
The Parameterized Complexity Of
Extending Stack Layouts
Thomas Depian #

Algorithms and Complexity Group, TU Wien, Austria

Simon D. Fink #

Algorithms and Complexity Group, TU Wien, Austria

Robert Ganian #

Algorithms and Complexity Group, TU Wien, Austria

Martin Nöllenburg #

Algorithms and Complexity Group, TU Wien, Austria

Abstract
An ℓ-page stack layout (also known as an ℓ-page book embedding) of a graph is a linear order
of the vertex set together with a partition of the edge set into ℓ stacks (or pages), such that the
endpoints of no two edges on the same stack alternate. We study the problem of extending a given
partial ℓ-page stack layout into a complete one, which can be seen as a natural generalization of
the classical NP-hard problem of computing a stack layout of an input graph from scratch. Given
the inherent intractability of the problem, we focus on identifying tractable fragments through the
refined lens of parameterized complexity analysis. Our results paint a detailed and surprisingly rich
complexity-theoretic landscape of the problem which includes the identification of paraNP-hard,
W[1]-hard and XP-tractable, as well as fixed-parameter tractable fragments of stack layout extension
via a natural sequence of parameterizations.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Mathem-
atics of computing → Graphs and surfaces

Keywords and phrases Stack Layout, Drawing Extension, Parameterized Complexity, Book Embed-
ding

Digital Object Identifier 10.4230/LIPIcs.GD.2024.12

Related Version Full Version: https://arxiv.org/abs/2409.02833 [17]

Funding All authors acknowledge support from the Vienna Science and Technology Fund (WWTF)
[10.47379/ICT22029]. Robert Ganian and Thomas Depian furthermore acknowledge support from
the Austrian Science Fund (FWF) [10.55776/Y1329].

1 Introduction

An ℓ-page stack layout (or ℓ-page book embedding) of a graph G consists, combinatorially
speaking, of (i) a linear order ≺ of its vertex set V (G) and (ii) a partition σ of its edge set
E(G) into ℓ ≥ 1 (stack-)pages such that for no two edges (with distinct endpoints) uv and
wx with u ≺ v and w ≺ x that are assigned to the same page their endpoints alternate in ≺,
i.e., we have u ≺ w ≺ v ≺ x. When drawing a stack layout, the vertices are placed on a line
called the spine in the order given by ≺ and the edges of each page are drawn as pairwise
non-crossing arcs in a separate half-plane bounded by the spine, see Figure 1a. Stack layouts
are a classic and well-studied topic in graph drawing and graph theory [6, 12, 30]. They have
immediate applications in graph visualization [4,25,38] as well as in bioinformatics, VLSI
design, and parallel computing [14,27]; see also the overview by Dujmović and Wood [20].

The minimum number ℓ such that a given graph G admits an ℓ-page stack layout is
known as the stack number, page number, or book thickness of G. While the graphs with
stack number ℓ = 1 are the outerplanar graphs, which can be recognized in linear time, the

© Thomas Depian, Simon D. Fink, Robert Ganian, and Martin Nöllenburg;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Graph Drawing and Network Visualization (GD 2024).
Editors: Stefan Felsner and Karsten Klein; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tdepian@ac.tuwien.ac.at
https://orcid.org/0009-0003-7498-6271
mailto:sfink@ac.tuwien.ac.at
https://orcid.org/0000-0002-2754-1195
mailto:rganian@ac.tuwien.ac.at
https://orcid.org/0000-0002-7762-8045
mailto:noellenburg@ac.tuwien.ac.at
https://orcid.org/0000-0003-0454-3937
https://doi.org/10.4230/LIPIcs.GD.2024.12
https://arxiv.org/abs/2409.02833
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 The Parameterized Complexity Of Extending Stack Layouts

a

a b eddddddddddddddddd
(a) (b)

b

c

d

e

a

g

f
b

c

d

e

a b c edddddddddddddddddc
≺ ≺

gggggggggggggggggfffffffffffffffff

Figure 1 (a) A graph H and a two-page stack layout of it. In (b), the graph H and its two-page
stack layout are extended by the new vertices and edges marked in blue.

problem of computing the stack number is NP-complete in general. Indeed, the class of
graphs with stack number ℓ ≤ 2 are precisely the subhamiltonian graphs (i.e., the subgraphs
of planar Hamiltonian graphs) and recognizing them is NP-complete [6, 14,39]. Computing
the stack number is known to also remain NP-complete if the vertex order is provided as
part of the input and ℓ = 4 [36], and overcoming the intractability of these problems has
been the target of several recent works in the field [10, 11, 24, 29]. Many other results on
stack layouts are known – for instance, every planar graph has a 4-page stack layout and
this bound is tight [5,40]. For a comprehensive list of known upper and lower bounds for the
stack number of different graph classes, we refer to the collection by Pupyrev [33].

In this paper, we take a new perspective on stack layouts, namely the perspective of
drawing extensions. In drawing extension problems, the input consists of a graph G together
with a partial drawing of G, i.e., a drawing of a subgraph H of G. The task is to insert the
vertices and edges of G which are missing in H in such a way that a desired property of
the drawing is maintained; see Figure 1b for an example. Such drawing extension problems
occur, e.g., when visualizing dynamic graphs in a streaming setting, where additional
vertices and edges arrive over time and need to be inserted into the existing partial drawing.
Drawing extension problems have been investigated for many types of drawings in recent
years – including planar drawings [1, 28, 31, 32], upward planar drawings [16], level planar
drawings [13], 1-planar drawings [21, 22], and planar orthogonal drawings [2, 3, 9] – but until
now, essentially nothing was known about the extension of stack layouts/book embeddings.

Since it is NP-complete to determine whether a graph admits an ℓ-page stack layout (even
when ℓ is a small fixed integer), the extension problem for ℓ-page stack layouts is NP-complete
as well – after all, setting H to be empty in the latter problem fully captures the former one.
In fact, the extension setting can seemlessly also capture the previously studied NP-complete
problem of computing an ℓ-stack layout with a prescribed vertex order [10, 11, 14, 36, 37];
indeed, this corresponds to the special case where V (H) = V (G) and E(H) = ∅. Given
the intractability of extending ℓ-page stack layouts in the classical complexity setting, we
focus on identifying tractable fragments of the problem through the more refined lens of
parameterized complexity analysis [15, 19], which considers both the input size of the graph
and some additional parameter k of the instance1.

Contributions. A natural parameter in any drawing extension problem is the size of the
missing part of the graph, i.e., the missing number of vertices and/or edges. We start
our investigation by showing that the Stack Layout Extension problem (SLE) for
instances without any missing vertices, i.e., V (G) = V (H), is fixed-parameter tractable when
parameterized by the number of missing edges |E(G) \ E(H)| (Section 3).

1 We assume familiarity with the basic foundations of parameterized complexity theory, notably including
the notions of fixed-parameter tractability, XP, W[1]-, and paraNP-hardness [15].

T. Depian, S. D. Fink, R. Ganian, and M. Nöllenburg 12:3

(para) NP-complete XP, W[1]-hard FPT

Theorem 4.2[14]

∅ VEDD κ κ + ω κ + ω + ℓ

Theorems 5.1
and 6.4

Corollary 6.5 Theorem 7.2

Figure 2 The complexity landscape of Stack Layout Extension. VEDD denotes the ver-
tex+edge deletion distance, ω denotes the page width of the ℓ-page stack layout of H, and
κ = |V (G) \ V (H)| + |E(G) \ E(H)|. Boxes outlined in bold represent new results that we show in
the linked theorems and corollaries. The only result that is not depicted is Theorem 3.2.

The above result, however, only applies in the highly restrictive setting where no vertices
are missing – generally, we would like to solve instances with missing vertices as well as edges.
A parameterization that has been successfully used in this setting is the vertex+edge deletion
distance, i.e., the number of vertex and edge deletion operations2 required to obtain H

from G. But while this parameter has yielded parameterized algorithms when extending,
e.g., 1-planar drawings [21,22] and orthogonal planar drawings [9], we rule out any analogous
result for SLE by establishing its NP-completeness even if H can be obtained from G by
deleting only two vertices (Section 4). This means that more “restrictive” parameterizations
are necessary to achieve tractability for the problem of extending ℓ-page stack layouts.

Since the missing vertices in our hardness reduction have a high degree, we then consider
parameterizations by the combined number of missing vertices and edges κ = |V (G) \ V (H)|+
|E(G) \ E(H)|. We show that SLE belongs to the class XP when parameterized by κ

(Section 5) while being W[1]-hard (Section 6), which rules out the existence of a fixed-
parameter tractable algorithm under standard complexity assumptions. The latter result
holds even if we additionally bound the page width ω of the stack layout of H, which measures
the maximum number of edges that are crossed on a single page by a line perpendicular to
the spine [14]. On our quest towards a fixed-parameter tractable fragment of the problem,
we thus need to include another restriction, namely the number ℓ of pages of the stack layout.
So finally, when parameterizing SLE by the combined parameter κ + ω + ℓ, we show that it
becomes fixed parameter tractable (Section 7). Our results are summarized in Figure 2.
Full proofs of statements marked by ★ can be found in the full version [17].

2 Preliminaries

We assume the reader to be familiar with standard graph terminology [18]. Throughout this
paper, we assume standard graph representations, e.g., as double-linked adjacency list, that
allow for efficient graph modifications. For two integers p ≤ q we denote with [p, q] the set
{p, p + 1, . . . , q} and use [p]0 and [p] as abbreviations for [0, p] and [1, p], respectively. Let G

be a graph that is, unless stated otherwise, simple and undirected, with vertex set V (G) and
edge set E(G). For X ⊆ V (G), we denote by G[X] the subgraph of G induced on X.

Stack Layouts. For an integer ℓ ≥ 1, an ℓ-page stack layout of G is a tuple ⟨≺G, σG⟩
where ≺G is a linear order of V (G) and σG : E(G) → [ℓ] is a function that assigns each edge
to a page p ∈ [ℓ] such that for each pair of edges u1v1 and u2v2 with σ(e1) = σ(e2) it does not
hold u1 ≺ u2 ≺ v1 ≺ v2. For the remainder of the paper, we write ≺ and σ if the graph G is

2 As usual, we assume that deleting a vertex automatically also deletes all of its incident edges.

GD 2024

12:4 The Parameterized Complexity Of Extending Stack Layouts

clear from context. We call ≺ the spine (order) and σ the page assignment. Observe that we
can interpret a stack layout as a drawing of G on different planar half-planes, one per page
p ∈ [ℓ], each of which is bounded by the straight-line spine delimiting all half-planes. One
fundamental property of a stack layout is its page width – denoted as ω(⟨≺, σ⟩) or simply ω

if ⟨≺, σ⟩ is clear from context – which is the maximum number of edges that are crossed on
a single page by a line perpendicular to the spine [14]. The properties of stack layouts with
small page width have been studied, e.g., by Stöhr [34,35].

We say that two vertices u and v are consecutive on the spine if they occur consecutively
in ≺. A vertex u ∈ V (G) sees a vertex v ∈ V (G) on a page p ∈ [ℓ] if there does not exist
an edge e = xy ∈ E(G) with σ(e) = p and x ≺ u ≺ y ≺ v or u ≺ x ≺ v ≺ y. Note that if u

sees v, then v also sees u. For two vertices u and v which are consecutive in ≺, we refer to
the segment on the spine between u and v as the interval between u and v, denoted as [u, v].

Problem Statement. Let H ⊆ G be a subgraph of a graph G. We say that ⟨≺G, σG⟩ is an
extension of ⟨≺H , σH⟩ if σH ⊆ σG and ≺H⊆≺G. We now formalize our problem of interest:

Stack Layout Extension (SLE)
Given Integer ℓ ≥ 1, graph G, subgraph H of G, and ℓ-page stack layout ⟨≺H , σH⟩.
Question Does there exist an ℓ-page stack layout ⟨≺G, σG⟩ of G that extends ⟨≺H , σH⟩?

We remark that while SLE is defined as a decision problem for complexity-theoretic
reasons, every algorithm presented in this article is constructive and can be trivially adapted
to also output a layout ⟨≺G, σG⟩ as a witness (also called a solution) for positive instances.
For an instance I of SLE, we use |I| as shorthand for |V (G)| + |E(G)| + ℓ.

In line with the terminology previously used for drawing extension problems [21], we
refer to the vertices and edges in V (H) ∪ E(H) as old and call all other vertices and edges
of G new. Let Vadd and Eadd denote the sets of all new vertices and edges, respectively, and
set nadd := |Vadd| and madd := |Eadd|. Furthermore, we denote with EH

add the set of new
edges incident to two old vertices, i.e., EH

add := {e = uv ∈ Eadd | u, v ∈ V (H)}. We consider
the parameterized complexity of our extension problem by measuring how “incomplete” the
provided partial solution is using the following natural parameters that have also been used
in this setting before [7, 8, 21–23]: the vertex+edge deletion distance, which is nadd +

∣∣EH
add

∣∣,
and the total number of missing vertices and edges, i.e., nadd + madd.

3 SLE With Only Missing Edges is FPT

We begin our investigation by first analyzing the special case where V (G) = V (H), i.e., when
only edges are missing from H. We recall that the problem remains NP-complete even in
this setting, as it generalizes the problem of computing the stack number of a graph with a
prescribed vertex order [10,11,14,36,37]. Furthermore, both of the aforementioned measures
of the incompleteness of ⟨≺H , σH⟩ are the same and equal madd =

∣∣EH
add

∣∣. As a “warm-up”
result, we show that in this setting SLE is fixed-parameter tractable parameterized by madd.

Towards this, consider the set S(e) ⊆ [ℓ] of pages on which we could place a new
edge e without introducing a crossing with edges from H; formally, p ∈ S(e) if and only if
⟨≺H , σH ∪ (e, p)⟩ is an ℓ-page stack layout of H ∪ {e}. Intuitively, if |S(e)| is large enough,
then we are always able to find a “free” page to place e independent of the placement of the
remaining new edges. Formally, one can easily show:

T. Depian, S. D. Fink, R. Ganian, and M. Nöllenburg 12:5

▶ Lemma 3.1 (★). Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE with Vadd = ∅ that
contains an edge e ∈ Eadd with |S(e)| ≥ madd. The instance I ′ = (ℓ, H, G′, ⟨≺, σ⟩) with
G′ = G \ {e} is a positive instance if and only if I is a positive instance.

With Lemma 3.1 in hand, we can establish the desired result:

▶ Theorem 3.2 (★). Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE with Vadd = ∅.
We can find an ℓ-page stack layout of G that extends ⟨≺, σ⟩ or report that none exists in
O(madd

madd · |I|) time.

Proof sketch. We compute for a single edge e ∈ Eadd the set S(e) in linear time by checking
with which of the old edges e would cross. If S(e) ≥ madd, then following Lemma 3.1, we
remove e from G. Overall, this takes O(madd · |I|) time and results in a graph G′ with
H ⊆ G′ ⊆ G. Furthermore, each remaining new edge e′ ∈ E(G′) \ E(H) can be put in fewer
than madd different pages. Hence, we can brute-force over all the at most O(madd

madd) page
assignments σ′ that extend σH for all edges in E(G′) \ E(H), and for each such assignment
we check in linear time whether no pair of edges e′, e′′ ∈ E(G′) \ E(H) cross each other. ◀

4 SLE With Two Missing Vertices is NP-complete

Adding only edges to a given linear layout is arguably quite restrictive. Therefore, we now
lift this restriction and consider SLE in its full generality, i.e., also allow adding vertices.
Somewhat surprisingly, as our first result in the general setting we show that SLE is NP-
complete even if the task is to merely add two vertices, i.e., for nadd = 2 and EH

add = ∅.
This rules out not only fixed-parameter but also XP tractability when parameterizing by
the vertex+edge deletion distance, and represents – to the best of our knowledge – the first
example of a drawing extension problem with this behavior.

To establish the result, we devise a reduction from 3-Sat [26]. In our reduction, we
insert two new vertices into a partial layout derived from the given formula, and use the
page assignment of their incident edges to encode a truth assignment and validate that it
satisfies all clauses. For this, we will need to restrict the positions of the new vertices to a
certain range along the spine. In Section 4.1, we introduce the fixation gadget that ensures
this. We also reuse this gadget in the reduction shown in Section 6. But first, we use it in
this section to perform our reduction and prove NP-completeness in Section 4.2.

The graph H that we construct will have multi-edges to facilitate the presentation of the
reduction. The procedure for removing multi-edges is detailed in the full version [17].

4.1 Restricting the Placement of New Vertices: The Fixation Gadget
The purpose of the so-called fixation gadget is to restrict the possible positions of new vertices
to given intervals. As this gadget will also find applications outside this reduction, we describe
in the following in detail its general construction for F > 1 new vertices F = {f1, . . . , fF }.

First, we introduce 3(F + 1) new vertices v1, . . . , vF +1, b1, . . . , bF +1, and a1, . . . , aF +1.
We fix the spine order ≺H among these vertices to b1 ≺ v1 ≺ a1 ≺ b2 ≺ v2 ≺ a2 ≺ . . . ≺
bF +1 ≺ vF +1 ≺ aF +1; see also Figure 3. Then, every new vertex fi is made adjacent to vi

and vi+1 and we aim to allow these new edges to be placed only in a dedicated further
page pd. To achieve this, we first introduce for every i ∈ [F + 1] and every page p ̸= pd an
edge e(bi, ai, p) = biai in H and set σ(e(bi, ai, p)) = p; see Figure 3. Furthermore, we also
introduce the edges bivi and viai and set σ(bivi) = σ(viai) = pd for all i ∈ [F + 1] . For every
i ∈ [F], we add the edge vivi+1 and place it on the page pd, i.e., we have σ(vivi+1) = pd as in

GD 2024

12:6 The Parameterized Complexity Of Extending Stack Layouts

f2v3

b1
≺H

v1 a1 b2 v2 a2 b3 v3 a3

f1 f2

e(b2, a2, p1) e(b3, a3, p1)

e(b1, a1, p5) e(b2, a2, p5) e(b3, a3, p5)

b1aF+1

v1v2 v2v3

e(b1, a1, p1)

f1v1 f1v2 f2v2

...

pd

p5

p1

Figure 3 A fixation gadget for F = 2 with five other pages in the stack layout. We also highlight
the intended position for f1 and f2 on the spine and the page assignment for their incident edges.

Figure 3. Finally, we also create the edge b1aF +1 and set σ(b1aF +1) = pd. To complete the
construction of the fixation gadget, we add the new edges fivi and fivi+1 for every i ∈ [F]
to G. Figure 3 shows an example of the fixation gadget for F = 2.

Next, we show that the fixation gadget forces fi to lie between vi and vi+1 on the spine
and the edges fivi and fivi+1 to be on the page pd for every i ∈ [F].

▶ Lemma 4.1 (★). Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE that contains a fixation
gadget on F vertices {f1, . . . , fF }. In any solution ⟨≺G, σG⟩ to I and for every i ∈ [F],
we have vi ≺ fi ≺ vi+1 and σ(fivi) = σ(fivi+1) = pd. Furthermore, the fixation gadget
contributes 4F + 3 vertices and (ℓ + 4)F + ℓ + 2 edges to the size of I.

Proof sketch. Towards establishing vi ≺ fi ≺ vi+1, one can show that fi ≺ vi would
prevent fi from seeing vi+1 on any page: As fi ≺ vi implies fi ≺ bi+1 ≺ vi+1 ≺ ai+1 and
we have the edge bi+1ai+1 on any page except pd, only visibility on page pd would still be
possible. However, the edges on the page pd prevent visibility to vi+1 for any spine position
left of vi. By symmetric arguments, we can obtain that vi+1 ≺ fi would prevent vi from
seeing fi. Using again the fact that we have the edge biai on any page except pd, in concert
with the relation vi ≺ fi ≺ vi+1 shown above and the edges viai and bi+1vi+1 on the page pd,
one can deduce that σ(fivi) = σ(fivi+1) = pd must hold. Finally, the bound on the size of
the gadget can be obtained by a close analysis of the construction. ◀

Lemma 4.1 tells us that we can restrict the feasible positions for fi to a pre-defined set of
consecutive intervals by choosing suitable positions for vi and vi+1 in the spine order ≺H .
As the fixation gadget requires an additional page pd, we must ensure that the existence of
the (otherwise mostly empty) page pd does not violate the semantics of our reductions. In
particular, we will (have to) ensure that our full constructions satisfy the following property.

▶ Property 1. Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE that contains a fixation
gadget on F vertices {f1, . . . , fF }. In any solution ⟨≺G, σG⟩ to I and for every new edge
e ∈ Eadd with σ(e) = pd, we have e ∈ {fivi, fivi+1 | i ∈ [F]}.

T. Depian, S. D. Fink, R. Ganian, and M. Nöllenburg 12:7

d1 x1 d2 x2 dN+1 c1 dN+2 c2

c2 = (¬x1 ∨ x2 ∨ x3)

xN cM dN+M+1

cM = (¬x2 ∨ x4 ∨ x5)c1 = (x1 ∨ ¬x2 ∨ x3)

x1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cM

≺H

p¬1

p2

p¬2

p1

...

Figure 4 An overview of the created vertices and edges in our reduction. Green vertices represent
variables, blue vertices clauses, and red vertices the dummy vertices dq. Furthermore, we visualize
some of the edges in H that are created for the variable-vertices (left) and clause-vertices (middle
and right) to block visibility on the respective pages. If an edge is created due to the (non-)existence
of a literal in the clauses c1, c2, or cM it is indicated via a blue arc.

4.2 The Complete Reduction
Let φ = (X , C) be an instance of 3-Sat consisting of N variables X = {x1, . . . , xN } and M

clauses C = {c1, . . . , cM }, each consisting of three different and pairwise non-complementary
literals. The reduction constructs an instance I = (ℓ, G, H, ⟨≺, σ⟩) of SLE which represents
each variable xi and each clause cj of φ, respectively, by a corresponding vertex in H.
The linear order ≺H has the form x1 ≺ x2 ≺ . . . ≺ xN ≺ c1 ≺ . . . ≺ cM ; see Figure 4.
Furthermore, I contains two new vertices s and v. The vertex s is adjacent to all variable-
vertices and the construction will ensure that the page assignment for its incident edges
represents, i.e., selects, a truth assignment Γ for φ. The vertex v is adjacent to all clause-
vertices, and its purpose is to verify that the truth assignment satisfies all clauses. For the
following description of how this is achieved, we assume s ≺ v ≺ x1 as we will use a fixation
gadget to ensure that every solution ⟨≺, σ⟩ of I has this property.

To each variable xi, we associate two pages pi and p¬i corresponding to its possible truth
states. We ensure that s can see each variable-vertex only on its associated pages using
edges incident to dummy vertices dq with q ∈ [N + M + 1]. These dummy vertices are
distributed as in Figure 4. Hence, a page assignment for the edges incident to s induces a
truth assignment. Similar edges also ensure that v can see a clause-vertex cj only on the
pages that are associated to the negation of the literals the clause cj is composed of, see the
blue arcs in Figure 4 for an illustration. We defer the full construction to the full version [17].

We now ensure that s ≺ v ≺ x1 holds in every solution of I by using a fixation gadget on
two vertices, i.e., for F = 2. In particular, we set a3 ≺ d1, i.e., we place the fixation gadget at
the beginning of the spine, and identify s = f1 and v = f2. The spine order ≺H is then the
transitive closure of all the partial orders stated until now; see Figure 4. Finally, we add the
edge d1dN+M+1 and set σ(d1dN+M+1) = pd to ensure that our construction has Property 1.

Regarding the correctness of our reduction, we make the following observation. If an
induced truth assignment does not satisfy a clause cj , then it must use the pages associated
to the negated literals of cj . Thus, the new edge vcj will cross another edge no matter which
page we use. However, if a clause cj is satisfied, we can find a page for the edge vcj that does

GD 2024

12:8 The Parameterized Complexity Of Extending Stack Layouts

d1 x1 d2 x2 c1 d5 c2 d6d3 x3 d4

s

b1 v1 a1 b2 v2 a2 b3 v3 a3

v

≺H

p1
p¬1

p2
p¬2

p3
p¬3

pd

Figure 5 An example of our reduction for the formula φ consisting of the clauses c1 =
(x1 ∨ ¬x2 ∨ x3) and c2 = (¬x1 ∨ x2 ∨ x3). The extension indicated in saturated colors induces
the truth assignment Γ(x1) = Γ(x2) = 1 and Γ(x3) = 0, which satisfies φ.

not introduce a crossing: the page associated to the negation of the literal that satisfies cj .
Consequently, if φ is satisfiable, then there exists an extension ⟨≺G, σG⟩. Similarly, the
page assignment of an extension ⟨≺G, σG⟩ induces a truth assignment Γ that satisfies φ.
An intuitive example of the reduction is provided in Figure 5, and we obtain the following
theorem.

▶ Theorem 4.2 (★). SLE is NP-complete even if we have just two new vertices and EH
add = ∅.

Finally, we want to remark that Theorem 4.2 is tight in the sense that SLE with only one new
vertex v and EH

add = ∅ can be solved in polynomial time. To that end, we can branch over all
O(n) possible spine positions where v can be placed. For each of these, the observation that
edges incident to the same vertex can never cross each other allows us to greedily assign a
new edge uv to the first page p where v can see u. Recall that we only add one new vertex v.
Hence, u is an old vertex whose spine position is known. Clearly, an extension exists if and
only if there exists a spine position for v such that our greedy page assignment can find a
page for all new edges.

▶ Remark 4.3. Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE with nadd = 1 and EH
add = ∅.

We can find an ℓ-page stack layout of G that extends ⟨≺, σ⟩ or report that none exists in
O(n · madd · |I|) time.

5 SLE Parameterized by Missing Vertices and Edges is in XP

In the light of Theorem 4.2, which excludes the use of the vertex+edge deletion distance as a
pathway to tractability, we consider parameterizing by the total number of missing vertices
and edges κ := nadd + madd. As our first result in this direction, we show that parameterizing
SLE by κ makes it XP-tractable. To this end, we combine a branching-procedure with the
fixed parameter algorithm for the special case obtained in Theorem 3.2.

▶ Theorem 5.1. Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE. We can find an ℓ-page
stack layout of G that extends ⟨≺, σ⟩ or report that none exists in O(|I|nadd+1

madd
madd) time.

Proof. We branch over the possible assignments of new vertices to the intervals in ≺H . As a
solution could assign multiple vertices to the same interval, we also branch over the order
in which the new vertices will appear in the spine order ≺G. Observe that ≺H induces

T. Depian, S. D. Fink, R. Ganian, and M. Nöllenburg 12:9

|V (H)| + 1 different intervals, out of which we have to choose nadd with repetition. Together
with the possible orders of the new vertices, we can bound the number of branches by
nadd! ·

(|V (H)|+nadd
nadd

)
. We can simplify this expression to

nadd! · (|V (H)| + nadd)!
nadd! · ((|V (H)| + nadd) − nadd)! = (|V (H)| + nadd)!

|V (H)|! = Πnadd
i=1 (|V (H)| + i) = O(|I|nadd).

In each branch, the spine order ≺G is fixed and extends ≺H . Hence, it only remains to check
whether ≺G allows for a valid page assignment σG. As each branch corresponds to an instance
of SLE where only edges are missing, we use Theorem 3.2 to check in O(madd

madd · |I|) time
whether such an assignment σG exists. The overall running time now follows readily. ◀

The running time stated in Theorem 5.1 not only proves that SLE is in XP when parameterized
by κ, but also FPT when parameterized by madd for constant nadd. However, common
complexity assumptions rule out an efficient algorithm parameterized by κ, as we show next.

6 SLE Parameterized by Missing Vertices and Edges is W[1]-hard

In this section, we show that SLE parameterized by the number κ of missing vertices and
edges is W[1]-hard. To show W[1]-hardness, we reduce from the Multi-colored Clique
(McC) problem. Here, we are given a graph GC , an integer k > 0, and a partition of V (GC)
into k independent subsets V1, . . . , Vk, and ask whether there exists a colorful k-clique
C ⊆ V (GC) in GC , i.e., a clique on k vertices that contains exactly one vertex of every set Vi,
i ∈ [k]. It is known that McC is W[1]-hard when parameterized by k [15]. In the following,
we will use Greek letters for the indices of the partition and denote with nα the number of
vertices in Vα, i.e., nα = |Vα|. Observe that

∑
α∈[k] nα = N with N = |V (GC)|. As we can

interpret the partitioning of the vertices into V1, . . . , Vk as assigning to them one of k colors,
we will call a vertex vi

α with α ∈ [k] and i ∈ [nα] a vertex with color α. Our construction
will heavily use the notion of a successor and predecessor of a vertex in a given spine order ≺.
For a vertex u, the function succ(≺, u) returns the successor of u in the spine order ≺, i.e.,
the consecutive vertex in ≺ after u. Note that succ(≺, u) is undefined if there is no vertex
v ∈ V (G) with u ≺ v. We write succ(u) if ≺ is clear from context. The predecessor function
pred(≺, u) is defined analogously. In the following, we first give an overview of and intuition
behind our reduction in Section 6.1, before we show its correctness in Section 6.2. Note that
the full details of the construction can be found in the full version [17]. Furthermore, as
in the reduction from Section 4, we will allow multi-edges in the graph H to facilitate the
presentation of the reduction. The procedure for removing multi-edges by distributing the
individual edges over auxiliary vertices is also detailed in the full version [17].

6.1 An Overview of the Construction
Let (GC , k, (V1, . . . , Vk)) be an instance of McC. We will construct an SLE instance
(ℓ, G, H, ⟨≺, σ⟩) parameterized by κ that will fulfill two crucial properties to ensure its
correctness. While, at the time of stating the property, our construction might not yet fulfill
it, we show in Section 6.2 that in the end it indeed has the desired properties.

First, we define the base layout of our reduction. In the base layout, we create the N+2k+3
vertices {uj

α | α ∈ [k], j ∈ [nα + 1]0} ∪ {u0
0, u0

⊥, u1
⊥} in H. Note that for each original vertex

vi
α ∈ V (GC), we have a copy ui

α. We will refer to the vertices u0
0, u0

⊥, and u1
⊥ as dummy

vertices and set, for ease of notation, ⊥ = k + 1 and n⊥ = 1. The vertices are placed on the
spine based on their color α and index i; see Figure 6. Finally, observe that succ(ui

α) = ui+1
α

for every vi
α ∈ V (GC). Furthermore, every vertex vi

α ∈ V (GC) induces the interval [ui
α, ui+1

α]

GD 2024

12:10 The Parameterized Complexity Of Extending Stack Layouts

u0
0

≺H

u0
1 u1

1 u2
1 un1

1 u0
2 u1

2 unk+1
k

u0
⊥ u1

⊥un1+1
1 u

nk−1+1
α u1

k unk

k

Figure 6 The base layout of our reduction. We use colors to additionally differentiate vertices
that originate from different vertex sets Vα, for α ∈ [k], and the dummy vertices u0

0, u0
⊥ and u1

⊥.

u0
γ u1

γ u
nγ+1
γ u0

γ+1

≺H

(a)

ui
α ui+1

α

(b)

ui
α ui+1

α

≺H

u1
β uj

β uj+1
β

u0
α u1

α unα+1
α u0

α+1

u0
α u1

α u
nβ+1
β u0

β+1unα+1
α

(c)

Figure 7 Edges of H that model the adjacency given by the edge e = vi
αvj

β ∈ E(GC). All of
these edges are placed on the page pe. Intuitively, we span the intervals induced (a) by all vertices
for each color γ ∈ [k] \ {α, β} and (b) by vertices of the colors α and β that are not incident to e,
here visualized for the color α. (c) Furthermore, we create a tunnel that connects ⋎(vi

α) with ⋎(vj
β).

The gray edges in (c) are from (a) and (b).

in ≺H , which we denote with ⋎(vi
α). The equivalence between the two problems will be

obtained by adding a k-clique to G that consists of the k new vertices X = {x1, . . . , xk}.
Placing xα ∈ X in ⋎(vi

β) indicates that vi
β will be part of the colorful k-clique in GC , i.e., we

will have the equivalence ui
α ≺ xα ≺ succ(≺H , ui

α) p. d.⇐⇒ xα is placed in ⋎(vi
α) ⇐⇒ vi

α ∈ C
between a solution ⟨≺G, σG⟩ to SLE and a solution C to McC. To guarantee that C is colorful,
i.e., contains exactly one vertex from each color, we will ensure the following property with
our construction.

▶ Property 2. In a solution ⟨≺, σ⟩ to SLE we have u0
α ≺ xα ≺ u0

α+1 for every α ∈ [k].

To establish the correctness of our reduction, we have to ensure two things. First, we
have to model the adjacencies in GC . In particular, two new vertices xα and xβ , with α < β,
should only be placed in intervals induced by vertices adjacent in GC . We enforce this
by adding for every edge e = vi

αvj
β ∈ E(GC) a page pe. On this page pe, we create the

following edges in H; see also Figure 7 for a visualization. Firstly, we create for every color
γ ∈ [k]\{α, β} an edge that spans exactly the intervals induced by vertices of color γ, thereby
intuitively blocking visibility to any interval induced by a vertex of a color different to α

and β; see Figure 7a. Secondly, we create up to two edges that span all intervals induced
by vertices of color α except ⋎(vi

α); see Figure 7b. We do so similarly for color β. These
edges in concert with a tunnel that we create on page pe, see Figure 7c, allow us to place
the edge xαxβ ∈ E(G) in the page pe if and only if xα is placed in ⋎(vi

α) and xβ in ⋎(vj
β).

More formally, our construction will ensure the following property.

▶ Property 3. Let ⟨≺, σ⟩ be a solution to an instance of SLE that fulfills Property 2 and
for which we have e = vi

αvj
β ∈ E(GC), 1 ≤ α < β ≤ k, and xα, xβ ∈ X . If σ(xαxβ) = pe

then xα is in ⋎(vi
α) and xβ is in ⋎(vj

β).

Second, we have to ensure that we select exactly one vertex vi
α ∈ Vα for every color

α ∈ [k]. In particular, the new vertex xα should only be placed in intervals that are induced
by vertices from Vα. To this end, we modify H to include a fixation gadget on F = k vertices

T. Depian, S. D. Fink, R. Ganian, and M. Nöllenburg 12:11

by re-using some vertices of the base layout. Most importantly, we identify vα = u0
α for every

α ∈ [k + 1] and fα = xα for every α ∈ [k]; see the full version [17] for details. As the whole
base layout thereby forms the fixation gadget, our construction trivially satisfies Property 1.

6.2 Bringing It Together: Showing Correctness of the Reduction
With the overview of the construction and the intuition behind the reduction settled, we now
proceed to show its correctness in Theorem 6.4. In the proof, we make use of Properties 2
and 3. Therefore, on our path to obtain Theorem 6.4, we first have to show that our
construction fulfills them. Recall that Property 2 is defined as follows.

▶ Property 2. In a solution ⟨≺, σ⟩ to SLE we have u0
α ≺ xα ≺ u0

α+1 for every α ∈ [k].

When incorporating the fixation gadget on F = k vertices in our construction, we identified
vα = u0

α and fα = xα for every α ∈ [k]. Similarly, we identified vF +1 = u0
k+1. The

fixation gadget now guarantees thanks to Lemma 4.1 that we have vα ≺G fα ≺G vα+1, i.e.,
u0

α ≺ xα ≺ u0
α+1, in any solution ⟨≺G, σG⟩. Hence, we can observe the following.

▶ Observation 6.1. Our instance I of SLE fulfills Property 2.

Recall that Lemma 4.1 furthermore tells us that we have in any solution ⟨≺G, σG⟩ the page
assignment σ(xαu0

α) = σ(xαu0
α+1) = pd for every α ∈ [k]. As we have by Property 2 u0

α ≺
xα ≺ u0

α+1 and furthermore by the construction of the fixation gadget σH(pred(u0
α)u0

α) =
σH(u0

αsucc(u0
α)) = pd for every α ∈ [k], we cannot have in ⟨≺G, σG⟩ u0

α ≺ xα ≺ succ(≺H , u0
α)

or pred(≺H , u0
α+1) ≺ xα ≺ u0

α+1, as this would introduce a crossing on page pd. As we
have in ≺H the equality succ(u0

α) = u1
α and pred(u0

α+1) = unα+1
α for every α ∈ [k], we can

strengthen Property 2 and obtain the following.

▶ Corollary 6.2. In a solution ⟨≺, σ⟩ to SLE we have u1
α ≺ xα ≺ unα+1

α for every α ∈ [k].

Finally, we now show that our construction fulfills Property 3, which was defined as follows.

▶ Property 3. Let ⟨≺, σ⟩ be a solution to an instance of SLE that fulfills Property 2 and
for which we have e = vi

αvj
β ∈ E(GC), 1 ≤ α < β ≤ k, and xα, xβ ∈ X . If σ(xαxβ) = pe

then xα is in ⋎(vi
α) and xβ is in ⋎(vj

β).

▶ Lemma 6.3. Our instance I of SLE fulfills Property 3.

Proof. First, recall that we made Observation 6.1, i.e., our construction fulfills Property 2.
Let ⟨≺G, σG⟩ be a solution to SLE with σ(xαxβ) = pe, for e = vi

αvj
β ∈ E(GC), 1 ≤ α < β ≤ k.

Corollary 6.2 tells us that u1
α ≺ xα ≺ unα+1

α and u1
β ≺ xβ ≺ u

nβ+1
β holds. Corollary 6.2 also

holds for any new vertices xγ and xδ with γ, δ ∈ [k] \ {α, β} and γ ̸= δ. Furthermore, we
have the edges u1

γu
nγ +1
γ and u1

δunδ+1
δ on page pe. Hence, all new edges on page pe must be

among new vertices placed in intervals induced by vertices of color α or β.
Now assume that we have u1

α ⪯ xα ⪯ ui
α. Using σH(u1

αui
α) = pe together with u1

α ⪯ xα ⪯
ui

α ≺ xβ , we derive that u1
α ⪯ xα ⪯ ui

α results in a crossing on page pe. Hence, u1
α ⪯ xα ⪯ ui

α

cannot hold. Now assume that we have ui+1
α ⪯ xα ⪯ unα+1

α . From σH(ui+1
α unα+1

α) = pe

and ui+1
α ⪯ xα ⪯ unα+1

α ≺ xβ we get that ui+1
α ⪯ xα ⪯ unα+1

α results in a crossing on
page pe. Hence, ui+1

α ⪯ xα ⪯ unα+1
α cannot hold. Since we can exclude u1

α ⪯ xα ⪯ ui
α and

ui+1
α ⪯ xα ≺ unα+1

α by the construction of the tunnel on page pe, we can derive that xα must
be placed in ⋎(vi

α). As similar arguments can be made for xβ , we can conclude that we get
a crossing on page pe unless xα is placed in ⋎(vi

α) and xβ in ⋎(vi
β). ◀

GD 2024

12:12 The Parameterized Complexity Of Extending Stack Layouts

▶ Theorem 6.4 (★). SLE parameterized by the number κ of missing vertices and edges is
W[1]-hard.

Proof sketch. Let (GC , k, (V1, . . . , Vk)) be an instance of McC with N = |V (GC)| and
M = |E(GC)| and let I = (ℓ, G, H, ⟨≺, σ⟩) be the instance of SLE parameterized by the
number κ of missing vertices and edges created by our construction described above. Closer
analysis reveals that the size of I is bounded by O(N + Mk + k2), and we have κ = 3k +

(
k
2
)

as nadd = k and madd =
(

k
2
)

+ 2k; recall that the fixation gadget contributes 2k new edges.
Towards arguing correctness, assume that (GC , k, (V1, . . . , Vk)) contains a colorful k-

clique C. We construct a solution to I by, for every new vertex xα ∈ X , considering the
vertex vi

α ∈ C and placing xα immediately to the right of the copy ui
α of vi

α in H. The fact
that C is a clique then guarantees that, for each edge e ∈ E(GC [C]), there exists the page pe

in which the corresponding edge e′ ∈ E(G[X]) can be placed in. For the remaining edges
from the fixation gadget, we can use the page assignment from Lemma 4.1.

For the converse (and more involved) direction, assume that SLE admits a solution
⟨≺G, σG⟩. By Property 2, we have that each xα ∈ Vadd must be placed between u0

α and u0
α+1.

Moreover, our construction together with the page assignment forced by Lemma 4.1 guarantees
that xα is placed between precisely one pair of consecutive vertices uiα

α and uiα+1
α , for some

iα ∈ [nα]; recall Corollary 6.2. Our solution C to the instance of McC will consist of the
vertices viα

α , i.e., exactly one vertex per color α. Moreover, each new edge xαxβ ∈ E(G[X])
must be placed by σG on some page, and as our construction satisfies Properties 1 and 3,
this page must be one that is associated to one edge e = viα

α v
iβ

β of GC . Property 3 now also
guarantees that this page assignment enforces that xα and xβ are placed precisely between
the consecutive vertices uiα

α and uiα+1
α and u

iβ

β and u
iβ+1
β of H, respectively. This means

that the vertices in C are pairwise adjacent, which implies that C is a colorful k-clique. ◀

Figure 8 shows an example of the reduction for a small graph GC with three colors. Since in
a stack layout constructed by our reduction each line perpendicular to the spine intersects a
constant number of edges, see also Figure 8, we also obtain:

▶ Corollary 6.5. SLE parameterized by the number κ of missing vertices and edges and the
page width ω of the given layout, i.e., by κ + ω, is W[1]-hard.

7 Adding the Number of Pages as Parameter for SLE

In this section, we complete the landscape of Figure 2 by showing that SLE becomes fixed-
parameter tractable once we add ℓ to the parameterization considered by Corollary 6.5. We
will make use of the following concepts.

Consider a page p of a stack layout ⟨≺, σ⟩ of G and recall that we can interpret it as a
plane drawing of the graph G′ with V (G′) = V (G) and E(G′) = {e ∈ E(G) | σ(e) = p} on
a half-plane, where the edges are drawn as (circular) arcs. A face on the page p in ⟨≺, σ⟩
coincides with the notion of a face in the drawing (on the half-plane p) of G′. This also
includes the definition of the outer face. See Figure 9 for a visualization of this concept
and observe that we can identify every face, except the outer face, by the unique edge
e = uv ∈ E(G) with u ≺ v and σ(e) = p that bounds it from upwards.

Let Vinc ⊆ V (H) be the vertices of H that are incident to new edges, i.e., Vinc := {u ∈
V (H) | there is an edge e = uv ∈ Eadd}. The size of Vinc is upper-bounded by 2madd. We
will define an equivalence class on the intervals of ≺H based on the location of the vertices
from Vinc. Consider the two intervals [u1, v1] and [u2, v2] defined by the old vertices u1, v1, u2
and v2, respectively. These two intervals are in the same equivalence class if and only if

T. Depian, S. D. Fink, R. Ganian, and M. Nöllenburg 12:13

u0
0

≺H

u0
1 u1

1 u3
1

x1

u2
1 u0

2 u1
2 u3

2u2
2 u0

3 u1
3 u3

3u2
3 u0

⊥ u1
⊥u4

1

v11

v21

v31

v12

v22
v13 v23

pv2
1v

2
2

pv3
1v

2
3

pv1
2v

2
3

pv2
2v

1
3

pv2
2v

2
3

x2 x3

pd

V1

V2

V3GC

pv1
1v

1
2

pv1
1v

1
3

pv1
2v

1
3

Figure 8 An instance (GC , 3, (V1, V2, V3)) of McC (top) and the SLE instance resulting from
our construction (bottom). Colors indicate (correspondence to) the partition. The extension ⟨≺, σ⟩
indicated in saturated colors induces the colorful 3-clique C = {v1

1 , v1
2 , v1

3} in GC . The edges in
GC [C] and their corresponding pages are highlighted in red.

{w ∈ Vinc | w ⪯ u1} = {w ∈ Vinc | w ⪯ u2} and {w ∈ Vinc | v1 ⪯ w} = {w ∈ Vinc | v2 ⪯ w}
holds. Each equivalence class, which we call super interval, consists of a set of consecutive
intervals delimited by (up to) two old vertices; see Figure 10. Note that the first and last
super interval are defined by a single vertex v ∈ Vinc. The number of super intervals is
bounded by 2madd + 1. Furthermore, for a given ≺G, we define ≺G\H to be its restriction to
new vertices, i.e., for every two vertices u, v ∈ Vadd we have that u ≺ v implies u ≺G\H v.

The Algorithm. With the above concepts at hand, we can now describe our algorithm. It
consists of a branching step, where we consider all possible page assignments for the new
edges, all relative orders among the new vertices, all their possible assignments to super
intervals, and all distances new edges can have from the outer face. In the following, we show
that we can verify in polynomial-time whether a branch can be extended to a solution ⟨≺, σ⟩
or not. The core of our algorithm is a dynamic program that we apply in each branch.

▶ Lemma 7.1 (★). Given an instance I = (ℓ, G, H, ⟨≺, σ⟩) of SLE, (i) a page assignment σG

for all edges, (ii) an order ≺G\H in which the new vertices will appear along the spine,
(iii) for every new vertex v ∈ Vadd an assignment to a super interval, and (iv) for every
new edge e an assigned distance ωe to the outer face with respect to H and ⟨≺, σ⟩. In
O(nadd · madd · |I|) time we can compute an ℓ-page stack layout of G that extends ⟨≺, σ⟩ and
respects the given assignments (i)–(iv) or report that no such layout exists.

GD 2024

12:14 The Parameterized Complexity Of Extending Stack Layouts

≺

outer face

uv

u vw x

Figure 9 A stack layout ⟨≺, σ⟩ and the faces on page p. Note that each edge has the same color
as the face it identifies.

a b
≺H

c d e f g

[[b, e]]

Figure 10 Visualization of super intervals. Each color represents one super interval. Vertices
from Vinc are marked in green.

Proof sketch. We first observe that assignments (i)–(iv) fix everything except for the actual
position of the new vertices within their super interval. Especially, assignment (i) allows us to
check whether an edge e ∈ EH

add incident to two old vertices crosses any old edge or another
new edge from EH

add. Furthermore, assignments (i) and (ii) allow us to check whether two
new edges e = ua, e′ = vb ∈ Eadd with u, a, v, b ∈ Vadd will cross. Adding assignment (iii),
we can also check this for new edges with some endpoints in V (H), i.e., extend this to all
u, a, v, b ∈ V (G). If the assignments imply a crossing or contradict each other, we can directly
return that no desired layout exists. These checks can be performed in O(nadd

2 + madd · |I|)
time. It remains to check whether there exists a stack layout in which no edge of Eadd \ EH

add
intersects an old edge. This depends on the exact intervals new vertices are placed in.

To do so, we need to assign new vertices to faces such that adjacent new vertices are in
the exact same face and not two different faces with the same distance to the outer face. We
will find this assignment using a dynamic program that models whether there is a solution
that places the first j new vertices (according to ≺G\H) within the first i intervals in ≺H .
When placing vertex vj+1 in the ith interval, we check that all preceding neighbors are visible
in the faces assigned by (iv). When advancing to the interval i + 1, we observe that when we
leave a face, all edges with the same or a higher distance to the outer face need to have both
endpoints placed or none. We thus ensure that for no edge only one endpoint has been placed;
see also Figure 11. These checks require O(madd) time for each of the O(nadd · |V (H)|)
combinations of j and i. Once we reach the interval |V (H)| + 1 and have successfully placed
all nadd new vertices, we know that there exists an ℓ-page stack layout of G that extends
⟨≺, σ⟩ and respects the assignments. Finally, by applying standard backtracing techniques,
we can extract the spine positions of the new vertices to also obtain the layout. ◀

We observe that there are O(ℓmadd · nadd! · madd
nadd · ωmadd) different possibilities for assign-

ments (i)–(iv). Applying Lemma 7.1 to each of these, we get the following theorem.

i
(a)

≺G

(b)

eeeeeeeeeeeeeeeee
≺G

i

eeeeeeeeeeeeeeeee

Figure 11 Illustration of advancing from the ith interval, marked in blue, to the interval i + 1.
In (a) and (b), we leave the green face and there exists an edge e ∈ Eadd, marked in orange, with
the same distance to the outer face as the green face. However, in (a), both end points of the edge e

have already been placed, whereas in (b) only one has, which implies a crossing.

T. Depian, S. D. Fink, R. Ganian, and M. Nöllenburg 12:15

▶ Theorem 7.2 (★). Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE. We can find an ℓ-page
stack layout of G that extends ⟨≺, σ⟩ or report that none exists in O(ℓmadd · nadd! · madd

nadd ·
ωmadd · (nadd · madd · |I|)) time.

8 Concluding Remarks

Our results provide the first investigation of the drawing extension problem for stack layouts
through the lens of parameterized algorithmics. We show that the complexity-theoretic
behavior of the problem is surprisingly rich and differs from that of previously studied
drawing extension problems. One prominent question left for future work is whether one
can still achieve fixed-parameter tractability for SLE when parameterizing by κ + ℓ, thus
generalizing Theorem 7.2. As our final result, we show that this is indeed possible at least in
the restricted case where no two missing vertices are adjacent, as we can then greedily assign
the first “possible” interval to each vertex that complies with assignment (i)–(iii).

▶ Theorem 8.1 (★). Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE where G[Vadd] is an
independent set. We can find an ℓ-page stack layout of G that extends ⟨≺, σ⟩ or report that
none exists in O(ℓmadd · nadd! · madd

nadd · (madd|I|2)) time.

A further natural and promising direction for future work is to consider generalizing the
presented techniques to other types of linear layouts, such as queue layouts. Finally, future
work could also investigate the following generalized notion of extending linear layouts: Given
a graph G, the spine order for some subset of its vertices and the page assignment for some
subset of its edges, does there exist a linear layout of G that extends both simultaneously?

References
1 Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl, Maurizio

Patrignani, and Ignaz Rutter. Testing Planarity of Partially Embedded Graphs. ACM
Transactions on Algorithms, 11(4):1–42, 2015. doi:10.1145/2629341.

2 Patrizio Angelini, Ignaz Rutter, and T. P. Sandhya. Extending Partial Orthogonal Drawings.
In David Auber and Pavel Valtr, editors, Proc. 28th International Symposium on Graph
Drawing and Network Visualization (GD’20), volume 12590 of Lecture Notes in Computer
Science, pages 265–278. Springer, 2020. doi:10.1007/978-3-030-68766-3_21.

3 Patrizio Angelini, Ignaz Rutter, and T. P. Sandhya. Extending Partial Orthogonal Drawings.
Journal of Graph Algorithms and Applications, 25(1):581–602, 2021. doi:10.7155/jgaa.00573.

4 Michael Baur and Ulrik Brandes. Crossing Reduction in Circular Layouts. In Juraj Hromkovič,
Manfred Nagl, and Bernhard Westfechtel, editors, Proc. 30th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG’04), volume 3353 of Lecture Notes in
Computer Science, pages 332–343. Springer, 2004. doi:10.1007/978-3-540-30559-0_28.

5 Michael A. Bekos, Michael Kaufmann, Fabian Klute, Sergey Pupyrev, Chrysanthi N. Rafto-
poulou, and Torsten Ueckerdt. Four Pages Are Indeed Necessary for Planar Graphs. Journal
of Computational Geometry, 11(1):332–353, 2020. doi:10.20382/JOCG.V11I1A12.

6 Frank Bernhart and Paul C. Kainen. The Book Thickness of a Graph. Journal of Combinatorial
Theory, Series B, 27(3):320–331, 1979. doi:10.1016/0095-8956(79)90021-2.

7 Sujoy Bhore, Giordano Da Lozzo, Fabrizio Montecchiani, and Martin Nöllenburg. On the
Upward Book Thickness Problem: Combinatorial and Complexity Results. In Helen C.
Purchase and Ignaz Rutter, editors, Proc. 29th International Symposium on Graph Drawing
and Network Visualization (GD’21), volume 12868 of Lecture Notes in Computer Science,
pages 242–256. Springer, 2021. doi:10.1007/978-3-030-92931-2_18.

GD 2024

https://doi.org/10.1145/2629341
https://doi.org/10.1007/978-3-030-68766-3_21
https://doi.org/10.7155/jgaa.00573
https://doi.org/10.1007/978-3-540-30559-0_28
https://doi.org/10.20382/JOCG.V11I1A12
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1007/978-3-030-92931-2_18

12:16 The Parameterized Complexity Of Extending Stack Layouts

8 Sujoy Bhore, Giordano Da Lozzo, Fabrizio Montecchiani, and Martin Nöllenburg. On the
Upward Book Thickness Problem: Combinatorial and Complexity Results. European Journal
of Combinatorics, 110:103662, 2023. doi:10.1016/j.ejc.2022.103662.

9 Sujoy Bhore, Robert Ganian, Liana Khazaliya, Fabrizio Montecchiani, and Martin Nöllenburg.
Extending Orthogonal Planar Graph Drawings Is Fixed-Parameter Tractable. In Erin W.
Chambers and Joachim Gudmundsson, editors, Proc. 39th International Symposium on
Computational Geometry (SoCG’23), volume 258 of LIPIcs, pages 18:1–18:16. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.SOCG.2023.18.

10 Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized
Algorithms for Book Embedding Problems. In Daniel Archambault and Csaba D. Tóth,
editors, Proc. 27h International Symposium on Graph Drawing and Network Visualization
(GD’19), volume 11904 of Lecture Notes in Computer Science, pages 365–378. Springer, 2019.
doi:10.1007/978-3-030-35802-0_28.

11 Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized
Algorithms for Book Embedding Problems. Journal of Graph Algorithms and Applications,
24(4):603–620, 2020. doi:10.7155/jgaa.00526.

12 Tomasz Bilski. Embedding graphs in books: a survey. IEE Proceedings E (Computers and
Digital Techniques), 139(2):134, 1992. doi:10.1049/ip-e.1992.0021.

13 Guido Brückner and Ignaz Rutter. Partial and Constrained Level Planarity. In Philip N.
Klein, editor, Proc. 28th ACM-SIAM Symposium on Discrete Algorithms (SODA’17), pages
2000–2011. SIAM, 2017. doi:10.1137/1.9781611974782.130.

14 Fan R. K. Chung, Frank Thomson Leighton, and Arnold L. Rosenberg. Embedding Graphs in
Books: A Layout Problem with Applications to VLSI Design. SIAM Journal on Algebraic
Discrete Methods, 8(1):33–58, 1987. doi:10.1137/0608002.

15 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

16 Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Extending Upward Planar
Graph Drawings. Computational Geometry Theory and Applications, 91:101668, 2020. doi:
10.1016/j.comgeo.2020.101668.

17 Thomas Depian, Simon D. Fink, Robert Ganian, and Martin Nöllenburg. The Parameterized
Complexity of Extending Stack Layouts, 2024. doi:10.48550/arXiv.2409.02833.

18 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate Texts in Mathematics.
Springer, 2012.

19 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

20 Vida Dujmović and David R. Wood. On Linear Layouts of Graphs. Discrete Mathematics &
Theoretical Computer Science, Vol. 6 no. 2, 2004. doi:10.46298/dmtcs.317.

21 Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending
Partial 1-Planar Drawings. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
Proc. 47th International Colloquium on Automata, Languages and Programming (ICALP’20),
volume 168 of LIPIcs, pages 43:1–43:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPICS.ICALP.2020.43.

22 Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending
Nearly Complete 1-Planar Drawings in Polynomial Time. In Javier Esparza and Daniel Král’,
editors, Proc. 45th Mathematical Foundations of Computer Science (MFCS’20), volume
170 of LIPIcs, pages 31:1–31:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPICS.MFCS.2020.31.

23 Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber. Crossing-
Optimal Extension of Simple Drawings. In Nikhil Bansal, Emanuela Merelli, and James Worrell,
editors, Proc. 48th International Colloquium on Automata, Languages and Programming
(ICALP’21), volume 198 of LIPIcs, pages 72:1–72:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.72.

https://doi.org/10.1016/j.ejc.2022.103662
https://doi.org/10.4230/LIPICS.SOCG.2023.18
https://doi.org/10.1007/978-3-030-35802-0_28
https://doi.org/10.7155/jgaa.00526
https://doi.org/10.1049/ip-e.1992.0021
https://doi.org/10.1137/1.9781611974782.130
https://doi.org/10.1137/0608002
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.comgeo.2020.101668
https://doi.org/10.1016/j.comgeo.2020.101668
https://doi.org/10.48550/arXiv.2409.02833
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.46298/dmtcs.317
https://doi.org/10.4230/LIPICS.ICALP.2020.43
https://doi.org/10.4230/LIPICS.MFCS.2020.31
https://doi.org/10.4230/LIPICS.ICALP.2021.72

T. Depian, S. D. Fink, R. Ganian, and M. Nöllenburg 12:17

24 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki.
A Tight Subexponential-Time Algorithm for Two-Page Book Embedding. In Karl Bringmann,
Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, Proc. 51st International Colloquium
on Automata, Languages and Programming (ICALP’24), volume 297 of LIPIcs, pages 68:1–
68:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.ICALP.
2024.68.

25 Emden R. Gansner and Yehuda Koren. Improved Circular Layouts. In Michael Kaufmann
and Dorothea Wagner, editors, Proc. 14th International Symposium on Graph Drawing and
Network Visualization (GD’06), volume 4372 of Lecture Notes in Computer Science, pages
386–398. Springer, 2006. doi:10.1007/978-3-540-70904-6_37.

26 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

27 Christian Haslinger and Peter F. Stadler. RNA Structures with Pseudo-knots: Graph-
theoretical, Combinatorial, and Statistical Properties. Bulletin of Mathematical Biology,
61(3):437–467, 1999. doi:10.1006/bulm.1998.0085.

28 Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter. A Kuratowski-Type Theorem for Planarity of
Partially Embedded Graphs. Computational Geometry Theory and Applications, 46(4):466–492,
2013. doi:10.1016/j.comgeo.2012.07.005.

29 Yunlong Liu, Jie Chen, Jingui Huang, and Jianxin Wang. On Parameterized Algorithms for
Fixed-Order Book Thickness with respect to the Pathwidth of the Vertex Ordering. Theoretical
Computer Science, 873:16–24, 2021. doi:10.1016/J.TCS.2021.04.021.

30 Taylor L. Ollmann. On the Book Thicknesses of Various Graphs. In Proc. 4th Southeastern
Conference on Combinatorics, Graph Theory and Computing, volume 8, page 459, 1973.

31 Maurizio Patrignani. On Extending a Partial Straight-Line Drawing. In Patrick Healy and
Nikola S. Nikolov, editors, Proc. 13th International Symposium on Graph Drawing and Network
Visualization (GD’05), volume 3843 of Lecture Notes in Computer Science, pages 380–385.
Springer, 2005. doi:10.1007/11618058_34.

32 Maurizio Patrignani. On Extending a Partial Straight-Line Drawing. International Journal of
Foundations of Computer Science, 17(5):1061–1070, 2006. doi:10.1142/S0129054106004261.

33 Sergey Pupyrev. A Collection of Existing Results on Stack and Queue Numbers, 2023. Last
accessed: 2024-05-20. URL: https://spupyrev.github.io/linearlayouts.html.

34 Elena Stöhr. The pagewidth of trivalent planar graphs. Discrete Mathematics, 89(1):43–49,
1991. doi:10.1016/0012-365X(91)90398-L.

35 Elena Stöhr. A Trade-off between Page Number and Page Width of Book Embeddings of
Graphs. Information and Computation, 79(2):155–162, 1988. doi:10.1016/0890-5401(88)
90036-3.

36 Walter Unger. On the k-Colouring of Circle-Graphs. In Robert Cori and Martin Wirsing, editors,
Proc. 5th Symposium on Theoretical Aspects of Computer Science (STACS’88), volume 294 of
Lecture Notes in Computer Science, pages 61–72. Springer, 1988. doi:10.1007/BFB0035832.

37 Walter Unger. The Complexity of Colouring Circle Graphs (Extended Abstract). In Alain
Finkel and Matthias Jantzen, editors, Proc. 9th Symposium on Theoretical Aspects of Computer
Science (STACS’92), volume 577 of Lecture Notes in Computer Science, pages 389–400.
Springer, 1992. doi:10.1007/3-540-55210-3_199.

38 Martin Wattenberg. Arc Diagrams: Visualizing Structure in Strings. In Pak Chung Wong and
Keith Andrews, editors, Proc. 8th IEEE Information Visualization Conference (InfoVis’02),
pages 110–116. IEEE Computer Society, 2002. doi:10.1109/INFVIS.2002.1173155.

39 Avi Widgerson. The Complexity of the Hamiltonian Circuit Problem for Maximal Planar
Graphs. Technical Report 298, Princeton University, 1982.

40 Mihalis Yannakakis. Embedding Planar Graphs in Four Pages. Journal of Computer and
System Sciences, 38(1):36–67, 1989. doi:10.1016/0022-0000(89)90032-9.

GD 2024

https://doi.org/10.4230/LIPICS.ICALP.2024.68
https://doi.org/10.4230/LIPICS.ICALP.2024.68
https://doi.org/10.1007/978-3-540-70904-6_37
https://doi.org/10.1006/bulm.1998.0085
https://doi.org/10.1016/j.comgeo.2012.07.005
https://doi.org/10.1016/J.TCS.2021.04.021
https://doi.org/10.1007/11618058_34
https://doi.org/10.1142/S0129054106004261
https://spupyrev.github.io/linearlayouts.html
https://doi.org/10.1016/0012-365X(91)90398-L
https://doi.org/10.1016/0890-5401(88)90036-3
https://doi.org/10.1016/0890-5401(88)90036-3
https://doi.org/10.1007/BFB0035832
https://doi.org/10.1007/3-540-55210-3_199
https://doi.org/10.1109/INFVIS.2002.1173155
https://doi.org/10.1016/0022-0000(89)90032-9

	1 Introduction
	2 Preliminaries
	3 SLE With Only Missing Edges is FPT
	4 SLE With Two Missing Vertices is NP-complete
	4.1 Restricting the Placement of New Vertices: The Fixation Gadget
	4.2 The Complete Reduction

	5 SLE Parameterized by Missing Vertices and Edges is in XP
	6 SLE Parameterized by Missing Vertices and Edges is W[1]-hard
	6.1 An Overview of the Construction
	6.2 Bringing It Together: Showing Correctness of the Reduction

	7 Adding the Number of Pages as Parameter for SLE
	8 Concluding Remarks

