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Abstract
Edge bundling algorithms significantly improve the visualization of dense graphs by reducing the
clutter of many edges visible on screen by bundling them together. As such, bundling is often
viewed as a post-processing step applied to a drawing, and the vast majority of edge bundling
algorithms consider a graph and its drawing as input. Another way of thinking about edge bundling
is to simultaneously optimize both the drawing and the bundling. In this paper, we investigate
methods to simultaneously optimize a graph drawing and its bundling. We describe an algorithmic
framework which consists of three main steps, namely Filter, Draw, and Bundle. We then propose
two alternative implementations and experimentally compare them against the state-of-the-art
approach and the simple idea of drawing and subsequently bundling the graph. The experiments
confirm that bundled drawings created by our framework outperform previous approaches according
to standard quality metrics for edge bundling.
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1 Introduction

The majority of bundling algorithms consider both the graph and its drawing as input [23].
With the notable exception of approaches that are inspired by confluent drawings [2, 41], the
coordinates of the nodes are vital for computing a bundled drawing of high quality. However,
often we would like to produce a graph layout that simultaneously optimizes the drawing and
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15:2 Bundling-Aware Graph Drawing

the bundling. For some graphs, edge bundling will not be necessary: if we have a sufficiently
good drawing of a graph, there is no need to bundle it. In the case of dense graphs, it will be
very difficult to find a drawing of the graph that does not require some or many of the edges
to be bundled to resolve its hairball-like appearance. In such cases, it may be advantageous
for us to consider bundling alongside drawing.

One way to optimize the bundling alongside the drawing is to select edges that are likely
to be bundled, remove them from the graph, and draw the skeleton of the edges that will be
bundled against. Edge-Path bundling (EPB) algorithms [37, 38] have such a skeleton with
edges bundled against paths. In this case, the smaller graph that would be computed for
layout would be the edges that participate in the paths used for bundling. The confluent
drawing inspired approaches of Bach et al. [2] and Zheng et al. [41] perform aggregation via
a power set decomposition and create a hierarchy of coarse graphs that are used to draw
and bundle the graph in a confluent way. This aggregation approach will help focus graph
layouts on edges that can support bundles. However, confluent drawings have a lower degree
of bundling when compared to EPB, and it may be interesting to investigate approaches with
a greater degree of bundling.

In this paper, we contribute a framework which offers a greater degree of bundling than
confluent-like approaches while optimizing bundling alongside drawing. Two instantiations of
this framework are explored. Our Filter-Draw-Bundle framework selects nodes and edges
that form the scaffold of the bundling, or the set of edges in the graph that will be bundled
against. Edges that are more likely to be bundled are filtered from the graph. As Edge-Path
bundling has a very strong connection to t-spanners [1, 38], we show how various levels of
t-spanners can be used for drawing with the remaining edges bundled onto the spanner.

2 Related Work

Edge bundling algorithms have been studied for nearly 20 years now [16] with many ap-
proaches [23] created to simplify edge clutter of densely connected networks. Most edge
bundling techniques [4,9,10,17,19,20,22,24,27,29–32,35,39] consider a drawing and a graph
as input and bundle edges together based on similar properties such as orientation, co-location
in space, and other similar edge properties. Recent Edge-Path bundling techniques [37,38]
instead bundle long edges with paths. The main advantage for Edge-Path bundling is that it
does not create the illusion of false connections between disconnected edges as the subtended
edge always has a corresponding path. In all of the above cases, a drawing of the graph
is taken as input and is used for bundling. This has been successfully applied in practice,
but considering the layout in combination with bundling has not been investigated before.
Furthermore, our results show that creating a layout more tailored for bundling has better
performance regarding certain quality metrics.

Confluent drawings [6, 7, 14] do not consider a drawing beforehand. Rather, the graph is
converted into a planar graph by contracting down bicliques, drawing the high level planar
graph, and reintroducing the bicliques into the graph so that they can be bundled without
ambiguity. Less restrictive versions of these drawings [2, 33, 41] do not require the strict
planar condition and generally compute a decomposition of the graph into components. The
decomposition of the graph is drawn and then the edges between components are bundled.
While heuristics for computing confluent drawings introduce less ambiguity compared to our
proposed framework, they are much more constrained in what can be bundled, leading to
less overall bundling.



D. Archambault, G. Liotta, M. Nöllenburg, T. Piselli, A. Tappini, and M. Wallinger 15:3

In the work presented here, we focus on a new way of optimizing a bundling while drawing
the graph simultaneously. In our case, we filter the graph in a way that takes away edges in
an Edge-Path bundling that are likely to be bundled, providing a low-stress layout of the
paths to be bundled against. In our experiment, we compare against the state-of-the-art
methods that produce confluent-like drawings [2, 41] as well as against the straight-forward
approach of first creating a low-stress drawing of the full input graph and then applying
Edge-Path bundling on it.

3 The Filter-Draw-Bundle Framework

In this section, we introduce the Filter-Draw-Bundle (FDB) Framework. This framework is
designed to optimize three well-studied quality metrics for bundled drawings, namely the ink
ratio, distortion, and ambiguity. We start by formally defining these metrics, since we shall
refer to them when describing the framework.

3.1 Bundling Quality Metrics
We consider three metrics that are in line with the ones described by Wallinger et al. [37,38],
namely ink ratio, distortion, and ambiguity. Smaller values in all three metrics are considered
better. Let G = (V, E) be the input graph, let AB be a bundling algorithm and let LB be
the layout obtained by applying AB to G. The metrics we consider are defined as follows.

Ink Ratio. Informally, the ink ratio is the proportion of pixels within the drawing’s bounding
box that are occupied by LB . It can quantify simplification through a measure of data-ink
ratio [34]. More precisely, let LB ∈ {0, . . . , 255}m×n be an m× n-greyscale bitmap image of
LB , and let 0 ≤ δ < 255 be a threshold grey value below which we consider a pixel occupied;
in our implementation we consider δ = 254, which means all non-white pixels are occupied.
We scale the drawing LB to a bitmap that has a width of 1.000 pixels when computing the
ink ratio. For each pixel LB [i, j] of LB , where 1 ≤ i ≤ m and 1 ≤ j ≤ n, we set pB(i, j) = 1
if LB [i, j] ≤ δ, otherwise we set pB(i, j) = 0. The ink ratio of LB is then defined as:

InkRatio =
∑m

i=1
∑n

j=1 pB(i, j)
m · n

. (1)

We note that our definition of ink ratio is slightly different from Wallinger et al. [37,38], who
measured the reduction in occupied pixels compared to a straight-line input drawing. Since
we do not consider any input drawing for the FDB framework, their definition is not applicable.

Distortion. The distortion of an edge is the ratio between its length in LB and the Euclidean
distance of its endpoints. Human-centred studies have shown that deviations from straight
line distances make paths harder to read [18]. Let ℓB(uv) be the length of an edge uv in
LB and let d(u, v) be the Euclidean distance between u and v. The distortion of LB is the
average distortion of its edges, namely:

Distortion = 1
|E|

∑
uv∈E

ℓB(uv)
d(u, v) . (2)

Ambiguity. The ambiguity of a bundled drawing measures how many false adjacencies
could be derived erroneously from the drawing LB . Avoiding such false connections would be
considered more faithful [26]. More precisely, the ambiguity is defined as the ratio between
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Figure 1 Illustration of our FDB framework. The Filter step takes as input an abstract graph
G = (V, E) and outputs a sparsification G′ = (V, E′) with E′ ⊆ E; the Draw step computes a drawing
Γ of G′; the Bundle step adds to Γ the edges in E′ and bundles them.

the number of perceivable false adjacencies and the total number of perceivable adjacencies.
Here, an adjacency between two vertices u, v is a false adjacency if the topological distance
between u and v is greater than a certain threshold. Given an edge e = st ∈ E, which is
drawn as a curve in LB, the set NB(s, e) of reachable neighbors of s along e consists of all
the vertices that are perceived as being connected to s. More precisely, a vertex v belongs to
NB(s, e) if there is an edge e′ = uv ∈ E that is drawn in LB as a curve that intersects e by
forming a flat angle which is smaller than a certain threshold θ. The set NB(s, e) may contain
both true and false neighbors of s: we denote as NT

B(s, e) the set of the true neighbors and
as NF

B(s, e) = NB(s, e) \NT
B(s, e) the set of the false neighbors. We consider two vertices

as true neighbors if the length of the shortest path between them in G (in hop distance) is
smaller than a certain threshold δ. So if δ = 1 (as in or implementation), NT

B(s, e) contains
only the direct neighbors of s, otherwise it contains all vertices reachable in hop distance at
most δ. The ambiguity of LB is then defined as:

Ambiguity =
∑

s∈V

∑
e=st∈E |NF

B(s, e)|∑
s∈V

∑
e=st∈E |NB(s, e)| . (3)

3.2 Framework Description
We are now ready to describe our algorithmic framework, which we call Filter-Draw-Bundle,
or FDB for short. The algorithmic framework is illustrated in Figure 1 and summarized
in Algorithm 1. As the name suggests, it consists of the following three steps:

Filter: Let G = (V, E) be the input graph. In the Filter step, a subgraph G′ of G is
computed, with G′ = (V, E′) such that V ′ = V and E′ ⊆ E. In particular, E′ is supposed
to be the subset of those edges of G against which the edges of E \E′ will be bundled in
the third step (in our case to optimize for Edge-Path bundling). Graph G′ is called the
skeleton of G.
Draw: A drawing Γ of the skeleton G′ is computed. The quality metrics of the subsequent
bundled graph drawing will strongly depend on the layout of the skeleton.
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Bundle: Γ is enriched with those edges of G that were filtered out in the first step of FDB.
In the instantiations that follow, we shall adopt the Edge-Path bundling (EPB) approach
to bundle against the edges of the skeleton G′.

Algorithm 1 The FDB Framework.

Input: Graph G = (V, E).
Output: A bundled layout LB of G.
/* Filter Step */
w ← computeWeights(G)
G′ = (V, E′)← sparsifyGraph(G, w) // G′ is the skeleton of G

/* Draw Step */
Γ← computeDrawing(G′)
/* Bundle Step */
LB ← edgePathBundling(G, Γ)

In contrast to other bundling approaches, the FDB framework does not receive the vertex
coordinates of the final layout as part of the input, but it computes them during the Draw step.
Hence, the FDB approach is not a post-processing procedure that improves the readability of
a given drawing, but it takes into account the quality metrics of the target bundling during
each step of its algorithmic pipeline, and in particular aims to find a drawing of a suitable
skeleton graph that gives rise to a high-quality bundling.

It is also worth recalling that Bach et al. [2] and Zheng et al. [41] describe similar
ideas. Namely, they first compute a hierarchical aggregation of the graph, then draw such
an aggregation, and finally compute a confluent drawing. While the Filter step of the
FDB pipeline computes a subgraph of G, the approach of [2, 41] suitably selects groups of
nodes, aggregates them, and connects such groups with dummy edges. Once a layout of the
hierarchical aggregation is computed, a confluent drawing of the graph is constructed by
using these dummy edges as a guideline.

3.2.1 Instantiating the FDB Framework

While the flexibility of our algorithmic framework makes it possible to adopt different filtering,
drawing, and bundling strategies, as a proof of concept we make specific choices for the three
different steps which will be used in our experimental analysis. Namely, we describe two
different instances of the FDB framework, which differ for the adopted strategy in the Filter
step. In both cases, we consider filter and draw steps that optimize EPB. The framework
can be used for other bundling algorithms, but appropriate filter and draw steps would be
needed for the bundling algorithm selected. Figure 2 shows the relationship between our
algorithmic choices at each step of the framework and the bundling quality metrics that we
aim at optimizing.

Filter. The edges of E′ for the skeleton subgraph are computed based on a weighting
function. The edges that receive the highest weight will be included in the skeleton. The
idea is to give a higher weight to those edges that are more “central” in the graph, based on
the intuition that bundling against these edges optimizes the distortion.

GD 2024
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Optimize
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Draw
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Ink Reduction

Distortion

Ambiguity

Algorithmic Step Quality Metric

Figure 2 Relationships between our algorithmic choices at each step of the FDB framework and
the bundling quality metrics that we aim at optimizing.

More formally, we weight the edges by two different methods. The first method uses the
edge betweenness as a standard centrality measure for edges (see, e.g., [12]), defined as:

EdgeBetweenness(e) =
∑

u,v∈V

σ(u, v | e)
σ(u, v) . (4)

In the formula, σ(u, v) denotes the number of shortest paths between any two vertices u

and v of G, and σ(u, v | e) is the number of such shortest paths passing through an edge e.
The edge betweenness assigns a weight to each edge e ∈ E based upon the computation of
all-pairs shortest paths in G [3]. The weight of each edge is proportional to the number of
shortest paths between all vertex pairs of G that pass through this particular edge.

A different approach, specifically tailored for the Bundle step, is to assign edge betweenness
weights by considering the shortest paths only between those pairs of vertices that are actually
adjacent in G, since these edges might later be bundled against their respective shortest
path. We shall filter out those edges of G that appear in only a few such shortest paths. In
the Bundle step, such edges will be reinserted one per time and possibly bundled against the
edges of the skeleton. This leads to the following variant of the definition of edge betweenness,
that we call neighboring edge betweenness:

NeighboringEdgeBetweenness(e) =
∑

uv∈E

σ′(u, v | e)
σ′(u, v) , (5)

where σ′(u, v) is the number of shortest paths between u and v in Guv = (V, E \ {uv}), and
σ′(u, v | e) is the number of these shortest paths passing through e. Algorithm 2 shows the
pseudocode to compute the edge weights based on the neighboring edge betweenness. It is
immediate to see that, since the edge betweenness of an unweighted graph can be computed
in polynomial time (see, e.g., Brandes [3]), also the neighboring edge betweenness can be
computed in polynomial time.

Once the edges are weighted, the skeleton G′ is formed by filtering out the lighter edges
from G. This can be done, for example, by computing a t-spanner [1] using the inverse
weights. Recall that a t-spanner of a weighted graph G is a subgraph G′ of G consisting of
all the vertices of G and of a subset of its edges. The t-spanner property, for some t > 1,
says that for each edge uv in G with weight w(uv), there must be a (shortest) path π

between u and v in G′ whose weight w(π) =
∑

e∈π w(e) ≤ t · w(uv). A typical approach to
compute a t-spanner is to order the edges of the graph by increasing weight; starting from
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Algorithm 2 Edge weights computation with neighboring edge betweenness.

Input: Graph G = (V, E).
Output: Function weights : E → R+.
for uv ∈ E do

sp(uv)← shortestPaths(u, v, Guv = (V, E \ uv))
for e ∈ E do

for uv ∈ E do
sum← 0
for p ∈ sp(uv) do

if p.contains(e) then
sum← sum + 1

weights(e)← weights(e) + sum
|sp(uv)|

return weights

a graph G′ = (V, ∅), the edges are processed one by one in that order, and at each step it
is decided whether the edge is inserted into G′ or not; refer to Algorithm 3, where we use
w(e) = 1/weights(e).

Algorithm 3 Skeleton computation as a t-spanner [1, 38].

Input: Graph G = (V, E), edge-weights w : E → R+, value t > 1.
Output: t-spanner G′ = (V, E′ ⊆ E).
E′ ← ∅
G′ ← (V, E′)
sortedEdges← sortAscending(E, w)
for uv ∈ sortedEdges do

p← shortestPath(G′, u, v)
if p is undefined then

E′ ← E′ ∪ {uv}
else

p.weight← 0
for e ∈ p do

p.weight← p.weight + w(e)
if p.weight > t ∗ w(uv) then

E′ ← E′ ∪ {uv}
return G′ = (V, E′)

According to this algorithm, the lighter edges, i.e., those with the highest (neighboring)
betweenness score, are more likely to be part of G′ than the heavier edges, which have low
betweenness. The higher we choose the value of t the sparser the skeleton G′ will be, since
it is less likely during the construction algorithm that there is no path of weight at most
t · w(uv) in G′. On the one hand, this is expected to influence the ink ratio of the bundled
layout. The intuition is that the sparser the skeleton, the lower the ink ratio. Namely,
when the skeleton is sparser more edges of E \E′ are bundled against the same portion of
the skeleton. On the other hand, sparser skeletons and higher values of t in the spanner
construction are expected to also lead to higher distortions in the final bundled drawings.
Therefore, we expect that the choice of the value of t is very influential for the final bundling
quality, and it should be balanced to achieve both good ink ratio and good distortion.

GD 2024
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Draw. The goal of this step is to compute a drawing of the (unweighted) skeleton G′ such
that the graph-theoretic distance between its vertices is well reflected by their Euclidean
distance in the layout. The intuition behind this choice is that such a layout would, in fact,
give rise to bundled drawings with small distortion because it tends to straighten those paths
against which edges are bundled. To this aim, we compute the output of the Layout step by
means of a stress majorization approach with stochastic gradient descent (SGD) [11,40].

Bundle. This step adds to the layout of the skeleton G′ = (V, E′) those edges that are
not part of it, i.e., edges in E \ E′. Let Γ be the layout of the skeleton computed in the
previous step and let uv ∈ E \ E′ be a non-skeletal edge. We incrementally add each
non-skeletal edge to Γ by adapting the Edge-Path bundling approach proposed in [37,38],
as described in Algorithm 4. More precisely, for each non-skeletal edge uv we consider the
path in the skeleton between u and v that minimizes the sum of the Euclidean lengths of its
edges. Let π be such a path: we bundle uv to π if the distortion is not above a predefined
threshold δ > 1; otherwise, uv is added to Γ as a straight-line unbundled segment. In our
implementation we use the threshold δ = t, for the same value of t applied in the Filter step.
The rationale behind adapting the EPB approach to our scenario is that it avoids independent
edge ambiguities by design. Indeed, an edge uv can only be bundled against a path of the
skeleton connecting u to v. Moreover, we ensure that edges can only be bundled against a
path if their distortion is not above the selected distortion threshold δ. Finally, bundling
always has the goal of saving ink, thus improving on the ink ratio score.

Algorithm 4 Spanner-Edge-Path bundling algorithm [38].

Input: Graph G = (V, E), skeleton G′ = (V, E′), drawing Γ of G′, maximum
distortion δ > 1.

Output: Control points for the edges in E \ E′.
for uv ∈ E \ E′ do

p← shortestPath(G′, Γ, u, v)
p.length← 0
for xy ∈ p do

/* d(x, y) is the Euclidean distance between x and y in Γ */
p.length← p.length + d(x, y)

if p.length ≤ δ ∗ d(u, v) then
/* bundle edge uv against p */
controlPoints(uv)← p.getVertexCoordinates()

else
/* draw edge uv unbundled */
controlPoints(uv)← (Γ(u), Γ(v))

return controlPoints

4 Experimental Study

In this section, we present an experimental analysis that compares the bundling performances
of four algorithms. We first recall these algorithms (Section 4.1); we then discuss our
experimental hypotheses (Section 4.2); next we describe the data set and give implementation
details (Section 4.3); finally, we present a statistical analysis of the results (Section 4.4).
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4.1 Competing Algorithms
In the experiment, we consider the following four algorithms:

EB-FDB: This algorithm is the first instantiation of the FDB framework described in
Section 3.2.1, where the filtering step uses edge betweenness.
NEB-FDB: This algorithm is the second instantiation of the FDB framework described in
Section 3.2.1, where the filtering step uses neighboring edge betweenness.
ConfluentDrawing: This algorithm creates a confluent-like drawing [2, 41] using the
implementation of Zheng et al. [41].
PP-Bundling: This algorithm computes a drawing of the input graph using standard stress
majorization [11,40], and then it performs the Spanner Edge-Path bundling approach [38]
(SEPB) on the computed drawing. It can be regarded as a representative of the common
post-processing approach where the visual clutter is reduced by bundling edges on a
given drawing. Hence, the graph spanner which is used for the bundling is computed on
the Euclidean distances of a given drawing.

4.2 Experimental Hypotheses
We conceptually cluster our hypotheses into two groups. The first group is about
the relationship between the FDB framework and the state-of-the-art bundling methods
ConfluentDrawing and PP-Bundling, whereas the second group is about the direct compar-
ison of the two instantiations EB-FDB and NEB-FDB of the framework.
The following hypotheses belong to the first group:

H1.1: Algorithms EB-FDB and NEB-FDB perform better than the PP-Bundling algorithm
in terms of ink ratio, distortion, and ambiguity.
H1.2: Algorithms EB-FDB and NEB-FDB perform better than the ConfluentDrawing
algorithm in terms of ink ratio, distortion, and ambiguity.

The following hypotheses belong to the second group:
H2.1: Increasing the value of t in the t-spanner reduces the ink ratio of the bundled
drawings computed with either the EB-FDB algorithm or the NEB-FDB algorithm.
H2.2: For a given value of t, the Filter step of the NEB-FDB algorithm yields sparser
t-spanners than those computed by the Filter step of the EB-FDB algorithm.
H2.3: The NEB-FDB algorithm computes bundled drawings with higher distortion but
lower ink ratio than those computed by the EB-FDB algorithm.

Rationale. Concerning H1.1, we recall that in the PP-Bundling algorithm the position of
the nodes is computed by a standard stress majorization method, agnostic of the bundling
step, which is in fact applied as a post-processing. On the other hand, the Filter step of the
EB-FDB and the NEB-FDB algorithms is designed such that the edges of the path against which
the bundling is executed are selected based on the graph topology and placed on a central
position in the layout. This, we believe, positively impacts both ink ratio and distortion,
because the long edges tend to be bundled against sets of edges that are central in the layout,
avoiding long curves that pass through peripheral parts of the layout. This also potentially
leads to layouts with less ambiguity compared to PP-Bundling: routing long edges towards
the center likely reduces edge crossings and, consequently, it could reduce the number of
sharp crossing angles.

Regarding H1.2, the ConfluentDrawing algorithm introduces dummy nodes and edges
to the original graph. While these guides help construct a confluent drawing, we believe
they might negatively impact distortion and ink ratio. Dummy elements are not part of the
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15:10 Bundling-Aware Graph Drawing

actual data, and curves routed around them might become unnecessarily long compared to
those computed without them. Also, by strategically placing heavier edges centrally, FDB
reduces the chances of them intersecting with many other edges in peripheral areas and this
could lead to less visual clutter and potentially an ambiguity reduction.

As for H2.1, higher values of t give rise to sparser skeletons. Therefore, by increasing t

the number of edges against which the non-skeletal edges are bundled decreases, potentially
leading to a smaller number of occupied pixels in the bundled layout.

Hypothesis H2.2 originates from the observation that the Filter step of NEB-FDB weights
the edges by only considering shortest paths between pairs of adjacent vertices, which could
give rise to a smaller number of “heavily weighted” edges to be included in the skeleton than
those computed by EB-FDB. We note, however, that while we expect this hypothesis to hold
in typical real-world data sets, it is easy to find small counterexamples, where this is not the
case. The same intuition is behind H2.3, as a skeleton with fewer edges gives rise to bundled
drawings that use fewer pixels; however, this may have a negative impact on the distortion.

4.3 Dataset and Implementation Details
Our benchmark consists of graphs having a social network structure [21] and generated using
the well-established Stochastic Block Model (SBM) [15]. The dataset is divided into four
graph-size ranges: 20-50 nodes, 50-100 nodes, 100-150 nodes, and 150-200 nodes. Within each
range, graphs are further categorized into five density classes based on the average number
of edges per node (edge density). These classes range from sparse (2-4 edges per node) to
dense (greater than 10 edges per node). We generated five graphs for each combination of
graph-size range and density class, resulting in a total of 100 graphs.

The implementation of the Filter step of EB-FDB algorithm leverages the well-known
NetworkX library [13] to compute betweenness centrality (Equation 4), which is based on the
algorithm by Brandes [3]. The neighboring edge betweenness of Equation (5) is implemented
in Python. The Draw step for both the EB-FDB algorithm and the NEB-FDB algorithm uses
the Stochastic Gradient Descent method to optimize the stress of a straight line drawing of
the skeleton [40]. Finally, the Bundle step uses the implementation of the Faster Edge-Path
Bundling algorithm by Wallinger et al. [38]. The main code is in Python with integrated
C++ methods. Specifically, the Stochastic Gradient Descent and the NetworkX library make
use of more efficient C++ routines. Due to the different implementation languages we did
not focus on performance comparisions. Still, we measured wallclock runtime and report it
for EB-FDB (mean = 0.36s, max=3.30s) and NEB-FDB (mean = 23.04s, max=335.61s). We ran
our experiments on a compute cluster with an AMD EPYC 7402, 2.80GHz 24-core CPU but
restricted the computation to one core and 32GB of RAM, essentially simulating a powerful
desktop PC.

The data set and the code used for the experimental analysis are available at the following
OSF repository: https://osf.io/g4xqw/.

4.4 Analysis of the Results
We analyzed ink ratio, distortion and ambiguity separately. In general, a Shapiro-Wilk test
revealed that no condition-metric pair was normally distributed. Hence, we applied the
Wilcoxon signed-rank for comparing two conditions or the Friedmann test for three or more
conditions to test for statistical significance (α = 0.01). If statistical significance was found,
we applied Bonferroni-corrected pairwise t-tests. We report effect size with the the Common
Language Effect Size (CLES), i.e., the probability that the score of a random sample from
one distribution is greater than the one of a random sample from some other distribution.

https://osf.io/g4xqw/
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Figure 3 Strip plots of the experimental data about H1.1. The x-axis reports different t values.
The y-axis reports: (top) ink ratio; (middle) distortion, and (bottom) ambiguity. Red segments
connecting the mean values indicate statistically significant differences.

4.4.1 H1.1

Recall that the hypothesis is about EB-FDB and NEB-FDB outperforming PP-Bundling in ink
ratio, distortion, and ambiguity. Our results are as follows (see also Figure 3). Note that the
reported effect size is stated in terms of aggregated t, while individual levels can potentially
have different effect sizes.

Ink Ratio. When aggregating all instances over t we partially confirm the hypothesis.
NEB-FDB (mean value = 1.12) has lower ink ratio than PP-Bundling (mean value = 1.16)
(CLES = 0.67, p < 0.01). However, there is no statistically significant difference between
EB-FDB (mean value = 1.16) and PP-Bundling. If we compare different levels of t, then
there is no significant differences for t = 6 between EB-FDB and PP-Bundling. For all other
levels of t we have statistically significant results between the algorithms. Interestingly, with
increasing t EB-FDB exhibits higher ink ratio reduction than PP-Bundling.

GD 2024
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Figure 4 Instance with |V | = 156 and |E| = 815 from the benchmark dataset visualized with
PP-Bundling (left) and NEB-FDB (right) with t = 6. The ink ratio is 0.21 for PP-Bundling and 0.13
for NEB-FDB; the mean distortion is 1.52 for PP-Bundling and 1.18 for NEB-FDB; the ambiguity is 0.91
for PP-Bundling and 0.90 for NEB-FDB.

Distortion. When aggregating t the results for distortion indicate that there is statistically
significant difference between PP-Bundling (mean value = 1.39) compared to EB-FDB (mean
value = 1.14) (CLES = 0.84, p < 0.01) and NEB-FDB (mean value = 1.13) (CLES = 0.85,
p < 0.01). Furthermore, if we analyse individual values of t we find that there is positive
correlation between t and distortion for PP-Bundling. In contrast, the mean distortion does
not exhibit this behavior for EB-FDB or NEB-FDB.

Ambiguity. Again, if we aggregate instances over t the results indicate significant differences
between PP-Bundling (mean value = 0.70) compared to EB-FDB (mean value = 0.63) (CLES =
0.58, p < 0.01) and NEB-FDB (mean value = 0.64) (CLES = 0.57, p < 0.01). Correlation
analysis shows that for all three algorithms ambiguity correlates with increasing t.

Summary. For distortion and ambiguity our results support H1.1. However, for ink ratio
we found support only for values of t ̸= 6, i.e., for EB-FDB the ink ratio is higher for lower
values of t but decreases faster with increasing t compared to the other algorithms. Also,
with increasing t the distortion for EB-FDB and NEB-FDB remains somewhat constant while
PP-Bundling increases.

Figure 4 shows two drawings of the same graph. The one to the left is computed by
PP-Bundling while the one to the right is computed by NEB-FDB; in both cases t = 6.

4.4.2 H1.2

Recall that the hypothesis is about EB-FDB and NEB-FDB outperforming ConfluentDrawing
in ink ratio, distortion, and ambiguity. Our results are as follows (see also Figure 5).

First, we decided on a value for t to have a fair comparison between EB-FDB and NEB-
FDB against ConfluentDrawing. The choice for t = 6 was guided by the overall balanced
performance regarding all three metrics.
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Figure 5 Strip plots of the experimental data about H1.2. The x-axis reports different algorithms.

Figure 6 Instance with |V | = 147 and |E| = 952 from the benchmark dataset visualized with
ConfluentDrawing (left) and NEB-FDB (right) with t = 6. The ink ratio is 0.23 for ConfluentDrawing
and 0.09 for NEB-FDB; the mean distortion is 1.74 for ConfluentDrawing and 1.17 for NEB-FDB; the
ambiguity is 0.82 for ConfluentDrawing and 0.89 for NEB-FDB.

Ink Ratio. Here, the ink ratio shows a significant difference for ConfluentDrawing (mean
value = 0.16) when compared against NEB-FDB (mean value = 0.12) (CLES = 0.72, p < 0.01)
but not for EB-FDB (mean value = 0.15).

Distortion. The comparison of the distortion values revealed that both EB-FDB (mean value
= 1.17) (CLES > 0.99, p < 0.01) and NEB-FDB (mean value = 1.16) (CLES > 0.99, p < 0.01)
have drastically less distortion than ConfluentDrawing (mean value = 1.75).

Ambiguity. Lastly, we found that ConfluentDrawing (mean value = 0.65) has lower ambi-
guity than EB-FDB (mean value = 0.67) (CLES = 0.58, p < 0.01) and NEB-FDB (mean value
= 0.66) (CLES = 0.57, p < 0.01).

Summary. For ink ratio our results partially support H1.2 and fully support it for distortion.
H1.2 is also supported for NEB-FDB with respect to mean distortion for all values of t that we
considered. As for ambiguity, ConfluentDrawing outperforms both NEB-FDB and EB-FDB.

Figure 6 shows two drawings of the same graph. The one to the left is computed by
ConfluentDrawing while the one to the right is computed by NEB-FDB with t = 6.
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Figure 7 Instance with |V | = 182 and |E| = 1268 from the benchmark dataset visualized both
with NEB-FDB, and with t = 6 (left) and t = 10 (right). The ink ratio is 0.16 in the drawing to the
left and 0.09 in the drawing to the right.

4.4.3 H2.1

Recall that the hypothesis is that higher values of t yield lower ink ratio both with EB-FDB
and with NEB-FDB.

Analyzing the ink ratio for different values of t individually for EB-FDB and NEB-FDB
revealed a similar behavior. For both algorithms the ink ratio has no statistically significant
differences between t = 2 and t = 4 and between t = 8 and t = 10. All other values had
significant difference with effect sizes CLES < 0.4. This indicates that for t ≤ 4 the spanner
is dense and subsequently not many edges can be bundled. Similarly, for t ≥ 8 the spanner
is sparse and probably close to a spanning tree. Hence, the maximal amount of edges is
bundled but there is no choice of path left when computing the bundling.

Summary. Our results support H2.1 except when comparing t = 2 with t = 4 and when
comparing t = 8 with t = 10. Figure 7 shows two drawings of the same graph computed by
NEB-FDB for different t values.

4.4.4 H2.2

Recall that the hypothesis is about NEB-FDB using sparser t-spanners than EB-FDB. Refer
to Figure 8 for our results.

Here we counted the edges in the spanner after computing it in the filter step of EB-FDB
and NEB-FDB. The statistical analysis showed that instances computed with NEB-FDB have
sparser spanners than EB-FDB (CLES = 0.44, p < 0.01). Furthermore, the effect size becomes
stronger if we exclude higher values of t, i.e., all instances that are probably for both a
spanning tree already.

Summary. Our results support H2.2.
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Figure 8 Strip plots presenting the impact of the parameter t on the number of edges in the
spanners for EB-FDB and NEB-FDB.

Figure 9 Instance with |V | = 193 and |E| = 2614 from the benchmark dataset visualized with
EB-FDB (left) and NEB-FDB (right) with t = 6. The ink ratio is 0.24 in the drawing to the left and
0.21 in the drawing to the right; the mean distortion is 1.28 in the drawing to the left and 1.26 in
the drawing to the right.

4.4.5 H2.3

Recall that the hypothesis is about NEB-FDB computing drawings with higher distortion but
lower ink ratio than EB-FDB. Refer to Figure 3 for our results.

In direct comparison between EB-FDB and NEB-FDB we analyzed that both, ink ratio
(CLES = 0.35, p < 0.01) and distortion (CLES = 0.48, p < 0.01) are higher for EB-FDB. Even
though the result for distortion is statistically significant, the effect size only shows minor
impact of the algorithm in the Filter step.

Summary. Our results partially support H2.3. Namely, NEB-FDB outperforms EB-FDB both
in distortion and in ink ratio for the same values of t. Recall that, for a fixed value of t, the
spanner computed for NEB-FDB is generally sparser than the spanner for EB-FDB. In contrast
to our initial intuition, EB-FDB gives rise to higher distortion than NEB-FDB, since the curves
representing the bundled edges are longer.

Figure 9 shows two drawings of the same graph. The one to the left is computed by
EB-FDB while the one to the right is computed by NEB-FDB. In both cases with t = 6.
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5 Final Remarks and Future Work

We conclude the paper addressing the lessons that we learned, pointing out to the limitations
of our study, and discussing future research directions.

Lessons Learned. This study suggests that bundled drawing quality can be significantly
enhanced by designing algorithms that directly optimize core quality metrics during the
layout computation process, rather than relying solely on post-processing techniques. To this
aim, we can use an algorithmic framework consisting of three main steps: Filter, Draw, and
Bundle. The Filter step sparsifies the graph by identifying relevant edges, the Draw step
computes a layout of the sparsified graph, and the Bundle step reinserts the missing edges
into the layout. We showed that the computation of the sparsified graph can have significant
impact on relevant bundling qualities. In particular, we weighted the edges of the graph and
then applied a t-spanner. Our experiments have shown that both the edge weighting method
and the choice of the parameter t in the t-spanner can influence the ink ratio, distortion, and
ambiguity of the final drawing. More precisely, a value of t between 4 and 8, and in particular
a value of t = 6, together with a weighting function based on neighboring edge betweenness,
i.e., NEB-FDB, seems to be the most effective instantiation of the FDB framework in practice.

Limitations. We performed an experimental study that compares the EB-FDB, the NEB-FDB,
the PP-Algorithm, and the ConfluentDrawing bundling algorithms on a data set consisting
of 100 graphs having different numbers of nodes and densities. Although our results support
our hypotheses in most cases, experiments involving additional datasets should be conducted.
For example, one could consider a higher number of networks, having different sizes, and
that are generated with algorithms different from SBM. Also, it would be interesting to
evaluate our approach with real-world networks. At this point, the quality comparisons of
the different bundled drawings are performed purely on the three quantitative measures
of ink ratio, distortion, and ambiguity. Similarly, other drawing quality metrics should be
tested to provide new perspectives on bundling performance.

Future Work. We studied two different algorithmic instances of the FDB framework, namely
the EB-FDB algorithm and the NEB-FDB algorithm. We believe that the potential of the different
steps of the FDB framework can be further investigated by considering different methods for
each of the steps in the framework. It would be interesting to: (i) test different sparsification
techniques such as, for example, the Simmelian backbone [28]; (ii) adopt different layout
strategies for the drawing of the sparsified graph such as, for example, faithful force-directed
methods [25]; (iii) test approaches that consider crossing angles in the Bundle step of
which examples exist in the literature [5,8]. Currently, we investigated the problem from a
practical perspective, however, a complementary theoretical investigation into combining
layout and bundling algorithms would be beneficial for further understanding. Also, it would
be interesting to compare the drawings produced by EB-FDB, NEB-FDB, PP-Algorithm, and
ConfluentDrawing in terms of aesthetic criteria such as, for example, angular resolution,
crossing angle, and number of crossings. Finally, it is an open question to evaluate whether
the optimized parameters are good proxies for graph readability.
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