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—— Abstract

Graph and network visualization supports exploration, analysis and communication of relational
data arising in many domains: from biological and social networks, to transportation and powergrid
systems. With the arrival of Al-based question-answering tools, issues of trustworthiness and
explainability of generated answers motivate a greater role for visualization. In the context of graphs,
we see the need for visualizations that can convince a critical audience that an assertion about
the graph under analysis is valid. The requirements for such representations that convey precisely
one specific graph property are quite different from standard network visualization criteria which
optimize general aesthetics and readability.

In this paper, we aim to provide a comprehensive introduction to visual proofs of graph properties
and a foundation for further research in the area. We present a framework that defines what it means
to visually prove a graph property. In the process, we introduce the notion of a visual certificate,
that is, a specialized faithful graph visualization that leverages the viewer’s perception, in particular,
pre-attentive processing (e. g. via pop-out effects), to verify a given assertion about the represented
graph. We also discuss the relationships between visual complexity, cognitive load and complexity
theory, and propose a classification based on visual proof complexity. Finally, we provide examples
of visual certificates for problems in different visual proof complexity classes.
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Figure 1 Our model GRAPHTRIALS identifies key processes for visually proving an assertion about
a given graph in an adversarial setting. The prosecution lawyer, i.e., a software or a human (assisted
by software), intends to highlight evidence for a graph being guilty of satisfying an assertion using a
visual certificate drawing. To convince the judge, i.e., the human audience of the drawing, the visual
certificate guides the judge’s perception to form a mental model which makes the assertion easy
to validate. The visual certificate must be unimpeachable as a defense lawyer (software or human
adversary) checks for reasons to doubt the certificate’s validity to influence the judge’s verdict.

1 Introduction

While state-of-the-art graph and network visualization techniques do a reasonable job of
untangling graphs to convey meaning and support free-form exploration, there are certain
application scenarios where these algorithms fall short. Namely, we focus on applications
where it is necessary to convince a (possibly non-expert) audience that a particular graph
has some structural property. We emphasize that this kind of application scenario differs
significantly from the traditional usage of visualization to generate new knowledge. Namely,
existing graph and network visualization techniques have sought mainly to represent all
aspects of a graph or network structure as faithfully as possible such that a user can explore
the visualization, identify structures, and gain insights about the underlying data. These
traditional visualization techniques can be sufficient for journalists and other communicators
to support a narrative in print or on-line media [11] by showing only selected views of graphs.
However, novel approaches are required in our setting in which a specific property of
the data is to be conveyed in an adversarial setting where the validity of the evidence
presented may be questioned (see also the defense lawyer role in Fig. 1 which may, e.g.,
represent doubts of the audience). For example, the investigative activity of the Italian
Revenue Agency (IRA) exploits the visual analysis of social networks whose nodes are the
actors of potential fraudulent activities and whose edges represent financial/legal transactions
between the actors. The investigators of IRA who suspect a group of persons or a single
individual /company of tax evasion submit a case to the Italian financial Police for possible
prosecution, which also implies showing some structural properties of the network beyond
reasonable doubts. See, e.g., [21-23] for references about the use of visual analytics in the
context of contrasting tax evasion in Italy.! Below we describe introductory examples.

L One author has been approached by the Australian Security and Investments Commission (a governmental
regulator for stock exchange) inquiring about visualizations to convince a court about illegal trades.
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» Example 1. A network admin discovers that two critical parts of the infrastructure would
not be able to communicate with each other if a particular switch fails. To increase the
robustness of the network, new hardware is needed. They have to convince the manager,
who has no background in network security, to fund new hardware.

» Example 2. In a legal court case, the prosecution discovered that money acquired in black
market sales was laundered by laundromat chain as evidenced by money provably transferred
via a complicated network from the dealers to the laundromats. The prosecution has to
convince the judge that all suspects belong to the criminal syndicate.

» Example 3. A new AI based heuristic is able to efficiently decide if a given graph is
Hamiltonian, i.e., to test if it contains a cycle traversing all its vertices exactly once?.
However, false positives must be filtered out. A human operator needs to perform this task as
there is no efficient algorithm. To facilitate this, the new version of the algorithm should also

create a visualization of the graph making the Hamiltonian cycle obvious to the operator.

Such scenarios have key differences to standard motivations for graph visualization.
Typical graph visualization techniques (node-link layout algorithms [18,46], matrix ordering
approaches [7] and mixed approaches which either include features of different paradigms [3,4,
29] or show different visualizations side-by-side [13,28]) usually seek a representation showing
as many graph properties as possible simultaneously (by trading off aesthetic and readability
criteria [1,8,9,17]). However, for the scenarios above it is better to focus on showing optimally
and faithfully just one specific property, i.e., we want a visual proof for that property.

More precisely, a visual proof is a proof given by the use of a graphical or visual
representation called wvisual certificate. A good visual proof should be clear and concise,
conveying the main idea in an easy-to-understand way. It should be able to effectively
communicate the desired message without being overly complex or cluttered. Additionally,
the visual certificate should be aesthetically pleasing and easy to interpret. Somehow, it
should be able to provide evidence to support the argument being made. Thus, a good visual
certificate should be accurate, concise, and free of errors or mistakes.

In fact, visual proofs are already used in mathematics and other areas such as logic, graph
theory, computer science, and physics [37,57]; visual proofs are often easier to understand
than algebraic proofs, as they are less abstract and easier to follow. Accessible proofs are
often considered more beautiful by mathematicians; e.g., Appel and Haken employed a
computer-assisted proof of the long-open four-color theorem in 1976 [5]. This new type
of proof sparked philosophical debates [50] and while the theorem is broadly accepted as
proved?, researchers still desire a more elegant proof [2]. Thus, we expect that visual proofs
are appealing and even more convincing to experts also in fields other than mathematics.

Visual proofs can also convey properties to non-expert users or explain correctness of
Al-generated solutions. As powerful chat-based interfaces are capable of generating plausible
sounding — but difficult to verify — explanations of complex phenomena, we believe that there
is a requirement to understand what makes a graph representation a proper visual certificate.

2 Note that neural network approaches for NP-hard problems have been described, e.g., in [10]. In
addition, the need for visualizations in the context of explainable deep learning has been described, e. g.,
in [16].

3 According to the Ozford English Dictionary, it is yet to be proven as a “mathematical theorem” [40].
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Figure 2 Three layouts generated with YED* [59]. (a) and (b) Circular and organic layouts
generated with standard settings, resp. (c¢) Manually created layout highlighting the cut-vertex.

Contribution. We introduce a model identifying important steps and their interactions in a
visual proof of a graph property. Based on this model, we formalize the concept of visual
certificates and give requirements for a visualization to qualify as such. We also give examples
of visual proofs for widely used graph properties and identify open research questions that
should be answered to better understand visual proofs and make them algorithmically usable.

2  First Examples of Visual Proofs

2.1 Example 1: The Graph contains a Cut-Vertex

First, we revisit Example 1. In this communication network there are two distinct parts such
that all connections between them traverse a single switch. This corresponds to the graph
underlying the network containing a cut-vertexr, whose removal separates the remainder of
the graph into at least two distinct components. Hence, in order to convince the manager,
the network admin has to point out that the graph underlying the network can be separated
by the removal of the vertex corresponding to the switch. So, they first layout the graph
using a circular layout, which is a wide-spread all-purpose visualization style [44], and point
the manager to the fact that the red colored vertex is a cut-vertex; see Figure 2a.

Unfortunately, the circular layout does a poor job at highlighting the cut-vertex. While
it is evident to the manager that there are a top and a bottom component connected by
some edges, they explain that they are not sure if all connections between both components
use the suggested cut-vertex or not. Hence, the network admin prepares a second drawing
using a force-directed organic layout where the cut-vertex is clearly visible; see Figure 2b.
However, the engineer who designed the network becomes defensive and claims that there
could be another edge hidden behind the alleged cut-vertex. This argument can be easily
disproven by the network admin as they move the cut-vertex down, obtaining the drawing
in Figure 2c. Presented with this new line of evidence, the engineer stops arguing and the
manager agrees that the network has to be made more robust.

Discussion. This example illustrates how standard layout techniques may be unable to
highlight even simple properties. In the circular layout, it is not easy to verify even when the
cut-vertex is highlighted; see Figure 2a. This is due to the Gestalt principle of grouping [52,53].

4 Unless specified otherwise, the layouts of all visualizations in this paper have been created by the
authors.
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Figure 3 (a)—(b) Organic layout generated with standard settings by YED [59], with a spanning
tree highlighted in (b). (¢) A manually created layout highlighting the spanning tree.

Here, the initial perception is guided by continuity and closure of node positions, leading to
the perception of a single circular component. As a second step, an observer may see two
separate components with edges biasing perception due to connectedness grouping. Thus,
the observer has to analyze the entire graph, going node-by-node, to negate the automatic
perceptual grouping induced by the layout to verify that there is a cut-vertex. The issue
with the second illustration in Figure 2b is of different nature. Namely, the force-directed
layout does a much better job at highlighting the cut-vertex. In fact, the observer discovers
two dense salient features which are the two components separated by the cut-vertex and
immediately notes that they are connected at a single vertex. Nevertheless, if there is an
overlapping edge behind the cut-vertex, the drawing may look the same, challenging the
human observer to identify that the vertex is not a cut-vertex. The drawing in Figure 2c
avoids this problem by explicitly highlighting the cut-vertex via pre-attentively perceptable
patterns (i.e., pop-out effects) [53]. The singular goal of highlighting the cut-vertex is
achieved at the cost of traditionally accepted aesthetic metrics [42], as — compared to the
circular and force-directed layouts — the general layout is unbalanced, with many crossings
and poor resolution; see Table 1. Thus, visual certificates may not be useful in traditional
exploratory applications, instead they focus on highlighting a specific property.

We remark that a cut-vertex proves non-2-connectivity and a similar approach can be
used to visually prove that a graph is not k-connected: there exists a set of k — 1 vertices
whose removal separates the graph and we can layout the graph so that all connections
between two clearly separated parts run via this vertex set.

2.2 Example 2: The Graph is Connected

In Example 2, to convince the judge, the prosecution lawyer decides to visualize the network
of criminals induced by the connections of provable money transfers. The prosecution
lawyer draws it with a force-directed approach; see Figure 3a. While Figure 3a shows that
there are many connections in the graph, it does not emphasize that there is only a single
connected component. Hence, the defense lawyer argues that the component containing

their client may have been drawn on top of the component with all the convicted criminals.

Hence, the prosecution lawyer has to improve their visual proof. To do so, they include
a highlighted spanning tree that shows that every vertex can be reached from every other
vertex; see Figure 3b. Although the defense lawyer now has to admit that there is a smaller
portion of the drawing to check, i. e., the highlighted edges, their argument stays more or less
the same: that there are still crossings between edges of the spanning tree, which may be due
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Figure 4 Four layouts of a graph with a Hamiltonian cycle (red).

to two different highlighted components drawn on top of each other. Thus, the prosecution
lawyer creates a third drawing in which the spanning tree is crossing-free; see Figure 3c.
Here the spanning tree is rooted at the central vertex and vertices are drawn on concentric
circles depending on distance from the root. Given this visualization, the defense rests, and
the judge decides quickly that indeed all members of the network are affiliated.

Discussion. While in Example 1 we have seen that the drawing style of the entire graph
can be important to visually prove a property, here we added another dimension. Namely, a
subgraph is explicitly color-highlighted for pre-attentive perception. In addition, the drawing
of this subgraph was very important in creating a convincing argument. In Figure 3b the
drawing of the spanning tree is not very readable. Thus, even with the attention drawn to
this portion of the drawing, it remains time consuming to check that a single tree connects
all vertices. But when the tree is laid out in a concise and readable fashion as in Figure 3c, it
is quite evident that it spans all the vertices, as the colored edges induce automatic grouping
via similarity [52] and act as guidance for attention spread [30]. Similar to Example 1, while
the quality of the drawing of the spanning tree is improved, the drawing of the rest of the
graph does not measure well on the usual metrics; see Table 1.

2.3 Example 3: The Graph has a Hamiltonian Cycle

We may train an Al to produce a good node-link drawing for Example 3. As in Section 2.2,
we observe that the quality of the drawing of the evidence relevant to the property under
consideration is more important than the drawing of the full graph (Figure 4a), thus we select
a circular layout with the hamiltonian cycle forming the outer face (Figure 4b). However,
the human operator needs to check that all edges of the highlighted outer cycle are indeed
present which can become increasingly difficult for larger graphs where resolution may
become problematic. We can improve upon these issues by instead using an adjacency matrix
representation. While an arbitrary permutation (see Figure 4c) does not provide any insights,
an appropriate sorting of rows and columns makes the cycle composed of three components:
one red diagonal and two red-cells (top-right and bottom-left); see Figure 4d.

Discussion. We observed that different visualization paradigms may perform better or worse
for visually proving a property. While the node-link drawing in Figure 4b already highlights
the cycle well, the adjacency matrix representation in Figure 4d composes the Hamilton
cycle in three components. The perception of the red diagonal is facilitated by figure-ground
separation via connectedness and similarity [52], and the two corner cells stand out due to
both color difference and symmetry [58]. The particular advantage of this representation is
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that the used visual cues scale nicely even for very large matrices (up to the pixel resolution
of the screen) [58]. Thus, an important criterion for judging the quality of a visual proof
should be the workload required by the observer to evaluate the correctness. As checking for
Hamiltonicity is a difficult task with an all-purpose visualization (see also Section 3.3), both
visualizations should be regarded as valid visual certificates albeit of different quality.

3 Related Theories, Frameworks and Models

3.1 Certifying Algorithms

The concept of visual certificates is related to certifying algorithms popularized by McConnell
et al. [36], which seek to provide short and easy-to-check certificates for the correctness of
an algorithm. Let f : X — Y be a computable, surjective function for input set X and
output set Y and let W be a set of witnesses. Intuitively speaking, a witness describes a
simple proof certifying that the output y of an algorithm for f on input z satisfies f(z) = y.
The validity of a witness for a certain combination of inputs and outputs is assessed via the
witness predicate W : X XY x W — {true, false} that fulfills:

1. Witness property: Given (z,y,w) € X x Y x W it holds f(z) =y & W(z,y,w) = true.
2. Checkability: Given (z,y,w) € X x Y x W, it is trivial to determine W(z,y, w).

3. Simplicity: W(z,y,w) = f(x) =y has a simple proof.

An algorithm for f is now called certifying algorithm if for any input = € X it computes
the output y = f(z) € Y and a witness w € W such that W(z,y, w) = true. It is worth
noting that Properties 2 and 3 of the witness predicate are vaguely formulated. McConnell et
al. [36] suggest that Property 2 can be formalized by requiring that there must be a decision
algorithm for W that runs in a certain time (such an algorithm is called a checker). On the
other hand, they emphasize that Property 3 is intentionally left subjective as it relies on
what is considered common knowledge. For examples of certifying algorithms, see the full
version of this article.

3.2 Perception

Visual proofs are concerned with a design of visual evidence for an existence of a specific
property, such as the presence of a cut-vertex, a Hamiltonian cycle, etc. In principle, a
proof for such a property can be reduced to a program that returns a binary outcome,
affirming or rejecting the claim. This may be sufficient for specialists who are familiar with
the property itself, understand and trust the algorithm behind the code, and trust that
the code is valid. However, such evidence may not be convincing to a non-specialist (a
judge, a stockholder, etc.), particularly because the proof itself will be just one piece of
evidence among many. Prior research shows that in such cases, presenting evidence per se
is not enough, as information can be discounted as confusing, unimportant, or, given the
wrong context, even misleading [49], as the accessibility and clarity of evidence could be as
important as evidence itself [27].

Due to the diversity of graph properties there can be no general solution. Visual proof
design might be guided by the principle of optimizing the data-ink ratio [49]. Thus, instead of
optimizing overall aesthetic metrics [42], one should minimize the required number of visual
queries, 1. e., attention orientation, driving eye movements, and pattern/object recognition [54].

The human visual perception system consists of three stages: (1) rapid parallel processing
involving billions of neurons, e.g., extraction of orientation, texture, color, and motion
features; (2) slower processing than Stage 1, e.g., detection of 2D patterns, contours and
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regions; (3) slow serial processing, involving both working and long-term memory, e.g.,
object identification [53]. As in Stage 1 the entire visual field is processed quickly in parallel,
information that can be captured in this stage can be easily distinguished. Thus, pre-attentive
(pop-out) patterns such as color, size, orientation, shapes, etc. should be utilized.

In other words, a good visual proof must ensure that a focal piece of evidence is a visual
“pop-out” feature that automatically attracts viewer attention and that the visual layout is
parsed and grouped into patterns that express the evidence. In case of the former, studies
on visual search provide a comprehensive list of useful pop-out features such as color, size,
contrast, or location [58]. Regarding the latter, one can rely on a large body of literature on
principles of perceptual organization, commonly known as Gestalt principles [52]. However,
yet another constraint is placed by our working memory that limits the number of nodes,
edges, and components that can realistically be assessed at any single time [35].

The examples above illustrate the importance of this approach for visual proofs. For
instance, consider the visual evidence for the existence of a cut-vertex in Figure 2a. While
it uses color to attract the viewer’s attention to the cut-vertex and spatial arrangement to
visually separate the two components, it still leads to an excessive number of visual queries,
requiring multiple scans of individual vertices to ensure that they are connected only to the
cut-vertex and the nodes within the component. In turn, there is a memory bottleneck that
is likely to prevent a viewer from being completely certain about the validity of the proof. In
contrast, in Figure 2c¢ the graph layout groups the entire evidence in just three components
and clearly shows lack of inter-component edges, so that very few visual queries are required
to confirm the vertex is indeed a sole connector between the components. In short, although
there cannot be a single one-size-fits-all approach for constructing visual proofs, their critical
role in aiding the cognition of the viewer means they should be built based on principles of
perceptual organization and around the limitations of attention and memory [54].

3.3 Computational Complexity

To evaluate the amount of the cognitive workload, we will apply concepts from complexity
theory [6,24]. Tt is also worth mentioning that the examples discussed so far differ in terms of
their computational complexity. Namely, all cut-vertices of a graph and a spanning-tree can
be found in time O(n + m) based on BFS traversals where n is the number of vertices and
m the number of edges while determining a Hamiltonian cycle is NP-complete [24]. Thus,
in Example 3, we have visually proven an algorithmically difficult to solve problem.
However, there may be graph properties that cannot be visually proven. We first have to
discuss how a human observer interacts with a visual certificate. In Example 1, the human
observer identified two connected components and then saw that they can be separated by
the removal of their shared vertex. Such a procedure could be seen as an O(1) time algorithm,
where the observer determined that there is only a single point where both components
touch. Similarly, in Examples 2 and 3, the observer may have checked for every vertex if it
was part of the highlighted structure. Even if they were to check this for every vertex one at
a time, the resulting algorithm would still run in linear time. Hence, an observer is actually

performing a deterministic validation algorithm for establishing that a certificate is correct.

Now, consider the complementary question to Example 3, i.e., we want to determine
whether a graph does not contain a Hamiltonian cycle. This is a CoNP-complete problem as
it is the complement to an NP-complete problem. For CoNP-complete problems it is likely
that there is no certificate that can be checked in polynomial time [6], i. e., if we assume that a
human observer deterministically analyzes a visualization (as could be recreated by computer
vision), we have to assume that we cannot visually prove a CoNP-complete problem.

16:9
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3.4 Related Visualization Models

Aside from graph visualizations, the concept of visually enhancing a proof is wide-spread. In
mathematics, visual proofs for theorems have been used since ancient times [57] and there is
a plethora of examples [37]. The question if such proofs can be regarded as such also has
been discussed philosophically [12]. Also in computer science, visualizations are heavily used
to convey knowledge, e. g., while not necessarily proving, an interactive sequential art by
Bret Victor [51] beautifully explained an algorithm from a Nature paper [55].

Overall, there is a trend of increasingly sophisticated models considering an holistic
integration of visualization into the sensemaking process, typically with the goal of informing
the design of interactive systems for data exploration. Early models considered a linear
pipeline, from data, via various transformations, to a visual display [14]. Visual analytics
seeks to apply visualization to support the entire human sense-making loop [41]. More recent
models aim to connect sense-making from interactive data visualization, via hypothesis
formation and testing, to knowledge generation [43]. An underlying theme across most of
this work is the role of computational guidance in the analytics process, and how algorithms
can support the various loops in the sensemaking process [15]. By contrast, we consider a
different model to conceptualize the role of algorithms, and AL, in supporting data (specifically
network data) understanding. Our model for visual proofs (Fig. 1) does not seek to replace
the traditional sense-making/knowledge-generation loop, but to support humans in situations
where the result of a complex algorithm or property needs to be explained and justified.

There are also models related to ours from information visualisation research. Song et
al. [45] considered a problem that may be seen as a complementary question to the one studied
in this paper: They investigated how computer vision can understand network visualizations
optimized for human users. Wickham et al. [56] proposed a two-phase procedure to convince
a human observer that a data set contains statistically significant difference from randomly
generated data. The human observer is first exposed to several randomly generated data sets
(similar to a Rorschach test) before being exposed to a line-up consisting of the real data
set and a couple randomly generated data sets. The first phase primes the human viewer
for statistically insignificant variations so that, in the second phase, statistically significant
differences clearly pop out from the noise. Another related model are Gragnostics, which are
ten features suggested by Gove [25,26], that are fast to compute and provide a quantification of
structural graph properties. In contrast to our model that aims to prove structural properties
of graphs, Gragnostics provides the human user with a first impression of the structure of
the graph at hand which may be helpful for initiating a thorough investigation. Finally, our
model may also be seen as a visual communication of structural graph properties. Visual
communication has been investigated in other settings for several decades, see e. g. [47,48].

4 The GraphTrials Model

We are now ready to discuss our formalization of visual proofs. For this, we first abstractly
outline the process of visually proving properties of graphs in an adversarial setting using a
model that we call GRAPHTRIALS; see also Figure 1. The model includes three distinct roles
that have already appeared in our discussion of Example 2 in Section 2.2: The prosecution
lawyer must convince the judge that a certain assertion regarding a graph is true, the defense
lawyer may raise doubts about the validity of the prosecution lawyer’s claims, and the judge
will determine the truth of the assertion. The roles prosecution lawyer, judge and defense
lawyer are to be seen as abstract descriptions of the different actors in the process; e.g.,
in Examples 1 and 3, the prosecution lawyers were the network admin and the AT based
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algorithm, respectively. The latter example further indicates that not all roles have to be
assigned to a human. In fact, we only require that the judge corresponds to the human
audience of the visual certificate whereas each lawyer may be either human, software or a
human assisted by software. Moreover, as we have seen in Section 2.1, it can also occur that
a critical audience can act as both the judge and defense lawyer roles simultaneously.

To convince the judge of a valid assertion f for the input graph G, the prosecution lawyer
draws a visual certificate W(G). To do so, they first analyze the raw data G to reveal
evidence that proves the assertion f. The evidence is then embedded in W(G): a visual
representation of G that in some way emphasizes the evidence. Note that in the scope of
our model we treat the analysis of the raw data and extraction of the evidence as a black
box, i.e., we may assume that the prosecution lawyer already knows that the assertion f
is true for the input graph G and may also be given the evidence as input. This allows
us to efficiently visually prove algorithmically difficult assertions (such as the existence of
a Hamiltonian cycle as in Section 2.3) and to ignore how the evidence is gathered (either
algorithmically or by human interaction) in our model. The latter aspect also provides the
possibility to separate the evidence gathering from the visualization process W, i.e., W could
be a reusable program that embeds the evidence according to a specification®.

The defense lawyer checks the unimpeachability of W(G) as a visual representation
of G certifying f(G). Thus, they may question whether the graph represented in the
visualization actually corresponds to the input and they may also raise concerns if W(G) is
not distinguishable from a slightly different non-certificate (e. g., in Section 2.1 we encountered

the case where an edge may have been hidden making it invisible to the judge’s perception).

The judge, the human audience of the visual certificate W(G), will validate the claim
f(G) using W(G). In this step, the visual certificate W (G) must guide the judge’s perception
so that they are able to form a mental model M(G) that facilitates confirmation of the
validity of the assertion f(G). For instance, the guidance can be formed by a suitable choice
of topology which leads the judge to identify clusters of the graph as distinct salient features
(as in Section 2.1) or by adding additional features such as color to draw attention to certain
parts of the graph (as in Section 2.2). We discuss the judge’s mental model in the full version
of this article.

It is noteworthy that aside from the input graph and the verdict of the judge, the only
information shared by all three roles is the visual certificate W (G). In particular, it is the only
medium that can be used by the prosecution lawyer to communicate the gathered evidence to

the judge, i. e., the evidence is hidden information only accessible by the prosecution lawyer.

Similarly, the judge is not communicating its mental model M(G) to the prosecution or
defense lawyer, yet as we discussed above both roles might want to estimate what the mental
model will look like. Furthermore, the nature of the mental model plays an important role in
the validation step performed by the judge. Namely, the cognitive load put on the judge in
this step depends hugely on how complez M(G) is. Finally, the defense lawyer’s checking
for unimpeachability is a process that is independent of the judge and prosecution lawyer
and for a faithful and readable visual certificate we demand that there is no reason for the
defense lawyer to raise doubts to the judge. As a result, there are several properties that
we require from a visualization in order to call it a visual certificate and it could occur that
an assertion cannot be visually proven for every graph for which the assertion is true (for
instance we discussed issues related to scalability in Section 2.3). To this end, we also state
when we want to say that a certain assertion can be visually proven for arbitrary graphs.

5 The examples in Section 2.3 and 5 both use visual certificates that highlight cycles.
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Visual Certificates and Visual Provability

We give formal requirements inspired by the concept of certifying algorithms discussed
in Section 3.1. Let f : G — {true,false} be an assertion function for the set of graphs G,
i.e., for some graphs the assertion f(G) is true while for others it is not. For instance, if f
is the existence of a cut-vertex, some graphs do contain one (f(G) = true) while others do
not (f(G) = false). Consider a graph G with f(G) = true and let W(G) be a visualization
of G. We call W(G) wvisual certificate for f(G) if and only if the following hold:

1. Unimpeachability: We call W (G) unimpeachable, if it satisfies the following two properties.
First, W(G) should provide information faithfulness [38], i.e., it displays the ground
truth properties and structures in G. Second, W(G) should provide task readablility [38],
i.e., the judge can perceive enough information for validating the assertion.

2. Checkability: Given W(QG), it is trivial to decide that f(G) = true. In particular, this
means that the judge’s perception leads to the formation of a mental model M(G) that
makes it possible for the judge to efficiently validate the assertion. The number of distinct
observations made by the judge in the process is called the perceptual complexity.

3. Simplicity: Given M(Q), there is a simple formal proof for f(G) = true that relies solely
on conclusions that the judge may deduce using M(G). In particular, this means that
W (Q) is perceptually distinguishable from any possible wrong visual certificate W’/ (G).

If a visual certificate W(G) exists for each G € G with f(G) = true, we call f visually
provable. Note that the complementary function f¢ (which is true if and only if f(G) = false)
needs not necessarily be visually provable. For instance, we were able to visually prove the
assertion that G contains a Hamiltonian cycle in Section 2.3 but we argued that the absence
of such a cycle cannot be visually proven in Section 3.3. This and requiring unimpeachability
are clear differences to the concept of certifying algorithms whereas checkability and simplicity
occur in both models, here considering the perceptual abilities of the judge; see also Section 3.1.

We are also interested in how efficiently the judge is able to validate f(G) = true based
on M(G). To this end, we define the perceptual complezxity as the time that the judge needs
to check the assertion given M(G). The perceptual complexity may depend on the size of
the graph, however, in some scenarios (e.g. Example 1) it may be independent of it. Since
we assume the judge to make an objective judgment based on the evidence, we can treat the
thought process as a deterministic algorithm and apply methods from complexity theory to
evaluate the perceptual complexity. See the full version of this article for an application of
these concepts.

5 Visual Proofs for Graph Properties

We provide visual proofs for further widely used assertions. For a summary of our discussion,
refer to Table 2. In addition, we discuss further assertions in the full version of this article.

(Non)-Bipartiteness and k-colorability. We can use a matrix representation to visually
prove bipartiteness; see Figure 5a. When sorting the rows and columns according to the
two independent subsets, bipartiteness can be simply checked by verifying if the two empty
squares are indeed empty [58]. This approach also generalizes to k-colorability as shown
in Figure 5b for 4 colors, however, for sparse graphs like in Figure 5c additional highlighting
of the (supposedly) empty squares might be necessary. For small graphs, a node-link diagram
might be easier to read and hence preferable, however the approach does not scale well due to
resolution since the judge needs to verify there are no edges within the subsets; see Figure 5d.
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Table 2 Visual proofs in this paper, computational complexity of the problem and perceptual
complexity of presented visual proofs (n and m denote the numbers of vertices and edges, resp.).

Assertion Comp. Complexity Percep. Complexity Sec.
G is connected O(n) 2.2
G is not (2-)connected Oln+m) 0(1) 2.1
G is not k-connected O(k3n?) O(k) 2.1
G is (not) complete O(n?) o) 5
G has a Hamilt. cycle (path) NP-complete 0(1) 2.3
G has a length-k cycle (path) NP-complete O(k) 2.3
G is (not) bipartite O(n+m) o(1) 5
G is k-colorable NP-complete O(k) 5
CoNP-complete assertions coNP-complete Conj.: No Visual Proof 3.3

(a) (b) (9 (d)

Figure 5 Visualizing k-colorability. (a) A bipartite graph. (b) A dense 4-colorable graph. (c)
and (d) a adjacency matrix and a node-link visualization of a sparse 4-colorable graph.

An odd-length cycle certifies that a graph is not bipartite, so non-bipartiteness can be
visually proven by highlighting a shortest odd cycle in a drawing. In an arbitrary drawing,
the cycle may be hard to spot, see Figure 6a. Redrawing the cycle in convex position makes
it easier to read (see Figure 6b), especially if it is the convex outer cycle; see Figure 6¢ (this
makes the rest of the graph harder to read; see Table 1). The cycle is now clearly visible and
the judge just needs to assert oddness. While depending on the odd cycle length counting
may be inevitable, the judge can use the symmetry of the drawing of the cycle to see that the

cycle is odd (e.g., in Figure 6c¢, there is a single top-most but no single bottom-most vertex).

For larger cycle lengths, an adjacency matrix representation may be beneficial: Sort the rows

and columns along the odd cycle and mark it, then append the remaining vertices arbitarily.

Then, alter the spacing of the matrix so that even rows and columns are thicker than odd
ones; see Figure 6d. The cell closing the cycle is a square if and only if the length is odd.

Completeness and Non-Completeness. Non-completeness is evidenced by a single missing
edge and can be visually proven with a circular layout with the missing edge on the outer
cycle. This approach does not scale well for a larger graphs; see Figure 7a. Readability and
scalability can be improved by drawing focus to the missing edge, see Figure 7b. However,
one can also use a matrix representation (see Figure 7c) since spotting a missing square
scales well from a perception perspective [58]. This technique can also prove completeness.
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Figure 6 Visualizing non-bipartiteness of a graph. In (a) the odd cycle is self-intersecting, making
it difficult to certify that it is in fact a cycle. Both in (b) and (c¢) the cycle is clearly visibile where
in (c) the cycle forms the outer boundary of the drawing letting it stand out even more compared to
(b). Finally, in (d) the odd cycle is represented by a distinguishable pattern in the adjacency matrix.

(a) (b)

Figure 7 Visualizing non-completeness of a graph. In (a) the missing edge is very difficult to
spot. In (b) and (c¢) on the other hand it is obvious that an edge is missing.

6 Limitations of the GraphTrials Model

Scalability. In the GRAPHTRIALS model, we must not only visualize the evidence represented
in the visual certificate, but also display the remainder of the graph faithfully. This may
result in higher computational complexity compared to other visualization techniques, e. g.,
force-directed graph layouts, whose purpose is to create an overall readable representation.
Why not forgo visualization completely and use an assertion software to validate the evidence
computationally? While this could drastically reduce the computation time and require fewer
software components, there are in fact real-world application scenarios, e. g., in court, where
it may be better to show a visual certificate accompanied by a short explanation why the
certificate is indeed establishing the assertion instead of simply telling the audience that a
piece of software analyzed the network and found the evidence for the assertion; see Section 1.
Another benefit of visual proofs over a non-visual assertion software is that bugs in the visual
proof pipeline can be spotted in the visual certificate, i.e., either the represented graph is
not the input graph or the evidence is not a true evidence for the claim.

Another scalability issue is to display the entire graph faithfully. In Section 4, we assumed
that the visual certificate may be represented by few components in the judge’s mental model
and that the formation of that mental model can be mainly guided by usage of bottom-up
and pattern recognition processes. For large input graphs, the screen resolution might not
permit an information-faithful representation of the input graph so that one must resort to
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techniques for displaying larger data, e.g., zooming. The introduction of such modes of user
interaction may be problematic for our model as it may lead the judge to increasingly use
top-down processes of perception which may influence the formation of the mental model.

Human factors. In our model, the judge is necessarily a human actor in the visual proof
process. Hence, it is no surprise that human factors play an important role in the application
of our model. Our model assumes that the judge is able to draw objective conclusions
provided the evidence by the prosecution lawyer. This process may be hindered by insufficient
background knowledge of the judge or subjective expectations towards the visualization.
Moreover, the judge’s mental model cannot be directly analyzed and influenced introducing
uncertainty into the model. We discuss these aspects further in the full version of this article.

7 Open Problems

(i) Are visual proofs in fact scalable? How do they extend to geospatial and dynamic graphs
where the data are expected to obey spatial and/or temporal constraints? (%) Which features
contribute to perceptual complexity? (i) Do response times depend mostly on perceptual
complexity? (iv) When do human users regard a visual certificate as unimpeachable?
(v) What are human limits for the perception of graph properties? For instance, the
minimum perceivable slope difference is = 2 degrees [31]. (vi) What is the trade-off between
perceptual complexity and cognitive load?
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