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Abstract
An outer-string representation of a graph is an intersection representation in which each vertex
is represented by a curve that is contained in the unit disk and has at least one endpoint on the
boundary of the unit disk. In an outer-1-string representation the curves representing any two
vertices are in addition allowed to intersect at most once.

In this paper, we consider the following constrained version: Given a graph G plus a cyclic order
v1, . . . , vn of the vertices in G, test whether G has an outer-string or an outer-1-string representation
in which the curves representing v1, . . . , vn intersect the boundary of the unit disk in this order. We
first show that a graph has an outer-string representation for all possible cyclic orders of the vertices
if and only if the graph is the complement of a chordal graph. Then we turn towards the situation
where one particular cyclic order of the vertices is fixed.

We characterize the chordal graphs admitting a constrained outer-string representation and the
trees and cycles admitting a constrained outer-1-string representation. The characterizations yield
polynomial-time recognition and construction algorithms; in the case of outer-1-string representations
the run time is linear. We also show how to decide in polynomial time whether an arbitrary graph
admits a constrained L-shaped outer-1-string representation. In an L-shaped representation the
curves are 1-bend orthogonal polylines anchored on a horizontal line, and they are contained in
the half-plane below that line. However, not even all paths with a constrained outer-1-string
representation admit one with L-shapes. We show that 2-bend orthogonal polylines are sufficient for
trees and cycles with a constrained outer-1-string representation.
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1 Introduction

In a string representation [6, 15] of a graph G = (V, E), each vertex v is drawn as a simple
curve ∂(v) such that the curves of two vertices intersect if and only if the two vertices are
adjacent. We study here only outer-string representations where all curves reside within
a disk or simple closed region D, and the curve of every vertex has at least one endpoint
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10:2 Constrained Outer-String Representations

on the boundary of D, the so-called anchor of the vertex. See Figure 1a. Outer-string
representations were named as such in 1982 [10], though they were implicitly defined and
first results obtained already in 1966 [15]. It follows from a construction of Middendorf and
Pfeiffer [12] that testing whether a graph admits an outer-string representation is NP-hard;
see [14] for a sketch of the proof. One key result about outer-string graphs is that they
are χ-bounded, i.e., their chromatic number is bounded by a function of the clique number [14].
By contrast, the chromatic number even of triangle-free segment graphs, which are a subclass
of string graphs, can be Ω(log n) [13]. A graph is a chordal graph, if it does not contain an
induced cycle of length greater than three. By its tree representation [7, 16], every chordal
graph admits an outer-string representation, and so do the complements of chordal graphs.
Unfortunately, outer-string representations sometimes need exponentially many crossings [1].
So it is interesting to investigate which graphs allow an outer-string representation with a
restricted number of crossings. In an outer-1-string representation, it is additionally required
that the curves of two vertices intersect at most once. This is similar to the intersection graph
of pseudosegments [6], however, with the additional constraint that the anchors still have to
be on the boundary of a simple closed region containing all pseudosegments. Representing
chordal graphs as intersections of pseudosegments was considered in [3].

Biedl and Derka [2] considered outer-string representation where the order of crossings
along a curve was constrained. In this paper, we study outer-string representations that are
constrained in the sense that the cyclic order of the anchors is fixed, i.e., we consider as input
cyclically ordered graphs1 (that is, graphs together with a cyclic order of the vertices) and
we ask whether there is an outer-string, or an outer-1-string representation within a disk
D in which the anchors occur on the boundary of D in the given cyclic order. Constrained
outer-string representations were called the constrained case in [15]. Sinden [15] showed
that the constrained case with n vertices can be reduced to the unconstrained case with 2n

additional vertices and 4n additional edges.
One can restrict the shapes of the curves further. In particular, we also consider L-

shaped [11, 9, 4] and U-shaped representations in which the anchors are on a horizontal line
ℓ and the vertices are 1- or 2-bend orthogonal polylines below that line; see Figures 1b
and 1c. More precisely, in the case of L-shaped representations, the curves are required to
consist of a vertical segment going downward from its anchor on ℓ followed (optionally) by
a single horizontal segment. I.e., in particular, we also allow Ls. In the case of U-shaped
representations, there may be an additional final vertical segment pointing upward. In the
constrained version the input are ordered graphs, i.e., graphs with a linear order of the vertices
and we require that the anchors on ℓ appear in this specific order.

Besides some sufficient conditions for constrained outer-string representations, Sinden [15]
also observed the following necessary condition: The complement of an anchor-ordered cycle
with at least four vertices does not have a constrained outer-string representation, i.e., if the
cyclic order is v1, . . . , vn then the graph with edge set E = {{vi, vj}; |i − j| /∈ {1, n − 1}}
does not have a constrained outer-string representation; see Figure 2.

Our Results. We show that a graph admits a constrained outer-string representation for
every circular order of the vertices if and only if its complement is chordal (Theorem 2
in Section 2). In Section 3 we show that a cyclically ordered chordal graph admits a
constrained outer-string representation if and only if it does not contain the complement of
an anchor-ordered 4-cycle. The proof is constructive and yields a construction algorithm as

1 Sinden [15] used the term constrained graphs.
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(a) Outer-string.

1 2 5 43

(b) L-shaped.

2 3 4 51

(c) U-shaped.

Figure 1 (a) An outer-string representation of a tree that is not an outer-1-string representation
(b+c) two outer-1-string representations of a 5-cycle with special shapes.
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(a) Complement of a 4-cycle.

v1

v2

v3

v4

v5

(b) Complement of a 5-cycle.

Figure 2 Complements of anchor-ordered cycles; vertices at anchor positions.

well as a polynomial time testing algorithm. In order to characterize the cyclically ordered
trees that admit a constrained outer-1-string representation, we need two more forbidden
substructures, which we define in Section 4. We then provide a linear-time algorithm that
either constructs a constrained outer-1-string representation of a cyclically ordered tree, or
returns a forbidden substructure. In Section 5, we show how to test in time quadratic in the
number of vertices whether any ordered graph admits a constrained L-shaped outer-1-string
representation. In Section 6, we characterize cyclically ordered simple cycles that admit a
constrained outer-1-string representation. The characterization yields a linear time testing
algorithm. We further show that every cyclically ordered tree (Corollary 18) or simple cycle
(Corollary 23) that admits a constrained outer-1-string representation already admits one
with U-shapes for every induced linear order.2 Full proofs of statements marked with (⋆)
will appear in the forthcoming full version of the paper.

2 Preliminaries

Let G = (V, E) be a simple graph. For e ∈ E, let G − e = (V, E \ {e}). For V ′ ⊆ V , let
G − V ′ be the graph obtained from G by removing V ′ and all edges incident to a vertex in
V ′; we write G − v for G − {v}. A set A ⊆ V is connected if A induces a connected subgraph
in G. The degree deg(v) of a vertex v is the number of edges that are incident to v. A bridge
of a graph G is an edge e of G such that G − e has more connected components than G. If
G is connected, then the bridge components of a bridge e = {x, y} are the vertex sets X and
Y of the two connected components of G − e, named such that x ∈ X and y ∈ Y .

2 A cyclic order ⟨v1, . . . , vn⟩ induces n linear orders ⟨vk+1, . . . , vn, v1, . . . , vk⟩, 1 ≤ k ≤ n.

GD 2024



10:4 Constrained Outer-String Representations

2.1 Input and Output
An instance (G,⟳) of the problem of testing for a constrained outer-string or outer-1-string
representation consists of a graph G and a cyclic order ⟳ of the anchors around the disk D.
During one of our algorithms, for some curves we need to fix both endpoints to the boundary
of the disk D at specific positions. We call such vertices doubly-anchored, and they occur
twice in ⟳. For our algorithms we assume that the graph G is given as an adjacency list
and ⟳ is given as a doubly-linked circular list of vertex-references. Moreover, each vertex is
equipped with pointers to its one or two entries in ⟳.

A representation is stored as a plane graph H. Every anchor corresponds to an anchor-
vertex in H, and these are connected in an anchor-cycle according to ⟳ with doubly-anchored
vertices appearing twice in the anchor-cycle. Every crossing of two curves corresponds
to a crossing-vertex. In an outer-1-string representation this means that each edge of G

corresponds to a crossing-vertex. Every vertex-curve ∂(v) gives rise to edges in H that
correspond to maximal sub-curves of ∂(v) between its anchor(s) and crossings or between
two crossings, connecting the corresponding vertices. Finally, H comes with a fixed circular
order of the edges around each vertex that corresponds to the representation and in which
the anchor-cycle bounds the outer face. Any embedding-preserving planar drawing of H

yields then the desired representation of the instance.

2.2 A Necessary Condition for Constrained Outer-String Representations
Two sets V1 and V2 of vertices are independent if they have no vertex in common, and there
is no edge with one endvertex in V1 and the other in V2. In an instance of constrained
outer-string representation, we call two disjoint sets A1 and A2 of anchors interleaved if the
cyclic order ⟳ of anchors contains a subsequence a1, a2, a′

1, a′
2 where ai, a′

i ∈ Ai for i = 1, 2.
Note that ai and a′

i can be different anchors of the same doubly-anchored vertex. Two sets
V1 and V2 of vertices are interleaved if their anchors in ⟳ are interleaved. Observe that the
complement of an anchor-ordered 4-cycle is a pair of interleaved independent edges.

▶ Lemma 1 (interleaved independent pairs ⋆). If (G,⟳) has a constrained outer-string
representation, then there are no two independent connected vertex sets that are interleaved.

2.3 Complements of Chordal Graphs
The necessary condition of Sinden [15] implies that, if the complement of an input graph
contains an induced cycle of length at least 4, then there exists a cyclic order for which it
does not admit a constrained outer-string representation. This yields the necessity of the
following characterization.

▶ Theorem 2. A graph admits a constrained outer-string representation for any cyclic
ordering of its vertices if and only if its complement is chordal.

Proof. If the complement of a graph G is not chordal, then it contains an induced cycle Ck of
length k > 3. Let u1, . . . , uk be the vertices of this cycle in the natural order. Then no circular
order of the vertices of G which extends this order allows an outer-string representation of G,
because it contains the complement of Ck with the natural order of its vertices as an induced
subgraph.

We prove the opposite implication by induction on the number of vertices of G. Clearly,
the one-vertex graph allows an outer-string representation for any (i.e., just one) circular
ordering of its vertices (i.e., vertex). Suppose G = (V, E) has more than one vertex and that
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N
v

Figure 3 How to construct a constrained outer-string representation for a complement of a
chordal graph.

the complement G of G is a chordal graph. Let a circular order ⟳ of V be given. Let v be
a simplicial vertex of G, i.e., a vertex v whose neighborhood N = NG(v) in G induces a
clique in G, and hence an independent set in G. Observe that every chordal graph contains
a simplicial vertex [5]. Consider G′ = G − v and its complement G′ = G − v = G − v. By
the induction hypothesis, G′ has an outer-string representation that respects the circular
order ⟳′ of V \ {v} induced by ⟳. In this representation, the neighbors of v (in G) are
represented by disjoint curves; see Figure 3. We add a curve ∂(v) starting at the anchor of v

and contouring the boundary of the region D \
⋃

x∈N ∂(x). In this way ∂(v) intersects all
curves ∂(y) for y ∈ V \ (N ∪ {v}) and avoids crossing all curves ∂(x) for x ∈ N . Thus we
constructed a constrained outer-string representation of G that respects ⟳. ◀

3 Chordal Graphs and Constrained Outer-String Representations

We characterize chordal graphs with a cyclic order of the vertices that admit a constrained
outer-string representation. The proof is by induction on the number of pairs of independent
edges. For example, a path of length five has three pairs of independent edges; see Figure 4.

▶ Theorem 3. A chordal graph G = (V, E) with a cyclic order ⟳ of V has a constrained
outer-string representation if and only if no two independent edges are interleaved.

Proof. By Lemma 1, (G,⟳) has no constrained outer-string representation if there are
two independent edges that are interleaved. So assume that there is no pair of interleaved
independent edges. We show by induction on the number of pairs of independent edges that
(G,⟳) has a constrained outer-string representation within a simple connected region D. We
may assume that there are no isolated vertices.

In the base case, G has no pair of independent edges. Thus [8, Theorem 6.3], G is a split
graph, i.e., it consists of a clique K = {k1, . . . , kr} and a set S of independent vertices, with
an arbitrary set of edges between K and S. To obtain an outer-string representation of G,
add |K| concentric circles inside D, and assign them to k1, . . . , kr. For every clique-vertex ki,
go perpendicular from the anchor to the circle assigned to ki, then along this circle until we
almost touch the curve ∂(ki). This creates an intersection for each edge {ki, kj}: Assume

v1 v2 v3 v4 v5 v6

Figure 4 A path of length five contains three pairs of independent edges.
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Figure 5 Illustration of the base case in the proof of Theorem 3 on chordal graphs.

AA2

A3

A4
A5

ℓ

in A
in A2 ∪ . . . ∪Ak

isolated vertices in G−K∗

in K∗

copies of K∗ on ℓ
curves for K∗ and the copies

Figure 6 Splitting a chordal graph into smaller instances. If G is chordal but not a split graph,
we find a minimal set K∗ of vertices such that G − K∗ contains at least two non-trivial components.
Let A be such a component for which the anchors are consecutive up to isolated vertices of G − K∗.
Split D by a curve ℓ separating the anchors of A from the anchors of the other non-trivial components
A2, . . . , Ak of G − K∗. Insert copies of K∗ on ℓ.

that the circle for ki has greater radius. Then ∂(kj) intersects this circle when connecting
from the anchor of kj to its circle. This represents the clique K. Now for every vertex s ∈ S,
add a short segment ∂(s) from the anchor of s perpendicular to the boundary of D, and for
all k ∈ K with {k, s} ∈ E, add a detour to ∂(k) to intersect ∂(s); see Figure 5.

Now assume that G contains at least one pair of independent edges. Let K∗ be a minimal
set of vertices such that G − K∗ contains at least two non-trivial components, i.e., connected
components that contain an edge. The following claim is an implication of [8, Theorem 4.1].

▷ Claim 4 (⋆). K∗ exists and is a clique.

Let A1, . . . , Ak be the non-trivial components of G − K∗. Since there is no pair of
interleaved independent edges, it follows that the anchors of A1, . . . , Ak on the boundary of
D are nested; see Figure 6. In particular, there must be a component, say A = A1, whose
anchors are consecutive, except for perhaps some isolated vertices of G − K∗. Split D along
a line ℓ that separates the anchors of A from the anchors of A2, . . . , Ak. Place |K∗| anchor
points along ℓ, one per vertex of K∗ in arbitrary order.

Now we get two instances, an instance IA and an instance IA, by cutting along ℓ. The
instance IA contains (1) all vertices of A, (2) all vertices whose anchor were on the same side
of ℓ as the anchors of A; these might be anchors of isolated vertices of G − K∗ or anchors of
vertices in K∗, and (3) copies of vertices in K∗ with an anchor on ℓ. Here the point assigned
to k ∈ K∗ is taken as the endpoint for k if the actual endpoint of k is not in this part of D,
and it gets taken as endpoint for a new vertex k′ otherwise, where k′ is adjacent only to k.
The instance IA is defined analogously.
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▷ Claim 5. IA and IA are both chordal.

Proof. IA and IA are obtained from chordal graphs by removing vertices and adding leaves.
This neither creates new cycles, nor does it remove chords from remaining cycles. ◁

▷ Claim 6 (⋆). If IA and IA have constrained outer-string representations then so does (G,⟳).

Sketch of Proof. A curve for a vertex k in K∗ can be obtained by starting at the original
anchor of k, following ∂(k) until its end and back to an intersection point with a curve ∂′

1
anchored at a copy k′ of k on ℓ, following ∂′

1 up to ℓ and finally along the curve ∂′
2 of k′ in

the other subinstance until its end. ◁

▷ Claim 7. If IA or IA contains a pair of interleaved independent edges then so does (G,⟳).

Proof. Assume IA contains a pair {v, w}, {a, b} of interleaved independent edges, the case for
IA is symmetric. Unless this involves vertices with an anchor on the curve ℓ, the same pair is
already contained in (G,⟳). If both {v, w} and {a, b} contain a vertex of K∗, then the pair
is not independent. Since IA contains only vertices of A, K∗, and degree-one neighbours of
K∗, we may assume that {a, b} ⊆ A. If the anchors of both v and w are on ℓ, then {v, w}
and {a, b} are not interleaved. So, we may assume that the anchor of v is on ℓ and the anchor
of w is not. We distinguish two cases based on whether w ∈ K∗ or not.

If w ∈ K∗ then, by the minimality of K∗, vertex w had a neighbour v′ in component
A2. It follows that {a, b} and {w, v′} are interleaved and independent. If w ∈ A or w is an
isolated vertex in G − K∗, then v is the copy of a vertex v′ ∈ K∗ whose anchor is on the
other side of ℓ than A. Thus, {a, b} and {w, v′} are interleaved and independent. ◁

▷ Claim 8 (⋆). The number of pairs of independent edges in IA and IA, respectively, is
smaller than in G.

Sketch of Proof. By construction, there is a pair of independent edges e1 ⊆ A1 = A, e2 ⊆ A2
in G which is neither contained in IA nor IA. On the other hand the pairs of independent
edges of IA (IA, respectively), can be mapped into the pairs of independent edges of G with
at least one endvertex in K∗ or A (A2 ∪ · · · ∪ Ak, respectively). ◁

This concludes the proof: If (G,⟳) contains no pair of interleaved independent edges,
then, by Claim 7, none of the sub-instances has one. By Claim 8, they have fewer independent
edge pairs than (G,⟳) and they hence have a constrained outer-string representation by the
inductive hypothesis. By Claim 6 these representations can be combined to a constrained
outer-string representation for the original instance (G,⟳). ◀

▶ Corollary 9. It can be tested in polynomial time whether a chordal graph with a given
cyclic order of the vertices admits a constrained outer-string representation.

4 Constrained Outer-1-String Representations for Trees

In this section, we show how to test for a constrained outer-1-string representation if the
graph is a tree. We first give an outline of our approach. See Figure 7. Let (G,⟳) be the
given instance where G is a tree. If G is a single vertex, then the answer is always true.
Otherwise, we root G, preferably at a vertex that has at least two neighbors, and process
the vertices in post-order, i.e., children are processed before their parents. Whenever we
encounter a vertex x that is not a leaf, we either find an obstruction, i.e., a sub-instance that
makes a constrained outer-1-string representation impossible, or we remove the children of

GD 2024
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leaves

ghost
Y-interval

split
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x y
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r = x
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Figure 7 We solve constrained outer-1-string on trees in a postorder traversal. Some leaves might
be doubly-anchored (squared vertices). When processing a vertex x then all its children are leaves.
We first prune some of x’s children (Rule 1). We then make sure that the sequence of anchors
contains exactly two X-intervals (pink regions), one of which contains only x. If this is impossible,
we reject the instance (Rule 2, Rule 4, and Rule 5). Finally, we split the instance along the edge
between x and its parent y, keeping y and x as a doubly-anchored vertex in the opposite component
(Rule 6). The base case is reached after pruning the leaves of a star (Rule 2 and Rule 3).

x until x is a leaf. Thus at the end only a single vertex remains and we are done. For the
recursions, we will sometimes have doubly-anchored vertices, but we maintain as invariant
that only leaves of the rooted tree can be doubly-anchored.

4.1 Obstructions
By Lemma 1, there cannot be a constrained outer-string representation if there is a pair
of independent connected vertex-sets that are interleaved. We call such an interleaved
independent pair a pair-obstruction if each of the two vertex-sets contains at most two
vertices, i.e., it is an edge or a set containing a doubly-anchored vertex. We will have
two other obstructions for constrained outer-1-string representations. Recall that a bridge
e = {x, y} defines the bridge-components X and Y of G − e with x ∈ X and y ∈ Y . An
X-interval is a maximal sub-sequence of ⟳ that only contains anchors of X. We define
Y -interval analogously. See Figure 8 for the following lemma.

▶ Lemma 10 (bridge-obstruction ⋆). If (G,⟳) has a constrained outer-1-string representation,
then no bridge {x, y} has three or more X-intervals.

We use the term bridge-obstruction for a bridge that has three or more X-intervals and
hence prevents a constrained outer-1-string representation. See Figure 9.

Finally, observe that two adjacent doubly-anchored vertices must be interleaved. The
third kind of obstruction generalizes this observation and is based on a central path Π with
ℓ ≥ 0 edges and hence will be called Πℓ-obstruction, or simply path-obstruction. See Figure 10.
Let Π = ⟨v0, v1, . . . , vℓ−1, vℓ⟩ be a path, and note that ℓ = 0is specifically allowed. For the
ends of the central path, there are three variants. In the first variant, there are additionally
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x y

X Y

(a)

∂(y)∂(x)x y
p

∂Y

∂X

(b)

Figure 8 Illustration of the proof of Lemma 10. Red curves represent vertices in X, blue curves
represent vertices in Y . The union ∂X and ∂Y of all red and all blue curves, respectively, is connected
and the two sets intersect in p = ∂(x) ∩ ∂(y). Removing p from ∂X ∪ ∂Y yields four connected
components (pink and light-blue areas) the anchor of which form X- or Y -intervals in ⟳.

x y

yx

Figure 9 An outer-string representation of a bridge-obstruction.

two bounding paths Q = ⟨c, v0, b, a⟩ and Q′ = ⟨c′, vℓ, b′, a′⟩ that are disjoint from Π and each
other except at v0 and vℓ. The anchor-order ⟳ is such that in the order induced by the vertices
in Π, Q, and Q′ satisfies two things: (i) the anchors of the sets {a, b, c}, {a, b, c, v0},. . . , and
{a, b, c, v0, . . . , vℓ}, respectively, appear consecutive and (ii) the pair {a, b} and {v0, c} as well
as the pair {a′, b′} and {vℓ, c′} are interleaved. In the second variant, one of the bounding
paths, say Q, is replaced by the condition that v0 is doubly-anchored and that the anchors
of v0 are consecutive in the induced anchor-order. The other conditions on the anchor order
remain. The third variant is defined only for ℓ ≥ 1 and is obtained from the second variant
by similarly replacing Q′ with the requirement that vℓ be doubly-anchored with consecutive
anchors.

▶ Lemma 11 (path-obstruction ⋆). If (G,⟳) has a constrained outer-1-string representation,
then there is no path-obstruction.

Clearly, no instance with a constrained outer-1-string representation can contain any of
the three obstructions. As our main result for trees, we show that this necessary condition is
also sufficient, and furthermore an efficient constructive testing algorithm exists. We prove
the following theorem in the next section.

▶ Theorem 12. An instance (G,⟳) where G is a tree admits a constrained outer-1-string
representation if and only if it contains no pair-obstruction, no bridge-obstruction, and no
path-obstruction. Furthermore, there is a linear-time algorithm that either finds such an
obstruction or returns a constrained outer-1-string representation for (G,⟳).

GD 2024
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Figure 10 (a) The graph of a path-obstruction (b) and a forbidden order of the anchors along
with an outer-string representation. (c,d) A doubly-anchored version of a path-obstruction.

4.2 Reduction-Rules
As outlined, we root the tree, preferably at a vertex of degree at least two, and process the
vertices in post-order. Furthermore, we maintain that all vertices that have been processed
are leaves in the tree or have been deleted altogether. Finally only leaves that are not the
root may be doubly-anchored. Let x be the currently processed vertex. If x is already a leaf,
then we proceed to the next vertex. So assume that x has children. These children have been
processed already, so they are leaves. Let X be the set consisting of x and all its children.
When processing x, we will apply a number of reduction rules, each of which yielding one or
two smaller instances. In particular, all children of x are deleted eventually.

For the reduction rules we have to argue that they are correct, which means two things.
First, if the smaller instances have solutions, then so does (G,⟳). Second, if one of the
smaller instances contains an obstruction, then so does (G,⟳). The second one implies that
if (G,⟳) has a solution, then so do the smaller instances: If (G,⟳) has a solution, then it has
no obstruction, so the smaller instances have no obstructions; by the inductive hypothesis,
this implies that the smaller instances have a constrained outer-1-string representation. Our
arguments for this will be constructive, which means that there will be an easy algorithm to
retrieve the solution or the obstruction from the ones for the smaller instances. A special
type of these rules are obstruction-rules, where the returned instance is an obstruction that
is contained in the instance. In that case the instance is a no-instance and we show how to
exhibit the obstruction in the proof of correctness.

▶ Rule 1 (leaves). If x is adjacent to a leaf v that either (i) is singly-anchored and x, v are
consecutive in ⟳ or (ii) is doubly-anchored and v, x, v are consecutive in ⟳, then remove v

and its anchors from (G,⟳).

▶ Lemma 13. Rule 1 is correct.

Proof. Given a constrained outer-1-string representation of the smaller instance (G′,⟳′), we
can add a curve for v that is anchored on the correct side of x in case (i) or anchored on
both sides of x in case (ii) to obtain a constrained outer-1-string representation of (G,⟳).



T. Biedl, S. Cornelsen, J. Kratochvíl, and I. Rutter 10:11

If (G′,⟳′) contains an obstruction, then the exact same subgraph is also an obstruction
for (G,⟳) because (G′,⟳′) is an induced sub-instance of (G,⟳), and adding more vertices
and anchors does not destroy an obstruction. ◀

▶ Rule 2 (anchor of x surrounded by X). If Rule 1 cannot be applied, but there are at least
three anchors in ⟳, and both anchors immediately before and after the anchor of x in ⟳
belong to vertices of X, then report that the instance is a no-instance.

▶ Lemma 14. Rule 2 is correct.

Proof. Let u and v be the vertices in X whose anchors are next to the anchor of x in ⟳.
Since Rule 1 cannot be applied, both u and v are doubly-anchored and u ̸= v. We have
u ̸= x ̸= v since otherwise x would be doubly-anchored, but x is not a leaf and so cannot
be doubly-anchored. We distinguish two cases: If the anchors of u, v, and x are in the
cyclic order u, u, x, v, v then this is a Π2-obstruction for path ⟨u, x, v⟩. If the cyclic order is
v, u, x, v, u then u and v are two independent doubly-anchored vertices that are interleaved,
so this is a pair-obstruction. ◀

If x is the root and neither Rule 1 nor Rule 2 applies then x is the only vertex that is
left. Hence, we get the following rule.

▶ Rule 3 (base case). If x is the root and neither Rule 1 nor Rule 2 applies, then the current
(sub-)instance is a yes-instance.

So for the following rules, we assume that x has a parent y. Vertex y in turn either has a
parent, or it is the root and, by the choice of the root, has at least one other child, so y has
neighbors other than x. Consider the bridge e = {x, y}. Let X and Y be the respective bridge
components of G − e with x ∈ X and y ∈ Y . This is consistent with our earlier definition
of X. The following rule is clearly correct since it directly exhibits a bridge-obstruction.

▶ Rule 4 (three X-intervals). If the bridge {x, y} has three or more X-intervals, then report
that the instance is a no-instance.

So from now on we assume that there are one or two X-intervals. Actually both these
cases can be handled at once. We first identify another obvious no-instance.

▶ Rule 5 (two X-intervals, x not alone). If there are two X-intervals, Rule 1 and Rule 2
cannot be applied, and the X-interval containing the anchor of x contains at least two anchors,
then report that the instance is a no-instance.

▶ Lemma 15. Rule 5 is correct.

Proof. Assume that the X-interval containing the anchor of x contains at least two anchors.
The anchor of x is the first or last anchor in the X-interval, otherwise Rule 2 would apply.
Up to symmetry assume that it is the first. Let x′ be the vertex of X whose anchor follows x

in this X-interval. Since Rule 1 cannot be applied, x′ is doubly-anchored. Note that x′ ̸= x

since otherwise x would be doubly-anchored, but x is not a leaf and so not doubly-anchored.
Consider one anchor in each of the two Y -intervals such that the respective vertices

y′, y′′ ∈ Y are either adjacent or identical. If the two anchors of x′ are in the two X-intervals,
then x′ and {y′, y′′} are independent and interleaved, so a pair-obstruction. If the two anchors
of x′ are in the same X-interval, then let x′′ be any vertex of X whose anchor is in the other
X-interval. This is a child of x. If one of y′, y′′, say y′′, is y, then we obtain a Π1-obstruction
with central path ⟨x′, x⟩, the doubly-anchored vertex x′ and the bounding path ⟨x′′, x, y, y′⟩.
Observe that the anchors appear in a suitable order. If neither of y′, y′′ is y, then {y′, y′′}
forms an independent interleaved pair with edge {x, x′′}, so we have a pair-obstruction. ◀
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If none of the above rules apply, we are in one of two possible situations. Either (a) there
is only one X-interval, and x is the first or last vertex in it, or (b) there are two X-intervals,
but one of them contains only x. Both situations can be handled as one if in situation (a)
we view the range between x and the rest of the X-interval as a “ghost Y -interval” that has
no anchors of Y in it. So we always have two X-intervals (one of them contains only the
anchor of x) and two Y -intervals (one of which may be a ghost-interval).

▶ Rule 6 (split the instance). If none of the previous rules can be applied, then we split the
instance into the graphs GX and GY induced by X ∪ {y} and Y ∪ {x}, respectively. In GX ,
we doubly-anchor y in place of the two Y -intervals. In GX , we doubly-anchor x in place of
the two X-intervals. All other vertices use the same anchors as in ⟳.

▶ Lemma 16 (⋆). Rule 6 is correct.

Sketch of Proof. A constrained outer-1-string representation for G can be constructed by
combining constrained outer-1-string representation for GX and GY at the intersection point
of ∂(x) and ∂(y) such that the anchors are in the correct order.

It remains to show how to reconstruct obstructions of (G,⟳) from obstructions of the
reduced instances. To this end we have to show that if the new anchor of the vertex x or y is
contained in an obstruction of a reduced instance, then we can use omitted vertices to find
an obstruction in (G,⟳). Since GX is a star centered at x and yxy is a subsequence of the
anchor order, it follows that GX cannot contain an obstruction that uses y.

So, let O be an obstruction of GY that contains x. Let x′ ∈ X \ {x} be some child of x,
preferably a doubly-anchored one. Any independent interleaved pair of GY that uses x can
be expanded into one of G by adding x′ to the set that contains x. Any bridge-obstruction
at some bridge e of GY is also one in G. In both cases, an anchor of x′ can take the place of
the second anchor of x in GY . It remains to consider the case that O is a path-obstruction.

If the two anchors of x are consecutive among the anchors of O, we may assume that
x is the endvertex of the central path. If x has a doubly-anchored child, then we obtain a
path-obstruction of G by appending x′ to x. Otherwise there is no ghost Y -interval. Let
{y′, y′′} be an edge with anchors in different Y -intervals. Depending on whether y′ ̸= y ̸= y′′

or not either {x, x′} and {y′, y′′} is a pair-obstruction or G contains a path-obstruction with
bounding path ⟨x′, x, y, y′⟩. See Figure 11a.

If the two anchors of x are not consecutive among the anchors of O, then x is the endvertex
of a bounding path and G contains an interleaved independent pair. See Figure 11. ◀

Note that Rule 6 can always be applied if none of the previous rules apply. Observe
that GX is a star and so directly brings us to the base case after rooting GX at x and
applying Rule 1, as well as Rule 2 or Rule 3. Observe further that GY is obtained from G by
removing the children of x and by doubly-anchoring x. Hence, in GY , vertex x has become
a leaf as desired and we continue processing the rest of GY in post-order. This proves the
characterization stated in Theorem 12. For the linear run time, we refer to the full version of
the paper.

▶ Corollary 17. A cyclically ordered path has a constrained outer-1-string representation if
and only if there are no two independent edges that are interleaved.

Proof. A path cannot have a path-obstruction and if a path has a bridge-obstruction then
this already implies two independent edges that are interleaved. ◀
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(d) x = b, v and c in the same interval.

Figure 11 How to reconstruct an obstruction of G from a path-obstruction O of GY . In each
case the topmost drawing is a string-representation while in the bottommost drawing the edges
are represented as segments. (a) If x is the endvertex of the central path and no child x′ of x

is doubly-anchored then G contains an interleaved independent pair or {x, y} is replaced by the
bounding path ⟨x′, x, y, y′⟩ in O. (b-d) If x is the endvertex of a bounding path ⟨c, v, a, b⟩ and the
two anchors of x are not consecutive then G contains an interleaved independent pair.

▶ Corollary 18 (⋆). A tree with a given cyclic order ⟳ of the vertices that admits a constrained
outer-1-string representation also has a constrained U-shaped outer-1-string representation
with respect to any linear order induced by ⟳.

Sketch of Proof. We follow the construction for constrained outer-1-string representations.
Whenever Rule 1 or Rule 6 yields yes-instances, we show how to obtain a constrained
U-shaped outer-1-string representation for the original instance. See Figures 12 and 13. We
maintain the property that nothing is drawn to the left of the left-most or to the right of the
right-most anchor. If the linear order is such that an X-interval is split into a right-most
and a left-most part and one of the two parts contains both anchors of a doubly-anchored
vertex then the second anchor of x in GY is put in this sub-interval. ◀

x v

(a)

x v

(b)

x v

(c)

x vv

(d)

remainder
of

graph

x v v

(e)

Figure 12 Constructing a U-shaped representation of a tree after the application of Rule 1.
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Figure 13 Constructing a U-shaped representation of a tree after the application of Rule 6, by
inserting X \ {x} into a representation of GY in the order in which we would apply Rule 1 in GX .
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(a) Graph with vertex order.
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(b) L-shaped representation.

Figure 14 How to construct a constrained L-shaped outer-1-string representation. First order the
vertices such that the anchores of the future neighbors of any vertex v are consecutive and next to v.
Then draw the L-shaped curves in this order with decreasing y-coordinates of the horizontal part.

5 Constrained L-Shaped Outer-1-String Representations

We now show how to test in quadratic time whether an ordered graph admits a constrained
L-shaped outer-1-string representation. See Figure 14.

▶ Lemma 19. Let G = (V, E) be a graph and let ≺ be an order of the vertices. Then (G, ≺)
admits a constrained L-shaped outer-1-string representation if and only if the vertices of G

can be ordered v1, . . . , vn such that for i = 1, . . . , n the set of future neighbors Vi = {vj ; j >

i and {vi, vj} ∈ E} of vi as well as Vi ∪ {vi} are consecutive in ≺.

Proof. Assume that v1, . . . , vn is such an order. Let the horizontal line from which the
vertices hang have y-coordinate 0. For i = 1, . . . , n we draw the vertical part of ∂(vi) from 0
to −i. The future neighbors Vi are all directly to the left or all directly to the right of vi.
Draw the horizontal part of ∂(vi) in that direction until the last future vertex is met.

Assume now that there is a constrained L-shaped outer-1-string representation of (G, ≺).
Order the vertices v1, . . . , vn according to the y-coordinate of the horizontal part of their
curve from top to bottom. Then the curve of all future neighbors of vi must intersect the
horizontal part of ∂(vi) and all vertical segments of all vertices vj , j > i must be at least as
long as the one of vi. It follows that Vi must be consecutive and directly next to vi. ◀

An example of an ordered graph without a constrained L-shaped outer-1-string represen-
tation is the path ⟨1234⟩ with vertex ordering ⟨2413⟩.

▶ Corollary 20. It can be tested in O(n2) time whether an ordered graph with n vertices
admits a constrained L-shaped outer-1-string representation.
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Proof. Let G = (V, E) be a graph with a linear order ≺ of its n vertices. For i = 1, . . . , n,
iteratively check whether there is a vertex, such that the set of its neighbors is directly to
the left or to the right of vi. If so remove vi and continue. Otherwise report that there is no
constrained L-shaped outer-1-string representation.

This can be tested in O(n2) time. For a vertex v, let N(v) be the set of neighbors of v. An
N(v)-interval is a maximal subsequence of ≺ that contains only anchors of vertices of N(v).
Let k(v) be the number of N(v)-intervals. We first compute k(v) for each vertex v. This
can be done in linear time for each vertex. Observe that we can choose v as a next vertex
if and only if k(v) = 0 or k(v) = 1 and at least one of the neighbors of v in ≺ is in N(v).
Each time we remove a vertex w, we update k(v) as follows. Decrease k(v) by one if and
only if either w ∈ N(v) and both neighbors of w in ≺ are not in N(v) or w /∈ N(v) and both
neighbors of w in ≺ are in N(v). Otherwise do not change k(v). This update can be done in
constant time per removed vertex w and remaining vertex v. ◀

6 Constrained Outer-1-String Representations for Simple Cycles

An extended complement of a 5-cycle (Figure 15a) is the complement of an anchor-ordered
5-cycle or a subpath w1v′vuu′w2 of a cycle whose anchors are in the order w1uv′u′vw2. A
cyclically ordered cycle admits a constrained outer-1-string representation if and only if it
neither contains a pair of interleaved independent edges nor an extended complement of a
5-cycle:

▶ Theorem 21. Let G = (V, E) be a simple cycle and let ⟳ be a cyclic order of V . Then the
following are equivalent.
1. (G,⟳) has a constrained outer-1-string representation.
2. For every path ⟨u′uvv′⟩ of G, at least one among the sequences uv, uu′v′v, uu′v, or uv′v,

or their reverse is a subsequence of ⟳.
3. (G,⟳) does not contain two interleaved independent edges nor an extended complement

of a 5-cycle.

Proof. We show equivalence of (1) and (3) to (2).
1 ⇒ 2: Let P be the path obtained from G after removing u, v, u′, and v′. Let ⟳1 and ⟳2

be the subsequences obtained by splitting ⟳ at the anchors of u and v. Then the anchors
of P are either all in ⟳1 or all in ⟳2: If there were two adjacent vertices v1 and v2 in
P such that the anchor of vi is in ⟳i, i = 1, 2 Then {u, v} and {v1, v2} would be two
interleaved independent edges.
So assume that the anchors of P are in ⟳1, i.e., ⟳2 contains either nothing, or the anchor
of u′, of v′, or of both. If ⟳1 is not empty and ⟳2 contains the anchor of u′ and of v′,
then u′ must be next to u: The curve ∂(u′) must intersect ∂(u) and reach the curve of
the neighbor of u′ in P in ⟳1. Similarely, the curve ∂(v′) must intersect ∂(v) and reach
the curve of the neighbor of v′ in P in ⟳1. This is impossible if the order is uv′u′v.

3 ⇒ 2: Let again P , ⟳1, and ⟳2 be defined as above. As above the anchors of P are either
all in ⟳1 or all in ⟳2. The fact that there is no extended complement of a 5-cycle forbids
the sequence wuv′u′v for any neighbor w of v′ or u′ other than v or u.

2 ⇒ 3: Assume there were two independent interleaved edges {u, v} and {x, y}. Then one
subsequence of ⟳ between u and v would contain x and the other y. But neither x nor y

is a neighbor of u or v. Assume now that there is an extended complement of a 5-cycle.
Then there is the sequence wuv′u′v for some neighbor w ̸= v of v′.
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u

v′
u′

v

w1

w2

(a) Extended complement of a 5-cycle. (b) Representation of a simple cycle.

Figure 15 a) An obstruction for simple cycles. w1 = w2 is also possible. b) How to draw a simple
cycle if for any edge the anchors of the two endvertices are next to each other.

2 3 4 51 6
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(a) Case 1.

3 2 5 41 6
u u′ v′ v

(b) Case 2a.

3 2 4 51 6
u u′ v

(c) Case 2a.

2 3 4 61 5
u v′v

(d) Case 2b(i).

3 4 5 61 2
u u′v

(e) Case 2b(ii).

Figure 16 How to draw a simple cycle as a constrained U-shaped outer-1-string representation.
If not all vertices of the cycle are consecutive in the cyclic order of the anchors, we remove one or
two vertices (indicated in red), draw the resulting path and reinsert the vertices.

2 ⇒ 1: If the anchors for any pair of adjacent vertices u, v of G form a subsequence of ⟳
then there is a constrained outer-1-string representation. See Figure 15b.
Assume now that G contains a path u′uvv′ such that ⟳ contains uu′v as a subsequence
(the case uv′v or their reverse being symmetric). Let P be the path obtained from G

by removing u. Since Item 2 implies Item 3, there are no two interleaved independent
edges. Thus, P has a constrained outer-1-string representation by Corollary 17. Route
∂(u) closely along the border of the disk until it intersects first ∂(u′) and then ∂(v).
Assume now that G contains a path u′uvv′ such that the anchors are in the order uu′v′v.
Let P be the path obtained from G by removing u and v. Again by Corollary 17, it follows
that P has a constrained outer-1-string representation. Route ∂(u) and ∂(v) closely along
the border of the disk until they intersect between the anchor of u′ and v′. ◀

The second condition of Theorem 21 can be tested in constant time per edge.

▶ Corollary 22. It can be tested in linear time, whether a simple cycle with a given cyclic
order of the vertices admits a constrained outer-1-string representation.

Simple cycles do not necessarily have a constrained L-shaped outer-1-string representation
even if the respective cyclic order of the anchors admits a constrained outer-1-string repres-
entation, consider for example 12345, 13452, or 34127856. The existence of a constrained
outer-1-string representation follows from Theorem 21 and the non-existence of an L-shaped
outer-1-string representation follows from Lemma 19. However, U-shapes suffice.

▶ Corollary 23 (⋆). Each simple cycle with a given cyclic order ⟳ of the vertices that admits
a constrained outer-1-string representation also has a constrained U-shaped outer-1-string
representation with respect to any linear order induced by ⟳.
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Sketch of Proof. We follow “2 ⇒ 1” in the proof of Theorem 21. We distinguish whether
any two adjacent vertices are consecutive in ⟳ (Figure 16a), some adjacent vertices contain
some neighbors between them (Figures 16b and 16c), or an adjacent pair contains everything
but a neighbor between them (Figures 16d and 16e). ◀

7 Conclusion

We considered outer-string and outer-1-string representations of graphs in which the sequence
of the anchors of the vertices was fixed. In particular, we considered outer-string representa-
tions of chordal graphs, outer-1-string representations of trees and cycles, as well as L-shaped
representations of general graphs. We leave some interesting open problems.

What is the complexity of testing whether a graph has an outer-1-string, a constrained
outer-1-string, or a constrained outer-string representation? Can these problems be efficiently
solved for cacti or graphs with constant treewidth? Can it be tested efficientlywhether an
ordered graph admits a constrained U-shaped outer-1-string representation?

A variant of the problem would be to specify for each vertex a set of anchors and to
require that these points are within its curve. What can be said about this variant?
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