tuples of the form
(front;, lane;, intent;), where front, € {0,1}, lane; € Ly, U {L, T}, and intent; € Loy
For s. = (a,t,q0,q1,---,q|z,,|, done), we have .7 (s.) = (front;, lane;, intent;), where if 7
is the arrival schedule in the adversary «,
pos; maps from global states to NU{L, T}; pos;(s.) = T if i € done, pos;(s.) = k if
there exists a queue ¢ such that ¢ is the kth position in queue g, (with the front of the
queue counted as position 0), and pos;(s.) = L otherwise. (It follows from the state
dynamics given below that i is in at most one queue, so pos; is well-defined.)
front, = 1 iff pos;(s.) =0,
if 7 is in the queue gy for lane ¢, then lane; = ¢; if i € done then lane; = T; and if
i & done then lane; = L.
if 7(¢) = (k, (1,1")) then intent; =1'.
We have modelled an agent’s intended departure lane intent; as being received from the
environment since, from the point of view of protocol design, this is part of the adversary.
The set of possible actions of agent ¢ in &; is A; = {go,noop}. Intuitively, go represents
that action of the agent making its planned move through the intersection. This action
can be performed by agent i only if ¢ is at the front of its queue. The action noop
represents that the agent does not move, unless it is either scheduled for arrival in some
queue, or in some position in a queue but not at the front, and the position before it is
being vacated, in which case it advances in the queue.
A global state is a tuple of the form (s, {si}icay), where s, € L. and s; € L; for each
agent ¢ € Ag. An initial global state has
se = (a,t,q1,...,qz,,, done), where t = 0, each queue ¢; is empty, and done is the
empty set, and
for each agent i € Ag, the local state s; = (m;, %(s.)) where m; € Mem!™" is an
initial memory state.
7 interprets the following atomic propositions based on the global state in the obvious
way: front;, lane; =1 for l € L4, intent; =1 for | € Ly, pos; =k for k e NU{L, T}.

Given an intersection context v = (£, F, ) and a protocol P, we construct an interpreted

system Z, p = (Rg F p,m) representing all the possible behaviours of the protocol P in
context . The set Rg 7 p of runs consists of all runs r that satisfy the following properties:

The initial state 7(0) of r is an initial global state.

For each k € N, the global state r(k + 1) = (s, {s}}icaq) is determined from r(k) =
(Se,{si}icag) by a procedure in which the order of events is as follows. First, the agents
decide their actions (to go through the intersection or not). They then perform these
actions, causing the queues to be updated; any newly arriving agents are also added to
the queues in this step. The agents then take a sensor reading, from which they obtain
new information about their position. This new information may be included in the
message that an agent broadcasts. Finally, each agent updates its memory state, based
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on their previous local state, the action performed, and the messages that were broadcast
in the current round and received by the agent. We then proceed to the next round.
Formally, state transitions are determined by the following procedure:

First, each agent ¢ determines its action P;(s;) according to the protocol P.

If se = (a,m,qu,...,q,|, done), then we take s, = (a,m + 1,q,... ’q\lﬁm’ done’),
', and the time m is

e

defined as follows. Note that the adversary « is the same in s
incremented. Each queue g, is obtained from ¢, by the following operations:
If ¢¢(0) =i and P;(s;) = go, then let g;/ be the result of dequeueing agent ¢ from gy.
Otherwise ¢ = qy.
If 7(i) = (m+1, (11, 12)) for any agent ¢, then we define ¢, = enqueue(i, q;), otherwise
q; = q;. (Recall that such an 7 is unique, by assumption on 7.)
Finally, we take done’ to be the result of adding to the set done all agents i who were
at the front of any queue in s, such that P;(s;) = go.
Next, for each agent i, we obtain a new sensor reading .%;(s,) of the updated state s,
of the environment. Using this sensor readings, each agent ¢ constructs the message
m; = pi(si, Pi(si),-%(s.)), which it broadcasts.
For each agent ¢, we determine the set of messages B;" that the agent receives in round
m+ 1. If agent ¢ is not in any queue in state s, or F.(m,4) = 0 (agent ’s receiver fails in
round m + 1) then B = ). Otherwise, for each agent ¢ that is in a lane queue, let ¢; be
the lane it is in and p; its position in the queue. We define B[ to be the set of messages
m; for which both ((p;,¥¢;), (pi,4;)) € T (j’s transmission can be heard by agent j, given
their positions) and Fi(m, j) = 1 (j’s transmitter does not fail in this round.)
Finally, if s; = (u4, -%i(se)), then s; = (u}, (s)), where u; = 6;(s;, Pi(s;), B™). (Note
that we use the old sensor reading .7;(s.) to determine the new memory state, but not
the new sensor reading .%;(s’), since the latter will be visible to the agent in its new local
state s}.)

P is an intersection protocol for context v = (£, F,n) if the following are valid in Z, p
for all i, j € Ag where i # j, where going, is an abbreviation for front, A O—front,;.

Validity: going; = front,.

Safety: (going; A going;) = ((lane;, intent;), (lane;, intent;)) € O.

Liveness: front, = Ogoing,.

Intuitively, Validity states that an agent does not move through the intersection unless
it is at the front of the queue in its lane. Safety states that if two agents go through the
intersection at the same time, their moves are compatible and do not cause a collision. (Note
that the semantics of the action go has been defined so as to ensure that an agent makes its
planned move, and not any other.) Liveness states that an agent eventually gets to make
its move through the intersection. (The model implicitly assumes that vehicles do not have
mechanical failures and block other vehicles in their lane.)

6  Unnecessary waiting and optimality

One desirable property of an intersection protocol is that it never makes agents wait unne-
cessarily. Eliminating unnecessary waiting is also a criterion that has been considered in the
distributed mutual-exclusion literature [14]. Intuitively, unnecessary waiting occurs if, given
what happens in a certain run r, there is a point where if an agent had gone through the
intersection instead of waiting, safety would not be violated. In this section, we define a
notion of optimality that captures eliminating unnecessary waiting.
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We first give some definitions to define unnecessary waiting and a domination-based
notion of optimality. For an intersection context « and protocol P,

GO(r,m) is the set of agents that go through the intersection in round m + 1, that is,

the agents ¢ with Z,, p, (r,m) |= going;.

Z, p,(r,m) = safe-to-go; if , p, (r,m) |= pos; = 0 and for all agents j, k € GO(r, m)U{i}

where j # k, (lane;(r,m), intent;(r,m)) and (laney(r, m), intenty(r,m)) are compatible

moves according to O.

For a run r of a protocol P in context v, define gotime(r,i) to be the time m € N such

that Z, p, (r,m) |= going;, and oo if there is no such time.

front(r,m) is the set of agents that are in front of each queue, that is, the agents i with

front;(r,m) = 1.

» Definition 1 (unnecessary waiting). An intersection protocol P has unnecessary waiting
with respect to an intersection context vy if there exists i € Ag and point (r,m) such that
Z, p,(r,m) = safe-to-go; and i ¢ GO(r,m).

» Definition 2 (corresponding runs). Given action protocols P, P' and context 7, two runs
r€Z,p and v’ €I, p correspond if r(0) = 7'(0).

Intuitively, corresponding runs have the same adversary, so agents arrive at the intersection
in the same sequence and at the same times in the two runs. We use this notion to define
the following notion of one protocol being better than another if it always ensures a faster
flow of traffic.

» Definition 3 (domination). An action protocol P dominates action protocol P' with respect
to a context v if for all pairs of corresponding runs r € Z, p and r' € I, pr, all i € Ag, we
have gotime(r,i) < gotime(r’,i). If P dominates P’ but P’ does not dominate P, then P
strictly dominates P’.

» Definition 4 (optimality). An intersection protocol P is optimal with respect to an inter-
section context v if there is no intersection protocol P’ that strictly dominates P with respect
to 7.

Our goal is to connect the notions of unnecessary waiting and optimality. The following
result shows that the absence of unnecessary waiting is sufficient for optimality.

» Proposition 4. If an intersection protocol P has no unnecessary waiting with respect to an
intersection context y then P is optimal with respect to .

From here on, we consider contexts that require some conditions on broadcasting. This
is because if not enough information is exchanged or adversaries are too powerful, we cannot
have a protocol that avoids unnecessary waiting. To see why, consider a setting where the
intersection has two incoming lanes and one outgoing lane, each agent has access to a global
clock, and the information-exchange protocol does not send any messages. While a correct
protocol exists that uses the global clock to determine when an agent at the front of a queue
can proceed to the intersection (essentially, we use the global clock to simulate a traffic light,
and have the agents proceed in turns), unnecessary waiting cannot be eliminated, simply
because the agents do not exchange enough information to rule out safety violations.

However, even with full information exchange where each agent broadcasts its entire local
state in each round and records every broadcast it receives, the converse of Proposition 4
still does not hold. A protocol may have unnecessary waiting and still be optimal even with
full information exchange.
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» Proposition 4. There exists an intersection context vy with full information exchange and
no failures and an intersection protocol P such that P has unnecessary waiting and is optimal
with respect to .

Proposition 4 suggests that the definition of optimality doesn’t exactly capture the lack of

unnecessary waiting. We thus consider another definition that we call lezicographic optimality.

» Definition 5 (lexicographical domination). An action protocol P lexicographically dominates
action protocol P’ with respect to a context v if for all corresponding runs r € I, p and
€ I, p, either GO(r,m) = GO(r',m) for all times m or, at the first time m when
GO(r,m) # GO(r',m), we have GO(r',m) C GO(r,m). If P lexicographically dominates P’
but P’ does not lexicographically dominate P, then P strictly lexicographically dominates P’.

» Definition 6 (lexicographic optimality). An intersection protocol P is lexicographically
optimal with respect to an intersection context «y if there is no intersection protocol P’ that
strictly lexicographically dominates P with respect to .

» Proposition 6. If an intersection protocol P has no unnecessary waiting with respect to an
intersection context vy, then P is lexicographically optimal with respect to .

The following result provides a partial converse to Proposition 6.

» Proposition 6. If an intersection protocol P is lexicographically optimal with respect to
an information context v with full information exchange and no failures, then P has no
unnecessary waiting with respect to .

While considering a full-information context shows that lexicographic optimality captures
the condition on unnecessary waiting better, it is also possible to get a similar result in a
context with much less information exchange, even without a global clock.

We say that an intersection context v = (&€, F, ) is sufficiently rich if £ satisfies the
following conditions:

In round m, if agent 7 is going to be at the front of some lane at time m, then ¢ broadcasts

a message encoding lane;, intent;. (Note that we are here using the fact that in agent’s

message in round m can incorporate the effect of its round m action. Thus, if an agent 4

moves to the front of the queue for some lane in round m, then ¢ will sense that it is at

the front of the queue, and 7 can send a message in round m saying that it is about to be
at the head of the queue for its lane.)

Each agent records the (lane, intent) pair for each agent in the front of a queue, and

either no agents in the queue other than those at the front broadcast, or agents at the

front of a queue tag their messages to indicate that they are at the front of their queue.

Intuitively, if an intersection context is sufficiently rich, in the round m that an agent i
reaches the front of the queue for some lane, it knows about all other agents that are in the
front of their queues at time m, and knows their intentions (if there are no failures).

» Lemma 6. If~ is a sufficiently rich intersection context with no failures, P is an intersection
protocol, and front,(r,m) = 1, then
T, p EVI€ Lin(Ki(3j € Ag 3" € L (front; A lane; = 1 Aintent; =1") V
K;(Vj € Ag (lane; #1)))).
Given a sufficiently rich intersection context «y, all protocols that we care about will

depend only on what the agents hear from agents at the front of each queue. We say that an
intersection protocol P depends only on agents in the front of their queues in intersection
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context v = (€, NF, ) if, for all i € Ay, the following condition holds: for all pairs s;, s}
of possible local states of agent ¢ drawn from L; in &, if front(r,m) = front(r,m’), then
P;(r;(m)) = P;(r}(m')). Note that this condition makes sense only in a sufficiently rich
intersection context in the no-failures setting, since otherwise an agent may not know which

agents are at the front of their queues, so its protocol cannot depend on this fact.

» Proposition 6. Let v be a sufficiently rich intersection context with no failures. If an
intersection protocol P is lexicographically optimal with respect to v and P depends only on
agents in the front of their queues, then P has no unnecessary waiting with respect to ~y.

7 Intersection policies

Intuitively, an intersection policy describes which moves are permitted, as a function of a
history describing what happened in the run until that point in time (in particular, the
nondeterministic choices that have been made by the adversary up to that moment of time),
but excluding details of the agent’s local states and protocol.

We will use intersection policies as a tool to design standard protocols that solve the
intersection problem. Roughly, the methodology is the following. Initially, we will design an
intersection policy o that guarantees safety and liveness for agents complying with o. We
will then find standard intersection protocols that implement a knowledge-based program
using o. Finally, we will show that every intersection protocol can be obtained in this way.

A history captures the nondeterministic choices made by the adversary up to some
moment of time. Given an adversary a = (7, T, F}, F.) for a context v and natural number
m € N, define the choices of o in round m + 1 to be the tuple a,, = (v™, T, /™, F{™), where
T ={(i,0,0') € Agx Lin X Lows | T(1) = (m+1,£,£')}, and for a = r and a = t, the function
F™: Ag — {0,1} is defined by FI*(i) = Fy(m,i). (Recall that the transmission environment
T is fixed for the run, so the same T applies in each round.) An adversary history is a finite
sequence of such tuples; for an adversary a and time m, define H(«,m) = {ag, ..., Qm—_1).
(If m =0, H(a,m) is the empty sequence.) Given a context -y, H is the set of all adversary
histories H (o, m) such that « is an adversary for v and m > 0. If r is a run of context ~
with adversary «, we also write H(r, m) for H(a,m).

» Definition 7 (intersection policy). An intersection policy for a context v is a mapping
0:Hy = P(Lin X Lout).

Intuitively, an intersection policy says which moves are permitted in the given round. An
agent at the front of a queue for lane £ may go if its intent is to make move to lane ¢ and
the move (¢, ¢') is permitted. (However, in contexts with failures, the agent may fail to go
because it does not know that its move is permitted.)

An infinite sequence hg, h1, ... is feasible in a context -y if there exists an adversary « of
~ such that h,, = H(a,m) for all m > 0. An intersection policy ¢ for a context 7 is correct
for a context «y if it satisfies the following specification:

Conflict-free: For all histories h € H., and agents i # j, if (;,1}), (1;,1;) € o(h) then

(li, l;, lj, l;) e 0.

Fairness: For all feasible infinite sequences of histories hg, k1, hs .. ., all moves (£,£') €

Lin X Loy, and all m > 0, there exists m’ > m such that (¢,¢') € o(hp).

Intuitively, an intersection policy o is conflict-free if o never permits a conflicting set of
moves to occur simultaneously. An intersection policy o is fair if, in every feasible infinite
sequence of histories, o permits every possible move infinitely often. A context v is o-aware
for an intersection policy o if, for all protocols P for v, agents ¢, lanes £ € Ly, and £/ € Ly,
we have Z, p = ((,0') € o A lane, = £) = K;((£, V) € o).
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» Example 8. A simple correct intersection policy is a cyclic traffic light. Suppose that
the set of all moves Ly, X L,y is partitioned into a collection Sp, ..., Sk _1, such that each
set Sy is a compatible set of moves. Then the intersection policy defined on histories h
by o(h) = S|h| mod K 18 easily seen to be correct (whatever the context 7). Clearly, every
synchronous context is o-aware for this policy.

» Example 9. A more complicated intersection policy is one that prioritizes certain lanes
if they contain specific agents (e.g., an ambulance). Suppose that A C Ag is a finite set
of higher-priority agents. Consider the intersection policy that allows moves given by a
cyclic traffic-light policy unless there is an agent in A that has arrived and is yet to make
a move. In that case, the policy runs the traffic-light policy restricted to lanes containing
higher-priority agents. This requires considering past moves permitted by the policy and
the adversary history to determine the state of the queues. In a context with no failures,
synchrony, and a transmission environment such that the presence of a higher-priority agent
is known by agents in the front, we get o-awareness.

Given an intersection policy o, consider the following knowledge-based program P7:

Program PY.

if K;(front; A (lane;, intent;) € o) then go
else noop

Here the formula (lane;, intent;) € o is satisfied at a point (r,m) if we have (lane;(r,m),
intent;(r,m)) € o(H(r,m)).

An action protocol P implements a knowledge-based program of the form “if K;¢ then
go else noop” in a context « if, for all points (r,m) of Z, p, we have P;(r;(m)) = go iff
Z, p(r,m) = K;¢. (See [8] for the definition for more general program structures.)

We immediately get the following.

)

» Proposition 9. For every synchronous context v and intersection policy o for 7y, there
exists a behaviorally unique® P implementing the knowledge-based program P with respect
to . If o is a correct intersection policy with respect to 7y, then every implementation P of
the knowledge-based program P with respect to v satisfies safety and validity.

Proposition 9 provides a way of deriving an intersection protocol from an intersection
policy. We can also show that every intersection protocol can be derived from some intersection
policy in this way.

» Proposition 9. If P is a protocol satisfying validity and safety then there exists a conflict-
free intersection policy o for v such that P implements P with respect to ~y.

» Definition 10 (efficient intersection policies). An intersection policy o for a context v is
efficient if for all points h € H.,, we have that o(h) is a mazimal conflict-free set of moves.

8 A Knowledge-Based Program with Lexicographically Optimal
Implementations

We would like to have a way to derive lexicographically optimal protocols under a range of
failure assumptions. Moreover, we want these protocols to be fair to all agents, even if there
are agents present that are not. To satisfy these goals, we start with an intersection policy o

2 “Behavioral uniqueness” here means that any two implementations take the same actions at all reachable
states, and can differ only on unreachable states.
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that can be run by all vehicles, including those without V2V communications equipment.
One example of such o is the traffic light policy ¢”7~. In all cases, moves permitted by this
policy will have priority, but we allow vehicles to violate the policy provided that they know
that they can do so safely. To avoid clashes, we establish a priority order on the violations.
Let next be a function from histories such that next(h) € L;, for each history h. Intuitively,
the agent at the front of the queue for lane next(h) will get precedence in going through the
intersection at the point (r,m). The context v is next-aware if, for all protocols P for
and agents ¢ and ¢ € L;,,, we have that Z, p |= next = £ = K;(next = {).
Consider the following knowledge-based program P, where V; is the proposition

(lane;, intent;) ¢ o and the move (lane;, intent;) is compatible with (a) all moves
(lane;, intent;) € o where j is an agent who is about to enter the intersection (i.e.,
going; holds) (b) all moves (lane;, intent;) ¢ o where j # i is an agent for which
going; holds and lane; € [next,lane;). (Here [next, lane;) is the set of lanes from
next(r,m) to lane; (mod |L]).)

Program P;.

if K;(front; A ((lane;, intent;) € o V'V;)) then go
else noop

Intuitively, this knowledge-based program allows all agents permitted by o to go to do so,
as well as allowing agents not permitted by ¢ to go, provided they do so in a cyclic priority
order, and each agent that goes knows that its move is compatible with the moves of all
agents of higher priority (including agents permitted to go by o).

» Proposition 10. Let o be a conflict-free intersection policy. If context vy is synchronous,
next-aware, and o-aware, then there exists a unique implementation P of P that satisfies
safety and wvalidity, is lexicographically optimal with respect to v, and lexicographically
dominates the unique implementation of P?. Moreover, if o is fair then P satisfies liveness.

We can also obtain liveness of the implementations of P under some other conditions.
Define the function next to be fair if, for all feasible sequences of histories hg, h1, ..., all
m > 0 and all lanes £ € L, there exists m’ > m such that next(h,, ) = . Intuitively, fairness
of next will ensure that next fairly selects the first agent that can violate the intersection
policy according to P when this can be done safely.

We also need to ensure that it is not the case that o always gives priority to other
lanes whenever the lane ¢ is selected by next. For this, define a pair (o, next), consisting
of an intersection policy o and a function next, to be fair if for all feasible sequences of
histories hg, hq,..., all m > 0 and all moves (¢,¢') € L;,, there exists m’ > m such that
either (¢,¢') € o(hy), or next(hy,) = £ and (£,¢') is compatible with all the moves in o (h,/)

» Proposition 10. Let P be an implementation of P with respect to a synchronous, next-aware
and o-aware context. If the pair (o, next) is fair, then P satisfies liveness.

Note that if nezt is fair, and the oy is the (unfair) intersection policy defined by og(h) = 0
for all histories h, then the pair (oy, next) is fair. For examples in which o is not trivial,
consider the following properties of o. Say that o is cyclic (with cycle length k) if for all
histories h and h’ with |h| = |h/| mod k, we have o(h) = o(h’). Say that o is non-excluding
if for all moves (¢, ¢'), there exists a history h such that (¢, ¢') is compatible with all moves in
o(h). Given a non-excluding o with cycle length k, let next be defined by next(h) = |h/k]
mod k. Then (o, next) is fair. This is because the value of nezt cycles through all values in
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L, but is held constant through each cycle of o. Thus, for each move (¢, ¢'), eventually a
point in these combined cycles will be reached for which the value of next is £ and (¢, ¢') is
compatible with all moves permitted by o.

8.1 Implementing P when there is no communication

We now consider standard implementations of P in two particular contexts of interest. Since
we would like the implementations to be correct and lexicographically optimal, we use next
and o defined as nezt(h) = m mod |L;,| and o(h) = 0 for all histories h of length m. Using
this choice of next and o in the construction of P ensures that in any synchronous intersection

context, both nezt-awareness and o-awareness hold; moreover, the pair (next,o) is fair.

Therefore, implementations P of P in such contexts are correct and lexicographically optimal,
by Propositions 10 and 10.

We have taken o to be empty for ease of exposition. For practical implementations, the
construction given by the proof of Proposition 10 can be used to get other implementations
that prioritize moves permitted by o. (For example, in an intersection where certain lanes
are often busier, moves originating from those lanes can be prioritized.) Note that for empty
o, the condition K;(front; A ((lane;, intent;) € o vV V;)) reduces to K;(front; A V/), where V/
is the proposition

“the move (lane;, intent;) is compatible with all moves (lane;, intent;) of agents j # ¢
with lane; € [next, lane;) such that going,”,

since o is empty. Consider the following context with no communication. Let 4 be a
synchronous intersection context where agents do not broadcast messages. Formally, for a
failure model F, we define vy (F) = (&g, F, my), where
(&p)q is an information-exchange protocol where the following hold:
The set of memory states is a singleton so, effectively, local states consist only of the
sensor reading L; = ;.
No messages are sent, so M; = (), p; is the constant function with value L, and §; is
omitted.
The sensor model is defined as in the definition of intersection contexts. The only
modification is that the sensor model now maps environment states to tuples of the
form (front,, lane;, intent;, time;), where time; is determined by the time encoded in
the environment state.
mp interprets the propositions defined for intersection contexts in the obvious way.

We now define a procedure to compute a set Pos; of moves that agent i believes may be
performed as a function of next and the structure of the intersection represented by O. We

capture stages of the construction of this set as sets of moves Pos} for | € [next — 1, lane;).

(By next-awareness, next is computable from the agent’s local state. For brevity, we interpret
next — 1 as next — 1( mod |L;,]).)
1. Start with Pos; = Pos!™ ™ = ()
2. For | € [next, lane;) do
a. Let L be the set of moves (I,1) where I’ € L,y such that (I,1’) is compatible with
Pos;, and let Posli := Pos; U L and Pos; := Posﬁ.
3. Output Pos;.

Let P? be the standard protocol given by the following program, where move (1,1') is
compatible with a set of moves S if it is compatible with all moves in S according to O.
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Program PP

7

if front; A (lane;, intent;) is compatible with Pos; then go
else noop

» Proposition 10. P? implements P with respect to ~y(F) for F € {NF, CR, SO}.

Proposition 10 shows that, without communication, a protocol that essentially implements
traffic lights is lexicographically optimal.

8.2 Implementing P in a context with limited communication

If we allow messages regarding the current lane and agents’ intentions by agents that reach the
front, this changes how implementations of P behave. Roughly speaking, in runs where the
intersection gets crowded, a much larger set of agents can proceed through the intersection.
Let vintent be a synchronous context with communication failures such that if an agent is in
the front of some lane, it broadcasts (lane, intent). (This information exchange broadcasts a
lot less information than a full-information exchange.) More formally,? for a failure model F,
we define Yintent (F) = (Eintent, F s Tintent), Where
(Eintent)i 1s defined as an information-exchange protocol where the following hold:

The local states maintain a set of moves M in the memory component in addition to

the sensor readings. Intuitively, this set represents the set of moves from broadcasts

that were received by ¢ in the current round. Note that M; may not contain i’s move

since ¢’s broadcast may fail.

The set of messages is M; = L, X Lout, and p; broadcasts the message (lane;, intent;)

by reading lane;, and intent; from the sensor reading, if front,, and broadcasts no

message otherwise. Note that these variable references are from .%(s.) where s/, is the

new environment state that the system moves to in the course of the round.

The sensor model is defined as in the definition of intersection contexts (while including

time as a sensor reading as in &).

0; maps the set of received messages directly into the memory with ’s own move; that

is, 0;(8;, a, Mes) = Mes. Note that an agent can determine from this set whether its

own broadcast was successful.

Tintent iNterprets the propositions defined for interpretation contexts in the obvious way.

We now proceed as in Subsection 8.1 and define a procedure to compute from an agent
i’s local state s; = (M, (lane;, intent;, time;)) a set Pos; of moves that agent i believes may
be performed by higher-priority agents in the next round. We again capture stages of the
construction of this set as sets of moves Pos} for | € [next — 1, lane;).
1. Start with Pos; = Pos“" ™! = ()
2. For | € [next, lane;) do
a. If for some I’ € Lz, the move (I,1’) is in M; then
if (1,1") is compatible with Pos;
then Pos! := Pos; U{(l,I')} and Pos; := Pos!
else Post := Pos;.

3 This context satisfies the sufficiently rich condition of Section 6.
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b. Otherwise, let L be the set of moves (I,1") where I’ € L, such that (I,1’) is compatible
with Pos;, and let Posé := Pos; UL and Pos; := Posé.4
3. Output Pos;.

Let the output of running this procedure on a local state with memory state M; be denoted
by Pos;, and let P™"t bhe the standard protocol defined using the following program:

intent
Program P; .

if front; A (lane;, intent;) is compatible with Pos; then go
else noop

» Proposition 10. Pt implements P with respect to Yintent(F) for F € {CR,SO}.

Again, by Proposition 10, it follows that the intersection protocol P¢™ is lexicograph-
ically optimal with respect to the contexts Yintent(F) for for F € {CR, SO}.

9 Discussion

We introduced the intersection problem, identified the appropriate notion of optimality called
lexicographical optimality, and designed protocols that are optimal in a variety of contexts.
A knowledge-based analysis and the use of intersection policies were crucial in this process.

Previous work has considered many models ranging from computing individual trajectories
of vehicles to relying on centralized schedulers [6]. In [16, 15], a four-way intersection is
considered in a context with failures. [10, 17] consider virtual traffic lights; the approach is
evaluated using a large-scale simulation. [9] solves the same problem probabilistically, in
contexts with failures. Work in the control theory literature has focused on vehicle dynamics
when going through an intersection [11] to avoid collision. Efforts have also been made to
build distributed intersection management systems through V2V communication [5].

While there has been considerable effort in designing protocols for specific intersections
or designing architectures for intersection management systems, we aim to develop a context-
and architecture-independent approach. Our goal in this paper is to lay the theoretical
foundations of optimal intersection protocol design in a variety of contexts, including contexts
with failures. We do so abstractly by defining the model to capture any intersection topology
with minimal requirements on V2V communication range. While the protocols we design
do not require sensors such as lidar and radar, the use of a knowledge-based program P
provides a direct method to develop optimal implementations in contexts with extra sensors.

The problem we study in this paper can be viewed as a generalization of the classical
problem of mutual exclusion, which requires that two distinct agents are not simultaneously
in a critical section of their code. Indeed, a variant of mutual exclusion called group mutual
exclusion [12] is strictly weaker than the intersection problem. In group mutual exclusion,
each process is assigned a session when entering the critical section and processes are allowed
to enter the critical section simultaneously provided that they share the same session. If
agents form an equivalence relation based on their move compatibility according to O, we
can identify each equivalence class to be in the same session and think of the intersection as
the critical section. However, our setting differs in some critical ways:

4 Intuitively, since M is the set of moves that i hears about from agents in the front of some lane, in
this case i did not hear from anyone in lane [. However, in settings with sending omissions, there may
nevertheless be an agent at the front of lane {”/. Such an agent will move only if it can do so safely.
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Intersections often have an O relation that is not an equivalence relation. For instance,

the fact that agents’ moves conflict in lanes A-B and in lanes B-C does not imply that

their moves in lanes A and C conflict (e.g., if agents want to move straight in a four-way
intersection with two lanes in each direction).

We take the set Ag of agents to be unbounded, while group mutual exclusion (and

equivalent problems such as room synchronization [3]) consider a bounded number of

agents.

Our agents arrive according to a (possibly infinite) schedule determined by the adversary.

To the best of our knowledge, fault-tolerance has not been considered in the group

mutual-exclusion setting.

The mutual-exclusion problem is generally studied with respect to an interleaving model of
asynchronous computation, but as Lamport [13] noted, this model is not physically realistic,
and already builds in a notion of mutual exclusion between the actions of distinct agents. The
Bakery mutual-exclusion protocol [13] is correct with respect to models allowing simultaneous
read and write operations. Moses and Patkin [14] develop an improvement of Lamport’s
Bakery algorithm for the mutual-exclusion problem using a knowledge-based analysis, noting
that there are situations in which Lamport’s protocol could enter the critical section, but
fails to do so. A weaker knowledge-based condition for mutual exclusion is used by Bonollo
et al. [4]; it states that an agent ¢ may enter its critical section when it knows that no other
agent will enter its critical section until agent 7 has exited from its critical section. Clearly
these knowledge-based approaches are similar in spirit to ours. We hope to study the exact
relationship between these problems in the near future.

There are several directions that we hope to explore in the future. One involves extending
the current results to contexts with stronger adversaries and evaluating implementations
of P in other contexts. Another is considering strategic agents, who may deviate from a
protocol to cross the intersection earlier.

—— References

1 K. Alpturer, J. Y. Halpern, and R. van der Meyden. Optimal eventual Byzantine agreement
protocols with omission failures. In Proc. 42nd ACM Symposium on Principles of Distributed
Computing, pages 244-252, 2023.

2 K. Alpturer, J. Y. Halpern, and R. van der Meyden. A knowledge-based analysis of intersection
protocols, 2024. arXiv:2408.09499.

3 Guy E. Blelloch, Perry Cheng, and Phillip B. Gibbons. Room synchronizations. In Proceedings
of the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
2001, Heraklion, Crete Island, Greece, July 4-6, 2001, SPAA 01, pages 122-133, New York,
NY, USA, 2001. Association for Computing Machinery. doi:10.1145/378580.378605.

4 U. Bonollo, R. van der Meyden, and E.A. Sonenberg. Knowledge-based specification: Investig-
ating distributed mutual exclusion. In Bar Ilan Symposium on Foundations of Al, 2001. URL:
https://www.cse.unsw.edu.au/~meyden/research/bisfai.pdf.

5 Anténio Casimiro, Jorg Kaiser, Elad M. Schiller, Pedro Costa, José Parizi, Rolf Johansson,
and Renato Librino. The karyon project: Predictable and safe coordination in cooperative
vehicular systems. In 2018 48rd Annual IEEE/IFIP Conference on Dependable Systems and
Networks Workshop (DSN-W), pages 1-12, 2013. doi:10.1109/DSNW.2013.6615530.

6 Lei Chen and Cristofer Englund. Cooperative intersection management: A survey. Trans.
Intell. Transport. Syst., 17(2):570-586, January 2016. doi:10.1109/TITS.2015.2471812.

7 K. Dresner and P. Stone. A multiagent approach to autonomous intersection management.
Journal of A.I. Research, 31:591-656, 2008. doi:10.1613/JAIR.2502.


https://arxiv.org/abs/2408.09499
https://doi.org/10.1145/378580.378605
https://www.cse.unsw.edu.au/~meyden/research/bisfai.pdf
https://doi.org/10.1109/DSNW.2013.6615530
https://doi.org/10.1109/TITS.2015.2471812
https://doi.org/10.1613/JAIR.2502

K. Alpturer, J. Y. Halpern, and R. van der Meyden

10

11

12

13

14

15

16

17

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. MIT Press,
Cambridge, MA, 1995. A slightly revised paperback version was published in 2003.

N. Fathollahnejad, E. Villani, R. Pathan, R. Barbosa, and J. Karlsson. On reliability analysis of
leader election protocols for virtual traffic lights. In 2013 43rd Annual IEEE/IFIP Conference
on Dependable Systems and Networks Workshop (DSN-W), pages 1-12, 2013.

M. Ferreira, R. Fernandes, H. Conceicdo, W. Viriyasitavat, and O. K. Tonguz. Self-organized
traffic control. In Proceedings of the Seventh ACM International Workshop on VehiculAr
InterNETworking, pages 85-90, 2010.

Michael R. Hafner, Drew Cunningham, Lorenzo Caminiti, and Domitilla Del Vecchio. Cooper-
ative collision avoidance at intersections: Algorithms and experiments. IEEE Transactions on
Intelligent Transportation Systems, 14(3):1162-1175, 2013. doi:10.1109/TITS.2013.2252901.
Yuh-Jzer Joung. Asynchronous group mutual exclusion. Distributed Computing, 13(4):189-206,
November 2000. doi:10.1007/PL00008918.

Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem. Commun.
ACM, 17(8):453*455, 1974. doi:10.1145/361082.361093.

Yoram Moses and Katia Patkin. Mutual exclusion as a matter of priority. Theor. Comput.
Sci., 751:46-60, 2018. doi:10.1016/j.tcs.2016.12.015.

E. Regnath, M. Birkner, and S. Steinhorst. CISCAV: consensus-based intersection scheduling
for connected autonomous vehicles. In 2021 IEEE International Conference on Omni-Layer
Intelligent Systems (COINS), pages 1-7, 2021.

V. Savic, E. M. Schiller, and M. Papatriantafilou. Distributed algorithm for collision avoidance
at road intersections in the presence of communication failures. In 2017 IEEFE Intelligent
Vehicles Symposium (IV), pages 1005-1012, 2017.

Rusheng Zhang, Frank Schmutz, Kyle Gerard, Aurélicn Pomini, Louis Basseto, Sami Ben
Hassen, Akihiro Ishikawa, Inci Ozgunes, and Ozan Tonguz. Virtual traffic lights: System
design and implementation. In 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall),
pages 1-5, 2018. doi:10.1109/VTCFall.2018.8690709.

2:17

DISC 2024


https://doi.org/10.1109/TITS.2013.2252901
https://doi.org/10.1007/PL00008918
https://doi.org/10.1145/361082.361093
https://doi.org/10.1016/j.tcs.2016.12.015
https://doi.org/10.1109/VTCFall.2018.8690709




Byzantine Resilient Distributed Computing on
External Data

John Augustine 2 &
Indian Institute of Technology Madras, Chennai, India

Jeffin Biju =
Indian Institute of Technology Madras, Chennai, India

Shachar Meir &

Weizmann Institute of Science, Rehovot, Israel

David Peleg &

Weizmann Institute of Science, Rehovot, Israel

Srikkanth Ramachandran &
Indian Institute of Technology Madras, Chennai, India

Aishwarya Thiruvengadam &4
Indian Institute of Technology Madras, Chennai, India

—— Abstract
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abilities, called the External Data Source (or just source for short). This source stores an array X of
n bits (n > k), providing every peer in the congested clique read-only access to X' through queries.
It is assumed that a query to the source is significantly more expensive than a message between two
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1 Introduction

Background and Motivation

We study distributed systems in which a peer-to-peer (P2P) network retrieves data (or
some boolean function of it) from a trusted source of data that is external to the network.
To formalize this study, we propose a new model called the Data Retrieval (DR) Model
comprising a congested clique network and an External Data Source (or source for short)
with no computational capabilities. The DR model consists of a congested clique network
with k peers, up to Sk of which can be Byzantine in every execution (for suitable values of
B €10,1)). The source comprises an array X of n bits (n > k), providing every peer in the
congested clique read-only access to X through queries. We prioritize minimizing the number
of queries a peer performs over the number of messages it sends as we assume that a query to
the source is significantly more expensive than a message between two peers in the network.

Our DR model is inspired by distributed Blockchain oracles [7, 12]. In such oracle systems,
a decentralized P2P network with some Byzantine corruptions (modeled by our congested
clique network) is tasked with retrieving information from trusted external data sources
(e.g., stock prices, inflation indices, IoT sensors, etc.) through well defined Application
Programming Interface (API) calls. Currently, nodes in state-of-the-art blockchain oracles
do not cooperate, resulting in each node having to read all the information directly from the
data source. These API calls can be expensive with cost scaling directly with their usage.
The DR model provides a framework for designing Byzantine resilient mechanisms for nodes
in such P2P networks to share the workload of queries, thus reducing the cost for each node.

Trusted read-only
data source

Expensive Reliable
Queries Responses

I:'-. Congested Clique
i (P2P Network)

. Byzantine
E S
» Peers

Difference in approach from traditional BFT problems. The theory of Byzantine fault
tolerance has been a fundamental part of distributed computing ever since its introduction
by Pease, Shostak, and Lamport [33, 36] in the early 80’s, and has had a profound influence
on cryptocurrencies, blockchains, distributed ledgers, and other decentralized peer-to-peer
systems. It largely focused on a canonical set of problems like Broadcast [18], Agreement [11,
33, 36, 37], k-set Agreement [14], Common Coin [34], and State Machine Replication [13].
Some studies have injected Byzantine fault tolerance into other related areas (cf. [5, 6, 9, 16,
17]). In most of these studies, the main parameter of interest is the maximum fraction 3 of
the peers that can be corrupted by the adversary in an execution.
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Consider the Byzantine Agreement problem that requires n peers, each with an input bit,
to agree on a common output bit that is valid, in the sense that at least one honest (non-
Byzantine) peer held it as input. In the synchronous setting, even without cryptographic
assumptions, there are agreement algorithms that can tolerate any fraction § < 1/3 of
Byzantine peers [33] (and this extends to asynchronous settings as well [11]). When 8 > 1/3,
agreement becomes impossible in these settings [33]. However, the bound improves to § < 1/2
with message authentication by cryptographic digital signatures [38]. By the well-known
network partitioning argument (discussed shortly), § < 1/2 is required for any form of
Byzantine agreement. For most of the Byzantine fault tolerance literature, S hovers around
either 1/3 or 1/2, with some notable exceptions like authenticated broadcast [18] that can
tolerate any S < 1.

The main reason for this limitation stems from the inherent coupling of data and
computing. Consider, for instance, any Byzantine Agreement variation with 8 > 1/2. When
all honest peers have the same input bit (say, 1), the Byzantine peers hold at least half the
input bits and can unanimously claim 0 as their input bits. This ability of Byzantine peers
to spoof input bits makes it fundamentally impossible for honest peers to reach a correct
agreement with the validity requirement intact. At the heart of this impossibility is the
adversary’s power to control information crucial to solving the problem. In fact, this issue
leads to many impossibilities and inability to solve problems exactly (see e.g, [4]).

In contrast, having a reliable source that provides the data in read-only fashion yields
a distributed computing context where access to data cannot be controlled by Byzantine
peers. Taken to the extreme, any honest peer can individually solve all problems by directly
querying the source for all required data. However, queries are charged for, and can be
quite expensive. So the challenge is to design effective and secure collaborative techniques
to solve the problem at hand while minimizing the number of queries made by each honest
peer!. Hence, despite the source being passive (read-only with no computational power), its
reliability makes the model stronger than the common Byzantine model.

The Model

A Data Retrieval model consists of (i) k peers that form a congested clique and (ii) a source
of data that is external to the congested clique called the source that stores the input array
comprising n bits and provides read-only access to its content through queries.

Congested Clique. The k peers are identified by unique ID’s assumed to be from the range
[1,k]. The peers are connected via a complete network. In each round, every peer can send
at most one O(logn) bit message to each of the other peers. This communication mechanism
is referred to as peer-peer communication.

The source. The n-bit input array X = {x1,...,z,} (with n > k) is stored in the source.
It allows peers to retrieve that data through queries of the form Query(i), for 1 <i < n. The
answer returned by the source would then be z;, the i*" element in the array. This type of
communication is referred to as source-peer communication.

! Note that appointing some individual peers to query each input bit and applying a Byzantine Reliable
Broadcast (BRB) protocol [2, 11, 18] for disseminating the bits to all peers will not do, since the
appointed peers might be Byzantine, in which case the BRB protocol can only guarantee agreement on
some value, but not necessarily the true one. Moreover, Byzantine Reliable Broadcast (BRB) cannot be
solved when 3 > 1/3 with no authenticated messages.
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Synchrony and rounds. We consider a synchronous round setting where peers share a
global clock, and the network delay is bounded by A. Each round has a total length of 3A
and consists of two sub-rounds:

1. The query sub-round of length 2A of source-peer communication, comprising sending
queries of the form Query(:) from a peer to the source and receiving the responses from
the source. Every peer can send up to n queries per round to the source. (This is merely
an upper limit; our protocols typically send significantly fewer queries).

2. The message-passing sub-round of length A of peer-peer communication, consisting of
messages exchanged between peers. Every message is of size O(logn)

We assume local computation takes 0 time and is performed at the beginning of a round.

We assume that a peer M can choose to ignore (not process) messages received from another

peer during the execution. Such messages incur no communication cost? for M.

The adversarial settings. The behavior of the environment in which our protocols operate
is modeled via an adversary Adv that is in charge of selecting the input data and fixing
the peers’ failure pattern. In executing a protocol, a peer is considered honest if it obeys
the protocol throughout the execution. A Byzantine peer can deviate from the protocol
arbitrarily (controlled by Adv). The adversary Adv can corrupt at most Sk peers for some
given® 3 € [0,1). This implies that Adv cannot corrupt all of the peers; our results are stated
under this assumption. Letting v = 1 — 3, there is (at least) a v fraction of honest peers. We
denote the set of Byzantine (respectively, honest) peers in the execution by B. (resp., H).

We design both deterministic and randomized protocols. When the protocol is deter-
ministic, the adversary can be thought of as all-knowing. Thus, Adv knows exactly how the
complete execution will proceed and can select Byzantine nodes from the beginning based
on this knowledge. When the protocol is randomized, the peers may generate random bits
locally. At the beginning of each round ¢, Adv has knowledge of X, all the local random bits
generated up to round ¢ — 1, and all peer-peer and source-peer communications up to round
1 — 1. At the start of round 7, it can corrupt as many peers as it desires, provided the total
number of peers corrupted since the beginning of the execution does not exceed k. Such an
adversary is said to be adaptive.

Complexity measures. The following complexity measures are used to analyze our protocols:
(i) Query Complexity (Q): the maximum number of queries made by an honest peer during
the execution of the protocol, (ii) Message Complexity (M): the total number of messages
sent by honest peers during the execution of the protocol, and (iii) Round Complexity (7):
the number of rounds (or time) it takes for the protocol to terminate.

As queries to the source are expected to be the more expensive component in the
foreseeable future, we primarily focus on optimizing the query complexity Q, only trying to
optimize 7 and M when Q is optimal (within log(n) factors). Our definition of Q (measuring
the maximum cost per peer rather than the total cost) favors a fair and balanced load of
queries across honest peers.

2 Specifically, an honest peer M can ignore the messages of a known Byzantine peer M’ and thus thwart
any “denial of service” attack that M’ attempts on M. Such messages sent by the Byzantine peer M’
to M will not be counted towards the message complexity.

3 We do not assume 8 to be a fixed constant (unless mentioned otherwise).
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Problems Studied and Their Complexity in the Failure Free Model

We introduce the two main problems we focus on in this paper. To establish a baseline for
our various results, we first outline the best possible complexity measures when there are no
Byzantine failures. For Q, the best bound is the total number of queries required divided by
k, since this work of querying can be distributed evenly.

Download. We begin with the fundamental Download problem, where each of the k peers
needs to obtain a copy of all n input bits from the cloud. This problem is the most fundamental
retrieval problem since every computable function f of the input can be computed by the
peers by first running a download protocol and then computing f(X') locally at no additional
costs. Hence, its query cost serves as a baseline against which to compare the costs of other
specialized algorithms for specific problems. Observe that a Q lower bound for computing
any Boolean function on & serves as a lower bound for Download as well.

To solve this problem in the absence of failures, all n bits need to be queried, and this
workload can be shared evenly among k peers, giving Q = O(n/k). The message complexity
is M = O(nk) and round complexity is 7 = O(n/k) since Q(n/k) bits need to be sent along
each communication link when the workload is shared.

Disjunction. In the Disjunction problem, the honest peers must learn whether at least one
of the input bits in A is a 1. We also consider an FEzplicit Disjunction version where each
peer must learn an index ¢ such that X'[i{] =1 (or output 0 if there are no 1’s).

The Disjunction problem is a retrieval problem that illustrates the possibility of achieving
better results than trivially using Download as a subroutine. The complexity of the problem
is closely tied to the density § (i.e., the fraction of ones) in the input. In fact, the relevant
parameter is often 1/ where § = max(1/n,d) to handle the exceptional case when § = 0.

Let us consider the Explicit Disjunction problem. In the deterministic setting, at least
n—aAdn+1 queries are required in total. Consequently, the best deterministic query complexity
is @ = O(n(1 — 8)/k). The round complexity is 7 = O(1), and message complexity is
M = O(k). Peers that find a 1-bit can send the index to a “leader” peer to broadcast the
answer.

Randomization helps when ¢ is large. Querying (6_1 -In n) bits uniformly at random in
search for a 1 bit has failure probability of (1 — &)"/ d<q /n. Thus O (671 -Inn) queries
are sufficient to find a 1 w.h.p. Even without knowledge of §, one can simply try density
values in decreasing powers of 2, starting with 1/2 and eventually land at a 1 having made
at most O (67" -Inn) queries. We can distribute the work equally amongst k peers, and
thus Q=0(14+46 - % -Inn). The time and message analysis is similar to the deterministic
case, i.e, T = O(1), M = O(k). Note that Q = Q(+ -871), for any algorithm that solves the
Disjunction problem with constant probability.

Our Contributions

We initiate the study of the Data Retrieval Model and retrieval problems. We present several

deterministic and randomized protocols and some lower bounds for Download and Disjunction.

Here, we state only simplified bounds, in which the O() notation hides factors dependent
on (8 and poly log factors in n. The main results are summarized in Table 1 for convenience.

Download. For the deterministic model, the Download problem turns out to be expensive,
requiring Q(8n) queries in the worst case. Every peer essentially has to query the entire input
array for itself. In the randomized model, we give an algorithm that solves the Download
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problem (and consequently any function of the input) for an arbitrary fraction 8 < 1 of
Byzantine faults while requiring at most O(n/k + y/n) queries per peer. The result is nearly
as efficient as the failure-free model whenever k < y/n. The time and message costs are
T = O(n) and M = O(kn + k*\/n). A natural question then, is whether the additive \/n
term is necessary for k > /n. While we are not able to fully address this question, we show
that for restricted 3 (< 1/3), we can be fully efficient for all k € [1,n], getting Q@ = O (),
T = O(n), and M = O(nk?).

Disjunction. To show that for specific problems one can be more efficient, we consider
Disjunction when the input bits have density §. Naturally, the problem becomes easier as §
gets larger. We first show that any deterministic algorithm requires Q(n/k + & _1) queries in
the worst case. Next, we show that for any 8 < 1, there exists a deterministic algorithm that
makes O(n/ E+o '+ k) queries. This algorithm is nearly optimal whenever k < y/n. Our
second deterministic algorithm achieves near optimal complexity provided g < 1/2. Both
algorithms require 7 = O(1) and M = O(k?).

We then consider the randomized model. It is easy to see that any algorithm requires
Q(1/k - 5_1) queries per peer. We show that this is nearly tight by presenting an algorithm
that w.h.p. solves the Disjunction problem with Q = O (+- 5_1), T=0(1), M =0(k?).

Table 1 Our Main Results (with § treated as constant).

Problem & Model Query Lower Bound Round Message  Theorem
Download

Randomized 8 < 1 O(n/k++/n) Q(n/k) O(n) O(nk+k*y/n) Thm 4
Randomized 8 < 1/3 O(n/k) Q(n/k) O(n) O(nk?) Thm 12
Disjunction

Deterministic g < 1 O(fl/k‘ +6 ' +k) Q (571 + %) ?(1) O:(kg) Thm 17
Deterministic 8 < 1/2  O(n/k+4d671) Q (571 + (1;72)") o(1) O(k?) Thm 18
Randomized 3 < 1 O(1/k-671) Q67 Oo(1) O(k?) Thm 19

2 Methods

Private p-Representative Committees. Several of our protocols organize the peers in
committees, assigned to perform a common task. In a private p-representative committee,
every peer knows only whether it belongs to the committee and the committee is guaranteed
to have at least p honest members, where p is known.

We present a probabilistic construction for a p-representative committee, where the
guarantee of at least p honest members holds w.h.p. To construct such a committee, each
peer adds itself to the committee with probability p. See Algorithm 1. By choosing an
appropriate value of p, we can obtain high probability guarantees on the number of (honest)
peers in a committee using standard Chernoff tail bounds. This yields the following result

9lnn+4
1, =200E),

» Lemma 1. Consider k i.i.d Bernoulli random variables with bias p = min( e

B €10,1), n>1 and p < vk, we have with probability at least 1 — 2n=3,
for any subset of vk variables, at least p of them are 1.
At most (181nn + 8p)/~ variables are 1.

Lemma 1 implies that w.h.p a committee C constructed by Algorithm 1 is indeed a private
p-representative committee and it will have at most (181nn + 8p)/y honest members.
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Algorithm 1 Procedure Elect_Private.

1: Every peer tosses a biased coin with a probability of heads p = min {61“7”7;4”, 1}
2: return C = set of peers that tossed heads.

Commit Verification. Before a peer M commits b as x;, it verifies that x; = b by one of

several ways:
Direct-verification: M directly queries the source and receives a reply that x; = b.
Comm-verification: M collects votes from a private p-representative committee C;. M
learns that x; = b if it receives a message saying that x; = b from at least p members of
C;, and a message saying that z; =1 — b from fewer than p members of C;.
Gossip-verification: M receives messages from Sk + 1 or more peers, each testifying that
it verified x; = b. This suffices since necessarily at least one of these senders must have
been an honest peer.

Blacklisting. During an execution, honest peers can blacklist Byzantine ones, after identify-
ing a deviation from the behavior expected of an honest peer, and subsequently ignore their
messages. A Byzantine peer M’ can be blacklisted for several reasons. The most common
reason to blacklist is when M’ is directly “caught” in a lie about the value of some bit. The
two other reasons for blacklisting are as follows.
Blacklisting for requesting unnecessary work: Some of our protocols maintain a
known-to-all list of bits. If M’ claims that a certain bit z; is unknown to it and requests
to learn it, M can check if z; is listed at M as known to all. If so, M knows that M’
must be Byzantine.
Blacklisting for over-activity: Lemma 1 implies that the number of honest peers in
our construction of a private p-representative committee is bounded from above w.h.p.
M’ can be blacklisted as Byzantine for being over-active, namely, claiming to have been
randomly selected to many more committees than expected.

3 Results on the Download Problem

3.1 Deterministic Setting

We first note that Download can be solved trivially by having each peer query all n bits
directly from the source. This protocol incurs @ =n, 7 = 1 and M = 0 and works for 5 < 1.
However, we can improve the query complexity for 5 < 1/2. (Some proofs are deferred to
Appendix A.)

» Theorem 2. When 8 < 1/2, there is a deterministic protocol for Download with Q = O(fn),
T = O(Bn) and M = O(Bnk?)

The following theorem establishes that one cannot hope to improve the query complexity.

» Theorem 3. Any deterministic protocol for the Download problem has Q = Q(5n).

3.2 Randomized setting
Near Query-Optimal Randomized Protocol for g < 1

We start with a simple randomized algorithm that works for any 8 < 1. The problem posed
by the randomized model is that the adversary can fail peers online in the randomized setting
based on the protocol’s progress. This implies that if the protocol appoints some random
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peer M to query a bit x; on some round ¢ of the execution but communicate the bit to other
peers at a later round ¢/, then we cannot rely on the hope that the randomly selected M
will be honest, say, with probability 1 — 8 = ¢, since the adversary gets an opportunity to
learn the identity of the chosen M on round ¢ and subsequently corrupt it before round ¢'.
Hence in order for us to benefit from the fact that some peer M is randomly chosen for some
sub-task on round ¢, it is imperative that M completes that sub-task on the same round.

The idea used to overcome this difficulty is as follows. Sequentially, for n rounds, do the
following. At round ¢ we query bit z; from the source to a private p-representative committee
(see Algorithm 1) C;, i.e., x; is queried by each (honest) peer in C;. Then (still on the same
round), each peer in C; sends the value of z; to every other peer. Peers not in C; might
receive incorrect values from the Byzantine peers in C;. However, if strictly fewer than p
incorrect values are received, each peer can be confident of the majority as the right answer
(w.h.p). In case at least p peers sent an incorrect value, or more precisely, in case an honest
peer receives at least p zeros and at least p ones, then peers resort to querying the source
for the answer, forcing at least p Byzantine peers to reveal themselves as being Byzantine.
Choosing p optimally results in a query complexity of O("l,;),f" +/n). See Algorithm 2 for
the pseudocode.

Algorithm 2 Algorithm Blacklist_Download model, Code for peer M.

Output: Array res such that resfi] = x; for i =1,2,..n
B+ 0 > Peers known to be faulty
: for i =1,2,...n (in separate rounds) do
Form a private p-representative committee C;. > Parameter p is fixed later
if M €C; then
resli] < Query(7), send (vote, res|i]) to all peers.
S; < set of peers not in B that voted j for j € {0,1}
if min(]Sy|,|S1|) > p then
resli] «+ Query(s).
B« BU Sl—res[i]
else res|i] «+ arg max |S;].

—
@

11: return res

» Theorem 4. When § < 1, Protocol Blacklist_Download solves the Download problem
whp. withQ = O ("17# + \/ﬁ), T = O(n) and M = O(knlogn + k2 /77).

Proof. The correctness follows from the observation that for each bit x;, each honest peer
either (i) heard fewer than p votes for one value in {0,1} or (ii) queried z;. Since C; is
p-representative (w.h.p), the correct bit value would have been reported by at least p peers,
and we can conclude that an honest peer can verify the correct value of z; in both cases.
Next, We analyze the query complexity of Algorithm 2 and choose p optimally.

Queries are made in lines 5 and 8 of Algorithm 2. For peer M, the expected number
of queries in line 5 is np where p is the probability of joining a committee. As n > vk, we
have np > 91Inn. By Chernoff bounds, w.h.p there are no more than 2np queries, similar to
the proof of Lemma 1. Every time a peer reaches Line 8 and queries the source, the size
of its local set B increases by p. Therefore, these queries are performed at most B—pk times.

Therefore, the total number of queries for peer M (w.h.p.) is at most Q =

and choosingp:max{l,k:\/gfz},we get Q:O(”lﬁ%—i—./g-n).

18nlnn | 8np | Bk
vk + vk + p



J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam

By the description of the protocol. the time complexity 7 is clearly O(n), the number of
iterations. The message complexity M is calculated as the product of the number of honest
peers that join each C; (which is O(logn + k/+/n)) times O(k) (the number of messages sent
by each honest peer in C;) time n (the number of iterations). |

Observe that there is a trivial () lower bound on Q (in the case where Byzantine
peers crash and do not participate in the execution).

The additional /n term can be neglected whenever k < y/n since it is smaller than
the lower bound in these cases. Thus, in a wide range of cases, the above protocol is
“near-optimal”. It is also tolerant against the strongest form of Byzantine adversary, one that

even has knowledge of random bits sampled up until the previous round.

Query-Optimal Randomized Protocol for § < 1/3

The Download protocol of the previous section works when § < 1 but falls short of yielding
optimal query complexity. This section presents a query-optimal protocol for Download when
B < 1/3. For a complete analysis see Appendix A.

The Protocol

Let us first give an overview of the approach. The protocol proceeds in Jy = {logl Ja ﬁ-‘
phases, whose goal is to reduce the number of unknown bits by a shrinkage factor o < 1. The
protocol maintains a number of set variables, updated in each phase, including the following.
Kar (respectively, Ups) is the set of indices ¢ whose value res|i] is already known (resp., still
unknown) to M. At any time during the execution, Cp Ul = {1,...,n}. res[i] = z; is
the Boolean value of z; for every i € Kjs. (Slightly abusing notation for convenience, we
sometimes treat Kjs as a set of pairs (i,res[i]), i.e., we write Kps where we actually mean
KCar o resyr.) Each peer also identifies a set KTA s of known-to-all bits and Zj; of unknown
indices for at least one peer. Each phase contains four subroutines, each with a specific goal
in mind. First, the Committee_Work subroutine forms private committees where each peer
M joins committee i if i € Zp; with some probability. Each member of committee i then
reports x;, and each peer decides whether to accept some or no value (updating Kp; and
Uy accordingly). There is also a blacklisting component in which if a peer belongs to too
many committees, it is deemed Byzantine and ignored for the rest of the execution. Second,
the Gossip subroutine has every peer M report its KCps to all other peers. If a peer receives
at least Bk + 1 reports of the same value for z;, it accepts it. Third, the second invocation
of Gossip repeats the reporting of Ky; for every peer M, but this time, in addition to the
update of Ky, if a value is reported 28k + 1 times, it adds it to KTA ;. The motivation
behind this second invocation is that if a value is reported 25k + 1 times, then at least Sk + 1
of those reports are from non-faulty peers. Thus, all peers will accept that value (and add it
to Kar). Last, the Collect_Requests subroutine is meant to update Zy, i.e., to know which
indices are unknown to at least one peer. This subroutine also has a blacklisting component
in which if a peer sends a request for index i but i € KTA,;, M blacklists the requesting
peer.

» Remark 5. The communication performed in the various steps of the protocol takes more
than one time unit in the CONGEST model. Hence, the protocol must also ensure that the
different steps are synchronized and that all peers start each step only after the previous step
is completed. Relying solely on reports from each peer concerning its progress might lead to
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deadlocks caused by the Byzantine peers. Hence, the scheduling must be based on the fact
that the duration of each step is upper-bounded by the maximum amount of communication
the step involves. We omit this aspect from the description of the algorithm.

We next detail the code of the main algorithm and its procedures. (Hereafter, we omit the
superscript J when clear from the context.) We denote by update(i, b) the function that sets
res[i] = b, removes i from U,, and adds it to K. We denote by BlacklistOver Work(wmaz,
M) the function that checks the number x of committees M reported to belong to and adds
M to B if > wymqe,. We refer to the first and second invocations of Procedure Gossip as
Gossip(1) and Gossip(2) respectively.

Algorithm 3 Algorithm Gossip_Download, 8 < 1/3, code for peer M.

1: Ky <0 > Indices of bits known to M
2: KTAy < 0 > Indices of bits that are known-to-all
3: Uy + {1,...,n} > Indices of bits not known to M
4: Ty < Uy > Indices of bits not known to some non-blacklisted peers
5: res < ) > Values of bits known to M
6: B+ 0 > Peers blacklisted by M as Byzantine
e Zfy > The parameter Z will be fixed later.
8 (17(2)';7;)7[32@ > shrinkage factor, o < 1. The parameter € will be fixed later.
9: Jo = [logy/q ﬁ] > Number of phases
10: for J=0,1,2,...,Jy — 1 (sequentially) do
11: Invoke Committee_Work
12: Invoke Gossip(1)
13: Invoke Gossip(2)
14: Invoke Collect_Requests.
15: for every i € Ups do res[i] < Query(i) > Querying the remaining unknown bits
16: return res

Partial Analysis

Sanity checks. Let us start with the two sanity checks needed to ensure the validity of the
random selection step and the convergence of the protocol.

» Observation 6. For 5 and € satisfying

1—¢
3—c¢

B <

(a) the chosen shrinkage factor satisfies o < 1, and
(b) the chosen probability satisfies p < 1 for every 0 < J < Jy — 1.

Progress tracking variables. Next, we define the notation for the values of the main
variables of the protocol during the different phases.

Denote by K9, (respectively, U3;) the value of the set Kys (resp., Ups) at the beginning
of phase J. (Note that it is also the value of ICps at the end of phase J — 1)

Denote by IC}{’]”M (resp., U]{/}mid) the value of the set Ky (resp., Uys) at the end of the
Gossip(1) step of phase .J.

Denote by Z3, the value of the set Z; at the beginning of phase .J.

Denote by KTAY, the value of the set KTA s at the end of the Gossip(2) step of phase J.
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Algorithm 4 Sub routines, code for peer M.

1: procedure Committee_Work
2 j,'M —0 > Set of indices whose committees M joins
3 p< (1—¢)Zlogn/a’ > Also p = (1 — €)pyk
4 Winaz < (1 +¢€)clogn - ¢ > Blacklisting “over-active” Byzantine peers
5: for every i = 1,...,n sequentially do > Setting up committees
6 if 1 € Z)s then
. . . . - clogn
7 Join the private committee C; at random with probability p = Th
8 if M was selected to C; then
9: iN[ — :Zju U {Z}
10: if 1 € Uy then
11: update(i, Query(7)) > Direct-verification
12: Send the message (vote ,i,res[i]) to every other peer.
13: Collect votes sent by members of C;. > Ignore messages on bits ¢ € Zn;.
14: for every other peer M’ do
15: BlacklistOver Work(W maz, M)
16: for every i € Z)s do
17: Let CM be the remaining reduced committee. > Possibly CM # CiM/ for M # M'.
18: for every i € Uy do > comm-verification
19: for b € {0,1} do
20: 1 (1) < number of votes from CM members for z; = b.
21: if 1o(i) > p and 91 (i) < p then
22: update(i, 0)
23: if ¢1(i) > p and 9o (i) < p then
24: update(i, 1) > If both ¢o(i) > p and ¥1(i) > p, theni remains unknown
25:
26: procedure Gossip(GossipNum)
27: for every i € Ky do
28: send the message (i, res[i]) to all other peers.
29: Receive a list Ky from every other peer M.
30: for every i € Uy do
31: wo(i) < [{M" | (3,0) € Kpsr }|-
32: if @o(i) > Bk + 1 then
33: update(i, 0)
34: 01(i) + {M" | (i,1) € Kar }H.
35: if p1(i) > fk+ 1 then
36: update(i, 1)
37 if GossipNum=2 and (po(i) > 28k + 1 or ¢1(z) > 28k + 1) then
39:
40: procedure Collect_Requests
41: Set Zar + Uns
42: Send U to all other peers.
43: Collect lists Uy from all other peers M.
44: for every i =1,...,n do
45: Ry (i) «+ {M' |i €Uy}
46: if i € KTAy then B+ BU Ry (i) > Blacklisting for requesting known-to-all bits
47: Iy <— Iy U UM’gB U > Indices to be learned, including Uns of M itself
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Note that a bit x; can be unknown for M and known for M’ for two honest peers M and
M'. We say that z; is unknown in phase J, and the committee C; is necessary, if i € U3, for
some honest peer M, or equivalently, if s € U7, where

u’ = | uy,

MeH
is the set of indices i for which some honest peers request setting up a committee C; and

querying in the current phase. A bit z; is known once i € Ky for every honest peer M. Also
let

umid = | ugme and NKTAY, = {1,...,n} \ KTAY,.
MeH

Bad events. In an execution £ of the protocol, there are two types of bad events, whose
occurrence might fail the protocol. Our analysis is based on bounding the probability of bad
events, showing that with high probability, no bad events will occur in the execution, and
then proving that in a clean execution, where none of the bad events occurred, the protocol
succeeds with certainty. The bad events are as follows.

Bad event £V (J,7): In phase J, the committee C; selected for an unknown bit z; is not

1—¢€¢)Zlo
p-representative, for p = (e)iJgn

, where Z is a parameter of the algorithm that
must satisfy some constraints described in Lemmas 7 and 8. (If x; is already known, then
this bad event does not affect the correctness or query complexity of the honest peers,
although it might increase the time and message complexity.)

Bad event £V (J, M): In phase J, an honest peer M has |7:'J‘\]/[| > W02, namely, M joins
(1+€)c-nlogn . .
more than W, = — % committees, and subsequently gets blacklisted.

For an integer J > 0, call the execution £ J-clean if none of the bad events EV;(j,4) or
EVs(j, M) occurred in it for 0 < j < J.

High probability of clean executions. We now argue that with the right choice of parameters
€ and Z, the probability for the occurrence of any of the bad events is low.

» Lemma 7. For any J > 0, if the execution £ is (J — 1)-clean, and the parameters ¢ and Z
satisfy

EZ/2>24 A (2)

for some constant A > 0, then the probability that any of the bad events EV1(J,1) occurred in
¢ is at most O(—t~).

» Lemma 8. For any J > 0, if the execution £ is (J — 1)-clean, and the parameters € and Z
satisfy

€2

“Z>24 ) 3
2+e¢ S (3)

for some constant A > 0, then the probability that any of the bad events EVo(J, M) occurred
in & is at most O(—).

The above two lemmas yield the following:
» Corollary 9. Consider an execution &. If the parameters € and Z satisfy

Z -min{e?/2 , €/(2+¢€)} > 2+ (4)

for some constant A > 0, then the probability that £ is clean is at least 1 — O(:;ﬁ’; ).
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Convergence invariants.

» Lemma 10. In a J-clean execution, assuming 3 < 1/3, for every honest M,
7}t C NKTAY, < u’™d c y’ C 1.

We remark that if z; is known, hence C; is not necessary, then the inviting peer is Byzantine,
so it may invite only a few honest peers (or none) hence the constructed C; is not guaranteed
to be p-representative, but this will not hurt any honest peer, since, in this case, the honest
peers already know x; and will not listen to the committee.

» Lemma 11. In a J-clean execution, for every J > 0 and every honest M,
(1) U™ < ol i, (2) [T < a'n, (3) U] < aln, (4) Uz;] < o7

Using these convergence invariants, we get the following theorem.

» Theorem 12. When 8 < 1/3, Protocol Gossip_Download solves the Download problem
w.h.p. with* Q=0 (nh;%); T=0 (nlog% (%)) and M = O (nk2 log 1 ( oL ))

logn

4 Results on the Disjunction Problem

In this section, we consider the problem of computing the Disjunction of the input bits. We
first state some basic lower bounds and then present some upper bound results, along with
an overview of the building blocks used to design protocols that match the upper bounds.
For a complete formal presentation see the full version of the paper.

» Theorem 13. When 8 < 1, any deterministic protocol for the Disjunction(d) and the

Explicit Disjunction(0) problems has Q = 2 (ﬁ Y (1;72)")

» Theorem 14. Any randomized protocol for Disjunction(d) that succeeds with constant
probability has Q = Q(,%k -871) in expectation.

The remainder of this section deals with efficient deterministic protocols for Disjunction
and Explicit Disjunction under different settings. A key observation that we rely on is that
single round algorithms exhibit similar properties to bipartite expanders. The connection
is as follows. One can represent the access pattern of the peers to the input array X as a
bipartite graph G(L, R, E), where L represents the n input bits, R represents the k peers,
and an edge (4,7) € E indicates that M; queries X'[i]. We would like to ensure that if the
number of bits set to 1 in X exceeds some value s, then no matter which set S of indices
corresponds to these s 1s, the set I'(S) of neighbors of S in G will contain at least Sk + 1

peers, guaranteeing that at least one honest peer will query at least one of the set bits of S.

This can be ensured by taking G to be a Large Set Expander (LSE), an expander variant
defined formally later on. Not knowing the density ¢ in advance, we can search for it, starting
with the hypothesis that ¢ is close to 1 (and hence using a sparse LSE and spending a small
number of queries), and gradually trying denser LSE’s (and spending more queries), until we
reach the correct density level allowing some honest peer to discover and expose a set bit.
Once the set bit is exposed, we have all the honest peers send the new bit to every other

4 We remark that our focus was on optimizing query complexity. The 7 and M complexities can be
improved further. For example, the current protocol requires the peers to send the entire set of known
bits in each iteration, but clearly, it suffices to send the updates.
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peer. The peers then query all the bits they received (one per peer) to confirm the answer.
The total query complexity per peer is O(n/k 4+ 8~ + k). Observe that it is near-optimal
when k < /n. See Theorem 17. For 8 < 1/2, we obtain near-optimal query complexity
O(n/k + 8~1). The observation leading to this is that one can use expanders as before, and
assign vertices to input bits such that for every possible input and every possible set of
corrupt peers, strictly more than k/2 honest peers query a set bit. Subsequently, whenever
more than 1/2 of the peers found a 1, the remaining honest peers can conclude that the
answer is 1, and because of the stronger guarantee, we no longer have to verify all the bits
sent by the agents. This algorithm, however, only obtains the Disjunction of the input bits,
not the actual index of a set bit. See Theorem 18.

Our definition of LSE ensures that for every possible input configuration of Disjunction
with input density § and every possible set of peers that can be corrupted by Byzantine
agents, at least one honest peer reads a set bit. To the best of our knowledge, this exact
definition of LSE has not been used in the literature. The definition of samplers [29] to
construct asynchronous Byzantine agreement and leader election protocols is the closest to
LSE. Roughly speaking, samplers ensure there are at most § fraction of the input bits =
such that their neighborhood has g fraction of Byzantine nodes, for every possible choice of
corruptions that the adversary can make. Even though our definitions are different, we use
similar techniques (the probabilistic method) to show their existence.

» Definition 15 (Large Set Expander (LSE)). A bipartite graph G(L, R) is an (n, k, 5,0)-
Large Set Expander (or (n,k,B,6)-LSE) if n = |L|,k = |R| and |T'(S)| > gk for all S C L
with |S| > nd.

Informally, a large set expander is such that for every large enough subset S, i.e., S C L
and |S| > dn, its neighborhood cannot be covered fully by any subset of Sk vertices, i.e.,
IT'(S)| > Bk. The definition of an LSE is similar to that of expander graphs and we use a
similar probabilistic analysis to prove their existence. We formalize this in the lemma below.

» Lemma 16. There exists a bipartite graph G(L, R) that is a (n, k, 8,0) Large Set Expander
such that, (1) Every vertex in L has degree at most d, and (2) Every vertex in R has degree
1+log(e-67") Bk log5 3kIn2k
log % on log % " n '

at most %, for all d satisfying d > max{

We use the existence of large set expanders to design algorithms that achieves the results
stated in Theorems 17 and 18.
» Theorem 17. When B < 1, There exists a protocol that solves Disjunction with Q =
O (% : (log%(e%*l) + log k) logd '+t (B log% 5)+ k), T = O(logn) and
M = O(Bk?logn).

Ignoring log factors and constants dependent on [, the resulting query complexity is
Q = O(n/k + 6 ' + k), essentially matching the lower bound (except for the additive k
term). The constant factors increase as 8 gets closer to 1 and reduce to the naive algorithm
when 8 =1 — 1/k. We improve on that in the following result, albeit with the cost of 3
being at most 1/2.
» Theorem 18. When 8 < 1/2, There exists a protocol that solves Disjunction with Q =
O (rresiofieny +ismrimemy 0 +log?n), T = Ollogn) and M = O(BK? logn).

klog(2/(28+1))
Allowing randomization in the protocol design, we achieve the following result.

» Theorem 19. When 5 < 1, There exists a protocol that w.h.p. solves Disjunction with Q =

0 (1% 5 —10g’“°g’;1°g<1/5>), T =0 (logk-log6*) and M = O(k?logk -log 6~ 1).
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5 Related Work

To the best of our knowledge, we are the first to study retrieval problems in the DR model,
as defined above. We now provide a description of related studies.

As discussed earlier, Byzantine resilience research was largely limited to a few problems
like Byzantine Agreement, Byzantine Broadcast, State Machine Replication, etc. More
recently, we have seen many investigations of Byzantine resilience in other problems and
models. Quite naturally, it has been explored in P2P settings to ensure robust membership
sampling [9] and resilient P2P overlay design [21, 3]. Apart from that, Byzantine resilience
was explored in the context of mobile agents [17, 10, 15] and graph algorithms [5]. In the
last decade, there was quite a bit of interest in Byzantine resilient learning, starting with
multi-armed bandit problems [6]. Finally, there was a recent flurry of works inspired by
the popularity of Byzantine resilient optimization algorithms in federated and distributed
learning [41, 8, 25, 19, 42, 20].

Byzantine Reliable Broadcast (BRB) was first introduced by Bracha [11]. In BRB, a
designated sender holds a message M, and the goal is for every honest peer to output the
same M’ that must uphold M’ = M if the sender is honest. The Download problem can be
viewed as a variant of BRB, where the sender is always honest but has no computational
powers and is passive (read-only), and peers are always required to output the correct message
M. These differences make solving Download different than solving BRB. One easy-to-see
difference in results is that Download can be solved trivially even when 1/3 < 3 < 1 and there
are no authenticated messages, whereas BRB can not be solved under the same conditions
[18]. Another difference is that state-of-the-art BRB protocols like [2] where the sender
uses error-correcting codes and collision-resistant hash functions are inapplicable (when
considering the source to be the sender). In optimal balanced BRB protocols like in [2], the
sender sends O(7) bits to each peer whereas Theorem 3 shows that Download requires Q(/3n)
queries (the difference stems from the inability of the source to perform computations).

Most works on Byzantine resilience have focused on models and problems where the data
is integrated into the network, making it difficult to get Byzantine resilience past 8 < 1/3 or
B < 1/2. However, there have been some exceptions that were observed quite early in the
Byzantine resilience literature, like authenticated broadcast [18] that can be achieved for any
B < 1. More recently, the power of decoupling data and computing came into play in the
context of mobile agents. The gathering problem [17], where mobile agents must gather at
one location, can be solved for all fixed 8 < 1. Crucially, the honest agents can explore every
part of the graph. The Byzantine agents do not control any portion of the graph.

Our work can be viewed as a step towards understanding the power of oracles with the
data source playing that role. The use of oracles (also called probes, queries, etc.) has been
widespread in classical computing with references dating back to the early seventies [40, 39,
32, 31, 26]. See [28] for an excellent treatment of the various structural complexity theory
results that have been obtained through oracles. The power of oracles has been explored in
distributed computing as well in the context of overcoming challenges posed by failures in
asynchronous settings [35]. On the broader algorithmic front, the property testing model [24]
can be viewed as using oracles to access data that is only available through expensive queries.

In essence, we have proposed a hybrid combination of two communication technologies —
querying the source and P2P message passing. Such hybrid combinations leading to overall
improvements is not new [27]. Friedman et al. [23] studied distributed computing aided by
an external entity that they called cloud. They studied asynchronous consensus with the
cloud providing a common compare-and-swap (CAS) register access. More recently, Afek et
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al. [1] introduced the computing with cloud (CWC) model wherein traditional distributed
computing models were augmented with one or more cloud nodes that are typically connected
to several regular nodes.

The notion of an External Data Source that multiple peers can access is reminiscent of
the PRAM model [22, 30] where all processors could access a shared memory. Unfortunately,
there has been no work on Byzantine resilience in the PRAM setting. This is not surprising
because the PRAM setting allows writing over the shared memory, and Byzantine processors
can easily overwrite portions of the input, thereby making it impossible to solve problems in
the exact sense.

6 Directions for future work

Our framework adds Byzantine resilience to standard distributed computing with the help of
an External Data Source, an entity external to the network. We initiated this study through
deterministic and randomized models, focusing on the Download and Disjunction problems,
and developing several algorithms, tools, and techniques. Our emphasis was on optimizing
the query complexity but also considered time and message complexities. Extending our
work to other model variations and/or broader classes of problems like graph and geometric
problems, data analytics and peer learning problems are natural next steps.

Our work has shown that this framework is well-suited for Byzantine resilience owing to
decoupling of data and computation that lends well to “trust, but verify” techniques in an
algorithmically rigorous manner. It will be interesting to see the limits to which Byzantine
resilience can be pushed in this framework.

This framework can be interpreted in multiple ways and applied to a wide variety of
contexts. Ideas from oracle based computation such as property testing [24] can be easily
adapted to our context. One can also envision variants in which the External Data Source
offers a richer set of services that may include computation or data re-organization at its end
that the peers may need to pay for. Such dynamics can potentially uncover many algorithmic
and game theoretic issues like pricing mechanisms and coalition formation. Our approach
is thus relevant in contexts like blockchain oracles 7, 12] where a distributed set of peers
wish to perform computation on multiple public data sources at different locations (like news
outlets, government portals, think-tank reports, etc.) with disparate access costs, access
controls and varying levels of trustworthiness. We therefore believe that our work will lead
to several other follow-up work exploring all these variations.

In this paper we studied a strong adversarial model. If the source is allowed to provide
also a source of global randomness, then our results may be improved further. Specifically,
with such service, one can deploy committees guaranteed to have an honest majority w.h.p.,
which may lead to efficient algorithms for additional problems.
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A Some missing proofs

Proof of Theorem 2

Proof. To perform Download deterministically, we use public majority committees. In this
type of committee, public means that every peer knows the committee members, and majority
that the committee is guaranteed to have a strict majority of honest members. The algorithm
creates n public majority committees (one per input bit). The committee C; is constructed by
assigning it 26k + 1 for 1 < ¢ < n in a round robin fashion with wrap-around. See Algorithm
5. This ensures that

1. each committee gets 25k + 1 members, thereby establishing majority, and

2. each peer appears in at most O(Sn + n/k)= O(Sn) committees (since § > 1/k).

Algorithm 5 Elect Public Majority Committee C;.

1: for 0 < j<2Bk+1do
2: Assign peer (i —1)(28k + 1) +j (mod k) + 1, to C;.

The key observation is that it suffices if each bit ¢ is queried by a public majority committee
C; since when such a committee sends votes on the value bit to every other peer, each other
(honest) peer can trust the majority vote of the committee. Constructing public majority
committees is done as described in Algorithm 5, and complexity measures follow from the
properties of the construction (see Sect. 2). <

Proof of Theorem 3

Proof. To establish this, we prove a slightly stronger claim. Consider a deterministic protocol
P for the Download problem. For an n-bit input X, let £(X) denote the (unique) execution
of P on X in which none of the peers has failed. Then, the following holds.

» Lemma 20. For every X, every bit x; (1 < i < n) is queried by at least Sk + 1 peers
during the execution E(X).

Proof. Towards contradiction, suppose there exists an input X = {x1,...,2,} and an index
1 <4 < n such that in the execution £ = £(X), the set M of peers that queried the bit z; is
of size | M| < Sk. Without loss of generality, let z; = 0.

The adversary can now apply the following strategy. It first simulates the protocol P
on X and identifies the set M. It now generates an execution & similar to £ except for
the following changes: (a) The input X’ = {z,..., 2]} in & is the same as X’ except that
z;, = 1. (b) The peers of M are Byzantine; all other peers are honest. (c) Each Byzantine
peer M € M behaves according to P except that it pretends that z} = 0, or in other words,
it behaves as if the input is X (and the execution is £).

One can verify (e.g., by induction on the rounds) that the honest peers cannot distinguish
between the executions £ and &£’. Therefore, they end up with the same output in both
executions. This contradicts the fact that their output in £ must be X, and their output in
&’ must be X”’. <

The lemma implies that for every input X, the total query complexity of the protocol is
greater than Skn. Theorem 3 follows. <
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In the remainder of this section we present the analysis of the main body of Theorem 12.
When M joins (in Procedure Committee_Work) the committee C; for some i € Uy, M is
required to actively query the source for the value of x;. We then say that C; is an active
committee for M. (In contrast, when M joins a committee C; for i € K{;, it costs it nothing
since it already has the value of z; stored in res[i], so it does not need to spend another
query.) We define the following size variables.
Let 7, denote the number of active committees for M in phase J.

Let 2, = |f§\]/[| denote the total number of committees that M joins by Procedure
Committee_Work in phase J. (Note that 7y, < i)
Let n{, = |Zj;| denote the total number of requests received by M by Procedure

Collect_Requests in phase J.

» Lemma 21. If some honest M adds i to its set KTAJM of known-to-all bits at the end of
the Gossip(2) step of phase J, then i € IC]‘{f,l for every honest M.

» Note 22. the sets KTA j; might not be all equal. Namely, every honest peer might be aware
of a different subset of the known-to-all bits. Note, however, that as shown later in Lemma
27, the sets KTA); of all honest peers contain the set CORE discussed in the high-level
overview, and the fast growth of CORE is essentially the cause for the fast shrinkage of the
set of unknown bits.

Proof. Suppose i € KTAY, for some honest M. Then in Gossip(2) of phase .J, M counted
at least 28k + 1 messages containing (¢,b) (for b € {0,1}). At least Sk + 1 of these messages
were sent by honest peers, and therefore, in the Gossip(2) step of phase J, all honest peers
will count at least Sk + 1 messages containing (i,b). Consequently, every honest peer M’

will move i to Ky at that step, so i € /C}{j?l. <

Properties of clean executions.

» Observation 23. In a J-clean execution, if i € U7 (i.e., x; is still unknown in phase J ),
then for every honest peer M, the reduced committee CM is p-representative.

» Remark 24. Note that once a committee is selected, the adversary can corrupt all of
its members in the very next round. By then, however, the committee had completed its
querying and communication actions, so the fact that it is no longer representative does
not harm the execution. Note also that the need to complete all committee actions in a
single round is the reason why it is required to perform the querying sequentially, spending
a round for each bit z;. The querying operations of all committees could, in principle, be
parallelized, but the subsequent communication step might require more than a single round
in the CONGEST model, giving the adversary an opportunity to intervene and corrupt an
entire committee before it has completed sending its messages.

Note that those bits that were not moved from Uj; to Kps during the main phases J of
the protocol were directly-verified in the final step of the protocol. This implies the following.

» Observation 25. By the end of the execution, every honest peer has the value res[i] for
every bit x;.

It remains to show that for every z;, the res[i] value obtained by each honest peer is correct.

» Lemma 26. In a J-clean execution, whenever an honest peer learns an input bit x; in
phases 0 to J, the learned value res[i] is correct.
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Proof. Consider an input bit x;. Order the honest peers that learned x; during phases 0 to
J according to the time by which they acquired z;. the proof is by induction on this order.
For the induction basis, note that the first peer to acquire x; must have directly verified
it, so the value it has obtained is clearly correct.
Now consider the t-th peer M in this order, and suppose M knows that x; = b. there are
several cases to consider.

Case 1. M directly-verified z;, either on the last step of the protocol or in Procedure
Committee_Work during some phase J. Then again, res[i] is clearly correct.

Case 2. M comm-verifies x;, in Procedure Committee_Work. Then M found (i) > p and
P1-p(4) < p. Since the execution is J-clean, CZ-M is p-representative by Lemma 23. This
implies that if z; = 1 — b then all the honest peers in CM would return 1 — b, and M would
find ¢1_4(¢) > p, which did not happen. Hence, x; = b.

Case 3. M gossip-verifies z;, in the Gossip(1l) or Gossip(2) step. Then M has received
messages from Sk + 1 or more peers stating that they already know that x; = b. At least one
of those peers, M’, is honest, and it acquired z; prior to M. Hence the inductive hypothesis
applies to it, yielding that indeed x; = b. |

Proofs of Convergence invariants
Proof of Lemma 10.

Proof. Consider a bit index i ¢ NKTA7,. Then z; is marked known-to-all by M in the
Gossip(2) step. Consequently, M ignores x; in phase J even if it receives it in some request
message in Procedure Collect_Requests. Hence i ¢ II‘\]/IH. The first containment follows

Consider a bit index i € NKTA}@. Then z; is not listed as known-to-all in M, i.e.,
1 ¢ KTAp, so M had (i) < 28k and ¢1(2) < 2pk.

Let b = x;, i.e., the correct value of z;, and let 0 < § < 1 be the fraction of faulty
peers that reported knowing i. Since the execution is J-clean, by Lemma 26, we know
that ¢1-p(7) < 6Bk. Therefore po(i) + ¢1(i) < (24 §)Bk. Hence, the number of peers that
informed M that they do not know z; satisfies k— (¢o(i)+¢1(7)) > (1—(2+0)8)k > (1-0)5k,
where the second inequality follows since 5 < 1/3.

Hence, there is at least one honest peer M’ that did not send xz; as part of its K]‘{)[Tid, SO
i€ U]‘\]jnid, and hence i € Y74, The second containment follows.

The next containment follows from the fact that for an honest peer M, Uy is monotone,
decreasing in time.

Consider an index i € U”. Then some honest M’ € H has i € U ]\J/[,. This has two implica-
tions when J > 1. First, M’ will send a request to learn 4 in Procedure Collect_Requests
of phase J — 1. Second, by Lemma 21 i ¢ KTA7 *(otherwise i € K7,,). Hence M will respect
the request by M’ and add i to I{;. When J =0, U’ = {1,...,n} =U{; = ;. The fourth
containment follows. <

Define the core of 2-common-knowledge after phase J as follows. For every index 1, let
numy, (i) denote the number of honest peers M that comm-verified i and updated it in
Procedure Committee_Work of phase J. Then

CORE’ = {i | numi (i) > Bk + 1}.

The name is justified by the following lemma.
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» Lemma 27. Ifi € CORE’ then, i € ICX’fmid and i € KTAi/[, for every honest peer M

Proof. Consider an index i € CORE’. By definition, z; was comm-verified by at least 8k + 1
honest peers during Procedure Committee_Work of phase J. Each of these peers will send ¢
(along with its value) to every other peer during the Gossip(1) step. Subsequently, at the
end of this round, i € ICI‘{/’[mid for every honest M. Consequently, in Gossip(2) of phase J,
all honest peers will report knowing x; , so every honest peer M will add it to KTA]JW |

Proof of Lemma 11.

Proof. We first prove part (1), by considering iteration J > 0 and bounding [/”>¢"¢| at its
end.

The purpose of blacklisting Byzantine peers that claim to participate in too many
committees, via defining reduced committees, is to curb the influence of the Byzantine peers
on votes, by bounding the extent of Byzantine infiltration into committees. For every honest
peer M and Byzantine peer M’, denote by Bl (M’) the number of reduced committees
CM that M’ claimed to belong to. (Note that for peers M’ that were not blacklisted, this
value is the same as Work(M’).) Denote the total number of Byzantine infiltrations into
reduced committees of M by Blas = /3 Blar(M'). Denote the total number of Byzantine
infiltrations into reduced committees of honest peers by Bl =, -, Blas. By the way M
constructs the reduced committees in Procedure Committee_Work, every peer appears in at
most W, reduced committees of M, hence Bly; < S8k - W42, and therefore

Bl < ~k-Bly < vk Bk Wi = (14 €)cBy - knlogn.

Consider a bit z; € U”. By the fourth containment of Lemma 10, z; € IJ{/[ for every honest
peer M. Hence every honest M will set up a committee C;, which will be p-representative
since the execution is J-clean.

A necessary condition for z; to remain in /"™ is that at most Bk honest peers directly
verify it in Procedure Committee_Work of phase J. This is because otherwise,i € CORE’
and by lemma 27, it will belong to K7™ for every honest M.

Hence, in order to keep i in 7™ the adversary must prevent at least (1 —2/3)k honest
peers from directly- or comm-verifying z;. To achieve that, at least p Byzantine peers must
infiltrate the reduced committee CM for at least (1 — 23)k honest peers. This incurs at least
(1 —2B8)kp work. Hence, the number of bits x; for which this can happen is at most

BI (14 €)cpy - knlogn (14+€)BZ-a'n J

W < A am, < T2k (L —9Zkenla? ~ U291z ~ “* "

where the last equality is by the definition of «. This yields Part (1).
By Lemma 10, Part (2) follows from part (1) upon noting that n{, = |Z{,| < |7 -1tmid|,
and Part (3) follows from part (2). Part (4) follows from part (3), noting that Uy, CU’. <

Proofs of high probability of clean executions
Proof of Lemma 7.

Proof. We first show that for every bit x;, P[EV1(J,4)] < 1/n?TA.
Consider an index i € Y. By Lemma 10, U’ C T, and hence i € Zj,,
Therefore, all honest peers join the committee C; with probability p. Hence, denoting the

number of honest peers in C; by X,
vyclogn  Zlogn

E[X] = p|H| > p-yk = o o)
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PEVI(J,i)] = PX <g] = P[X <(1-¢)-Zlogn/a’| <PIX < (1 - E[X]] (5)

By Chernoft’s bound,

P[X < (1 - OE[X]] < exp (—]F;m) < oxp (—2 Zoen). (6)

a’

and by Eq. (2) it follows that

PEV1(J,4)] < exp (—(2 +A)- k)aan) < nEA

By the union bound, the probability that any bad event of type £V occurred in the execution
is at most O (7). <

Proof of Lemma 8.

Proof. We first show that for every honest peer M, P[EVy(J, M)] < 1/n%/3. The bad
event EVy(J, M) occurs if ﬁJM > W, 4z in phase J. In Procedure Committee_Work, M tries
(randomly) to join the committee C; for every z; € i, hence E[A],] = pn{,. Applying
Lemma 11(2), we get that

]E[ﬁ]m < pa’n

We introduce a variable X € (0, 1] such that

X W
Elal,] = X -pa'n = X -cl e max
[7as] pa”n clogn A g
We can see now that
. . 1+e€ R
PIEVS(J,M)] = Py > Wyne] < P {ngf LN oTh

Using the variation of Chernoff’s bound that says that, for § > 0,

PLA> (14 0] < exp (—5 7 ELA))

and setting § = L€ — 1, we get
(=) y (1+e—X) n
PEVL(J,M)] < ——=2_ . En = - 7 Xel L2
[EVa( )] < exp( 9+ L 1 [ar] exp X2(L 1) clogn:
1+e—X)?
= exp (—(X_TH_E)-clogn~Z> = exp (—f(X)-clogn-%),
where f(z) = (1;:1_ fe)z Tt is easily verifiable that f(z) is monotone decreasing in the range

[0, 1], attaining a minimum value of ;—je, i.e, f(z) > €2/2 + ¢ for every x € [0, 1]. Therefore,
we get

1 2
P fl}ﬂl > +e . ]E[ﬁJM}:| < exp (—2:_ - . Clogn- Z) < n—CEQ/(QJ,_E)

b

279 1
<n €”/(2+e) < 5

where the last inequality follows by Eq. (3). The lemma now follows by the union bound. <
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—— Abstract

In distributed systems, situations often arise where some nodes each holds a collection of tokens,

and all nodes collectively need to determine whether all tokens are distinct. For example, if each
token represents a logged-in user, the problem corresponds to checking whether there are duplicate
logins. Similarly, if each token represents a data object or a timestamp, the problem corresponds to
checking whether there are conflicting operations in distributed databases. In distributed computing
theory, unique identifiers generation is also related to this problem: each node generates one token,
which is its identifier, then a verification phase is needed to ensure that all identifiers are unique.

In this paper, we formalize and initiate the study of token collision. In this problem, a collection
of k tokens, each represented by some length-L bit string, are distributed to n nodes of an anonymous
CONGEST network in an arbitrary manner. The nodes need to determine whether there are tokens
with an identical value. We present near optimal deterministic algorithms for the token collision
problem with O(D + k- L/logn) round complexity, where D denotes the network diameter. Besides
high efficiency, the prior knowledge required by our algorithms is also limited. For completeness, we
further present a near optimal randomized algorithm for token collision.
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1 Introduction

Imagine the following scenario: a group of servers is hosting an online-banking, online-gaming,
or online-exam service; for security reasons, users are not allowed to log into multiple servers
simultaneously. If we interpret each logged-in user as a token, the servers need to check
whether all active tokens are distinct. Similar problems could also arise in distributed
database systems. For example, in some distributed databases, optimistic concurrency
control schemes are employed to increase concurrency and performance [17]. Motivation for
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such schemes is the observation that system clients are unlikely to access the same object
concurrently. Nonetheless, before the system commit clients’ transactions, verification must
be performed to ensure that all read and write operations are disjoint or that no operations
occur at the same time, otherwise a rollback is necessary. In this setting, tokens represent
data objects or timestamps [19, 20].

Apart from above practical scenarios, detecting colliding tokens is also important from a
theoretical perspective as we can interpret identifiers as tokens. Specifically, it is well-known
that a number of fundamental distributed computing tasks, such as coloring, leader election,
bipartiteness testing, and planarity testing, are impossible to resolve deterministically in
anonymous networks [3, 15, 21]. Hence, unique identifiers generation becomes an important
primitive for anonymous networks, as it breaks the symmetry within the network, thus
making the aforementioned tasks possible. Moreover, the lengths of these identifiers could
affect the performance of corresponding algorithms; examples include renaming algorithms,
Linial’s classical n-to-A? coloring algorithm [21], recent deterministic network decomposition
algorithms by Ghaffari et al. [11], and recent MST algorithm focusing on energy complexity [5].
A plausible approach for generating unique identifiers in anonymous networks is to employ
randomness: for instance, each of the n nodes generates an identifier by sampling ©(logn)
uniform random bits; by the birthday paradox, all identifiers are distinct with probability
at least 1 — 1/n. However, this is a Monte Carlo algorithm that is subject to error. If we
seek a Las Vegas (i.e., zero-error) algorithm for generating unique identifiers in anonymous
networks, a deterministic algorithm for detecting colliding identifiers (i.e., tokens) is necessary:
nodes repeatedly run a (Monte Carlo) randomized identifiers generation algorithm and use a
deterministic algorithm to check whether the generated identifiers are unique.

Despite the various applications for token collision, somewhat surprisingly, this problem
has not been explicitly studied in the context of distributed computing to the best of our
knowledge. In this paper, we initiate the study of this generic distributed computing task,
and we begin by giving a definition for it:

» Definition 1 (Token Collision). Assume that there are k tokens, each having a value
represented by a length-L binary string. Consider a distributed system consisting of n nodes.
The k tokens are divided into n collections, some of which may be empty. Each of the n
nodes is assigned one collection as input. In the token collision problem, the nodes need to
determine whether there are tokens with identical value.

We focus on understanding the time complexity of token collision in anonymous networks.
The reason for considering anonymous networks is two-fold. First, if nodes in a distributed
system already have unique identifiers, then token collision (or almost any distributed
computing task) could be resolved by first electing the node with the smallest identifier as the
leader, then aggregate necessary information to the leader, and finally let the leader locally
compute the result and disseminate the result to the rest of the network.! Second, anonymous
networks also arise in real-world scenarios. For example, the nodes in a distributed system
(e.g., sensor networks) may be indistinguishable since they are fabricated in a large-scale
industrial process, in which equipping every node with a unique identifier is not economically
feasible (e.g., MAC addresses are not necessarily unique nowadays). In other cases nodes
may not wish to reveal their identities out of privacy or security concerns.

I Nonetheless, our lower bounds for token collision hold even for named networks, and our algorithms
nearly match these lower bounds. Thus, anonymity does not make token collision harder.
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We consider standard CONGEST model [21] in distributed computing. A CONGEST
network is described by a graph G = (V, F) with |V| = n nodes being processors with
unlimited computational power (we do not exploit this ability in this paper) and edges
being communication channels with bounded bandwidth. Specifically, we assume that any
message sent through a channel cannot exceed ©(logn) bits. To simplify presentation, we
often use B = O(logn) to denote this bandwidth limitation. Processors exchange messages
synchronously, round-by-round along the channels. When proving impossibility results for
the token collision problem, we also consider an alternate model known as the LOCAL
model [18], where communication channels have unbounded bandwidth.

1.1 Results and contribution

Deterministic scenario. We first consider the case where the tokens are not too large —
particularly, every token can fit into one message. In this scenario, we offer a deterministic
algorithm that works so long as every node knows the exact value of n or k.

» Theorem 2 (Deterministic Upper Bound, Part 1). In an n-node anonymous CONGEST
network with diameter D, for any instance of the token collision problem in which k tokens
are encoded by length-L bit strings, if every node knows the exact value of n or k, then there
exists an O(D + k - L/ logn)-round deterministic algorithm when L = O(logn).

The above theorem implies when L = ©(logn), token collision can be resolved within
O(D+k) rounds. As a result, one could easily derive a Las Vegas unique identifiers generation
algorithm with O(n) expected runtime. On the other hand, for problem instances where
tokens are small — L = o(logn) in particular, the runtime of the algorithm is O(D) + o(k).

At a high level, our algorithm tries to find the token(s) that have the global minimum
value and selects the node(s) that own(s) such token(s) as leader(s). Critically, our algorithm
may elect multiple nodes as leaders, so it does not solve the leader election problem. (In fact,
leader election cannot be solved deterministically in our setting.) Nevertheless, alongside this
election process, BFS-trees will be built with these leaders being the roots, thus the network
graph becomes a forest logically. Then, by convergecasting [4] tokens within each tree and
computing the size of each tree, root nodes can correctly determine the result. Similar ideas
have been used in the design of Las Vegas leader election algorithms, but the analysis of our
deterministic algorithm is more challenging, see Section 1.2 for more discussion.

We then extend our algorithm to the scenario where each token cannot fit into one
message, this could occur in applications like plagiarism checking in which each token is a
text segment. In this case, a simple solution is to divide each token into ©(L/logn) parts,
and use multiple rounds to simulate one round of our above algorithm. However, the resulting
algorithm would have a round complexity of O((D + k) - L/logn), which is too large. Instead,
we devise a variant that uses pipelining techniques and extend the analysis accordingly. The
following theorem states the time complexity of this variant.

» Theorem 3 (Deterministic Upper Bound, Part 2). In an n-node anonymous CONGEST
network with diameter D, for any instance of the token collision problem in which k tokens
are encoded by length-L bit strings, if every node knows the exact value of n or k, then there
exists an O(D - max{(log(L/logn))/logn,1} + k- L/logn)-round deterministic algorithm
when L = w(logn).

To complement the algorithmic results, we have also established a lower bound on the
round complexity of the token collision problem.
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» Theorem 4 (Deterministic Lower Bound). In an n-node anonymous CONGEST network
with diameter D, there are instances of the token collision problem in which k tokens are
encoded by length-L bit strings such that, any deterministic algorithm requires Q(D + k- (L —
logk + 1)/ logn) rounds to solve it when 2 > k.

It is easy to verify, if L > (14 4)logk for some constant § > 0, then the round complexity
of our algorithm is tight when L = O(logn), and near-optimal (within multiplicative
log(L/logn)/logn factor) when L = w(logn). We also note that the assumption of 2% > k
is without loss of generality, as otherwise collision must occur. To obtain the lower bound,
we reduce a variant of the set-disjointness problem in the study of two-party communication
complexity to the token collision problem.

Another advantage of our algorithm is that it requires little prior knowledge. Beside input
tokens, each node only needs to know the value of n or the value of k. In particular, nodes do
not need to know the network diameter D. In fact, we can prove via an indistinguishability
argument that without any global knowledge, deterministic token collision detection is
impossible. (Nonetheless, what is the minimal prior knowledge required remains to be an
interesting open question.)

» Theorem 5 (Impossibility Result). In the anonymous LOCAL model, if every node has
no knowledge regarding the network graph except being able to count and communicate over
adjacent links locally, and if every node also has no knowledge regarding the tokens except
the ones given as local input, then there is no deterministic algorithm that solves the token
collision problem.

Randomized scenario. We also investigate the randomized round complexity of token
collision. At the upper bound side, selecting a unique leader can be easily achieved with
desirable probability when randomness is allowed. Then a random hash function is employed
to reduce the bit-length of tokens if they are too large, without increasing the probability of
collision significantly in case tokens are distinct. Finally, with a convergecast process similar
to the deterministic algorithm, the unique leader can collect all tokens and determine whether
there are collisions. At the lower bound side, we again employ the strategy of reduction, and
utilize existing results on the hardness of randomized set-disjointness to obtain the desired
result. Our findings for the randomized scenario are summarized below; see Appendix B for
more details. Note that in contrast with the deterministic setting, the length of the token L
no longer appears in the lower bound, and L’s impact on the upper bound is also limited.

» Theorem 6 (Randomized Upper and Lower Bound). Consider an n-node anonymous
CONGEST network with diameter D. For any instance of the token collision problem with
k tokens, if every mode knows the exact value of n or k, then there exists a randomized
algorithm that solves it in O(D - max{(log(log k/logn))/logn,1} + k-logk/logn + L/logn)
rounds with probability at least 1 — 1/k. On the other hand, assuming 2% > k, there are
instances of the token collision problem with k tokens such that any randomized algorithm
that succeeds with probability at least 2/3 requires Q(D + k/logn) rounds.

1.2 Related work and discussion

Though token collision has not been explicitly studied in distributed computing, similar
problems have been investigated elsewhere. For example, element distinctness, which decides
whether a given set of elements are distinct, has been extensively studied in the context
of query complexity. Specifically, linear lower bounds were proved for deterministic and
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randomized algorithms [7, 12]. A sublinear quantum algorithm was proposed by Buhrman
et al. [9], which applies O(n3/*) quantum queries. The upper bound was later improved
to O(n?/3) by Ambainis using quantum walk [2], and matched the lower bound given by
Aaronson and Shi [1]. To the best of our knowledge, this paper is the first one that studies
token collision in classical distributed computing models, focusing on round complexity.

Token collision is also related to leader election, a classical and fundamental distributed
computing primitive, in several aspects.

On the one hand, the design of Las Vegas leader election algorithms [14, 23, 10] share
similar ideas with ours. In those algorithms, usually nodes first randomly generate identifiers,
then the node with the smallest identifier is elected as the leader if that identifier is owned by
a single node, otherwise the process restarts. As can be seen, the problem of checking whether
the smallest identifier is unique is a variant of the token collision problem. Indeed, the

routine developed by Tel in [23] for this checking procedure is very similar to our algorithm.

Nonetheless, the analysis in our setting is more involved: in the context of Las Vegas leader
election, restart when the smallest identifier is unique is fine (i.e., false negative is fine), yet
in our context this is unacceptable. In fact, proving such false negative will not occur is
highly non-trivial (see Lemma 12 in Section 4). Moreover, our algorithm can handle the
scenario that tokens are of arbitrary size, making it more generic.

On the other hand, as mentioned earlier, with a unique leader almost any distributed
computing problem can be solved. This observation raises the question that whether defining
and studying token collision is necessary. We believe the answer is positive. First, the leader
election approach is not necessarily better. Taking the unique identifiers generation problem
as an example, the approach of “first elect a leader and then let the leader aggregate and
check whether the generated identifiers are unique” share same round complexity with our
algorithm. Second, and more importantly, in situations where leader election is infeasible
(e.g., deterministic leader election in anonymous networks, randomized leader election that
always terminates in anonymous rings of unknown size) [24], our algorithm still works with
deterministic correctness and time complexity guarantees.

2  Preliminary

In this section, we briefly introduce some known results on the communication complexity of
the set-disjointness problem as it is used in our lower bound proof.

Communication complexity was introduced by Yao [25], which is nowadays a versatile
method to prove lower bounds in distributed computing. In the two-party communication
complexity model, two players Alice and Bob, respectively, receive © € X and y € Y as
input and need to compute f(z,y), where f: X x Y — Z is a two-argument function. The
communication complexity of f is the minimum number of bits Alice and Bob need to
exchange to compute f(x,y) for any input = and y.

The problem of set-disjointness (denoted as DISJ) is one of the most well-studied problems
in communication complexity [16, 22, 6], where Alice and Bob are given a set, respectively,
and they need to decide whether their sets are disjoint. In this paper, we are interested in a
variant, of set-disjointness: DISJ? : ([g]) X ([Z]) — {0,1}. Alice is given a set S C [p] and Bob
is given a set T' C [p], where |S| = |T| = ¢. They aim to determine whether the two sets are
disjoint, that is, DISJF(S,T) = 1 iff SNT = (). The communication complexity of DISJ is
established by Héstad and Widgerson [13].

» Fact 7 ([13]). For every ¢ < p/2, D(DISJ?) = Q(log (5)) and Ry/3(DISJ)) = Q(q).
Here, D(DISJ}) denotes the deterministic communication complexity of problem DISJ}, and

Ry/3(DISJY) denotes the randomized communication complexity of problem DISJ} with the
probability of error being at most 1/3.
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3 The Deterministic Algorithm

In this section, we focus on the most common scenario where each token can be fitted into
one message (that is, L = O(logn)). We will extend our algorithm to other settings later.

Broadly speaking, our algorithm can be divided into two parts: the first part concerns
with building rooted BFS-trees, while the second part concerns with calculating the size
of the BFS-trees and aggregating tokens at the roots for decision-making. Although the
high-level idea of our algorithm is not complicated, implementing it correctly and efficiently
is non-trivial, especially in the setting where nodes only have limited global knowledge.

We now describe the algorithm in detail. (Complete pseudocode of the algorithm is
provided in Appendix A.)

Build BFS-tree(s). Initially, each node v sets its identifier to be the smallest token it
received as input, or a special symbol if v received no token. Then, it attempts to construct
a BFS-tree rooted at itself by broadcasting its identifier to its neighbors in each round.
Whenever v receives a smaller identifier from some neighbor u, it updates its identifier to
match that of neighbor u. Moreover, it designates u as its parent and sends a notification to
its parent in all subsequent rounds. As a result, whenever v changes its identifier to that of
some neighbor u’s, node v is appending the BFS-tree rooted at itself to the BFS-tree that
includes u. We note that each node v uses a variable rid, to store its identifier. Intuitively,
rid, stores the root’s identifier of the BFS-tree that v belongs to.? We also note that each
node v uses an integer p, € [A,] to store its parent, where A, is the degree of v. That is,
each node v locally labels each incident edge with a unique integer in [A,], and uses the edge
label as its local identity for the node at the other endpoint of the edge.

When node v discovers that all of its neighbors share the same identifier as itself, it
attempts to ascertain whether the BFS-tree rooted at itself is fully constructed. To this end,
note that the BFS-tree rooted at node v consists of node v and the BFS-trees rooted at its
children. Therefore, our algorithm’s criterion for node v to confirm that the BFS-tree rooted
at itself is fully constructed is: all v’s neighbors share v’s identifier and the BFS-trees rooted
at its children are fully constructed. To implement this idea, each node v stores a boolean
variable f, to indicate whether the BFS-tree construction process is completed, and £, is
sent to v’s parent in each round. Initially £, is false, and £, becomes true if: (1) all v’s
neighbors share identical identifier as v; and (2) each child u of v has f,, = true or v has no
children (that is, v is a leaf node).

Lastly, if node v determines that the BFS-tree rooted at itself is fully constructed and it
does not have a parent, then it broadcasts a termination signal to its neighbors once and stops
the BFS-tree building procedure. The node v will then proceed to the second stage of the
algorithm. On the other hand, whenever a node receives a termination signal, it also stops its
BFS-tree building procedure, broadcasts this signal to all neighbors once, and then proceed
to the second stage of the algorithm. During algorithm execution, each node v uses a boolean
variable build, to maintain this signal: build, is initially ¢rue, and will be set to false
when v’s BFS-tree building procedure is done. Notice that if there are multiple BFS-trees
being constructed simultaneously, after the first one completes, the flooding mechanism of
the termination signal may stop the remaining ones from being completed. Nonetheless, such
disruption is fine: the existence of multiple BFS-trees implies there are token collisions, and
our algorithm can correctly detect this later.

2 This is merely an “intuition” and not always true during BFS-tree construction, as identifiers are
propagating gradually and tree shape may change frequently.
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Detect token collision. The token-collision detection procedure has two main tasks: com-
pute BFS-tree’s size and aggregate tokens. A node only starts this procedure if itself and all
its neighbors have terminated the BFS-tree construction procedure.

To determine the size of the BFS-tree rooted at itself, node v first identifies its children.
It filters out the neighbors that have the same identifier as itself and have designated node
v as their parent. Node v uses chi, to store this set of children. If node v finds that all
of its children in chi, have already computed the size of their respective BFS-trees, then
node v can calculate the size of the BFS-tree rooted at itself. This is done by summing up
the sizes of the BFS-trees rooted at its children and adding one to account for node v itself.
During algorithm execution, each node v uses cnt, to track the size of the BFS-tree rooted
at itself. Initially cnt, is set to a special symbol 1. Later when v has finished counting,
cnt, becomes an integer.

It remains to aggregate the tokens. In each round, after node v receives all messages
(which may include tokens from its children), if v has a parent u and the token list of v is
not empty, then v ejects one token from its token list and sends that token to u in the next
round. Node v also needs to tell its parent u whether all tokens in the BFS-tree rooted at
v has already been transferred to u. To this end, in each round, after v has received all
messages, if the token list of v is empty and every child of v indicates all tokens have already
been transferred to v, then v concludes that all tokens in the BFS-tree rooted at itself has
already been transferred to its parent. It will inform its parent u about this in the next
round. During algorithm execution, each node v uses ¥ to store its token list and uses ele,
to denote the token that v intends to send to its parent. We note that ele, is set to L when
v’s token list is empty (that is, |£”| = 0) and every child w of v indicates all tokens in the
subtree rooted at w has been transferred to v (that is, w tells v ele,, =1); and ele, is set to
T when v’s token list is empty but some child w of v indicates there still are tokens pending
to be transferred to v (that is, w tells v ele,, = T).

If node v does not have a parent, it must be the root of some entire BFS-tree and is
responsible for deciding the result of token collision. To this end, once v has obtained the
size of the BFS-tree rooted at itself and all its children signal that the tokens have been
transferred to v, it determines the result of token collision as follows. In the case that all
nodes know the exact value of n, if the size of the BFS-tree rooted at v equals n and no
token collision is found in the token list of v, then v can confirm the non-existence of token
collision. Otherwise, a token collision must exist. In the case that all nodes know the exact
value of k, if the size of the token list of v equals k& and no token collision is found, then
v can confirm the non-existence of token collision. Otherwise, a token collision must exist.
Node v uses a boolean variable res, to store the result. It will broadcast the result to all its
neighbors once in the next round and then halt. Upon receiving the result, every node also
broadcasts the result to its neighbors once in the next round and then halts.

4  Analysis of the Deterministic Algorithm
In this section, we show the correctness of our algorithm and analyze its running time.

Omitted proofs are provided in the full version of the paper.

4.1 Correctness

We begin with the correctness guarantees: if all nodes know n or k, then all nodes return an
identical and correct result on whether there are collisions among the k tokens.

4:7
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To prove the above claim, we first argue the correctness of our BFS-tree construction
procedure. Specifically, we intend to show that our algorithm always maintains a directed
forest G’ = (V, E’) where a directed edge (v,u) € E’ if node v assigns node u as its parent.
To this end, we introduce the notion of identifier-induced graph.

» Definition 8 (ldentifier-induced Graph). At the end of any round, define directed graph
G' = (V, E’) as the identifier-induced graph in the following way: V is the node set of the
network graph, and a directed edge (v,u) € E' if v assigns u as its parent.

To show that the identifier-induced graph is a forest, we begin with the following
observation. Recall that each node v uses variable rid to store its identifier. Intuitively, this
lemma holds since node v only updates the value of rid, to the value of rid, and sets its
parent pointer to u when v receives rid, from some neighbor v with rid, < rid,.

» Lemma 9. At the end of any round, for any directed path in the identifier-induced graph,
the identifiers of the nodes along the directed path are mon-increasing.

Then, we can show the identifier-induced graph is a directed forest containing one or
more rooted trees. To prove the lemma, the key is to show there are no directed cycles in
the identifier-induced graph, which can be done by induction on round number.

» Lemma 10. At the end of any round, the identifier-induced graph is a directed forest in
which every weakly connected component is a rooted tree. In particular, in each tree, the
unique node with no parent is the root of that tree.>

Next, we show an important property regarding the rooted trees in the identifier-induced
graph. Intuitively, it states that within each such tree, nodes may have different identifiers,
but for any subtree within the tree, the nodes that have identical identifiers with the root of
the subtree are connected and are at the “top” of the subtree.

» Lemma 11. At the end of any round, for any node r, within the subtree rooted at node r
in the identifier-induced graph, the subgraph induced by the nodes having identical identifier
with node r is also a tree rooted at node r.

The following key lemma shows that when there are no token collisions, the BFS-tree
building procedure constructs a single rooted tree containing all nodes. Though the claim
seems straightforward, proving it rigorously turns out to be highly non-trivial.

» Lemma 12. If there are no token collisions, then after all nodes quit the BFS-TREE-
BUILDING procedure — that is, after each node v sets build, = false, the identifier-induced
graph contains a single tree rooted at the node having the minimum token as input, and all
nodes in that tree have identical identifier.

Proof sketch. Throughout the proof, assume there are no token collisions. For each node
v, let id, denote the minimum token that v received as input. Let vy, denote the unique
node having the smallest input token. For any two nodes u,v € V, let dist(u,v) denote
the distance between u and v in the network graph G. Define d = max,cy dist(v, Umin)-
For any node v, let d,, denote the distance between node v and the nearest node u with id,
= +00.

We make the following three claims and prove their correctness via induction on rounds.

smaller than v. That is, d, = min,ev, iq, <1, dist(u,v). We set d

VUmin

These claims highlight the key properties our BFS-tree building procedure can enforce.

3 A weakly connected component of a directed graph is a connected component of the graph when ignoring
edge directions.
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1. No node quits the BFS-tree building procedure within d rounds. Formally, for any
0 < i < d, each node v has build, = true by the end of round .

2. For any node v, any 0 < i < d, let node @ be the unique node that has minimum id
among all nodes u with dist(u,v) < i. At the end of round 4, we have rid, = id;.
Formally, at the end of round 4, it holds that rid, = min,cv,aist(u,0)<i 1du-

3. For any node v, any 0 < i < d, at the end of round %, one of the following cases holds.
Case I: d, > 2i. The nodes with distance at most ¢ to v form a height-i tree rooted at v
in the identifier-induced graph. Moreover, for any node u with distance i to v, for any
node w on the directed path from w to v in the rooted tree, it holds that £,, = false.
Case II: ¢ < d, < 2i. There is a tree rooted at v in the identifier-induced graph. Let
node w denote the unique node with distance d, to node v that has the smallest id.
There exists a node v with dist(u,v) =d, — ¢ — 1 and dist(u,w) =i+ 1 such that £
is false for all nodes along the length-(d, — i — 1) directed path from u to v in the
identifier-induced graph.

Case III: d, < i. Node v has a parent in the identifier-induced graph.

The claims above easily lead to the lemma. By Item 1, no node will quite the BFS-
TREE-BUILDING procedure within d rounds. By Item 2, at the end of round d, all nodes
have identical rid, which is id,,,,,. By Case I of Item 3, at the end of round d, all nodes
form a single tree rooted at v,,;, in the identifier-induced graph. Moreover, no node will
ever change parent or rid later. |

We now proceed to argue the correctness of the token aggregation process, which will
lead to the correctness of our entire algorithm. Recalling Lemma 11, we begin by defining
identifier-induced subtree to facilitate presentation.

» Definition 13 (ldentifier-induced Subtree). At the end of any round, for any node r,
within the subtree rooted at r in the identifier-induced graph, call the subtree induced by the
nodes that have identical identifier with v as the identifier-induced subtree rooted at r.

Our first lemma regarding the correctness of the token aggregation process states that,
informally, every root r in the identifier-induced graph correctly computes the size of the
identifier-induced subtree rooted at r if it outputs a decision for the token collision problem.

» Lemma 14. Assume that in some round i, node v runs procedure TOKEN-COLLISION-
DETECTION and within that procedure updates res, for the first time (so that after the
update res, #1), then by the end of round i, the value of cnt, equals the size of the
identifier-induced subtree rooted at v.

Proof sketch. Notice that in our algorithm, only a root node in the identifier-induced graph
can update its res within procedure TOKEN-COLLISION-DETECTION, so v must be a root
node in the identifier-induced graph by the end of round ¢. Let T}, ; be the identifier-induced
subtree rooted at v by the end of round i. We need to show that cnt, equals the size of T}, ;
by the end of round 1.

To prove the above result, we make the following claim and prove it via an induction
on round number: for any node w, if 7, is the first round in which u updates cnt,, to some
non-1 value, then cnt, equals the size of T}, ;, by the end of round ¢,, where T, ;, is the
identifier-induced subtree rooted at u by the end of round ¢,,. Moreover, by the end of any
round ¢ > i, cnt, remains unchanged and T, ;+ is identical to T, ;.

With the above claim, the lemma is easy to obtain. Assume 4, is the first round in which
v updates cnt, to some non-_L value, then cnt, equals the size of T;, ;, by the end of round
i,. Later, at the end of round i, when v updates res to some non-_L value in procedure
TOKEN-COLLISION-DETECTION, cnt,’s value remains unchanged and is [T, ;,| = |[Ty,;]. <«
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Our second lemma regarding the correctness of the token aggregation process states that,
informally, every root r in the identifier-induced graph correctly collects the tokens within the
identifier-induced subtree rooted at r if it outputs a decision for the token collision problem.
The high-level strategy for proving this lemma is similar to the proof of Lemma 14, but the
details are more involved as the convergecast process is more complicated.

» Lemma 15. Assume that in some round i, node v runs procedure TOKEN-COLLISION-
DETECTION and within that procedure updates res, for the first time (so that after the update
res, #.L), then by the end of round i, node v collects each token owned by the nodes within
the identifier-induced subtree rooted at v exactly once.

At this point, we are ready to show the correctness of our algorithm.
» Lemma 16. After all nodes halt (that is, res #L1 ), they return the correct result.

Proof. Notice that by algorithm description and Lemma 10, only root nodes in the identifier-
induced graph can generate res # 1, other nodes can only passively adopt res #1 from
neighbors. So, let v be an arbitrary node that generates res #.1 and assume this happens in
round i,, then v must be a root in the identifier-induced graph by the end of round i,. Let
T,.i, denote the identifier-induced subtree rooted at v by the end of round i,.

First consider the case v sets res = true (that is, there are no token collisions). Then
by Lemma 14 and Lemma 15, v has correctly collected the tokens in T;, ;, and correctly
counted the size of T}, ; by the end of round i,, implying that T, ; contains all input tokens
and there are no collisions among input tokens; that is, the result v generated is correct.
Moreover, since T, ;, is of size n, it must be the only tree in the identifier-induced graph. As
a result, all nodes other than v will only passively adopt the result generated by v, implying
that all nodes return identical result.

Next, consider the case v sets res = false (that is, there are token collisions). Then,
again, by Lemma 14 and Lemma 15, v has correctly collected the tokens in T, ;, and correctly
counted the size of T}, ;, by the end of round %,. Since v sets res to false, there are three
possible reasons:

All nodes know n but |T,;,| # n. Recall Lemma 12, which states that if there are no

token collisions, then there is only one tree in the identifier-induced graph that contains

all nodes and all tokens. Hence, if [T}, ;,| # n, then there are indeed token collisions.
Furthermore, for any other root node u in the identifier-induced graph that also generates
an res #.1 by the end of some round i,, node u must have also found |7, ;,| # n and set
res = false. Therefore, in this case, all nodes output the correct result.
All nodes know k but the number of tokens v has collected is not k. By a similar argument
as in the first case, we can conclude that all nodes output the correct result.
Node v finds collisions among the tokens it has collected. In this case, v’s decision to
generate res = false is obviously correct. Moreover, for any other root node v in the
identifier-induced graph that also generates an res #.1, that res must be false, as the
identifier-induced subtree rooted at u will not contain all n nodes or all k£ tokens.

This completes the proof of the lemma. |

4.2 Complexity

We now proceed to analyze the time complexity of the algorithm. The first lemma states
that any identifier-induced subtree rooted at some node that has a global minimum token
as input has limited height — particularly, O(D). Moreover, each such node is a root in
identifier-induced graph.
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» Lemma 17. Let v be a node having a minimum token as input. Then at the end of any
round, v is a root in the identifier-induced graph, and the identifier-induced subtree rooted at
v has height O(D).

With Lemma 17, we argue that all nodes finish BFS-TREE-BUILDING in O(D) rounds.

» Lemma 18. After O(D) rounds, every node v quits BFS-TREE-BUILDING (that is,
build, = false).

Proof. To prove the lemma, we only need to show that some node will quit BFS-TREE-
BUILDING within O(D) rounds. This is because the flooding mechanism of a false-valued
build variable ensures, once a node v sets build, = false, all other nodes will set build to
false within (at most) another D rounds.

If some node quits BFS-TREE-BUILDING within D rounds then we are done, so assume
that this is not true. Then, by the end of round D, global minimum token’s value is known
by every node. Particularly, by the end of round D, each node has an rid with a value
equals to some global minimum token. In other words, by the end of round D, each node is
in some identifier-induced subtree rooted at some node that has a global minimum token as
input. Moreover, no node will change its rid or parent ever since. By Lemma 17, any tree
rooted at some node that has a global minimum token as input has O(D) height.

Now, by our algorithm, starting from round D + 1, nodes within any such tree will start
setting f to true from leaves to root. Since the height of any such tree is O(D), after O(D)
rounds, either some node already sets build to false and quits BFS-TREE-BUILDING, or
some root of such tree sets build to false and quits BFS-TREE-BUILDING. In both cases,
some node quits BFS-TREE-BUILDING within O(D) rounds since the start of execution. <

The next lemma states the time complexity of our algorithm.
» Lemma 19. After O(D + k) rounds, every node v halts (that is, v returns res .1 ).

Proof sketch. Recall that our algorithm guarantees that if one node generates an res #.1
and then halts, then this res is broadcast to all other nodes. Hence, all other nodes will halt
within another D rounds. As a result, to prove the lemma, we show that some node will
halt within O(D + k) rounds. To this end, we show that after all nodes quit BFS-TREE-
BuILDING which happens within O(D) rounds (by Lemma 18), there exists a tree in the
identifier-induced graph of height O(D) (by Lemma 17), and the convergecast process inside
this tree take O(D + k) rounds. <

4.3 Proof of the main theorem

We now prove Theorem 2. When L = ©(logn) — meaning that each message can fit at most
a constant number of tokens, by Lemma 16 and Lemma 19, the theorem is immediate.

When L = o(logn), to prove the theorem, we make a small modification to our algorithm:
in the convergecast process, whenever a node forwards tokens to its parent, it packs as many
tokens in a message as possible (particularly, ©((logn)/L) tokens in a message). Intuitively,
this means that our algorithm is convergecasting ©(kL/logn) “packed tokens” each of size
©(logn), and each of these “packed tokens” contains ©((logn)/L) real tokens. Hence, the
total runtime of our algorithm is still O(D + kL/logn) rounds.

The above argument is valid if, for every node that has some token(s) as input, that node
receives at least ©((logn)/L) tokens. If some node only receives o((logn)/L) tokens as input
(e.g., only one token), then a more careful analysis is required. Specifically, assume that
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there are x nodes that each receives o((logn)/L) tokens as input, call these nodes V., and
the nodes in V in total have k, tokens. So, there are n — x nodes that each receives at least
O((logn)/L) tokens as input, call these nodes V&, and the nodes in V& in total have k — k,
tokens. Imagine a process in which we first aggregate the tokens owned by V%, and then
aggregate the tokens owned by V.. By the above analysis, aggregating the tokens owned by
V% takes O(D + (k — k,)L/logn) rounds. On the other hand, for each token owned by some
node in V,, within O(D) rounds, it either reaches the root, or arrives at a node that has at
least ©((logn)/L) tokens pending to be sent. Effectively, this means that starting from the
round we process the tokens owned by V, in O(D) rounds, we again arrive at a scenario in
which each node that has pending tokens to send has at least O((logn)/L) tokens in its token
list. As a result, these k, tokens owned by V, will all reach the root within O(D + k, L/ logn)
rounds. Note that our modified algorithm cannot be slower than the imagined process, so
the runtime of our modified algorithm when L = o(logn) is O(D + kL/logn).

5 Generalizing the Deterministic Algorithm when Tokens are Large

When tokens are large, L = w(logn) in particular, the time complexity of the BFS-tree
building process and the token aggregation process are both affected. As mentioned in
Section 1, we can apply the simple strategy of using L/logn rounds to simulate one round of
our algorithm (as a token can be transferred in L/logn rounds), but the resulting algorithm

would be too slow. Instead, in this section, we introduce and analyze a variant of our
log(L/logn) 1} +k- L

logn logn
The high level framework of this variant is the same as the algorithm introduced in

Section 3: first build BFS-tree(s) and then detect token collisions within the tree(s). In this
section, we focus on introducing the process of building BFS-tree(s) as the latter component
is almost identical with the original algorithm. (Complete pseudocode of this variant is
provided in Appendix A.) For the ease of presentation, we use B = ©(logn) to denote the
bandwidth of CONGEST networks throughout this section.

algorithm that costs only O(D - max{ ) rounds when L = w(logn).

5.1 Algorithm description

We first explain the key idea that allows this variant to be faster than the simulation strategy.
Recall that in the original BFS-tree building process, each node v needs to record the
minimum token it has seen in rid,,, and this is done by exchanging tokens in their entirety
with neighbors. However, a key observation is, the relative order of two binary strings can be
determined by a prefiz of the strings that includes the most significant bit where they differ.
As a result, we can employ the strategy that identifiers are sent successively starting from
the most significant bit. Whenever a node v finds a prefix from some neighbor u is strictly
smaller than the prefix of its current identifier, v updates its identifier to match the prefix
and designates u as its parent. Moreover, when v sends its updated identifier, it does not
need to restart from the first bit; instead, v starts from the bit where the updated identifier
differs from the previous identifier. Effectively, we obtain an efficient “pipeline” approach on
identifier broadcasting that can speed up the BFS-tree building process.

Build BFS-tree(s). We now detail how to implement the above idea. Similar to the original
algorithm, each node v attempts to construct a BFS-tree rooted at itself by broadcasting its
identifier rid,. Due to bandwidth limitation, each identifier is divided into multiple pieces
so that one piece can fit into one message. Denote these pieces as rid,[1],--- ,rid,[[L/B]],
where rid,[1] contains the B most significant bits while rid,[[L/B]] contains the B least
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significant bits. The BFS-tree building procedure contains multiple iterations, each of which
contains @(%) rounds. In each iteration, @(%) identifier pieces are sent, along
with the position of the first sent piece in rid, — we use sent, to denote this position.

(Notice that sending sent, may require %

rounds when L is large, this is why each
iteration may contain multiple rounds.) Each node v locally maintains an identifier prefix
for each neighbor based on received pieces. Whenever v finds a prefix of some neighbor u is
strictly smaller than the prefix of its current identifier, v updates its identifier to match the
prefix and designates u as its parent. At this point, v should send the updated identifier to
neighbors. Particularly, v starts with the first piece where the updated identifier differs from
v’s previous identifier. This implies v may send non-successive piece position, in which case
each neighbor of v should abandon the old prefix of v and record the new one.

Node v waits until all neighbors and itself have sent complete identifiers. Then, if v finds
that all neighbors share the same identifier as itself, it attempts to ascertain whether the
BFS-tree rooted at itself is fully constructed. Similar to the original algorithm, each node v
uses a boolean variable £, to indicate whether BFS-tree construction is completed. Initially
f, is false, and £, becomes true if: (1) v and all its neighbors have sent complete identifiers;
(2) v and all its neighbors have identical identifier; and (3) each child w of v has f,, = true or
v has no children.

Lastly, if node v determines that the BFS-tree rooted at itself is fully constructed and it
does not have a parent, then it terminates the BFS-tree building procedure and broadcasts a
termination signal to all neighbors once. The node will then proceed to the second stage of
the algorithm. Any node receiving such a signal will also forward it to neighbors once, stop
the BFS-tree building procedure, and proceed to the second stage of the algorithm.

5.2 Analysis

The analysis for the above generalized algorithm is similar to the analysis for the original
algorithm. Most claims and lemmas can carry over with little or no modifications, so are
the proofs for these claims and lemmas. Others, however, require non-trivial extension or
adjustments. To avoid redundancy, we only state these claims and lemmas here and provide
proofs that require noticeable extension or adjustments in the full paper.

Correctness. The definition for identifier-induced graph remains unchanged in the general-
ized setting, except that such graph is defined at the end of each iteration.

» Definition 20 (Analogue of Definition 8). At the end of any iteration, define directed graph
G' = (V,E’) as the identifier-induced graph in the following way: V is the node set of the
network graph, and a directed edge (v,u) € E' if v assigns u as its parent.

Following lemma is an analogue of Lemma 9, its proof is almost identical to that of
Lemma 9, with small adjustments to account for the fact that identifiers are sent in pieces.

» Lemma 21 (Analogue of Lemma 9). At the end of any iteration, for any directed path in the
identifier-induced graph, the identifiers of the nodes along the directed path are non-increasing.

With Lemma 21, analogues of Lemma 10 and Lemma 11 hold automatically.

» Lemma 22 (Analogue of Lemma 10). At the end of any iteration, the identifier-induced
graph is a directed forest in which every weakly connected component is a rooted tree. In
particular, in each tree, the unique node with no parent is the root of that tree.
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» Lemma 23 (Analogue of Lemma 11). At the end of any iteration, for any node r that has
sent its complete identifier to neighbors (that is, sent, = [L/B]), within the subtree rooted
at node r in the identifier-induced graph, the subgraph induced by the nodes having identical
identifier with node v is also a tree rooted at node r.

Lemma 12 is critical for the original algorithm, which states that a single BFS tree
containing all nodes will be built when there are no token collisions. In the generalized
setting, this claim still holds, but the proof needs to be extended in a non-trivial fashion to
deal with the complication introduced by the pipeline approach for sending identifiers.

» Lemma 24 (Analogue of Lemma 12). If there are no token collisions, then after all nodes
quit the BF'S-TREE-BUILDING procedure, the identifier-induced graph contains a single tree
rooted at the node having the minimum token as input, and all nodes in that tree have
identical identifier.

Much like the case of Definition 20, the definition for identifier-induced subtree remains
largely unchanged in the generalized setting.

» Definition 25 (Analogue of Definition 13). At the end of any iteration, for any node r that
has sent its complete identifier to neighbors (that is, sent, = [L/B]), within the subtree
rooted at r in the identifier-induced graph, call the subtree induced by the nodes having
identical identifier with v as the identifier-induced subtree rooted at r.

Lemma 14 and Lemma 15 (and their proofs) still hold in the generalized setting, as we
utilize the mechanism in the original algorithm for counting tree size and aggregating tokens.

» Lemma 26 (Analogue of Lemma 14). Assume that in some iteration i, node v runs procedure
TOKEN-COLLISION-DETECTION and within that procedure updates res, for the first time (so
that after the update res, #1 ), then by the end of iteration i, the value of cnt, equals the
size of the identifier-induced subtree rooted at v.

» Lemma 27 (Analogue of Lemma 15). Assume that in some iteration i, node v runs procedure
TOKEN-COLLISION-DETECTION and within that procedure updates res, for the first time
(so that after the update res, #L), then by the end of iteration i, node v collects each token
owned by the nodes within the identifier-induced subtree rooted at v exactly once.

We conclude this part with the following lemma which shows the correctness of our
generalized algorithm, its proof is essentially identical to that of Lemma 16.

» Lemma 28 (Analogue of Lemma 16). After all nodes halt (that is, res #1), they return
identical and correct result.

Complexity. We now analyze the round complexity of the generalized algorithm, focusing
on the BFS-tree construction process. Firstly, an analogue of Lemma 17 can be established.

» Lemma 29 (Analogue of Lemma 17). Let v be a node having a minimum token as
input. At the end of any iteration, if v has sent its complete identifier to neighbors (that is,
sent, = [L/B]), then v is a root in the identifier-induced graph, and the identifier-induced
subtree rooted at v has height O(D).

The next lemma states the time consumption of the BFS-tree construction process, it
highlights the advantage of using the pipelining approach over the simulation approach.
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» Lemma 30 (Analogue of Lemma 18). After O(D + m) iterations, every node v
quits BFS-TREE-BUILDING (that is, build, = false).

The last lemma shows the total time complexity of the generalized algorithm.

» Lemma 31 (Analogue of Lemma 19). After O(D - % +k- loén) rounds, every node
v halts (that is, v returns res #.1).

Proof of the main theorem. Combine Lemma 28 and Lemma 31, Theorem 3 is immediate.

6 Impossibility Result and Lower Bound for Deterministic Algorithms

Impossibility result. Recall Theorem 5 which states that if each node has no knowledge
about the network graph except being able to count and communicate over adjacent links,
and if each node also has no knowledge regarding the tokens except the ones being given as
input, then the token collision problem has no deterministic solution.

To obtain the above impossibility, the key intuition is: to solve the problem, nodes need
to exchange their input tokens in some manner; but in the anonymous setting with no global
knowledge regarding network graph or input tokens, whenever a node receives a token from
some neighbor that collide with its own input, the node cannot reliably determine whether
this token originates from itself or some other node, yet the correctness of any algorithm
depends on being able to distinguish these two scenarios.

We now provide a complete proof. Note that our impossibility result is strong in that we
can construct counterexamples for any network size n > 3.

Proof of Theorem 5. Assume that there is an algorithm A that solves the token collision
problem in the considered setting. For any n > 3, we consider two problem instances. The

first instance — henceforth called C), — is a ring consisting of n nodes, denoted as vy, vs, -+, vy,.

Each node in the network obtains one token as input. Particularly, for any ¢ € [n], node v;
has a token with value i. The second instance — henceforth called Cs,, — is a ring consisting
of 2n nodes. To construct Csy,, we first build two paths. The first path contains n nodes,
denoted as vy, v, -+ ,vl;
Then, we connect v/, with u;, and connect u,, with v]. At this point, we have a ring. Each
node in Cy, obtains one token as input. Particularly, for any i € [n], node v, and node u;
each has a token with value 1.

Clearly, token collisions exist in Cy, but not in C,,, yet we will prove that A outputs
identical results in both instances, resulting in a contradiction. Specifically, call the execution
of A on C,, as a and the execution of A on Cs, as 3, we will prove by induction that by the
end of every round, for any ¢ € [n], the internal states of nodes v;, v; and wu; are identical.

The base case, which is immediately after initialization (i.e., round 0), trivially holds.

Assume that the claim holds for all rounds up to the end of round r > 0, now consider
round r 4+ 1. Fix an arbitrary ¢ € [n], by the induction hypothesis, nodes v;_; and v,_; have
identical states by the end of round r. Hence, in round r + 1, the message (if any) v;_1 sends

to v; and the message (if any) v;_; sends to v, will be identical. Similarly, in round r 4 1, the

message (if any) v; 41 sends to v; and the message (if any) vj,; sends to vj will be identical.

Also, notice that by the end of round r, by the induction hypothesis, v; and v} have identical
states. Hence, during round r + 1, the local views of v; and v} are identical. In other words,
for any 9 € {v;,v}}, node ¥ cannot distinguish whether it is in « or 8. Therefore, by the end

the second path also contains n nodes, denoted as uy,ug, -« , Up.
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of round r + 1, nodes v; and v} have identical states. By a similar argument, we can show
that by the end of round r 4+ 1, nodes v; and u; also have identical states. This completes
the proof of the inductive step, hence proving the claim.

Since A solves the token collision problem, « and S both terminate. Moreover, due to
the above claim, nodes in « and 8 output identical results, resulting in a contradiction. <=

Deterministic lower bound. We reduce the set-disjointness problem to the token collision
problem and obtain the following theorem. Theorem 4 is an immediate corollary of it (by
setting mincut(G) = 1).

» Theorem 32. Recall the parameters n, k, L introduced in the definition of the token collision
problem (that is, Definition 1). Consider a size-n CONGEST network G = (V, E) with
diameter D. Assuming 2% > k, any deterministic algorithm that solves the token collision
problem takes Q(D + %) rounds. Here, mincut(G) denotes the mincut of G. That
is, mincut(G) = mingcy [{(uw,v) € E Jue Uv e V\U}.

Proof. Let (U,V \ U) be a partition of V' that attains mincut(G). Let v € U and v € V\ U
be a pair of farthest nodes between U and V' \ U. Assume that u and v are assigned token
sets S and T respectively, each containing k/2 tokens.

Notice that (D) is a lower bound for the token collision problem, as the distance between
uw and v is ©(D), and they need to communicate with each other to solve the problem.

On the other hand, recall the two-party communication model and the set-disjointness
problem introduced in Section 2. Since 2F > k, by setting p = 2% and ¢ = k/2, it holds
q < p/2. Recall the bandwidth of the network is B = O(logn). We claim, if there exists
an r-round algorithm that deterministically solves token collision in the CONGEST model,
then Alice and Bob can compute DISJ}(S,T) by communicating at most 2rB - mincut(G)
bits. Specifically, they can run the r-round algorithm by having Alice and Bob simulate
nodes in U and V' \ U respectively. Communication between Alice and Bob is necessary only
when messages (each of which is at most B bits) are exchanged between nodes in U and
V' \ U in the simulation. Apply Fact 7, we have 2r - mincut(G) - B = Q(log (’;)), implying

o k(L—logk+1)y k(L—log k+1)
r= Q( mincuot%G)B ) - (mincutg)g)dogn)' <
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A

ppendix

A Pseudocode of the Deterministic Algorithms

M

ain algorithm executed at each node v.

1
2
3

4:

10:
11:

12:
13:

: build, < true, ¥ < v’s input tokens, rid, < min{z"}, p, <L, chi, <1, £, < false.
: cnty, 1, ele, < T, res, «L. > End of initialization.
: for (each round) do
for (each incident edge with label i € [A,]) do
ischild; < ]I[pv == z] > ischild; indicates whether edge ¢ connects to the parent of v.
Send (res,,build,,rid,, ischild;, f,, cnt,,ele,) through edge i.
if (res, #.1) then Return res, as final result. > Termination.
For i € [A,], let m; = (res;,build;,rid;, ischild,, f;, cnt;, ele;) be the message received via edge i.
for (each edge ¢ € [A,]) do
if (res; #1) then res, + res;.
build, < build, A build;.
if (build, == true) then Execute Procedure BFS-TREE-BUILDING.
else Execute Procedure TOKEN-COLLISION-DETECTION.

Procedure BFS-TREE-BUILDING executed at node v.

: ID, + {rid; | ¢ € [AL]}
if (min{ID,} < rid,) then
Let j € [A,] be one edge label satisfying rid; == min{I/D,}.
rid, < ridj, p, + j, £, < false. > Notice that £, is reset to false.
else if (max{ID,} ==rid,) then
chi, + {7 ] ¢ € [A,] and ischild; == true}.
if ((Vi € chiy, £, == true) or chi, == @) then £, < true.
if (p, ==1 and £, == true) then build, < false.

Procedure TOKEN-COLLISION-DETECTION executed at node v.

—_
M2

chi, < {i |7 € [A,] and build; == false and ischild; == true and rid; == rid,}.
: Append {ele; | i € chi, and ele; € {0,1}%} to =”.
if (Vi € [A,], build; == false) then
if ((Vi € chi,, cnt; #1) or chi, == ) then cnt, «+ 1+
if (p, #1) then
if (|x¥| > 0) then Eject one token from x” and let that token be ele,,.
else if ((Vi € chi,, ele; ==1) or chi, == () then ele, + L.
else ele, + T.
else if (cnt, #1 and ((Vi € chi,, ele; ==1) or chi, == ))) then
if (know value of n and cnt, == n and no token collision in ) then res, <+ true.
else if (know value of k£ and |2”| == k and no token collision in ") then res, <+ true.
else res, < false.

iccni, ST

th

Figure 1 Pseudocode of the deterministic token collision algorithm.

The complete pseudocode of the algorithm in Section 3 is given in Figure 1. Below are
e explanations of some key variables that are used in the pseudocode. For any node v,

build,: a boolean variable indicating whether BFS-tree building is ongoing for v.

rid,: the identifier of v, intuitively it stores the root of the BFS-tree that v belongs to.

p,: the label of the edge connecting to the parent of v.

chi,: the set of edge labels representing the children of v.
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f,: a boolean variable indicating whether the BFS-tree rooted at v is fully constructed.
cnt,: the size of the BFS-tree rooted at v.

ele,: if ele, ¢ { L, T}, then it is the token that v intends to send to its parent in the
next round; if ele, = T, it indicates that there may exist a token in the BFS-tree rooted
at v that has not been transferred to v’s parent; if ele, =1, it indicates that all tokens
in the BFS-tree rooted at v have already been transferred to v’s parent.

res,: the result of the token collision problem, that is, the algorithm’s output at node v.

The pseudocode of the algorithm introduced in Section 5, which deals with the case that
tokens are large, are given in Figure 2.

B Token Collision for the Randomized Scenario

For the sake of completeness, in this section, we briefly discuss the round complexity of the
token collision problem when randomization is allowed.

Randomized upper bound. We first describe a randomized algorithm that solves token
collision with probability at least 1 — 1/k within O(D - ‘slleek)/logn) |y logh | loén)

logn logn

rounds, hence proving the upper bound part of Theorem 6.

To begin with, we elect a leader among the nodes that have at least one token as input.
Notice that there are at most k such nodes. Hence, by letting each such node v uniformly
and independently sample id, € {0,1}¢!°¢* for some sufficiently large constant c, there is

a unique node © that obtains the global minimum id with probability at least 1 — 1/k¢~2.

If we let each node continuously broadcast the minimum id that it ever received, a size-n
BFS tree rooted at © would be constructed with probability at least 1 — 1/k°~2. Moreover,
by using the pipelining approach we introduced in Section 5, this process takes at most
O(D - W + %) rounds (see Lemma 30).

Once a size-n BFS tree is built, the root — which is also the leader — will collect all tokens
to determine whether collisions exist. Notice that with randomization, we do not have to
transfer each token in its entirety. In particular, we can leverage the following fact on the

collision probability of random hash function to reduce the length of each token.

» Fact 33 ([8]). For any set S C [2L] of size |S| = k and any B > 0, there exists a random
hash function h : [2F] — [q] with ¢ = O(k**P) such that, with probability at least 1 — 1]k,
it holds that h(x) # h(y) for all x,y € S with x # y. Moreover, h can be constructed using
O(L) random bits.

Therefore, after BFS-tree construction, the leader can generate O(L) random bits for
constructing the random hash function, and broadcast these bits to all nodes in O(D + 102 )
rounds. Then, each node uses the random hash function to reduce the length of its tokens
to O(log k) bits. Finally, the k tokens each of length O(log k) is aggregated to the root in
OD+k- %) rounds.

Clearly, the total runtime of the algorithm is

log((1 1 1 L
o(p.les(logk)/logn)  logk 7
logn logn  logn

and it succeeds with probability at least 1 — 1/k.

Randomized lower bound. The lower bound part of Theorem 6 can be obtained in the same
manner as the proof of Theorem 32 by using the randomized lower bound of set-disjointness
mentioned in Fact 7. We omit its proof to avoid redundancy.
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Main algorithm executed at each node v for large tokens.

1: build, ¢ true, ¥ < v’s input tokens, rid, < min{z"}, p, <L, chi, <L, £, < false.
2: Initialize four vectors {rid;};c(a,], {senti}icia,]; {eleiticto,.,a,}, and {sente;};cqo,... A, }-
3: Set eleg + T; for any i € [A,], set sent; < 0, rid; « 2L _ 1, sente; + 0.
4: M «+ [L/B], P« [(log [L/B])/B]. > End of initialization.
5: for (each iteration containing 6(%) rounds) do
6: l + sent, + 1, r + min(sent, + P, M).
T for (each incident edge with label i € [A,]) do
8: ischild; < I[p, ==1].
9: Send (res,,build,,ridy[l, - ,7], sent,, ischild;, f,, cnty, ele,) through edge 3.
10: sent, < r.
11: if (res, #.1) then Return res, as final result. > Termination.
12: Let m; = (res;, build,, rid}, sent), ischild,, f;, cut,, ele}) be the message received via edge i € [A,].
13: for (each edge i € [A,]) do
14: l < sent) + 1, r «+ min(sent; + P, M), sent; < r, rid;[l,--- , 7] < rid}, fill rid;[r +1,--- , M] with 1.
15: if (res; #1) then res, + res;.
16: build, < build, A build,.
17: if (build, == true) then Execute Procedure BFS-TREE-BUILDING for large tokens.
18: else Execute Procedure TOKEN-COLLISION-DETECTION for large tokens.

Procedure BFS-TREE-BUILDING executed at node v for large tokens.
1: ID, < {rid; | i € [A]}.
2: if (min{/D,} < rid,) then

3: if (p, #1 and rid, == min{/D,}) then j < p,.

4: else Let j € [A,] be one edge label satisfying rid; == min{ID,}.

5: rid, < ridj, sent, < sent’, p, < j, f, < false. > Notice that £, is reset to false.
6: else if (max{ID,} == rid, and sent, == M and (Vi € [A,], sent; == M)) then

T chi, < {i| ¢ € [A,] and ischild; == true}.

8: if ((Vi € chi,, £; == true) or chi, == () then £, < true.

9: if (p, ==1 and £, == true) then build, + false.

Procedure TOKEN-COLLISION-DETECTION executed at node v for large tokens.

1: chi, « {i | ¢ € [A,] and build; == false and ischild; == true and sent; ==
M and rid; == rid,}.

2: for (i € chi, and ele] ¢ {T,L}) do

3: ele;[sente; + 1, -- ,min(sente; + P, M)] + ele,, sente; < min(sente; + P, M).

4: if (sente; == M) then Append ele; to " and set sente; < 0.

5: if ((Vi € [Ay], build; == false) and sent, == M) then

6: if (Vi € chiy, cnt; #1) or chi, == () then cnt, < 1+ Ziahiv cnt;.

7 if (p, #1) then

8: if (sentep # 0) then

9: l < senteg+1, r + min(senteg + P, M), ele, < elegll,--- ,r], senteg < r mod M.
10: else if (]| > 0) then

11: Eject one token from x” and let that token be eleg.

12: ele, < eleg[l, -, P], senteg < P.

13: else if ((Vi € chi,, ele; ==1) or chi, == (}) then ele, + L.

14: else ele, + T.

15: else if (cnt, #.1 and ((Vi € chi,, ele; ==.1) or chi, == (})) then

16: if (know value of n and cnt, == n and no token collision in ) then res, «+ true.
17: else if (know value of k and |z”| == k and no token collision in ") then res, < true.
18: else res, < false.

Figure 2 Pseudocode of the deterministic token collision algorithm for large tokens.
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We revisit asynchronous computing in networks of crash-prone processes, under the asynchronous
variant of the standard LOCAL model, recently introduced by Fraigniaud et al. [DISC 2022]. We
focus on the vertex coloring problem, and our contributions concern both lower and upper bounds
for this problem.
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algorithm by Fraigniaud et al., and fixes a bug in their algorithm, which was erroneously claimed to
produce a 5-coloring.

On the lower bound side, we show that, for k£ < 5, and for every prime integer n, no algorithm
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extension of the impossibility of solving weak symmetry-breaking in the wait-free shared-memory
model. We show that this impossibility still holds even if the processes are provided with inputs
susceptible to help breaking symmetry.
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1 Introduction

1.1 Asynchrony, Failures, and Networks

To what extent a global solution to a computational problem can be obtained from locally
available data? What can be computed locally? These are some of the questions that were
asked, and partially answered 30 years ago in two seminal papers [23, 25] in the field of
distributed network computing. Since then, tremendous progress has been made about these
questions, and even detailed books [22, 27] can only touch a small fraction of the content
of the current literature on this topic. Nevertheless, the vast majority of the achievements
on local computing have been obtained in synchronous failure-free models, among which the
most common ones are referred to as LOCAL [23] and CONGEST [27].

In both models, processing nodes occupy the vertices of a graph, and exchange messages
along the edges of that graph. They all start at the same time, and computing proceeds as a
sequence of synchronous rounds. At each round, every pair of adjacent nodes can exchange
messages (one in each direction), and every node can perform some individual computation.
CONGEST differs from LOCAL only as far as the message size is concerned: messages are
bounded to be of size at most B bits in CONGEST (it is common to set B = O(logn)). There
are at least two solid reasons why such elegant but simplistic models should be considered.
First, they ideally capture the notion of spatial locality, as algorithms performing in ¢ rounds
produce an output at each node that is solely based on the t-neighborhood of the node.
Second, the existence of efficient synchronizers [3, 4, 19] enables to implement algorithms
designed for synchronous models on asynchronous networks, with only limited slowdown.

Yet, models such as LOCAL and CONGEST suffer from one notable limitation: they
ignore the potential presence of failures. Indeed, transient failures have been addressed in
the framework of self-stabilization, but crash or malign failures are mostly ignored in the
framework of local computing in networks. Instead, studying the interplay of asynchrony and
failures has been the main topic of interest of distributed computing in general [2, 24, 28], since
the seminal “FLP impossibility result” stating that consensus is impossible in asynchronous
systems with failures, even under the restriction that at most one crash failure may occur [15].
However, the design of algorithms dedicated to asynchronous crash-prone systems have
been mostly performed in shared-memory or message-passing models: the former assumes
that processes exchange information by writing and reading in a shared memory; the latter
assumes that any two processes can exchange messages directly along a private channel.
While these two models are excellent abstractions of very many types of distributed systems,
ranging from multi-core architectures to large-scale computing platforms, they do not enable
the study of spatial locality, as the structure of the physical network is abstracted away.

An attempt to resolve this tension between synchronous failure-free computing in networks,
and asynchronous computing in crash-prone systems has been recently proposed [16], by
considering asynchronous networks subject to crash failures.

1.2 The ASYNC LOCAL Model

The asynchronous crash-prone LOCAL model! (ASYNC LOCAL in short), introduced in [16],
aims at capturing a setting that is a hybrid between shared memory and network computing.

L One could also consider the variant ASYNC CONGEST of ASYNC LOCAL by limiting to O(logn) bits
the size of the registers in which nodes read and write, but we restrict ourselves to the LOCAL variant,
as standard wait-free computing does not generally restrict the size of the registers.
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This model can be described conceptually in two possible ways (see Section 2.1 for more

details):
The ASYNC LOCAL model can be viewed as the standard wait-free shared-memory
model [2, 21] in which the read-access to other process’s registers is restricted. It bears
similarities with the atomic state model in self-stabilization [9]. In an n-process system,
each process i € [n] can solely read the registers of processes j € Ng(i), where Ng(7)
denotes the set of neighbors of vertex ¢ in a graph GG. That is, the wait-free shared-memory
model is the ASYNC LOCAL model in which the graph G is fixed to be the complete
graph (or clique) K,,.
The ASYNC LOCAL model can alternatively be viewed as the standard LOCAL model [22,
27] in which each node writes in its local register(s) instead of sending messages, and
reads the registers of its neighbors instead of receiving messages from them. In addition,
ASYNC LOCAL allows asynchronous executions, that is, each process reads and writes at
its own pace, which may vary with time, and it may even crash (i.e., stop functioning,
and never recover). Note that, as for LOCAL, the graph G is unknown to the nodes
in ASYNC LOCAL, as it is typically the input to the problems of interest in network
computing.

In the framework of asynchronous computing, the computing elements are referred to as
processes, whereas they are referred to as nodes in the context of computing in networks, but
we use these two terms indistinctly. The terminology “wait-free” refers to the fact that (1) an
arbitrarily large number of processes can crash, and (2) a node cannot distinguish whether
a neighboring node has crashed or is simply slow, from which it follows that a node must
never “wait” for some action performed by another node, and must terminate independently
from which of the other nodes have crashed (unless itself has crashed).

It was shown in [16] that the computing power of ASYNC LOCAL is radically different
from the one of LOCAL. Indeed, the authors proved that constructing a maximal independent
set (MIS) is simply impossible in ASYNC LOCAL, even in the n-node cycles C,,, n > 3, while,
on cycles, it just takes O(log*n) rounds in LOCAL [12, 23]. However, the authors show
also that proper coloring C), is possible in ASYNC LOCAL, to the expense of using a larger
palette of colors, i.e., 6 colors instead of just 3 as in LOCAL (a 5-coloring algorithm is also
claimed in [16], but, as we shall show later, there is a bug in that algorithm). Indeed, a
simple reduction to renaming (see [2] for the definition) shows that, under the ASYNC LOCAL
model, no algorithms can proper color all graphs of maximum degree A using less than
2A + 1 colors whenever A + 1 is a power of a prime. This is because ASYNC LOCAL and
standard shared-memory coincides when the graph is a clique of n = A + 1 nodes. The
main result in [16] is a distributed asynchronous algorithm in the ASYNC LOCAL model that
achieves proper 6-coloring of any n-node cycle, n > 3, in O(log”* n) rounds, which is optimal
thanks to [23]. In ASYNC LOCAL, the round-complezity of an algorithm is the maximum,
taken over all nodes, and all executions, of the number of times a node writes in its register,
and reads the registers of its neighbors.

1.3 Our results

In a nutshell, we show that there exists an algorithm for proper coloring graphs with maximum
degree A in the ASYNC LOCAL model, using a palette of 5(A+1)(A+2) —1 colors, resulting
into a 5-coloring algorithm for the cycles. This result was obtained by first showing how to
implement Linial’s coloring algorithm in the asynchronous setting, and then by developing
a new technique based on reallocating identifiers to nodes. Note that even implementing
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Linial’s coloring algorithm asynchronously is not straightforward, as it is not even clear
whether the trivial recoloring algorithm that proceeds iteratively over all color classes can
be implemented in the ASYNC LOCAL model. Moreover, we show that, for infinitely many
values of n, 5-coloring the n-node cycles is the best that can be achieved in ASYNC LOCAL.
This significantly improves the lower bound in [16] on the number of colors required for
proper coloring cycles under ASYNC LOCAL, which held for n = 3 only.

Obtaining our lower bound required to revisit entirely the known lower bound on weak
symmetry breaking? in the standard asynchronous shared-memory model, by considering
the impact of a priori “knowledge” given to the processes. For instance, if the processes
know a priori that one process is given advice 0, and one process is given advice 1, then
weak symmetry breaking becomes trivially solvable. For which a priori knowledge weak
symmetry breaking becomes trivially solvable, and for which it remains unsolvable? We show
that answering this novel question for specific types of a priori knowledge results into new
impossibility results for the standard asynchronous shared-memory model, which translate
into lower bounds and impossibility results in the ASYNC LOCAL model.

We stress the fact that while all (Turing computable) tasks are solvable in the LOCAL
model, not all taks are solvable in ASYNC LOCAL, yet we also address complexity issues, by
showing that, for constant A, our (4(A + 1)(A + 2) — 1)-coloring algorithm performs in
O(log™ n) rounds in ASYNC LOCAL, that is, as fast as the Q(log* n) lower bound [23] on the
number of rounds required for coloring cycles in the synchronous failure-free LOCAL model.
These results are detailed next.

1.3.1 Proper Coloring

We mostly focus on distributed proper coloring, arguably one of the most important and
thoroughly studied symmetry-breaking tasks in network computing — see, e.g., [17, 18, 20]
for recent results on the matter®. First, we show that Linial’s technique from [23] based on
cover-free families of set systems can be used asynchronously, for the design of an O(A?%)-
coloring of graphs of maximum degree A, running in O(log™ n) rounds in n-node graphs
under ASYNC LOCAL. Then we show that the approach from [16] for 6-coloring cycles can
be generalized to color arbitrary graphs. Specifically, we design an algorithm computing a
W—coloring in graphs of maximum degree A running in O(log* n) + f(A) rounds
under ASYNC LOCAL, where the additional term f(A) depends on A only. This line of
results culminates in the design of an algorithm enabling to save one color, i.e., that computes
a (w — 1)—coloring7 still running in O(log* n) + f(A) for some function f. Reducing
the color palette by just one color may seem of little importance, but it is not, for two reasons.

(A+1)(A+2)
2

First, a palette of size — 1 is the best that we are aware of for which it is possible

to proper color all graphs of maximum degree A in O(log* n) rounds in ASYNC LOCAL
(ignoring the additional term depending on A only). Saving one more color appears to be
challenging. Second, in the case of cycles, i.e., A = 2, this allows us to fix a bug in the
5-coloring algorithm from [16]. Indeed, this latter algorithm is shown to be erroneous, as

2 Weak symmetry breaking is the task in which processes start with no inputs, and each process must
output 0 or 1, under the constraint that, whenever all processes terminate, at least one process must
output 0, and at least one process must output 1.

3 In the context of distributed computing in networks, especially in the LOCAL and CONGEST models,
one is interested in properly coloring graphs with maximum degree A using a palette of f(A) colors,
where f(A) grows slowly with A. One typical example is f(A) = A + 1 as all graphs of maximum
degree A can be properly colored with A + 1 colors, but one is also interested in larger functions f, e.g.,
f(A) = ©(A?), whenever this choice enables to obtain faster algorithms.



A. Balliu, P. Fraigniaud, P. Lambein-Monette, D. Olivetti, and M. Rabie

there are schedulings of the nodes that result in livelocks preventing the algorithm from
terminating. Nevertheless, our algorithm shows that 5-coloring the n-node cycles in O(log* n)
rounds under ASYNC LOCAL is indeed possible.

1.3.2 Lower Bounds and Impossibility Results

Our second line of contribution is related to lower bounds on the size of the color palette
enabling to proper color graphs asynchronously. It was observed in [16] that since the class
of graphs with maximum degree A includes the clique with n = A + 1 nodes, and since
renaming [2] in a set of less than 2N — 1 names cannot be done wait-free in N-process shared-
memory systems whenever N is a power of a prime, proper coloring graphs of maximum
degree A in ASYNC LOCAL cannot be achieved with a color palette smaller than 2A + 1
colors, i.e., 5 colors in the case of cycles (independently from the number of rounds). However,
the question of whether one can 4- or even 3-color long cycles (i.e., excluding the specific case
of the clique C5) under ASYNC LOCAL was left open in [16]. We show that this is impossible
whenever n is prime, that is, there are infinitely many values of n for which 5-coloring the
n-node cycle is the best that can be achieved in ASYNC LOCAL.

1.3.3 Reduction from Weak Symmetry-Breaking with Inputs

We achieve our lower bound on the number of colors thanks to a result of independent
interest in the standard framework of wait-free shared-memory computing. We show that
there are no symmetric wait-free algorithms solving weak symmetry-breaking [2] in n-process
asynchronous shared-memory systems whenever n is prime, even if processes are provided
with inputs from a non-prime-divisible and order-invariant set of inputs. We achieve this
impossibility result by extending the proof in [1] for weak symmetry-breaking to the case in
which processes have inputs that do not trivially break symmetry. Our impossibility result for
weak symmetry-breaking with inputs has other consequences on the ASYNC LOCAL model,
including the facts that weak 2-coloring is impossible in cycles of prime size, and that, for
every even A > 2, there is an infinite family of regular graphs for which (A + 2)-coloring
cannot be solved in ASYNC LOCAL.

Finally, using different techniques, we also show that even a weak variant of maximal
independent set (MIS) cannot be solved in cycles with at least 7 nodes, and that, for every
A > 2, (A + 1)-coloring trees of maximum degree A is impossible under ASYNC LOCAL.

1.4 Related Work

The combination of asynchrony and failures in the general framework of distributed computing
in networks has been studied a lot in the context of self-stabilization. The latter deals with
transient failures susceptible to modify the content of some of the variables defining the
states of the nodes. The role of a self-stabilizing algorithm is therefore to guarantee that if
the network is in an illegal configuration (i.e., a configuration not satisfying some specific
correctness condition), then it will automatically return to a legal configuration, and will
remain in a legal configuration, unless some other failure(s) occur. Self-stabilizing graph
coloring algorithms have been designed [5, 6, 7, 8]. However, these algorithms provide solutions
only for executions during which there are no failures. Instead, in ASYNC LOCAL, failures
may occur at any time during the execution, and once a process crashes it never recovers.
This has important consequences on what can or cannot be computed in ASYNC LOCAL.
For instance, 3-coloring the n-node cycle is possible in a self-stabilizing manner for every
n > 3, while we show that even 4-coloring the n-node cycle is impossible for infinitely many n
(namely, for all prime n).
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It is also worth mentioning [11, 13], which introduced the DECOUPLED model, where crash-
prone processes occupy the nodes of a reliable and synchronous network. The DECOUPLED
model is stronger than ASYNC LOCAL, and indeed it was shown that if there exists an
algorithm solving a task in the LOCAL model, then there exists an algorithm solving that
task in the DECOUPLED model as well, with limited slowdown. Instead, we show that even
a weak variant of MIS is impossible in large cycles under ASYNC LOCAL.

Another field of research very much related to our work is the study of synchronous
networks with failures, whether it be crash or even malicious process failures, or message
omission failures (see, e.g., [10, 26, 29, 30]). In these models, the focus has mostly been
put on the study of tasks such as consensus and set-agreement. The ASYNC LOCAL model
somehow mixes some of the key aspects of the models considered in these work, including
the presence of crash failures, and the fact that the communications are mediated by a
graph distinct from the complete graph. The same way standard wait-free computing in
shared-memory systems can be viewed as one specific instance of the oblivious message
adversary model, wait-free computing in the ASYNC LOCAL model in a graph G may be
viewed as the instance of the oblivious message adversary model in which messages can only
be sent along the edges of the graph G. We however focus on solving graphs problems such
as coloring or independent set, motivated by the need to solve various symmetry breaking
problems in networks, including frequency assignment and cluster decomposition. For such
problems, it is more more convenient to use the framework of ASYNC LOCAL, in which the
graph G is part of the input, as in the LOCAL model.

2 Model and Definitions

We first recall the ASYNC LOCAL model as introduced in [16], and then provide an example
for an algorithm in this model.

2.1 The ASYNC LOCAL model

Like the LOCAL model [27], the ASYNC LOCAL model assumes a set of n > 1 processes,
each process occupying a distinct node of an n-vertex graph G = (V, E), which is supposed
to be simple and connected. Each process, i.e., each node v € V, has an identifier id,, that is
supposed to be unique in the graph. The identifiers are not necessarily between 1 and n,
but they are supposed to be stored on O(logn) bits. That is, all node identifiers lie in the
integer interval [1, N] for some bound N = poly(n). Like in the asynchronous shared-memory
model, every node v comes equipped with a single-writer /multiple-reader register R(v) in
which it can write values. However, in contrast with the shared-memory model, only v’s
neighbors in the graph G are able to read its register R(v), and symmetrically, node v can
only read the registers R(w) of nodes w € Ng(v) = {u € V' | {u,v} € E}. We assume that
each node can write in its register, and then read all its neighbors’ registers, in a single
atomic operation. Neighboring nodes can perform this write&read operation concurrently, in
which case they both read the value concurrently written in the other node’s register. This
communication primitive is thus akin to an immediate snapshot object with read accesses
mediated by a graph, in a similar manner to the atomic state model in the context of self-
stabilizing algorithms [9]. Computation proceeds asynchronously, and each node may crash,
in which case it stops functioning, and it never recovers. Therefore, in the particular case of
the clique G = K,,, ASYNC LOCAL boils down to the standard asynchronous crash-prone
shared-memory model with immediate snapshots [2]. The registers are of unbounded size.
Therefore, as in the LOCAL model, and as in most wait-free computing models [21] as well,
we can assume full-information protocols, in which every node writes its entire state in its
register, and read the states of its neighbors in their registers.
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Remark. Due to its nature, the ASYNC LOCAL model may have also been named “iterated
immediate local snapshot”. Nevertheless, for its close connection to the standard LOCAL
model used for the study of graph problems (e.g., coloring) in distributed computing, we
preferred to stick to the terminology ASYNC LOCAL.

Input. In addition to its identifier id,, every node v may be provided with some input,
denoted by input,. The latter may be the number n of nodes in the graph, or an upper
bound N on n, or any label ¢(v) € {0,1}* whose semantic depends on the context (e.g.,
it may represent a boolean mark, or a color, etc.). Note that the network G is typically
unknown to the nodes, even if some specific parameters may be provided to each node as
input, such as the maximum degree A of G.

Algorithm. An algorithm A for the ASYNC LOCAL model may be described by two func-
tions:

Init: used to initialize the state of each node, as a function of its input;

Alg: used to update the state of a node, as a function of its current state, and of the
states of its neighbors.

Scheduling. An execution of an algorithm A4 depends on how the nodes are scheduled. A
scheduling is a sequence & = 51,53, ... of subsets S; C V of nodes. For every i > 1, the
set S; denotes the set of nodes that are activated at step i. Each of these nodes performs
an immediate-snapshot, and updates its state accordingly. For instance, the scheduling
{u,v},{v}, {v},{v},... represents the execution in which nodes v and v run concurrently
at the first step, and then v runs solo, i.e., v is the only node activated at every step ¢ > 2.
That is, u has crashed after step 1, and all the nodes w ¢ {u, v} had crashed initially, none of
them taking any step. Instead, the scheduling V,V,V, ... represents a synchronous execution
in which no node crashes.

Full-Information Protocols. For every v € V, let OldState, ; < L, and NewState, ; <
Init(id,, input,). For every ¢ > 1, the variable OldState,,; represents what a neighbor
of v gets whenever reading the memory of v, and NewState, ; represents the updated
state of v, which will become visible to its neighbors the next time v is scheduled. More
specifically, for every ¢ > 1, if v ¢ S;, then OldState, ;41 < OldState, ; and NewState, ;11 <
NewState, ;. Instead, if v € S;, then OldState, ;41 < NewState, ;, and NewState, ;11 +
Alg(OldState, 11, {OldState, i+1 | v € Ng(v)}). In other words, all nodes that are scheduled
at step ¢ write their current state, then read the state of their neighbors, and then use the
obtained knowledge in order to update their state. The new states resulting from these
updates will become visible to their neighbors the next time that they are scheduled. That
is, we model a setting in which writing and then reading the state of the neighbors is an
atomic operation, but it may take some time to compute a new state.

Termination. We let Terminated(x) be a special state denoting that a node terminates
with output z. If a node v satisfies NewState, ; = Terminated(x) at some step ¢t > 1, then v
decides the output z, and it is assumed that if v is scheduled again in the future, then its
state does not change, that is, NewState, ¢4, = NewState, ; for all ¢ > 1.
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Algorithm 1 An algorithm for 6-coloring cycles. Code of node v, with sole input id,.

procedure CYCLESIXCOLORING (id,)
z4idy; a<+0; b+ 0; > (z,a,b) is the state s of v
repeat forever
(81,82) + WriteSnapshot(s) > s; and so are the states of the two neighbors of v
if (a,b) ¢ {(s1.a,$1.b), (s2.a, $2.b)} then return (a,b)
else > In the following: s; = L = (s;.2 = L) A (s;.a= L) A (s;.b=1).
a+ minN~{s;.a| (e {l,2})A(s; #L)A(s;.x >x)}
b+ minN~ {s;.b| (i€ {1,2})A(si ZL)A (8.2 <)}
end if
end repeat
end procedure

Round complexity. The runtime of a node v is defined as
T, =|{i > 1|v € S; and NewState, ; # Terminated(z) for any possible output z}|.

That is, the runtime of a v is equal to how many times v is scheduled before it terminates.
The runtime of an algorithm on a graph G = (V, E) is then max{T, | v € V}. The runtime
of an algorithm in a graph class G is the maximum runtime of the algorithm, over all graphs
G € G. The runtime of an algorithm may depend on the identifiers given to the nodes.
However, as said before, we use the standard assumption that the identifiers are from the
interval [1, N] where N = poly(n). The runtime is thus typically expressed as a function of
n (the order of the graph) and A (the maximum degree of the graph). The complexity of a
problem is the minimum runtime (as a function of n and A) among all possible algorithms
that solve the problem. The typical graph class we are interested in is Ga, the class of all
graphs with maximum degree A.

Remark. In absence of failures, and if all nodes run synchronously, the runtime of an algorithm
in the ASYNC LOCAL model is identical to its runtime in the LOCAL model.

2.2 Algorithm Description

While an algorithm can be formally described by providing the two functions Init and Alg,
we now describe an alternative, and possibly easier way of describing an algorithm. An
example is provided in Algorithm 1 from [16], which is aiming at solving 6-coloring in cycles.
This algorithm uses the function WriteSnapshot(s), which allows to perform an immediate
snapshot (i.e., a write of the current state s immediately followed by a snapshot of all the
states of the neighbors), and uses the function return, which explicitly provides the output
(instead of using Terminated(z)).

In Algorithm 1, the state s of each (non terminated) node is a triplet s = (x,a,b) of
natural numbers. Given a state s, s.x, s.a, and s.b respectively denote the first, second, and
third element in s. The state of a terminated node is a pair (a,b) of natural numbers. One
can check (see [16]) that the output pairs (a,b) can take at most 6 different values.

The state s of a node v is updated by updating some of all of its components x, a, or b.
Actually, the entry x = id, does not change. The entry a is updated to the smallest natural
number excluding the a-values used by neighbors of larger identifiers, and b is updated to the
smallest natural number excluding the b-values used by the neighbors of smaller identifiers.
These values are equal to L if they have not yet been written in the register (i.e., if a neighbor
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has not yet performed a single write). If a node v notices that its current state (z,a,b) is
such that (a,b) is different from the (a,b)-pairs of both neighbors, then v terminates, and
decides color (a,b). An example of an execution of Algorithm 1 is provided in Appendix A.

3 Results and Road Map

We have now all ingredients sufficient to formally state our results.

3.1 Algorithms for ASYNC LOCAL

We first show (cf. Section 4) that Linial’'s O(A?)-coloring algorithm can be adapted to work
in the asynchronous wait-free setting.

» Theorem 1. For every A > 2, the round-complezity of O(A?)-coloring graphs of mazimum
degree A in the ASYNC LOCAL model is O(log™ n).

Then, we show (cf. Section 5) that, at the cost of increasing the runtime by an additive
factor depending on A, it is possible to reduce the number of colors from O(A?) to (A +
1)(A+2)/2.

» Theorem 2. For every A > 2, the round-complexity of %(A + 1)(A + 2)-coloring graphs of
mazimum degree A in the ASYNC LOCAL model is O(log* n) + f(A), where f is a function
depending on A only.

Finally, we show (cf. Section 6) that we can exploit the fact that the coloring produced
by Theorem 2 satisfies special properties for reducing the size of the color palette by one.

» Theorem 3. For every A > 2, the round-complezity of (1(A + 1)(A + 2) — 1)-coloring
graphs of mazimum degree A in the ASYNC LOCAL model is O(log" n) + f(A), for some
function f that only depends on A.

An important consequence of this result is the case A = 2. Theorem 3 shows that there
is an algorithm for 5-coloring cycles. While such an algorithm was already claimed to exist
in [16], we show (cf. Appendix B) that the algorithm supporting that claim is erroneous.
Specifically, we provide an instance in which the algorithm does not terminate. Theorem 3
provides a novel algorithm, which allows us to establish the following result.

» Corollary 4. The round-complezity of 5-coloring cycles in the ASYNC LOCAL model is
O(log™ n).

3.2 Impossibility Results

As pointed out in [16] several impossibility results for ASYNC LOCAL are mere consequences of
the fact the this model coincides with the standard wait-free shared-memory model whenever
the underlying graph G is a clique K,,. This is for instance the case of the impossibility of
4-coloring C3 (by reduction from renaming), and the impossibility of constructing a maximal
independent set, i.e., MIS (by reduction from strong symmetry breaking). Whether or
not it is possible to 4-color cycles C,, for n > 3 was left open in [16]. We show that, for
infinitely many values of n, the problem of 4-coloring the n-node cycle C,, is not solvable in
ASYNC LOCAL. To establish this result, we prove a result of independent interest, in the
framework of wait-free shared memory computing. Specifically, we extend the proof in [1]
that weak symmetry breaking is impossible in the wait-free shared memory systems. We show
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that this problem remains impossible even if some input are provided to the processes, which
may potentially help them to break symmetry. The set of possible inputs has to agree with
some restrictions, called non-prime-divisible and order-invariant (with respect to a particular
subset of processes). Roughly, the set of possible input assignments must not be divisible by
the number n of processes whenever n is prime, and it must be closed under permuting the
identifiers of a particular subset of the processes by an order-invariant permutation. Also
recall that an algorithm is symmetric if for every execution « on a subset P of processes,
and for every permutation 7 : [n] — [n] order preserving on P, we have that, for every i € P,
process i outputs z in « if and only if process 7(¢) outputs  on the execution 7(«) resulting
from permuting the scheduling of the processes in P according to a. Our impossibility results
are shown in the full version.

» Theorem 5. Let n be a prime number. There are no symmetric wait-free deterministic
algorithms solving weak symmetry break in the asynchronous wait-free shared memory model
with n processes, even if the processes are provided with inputs from a mon-prime-divisible
and order-invariant set of inputs.

Theorem 5 has three important consequences.

» Corollary 6. Let n > 3 be a prime number. The problem of 4-coloring the n-node cycle
cannot be solved deterministically in ASYNC LOCAL.

A weaker form of symmetry breaking is weak 2-coloring [25]. It is required to 2-color the
input graph such that every (non isolated) node has at least one neighbor colored with a
different color.

» Corollary 7. Let n > 3 be a prime number. The problem of weak 2-coloring the n-node
cycle cannot be solved deterministically in ASYNC LOCAL.

Finally, we prove that, for even values of A, there are a infinitely many A-regular graphs
that cannot be (A + 2)-colored in ASYNC LOCAL. This extends the lower bound of 2A + 1
colors, which applies only for the clique of A + 1 nodes with A + 1 power of a prime, to an
infinite family of graphs with maximum degree A.

» Corollary 8. Let A be an even number, and let n > A be a prime number. The problem of
(A+2)-coloring n-node A-reqular graphs cannot be solved deterministically in ASYNC LOCAL.

We complete the lower bound analysis with some additional results. The version of MIS
considered in [16], which was proved impossible to solve, asks the nodes to output a set of
vertices which forms an MIS in the graph induced by the correct nodes. Instead, we consider
a weaker variant of MIS, asking the nodes to output a set of vertices which forms an MIS in
the graph whenever all processes are correct, i.e., no crashes occurred. We show that even
this weaker variant of MIS is impossible in ASYNC LOCAL.

» Theorem 9. For every n > 7, no deterministic algorithms can solve weak MIS in the
n-node cycle under ASYNC LOCAL.

Finally, we show impossibility results for coloring general graphs.

» Theorem 10. For every A > 2, no deterministic algorithms can solve (A 4 1)-coloring in
trees of maximum degree A under ASYNC LOCAL.

We conclude, in Section 7, with some open questions.
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4  Coloring General Graphs with O(A?) Colors

In this section, we provide a simple algorithm for coloring a graph with O(A?) colors. This
algorithm is an adaptation of Linial’s coloring algorithm [23] (which is designed to work in
the LOCAL model) to the asynchronous setting. More in detail, we prove the following result.

» Theorem 1. For every A > 2, the round-complezity of O(A?)-coloring graphs of mazimum
degree A in the ASYNC LOCAL model is O(log™ n).

In order to prove this result, we start by summarizing Linial’s coloring algorithm, and
then we show how to adapt it to the wait-free setting. We start by recalling the notion of set
systems and of cover-free family of sets.

» Definition 11. A set system is a pair (X, F), where X is a set, and F is a collection
of subsets of X. A set system (X, F) is a k-cover-free family if, for every choice of k + 1
distinct sets Sg, S1,...,Sk in F, the following holds: Sy ~ Ule S; #+ O.

To provide an intuition about how to use these two definitions, let us assume that the
nodes of the input graph G are properly c-colored, and let us assume that there exists a
A-cover-free family (X, F) satisfying ¢ < |F|. It follows from these assumptions that there
exists a one-to-one function f from the set of colors to F. W.l.o.g., assume that X contains
the numbers in {1,...,|X|}. One step of Linial’s algorithm is able to recolor the nodes with
¢’ = |X| colors, as follows.

1. Every node v communicates with its d neighbors to get their current colors ¢y, ..., cq,

where d < A is the degree of v.

2. Every node v computes X, = f(cy) ™ Ule f(¢i), where ¢, is the color of v, and then

recolors itself with the minimum value in X,,.

Note that X, is guaranteed to be non-empty by the fact that (X, F) is a A-cover-free family,
and that the obtained color ¢ satisfies 1 < ¢/, < ¢/. Linial’s coloring algorithm repeats this
process multiple times, each time using a different cover-free family. The runtime and the
resulting number of colors depend on the choice of cover-free families. We summarize the
cover-free families used by Linial’s algorithm in the following two lemma.

» Lemma 12 ([23]). (a) For any c > A, there exists a A-cover-free family (X, F) with ¢ < |F|,
and | X| < 5[A2%logc]. (b) There exists a A-cover-free family (X, F) with 10A3 < |F|, and
|X| < (4A +1)2.

In [23], Lemma 12 has been proved in a non-constructive way. However, it is possible to
obtain a similar statement by using polynomials over finite fields [14]. We will use the above
lemma as a black-box. However, the correctness of our algorithm will be independent from
which specific cover-free family construction is used.

We now discuss how these cover-free families are used. Linial’s algorithm, in its standard
formulation for LOCAL, requires the nodes to be aware of an upper bound N on the size of
the identifier space. At the first round, nodes recolor themselves by using 5[A%log N colors,
thanks to a cover-free family from Lemma 12(a) with parameter ¢ = N. We denote by f; the
one-to-one function used by the nodes to map their color to the elements of the cover-free
family. At the second round, nodes use the cover-free family from Lemma 12(a) with parameter

¢ = 5[A%log N, from which they obtain a coloring that uses 5[A%log(5[A%log N1)] colors.

We denote by fo the one-to-one function used by the nodes to map their color to the elements
of the cover-free family. The nodes repeat this process multiple times, each time using a
cover-free family from Lemma 12(a) with parameter ¢ equal to the amount of colors obtained
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Algorithm 2 O(A?)-coloring arbitrary graph. Code of node v: id, € {1,..., N}; input, = N.

1. procedure WAITFREELINIAL(id,,input,, )
2: S « (idy, L,...L); > S is an array of length T+ 1 = O(log* N), and is the state s of

fori=1to T do
(81,...,84) < WriteSnapshot(s)
A {s;.Sli]| (Ge{l,...,d}) N (s;.5i]] # L)} > ith entry of each array s;.5
Sli+1] < min f;(S[i]) \ U,ea fi(a)
end for
return s[T + 1]
end procedure

in the previous rounds. Linial proved that it takes O(log™ N) rounds to reach a coloring that
uses at most 10A? colors. Since it is typically assumed that N = poly(n), the runtime is
O(log™ n). At this point, the cover-free family from Lemma 12(b) is used to get a coloring
that uses (4A + 1)2 = O(A?) colors.

Let us denote by T the number of rounds performed in total, including the last round that
uses the family from Lemma 12(b) for reducing the number of colors to at most (4A + 1)2.
For 1 <1i <T,let f; be the one-to-one function used by the nodes to map their colors to the
elements of the cover-free family while executing the ith round of Linial’s algorithm.

The Algorithm. Let us show that the approach used in Linial’s LOCAL algorithm can
be adapted to work in ASYNC LOCAL as well. We assume that input, contains the same
upper bound N on the range of identifiers. So, in particular, every node v can compute T'
as a function of input,. The adaptation of Linial’s coloring algorithm to ASYNC LOCAL
is displayed as Algorithm 2. The main challenge when running Linial’s algorithm in the
ASYNC LOCAL model comes from the fact that a vertex v may be in the ith iteration of
Linial’s algorithm, while a neighbor u of v may be in iteration j # i. Nevertheless, we will
prove that our adaptation of Linial’s algorithm correctly handles these cases. The runtime of
Algorithm 2 is clearly O(log" n). The proof that Algorithm 2 is correct can be found in the
full version.

5 Reducing the Colors to (A + 1)(A + 2)/2

In this section, we show that, at the cost of increasing the running time by an additive factor
depending on A only, we can decrease the amount of colors from O(A?) to (A +1)(A +2).

» Theorem 2. For every A > 2, the round-complexity of %(A + 1)(A + 2)-coloring graphs of
mazimum degree A in the ASYNC LOCAL model is O(log™ n) + f(A), where f is a function
depending on A only.

The algorithm that we provide is a generalization to general graphs of the 6-coloring
algorithm for cycles presented in [16], and restated in Algorithm 1. On a high-level, the
algorithms works as follows. First, we compute an initial O(A?)-coloring of the nodes. Then,
the final color of each node is given by a pair (a,b). This pair is computed by repeatedly
updating the values of a and b until the pair is different from the pairs of the neighbors. The
value of a is updated as a function of the a-values of the neighbors with larger initial color,
while the value of b is updated as a function of the b-values of the neighbors with smaller
initial color.
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Algorithm 3 Reducing the number of colors from O(A?) to (A + 1)(A +2)/2.

1: procedure SAVECOLORS(id,,input,,)

2 x + input,; (a,b) + (0,0) > x € [O(A?)] is the original color of v
3 repeat forever > s = (z,a,b) is the state of v
4: (81,...,84) + WriteSnapshot(s)

5: if (a,0) ¢ {(si.a,8:.b) | (i €{1,...,dy}) A(s; # L)} then return (a,b)

6 else

7 a+minN~{s;.a|(@e{l,...,dy})A(s; #L)A(z < s;.x)}

8 b minN~{s;.b| (e {l,...,dy})A(s; #L)A (x> s;.2)}

9 end if
10: end repeat

11: end procedure

The algorithm. In order to prove Theorem 2, we first analyze the algorithm SAVECOLORS,
displayed as Algorithm 3. Given an O(A?)-coloring as input, this procedure produces a
((A4+1)(A+2)/2)-coloring, in f(A) rounds for some function f. Theorem 2 follows by running
Algorithm WAITFREELINIALREDUCED below, in which if a node v is running SAVECOLORS
while some neighbor u of v is still running WAITFREELINIAL, then v treats the memory of u
as L.

procedure WAITFREELINIALREDUCED(id,,,input,,)
¢y ¢ WAITFREELINIAL(id,, input,)
return SAVECOLORS(id,, ¢,)

end procedure

The proofs of correctness and runtime of Algorithm 3 can be found in the full version of
the paper.

6 Saving One More Color

We now modify Algorithm 3 in order to save one additional color. This new algorithm, shown
in Algorithm 4, allows us to establish the following theorem.

» Theorem 3. For every A > 2, the round-complezity of (1(A + 1)(A + 2) — 1)-coloring
graphs of mazimum degree A in the ASYNC LOCAL model is O(log" n) + f(A), for some
function f that only depends on A.

An important consequence of this result is Corollary 4, that is, the existence of a 5-coloring
algorithm for the cycles in the ASYNC LOCAL model. This result is original because the
5-coloring algorithm proposed in [16] has a bug (cf. Appendix B where we exhibit an instance
of 5-coloring Cy for which the algorithm in [16] does not terminate).

6.1 Intuition of the algorithm

We start by providing the high level idea of the algorithm. The algorithm that we provide
is similar to Algorithm 3, and it exploits some special properties of the pairs (a,b) that it
produces. Specifically, we modify Algorithm 3 such that, if a node outputs the pair (A, 0),
then none of its neighbors output the pair (0, A). In this case, we can identify the pairs (A, 0)
and (0,A) as the same color, reducing the amount of colors in use by one.

Notice that a node that outputs the pair (A,0) is necessarily a local minimum with
respect to the node identifiers, and similarly a node that outputs the pair (0, A) is necessarily
a local maximum. The problematic case of neighbors outputting both pairs (A, 0) and (0, A)
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can therefore only happen when the both neighbors are local extrema. However, for such
neighboring nodes to reach a state where they would output problematic pairs, some specific
conditions must hold which can be handled by the nodes as a specific case.

More in detail, in such a situation, we make nodes flip their relative ordering: if node u
is a local minimum and node v is a local maximum, then u will treat v as smaller when
comparing their z variables, and v will treat u as larger. By flipping relative ordering, we are
forcing neighboring local extrema with pairs (A, 0) and (0, A) to stop being local extrema,
leading them to change their output pairs. This modification will affect the termination time,
and hence we also need to introduce new terminating conditions.

6.2 Formal Description

The algorithm is displayed in Algorithm 4, but some of its functions are presented below.

Treating special pairs as equal. The first modification applied to Algorithm 3 is the
following. In line 5, instead of directly using the pairs (a,b) of the node, and the pairs of its
neighbors, we first map them by using the function MAP shown below. Observe that MAP
behaves as the identity function for all pairs different from (A,0), and it maps (A, 0) to
(0,A). In this way, the algorithm behaves similarly as the original one, except that it forbids
neighboring nodes with pairs (0, A) and (A, 0) to terminate, since after applying MAP, they
are both mapped to (0,A), and hence they are treated as having the same pair.
procedure MAP(a,b)
if (a,b) = (A,0) then return (0,A)
else return (a,b)
end if
end procedure

A new ordering relation. In Algorithm 3, nodes exploit their variables x (that is, the given
coloring) to determine an ordering relation between them. In the new algorithm, each node
keeps an additional variable f, which is a set of identifiers. The semantic is the following.
For two nodes u and v, if u € v.f or v € u.f, then the ordering w.r.t. their variables x is
flipped. We call an edge {u, v} flipped whenever u € v.f or v € u.f.

Let us define two auxiliary Boolean functions that are used by a node v to determine
whether the ordering relation with a neighbor u should be considered flipped or not. These
functions take as input the state s, and s, of the two (neighboring) nodes. The variable z,
as will be shown in the algorithm, stores the identifier of the node.

procedure ISNOTFLIPPED(s,, $,)
return (s, # L) A (sy # L) A (su.2 & Su.f) A (Sp.2 & Su.f)
end procedure
procedure ISFLIPPED(S,, Sy,)
return (s, # L) A (su # L) A ((su-2 € $p.f) V (542 € su.f))
end procedure
We are now ready to define the new ordering relation. For this purpose, we define two
functions that, given the state s of the node, and the state s; of its ith neighbors, return
the neighbors that are considered smaller, and the neighbors that are considered larger,
respectively.
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procedure SMALLER(S,(s1,. .., Sk))
return {i € {1,...,k} | (ISNOTFLIPPED(s, ;) A (5.7 > s;.2))
V(ISFLIPPED(s, 5;) A (s.x < s;.2)) }
end procedure
procedure LARGER(S,(s1,...,5k))
return {i € {1,...,k} | (ISNOTFLIPPED(s, 5;) A (s.x < s;.7))
V(ISFLIPPED(s, 5;) A (s.x > s;.2)) }
end procedure

Special termination. We also define a function that provides an extra termination condition.
It relies on an additional function that detects a neighborhood with special properties. It
uses some variables @ and 3 that are both set to true if a node has at least one smaller
neighbor (that is, it is not a local minima), and it has at least one larger neighbor (that
is, it is not a local maxima). We assume that the maximum degree A is part of the input
provided to the nodes.

procedure SPECIALNEIGHBORHOOD(S,(S1,...,5A))
return (( /\iAzl(si # 1) A ({s.a,5.b}U(UL{s;.a,5;.b}) C{0,...,A—=1})A s.a A 5.8

A (/\Z.A:1 ((si-a V [SMALLER(s;, [s])| = 1) A (s;.8 V [LARGER(s;, [s])| = 1))))
end procedure

That is, a neighborhood of a node v is special if (1) node v has seen all its neighbors,
(2) they are precisely A, (3) the a and b variables of the node and of all its neighbors are in
{0,...,A =1}, and (4) node v and all its neighbors have at least one smaller, and at least
one larger neighbor. The reason why we use the condition s;.«0 V [SMALLER(s;, [s])| = 1 for
checking whether a node has at least one smaller neighbor, instead of just using s;.« is the
following. Let uw be the node with state s;, and v be the node with state s. It could be the
case that v is smaller than u, but u has been scheduled earlier than v. So it may be the case
that u has never seen v. In this case, we could get that u.« is false, even though u has v
as smaller neighbor. For this reason, node v computes whether u.ac would become true if u
were to be scheduled one additional round, by checking whether v is smaller than u using
the condition |SMALLER(s;,[s])] = 1. A similar reasoning is applied for checking whether
a node has at least one larger neighbor. Note that, in the algorithm, once a node sets «
(resp. ) to true, that is when it realizes that it is not a local minima (resp., maxima), it will
never change its value. The reason is that, as we will prove later, a node never becomes a
local minima (resp., maxima) by flipping edges. We now introduce the special termination
condition. According to this special condition, a node terminates if (1) its neighborhood
is special, and (2) it is a local maxima according to the original ordering, that is, before
flipping any edge.

procedure SPECIALTERMINATION(S,(S1,...,5A))
return SPECIALNEIGHBORHOOD(s, (s1,...,sa)) A (Vi € {1,..., A}, s.z > s;.2)
end procedure

The new algorithm. The algorithm is displayed as Algorithm 4. Like in the case of
Algorithm 3, we assume that input,, is the result of running WAITFREELINIAL. Observe that
the algorithm is similar to Algorithm 3, with only three exceptions. First, it identifies (0, A)
with (A, 0) when checking for termination at line 6. Second, it uses the custom ordering
relation induced by the functions SMALLER and LARGER at lines 11 and 12. Third, it has
an additional termination condition at line 17. The proof that Algorithm 4 is correct, and
the analysis of its runtime can be found in the full version.
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Algorithm 4 Saving 1 color from palette [2(A + 1)(A + 2)]. Algorithm of node v with color
input,,.

1: procedure SAVEONEMORECOLOR(id,,input,,)

2 a4+ 0; b+ 0; 2+ input, ; z + id,

3 [+« {}; a + false; § < false >s=(a,b,z, f,a,fb,2) is the state of node v
4 repeat forever

5: (s1,...,8a)  WriteSnapshot(s) >if d, < A, we assume s; = L, Vi > d,
6 if MaP(a,b) ¢ {MAP(s;.a,s;.b) | i € {1,...,A}As; # L} then return MAP(a,b)
7 else

8 if (a=A)V(b=A) then > We compute the flipped edges.
9 [ fUulsiz|(@e{l,...,AN(si # L) A ((sica=A)V (s;.b=A))}
10: end if
11: a < N~ {s;.a|i€ LARGER(s, (s1,...,5A))}
12: b+ N~ {s;.b|i € SMALLER(S, (s1,...,5A))}
13: if |SMALLER(S, ($1,...,5A))| > 1 then a « true
14: end if
15: if |LARGER(s, (s1,...,5a))] > 1 then  « true
16: end if
17: if SPECIALTERMINATION(S, (S1,...,5a)) then return (0,A)
18: end if
19: end if

20: end repeat
21: end procedure

7 Open Questions

We have shown that every n-node graph of maximum degree A can be properly colored with
(A4 1)(A+2) — 1 colors in ASYNC LOCAL, in O(log* n) + f(A) rounds. The number
of colors may seem large, but the ASYNC LOCAL model is considerably weaker than the
(synchronous and failure-free) LOCAL model. In particular, it is known that even the clique
with n = A + 1 nodes cannot be colored with less than 2A + 1 colors in ASYNC LOCAL
(whenever A 4 1 is power of a prime), and we have shown that there exists an infinite family
of regular graphs with even degree A that cannot be colored with less than A 4 3 colors
in ASYNC LOCAL. One major question as far as solving graph problems in asynchronous
crash-prone networks is thus the following.

Open Problem: Is there a (2A + 1)-coloring algorithm for graphs with maximum degree A
in the ASYNC LOCAL model, for every A > 27

Of course, if one puts aside cliques, there might be a coloring algorithm for ASYNC LOCAL
using a palette of less than 2A + 1 colors. However, we have shown that, for A = 2, the
bound 2A + 1 = 5 is tight for infinitely many cycles. The only generic bound applying to
infinitely many graphs of maximum degree A is however only A + 3, so there might be room
for improvement. Yet, saving even just a single color in a palette of %(A + 1)(A 4+ 2) colors
was very delicate and difficult. So, progressing from a quadratic number of colors to a linear
number of colors appears to be a challenge in ASYNC LOCAL.

Finally, we question the efficiency of randomized algorithms in the ASYNC LOCAL model.

Open Problem: To which extent randomized algorithms help in the ASYNC LOCAL model,
in term of both complexity and computability?
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A Example of an execution of an algorithm for 6-coloring cycles

An example of an execution of Algorithm 1 is provided in Table 1, in which the old and new
states of each node after each step is displayed.

Table 1 An example of execution of Algorithm 1, for the cycle Cs with consecutive node identifiers
(3,5,4,1,6). The example corresponds to the scheduling S = {1,3,5},{4,5},{3,4},{6},{6},...,
and T stands for Terminated. At each step, the states that are updated are highlighted in bold.

3 5 4 | 1 6
Oold New Old New Old New Old New Old New
Initialization 1 (3,0,0) €L (5,0,0) €L (4,0,0) €1 (1,0,0) €L (6,0,0)
{1,3,5}
after write (3,0,0) | (3,0,0) | (5,0,0) | (5,0,0) €L (4,0,0) | (1,0,0) | (1,0,0) € (6,0,0)
update (3,0,0) | (3,1,0) | (5,0,0) | (5,0,1) 1 (4,0,0) | (1,0,0) | T(0,0) 1 (6,0,0)
{4,5}
after write (3,0,0) (3,1,0) | (5,0,1) | (5,0,1) | (4,0,0) | (4,0,0) (1,0,0) T(0,0) 1 (6,0,0)
update (3,0,0) (3,1,0) (5,0,1) | T(0,1) (4,0,0) | (4,1,1) | (1,0,0) T(0,0) 1 (6,0,0)
{3,4}
after write | (3,1,0) | (3,1,0) | (5,0,1) | T(0,1) | (4,1,1) | (41,1) | (1,0,0) | T(0,0) 1 (6,0,0)
update ,1,0) | T(1,0) | (5,0,1) | T(0,1) | (41,1) | T(1,1) | (1,0,0) | T(0,0) 1 (6,0,0)
{6}
after write (3,1,0) T(1,0) (5,0,1) T(0,1) (4,1,1) T(1,1) (1,0,0) 7(0,0) (6,0,0) (6,0,0)
update (3,1,0) | 71,0) | (5,0,1) | T(0,1) | (41,1) | T(1,1) | (1,0,0) | T(0,0) | (6,0,0) | (6,0,1)
)
after write | (3,1,0) | 7(1,0) | (5,0,1) | T(0,1) | (41,1) | T(1,1) | (1,0,0) | T(0,0) | (6,0,1) | (6,0,1)
update 3,1,0) | T71,0) | (5,0,1) | T(0,1) | 4,1,1) | T(1,1) | (1,0,0) | T(0,0) | (6,0,1) | T(0,1)

B A Counterexample for an Existing Algorithm for 5-Coloring Cycles

We merely exhibit an instance of 5-coloring Cy for which the algorithm in [16] does not
terminate?. The algorithm presented in [16] is shown in Algorithm 5. In Table 2, we provide
an example of execution where the algorithm loops forever.

4 For the interested reader, we found this counterexample by implementing a simulator for the
ASYNC LOCAL model. This simulator tests a given algorithm with random schedulings.
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Algorithm 5 The (erroneous) 5-coloring algorithm of [16].

procedure FIVECOLORING(id,,input,)
<+ idy; a<+0; b+ 0 > s = (x,a,b) is the state of node v
repeat forever
(s1,82)  WriteSnapshot(s)

Pt {ie{l,2}|s; # LAsj.x>zx} > neighbors with larger id
Ct«{z;alie PryuU{z;.b|iec PT} > a and b of neighbors with larger id
C+{x;alie{l,2} Ns; £ LYU{z;b|ie{l,2} As; # L} > a and b of all
neighbors

if a ¢ C then return a
else

if b ¢ C then return b

else

a+ minN~ Ct
b+ minN~C
end if
end if
end repeat
end procedure

Table 2 An example of execution where Algorithm 5 loops, for a 4-cycle with nodes’ identifiers
(3,4,2,1) in consecutive order. The example is for the scheduling {2, 3,4}, {1, 3,4}, {3,4}, {3,4},....
Observe that the state obtained after scheduling {1,3,4} is the same state as the one obtained after
the fourth step (when {3,4} is scheduled for the second time). Therefore, there exists a scheduling
that makes the algorithm looping forever.

| 3 | 4 | 2 | 1
Old New Old New Old New Old New
Initialization 1 (3,0,0) 1 (4,0,0) 1 (2,0,0) 1 (1,0,0)
{2,3,4}
after write (3,0,0) | (3,0,0) | (4,0,0) | (4,0,0) | (2,0,0) | (2,0,0) 1 (1,0,0)
update (3,0,0) | (3,1,1) | (4,0,0) | (4,0,1) | (2,0,0) | (2,1,1) 1 (1,0,0)
{1,3,4}
after write | (3,1,1) | (3,1,1) | (4,0,1) | (4,0,1) | (2,0,0) | (2,1,1) | (1,0,0) | (1,0,0)
update (3,1,1) | (3,2,2) | (4,0,1) | (4,0,2) | (2,0,0) (2,1,1) (1,0,0) | (1,2,2)
(3.4}
after write | (3,2,2) | (3,2,2) | (4,0,2) | (4,0,2) | (2,0,0) | (2,1,1) | (1,0,0) | (1,2,2)
update (3,2,2) | (3,1,1) | (4,0,2) | (4,0,1) | (2,0,0) (2,1,1) (1,0,0) (1,2,2)
(3.1}
after write | (3,1,1) | (3,1,1) | (4,0,1) | (4,0,1) | (2,0,0) | (2,1,1) | (1,0,0) | (1,2,2)
update (3,1,1) | (3,2,2) | (4,0,1) | (4,0,2) | (2,0,0) (2,1,1) (1,0,0) (1,2,2)
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—— Abstract

We obtain improved distributed algorithms in the CONGEST message-passing setting for problems
on power graphs of an input graph GG. This includes Coloring, Maximal Independent Set, and related
problems. For R = f (Ak, n), we develop a general deterministic technique that transforms R-round
LOCAL model algorithms for G* with certain properties into O(R - A*/271)-round CONGEST
algorithms for G*. This improves the previously-known running time for such transformation, which
was O(R - A*~1). Consequently, for problems that can be solved by algorithms with the required
properties and within polylogarithmic number of rounds, we obtain quadratic improvement for G*
and ezponential improvement for G2. We also obtain significant improvements for problems with
larger number of rounds in G. Notable implications of our technique are the following deterministic
distributed algorithms:

We devise a distributed algorithm for O(A*)-coloring of G* whose number of rounds is O(log A +

log* n). This improves exponentially (in terms of A) the best previously-known deterministic

result of Halldorsson, Kuhn and Maus.[25] that required O(A +log* n) rounds, and the standard

simulation of Linial [30] algorithm in G* that required O(A - log* n) rounds.

We devise an algorithm for O(A?)-coloring of G? with O(A -log A +log* n) rounds, and (A2 4 1)-

coloring with O(A'® - log A 4 log* n) rounds. This improves quadratically, and by a power of

4/3, respectively, the best previously-known results of Halldorsson, Khun and Maus. [25].

For k > 2, our running time for O(A%*)-coloring of G* is O(k - AF/271 . log A - log* n).

Our running time for O(A*)-coloring of G¥ is O(k - A*~! - log* n).

This improves best previously-known results quadratically, and by a power of 3/2, respectively.

For constant k > 2, our upper bound for O(A% )-coloring of G* nearly matches the lower bound

of Fraigniaud, Halldorsson and Nolin. [16] for checking the correctness of a coloring in G*.
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1 Introduction

1.1 Model and Results

In the distributed message-passing model a communication network is represented by an
unweighted n-vertex graph G = (V, E) with maximum degree A. Each vertex has a unique
ID, represented by O(logn) bits. Computations proceed in synchronous discrete rounds,
each of which consists of message exchange between neighbours, and local computations of
vertices. The input for an algorithm is the network graph G, where initially each vertex
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knows only its own ID and the IDs of its neighbours', and the values n and A. During an
execution, within £ > 0 rounds, vertices may obtain information about other vertices in their
k-hop-neighborhood. The output of an algorithm consists of the final answers returned by
all vertices. The running time of an algorithm is the number of rounds until the algorithm
terminates in all vertices. In the current paper we focus on the CONGEST model. In this
model the number of bits that can be sent over each edge in each round is bounded by
O(logn). Consequently, within & rounds each vertex can learn only a small portion of the
information that resides in its k-hop-neighborhood. Such a neighborhood may contain up to
AF 41 vertices, whose information is much larger than what can be received in k rounds,
namely up to O(k- A -logn) bits. This is in contrast to the distributed LOCAL model, where
message size is unbounded, and each vertex can learn the entire k-hop-neighborhood within
k rounds.

Among the most studied problems in this setting are coloring and maximal independent
set (henceforth, MIS). These problems are very well motivated by real-life network tasks,
such as resource allocation, scheduling, channel assignment, etc. Often, in order to perform
such a task, a coloring or MIS has to be computed on a power graph of the network, rather
than the original graph that represents the network. For example, in job scheduling, where
each vertex can perform one job at a time, and can send one neighbor a job to perform,
a coloring is used for job scheduling. In this scheduling all vertices of a certain color are
executed at the same time. Then these vertices and neighbours selected by them execute
jobs. However, an ordinary proper coloring will not suffice, since a vertex may have several
neighbours with the same color, who send it jobs to perform. Since it can handle only one
job, the other jobs that are sent simultaneously are lost. To prevent this, 2-distance coloring
is used, where each pair of vertices at distance at most 2 one from another in G obtain
distinct colors. (This is equivalent to an ordinary proper coloring of the power graph G2.)
Now each vertex has at most one neighbor with a certain color, and no more than one job
arrives to the vertex at a time.

Because of their importance, problems on power graphs for computing coloring, MIS,
and related tasks have been very intensively studied in the distributed setting. A plethora of
significant results have been obtained in recent years in the CONGEST setting [4, 13, 16,
25, 26, 33]. In particular, Bar-Yehuda, Censor-Hillel, Maus, Pai and Pemmaraju [4] devised
approximate Minimum Dominating Set and Minimum Vertex cover (MVC) algorithms for G2.
Halldorsson, Khun, Maus and Nolin. [26] devised a logarithmic-time randomized algorithm
for distance-2 coloring using A% + 1 colors. (For a positive integer ¢, distance-2 coloring
with ¢ colors is equivalent to ordinary proper coloring of G? with ¢ colors.) Halldorsson,
Khun and Maus [25] devised deterministic algorithms for distance-2 coloring using O(A?)
colors with time polylog(n), and using (A% + 1) colors with time O(A? +log* n). Fraigniaud,
Halldorsson and Nolin [16] showed that for k > 2, testing whether a given proper coloring
is correct requires Q(AL*=1)/2]) rounds. Also, a general well-known scheme for simulating
LOCAL R-round algorithms for G* in the CONGEST setting provides algorithms with time
O(R - AF=1) in the CONGEST setting.

In the last decades, much attention of researchers was devoted to understanding the
complexity of these problems on G and G as a function of A, modulo the unavoidable factor of
log* n. A major question that remained open for many years is whether o(A)+log™ n solutions
are possible for O(A)-coloring, MIS and related problems on G. In recent breakthroughs
it was shown that while MIS and Maximal Matching require Q(A) time [3], the problem

1A node can learn the ids of its neighbours within a single round in the CONGEST model
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of O(A)-coloring can be solved in O(VA + log* n) time [5]. However, this question for
coloring power graphs in sublinear-in-AF time still remained open, since the best results for
O(AF)-coloring of G* were at least O(A¥). Specifically, for k = 2 it is O(A? + log* n) [25],
and for k > 2 it is O(AFF/2=1 1 A*=11og* n) (by applying a standard simulation for G*
to [9]).

In this paper we answer this question in the affirmative, by providing deterministic
CONGEST algorithms for O(A?)-coloring of G? with O(A + log* n) rounds, and O(A¥)-
coloring of G*¥ with O(Akil + log* n) rounds®. More generally, we provide a speedup
technique for various problems, including coloring and MIS, that improves quadratically
each phase of an algorithm for G* that adheres to certain requirements. In particular, such
algorithms that perform the standard simulation are improved from running time O(R-A*~1)
to O(R - AF/2=1), In the case of G2 our speedup of a phase is ezponential (in terms of A),
resulting in running time O(R - polylog(A)). For example, we compute O(A*)-coloring of G2
within O(log A 4 log* n) time, improving the best previously-known result of O(A + log™ n).

Our results also give rise to a quadratic improvement in the memory complexity per
vertex. Specifically, when using aggregation functions, the size of the result computed by w
for each vertex in its k/2-hop-neighborhood is reduced from AF/2 to a much smaller value,
ideally, O(1). Using such technique the required memory per vertex is also reduced from
O(AF) to O(AF/?).

An interesting implication of our results is that O(A2?)-coloring of G* can be computed
in the CONGEST model in O(Ak/Q_1 log Alog® n) rounds. This nearly matches the lower
bound of Fraigniaud, Halldorsson and Nolin [16] for testing a proper coloring that requires
Q(ALE=1/2]) rounds.

1.2  Our Techniques

The previously-known technique for simulating CONGEST algorithms from G on G* proceeds
as follows. For each round of the simulated algorithm, each vertex v € V' has to obtain its
k-hop-neighborhood information. Since the number of vertices in the k-hop-neighborhood
is bounded by O(A*) and the number of edges is bounded by O(A* . A) = O(A**1), this
neighborhood structure (consisting of vertices and edges between them) can be delivered to
v within O(AF) rounds. This information is sufficient for v to simulate its local computation
in that round for the algorithm in G*. Then, v broadcasts a message to all vertices in its
k-hop-neighborhood. Such a broadcast is performed by all vertices of G in parallel, and
requires O(A*~1) rounds. We note that often it is sufficient to employ O(A*~1) rounds also
in the stage of obtaining the k-hop-neighborhood information. This is the case when only
information about vertices is needed, rather than how they are connected. Consequently,
various CONGEST algorithms that require f(A,n) rounds in G can be transformed into
O(f(AF,n) - A*~1)-round algorithms for G*.

Our new method improves this idea, by performing stages of information collection and
information broadcast only half the way, to distance k/2 rather than k. Indeed, for each pair
of vertices u,v € V at distance k one from another, there is a vertex w in the middle of a
path between them that can obtain their information by collecting its k/2-hop-neighborhood.
Then w can perform a computation on v and w (as well as all other vertices in its k/2-hop-
neighborhood) and return the results to them. However, if this is done in a trivial way, then w

2 For simplicity of presentation, we assume that k is even. Our results extend directly to any positive
integer k > 2, by replacing k/2 with [k/2].
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should return information of size A¥/2 to each vertex in its k /2-hop-neighborhood. In general,
this is done not only by w, but by all vertices in the graph in parallel. Consequently, in order
to collect A*/2 pieces of information from each of A*/2 vertices in a k/2-hop-neighborhood,
again O(A¥) rounds are needed. Thus, a straightforward approach for going half the way
does not provide an improvement. But we obtain an improvement using the following more
sophisticated method.

Various algorithms can be decomposed into basic steps that perform such operations as
checking whether a variable of a vertex appears in its k-hop-neighborhood, summing the
number of certain value, computing maximum or minimum, etc. In such cases, rather than
collecting the entire k-hop-neighborhood information and then computing a function locally,
aggregation functions can be applied iteratively and distributively. For example, consider a
function for computing the maximum of variables in the k-hop-neighborhood. In this case,
w who is in the middle of a k-length path between u and v applies the function iteratively
and locally on all vertices in the k/2-hop-neighborhood of w. The vertex w sends the result
to all its immediate neighbours, including the one that is at distance k/2 — 1 from v. Then
this vertex computes the maximum of the maxima it received from its neighbours, and sends
it to its own neighbours, one of which is at distance k/2 — 2 from v. After k/2 such rounds,
v receive the maximum value in its k-hop-neighborhood.

The example of the maximum function is a simple case, when the maximum in the
k/2-hop-neighborhood of w is the same for all its vertices. However, in general, different
answers may be needed for different vertices. Another example is a function that checks
whether variables of vertices are equal. It may be the case that u has a vertex in the
k/2-hop-neighborhood of w with a variable that equals to that of u, but v does not have such
a variable. Then, w must store for each vertex in its k/2-hop-neighborhood its own answer.
This is done by w, by applying aggregation functions locally and iteratively, for each such
vertex. The result of size A¥/2 is sent to all neighbours of w in parallel. Then, each neighbor
applies the aggregation functions for all vertices in its (k/2 — 1)-hop-neighborhood. It does
so starting from the results it received from w. This way, the outcome now is regarding
distance k/2 4+ 1. This continues for k/2 phases, where in each phase less data has to be
sent (it is reduced by a factor of A in each phase), but the radius of the computation grows
by 1. After k/2 such phases, each vertex holds the result of function applications in its
k-hop-neighborhood.

In order for this technique to work, it employs functions that are (1) commutative and
(2) idempotent. That is, (1) the order of function application must not affect the result, and
(2) applying the same function several times must not affect the result, no matter how many
times it is applied. For example, this is the case in the function max(x) = max(z,t). A
series of applications maw;, (mawy, (...(maw;, (z)...)) can be applied in any order, and each
max;, can appear any positive number of times, without changing the outcome. This is
important to the success of our method, since pairs of vertices u,v may belong to many
k/2-hop-neighborhoods that perform computations for them, and the order of computations
is not predefined. As mentioned above, we show that various algorithms for complicated tasks,
including coloring and MIS, can be constructed from steps consisting of such operations.

We extend our technique also to functions that are not idempotent, in order to generalize
it further. In particular, the counting operation is a very useful building block in various
algorithms. For example, it makes it possible to compute how many times a certain value
appears in the variables of a k-hop-neighborhood of a vertex. (The function increases the
result by one each time it is applied on a variable with that value. But when the function
is applied on a variable with a different value, the result does not change.) However, this
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operation is not idempotent, since the outcome depends on the number of times the function
is applied. Consequently, if we apply our technique as described above, the result may be
larger than the actual number of variables with that value. This is because a certain function
invocation may be repeated several times by different vertices in the k-hop-neighborhood.

We propose two solutions for this challenge. In the first solution we analyze how much the
result over-counts the correct answer. In certain cases this can be bounded, so an algorithm
still works, even with over-counting. In more complicated cases, when precise computation is
required, we use BFS trees of radius k/2 that are constructed from all vertices in parallel.
These trees are broadcasted to distance k/2. Then unique paths can be produced between
pairs of vertices at distance k one from another. These paths are used to make sure that
each function application is executed exactly once, for an (ordered) pair of vertices in a
k-hop-neighborhood. This incurs an additional running time of O(A*~1), but only once
during execution. Consequently, the running time of a transformation of an f(A, n)-round
algorithm for G' becomes O(A*~1 4 f(AF,n) - AF/2=1) in G*. This is again a significant
improvement over the previously known time of O(f(A¥, n) - A*¥=1).

Another tool we introduce for shrinking message size, which may be of independent interest,
is binary search in neighborhoods. A common building block of distributed algorithms is
performing computations on lists that vertices hold, as follows. A vertex has to compute a
certain function on its own list and the lists of its neighbours. In some functions the outcome
can be determined by a single element of a list. (For example, finding an element that does
not appear in the neighbours lists.) A naive computation for lists of size ¢ requires ¢ rounds,
since the lists have to be delivered to neighbours that apply the function on them. To speedup
this process we perform a binary search with assistance of neighbours, so that lists shrink
by a certain factor in each round, but each of them still contains an element from which
the function outcome can be deduced. Finally, each list contains just a single element, who
provides the desired result. This tool is a main ingredient in our algorithm for O(A*)-coloring
of G? in O(log A + log* n) time, and O(A?)-coloring of G? in O(A -log A + log* n) time.

1.3 Related Work

Among the first works on deterministic distributed symmetry breaking are algorithms for
(1-hop) coloring and MIS of paths and trees. An O(log™ n)-round algorithm for 3-coloring
paths was devised by Cole and Vishkin in 1986 [12]. This was extended to oriented trees by
Goldberg, Plotkin, and Shannon in 1987 [24]. A (1-hop) coloring deterministic algorithm
for general graphs that employs O(A?)-colors and has running time O(log* n) was obtained

by Linial in 1987 [30]. This algorithm gives rise to (A + 1)-coloring in O(A? + log* n) time.

The running time for (A + 1)-coloring was improved to O(A -log A 4 log™ n) by Szegedy and
Vishwanathan in 1993 [36], and by Kuhn and Wattenhofer in 2006 [29], by a more explicit
construction. This was further improved to O(A + log*) by Barenboim, Elkin and Kuhn in
2009 [7]. The latter result also implies an algorithm for MIS in O(A + log™ n) rounds. As
proven in [3], this result for MIS is tight. On the other hand, sublinear-in-A algorithms for
(A +1)-coloring are possible, as shown by Barenboim [5], who devised such an algorithm with
running time O(A3/* 4 log* n). This was further improved in several works [9, 17, 18, 32],
to the current state of the art, which is O(VA + log* n).

In addition to the thread of research on algorithms with dependency on A in the running
time, there has been also progress with deterministic algorithms that depend on n (in a
stronger way than just log™ n). Several results were obtained using network decompositions
[2, 34, 21], and the recent breakthrough of Rozhon and Ghaffari [21] makes it possible
to compute coloring and MIS deterministically within poly(logn) time. In addition, it
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is even possible to obtain (A + 1)-coloring and MIS without network decompositions in
O(lognlog® A) time [23, 14] and (log®n) for MIS [20]. Both threads of research are very
important and attracted much attention of researchers. In the case where the dependency on
n is larger than log™ n, a main goal is improving this dependency, as well as the dependency
on A. In the case that the dependency on n is O(log" n), which is unavoidable, the main
goal is improving the dependency on A.

Randomized symmetry breaking algorithms have been very extensively studied as well.
The first algorithms for (A + 1)-coloring and MIS, due to Luby [31] and Alon, Babai and
Itai [1] required O(logn)-time. This was improved by Kothapalli, Scheideler, Onus and
Schindelhauer in 2006 [28] who obtained O(A)-coloring in O(y/Iogn) rounds. In several
major advances, this was improved even further to O(log A + poly(log logn)) for MIS [19, 35],
O(y/log A + poly(loglogn)) for coloring [27], and O(poly(loglogn)) for coloring [11].

Since currently-known randomized algorithms have better dependency on A, while
deterministic algorithms have better dependency on n, the improvement of either randomized
or deterministic solutions is valuable. In particular, improving the dependency on A in
deterministic algorithms is very important, since the gap between the current deterministic
and randomized solutions is quite large.

Recently, distance-k problems and computations on power graphs attracted much attention
in the research of distributed algorithms. Emek, Pfister, Seidel and Wattenhofer [13] proved
that every problem that can be solved (and verified) by a randomized anonymous algorithm
can also be solved by a deterministic anonymous algorithm provided that the latter is
equipped with a distance-2 coloring of the input graph. Computing distance-k coloring is a
key component in the derandomization of LOCAL distributed algorithms, due to Ghaffari,
Harris and Kuhn [22] from 2019. Upper- and lower-bounds for approximate Minimum
Dominating Set on power graphs were devised by Bar-Yehuda, Censor-Hillel, Maus, Pai and
Pemmaraju [4] in 2020. Deterministic and randomized distance-2 coloring algorithms were
obtained by Halldorsson, Kuhn and Maus [25]. Improved randomized results for distance-2
coloring were obtained by Halldorsson, Kuhn, Maus and Nolin [26]. Very recently, in 2023,
Maus, Peltonen, and Uitto [33] devised deterministic algorithms for k-ruling sets on G*
with time O(k? log® nlog A). They also devised randomized algorithm for this problem, as
well as for MIS, with logarithm dependency on A and poly-log-log dependency on n. The
most recent result for 2-distance coloring is a randomized algorithm by Flin, Halldorson and
Nolin [15], whose running time is O(log® logn).

2 Distance-2 coloring G with O(A*) colors in O(log A + log™ n)
rounds

In this section we devise an algorithm for distance-2 coloring of G using O(A*) colors, which
is a distance-1 coloring of G2. Our algorithm significantly speeds-up the previously-known
algorithms for distance-2 coloring with this number of colors. The previous algorithms [25]
are based on simulating Linial’s [30] algorithm in G?. (See also [8], for more details about
the original algorithm of Linial [30].) The algorithm of [25] for G? requires spending A
rounds to simulate certain rounds of Linial’s algorithm. On the other hand, our new method
improves this, so that only O(log A) rounds are required to simulate a round of Linial’s
algorithm. Consequently, our algorithm produces a proper O(A%) coloring of G? within
O(log A + log*n) rounds in the CONGEST model. Moreover, most rounds of Linial’s
algorithm can be simulated within O(1) rounds.
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The principle of our method is binary search. Consider the i-th round, ¢ =
1,2,...,0(log" n), of Linial’s original algorithm. Each vertex v generates a subset of possible
colors S(¢(v)) = {s1,s2,...,s;} from the palette of {1,2,...(A - log” n)2}, such that there
exists a color s; € S(¢(v)), where s; ¢ S(¢(u)), for all neighbours u of v. Moreover, Linial’s
algorithm makes it possible to construct a set system, such that for any pair of neighbours
u,v, it holds that

S@W L ISee)
1S(¢(u)) N S((v))] 1S(6(u)) N S(e(v))]

Each vertex v selects such a color s;, which is from its own set S(¢(v)), but does not
belong to any of its neighbours sets, from which the neighbours select colors. Consequently,
the coloring is proper. Since in each round the subsets are taken from smaller sets, the
number of colors is reduced in each round. We show that the element s; can be found using
binary search, without knowing the neighbours sets S(¢(u)), but only knowing the number of
intersections with neighbours’ sets in a specific range. When solving 2-distance-coloring using
this idea in a straightforward way, each node needs to receive all the subsets from 2-distant
neighbours. This causes all nodes to send messages with size of at least O(A) for each node
in order to receive messages with all of its distance-2 neighbours colors. (Each neighbor of a
given vertex sends it the colors of all its own neighbours.) Using this information a vertex
can compute the available color to choose. However, this approach exchanges much more
information than needed and can be optimized for restricted bandwidth models. We provide
this optimization in Section 2.1.

2.1 High level description

Our technique does not use an ordinary set, but an ordered set, thus we can perform a binary
search. The goal of the binary search, for a vertex v € V, is finding an element in S(v),
that does not belong to any set S(u), for u in the 2-hop-neighborhood of v. To this end, for
each vertex we define a range, that initially contains all elements of S(v). Then we reduce
the range size by a factor of at least 2 in each stage of the binary search. Eventually, each
v € V reduces its range to contain a single element that does not belong to any range in its
2-hop-neighborhood. However, there is a cost in running time because each binary search
requires O(log k) rounds where k is the size of the colors palette of the current stage.

The technique in high level is that each vertex knows its 1-distance neighbours subsets
that are based on the coloring ¢(u) and marked S(¢(u)) and computes the number of
intersections with these subsets. Each node holds two indices that constitute the beginning
and end of the relevant range. The neighbours are aware of those indices and refer to the
beginning index by left and the ending index by right. On every iteration the number of
intersecting values of the subsets is reduced by a factor of at least two, simply by counting
the elements in each half of a range and choosing the half-range with less intersections. On
each round each vertex receives the number of intersecting values for both their left half and
right half from its neighbours and decides whether in the next round it will use the left half
of the range or the right half, and update its left, right indices accordingly. The selected
half of the range is the one with fewer intersecting values.

Next, we provide the pseudocode of our algorithm (see Algorithm 1 below), called
2-Distance-Linial, and analyze its correctness and running time.
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Algorithm 1 2-Distance-Linial’s algorithm phase.

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:

24:
25:
26:

Let ¢ be the size of each set in the current phase /* All sets have the same size in the
same phase */

Let S(v) = S(¢(v)) = {s1(v),s2(v),...,s¢(v)} be the ordered set produced by the al-
gorithm of Linial for the vertex v. /* S(¢(v)) is computed locally by Linial’s algorithm
as a function of ¢(v). */

Let S(ui) = S(o(ui)) = {s1(wi), s2(us), ..., 50 (ui) }

: From Linial’s proof we know that every S contains an element s;, such that s; belongs

to S and does not belong to any other S(¢(u;)) with ¢(u;) # ¢(u;)
The vertex v performs a binary search in the set S, with assistance of its neighbours, as
follows:

6: left =1,right =t
7
8
9

while left # right do
for u € I'(v) in parallel do
Int;(v,u) = Number of intersections of S(v) and {s;(u) | i € [left, ..., % —1J}
Int,(v,u) = Number of intersections of S(v) and {s;(u) | i € [%ht,right]}
end for
All neighbours u of v notify v, in parallel, about Int;(u,v) and Int,(u,v).
All nodes in parallel send Int;(u;,v) and Int,(u;,v) to 1-hop-neighbours u;
A node v receives Int;(u,v) and Int.(u,v) from all of its neighbours
The vertex v computes the sums sum; =) ) Inti(u, v) and
SUMy = 33 ey Intr(u,v).
if sum, > sum; then

uel(v

right = %ht -1

Send to all neighbours “left chosen”
else

left = "4kt

Send to all neighbours “right chosen”
end if

The new set S(v) for the next phase of the binary search is

SW) = {steft(v); s Sright(v)}

Receive all neighbours [left \ right] choices and compute S(u) for all u € T'(v)
end while
return the color s s (v) J* now Sie (V) = Spight(v) */

2.2 Proof and run time analysis

» Lemma 2.1. After each invocation of 2-Distance-Linial’s algorithm phase the coloring ¢

remains proper.

» Lemma 2.2. The running time of 2-distance-Linial in the CONGEST model is O(log* n -
log A + loglogn).

Details and proofs of the lemmas in section 2.2 appear in the full version of this paper [10].

Next, we provide an improvement, which removes the O(loglogn) factor from Lemma 2.2.

To this end, we perform each binary search for O(log A) phases, rather than O(logt).
Moreover, in each phase we send just one bit to indicate whether the left half is chosen or the
right one, rather than sending indices of ranges. This information is sufficient to compute
the new range from the previous one. After O(log A) phases, we obtain consecutive range of



L. Barenboim and U. Goldenberg

size O(t/A) = O(logn). Recall that the previous range size is t = O(A -logn), which is a
square root of the number of colors. The new range defines a bit-string of size O(logn) that
represents whether there is a conflict for each element in {s;c:(v), ..., Sprignt(v)}. This string
is then sent directly to v by each of its 1-hop-neighbours. This is done using O(logn)-bits
messages, within one round in parallel by all neighbours. Then v finds an index i € O(logn)
of a bit with a 0 value, which exists since there is an index without conflicts in the range
{Steft, .-, Sright }. The resulting color with no conflicts is sicf¢4i(v). We summarize this in
the next theorem.

» Theorem 2.3. A proper distance-2 coloring with O(A*)-colors can be computed in O(log A -
log* n) rounds in the CONGEST model.

Theorem 2.3 demonstrates that for each of the log* n iterations of Linial’s algorithm,
O(log A) rounds are performed to compute the color for the next iteration. We now argue
that it is sufficient to perform just two iterations with O(log A) rounds, while the remaining
O(log" n) iterations require O(1) rounds each. The idea is similar to an improvement from
O(Alog"n) to O(A +log" n) of [25]. Specifically, after 2 iterations the number of colors
becomes O(A*log®logn). If A* > log?logn. Then this is an O(A®)-coloring. It can be
converted into an O(A%)-coloring within a single iteration, using a field of size ©(A?), and
polynomials of degree 4. Indeed, each of the current O(A®) colors can be assigned a unique
polynomial, and each such polynomial has at least one non-intersecting point with any A?
others. These are used for computing new colors in a range of size O(A%). The other possibility
is that A* < log®logn. Then, instead of performing a binary search, one can directly send
A messages, each of which consists of a color in a range of O(A*log®logn) = O(log* logn).
Since A < +/loglogn, the number of bits in the concatenation of these A messages is
poly(loglogn), so it can be sent over an edge within O(1) rounds of the CONGEST model.

» Corollary 2.4. A proper distance-2 coloring with O(A*)-colors can be computed in O(log A+
log* n) rounds in the CONGEST model.

3 Distance-2 coloring with O(A?) colors in O(A - log A + log* n)
rounds

3.1 High level description

In this section we provide an improved algorithm for distance-2 coloring of G using O(A?)
colors, which is distance-1 coloring of G2. The improvement is from O(A? + log* n) rounds
to O(A -log A 4+ log™ n) rounds in the CONGEST model. The result is achieved by applying
our technique to the algorithm of [9] that provides an O(A) coloring of an input graph G in
O(VAlog A + log* n) rounds. The algorithm of [9] is based on the following notions.
A p-defective coloring is a vertex coloring such that each vertex may have up to p neighbours
with its color.
An p-arbdefective coloring is a vertex coloring, such that each subgraph induced by a color
class of the coloring has arboricity bounded by p. The arboricity is the minimum number of
forests into which the edge set of a graph can be decomposed.
The algorithm of [9] for distance-1 coloring consists of three stages:
1. Computing O(v/A)-defective O(A)-coloring of G in O(log* n) time.
Computing O(v/A)-arbdefective O(v/A)-coloring of G in O(v/A) time.
3. Iterating over the O(v/A) color classes of step 2, and computing a proper coloring of G
iteratively. Each iteration of Stage 3 requires a constant number of rounds.

N
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As a first step of our extension of this scheme to work in G2, we introduce the following
proxy communication method. The goal is establishing a single path between any pair of
vertices that need to communicate, and are at distance at most 2 one from another. (In
section A.2, we generalize this to vertices of distance k one from another.) This way, the
desired information is passed only once, which improves communication costs, and avoids
miscalculations caused by duplicated data. To this end, for each vertex, a BFS tree of radius
two that is rooted at the vertex is computed. This computation starts with sending the list of
neighbours of each vertex to all its neighbours. This requires O(A) rounds, because in each
round each vertex sends the information to a neighbor that has not been sent yet. Then, each
vertex is aware of the neighbours of its neighbours. For any distance-2 neighbor, it knows
the immediate neighbours that connect to it, and selects exactly one of these neighbours.
The selected neighbor is referred to as prozy. Note that a vertex v with its proxy nodes and
their neighbours form a BFS of radius two that contains the two-hop neighborhood of v.

In Sections 3.2.1 - 3.2.3, we describe the generalizations and modifications in the above-
mentioned stages (1) - (3), for coloring G? in O(A -log A +log* n) rounds in the CONGEST
setting. For these computations we need the above-mentioned notion of proxy nodes.

The running time analysis assumes that the proxy nodes have already been computed.
Otherwise, an O(A) term should be added. However, this does not affect the overall running
time of the entire algorithm of Section 3, which is O(Alog A + log* n).

3.2 Detailed description of the algorithm
3.2.1 Our variant for distance-2 defective coloring

The computation of O(A)-defective O(A?)-coloring of G? proceeds as follows.

The procedure starts by computing a proper O(A#)-coloring of G2, using Algorithm 1. Next,
find a prime ¢ = ©(A), such that the number of colors is bounded by ¢*. Note that each
color is represented by a tuple (a,b),a,b € g and Z, is a field modulo ¢. Assign each color a
unique polynomial p(z) =a+b -z +c- 2% +d- 23, such that 0 < a,b,c,d < g — 1. Assign
each vertex a polynomial according to its color. We say that two polynomials p(x), p’(x)
intersect at the value t,0 <t < ¢ —1, if p(t) = p'(¢). Next, each vertex v € V finds a value
t,0 <t < q—1, such that p(t) intersects with the minimum number of polynomials of vertices
of distance at most 2 from v. This is done as follows, by a binary search. The vertex v sends
its polynomial to its 1-hop neighbours. Each of these neighbours v € I'(v) computes the
number of intersections of v’s polynomial with polynomials of neighbours w of u, such that u
is the proxy for {v,w}. In addition, each u € I'(v) computes the number of intersections of its
polynomial with that of v. The number of intersections is computed for each half of the range
{0,1,....,¢g— 1}, ie, {0,1,.... [q/2]} and {[¢/2] + 1, [¢/2] + 2, ....¢ — 1]}. This information is
returned to v by all its 1-hop neighbours. Then v knows how many intersections with its 2-hop
neighbours its polynomial has in {0,1,.... [¢/2]} and {[q/2] + 1, [¢q/2] + 2, ....¢ — 1]}. The
half-range with fewer intersections is selected for the next iteration of the binary search. This
is repeated for log ¢ iterations, until the range contains a single element ¢t € {0,1,...,q — 1}.
The color of v returned by the procedure is (t,p(t)). This completes the description of the
procedure. Its correctness and running time are analyzed below.

» Lemma 3.1. The procedure computes an O(A)-defective O(A?)-coloring of G*.
Proof’s details appear in the full version of this paper [10].

» Lemma 3.2. The running time of the procedure is O(log A + log* n).
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Proof. First, in order to compute O(A*) coloring we employ Algorithm 1 that has running
time O(log A+log* n), by Corollary 2.4. The remaining part of the procedure is a binary search
on a range of size O(A%), and thus requires O(log(A%)) = O(log A) phases, each of which
consists of a constant number of rounds. The overall running time is O(log A +log* n). <«

3.2.2 Algorithm for Distance-2 Arbdefective Coloring

For a graph G, given an O(A)-defective O(A?)-coloring of G2, we would like to produce an
O(A)-arbdefective O(A)-coloring of G? within O(A) rounds. The algorithm is as follows:
This algorithm extends the ideas of [9] to work in G? in the CONGEST model. In that
paper the authors devised an O(v/A)-arbdefective O(v/A)-coloring algorithm for G with
O(VA + log* n) rounds. The main idea of the algorithm is as follows. In each round, each
vertex counts how many of its neighbours have the same color as its own. The number of such
neighbours is the number of conflicts. If a vertex has too many conflicts, it selects a new color,
using a certain function. Otherwise, the vertex finalizes its color. The original algorithm

[9] proceeds for O(v/A) rounds, and selects the round with the smallest number of conflicts.

By the pigeonhole principle, there must be a round in which the number of color conflicts
is at most O(v/A). However, computing the number of conflicts with all 2-hop-neighbours
is expensive, since each original round can take up to O(A) rounds, when applied in a
straightforward way to G2. To improve this, each vertex collects information about conflicts
from its 2-hop-neighborhood in a bit-efficient manner. Specifically, a vertex receives from
each of its 1-hop neighbours the number of conflicts it has with 2-hop-neighbours, instead of
lists of their colors. During the execution of the algorithm, in each iteration the conflicts are
counted, and if the total number of 2-distance conflicts is below a predefined ¢, the vertex
finalizes the current color. For any ¢ € [1, A?%], this stage requires O(ATQ) time and it results
in O(t)-arbdefective O(ATQ)—coloring of G2. Setting t = O(A) results in O(A)-arbdefective
O(A)-coloring in time O(A). See pseudocode of Algorithms 2 - 3 below. (Each color in an
initial O(A?)-coloring is represented by an ordered pair (a,b), where a,b € O(A). When
Algorithm 3 terminates, the resulting color resides in the b-coordinate, and it is in the range
[0,1,...,0(A)].) Next, we analyze Algorithm 3.

Algorithm 2 Procedure number-of-conflicts ((ao,bo), {(a1,b1)) .. {an,bn) ).

1: /* This procedure is performed internally by a vertex, within 0 rounds */
2: numberOfConflicts = 0

3: fori=1,2,....,n do

4:  if by = b; then

5: numberOfConflicts = numberOfConflicts + 1

6: end if

7: end for

8:

return numberOfConflicts
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Algorithm 3 2-Distance AG Arbdefective Coloring(maxDefect = t).

1: We are given a p-coloring ¢. Denote g as the smallest prime number such that ¢ > |/p.
The parameter maxDe fect is the maximal arb-defect allowed for coloring.

2: Denote ¢(v) = (a,b), where a,b < ¢

3: while ¢(v) # (0,b) do

4: Denote by conflicts(v,u) + number-of-conflicts(¢(v) U, er(u) #(ui))
5. fori=1,2,..,deg(v) in parallel do

6: send to the ith neighbor of v, which is w;, the message con flicts(u;,v)
7. end for

8:  Receive all conflicts(v,u;) messages from neighbours

9 if 30, uyep conflicts(v,u;) < mazDefect then

10: ¢(v) =(0,b)

11: Send “Done” to all neighbours

12:  else

13: ¢(v) = (a,a + b mod q)

14: Send “Not done” to all neighbours

15:  end if

16:  Receive all “Done”, “Not Done” messages from neighbours, and compute ¢(u;) for
1=1,2,...,deg(v)
17: end while

» Lemma 3.3. After running 2-Distance AG Arbdefective Coloring for [2A2 /maxDefect]
rounds, all vertices have colors of the form (0,b), and each color class has arboricity at most
maxDefect in G2.

Proof’s details appear in the full version of this paper [10].

3.2.3 lterative Algorithm for Distance-2 Proper Coloring

In this subsection we describe an algorithm that produces an O(A?)-proper-coloring of G?
within O(A - log A 4 log* n) rounds. This algorithm is based on a the technique devised
in [9], but our algorithm extends this technique to work for G2. For more details regarding
this technique, see section 3 in [5]. Our new algorithm starts with computing an O(A)-
arbdefective O(A)-coloring ¢ for G2. The coloring ¢ constitutes a partition of the graph
into O(A) color sets V1, Vs, ..., Vg, d € O(A). Each color class is O(A)-arbdefective. This
means that the arboricity of a subgraph of G? induced by Vj;, j € O(A), is bounded by
O(A). Moreover, each pair of vertices u,v at distance at most 2 one from another have
a parent-child relation in a certain forest. Specifically, when an arbdefective coloring is
computed with Algorithm 3, if w, v terminate (arrive to step 10 of the algorithm) in distinct
rounds, then the parent is the vertex that terminated earlier. Otherwise, the parent is the
vertex with lower ID. Vertices do not have to know their parents explicitly.

The algorithm iterates over ¢ = 1,2, ...,d. In each iteration ¢ the algorithm computes a
new color ¢’ for all of the nodes with color ¢(v) = i, using at most O(A?) colors. To this end,
each vertex constructs a set of polynomials, and finds a polynomial P in this set, such that:
(1) The number of intersections of the polynomial P with colors ¢’ of vertices in its 2-hop

neighborhood that already selected such colors in previous rounds is as small as possible.
(2) The number of intersections of P with polynomials of its parents in its 2-hop-neighborhood

that are active in the same round 7 is as small as possible.
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The construction of the polynomial set of a vertex u € V; is performed as follows. Let
g = O(A) be a prime, such that ¢ > ¢- A, for a sufficiently large constant ¢ > 1. We
represent the color ¢(u) by (a,b), where 0 < a,b < ¢q. The set of polynomials of u is
{a-2>+b-2+3j|j=0,1,..,¢ — 1}. The number of polynomials in the set is ¢ = O(A).

According to (1), our goal is finding a polynomial P in the set of u, such that the number
of vertices at distance at most 2 from u with the following property is minimized.

(*) For a vertex w that already has a color ¢'(w) = (al,,b.,), there exists t € 0,1,...,q — 1,
such that (al,, b)) = (t, P(¢)).

According to the Pigeonhole principle, there must be a polynomial in the set of size
q > ¢+ A, for which at most ¢/2 vertices at distance at most 2 satisfy this property. This is
because each vertex satisfies this property for at most one polynomial in this set (the set
consists of non-intersecting polynomials), and the number of vertices at distance at most 2 is
at most ¢2/2. Our goal is finding such a polynomial. The challenge is that when running
a naive version of this algorithm in the CONGEST model, every vertex needs to know its
2-hop neighbours’ colors. Sending this information requires O(A) rounds. Next we describe
an optimization that requires only to compute how many intersections there are in sets of
polynomials. This speeds up the running time from O(A) to O(log A).

Next, we describe how each vertex selects the desired polynomial a - 22 +b -z + j from
its set within O(log A) rounds. This is done using a binary search on j. To this end, each
vertex has to inform its neighbours about its set of polynomials. Even though there are
q polynomials in the set, this is done just within one round, as follows. Given a set of
polynomials {a- 2% +b-x+j|j=0,1,...,¢ — 1} of a vertex u, only the coefficients a,b are
sent to the neighbours of u. (Each coefficient requires O(log A) bits.) Then the neighbours
can reconstruct the set of polynomials from a, b, since they know that j runs from 0 to ¢ — 1.
Next, every vertex initialize start = 1 and end = ¢ and defines two ranges. The ranges are
low = [start, [<29=5198]] and high = [[<24=197] 4 1 end]. At the first step each vertex
sends to each of its neighbours w the number of intersections of colors ¢’ with polynomials
that have j in range low, as well as the number of intersections for j in range high. In the
next step each vertex receives from its neighbours the number of such intersections in ranges
low and high in its 2-hop-neighborhood. Then each vertex decides for its new start and
end according to the half range in which there are fewer intersection with its polynomials.
Consequently, after halving O(log A) times, the range contains just a single value 7. It defines
a single polynomial from the set, which is a - 22 +b- 2 + j

The next lemma provides a helpful property of the polynomials, which will assist us to
compute the coloring of a set V;, given colorings of Vi, Vs, ..., V;_1.

» Lemma 3.4. Suppose that we are given a graph with O(A)-arbdefective O(A)-coloring ¢ of
G?, that partitions the input graph into subsets Vi, Vs, ..., Vo(a), according to color classes of p.
Moreover for an integer i > 0, suppose that we already have a proper 2-distance coloring ¢’ for
Vi, Va, ..., Vi_1. Then we can find a polynomial P = a-x2+b-x+ for each vertez u with o(u) =
i, such that at least half of the elements in the set {(0, P(0)), (1, P(1))...,{g — 1, P(q¢ — 1))
does not appear as @' colors in the 2-hop neighborhood of u.

Proof’s details appear in the full version of this paper [10].

According to Lemma 3.4, it is possible to iterate over the color classes of the arbdefective
coloring ¢, for i = 1,2, ..., O(A). In each iteration 4, each vertex in the color class i obtains a
single polynomial with the properties stated in the lemma. Specifically, it has sufficiently
many elements that still can be used for their ¢’ color. Specifically, the number of elements
is larger (by a factor greater than 2) than the number of their parents in G2. Consequently,
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a variant of Linial’s algorithm that considers only parents in the 2-hop-neighborhood can
be executed. (For the case of distance-1 coloring, this is a well-known extension of Linial’s
algorithm, which is called arb-Linial [6].) In the case of distance-2 coloring it can be computed
in O(log A) phases in the same way as in Corollary 2.4, but considering only 2-hop-parents,
rather than entire 2-hop-neighborhood. Recall that a vertex can deduce the parent-child
relationship of a pair of its neighbours, by inspecting their termination round in Algorithm 3
and their IDs. Hence, we obtain the following Corollary.

» Corollary 3.5. [t is possible to compute a proper distance-2 coloring with O(A2) colors
within O(A -log A 4 log™ n) rounds in the CONGEST model.

3.2.4 Coloring G2 using (A2 + 1) colors in O(A? - log A + log* n)
rounds

In this section we show how to reduce the number of colors to (A% + 1). To this end, we

parameterize the steps of our scheme in a different way, as follows.

1. Compute an 0-defective O(A?)-coloring of G2, i.e., a proper O(A?)-coloring.

2. Compute O(v/A)-arbdefective O(A%/?)-coloring of G2.

3. Tterate over the O(A3/ 2) color classes that were generated in step 2, and compute a
proper coloring of G2 iteratively, using A% + O(A3/2) colors.

4. Apply a simple reduction to produce a (A%+1)coloring of G? from a A%+O(A3/2)-coloring.

The steps are performed as follows. Step 1 is obtained by applying Corollary 3.5. This
step requires O(A - log A + log* n) rounds. Step 2 is obtained by applying Lemma 3.3
with mazDefect = VA and ¢ = ©(A3/2). This step requires O(A3/2) rounds. Step 3 is
performed similarly to Section 3.2.3, but now we have O(A3%/2) color classes to iterate on,
rather than O(A). On the other hand, the arboricity of each of them is significantly smaller,
and consequently a proper coloring from a range of size A% + O(A%/?) can be computed. To
this end, let ¢ be a prime, such that ¢ > A + O(V/A), ¢ < 2- A+ O(VA). Then each vertex
v in G? has at most A? neighbours which have finalized their colors in previous rounds, thus
it cannot select their colors. By the pigeonhole principle, there exists a polynomial P of v,
such that P intersects with at most %2 neighboring colors. This polynomial is defined over a

field of size ¢, and there is a value t < A2?/q + O(v/A), such that (t, P(t)) does not intersect
with any neighboring polynomial, nor with any neighboring color. Thus, (¢, P(t)) is selected
as the color of v, and it is from a range of size ¢- (%2 +O(VA)) +q= A% +0(A>/?). This is
the resulting number of colors of step 3, whose running time is O(A%/2 -log A) as described
in Section 3.2.3.

Next we describe step 4, which reduces the number of colors from A% +O(A3/2) to A% 41.
This step is performed using an adaptation of a simple color reduction for G to G2. The
simple color reduction for G works as follows. Each vertex whose color is greater than all its
neighbours colors (and greater than A(G) 4 1), selects a new color from {1,2,...,A(G) + 1}
that is not used by any neighbor. By starting from a proper (A(G) + k)-coloring, for a
parameter k > 1, and repeating this for k— 1 rounds, a proper (A(G)+ 1)-coloring is achieved.
If message size is unbounded, this can be directly applied in G?. However, each vertex needs
to collect the colors of its 2-distance neighbourhood. This is in order to know which colors
are available. Thus, O(A) rounds are required to simulate each original round. To perform
this in the CONGEST setting efficiently, we improve this by invoking a binary search to find
an available color. This is done as in Section 2 and requires O(log A) rounds. Consequently,
an O(A? 4+ O(A3/?))-coloring of G? can be reduced into (A2 4 1)-coloring of G? within
O(A3/ 2log A) rounds. This completes the description of step 4. The result of invoking steps
1 to 4 is summarized in the next corollary.
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» Corollary 3.6. (A% + 1)-coloring of G* can be computed within O(A3/?1log A + log* n)
rounds in the CONGEST setting.

4 Speedup technique for algorithms on G* in the CONGEST model

In this section we devise a method which speeds up the running time of a wide class of
algorithms for problems on G* in the CONGEST model. This includes algorithms for
problems such as: MIS, maximal matching, edge coloring, vertex coloring, ruling set, cluster
decomposition, etc. Our goal is reducing the amount of data passed in the network, by
exchanging messages only half-the-way, compared to standard algorithm for G¥. In the
general case, in a problem for k-distance, a node may have up to A* neighbours. Thus,
previously-known solutions require A*~! rounds for collecting information about k-hop
neighbours in each step of an algorithm. This way, an algorithm with f(A,n) rounds for G is
translated into an algorithm with f(A* n)-A¥~! rounds for G*. (In general, the running time
may be even larger, but we focus on solutions in which each vertex makes a decision based
on the current information of vertices in its k-hop-neighborhood, where each vertex holds
O(logn) bits.) On the other hand, our new technique makes it possible to collect aggregated
data from distance only k/2. As a result, the size of the collected data becomes O(AF/2). This
allows us to obtain a running time of f(A*, n)- A*/2=1 instead of f(A*,n)-A*~1. Nowadays,

various problems have algorithms with running time f(A,n) = O(polylog(A) 4+ log™ n) for G.

In such cases our technique provides a quadratic improvement for G, i.e., for distance-k
computations on GG. Our technique is based on idempotent functions, described below.

4.1 Idempotent functions

An idempotent function is a function f from a set A to itself, such that for every x € A,
it holds that f(f(z)) = f(z). For example, the following boolean functions from {0,1} to
{0,1} are idempotent. Fy(z) =2 OR 0, Fi(z) =2 OR 1, Go(z) =2 AND 0, G1(z) =

x AND 1. Another example, are functions Hy, H; : N — N, where t € N, defined as follows.

Hy(z) = maz(x,t) , H,(z) = min(z,t).

A pair of functions f(),g() is commutative if f(g(x)) = g(f(x)). A set of functions is a
commutative set if any pair of functions in the set is commutative.
We define an idempotent composition as follows. A set A with a commutative set of functions
f1s f2y -y fi from A to itself is an idempotent composition, if for any ¢ (not necessarily distinct)
indices ji1, j2, ..., jq, in the range [k], and p < ¢ distinct indices i1 # io, ..., # ip, such that
{il,ig, ceey Zp} = {jl,jQ, ...,jq} s it holds that

Fis (F32 (oo f5,(2))2)) = iy (fia (- fiy (2))))

For example, the set {0, 1} with the functions Fy, F; as defined above is an idempotent
composition. Indeed, Fy(Fo(...Fo(z)...)) = Fo(z) =, Fi(F1(...F1(z)...)) = Fi(z) =1, and
any composition of functions Fy and Fy equals Fy(Fi(z)) = Fi(Fo(z)) = 1.

4.2 High level description of our technique for G*

This section assumes k is even. In the case k is odd our technique cost another factor of O(A)
of communication rounds per algorithm round. Hence it behaves as if the distance required
is k 4+ 1 in terms for CONGEST communication. Our method for distance-k computations
consists of two stages.
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In the first stage each vertex collects information from its k/2-hop-neighborhood. This is
done by broadcasting in parallel from all vertices to distance k/2. Consequently, for any pair
of vertices u, v at distance k one from another, there exists a vertex w in the middle of a path
between u and w that received the information of u and v. Indeed, the distance between
and w is k/2, and between v and w it is k/2. Next, w computes internally, for each u in the
k/2-hop-neighborhood of w, the available information for u regarding its k-hop-neighbours.
That is, the neighbours at distance k from u who are also in the k/2-neighborhood of w,
Which, sometimes contains all of the vertices in the k/2-neighborhood of w and sometimes
only part of in case we would like to avoid double counting.

In the second stage, for all v € V, all information computed for v in its k/2-hop-
neighborhood should be delivered to v. Recall that the information computed by vertices in
the k/2-hop-neighborhood of v is about the k-hop-neighborhood of v. But delivering the
entire information in a straightforward way to v requires up to A* rounds. Indeed, vertices
at distance k/2 from v hold information of size up to A¥/2, and the number of such vertices
is up to A¥/2. In order to reduce the amount of information that has to be passed, an
aggregation function is used. Specifically, each vertex v collects information in a convergecast
manner. That is, each vertex at distance k/2 from v sends information of size A*/2 to its
neighbours. This requires O(A*/2) rounds. Now vertices at distance k/2 — 1 from v have
received information from their neighbours at distance k/2 from v. But instead of sending
all this information to v they perform an aggregation in which the information size shrinks
to A¥/2=1 In the following phase, the information size shrinks to A¥/2-2_ etc. See Figure 1.
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Figure 1 A vertex w in the middle of a path between v and w collects information about
its k/2-hop-neighborhood. Then a convergecast process is performed, in which balls of radius
k/2 —i,i=1,2,...,k/2, around vy _; are formed within k/2 stages. The balls contain aggregated
information that after k/2 stages is about the k-hop-neighborhood of v. After stage k/2 this
information resides in a ball of radius 0 of v, i.e., in v itself.

Further details of our technique are available in the appendix below.
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