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Abstract
Not every directed acyclic graph (DAG) whose underlying undirected graph is planar admits an
upward planar drawing. We are interested in pushing the notion of upward drawings beyond planarity
by considering upward k-planar drawings of DAGs in which the edges are monotonically increasing
in a common direction and every edge is crossed at most k times for some integer k ≥ 1. We show
that the number of crossings per edge in a monotone drawing is in general unbounded for the class of
bipartite outerplanar, cubic, or bounded pathwidth DAGs. However, it is at most two for outerpaths
and it is at most quadratic in the bandwidth in general. From the computational point of view,
we prove that upward-k-planarity testing is NP-complete already for k = 1 and even for restricted
instances for which upward planarity testing is polynomial. On the positive side, we can decide in
linear time whether a single-source DAG admits an upward 1-planar drawing in which all vertices
are incident to the outer face.
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1 Introduction

Graph drawing “beyond planarity” studies the combinatorial and algorithmic questions
related to representations of graphs where edges can cross but some crossing configurations
are forbidden. Depending on the forbidden crossing configuration, different beyond-planar
types of drawings can be defined including, for example, RAC, k-planar, fan planar, and
quasi planar drawings. See [19,30,32] for surveys and books.
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13:2 The Price of Upwardness

While most of the literature about beyond planar graph drawing has focused on undirected
graphs (one of the few exceptions being [2,3] which studies RAC upward drawings), we study
upward k-planar drawings of acyclic digraphs (DAGs), i.e., drawings of DAGs where the
edges monotonically increase in y-direction and each edge can be crossed at most k times.
The minimum k such that a DAG admits an upward k-planar drawing is called its upward
local crossing number. We focus on values of k = 1, 2 and investigate both combinatorial
properties and complexity questions. Our research is motivated by the observation that
well-known DAGs that are not upward-planar, i.e., not upward 0-planar, do admit a drawing
where every edge is crossed at most a constant number of times; see, e.g., Figure 1.

(a) (b)

Figure 1 A graph that is not upward planar but admits an upward 1-planar drawing.

Our contribution.
A graph is an outerpath if it has a planar drawing in which each vertex is incident to
the outer face and the internal faces induce a path in the dual graph. Papakostas [35]
observed that there is a directed acyclic 8-vertex outerpath that is not upward-planar (see
Figure 3a). We strengthen this observation by showing that there exists a directed acyclic
fan (that is, a very specific outerpath) that has no upward-planar drawing (Proposition 1).
On the other hand, we show that every directed acyclic outerpath is upward 2-planar
(Theorem 9) and that the upward local crossing number is quadratic in the bandwidth
(Theorem 6). However, the upward local crossing number of bipartite outerplanar DAGs
(Theorem 2), bipartite DAGs with bounded pathwidth (Corollary 4), and cubic DAGs
(Proposition 5) is in general unbounded.
We show that upward 1-planarity testing is NP-complete, even for graph families where
upward planarity testing can be solved in polynomial time. These include: single-source
single-sink series-parallel DAGs with a fixed rotation system; single-source two-sink
series-parallel DAGs where the rotation system is not fixed; and single-source single-sink
DAGs without fixed rotation system that can be obtained from a K4 by replacing the
edges with series-parallel DAGs (Theorem 11).
Finally, following a common trend in the study of beyond planar graph representations,
we consider the outer model, in which all vertices are required to lie on a common face
while maintaining the original requirements [19,30, 32]. We prove that testing whether a
single-source DAG admits an upward outer-1-planar drawing can be done in linear time
(Theorem 13).

The details of omitted or sketched proofs can be found in the full version [1].

Related Work. A drawing of a graph is monotone if all edges are drawn monotone with
respect to some direction, e.g., a drawing is y-monotone or upward, if each edge intersects each
horizontal line at most once. The corresponding crossing number is introduced and studied
in [24,37]. Schaefer [36] mentions the upward crossing number and the local crossing number
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but not their combination. Schaefer [36, p. 64] also showed that a drawing with the minimum
number of crossings per edge can require incident edges that cross. The edges of the provided
4-planar example graph can be oriented such that the resulting directed graph admits an
upward 4-planar drawing. Thus, also an upward drawing that achieves the minimum local
crossing number can require incident edges that cross. Also, the so-called strong Hanani–
Tutte theorem carries over to directed graphs: Fulek et al. [24, Theorem 3.1] showed that
every undirected graph that has a monotone drawing where any pair of independent edges
crosses an even number of times also has a planar monotone drawing with the same vertex
positions. This implies that in any upward drawing of a graph that is not upward-planar
there must be a pair of independent edges that crosses an odd number of times.

Upward drawings of directed acyclic graphs have been studied in the context of (upward)
book embeddings. In that model the vertices are drawn on a vertical line (a spine) following
a topological order of the graph, while all edges are pointing upwards. To reduce the edge
crossings, edges are partitioned into the fewest number of crossing-free subsets (pages).
Studying upward book embeddings is a popular topic, which is usually centered around
determining the smallest number of pages for various graph classes [22,23,29,31,34] or deciding
whether a graph admits an upward drawing with a given number of pages [7, 8, 10, 11, 12].
Our model is equivalent to topological book embeddings [28,33], which are a relaxed version of
book embeddings in which edges are allowed to cross the spine. To the best of our knowledge,
earlier papers considered only the problem of minimizing the number of spine crossings,
whereas we want to bound the maximum number of edge crossings per edge (ignoring the
spine).

2 Preliminaries

A drawing Γ of a graph G maps the vertices of G to distinct points in the plane and the
edges of G to Jordan arcs. For a vertex v of G and a drawing Γ of G, let xΓ(v) and yΓ(v)
denote the x- and y-coordinates of v in Γ, respectively; when Γ is clear from the context, we
may omit it and simply use the notation x(v) and y(v). A face of Γ is a region of the plane
delimited by maximal uncrossed arc portions of the edges of G. The unique unbounded face
of Γ is its outer face, the other faces are its internal faces. An outer edge is one incident
to the outer face; all other edges are inner edges. The rotation of a vertex v in Γ is the
counterclockwise cyclic order of the edges incident to v. The rotation system of Γ is the set
of rotations of its vertices.

The drawing Γ is planar if no two of its edges cross; it is k-planar if each edge is crossed at
most k times. A graph is (k-)planar if it admits a (k-)planar drawing; it is outer (k-)planar
if it admits a (k-)planar drawing where all vertices are incident to the outer face.

A planar embedding E of a planar graph G is an equivalence class of planar drawings
of G, namely those that have the same set of faces. Each face can be described as a sequence
of edges and vertices of G which bound the corresponding region in the plane; each such
sequence is a face of G in the embedding E . A planar embedding E of a connected graph can
also be described by specifying the rotation system and the outer face associated with any
drawing of E .

Let Γ be a non-planar drawing of a graph G; the planarization of Γ is the planar drawing Γ′

of the planarized graph G′ obtained by replacing each crossing of Γ with a dummy vertex.
If Γ is 1-planar, the planarization can be obtained as follows. Let uv and wz be any two
edges that cross in Γ; they are replaced in Γ′ by the edges ux, xv, wx and xz, where x is
the dummy vertex. Two non-planar drawings of a graph G have the same embedding if their
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13:4 The Price of Upwardness

planarizations have the same planar embedding. An embedding E of G can also be described
by specifying the planarized graph G′ and one of its planar embeddings. A planar graph with
a given planar embedding is also called plane graph. An outerplane graph is a plane graph
whose vertices are all incident to the outer face. A fan is a maximal outerpath that contains
a vertex c that is adjacent to all other vertices; we call c the central vertex of the fan. A
2-tree is a planar graph that can be reduced to an edge by iteratively removing a degree-two
vertex that closes a 3-cycle. A series-parallel graph is a graph that can be augmented to a
2-tree by adding edges (and no vertices).

A (simple, finite) directed graph (digraph for short) G consists of a finite set V (G) of
vertices and a finite set E(G) ⊆ {(u, v) | u, v ∈ V (G), u ̸= v} of ordered pairs of vertices,
which are called edges. A source (resp. sink) of G is a vertex with no incoming (resp. no
outgoing) edges. A single-source graph is a digraph with a single source and, possibly, multiple
sinks. A digraph G is an st-graph if: (i) it is acyclic and (ii) it has a single source s and
a single sink t. An st-graph is a planar st-graph if it admits a planar embedding with s

and t on the outer face. We say that a drawing of a digraph G is upward if every (directed)
edge (u, v) of G is mapped to a y-monotone Jordan arc with y(u) < y(v). Clearly, a digraph
admits an upward drawing only if it does not contain a directed cycle. Therefore, we assume
for the rest of the paper that the input graph is a DAG, a directed acyclic graph. Such a
graph has a linear extension, i.e., a vertex order v1, . . . , vn such that, for any directed edge
(vi, vj), we have i < j. We say that a DAG is planar, outerplanar, or series-parallel if its
underlying undirected graph is planar, outerplanar, or series-parallel, respectively.

Let Γ be an upward drawing of a DAG G. By the upwardness, the rotation system of Γ
is such that for every vertex v of Γ the rotation of v has only one maximal subsequence of
outgoing (incoming) edges. We call such a rotation system a bimodal rotation system. An
upward embedding of a DAG G is an embedding of G with a bimodal rotation system. The
minimum k such that a digraph G admits an upward k-planar drawing is called its upward
local crossing number and denoted by lcr↑(G).

For any positive integer k, we use [k] as shorthand for {1, 2, . . . , k}. A path-decomposition
of a graph G = (V, E) is a sequence P = ⟨X1, . . . , Xℓ⟩ of subsets of V , called buckets, such
that (1) for each edge e ∈ E there is a bucket that contains both end vertices of e, and (2)
the set of buckets that contain a particular vertex v ∈ V forms a contiguous subsequence
of P . The width of a path-decomposition is one less than the size of the largest bucket. The
pathwidth of the graph G is the width of a path decomposition of G with the smallest width.

3 Lower Bounds

We start with a negative result that shows that even very special directed acyclic outerpaths
may not admit upward-planar drawings, thus strengthening Papakostas’ observation [35].

▶ Proposition 1. Not every directed acyclic fan is upward-planar.

Proof. Consider the 7-vertex fan F depicted in Figure 2a. Suppose for a contradiction that
F is upward planar, that is, F admits an upward planar drawing Γ. Let c be the central
vertex of F . We assume that c is placed at the origin. We say that a triangle of F is positive
(negative, respectively) if the corresponding region of the plane in Γ contains the point (ε, 0)
((−ε, 0), respectively) for a sufficiently small value ε > 0. The triangles that have one vertex
below c and one vertex above c (namely t1 = △cv1v2, t3 = △cv3v4, and t5 = △cv5v6) are
either positive or negative.
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If both t1 and t5 are positive, then one must contain the other in Γ, say, t1 contains t5;
see Figure 2b. But then vertices v3 and v4 must also lie inside t1. If both lie inside t5, then
the edge (v3, v2) intersects an edge of t5. So both must lie outside t5. But v4 lies on one hand
above v5 and on the other hand below c and, thus, below v6. So the edge (v4, c) intersects
the edge (v5, v6). (If t5 is contained in t1, the edge (c, v3) intersects the edge (v1, v2).)

By symmetry, not both t1 and t5 can be negative, so exactly one of t1 and t5 must be
negative, say, t1; see Figure 2c. Now first assume that t3 is positive. Due to edge (v3, v2),
vertex v3 must be outside t5, so t3 cannot be inside t5. On the other hand, t3 cannot
contain t5 because v4 is above v5. Hence t3 intersects t5. Finally, assume that t3 is negative.
Due to edge (v5, v4), vertex v4 must be outside t1, so t3 cannot be inside t1. On the other
hand, t3 cannot contain t1 because v3 is below v2. Hence t3 intersects t1. ◀

v1 v6

c

v2
v3

v4
v5

t1 t5t3

(a) The fan F .

v1

c

v2

v6

v5

v4
t5

t1

(b) Case: t5 is contained in t1.

v1

v6
c

v2

v3

v4

v5

t1

t5

t3

(c) A 1-planar upward drawing of F .

Figure 2 A directed acyclic fan F that does not admit a planar upward drawing.

By iteratively adding paths on every outer edge of an outerplanar but not upward-planar
DAG, we can construct outerplanar DAGs with an unbounded upward local crossing number.

▶ Theorem 2. For each ℓ ≥ 0, there is a bipartite outerplanar DAG Gℓ with nℓ = 8 · 3ℓ

vertices, maximum degree ∆ℓ = 2ℓ + 3, and upward local crossing number greater than ℓ/6,
which is in Ω(log nℓ) and Ω(∆ℓ).

Proof. The bipartite graph G0 in Figure 3a is not upward planar [35]. For ℓ ≥ 1, we
construct Gℓ from Gℓ−1 by adding a 3-edge path on every outer edge of the graph. Figure 3b
shows G2. The maximum degree of Gℓ is ∆ℓ = 2ℓ + 3. The number of vertices is nℓ =
8 +

∑ℓ
i=1 8 · 3i−1 · 2 = 8 · 3ℓ.

5 6

21 3 4

87

(a) G0.

5 6

21 3 4

87

(b) G2.

Figure 3 There is a family (Gℓ)ℓ≥0 of bipartite outerplanar graphs such that Gℓ has nℓ vertices,
maximum degree ∆ℓ, and upward local crossing number in Ω(∆ℓ) ∩ Ω(log nℓ).

Consider now an upward k-planar drawing Γ of Gℓ for some k. Since G0 is not upward
planar, there must be a pair of independent edges of G0 that crosses an odd number of times
in Γ. Observe that G0 has no upward planar drawing in which only the two inner edges
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13:6 The Price of Upwardness

cross an odd number of times, for otherwise the two cycles ⟨1, 2, 6, 5⟩ and ⟨3, 4, 8, 7⟩ would
intersect an odd number of times, which is impossible. Thus, in Γ there must be an outer
edge e of G0 that is crossed by an independent edge e′ of G0 an odd number of times. We
choose e′ to be an outer edge of G0, if possible.

We now determine a cycle C of Gℓ that is crossed by e an odd number of times and does
also not contain any end vertex of e. If e′ is an inner edge, then we take the outer path P of
G0 that connects the ends of e′ and does not contain e; this is not intersected by e due to our
choice of e′. Let C be the concatenation of P and e′. In this case C has length at most six.

If e′ is an outer edge, we do the following: We start with the path P of length three that
was added for e′. If P contains an edge that is crossed an odd number of times by e then
we replace e′ by such an edge and continue. More precisely, let e1 = e′ and initialize i = 1.
Let P1 be the path of length three that was added for e1. While Pi contains an edge that
is crossed an odd number of times by e, let ei+1 be such an edge, let Pi+1 be the path of
length three that was added for ei, and increase i by one. Since e is crossed at most k times,
this process stops at some i < k. Let C be the cycle that is composed of Pi and ei. In this
case C has length four.

Cycle C might cross itself. However, it divides the plane into cells. Since e crosses C an
odd number of times, it follows that the end vertices of e must be in different cells of the
plane. This means that not only e but also the ℓ edge-disjoint paths that were added on top
of e have to cross C. But C contains at most six edges, each of which can be crossed at most
k times. This is impossible if ℓ ≥ 6k. Hence, if there is an upward k-planar drawing then
ℓ < 6k, which means that k > ℓ/6. ◀

We now show that if we expand the graph class beyond outerplanar graphs, then we
get a lower bound on the upward local crossing number that is even linear in the number
of vertices. The graphs in our construction have pathwidth 2, as opposed to the graphs
in Theorem 2 whose pathwidth is logarithmic. Observe that a caterpillar, i.e., a tree that
can be reduced to a path by removing all degree-1 vertices, has pathwidth 1, and that the
pathwidth can increase by at most 1 if we add a vertex with some incident edges or subdivide
some edges.

▶ Theorem 3. For every k ≥ 1, there exists a DAG with Θ(k) vertices, maximum degree in
Θ(k), and pathwidth 2 that does not admit an upward k-planar drawing.

Proof. Let Gk be the graph consisting of the four vertices a, b1, b2, and c and the following
set of edges and degree-2 vertices (see also Figure 4):

edges (a, b1) and (a, b2);
for i ∈ [2] and j ∈ [3k + 1], a through-vertex at bi, i.e., a vertex d

(j)
i and edges (bi, d

(j)
i )

and (d(j)
i , c);

for j ∈ [6k + 1], a source below a, i.e., a vertex s(j) and edges (s(j), a) and (s(j), c);
for i ∈ [2] and j ∈ [4k + 1], a sink above bi, i.e., a vertex t

(j)
i and edges (bi, t

(j)
i ) and

(c, t
(j)
i ).

Clearly, Gk has O(k) vertices, and pathwidth 2, since G−c is a caterpillar and has pathwidth 1.
Assume that there was an upward k-planar drawing Γ of Gk. Up to renaming, we may

assume that y(b2) ≤ y(b1). Delete all but one of the through-vertices at b1 from the drawing;
in what follows, we write d1 for the one that we keep (it does not matter which one).

Among the 3k + 1 through-vertices d
(j)
2 at b2, there exists at least one for which the path

⟨b2, d
(j)
2 , c⟩ crosses none of the three edges in the path ⟨a, b1, d1, c⟩, for otherwise there would

be an edge with more than k crossings. Delete all other through-vertices at b2; in what
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a

b2

d1

d2

t1
t2

s

c

b1

(a)

a

b2

d1

d2

t2

s

Cb Ca

c

b1

(b)

Figure 4 A graph of pathwidth 2 (drawn upward) that does not have an upward k-planar drawing.
(a) We only show three of the Θ(k) vertices of each group. (b) Cycles Ca and Cb.

follows we write d2 for the one that we keep. Let a′ be the topmost intersection point of
(a, b1) and (a, b2) (possibly a′ = a). Since y(a) ≤ y(a′) < y(b2) ≤ y(b1) the curve Cb formed
by the two directed paths ⟨a′, bi, di, c⟩ (for i ∈ [2]) is drawn without crossing in Γ.

Curve Cb uses six edges, therefore among the 6k + 1 sources below a, there exists one,
call it s, for which edge (s, c) crosses no edge of Cb. Since y(s) < y(a), vertex s is outside Cb,
and so the entire edge (s, c) is outside Cb, except at the endpoint c. In particular, among
the three edges (d1, c), (d2, c), and (s, c) that are incoming at c, edge (s, c) is either leftmost
or rightmost (but cannot be the middle one). We assume here that (s, c) is rightmost, the
other case is symmetric. Write {p, q} = {1, 2} such that the left-to-right order of incoming
edges at c is (dp, c), (dq, c), (s, c). In Figure 4, we have p = 1 and q = 2.

Edge (s, a) is also outside Cb, except perhaps at endpoint a, since it uses smaller y-
coordinates. Let s′ be the topmost intersection point of (s, a) and (s, c). Then there are no
crossings in the curve Ca formed by the directed paths ⟨s′, a, bp, dp, c⟩ and ⟨s′, c⟩. By our
choice of p and q, vertex dq is inside Ca, and so is the entire path ⟨a′, bq, dq, c⟩, except at
the ends since it is part of Cb. In particular, bq is inside Ca, whereas, for j ∈ [4k + 1], t

(j)
q is

outside Ca due to y(c) < y(t(j)
q ). It follows that one of the four edges (a, bp), (bp, dp), (dp, c)

and (s, c) must be crossed at least k + 1 times by edges from bq to the sinks above it. Thus,
the drawing was not k-planar, a contradiction. ◀

The graphs that we constructed in the proof of Theorem 3 are not bipartite, but one
can make them bipartite by subdividing all edges once. This at best cuts the local crossing
number in half, increases the pathwidth by at most 1, and yields the following result.

▶ Corollary 4. There is a family of bipartite DAGs of constant pathwidth whose upward local
crossing number is linear in the number of vertices.

So far we needed graphs of unbounded maximum degree in order to enforce unbounded
upward local crossing number. We now show that, intrinsically, this is not necessary.

▶ Proposition 5. There are cubic DAGs whose upward local crossing number is at least
linear in the number of vertices.

GD 2024



13:8 The Price of Upwardness

Proof. The crossing number of a random cubic graph with n vertices is expected to be at
least cn2 for some absolute constant c > 0 [20], and thus there exist graphs yielding this
bound. By the pigeon-hole principle, such a graph contains an edge with Ω(n) crossings
among its Θ(n) edges. Impose arbitrary acyclic edge directions. ◀

4 Upper Bounds

The bandwidth bw(G) of an undirected graph G is the smallest positive integer k such that
there is a labeling of the vertices by distinct numbers 1, . . . , n for which the labels of every
pair of adjacent vertices differ by at most k.

▶ Theorem 6. The upward local crossing number of a DAG G with maximum degree ∆ is at
most ∆ · (2 bw(G) − 2) ≤ 4 bw(G)(bw(G) − 1), so it is in O(∆ · bw(G)) ⊆ O(bw(G)2).

Proof. Observe that the maximum degree ∆ of a graph G is bounded in terms of the
bandwidth of G; namely, ∆ ≤ 2 bw(G). Consider a linear extension of G. For every vertex v

of G, let y(v) be its index in the extension. Now consider a labeling of G corresponding to
the bandwidth. For every vertex v of G, let x(v) be label. Construct a drawing of G by
first placing every vertex v at the point (x(v), y(v)) and by then perturbing vertices slightly
so that the points are in general position. Adjacent vertices are connected via straight-line
segments.

It is easy to see that the drawing is upward since it is consistent with the linear extension.
Consider an arbitrary edge (u, v) with x(u) < x(v). Every edge that crosses (u, v) must have
its left endpoint in the interval [x(u) − bw(G) + 1, x(v) − 1]. Since x(v) − x(u) < bw(G),
there are at most 2 bw(G) − 2 such vertices distinct from u, each of which is incident to at
most ∆ edges. Hence, (u, v) has at most ∆ · (2 bw(G) − 2) crossings. ◀

For some graphs, a sublinear bound on the bandwidth is known, see [13, 21, 38]. This
gives upper bounds on the local crossing number of many graph classes (e.g., interval graphs,
co-compoarability graphs, AT-free graphs, graphs of bounded treewidth); we list only a few:

▶ Corollary 7. The following classes of DAGs have sublinear upward local crossing number:
Square k × k grids have bandwidth Θ(k) and ∆ = 4, hence their upward local crossing
number is in O(k) = O(

√
n).

Directed planar graphs with maximum degree ∆ have bandwidth O( n
log∆ n ) [13], hence

their upward local crossing number is in O( n·∆
log∆ n ).

We complement the negative result in Proposition 1 by showing that every directed
acyclic outerpath allows an upward 2-planar drawing. We start with a technical lemma on
fans.

▶ Lemma 8. Let c be the central vertex of a directed acyclic fan G, and let P = ⟨v1, . . . , vn−1⟩
be the path of the remaining vertices in G. Let P1, . . . , Pk be an ordered partition of P into
maximal subpaths such that, for every i ∈ [k], the edges between Pi and c either are all
directed towards c or are all directed away from c. Then there is an upward 2-planar drawing
of G with the following properties:
1. no edge incident to c is crossed;
2. vertex v1 has x-coordinate 1, the central vertex c and vn−1 have x-coordinate n − 1, and

the x-coordinates of v2, . . . , vn−2 are distinct values within {2, . . . , n − 2};
3. for all edges all x-coordinates of the curves are at most n − 1; all edges incident to c and

all edges of the subpaths P1, . . . , Pk are in the vertical strip between 1 and n − 1;
4. if P1 is a directed path, then the edge between P1 and P2 is crossed at most once.



P. Angelini et al. 13:9

v1

c

vn−1

vj

vi

vj−1

P1

P2

P3

P4

P5

(a) A directed fan G.
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(b) Upward drawing of G with at most two crossings per edge.

Figure 5 Upward 2-planar drawings of fans (Lemma 8). For t ∈ [k], we add the path Pt below c

(blue paths) or above c (green paths), going up and down as prescribed by the edge directions and
such that no edge incident to c is crossed. We maintain the property that all vertices of Pt are on
the outer face of the subgraph induced by Pt and c, except for possibly a last final part pointing
upward if Pt is below c or pointing downward if Pt is above c. See the shaded areas, e.g., the final
part ⟨vi, . . . , vj−1⟩ of P1. The edge connecting Pt and Pt+1 (red edges) might either cross the last
edge of Pt on the outer face (e.g., the edge of P1 between vi−1 and vi) or the edge connecting Pt−1

to Pt in order to reach the outer face. The latter may have been crossed once before (as (vj−1, vj)).

Proof. We place c at (n − 1, 0); then we place v1, v2, . . . , vn−1 above or below c depending
on the direction of the edges that connect them to c; see Figure 5 for an example.

For i ∈ [n − 2], we keep the invariant that, when we place vi, the leftward ray from vi

reaches the outer face of the current drawing after crossing at most one other edge, and that
this edge had been crossed at most once.

In order to choose appropriate y-coordinates, we maintain two values ymin and ymax
indicating the minimum and maximum y-coordinate of any so far drawn vertex. Consider
now a subpath P ′ ∈ {P1, . . . , Pk}. Let vh be the first and let vj−1 be the last vertex of P ′,
i.e., P ′ = ⟨vh, vh+1, . . . , vj−1⟩. We describe in detail the case that the edge from vh, . . . , vj−1
to c are directed towards c that is, vh must lie below c. The other case is symmetric. We
place vh at x-coordinate h and with a y-coordinate sufficiently below ymin. If h = j − 1 we
are done.

We now consider the cases j = n or (vj−1, vj−2) ∈ E. In that case, we place vh+1, . . . , vj−1
using x-coordinates h + 1, . . . , j − 1, going up and down as needed but remaining below the
x-axis. The edges are drawn such that all vertices of P ′ remain on the outer face of the
drawing. I.e., if we use straight-line edges, then, for i ∈ [n − 2], the slope of vivi+1 must be
less than the slope of vic. Since we go towards c, we can draw P ′ and the edges that connect
v1, v2, . . . , vn−1 to c without any crossings.

If j ̸= n and (vj−2, vj−1) ∈ E, then let i ∈ {h, . . . , j − 1} be the smallest index such
that the subpath ⟨vi, vi+1, . . . , vj−1⟩ is directed. In that case, we place vh+1, . . . , vi−1 at
x-coordinates h + 1, . . . , i − 1, going slightly up and down as in the case described above. Let
ymin be the smallest among the y-coordinates of all points placed so far.
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13:10 The Price of Upwardness

Then we place vi, vi+1, . . . , vj−1 in reverse order, i.e., at x-coordinates j − 1, j − 2, . . . , i.
Set y(vi) = ymin − γ and y(vj−1) = ymin − ε for some (large) γ > 0 and (small) ε > 0
such that vj−1 lies inside the triangle △vi−1vic (pale yellow in Figure 5b) if i > h and
within the triangle △ovic, with o = (0, 0) otherwise. (Observe that in the case i = h, we
already required that vi is sufficiently below ymin; this is now further specified here.) Draw
vi+1, . . . , vj−2 on the segment vivj−1. Now, if i > h then the vertex vj−1 can reach the outer
face via the edge (vi, vi−1) which was not crossed so far. If i = h then vj−1 is on the outer
face if P ′ = P1, otherwise it can reach the current outer face by crossing the edge (vh, vh−1).
This edge might have crossed one edge when it was initially drawn but so far no other edge.

Observe that when we draw the next maximal subpath, we place vj at (j, ymax + 1), i.e.,
in particular in the outer face of the current drawing. The edge from vj−1 to vj must be
directed towards vj since the orientation is acylic. Thus, we can draw the edge between vj−1
and vj upward with at most one crossing, causing at most a second crossing on (vh, vh−1). ◀

c1
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c4

c5
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F2
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F5

w5

w2
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(a) A directed outerpath G′.
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c3

c4

c5

x

w4

w2

e2u1

u4

e5

w5

f

(b) Upward drawing of G′ with at most two crossings per edge.

Figure 6 Example in- and output of our drawing algorithm (edge crossings due to Lemma 8 are
highlighted in yellow; other edge crossings are highlighted in orange).

Now we describe our construction for general outerpaths; see Figure 6.

▶ Theorem 9. Every directed acyclic outerpath admits an upward 2-planar drawing.

Proof. Without loss of generality, we can assume that the given outerpath is maximal: if the
outerpath has interior faces that are not triangles, we temporarily triangulate them using
additional edges, which we direct such that they do not induce directed cycles and which we
remove after drawing the maximal outerpath.

Let G′ be such a graph; see Figure 6a. Let c1, c2, . . . , ck be the vertices of degree at least 4
in G′ (marked red in Figure 6). These vertices form a path (light red in Figure 6); let them
be numbered along this path, which we call the backbone of G′. We assign every vertex v

that does not lie on the backbone to a neighboring backbone vertex; if v is incident to an
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inner edge, we assign v to the other endpoint of that edge. Otherwise v has degree 2 and is
incident to a unique backbone vertex via an outer edge, and we assign v to this backbone
vertex. For i ∈ [k], backbone vertex ci induces, together with the vertices assigned to it, a
fan Fi.

We draw the backbone in an x-monotone fashion. We start by drawing F1 with the
algorithm for drawing a fan as detailed in the proof of Lemma 8; see the leftmost gray box in
Figure 6b. Then, for i ∈ {2, . . . , k}, we set x(ci) to x(ci−1) plus the number of inner edges
incident to ci and we set y(ci) depending (i) on the y-coordinates of the two neighbors of ci

that have already been drawn (ci−1 and the common neighbor ui−1 of ci−1 and ci in Fi−1)
and (ii) on the directions of the edges that connect these vertices to ci; see, for example,
the placement of c5 in Figure 6b. Then we draw Fi with respect to the position of ci, again
using the algorithm from the proof of Lemma 8 with the following modifications. In general,
vertices in Fi that are adjacent to ci via an edge directed towards ci (resp. from ci) are
placed below (resp. above) all vertices in the drawings of F1, . . . , Fi; see the dark gray boxes
below (resp. above) c2, . . . , c5 in Figure 6b. If an edge of Fi connects two neighbors of ci one
of which lies above ci and one of which lies below ci, then we route this edge to the left of all
drawings of F1, . . . , Fi−1.

An exception to this rule occurs if ci and the common neighbor wi of ci−1 and ci in Fi

must be both above or both below ci−1 due to the directions of the corresponding edges. Let
ui−1 be the common neighbor of ci−1 and ci in Fi−1. We assume, without loss of generality,
that ci is above ci−1. Let P1 and P2 be the first and second maximal subpath from Lemma 8
applied to Fi, and let ei be the edge connecting P1 and P2. We distinguish two subcases.

If P1 is a directed path leaving wi, then we draw P1 above the edge ci−1ci and we draw
the edge ei straight, without going around all drawings of F1, . . . , Fi−1. In this case ei is
directed from P1 to P2. Hence, ei crosses the edge ui−1ci if ui−1ci is directed from ci to ui−1;
see the situation for c2 in Figure 6b. Note that ei may receive a second crossing when we
draw the remainder of Fi in the usual way.

Otherwise, that is, if P1 contains an edge directed towards the left endpoint wi of P1,
let f be the first such edge. We then place the part of P1 up to the first endpoint of f below
the edge ci−1ci; see w5 and f in Figure 6b. If the edge ui−1ci is directed towards ci, we draw
it between wi and the edge ci−1ci. Then it crosses the edge ci−1wi but no other edge. We
place the second endpoint of f below all vertices in V (F1) ∪ · · · ∪ V (Fi−1) and continue with
the remainder of Fi as usual.

In any case, if 1 < i < k, then the last vertex ui−1 of Fi−1 is connected to ci and ci−1 is
connected to the first vertex wi in Fi. These two edges may cross each other; see the crossings
highlighted in orange in Figure 6b. If the edge ci−1wi goes, say, up but the following outer
edges go down until a vertex vk below ci is reached, then the edge ci−1wi may be crossed a
second time by the edge vk−1vk; see the crossing labeled x on the edge c3w4 in Figure 6b.
But due to property 4 of Lemma 8, edge vk−1vk had been crossed at most once within its
fan. Also ci−1wi cannot have a third crossing. Thus, all edges are crossed at most twice. ◀

One can argue that every maximal pathwidth-2 graph can be generated from a maximal
outerpath by connecting some pairs of adjacent vertices using an arbitrary number of (new)
paths of length 2. In spite of the simplicity of this operation, we cannot hope to generalize
the above result to pathwidth-2 graphs; see the linear lower bound on the upward local
crossing number for such graphs stated in Theorem 3.
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5 Complexity of Testing

Here we prove that upward 1-planarity testing is NP-complete even for structurally simple
DAGs, both when a bimodal rotation system is fixed and when it is not fixed. We also show
that testing upward outer-1-planarity for single-source DAGs can be solved in linear time.

5.1 Testing Upward 1-Planarity
We first define a few gadgets; all of them are planar st-graphs. For positive integers b and
q, let a (b, q)-parallel be the parallel composition of b oriented paths each consisting of q

edges; see Figure 7a. For a positive integer p, let a (p)-gate be the parallel composition of an
oriented edge and a (p − 1, 2)-parallel; see Figure 7b. For positive integers h, q, and a, let
an (h, q, a)-chain consist of a series of h (q)-gates, followed by exactly one (a)-gate, followed
again by h (q)-gates; see Figure 7c.

(a) A (4, 3)-parallel. (b) A (4)-gate. (c) A (2, 5, 3)-chain.

Figure 7 Illustrations for the gadgets used in the construction of GA and of GB .

An instance of 3-Partition is a multiset I = {a1, a2, a3, . . . , ak} of positive integers such
that b = k/3 is an integer and

∑k
i=1 ai = W · b, with W integer. The 3-Partition problem

asks if there exists a partition of the set I into b 3-element subsets such that the sum of the
elements of each subset is exactly W . Since 3-Partition is strongly NP-hard [25], we may
assume that W is bounded by a polynomial in b.

We associate with a given instance I of 3-Partition two planar st-graphs GA and GB

defined as follows. Digraph GA is the parallel composition of (b − 1, W + 1, ai)-chains, one
for every i ∈ {1, . . . , k}. Digraph GB is an (b, q)-parallel, with q = W + (k − 3)(W + 1). Note
that the underlying undirected graphs of both GA and GB are series-parallel.

Let G be any digraph that contains the two subgraphs GA and GB defined above. Let
sA and tA (resp. sB and tB) be the two vertices of G that are the source and the sink of GA

(resp. GB). Let Γ be a 1-planar drawing of G and let ΓAB be the 1-planar drawing obtained
by restricting Γ to the nodes and edges of GA and GB. We say that GA and GB cross in
Γ if in ΓAB every sAtA-path (i.e., a path directed from sA to tA) crosses every sBtB-path.
See Figures 8a and 8b for examples of graph GA and GB that do not cross or cross in a
drawing of ΓAB , respectively.

▶ Lemma 10. Let I be an instance of 3-Partition and let GA and GB be the two planar
st-graphs associated with I. Let G be a digraph containing GA and GB as subgraphs such that
G has an upward 1-planar drawing if and only if GA crosses GB. There exists an upward
1-planar drawing Γ of G if and only if I admits a solution.

Proof sketch. We prove that if G admits an upward 1-planar drawing Γ, then Γ provides a
solution of instance I of 3-Partition. By hypothesis, GA and GB cross in Γ; see Figure 9.
Observe that only one path among the b paths of GB can traverse one (ai)-gate GA. Also,
every path of GB crosses all the (W + 1, b − 1, ai)-chains of GA. In particular, every path
of GB must cross at least three (ai)-gates since it has not enough edges to cross more than
k − 2 (W + 1)-gates. Also, if one path of GB crossed more than three (ai)-gates, then some
other path of GB that would cross at most two (ai)-gates. Therefore, every path π of GB
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Figure 8 Illustrations for the definition of crossing st-subgraphs. (a) and (b) Two planar st-graphs
GA and GB that do not cross, as witnessed by the two non-crossing dashed paths. (c) Two planar
st-graphs GA and GB that cross.

Table 1 A comparison between results in the literature about the complexity of testing upward
planarity and the results discussed in this paper about the complexity of testing upward 1-planarity.

Underlying
planar graph

Acyclic
orientation

Upward planarity Upward 1-planarity

fixed
embedding

variable
embedding

fixed
rotation
system

variable
rotation
system

Series-parallel

multi-source
multi-sink Polynomial [15, 18] NP-complete

Theorem 11
Case 1

NP-complete
Theorem 11

Case 3

single-source
single-sink

Trivially
polynomial

Trivially
polynomial

General graph

multi-source
multi-sink

Polynomial
[9]

NP-complete
[27] NP-complete

Corollary 12
NP-complete
Theorem 11

Case 2single-source
single-sink Polynomial [14]

must cross exactly three (ai)-gates and k − 3 (W + 1)-gates in Γ. Note that the number of
crossings of π with the three (ai)-gates is exactly W . It follows that if G has an upward
1-planar drawing then the instance I of 3-Partition admits a solution. Conversely, if the
instance I of 3-Partition admits a solution it is easy to construct an upward 1-planar
drawing ΓAB of GA and GB where GA and GB cross. ◀

▶ Theorem 11. Testing upward 1-planarity is NP-complete even in the following restricted
cases:
1. The bimodal rotation system is fixed, the DAG has exactly one source and exactly one

sink, the underlying graph is series-parallel.
2. The bimodal rotation system is not fixed, the DAG has exactly one source and exactly

one sink, the underlying planar graph is obtained by replacing the edges of a K4 with
series-parallel graphs.

3. The bimodal rotation system is not fixed, the underlying graph is series-parallel, there is
one source and two sinks.

Proof sketch. It is immediate to observe that upward 1-planarity testing is in NP, as one
can guess an upward 1-planar embedding and test it in polynomial time. In order to show
that the problem is NP-hard for the cases in the statement it suffices, by Lemma 10, to
exhibit digraphs that contain GA and GB as subgraphs and that admit upward 1-planar
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g9,1
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g9,5

g1,4

tB
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sBsA
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Figure 9 (a) Digraph GA (dark red) and a schematic representation of digraph GB where each
colored curve represents a directed path with W + (k − 3)(W + 1) edges. The corresponding
instance of 3-Partition is I = {1, 1, 1, 2, 2, 2, 2, 3, 4}, with b = 3 and W = 6. The 1-planar drawing
corresponds to the solution {1, 1, 4} (green path), {2, 2, 2} (blue path), and {1, 2, 3} (red path). The
drawing in (a) is not upward but it can be made upward by stretching it vertically as shown in (b),
where thick edges represent (q)-gates and the central white-filled edges represent (a)-gates.

drawings if and only if GA and GB cross in them. Let mA and mB be the number of edges
of GA and GB , respectively. Let a barrier be a planar st-graph consisting of a (d, 2)-parallel,
where d = mA + mB + 1. Note that neither GA nor GB can cross a barrier in such a way
that every edge is crossed at most once. The instances that we use for the cases listed in the
statement are depicted in Figure 10a (Case 1), Figure 10c (Case 2) and Figure 10e (Case 3),
where the thick edges represent barriers and GA and GB can be identified by their poles. As
shown in Figure 10b, Figure 10d, and Figure 10f an upward 1-planar drawing of such graphs
forces GA and GB to cross, hence, implies the hardness of computing such drawings. ◀

The following corollary is an immediate consequence of the argument used to prove the
second case in the statement of Theorem 11.

▶ Corollary 12. Testing upward 1-planarity is NP-complete for single source-single sink
DAGs with a fixed bimodal rotation system, whose underlying planar graph is obtained by
replacing the edges of a K4 with series-parallel graphs.

We conclude this section by remarking some differences between the complexity of upward
planarity testing and upward 1-planarity testing. When the bimodal rotation system is fixed,
upward planarity testing can be solved in polynomial time [9], whereas upward 1-planarity
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Figure 10 Some digraphs for the proof of Theorem 11. Thick black edges represent barriers.

testing is NP-hard (Theorem 11). Also, when the bimodal rotation system is not fixed and
the digraph has a constant number of sources and sinks, differently from upward 1-planarity
testing, upward planarity testing can again be solved in polynomial time [14]. On the other
hand, any digraph whose bimodal rotation system is not fixed, whose underlying graph is
series-parallel, and that has only one source and only one sink is always upward planar and
thus upward 1-planar. Indeed, adding an edge between any two vertices of the undirected
underlying series-parallel graph yields a planar graph (see, e.g., [17]). It follows that G can
be turned into a planar st-graph by connecting its source to its sink by an edge and hence it
is upward planar [26]. This discussion is summarized in Table 1.

5.2 Testing Upward Outer-1-Planarity
To complement the results of Section 5.1, we consider a restricted setting that has often been
studied in the “beyond planarity” literature to show the tractability of an otherwise NP-hard
problem. Namely, we describe how to test whether a single-source DAG admits an upward
outer-1-planar drawing, i.e., one that is both upward and outer-1-planar.

▶ Theorem 13. For single-source DAGs, upward outer-1-planarity can be tested in linear
time.

This section provides the main ideas behind this result; recall that all details can be
found in the full version [1]. In the following, let G be a single-source DAG. As a first step,
we characterize the single-source DAGs that admit an upward outer-1-planar drawing as
those that admit an outer-1-planar embedding whose planarization is acyclic. In particular,
this implies that we may treat the biconnected components of G independently, and we
therefore assume in the following that G is biconnected. We assume familiarity with the
SPQR-tree [17]. Note that, in the version of the SPQR-tree that we use, there are no Q-nodes.
Instead, skeletons contain both real and virtual edges.

Our testing algorithm builds on the results of Auer et al. [4, 5, 6] for testing outer-1-
planarity. A necessary condition is that the skeleton of each R-node is a K4 and the skeleton
of each P-node contains at most four virtual edges plus, possibly, one real edge. In a nutshell,
Auer et al. [5] show that there is a bijection between the outer-1-planar embeddings of a
biconnected graph G and certain (non-planar) embeddings of all skeletons of the SPQR-tree T
of G. These non-planar embeddings need to satisfy local conditions which state that every
virtual edge must have at least a part of it incident to the outer face, a virtual edge may only
receive a crossing if it belongs to a P-node and corresponds to an S-node, and if a virtual
edge receives a crossing, then the end of it that is not incident to the outer face, if any,
must correspond to a real edge of the graph. As an example consider the embeddings of the
skeletons of node ρ and λ in Figure 11. The shown embedding, where the segment of edge eρ
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Figure 11 Illustration for the necessary conditions that allow for an outer-1-planar embedding.

incident to u is not on the outer face, requires that the expansion graph of eρ starts with a
real edge (here the edge uv) at u. We note that in this case, the edge uv is in fact a real
edge in a neighboring S-node. Unlike the case of SPQR-trees and planar embeddings, the
embeddings of different skeleton cannot be combined independently; instead, there is also
a global condition that requires that no real edge receives crossings from two P-nodes. For
example, the embeddings of skel(ρ) and skel(λ) shown in Figure 11 both imply a crossing on
the edge uv and are therefore not compatible.

We want to restrict our attention to outer-1-planar embeddings whose planarization is
acyclic. For this, we orient the edges in our skeletons, where real edges are endowed with
their orientation in G and a virtual edge {u, v} is directed as (u, v) if its expansion graph
contains a directed path from u to v. Note that if the expansion graph of {u, v} contains
no directed paths between its poles, the virtual edge remains undirected. We then show
that, in order to obtain an outer-1-planar embedding whose planarization is acyclic, we
may only combine what we call acyclic embeddings of the skeletons, which do not already
locally produce cycles; see Figure 12 for an example. Conversely, we prove that if we choose
for each oriented skeleton an embedding that satisfies the local conditions and is acyclic,
and moreover, these choices also satisfy the global condition, then they together define an
outer-1-planar embedding of G whose planarization is acyclic, and hence admits an upward
drawing.

The algorithm therefore works as follows. Since each skeleton admits at most 12 embed-
dings that satisfy the local conditions [5], we can enumerate them and test for each of them
whether it is acyclic in total linear time. After this step, we have for each node µ of T a set Fµ
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Figure 12 Two embeddings of the skeleton of a P-node µ and the corresponding planarizations.
The planarization in (a) contains a directed cycle, the one in (b) does not. Thick arrowed edges
show the direction of the virtual edges; a double arrow indicates an undirected virtual edge.
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of candidate embeddings. It remains to choose for each node µ one embedding Eµ ∈ Fµ

such that the global condition is satisfied, i.e., no two P-nodes put crossings on the same
real edge. We say that such a choice of embeddings is consistent. To decide whether such
a choice exists, we construct a conflict graph H whose vertices are the embeddings of the
skeletons, each Fµ forms a clique and two embeddings of different P-nodes are connected by
an edge if and only if they put a crossing on the same real edge. Then a consistent choice
corresponds to an independent set in H whose size is the number of nodes of T . Since the
size of H is linear in the size of G and we can show that the treewidth of H is at most 36,
the existence of such an independent set can be tested in linear time [16]. We note that, if
the test succeeds, we can also construct the upward outer-1-planar embedding of G in the
same running time.

6 Conclusion

In this paper we initiated the study of upward k-planar drawings, that is, upward drawings of
directed acyclic graphs such that every edge is crossed at most k times for a given constant k.
We first gave upper and lower bounds for the upward local crossing number of various graph
families, i.e., the minimum k such that every graph from the respective family admits an
upward k-planar drawing. We strengthen these combinatorial results by proving that testing
a DAG for upward k-planarity is NP-complete even for k = 1. On the positive side, testing
upward outer-1-planarity for single source digraphs can be done in linear time. We conclude
the paper by listing some open problems that may stimulate further research.
1. Is there a directed outerpath that does not admit an upward 1-planar drawing?
2. Consider the class O∆ of outerplanar graphs (or even 2-trees) of maximum degree ∆. Is

there a function f such that every graph in O∆ admits an f(∆)-planar upward drawing?
3. In light of the lower bounds in Section 3, it is natural to consider graphs with a special

structure, in order to prove sublinear upper bounds on their (upward) local crossing
number. For example, Wood and Telle [39, Corollary 8.3] show that every (undirected)
graph of maximum degree ∆ and treewidth τ admits a (straight-line) drawing in which
every edge crosses O(∆2τ) other edges. Can the upward local crossing number be bounded
similarly by a function in ∆ and τ?

4. Do planar graphs of maximum degree ∆ have upward local crossing number O(f(∆)n1−ϵ)
for some function f and some constant ϵ > 0?

5. Can upward outer-1-planarity be efficiently tested for multi-source and multi-sink DAGs?
6. Investigate parameterized approaches to testing upward 1-planarity.
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