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Abstract
Connectivity is one of the important fundamental structural properties of graphs, and a graph
drawing D should faithfully represent the connectivity structure of the underlying graph G. This
paper investigates connectivity-faithful graph drawing leveraging the famous Nagamochi-Ibaraki
(NI) algorithm, which computes a sparsification GNI , preserving the k-connectivity of a k-connected
graph G.

Specifically, we first present CFNI, a divide-and-conquer algorithm, which computes a sparsifica-
tion GCF NI , which preserves the global k-connectivity of a graph G and the local h-connectivity of
the h-connected components of G. We then present CFGD, a connectivity-faithful graph drawing
algorithm based on CFNI, which faithfully displays the global and local connectivity structure
of G. Extensive experiments demonstrate that CFNI outperforms NI with 66% improvement in
the connectivity-related sampling quality metrics and 73% improvement in proxy quality metrics.
Consequently, CFGD outperforms a naive application of NI for graph drawing, in particular with
62% improvement in stress metrics. Moreover, CFGD runs 51% faster than drawing the whole graph
G, with a similar quality.
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1 Introduction

Connectivity is a fundamental structural property of graphs due to its wide communication,
transportation, and production applications. Consequently, tremendous progress has been
made in algorithms and complexity theory related to graph connectivity [40]. For example,
algorithms for various aspects of the connectivity have been presented, ranging from com-
puting the connectivity of a graph [27], increasing the connectivity of a graph through edge
augmentation [41], and decomposing a graph into connected components [18].

One notable problem is finding the minimum k-connected spanning subgraph of a k-
connected graph, which is NP-complete [13]. Nevertheless, an efficient linear-time algorithm
for finding a k-connected spanning subgraph of a k-connected graph with an upper bound of a
linear number of edges has been presented [39]. Specifically, the NI (Nagamochi and Ibaraki)
algorithm computes a k-connected spanning subgraph with O(kn) edges for a k-connected
graph G = (V, E) in O(m) time, where n = |V | and m = |E|.

In graph drawing, the faithfulness is an important quality metric to measure how the
drawing faithfully represents the ground truth structure of a large and complex graph.
Examples include distance-faithful metrics known as stress [8], shape-based metrics [9], cluster-
faithful metrics [31], symmetry-faithful metrics [32, 33], neighborhood-faithful metrics [26],
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(a) G. (b) G1 (computed by NI). (c) G3 (computed by CFNI).

Figure 1 Comparison of NI and CFNI: the sparsification computed by CFNI preserves both the
global sparse connectivity and the local dense connectivity structures of the graph G, better than
the sparsification computed by NI.

and change-faithful metrics [29]. In accordance, graph drawings that aim to optimize such
faithfulness metrics have been investigated, such as stress minimization layouts [12, 22, 52],
and the layouts to optimize shape-based metrics [30] and cluster faithfulness [3]. However,
connectivity-faithful graph drawing has not yet been investigated.

In this paper, we present the first study on connectivity-faithful graph drawings by lever-
aging the NI algorithm, which can compute a sparse subgraph preserving the k-connectivity
of a graph. Specifically, we first note that simply preserving the global k-connectivity of a
graph may not be effective for connectivity-faithful graph drawing. For example, while a
spanning tree preserves the global connectivity of a one-connected graph G, a drawing solely
based on the spanning tree may fail to faithfully represent the local connectivity of dense
subgraphs of G.

Therefore, we first present CFNI (Connectivity-Faithful NI), a divide-and-conquer ap-
proach utilizing NI, which preserves both the global k-connectivity of a graph G and the local
h-connectivity of each connected component of G. We then present CFGD (Connectivity-
Faithful Graph Drawing), which leverages CFNI to compute connectivity-faithful graph
drawings. Our main contributions can be summarized as follows:
1. We present CFNI (Connectivity-Faithful NI), a divide-and-conquer approach for graph

sparsification utilizing NI, to compute a connectivity-faithful sparsification, preserving
not only the global k-connectivity of a graph G but also the local h-connectivity of
each h-connected component of G, for h > k. Extensive experiments demonstrate that
CFNI achieves, on average, 66% better connectivity-related sampling quality metrics and
73% better proxy quality metrics [44] than NI, which outperforms the state-of-the-art
SS (Spectral Sparsification) [49] with 52% better connectivity-related sampling quality
metrics.

2. We present CFGD (Connectivity-Faithful Graph Drawing), which leverages CFNI for
connectivity-faithful graph drawing to faithfully represent both the global and local
connectivity structures in a graph. Experiments show that CFGD obtains better quality
metrics than a naive application of NI to graph drawing, particularly at up to 62% lower
stress on average. Furthermore, CFGD runs faster than directly drawing the whole graph,
at 51% faster, with a similar quality.

Figure 1 compares CFNI and NI for a one-connected graph G. The spanning tree G1
in Figure 1b is computed by NI, while G3 in Figure 1c is computed by CFNI with h = 3
(preserving the triconnectivity of triconnected components of G). Clearly, G3 better preserves
both the global mesh-like structure and the locally dense structures than G1, which loses the
local connectivity.
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2 Related Work

2.1 NI (Nagamochi-Ibaraki) Algorithm
Nagamochi and Ibaraki [39] presented a linear time algorithm to find a sparse k-connected
spanning subgraph of a k-connected graph, based on the following main lemma:

▶ Lemma 1. For graph G = (V, E), let Fi = (V, Ei) be a maximal spanning forest in
V −E1 ∪E2 ∪ . . .∪Ei−1 for 1 ≤ i ≤ |E| where possibly Ei = Ei+1 = . . . = E|E| = {} for some
i. Each spanning subgraph Gi = (V, E1 ∪E2 ∪. . .∪Ei) satisfies λ(x, y, Gi) = min(λ(x, y, G), i)
for all x, y ∈ V where λ(x, y, G) is the local connectivity between x and y in graph G.

Based on Lemma 1, a subgraph GNI = (V, E′) where E′ = E1 ∪ E2 ∪ . . . ∪ Ek is k-
connected if k ≤ λ(x, y, G). To compute GNI , one must compute the disjoint edge subsets
E1, E2, . . . , Em, m = |E|, where each Ei is a maximal spanning forest in G \ (E1 ∪ . . . ∪ Ei−1).
GNI is then constructed using the union of E1 to Ek, i.e., Gk = (V, E1 ∪ E2 ∪ . . . ∪ Ek).

In other words, given a k-connected graph G = (V, E), the NI algorithm computes
an ordered list of disjoint edge subsets E1, E2, . . . , Em, such that (V, E1) is one-connected,
(V, E1 ∪ E2) is biconnected, (V, E1 ∪ E2 ∪ E3) is triconnected, and so on, up to Ek.

The NI algorithm takes a k-connected graph G = (V, E) and starts by marking all v ∈ V

and e ∈ E as “unscanned”, and assigning a counter r to each v ∈ V , where all r(v) starts at 0.
The algorithm loops through every unscanned vertex, selecting a vertex with the highest r for
each iteration. The algorithm then iterates through all unscanned edges e = (x, y) incident
on x, and adds e to the subset Er(y)+1. If r(x) is equal to r(y), r(x) is incremented by 1;
otherwise, r(y) is incremented by 1. e is then marked as “scanned”, and once all unscanned
edges incident on x has been scanned, x is marked as “scanned”. The algorithm finally
returns the k-connected spanning subgraph GNI = (V, E1 ∪ E2 ∪ . . . ∪ Ek). The following
theorem describes the main results:

▶ Theorem 2. Given a simple graph G = (V, E), partition Ei ⊂ E satisfying Lemma 1 can
be found in O(n + m) time, where |Ei| ≤ n − i for i < n and |Ei| = 0 for n ≤ i ≤ m.

The linear runtime comes from each vertex and edge being scanned once. As G is simple,
r(v) for v ∈ V increases at most 1 when an incident vertex is scanned, thus r(v) ≤ n − 1.
Meanwhile, |Ei| ≤ n − 1, as |Ei| = n − 1 implies that no more vertices have r(v) < i. Thus,
the k-connected spanning subgraph GNI = (V, E1 ∪ E2 ∪ . . . ∪ Ek) can have at most k(n − 1)
edges.

Figure 2 shows an example of running NI on a graph, in this case, a biconnected graph G

shown in Figure 2a. Figure 2b shows the result of running NI on G, in particular showing
which edges belong to each edge set E1, E2, E3 as well as the r values of each vertex at the
end of the NI algorithm. Figure 2c shows the biconnected spanning subgraph Gk, obtained
using the union of the edge sets E1 ∪ E2 from the results in Figure 2b.

2.2 Graph Sampling and Spectral Sparsification
Graph sampling has been extensively studied within graph mining, where complex analysis
can be computed more efficiently on the smaller sample graph G′ than on the original large
and complex graph G [21, 23]. The main challenge for graph sampling is to compute G′,
which is a good representative of G, preserving the structural properties of G. However, the
most popular simple random sampling methods, such as Random Vertex (RV ) or Random
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(a) Biconnected graph G. (b) G after running NI. (c) Biconnected subgraph Gk.

Figure 2 Example of running NI on a biconnected graph.

Edge (RE), often produce disconnected samples, failing to preserve the connectivity of G [51].
Recent random sampling methods improve the connectivity of G′ and reduce the computation
time of G′ using the BC (Block-Cut vertex) tree decomposition [16].

Spectral sparsification [48] computes G′ preserving the spectrum of G, which is closely
related to important structural properties such as clustering [50] and connectivity [6]. Every
n-vertex graph G has a spectral sparsification G′ with O(n log n) edges, which can be
computed in near-linear time [49].

More recent work on graph sampling utilizes spectral sparsification to compute G′,
preserving the structural properties of G. For example, DSS (Deterministic SS) computes
G′ by selecting edges in decreasing order of effective resistance values [10]. Similarly, the
SV (Spectral Vertex) sampling computes G′ by selecting vertices in decreasing order of the
sum of effective resistance values of their incident edges [20]. Both DSS and SV have been
shown to perform significantly better than RE and RV , respectively, on various sampling
quality metrics [10, 20].

Furthermore, spectral sparsification has been integrated with graph connectivity, such as
the decomposition into biconnected (resp., triconnected) components using the BC (resp.,
SPQR) tree to reduce the computation time of G′ and to improve the quality of G′ including
the connectivity, see [19, 34].

2.3 Fast Graph Drawing Algorithms using Sampling

Graph sampling methods have been successfully integrated with the most popular graph
drawing methods, such as force-directed algorithms and stress minimization methods, to
reduce the runtime complexity of the algorithms from quadratic time to linear time [14, 46, 52].

For example, the sparse stress-based algorithms [46, 52] sample a pivot set P ⊂ V of
constant size to reduce the stress computation from quadratic to linear time. Similarly, the
RVS algorithm [14] uses a random vertex sampling method with a sliding window to reduce
the runtime of repulsion force computation to linear time.
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More recently, the fastest graph drawing algorithms using the sublinear-time force
computation and stress computation have been presented [28, 36, 38]. For example, the
SublinearForce framework [28] utilizes both vertex and edge sampling based on spectral
sparsification to reduce the computation of both repulsion and attraction forces from linear
to sublinear, while obtaining better quality than the linear-time RVS.

Sublinear-time stress computation algorithms have also been presented [38], based on
the Stress Majorization and Stochastic Gradient Descent, integrating vertex sampling using
spectral sparsification to reduce the stress computation from linear to sublinear time while
producing drawings similar to SM and SGD.

2.4 Faithfulness Metrics and Faithful Graph Drawing
Faithfulness metrics are designed for evaluating drawings of large and complex graphs,
by measuring how faithfully the ground truth structure of the graph is represented in a
drawing [43]. Various faithfulness metrics have been presented based on the definition of the
ground truth structure of the graph:

Stress measures how proportional the geometric distances between vertices in a drawing
are to the shortest path distance between the vertices in the graph [8].
Shape-based metrics measure how faithfully the “shape” of the drawing, computed using
the proximity graph, represents the ground truth structure of a graph [10, 15].
Proxy quality metrics [44] measure how faithfully the drawing of a sample graph represents
the ground truth structure of the original graph by computing the similarity between a
graph G and the “shape” of the drawing D′ of a sample graph G′ ⊂ G.
Cluster faithfulness [31] measures how faithfully the ground truth clustering of vertices is
represented as the geometric clustering in the drawing.
Automorphism faithfulness [32, 33] measures how faithfully the automorphisms of a graph
are represented as symmetries in the drawing of a graph.
Change faithfulness [4, 29] metrics are designed for dynamic graphs, measuring how
proportional the change in the dynamic graph drawings is to the ground truth change of
the structure of the dynamic graph.

Consequently, a number of graph drawing algorithms for optimizing faithfulness metrics
have been investigated, such as stress minimization layouts [12, 22, 52], ShFR and ShSM
algorithms to maximize shape faithfulness [30], and the ClusterKmeans and ClusterHAC
algorithms to maximize cluster faithfulness [3].

3 CFNI: Connectivity-Faithful NI

While the NI algorithm successfully computes a spanning subgraph preserving the global
k-connectivity of a graph, it may not always be sufficient to preserve the dense local
connectivity structures of the graph for connectivity-faithful graph drawing. This may be an
issue, especially for the graphs with a “globally sparse, locally dense” structure, such as the
scale-free graphs often found in real-world social networks and biological networks [1].

To address this issue, we present CFNI, a divide-and-conquer approach leveraging NI
for graph sparsification, which preserves both global and local connectivities. Given a
k-connected graph G, CFNI takes as parameter a target connectivity h, and returns a
subgraph preserving both the global k-connectivity of G and the local h-connectivity of each
h-connected component of G.

GD 2024
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Algorithm 1 CFNI.

1: Input: Graph G = (V, E), target connectivity h

2: k: connectivity of G

3: if h > k then
4: Decompose G into k + 1-connected components C1, C2, . . . Cc

5: for each k + 1-connected component Ci = (VCi , ECi) do
6: Ghi

= (VCi
, E′

Ci
) = CFNI(Ci, h)

7: end for
8: GCF NI = (V, E′

h = E′
C1

∪ E′
C2

∪ . . . ∪ E′
Cc

)
9: return GCF NI

10: end if
11: E1 = E2 = . . . = Em = {}
12: Vu = V , Eu = E // unscanned vertices and edges
13: r(v) = 0 for all v ∈ VCi

14: while |Vu| > 0 do
15: x = vertex in Vu with largest r

16: for {e ∈ E|e = (x, y)} do
17: Er(y)+1 = Er(y)+1 ∪ {e}
18: if r(x) == r(y) then
19: r(x)+ = 1
20: end if
21: r(y)+ = 1;
22: Eu.remove(e)
23: end for
24: Vu.remove(x)
25: end while
26: GNI = (V, E′ = E1 ∪ E2 ∪ . . . ∪ Ek)
27: return GNI

Roughly speaking, the main idea of CFNI is to divide a k-connected graph into k + 1-
connected components, and then, for each k + 1-connected component, recursively decompose
it into k + 2-connected components, and so on, until a decomposition into h-connected
component is obtained. Finally, we run the NI algorithm for each connected component to
preserve the local connectivity structure.

Algorithm 1 describes the steps of CFNI, which takes as input a graph G = (V, E) and a
target local connectivity h. h can be selected as any positive integer, not necessarily equal to
the k-connectivity of G.

The algorithm first checks for the connectivity k of G. If h > k, the algorithm decomposes
G into k + 1-connected components, and recursively calls CFNI for each k + 1-connected
component (lines 3-7). The recursion stops when CFNI is called on a graph whose k-
connectivity is no lower than h; at this step, NI is run on G (lines 11-26).

Once the recursive calls finish for all k +1-connected components, the local h-connectivity-
preserving k-connected subgraph GCF NI is finally computed using the union of the edge sets
of the k + 1-connected subgraphs of the k + 1-connected components (line 8).

The runtime complexity of CFNI depends on the runtime of the h-connected component
decomposition, while running NI on each component takes linear time. For example, the
decomposition of one-connected (resp., biconnected) graphs into biconnected (resp., tricon-
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nected) components takes linear time [17, 18]. Running NI on each h-connected component
Ghi takes linear time in the number of edges in Gi, which sums up to O(m) due to the
number of edges in all of the connected components adding up to m.

The number of edges in GCF NI is bounded by O(hn). At the lowest level of recursion,
CFNI decomposes a graph G into h-connected components, where NI is run on each h-
connected component Ghi = (Vhi , Ehi) to produce a h-connected subgraph G′

hi
= (Vhi , E′

hi
)

with O(h|Vhi
|) edges. As GCF NI is formed using the union of all G′

hi
, and given that the

sum of all |Vhi
| is n, the number of edges in GCF NI is bounded by O(hn).

4 CFGD: Connectivity-Faithful Graph Drawing

One popular method commonly used to draw big complex graphs is by utilizing graph
sparsification [10, 19, 28, 34, 37, 38]. Namely, given a graph G, first compute a much smaller
sparsified graph G′, then compute a drawing D′ of G′. Finally, the sparsified edges are added
back to D′, to obtain a drawing D of the whole graph G. While this approach is efficient (i.e.,
it has a much faster runtime than drawing the whole graph G), the effectiveness (i.e., the
quality of the drawing D) depends on how well the sparsification G′ preserves the structure
of G.

Due to the limitation of NI in preserving the local connectivity of highly connected
components of a graph G, a naive application of NI for graph drawing may not be sufficient
to represent all important connectivity structures of a graph faithfully. For example, a
drawing of a one-connected graph G based on the spanning tree may fail to depict cycles or
misrepresent locally dense subgraphs. We, therefore, present CFGD, which leverages CFNI
for connectivity-faithful graph drawing to overcome the weakness of NI in preserving the
local connectivity of highly connected components.

Algorithm 2 CFGD.

Step 1: Compute subgraph GCF NI = (V, E′
h) preserving global k-connectivity and local

h-connectivity of k-connected graph G using CFNI.
Step 2: Compute a drawing DGCF NI

of GCF NI using a graph drawing algorithm.
Step 3: Add all edges in Erh

= E \ E′
h to DGCF NI

to obtain a drawing D of G.

We expect CFGD to be able to compute high-quality connectivity-faithful drawings
due to CFNI preserving not only the global k-connectivity of a graph G but also the local
h-connectivity of each h-connected component of G, while still obtaining a fast runtime due
to the efficient runtime of CFNI.

5 CFNI Experiment

5.1 NI Experiment
We first evaluate the baseline performance of NI for graph sparsification by comparing NI
to SS (Spectral Sparsification), which has been shown to outperform stochastic sampling
methods [20, 19, 10, 34]. In summary, NI outperforms SS on several connectivity-related
sampling quality metrics, most notably on the connectivity-related metrics: Closeness
Centrality at 52% better, and Betweenness Centrality at 20% better. The visual comparison
also demonstrates the strengths of NI in preserving the overall connectivity structures that
SS often fails to preserve, for biconnected graphs. Thus, both the quality metrics and visual
comparisons demonstrate the strengths of NI over SS for connectivity-faithful sampling. For
details of the experiment, see the journal version of this paper [35].

GD 2024
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Although NI shows a good performance on biconnected graphs, for one-connected graphs,
the performance of NI deteriorates since the spanning tree misses the local connectivity
structures of graphs, such as cycles and clusters. We, therefore, conduct experiments to
evaluate how CFNI improves upon NI for globally sparse and locally dense one-connected
graphs.

5.2 CFNI Experiment Design

We now present comparison experiments to evaluate the strengths of CFNI over NI. Specific-
ally, we use one-connected graphs as inputs with h = 2, 3, since efficient linear-time algorithms
are known for computing biconnected components and triconnected components [18, 17]. We
denote the sparsification of a graph G computed by NI as G1, as k = 1 for the one-connected
graphs. We then denote the sparsification computed by CFNI with h = 2, 3 as G2 and G3.

We use a mix of real-world and synthetic graphs with various connectivity structures: 1)
real-world benchmark scale-free graphs, with globally sparse, locally dense clusters and small
diameters [24]; 2) GION graphs, biochemical networks with globally sparse, locally dense
clusters and long diameters [25]; 3) mesh graphs, with regular grid-like structures [7]; and 4)
black-hole graphs, synthetic graphs with globally sparse mesh- or cycle-like structures with
locally dense “blobs” attached [10]. See Table 1 for details.

Table 1 Data sets for the CFNI experiments.

(a) Scale-free.

G |V | |E|
soc_h 2000 16097

block_2000 2000 3992
oflights 2905 15645

tvcg 3213 10140
facebook 4039 88234
CA-GrQc 4158 13422

EVA 4475 4652
us_powergrid 4941 6594

as19990606 5188 9930
migrations 6025 9378
lastfm_asia 7624 27806

(b) Mesh.

G |V | |E|
dwt_1005 1005 4813

cage8 1015 4994
bcsstk09 1083 8677
nasa1824 1824 18692
plat1919 1919 15240

sierpinski3d 2050 6144
data 2851 15093
3elt 4720 13722

(c) GION.

G |V | |E|
2_gion 1159 6424
5_gion 1748 13957
6_gion 1785 20459
7_gion 3010 41757
8_gion 4924 52502
4_gion 5953 186279
1_gion 5452 118404
3_gion 7885 427406

(d) Black-hole.

G |V | |E|
G443 285 2009

Cycle759 377 4790
G462 733 62509

Cycle907 823 14995
Cycle896 1031 22638

G500 1080 17636
G887 4784 38135
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5.3 Quality Metrics Comparison
We use the well-known sampling quality metrics to measure how well the sparsifications
preserve the following properties of the original graphs [21, 23]:

Closeness Centrality (CLOSE) computes the “closeness” of a vertex to other vertices
by summing up the length of all shortest paths between a vertex and all the other
vertices [11].
Betweenness Centrality (BETW) measures the ratio of all shortest paths between each
pair of vertices that pass through a certain vertex [11].
Degree Correlation Associativity (DEG) computes the likelihood that vertices link to
other vertices of similar degrees [42].
Average Neighbor Degree (AND) computes the average degree of a vertex’s neighbors [2].
Clustering Coefficient (CC) measures the clustering of edges into tightly connected
neighborhoods and represents the extent of clustering tendency between vertices [47].

More specifically, we measure the sampling quality metrics using the Kolmogorov-Smirnov
(KS) goodness-of-fit-test [5], to compare the similarity of the CDF (Cumulative Distributive
Function) of each graph metric of the original and sparsified graphs. The KS distance has a
value between 0 and 1, where 0 means completely identical CDFs.

We compute the percentage ratio of the difference to compare the metrics computed by
G1 (i.e., computed by NI) and G2, G3 (i.e., computed by CFNI). For example, to compute the
percentage difference of AND computed by G1 and G3, we use the formula AND(G1)−AND(G3)

AND(G1) .
Figure 3a shows the sampling quality metrics computed on G1, G2, and G3, averaged

over all data sets. Clearly, G2 and G3 achieve notably better sampling quality metrics over
G1, and G3 further obtains better metrics over G2. The largest improvements are seen on
the connectivity-related metrics Closeness centrality and Betweenness centrality: averaged
over both, G2 and G3 obtain 51% and 66% improvements, respectively, compared to G1.
Improvements can also be seen over the other three metrics, with G2 and G3 obtaining 17%
and 33% improvements, respectively, over G1.

(a) Sampling quality metrics. (b) Prox. qual.

Figure 3 Average sampling (lower = better) and proxy quality metrics (higher = better) for G1,
G2, and G3. On average, G3 obtains significantly better metrics than G1 (i.e., NI), especially on
connectivity-related metrics CLOSE and BETW at 66% better on average.

To evaluate the effectiveness of the sparsifications for the purpose of graph drawing,
we compute the proxy quality metrics [44], for measuring how faithfully the drawing of
the sparsifications represents the ground truth structure of the original graph. We use
the Backbone layout, specifically designed to untangle “hairball” drawings of large complex
graphs [45], to draw G1, G2, and G3.

Figure 3b shows the proxy quality metrics computed on G1, G2, and G3, averaged over
all data sets. Similar to the results for sampling quality metrics, G2 and G3 obtain notably
better proxy quality metrics than G1, on average 53% better by G2 and 73% better by G3.

GD 2024
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Table 2 Visual comparison of the sparsified graphs computed by CFNI. G2 and G3 (by CFNI)
consistently preserve the structure of the graph G better than G1 (by NI), with G3 significantly
outperforming G2 on some graphs, e.g., Facebook and Sierpinski3d.

G G1 G2 G3

facebook

GION_1

sierpinski3d

Cycle896

(a) Sampling metrics. (b) Proxy metrics.

Figure 4 Average improvements by G2 and G3 (computed by CFNI) over G1 (computed by
NI). CFNI obtains improvement over NI on all metrics, most significantly on connectivity-related
sampling quality metrics CLOSE and BETW.
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5.4 Visual Comparison
Table 2 shows example visual comparisons between the drawings of sparsifications computed
by NI and CFNI, with the drawings of the whole graph G added as reference. Clearly, the
drawings of G2 and G3 are very similar to those of G, i.e., they faithfully represent the
original graph’s structure, while G1 often fails to preserve the structure of G. For example,
see the GION graph GION_1, where G1 misleadingly shows four “branches” expanding from
the middle cluster while G2 and G3 show only two, more faithful to the original G.

Moreover, sometimes only G3 is highly similar to G, while G2 also fails to preserve the
structure of G. For example, see the mesh graph Sierpinski3d, where G1 completely fails
to maintain the mesh structure of the original graph, and while G2 manages to maintain
the structure better, it is still distorted compared to G. Meanwhile, G3 displays almost the
same structure as G.

5.5 Discussion and Summary
Extensive experiments have demonstrated the strengths of CFNI over NI, preserving both the
global and local connectivity structures of graphs. Figure 4 shows the average improvements
obtained by G2 and G3 (i.e., running CFNI with h = 2 and h = 3 respectively) over G1 (i.e.,
running NI). The largest improvements are seen in Closeness centrality and Betweenness
centrality, which are both distance-based centralities highly related to connectivity. On
average, these improvements are 51% better for G2 and 66% better for G3. Significant
improvements are also seen in proxy quality metrics, at 53% better for G2 and 73% for G3.
In addition, G3 further obtains an average 31% improvement over G2 averaged between
Closeness centrality and Betweenness centrality, and 13% improvement for proxy quality
metrics over G2.

The visual comparisons in Table 2 validate the quality metrics, showing that G3 (computed
using CFNI with h = 3) represents both global and local connectivity structures of graphs
much more faithfully than G1 (computed by NI). In particular, for globally sparse and locally
dense graphs such as the scale-free and black-hole graphs, G3 faithfully represents both the
overall global shape and the locally dense clusters better than G1, improving the limitations
of NI. Furthermore, G3 also outperforms G2 in cases where G2 still has limitations capturing
the structure of G, such as seen in the Facebook graph, where the drawing of G3 is much
more similar to G compared to that of G2.

6 CFGD Experiment

6.1 Experiment Design
We now present experiments to evaluate the effectiveness of the CFGD approach, over a
naive application of NI to graph drawing. We performed an initial experiment for the naive
application of NI to graph drawing: given a k-connected graph G, we first compute the
k-connected subgraph GNI = (V, E′) using NI, then compute a drawing DGNI

of GNI , and
finally add back the edges in Er = E \E′ to produce the drawing DGNI +Er

of G. On average,
computing DGNI +Er

is 30% faster than directly computing a drawing D of G (i.e., applying
a graph drawing algorithm directly on G), with on average 11% better edge crossing and
only 15% lower shape-based metrics and neighborhood preservation. However, stress is
significantly higher, at 55% higher on average. For details, see the journal version of this
paper [35].
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We thus present experiments to evaluate how CFGD improves over a naive application
of NI to graph drawing. For the CFGD experiments, we use one-connected graphs, with
h = 2, 3, with the same data set as used in Section 5, and use the Backbone layout [45]
for its strengths in untangling “hairballs” in drawings of large, complex graphs. We denote
the drawing obtained using the sparsified graph computed by NI as D1, corresponding to
the notation G1 for the result of running NI on a 1-connected graph G used in Section 5.
Similarly, we use Dh to simplify the notation DGCF NI +Erh

used to denote the resulting
drawing from running CFGD on a graph G, i.e., we denote the drawing computed by CFGD
using h = 2 and h = 3 as D2 and D3 respectively.

6.2 Runtime Comparison
Figure 5a shows the average runtimes of computing D1, D2, D3 compared to computing a
drawing D directly from G. CFGD always runs significantly faster than drawing G directly,
with over 50% runtime improvement on both D2 and D3. On average, the runtime of
computing D3 is still very similar to D1, at only around 5% difference in runtime improvement
over D, showing that CFGD still preserves much of the runtime improvement obtained by a
naive application of NI for graph drawing.

6.3 Quality Metrics Comparison
To evaluate the performance of CFGD, we compare its results to those obtained from drawing
a graph directly, using graph drawing quality metrics. We use a selection of commonly-used
graph drawing quality metrics: stress [8], edge crossing, and shape-based metrics [10, 15].
See Section 2.4 for details on the metrics.

Stress. Figure 5b shows the average stress of D, D1, D2, and D3. On stress, we see the
largest improvement obtained by CFGD over a naive application of NI for graph drawing:
D2 and D3 obtain much lower stress than D1, at over 62% lower on average. This also
brings the stress to be relatively similar to that of D, at only about 7% difference for D3, in
contrast to D1 obtaining over two times higher stress than D.

Edge crossing. Figure 5c shows the average edge crossing metrics on D, D1, D2, and D3.
Surprisingly, even on D1, edge crossing is already almost the same as D, at only 3% lower
on average. D2 and D3 also show good performance, both at around 3% lower than D1 on
average, and furthermore even slightly better than D at around 6% better on average.

(a) Runtime. (b) Stress. (c) Edge crossing. (d) Shape-based.

Figure 5 Average runtime and quality metrics (lower is better for stress and edge crossing, and
higher is better for shape-based) of computing D1, D2, and D3 compared to computing D directly
on G. CFGD (D2 and D3) obtains significant runtime improvements over computing D directly on
G, while obtaining significantly lower stress than D1 and similar metrics to D.
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Shape-based metrics. Figure 5d shows the average shape-based metrics of D, D1, D2,
and D3. D2 and D3 show notable improvements over D1, on average 31% and 40% higher.
Furthermore, this brings the shape-based metrics of the drawings computed by CFGD closer
to those of the drawings computed directly from G: with D3, the shape-based metrics are
around 13% lower than D, significantly lower than the 51% improvement in runtime.

Table 3 Visual comparison of the drawings computed by CFGD. D2 and D3 (by CFGD) clearly
depict the structures of the graphs more faithfully than D1, with D3 further removing some distortion
issues occasionally displayed by D2 (e.g., on dwt_1005).

D D1 D2 D3

migrations

GION_5

dwt_1005

Cycle907

6.4 Visual Comparison

Table 3 shows some example visual comparisons of CFGD to directly drawing graph G. It
can be seen that in general, drawing D1, i.e., drawing the sparsification computed by NI,
often fails to maintain the structure of G, as can be seen in the direct drawing D. D2 and
D3 are often far more successful in preserving the structures of graphs, such as those seen in
the scale-free graph migrations and the GION graph GION_5.
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In other cases, D3 still succeeds in preserving the structure when even D2 fails. For
example, with the mesh graph dwt_1005, D2 manages to maintain the overall four-pronged
shape, but the drawing is still distorted compared to D. Similarly, for the black-hole graph
Cycle907, although D2 preserves both the local blobs and the overall “cycle”-like global
structure, the shape is somewhat distorted with “zig-zags”. Meanwhile, D3 of both graphs
mostly eliminates the distortion in the drawings compared to D2.

(a) Stress. (b) Edge crossing. (c) Shape-based.

Figure 6 Average improvements (in %) in quality metrics computed by D2 and D3 over D1, i.e.,
improvement of CFGD over a naive application of NI to graph drawing. CFGD obtains improvements
on all quality metrics, with the largest improvement on stress at over 63%.

6.5 Discussion and Summary
Our experiments have demonstrated the effectiveness of CFGD. Figure 6 shows the average
improvements in quality metrics obtained by D2 and D3 over D1. In particular, the largest
improvement is seen on stress: D3 obtains on average 62% lower stress than D1. Looking
at the visual comparison, drawings D1 often contain very long edges between vertices that
neighbor each other in the original graph G but are in distant branches in the spanning tree,
leading to high stress. Meanwhile, these long edges are absent in D2 and D3, leading to
much lower stress compared to D1.

Surprisingly, D1, D2, and D3 obtain edge crossings very similar to D, even slightly better
at 3%, 6%, and 6% lower on average, respectively. Most of this improvement is on scale-free
and black-hole graphs, both containing graphs with globally sparse, locally dense structures.
One possible explanation can be seen from the black-hole graphs, such as can be seen in
graph Cycle907 in Table 3 where the locally dense blobs are drawn with a larger area in
drawings D1, D2, D3 compared to D. This may have removed some of the edge crossings
introduced in D due to the blob being compressed into a smaller drawing area.

7 Conclusion

We present the first study of connectivity-faithful graph drawing, by leveraging the NI
algorithm to graph sparsification and drawing. Specifically, we present local connectivity-
preserving divide-and-conquer approaches CFNI and CFGD, to improve on the limitations
of NI by not only preserving the global k-connectivity of a k-connected graph G, but also
preserving the local connectivities of h-connected components of G, where h > k.

We demonstrate the effectiveness of CFNI over a naive application of NI, obtaining
up to 66% average better connectivity-related sampling quality metrics and 73% better
proxy quality metrics over NI. We also demonstrate the effectiveness of CFGD over a naive
application of NI to graph drawing, most notably with 62% lower stress; CFGD also runs
51% faster than directly drawing the whole graph with similar quality metrics.

Future work includes evaluations of CFNI and CFGD using higher local connectivity.
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