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Abstract
Visualizing a graph G in the plane nicely, for example, without crossings, is unfortunately not always
possible. To address this problem, Masařík and Hliněný [GD 2023] recently asked for each edge of G

to be drawn without crossings while allowing multiple different drawings of G. More formally, a
collection D of drawings of G is uncrossed if, for each edge e of G, there is a drawing in D such that
e is uncrossed. The uncrossed number unc(G) of G is then the minimum number of drawings in
some uncrossed collection of G.

No exact values of the uncrossed numbers have been determined yet, not even for simple graph
classes. In this paper, we provide the exact values for uncrossed numbers of complete and complete
bipartite graphs, partly confirming and partly refuting a conjecture posed by Hliněný and Masařík [GD
2023]. We also present a strong general lower bound on unc(G) in terms of the number of vertices
and edges of G. Moreover, we prove NP-hardness of the related problem of determining the edge
crossing number of a graph G, which is the smallest number of edges of G taken over all drawings of
G that participate in a crossing. This problem was posed as open by Schaefer in his book [Crossing
Numbers of Graphs 2018].
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18:2 On the Uncrossed Number of Graphs

1 Introduction

In a drawing of a graph G, the vertices are represented by distinct points in the plane and
each edge corresponds to a simple continuous arc connecting the images of its end-vertices.
As usual, we identify the vertices and their images, as well as the edges and the line segments
representing them. We require that the edges pass through no vertices other than their
endpoints. We assume for simplicity that any two edges have only finitely many points in
common, no two edges touch at an interior point and no three edges meet at a common
interior point.

A crossing in a drawing D of G is a common interior point of two edges of D where they
properly cross. For a drawing D of a graph G, we say that an edge e of D is uncrossed in D

if it does not share a crossing with any other edge of D.
There are two staple problems in the graph drawing field that defined the past eighty

years of development in the area. The first one, dating back to World War II times [2, 21], is
the problem of determining the crossing number cr(G) of a graph G, defined as the smallest
number of crossings required in any drawing of G in the plane. The crossing number problem
has been intensively studied ever since, especially in the past thirty years. Computing the
crossing number is NP-hard on general graphs [3], and one can find a thorough overview of
the area in a recent book by Schaefer [19].

The second, only slightly newer problem, is that of determining the thickness θ(G) of a
graph G, defined as the smallest integer k such that G can be edge-partitioned into k planar
graphs. This problem was proposed by Harary [7] in 1961 and since then this concept has
played an important role in graph drawing. Unlike for planarity, deciding whether a graph is
biplanar, that is whether θ(G) ≤ 2, is NP-complete [14]. For an overview of the progress up
to 1998, consult a survey by Mutzel, Odenthal, and Scharbrodt [16].

In this paper, we investigate a very recent notion inspired by a fusion of both concepts
into one. We say that a collection D(G) of drawings of G is uncrossed if for each edge e of G

there is at least one drawing in D(G) in which e is uncrossed; see Figure 1 for an example.
Hliněný and Masařík [11], in relation to extensions of the traditional crossing number of a
graph, defined the uncrossed number unc(G) of a graph G as the smallest size of an uncrossed
collection of drawings of G.

D1 D2

Figure 1 An uncrossed collection D(K5) = {D1, D2} that shows unc(K5) ≤ 2. The edges that
are uncrossed are shown in thick lines. Since K5 is not planar, we have unc(K5) = 2.

The motivation for the uncrossed number [11] is that finding a handful of different
drawings of a graph G instead of just one “flawless” drawing shall highlight different aspects
of G and thus could be useful for the visualization of G, besides the theoretical interest. The
requirement that each edge is uncrossed in at least one drawing is a natural way to enforce
that the drawings will highlight each aspect of the graph as a whole.
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Let us also formulate the decision version of the problem of determining unc(G) of a
given graph G.

UncrossedNumber
Input: A graph G and a positive integer k.
Question: Are there drawings D1, . . . , Dk of G such that, for each edge e ∈ E(G), there

exists an i ∈ [k] such that e is uncrossed in the drawing Di?

Clearly, for every graph G, we have

unc(G) ≥ θ(G), (1)

because the uncrossed edges in each drawing of an uncrossed collection of G induce an
edge-partition of G into planar graphs. However, this new concept significantly differs from
thickness (which just partitions the edges of G) in the sense that all edges of G have to be
present along with the uncrossed subdrawing in each drawing of our uncrossed collection. In
fact, the requirements of an uncrossed collection bring us close to the related notion of the
outerthickness θo(G) of G, which is the minimum number of outerplanar graphs into which
we can decompose G.

Outerthickness
Input: A graph G and a positive integer k.
Question: Can G be decomposed into k outerplanar graphs?

As noted by Hliněný and Masařík [11], given a decomposition {G1, . . . , Gk} of G into
outerplanar graphs, we can let Di be an outerplanar drawing of Gi with all remaining edges
of G being drawn in the outer face. This gives us

unc(G) ≤ θo(G) (2)

for every graph G. Combining this with a result of Gonçalves [4], which implies θo(G) ≤ 2θ(G),
we actually obtain the following chain of inequalities

1
2θo(G) ≤ θ(G) ≤ unc(G) ≤ θo(G) ≤ 2θ(G). (3)

So far, the exact values of uncrossed numbers are not very well understood. Masařík and
Hliněný [11] exactly determined unc(G) of only a few sporadic examples of graphs G, such
as unc(K7) = 3.

Our Results
We determine the exact values of uncrossed numbers for specific and natural graph classes.
First, we derive the formula for the uncrossed number of complete graphs.

▶ Theorem 1. For every positive integer n, it holds that

unc(Kn) =


⌈ n+1

4 ⌉, for n /∈ {4, 7}
3, for n = 7
1, for n = 4.

We also find the exact formula for the uncrossed number of complete bipartite graphs.

GD 2024



18:4 On the Uncrossed Number of Graphs

▶ Theorem 2. For all positive integers m and n with m ≤ n, it holds that

unc(Km,n) =


⌈ mn

2m+n−2 ⌉, for m ≤ n ≤ 2m − 2
⌈ mn

2m+n−1 ⌉, for n = 2m − 1
⌈ mn

2m+n ⌉, for 6 ≤ 2m ≤ n

1, for m ≤ 2.

Let us mention that the exact values of the thickness θ(Km,n) of complete bipartite
graphs are not known for all values of m and n; see [17] for further discussion.

We compare our formulas on unc(Kn) and unc(Km,n) with known formulas on the
outerthickness of Kn and Km,n. Hliněný and Masařík [11, Section 6] conjectured the
uncrossed numbers and outerthickness to be the same for both complete and complete
bipartite graphs except in the planar but not outerplanar cases. Guy and Nowakowski [5, 6]
showed that

θo(Kn) =
{⌈

n+1
4
⌉

, for n ̸= 7
3, for n = 7

(4)

and

θo(Km,n) =
⌈

mn

2m + n − 2

⌉
(5)

for all positive integers m and n with m ≤ n. Note that it follows from Theorem 1
and Equation (4) that unc(Kn) = θo(Kn) for every n ̸= 4. For n = 4, we have unc(K4) = 1
while θo(K4) = 2. This confirms the conjecture of Hliněný and Masařík [11] in the case of
complete graphs.

Since⌈
mn

2m + n

⌉
≤
⌈

mn

2m + n − 2

⌉
=
⌈

mn

2m + n
+ 2mn

(2m + n − 2)(2m + n)

⌉
≤
⌈

mn

2m + n

⌉
+ 1

for n ≥ 2m − 1 > 1, it follows from Theorem 2 and Equation (5) that the uncrossed number
unc(Km,n) differs from the outerthickness θo(Km,n) of Km,n by at most 1. In particular,
we have unc(Kn,n) = θo(Kn,n) for every positive integer n. However, Theorem 2 and (5)
give, for example, unc(K4,7) = 2 and θo(K4,7) = 3. Since K4,7 is not planar, this refutes the
conjecture of Hliněný and Masařík [11] in the case of complete bipartite graphs.

Second, we turn our attention to general graphs and their uncrossed number. We improve
the trivial lower bound of unc(G) ≥ ⌈m/(3n − 6)⌉ for any graph G with n vertices and m

edges. By carefully balancing between the numbers of edges in uncrossed subdrawings of G

and the numbers of edges that can be drawn within faces of uncrossed subdrawings, we
derive the following estimate.

▶ Theorem 3. Every connected graph G with n ≥ 3 vertices and m ≥ 0 edges satisfies

unc(G) ≥
⌈

m

f(n, m)

⌉
where f(n, m) = (3n − 5 +

√
(3n − 5)2 − 4m)/2.
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The bound from Theorem 3 becomes interesting for m ≥ 3n − 6. This is because we then
have f(n, m) ≤ 3n − 6 for all integers n ≥ 2 as√

(3n − 5)2 − 4m ≤
√

9n2 − 42n + 49 = 3n − 7

for any m ≥ 3n − 6 ≥ 0. It follows that the lower bound from Theorem 3 is at least as good
as unc(G) ≥ ⌈m/(3n − 6)⌉ for any connected G with n ≥ 2 vertices and m ≥ 3n − 6 edges.

The lower bound from Theorem 3 gets stronger as the graph G gets denser. For example,
if G contains n vertices and εn2 edges for n sufficiently large and ε ∈ (0, 1/2), we get

f(n, m) = (3n − 5 +
√

(9 − 4ε)n2 − 30n + 25)/2 ≤ (3 +
√

9 − 4ε)n/2.

Since (3 +
√

9 − 4ε)/2 < 3 for ε > 0, we obtain unc(G) ≥
⌈

m
cεn

⌉
for any ε > 0 and some

constant cε < 3, instead of trivial unc(G) ≥
⌈

m
3n−6

⌉
. We note that the best constant cε

obtainable from Theorem 3 is (3 +
√

7)/2 ∼ 2.82 as ε ≤ 1/2.
We also consider computational complexity aspects related to the UncrossedNumber

problem. As we will see later, a closely related problem is the one of determining the edge
crossing number of a given graph G, which is the smallest number of edges involved in
crossings taken over all drawings of G. The notion of the edge crossing number is based on
results by Ringel [18], Harborth and Mengersen [8, 9], and Harborth and Thürmann [10].

EdgeCrossingNumber
Input: A graph G and a positive integer k.
Question: Is there a drawing D of G with at most k edges involved in crossings?

The complementary problem to EdgeCrossingNumber is the following one.

MaximumUncrossedSubgraph
Input: A graph G and a positive integer k.
Question: Is there a drawing D of G with at least k edges not involved in any crossings?

In his monograph on crossing numbers, Schaefer [19] mentions that the problem of
determining the computational complexity of EdgeCrossingNumber is open. Here, we
resolve this open question by showing that the problem is NP-complete.

▶ Theorem 4. The EdgeCrossingNumber problem is NP-complete.

By the complementarity of the problems MaximumUncrossedSubgraph and Edge-
CrossingNumber, we obtain the following result.

▶ Corollary 5. The MaximumUncrossedSubgraph problem is NP-complete.

As a consequence of our reduction, we also obtain the following relative result.

▶ Theorem 6. If the Outerthickness problem is NP-hard, then also the Uncrossed-
Number problem is NP-hard.

However, in contrast to the complexity of the thickness problem, which was shown to be
NP-hard already in 1983 by Mansfield [14], the complexity of the Outerthickness problem
remains open.

GD 2024



18:6 On the Uncrossed Number of Graphs

2 Preliminaries

We may, without loss of generality, restrict to only simple graphs in the whole paper. This
is since, in each of the formulated problems, whenever an edge e is a part of an uncrossed
subdrawing (as discussed next), any other edge parallel to e can be drawn uncrossed closely
along e, too.

Let D′ be a subdrawing of D consisting of only uncrossed edges of D. Note that we do
not require D′ to contain all such edges. In this situation, we call D′ an uncrossed subdrawing
of G and we say that it represents the subgraph of G formed by edges that are drawn in D′.
Precisely, D′ is an uncrossed subdrawing of G if there exists a drawing D of a graph G such
that D′ is formed by a subset of the uncrossed edges of D.

▶ Lemma 7. Let D′ be an uncrossed subdrawing of a connected graph G. Then D′ is a
planar drawing and, for every edge {u, v} of G, the vertices u and v are incident to a common
face of D′. Moreover, there is an uncrossed subdrawing D′′ of G such that D′′ represents a
connected supergraph of the graph represented by D′.

Proof. The drawing D′ is clearly planar, as, by the definition of D′, each edge of D′ is
uncrossed in a drawing D of G and thus also in D′. Moreover, it is a folklore fact that two
vertices u and v in a planar drawing, here in D′, are not incident to a common face if and
only if there exists a cycle C ⊆ D′ such that u and v are drawn on different sides of C. In the
latter case, however, the edge {u, v} would cross some edge of C in D, which is impossible
since no edge of D′ is crossed.

We prove the second part by induction on the number of connected components represented
by D′. The case of one component is trivial, as D′′ = D′. Otherwise, since G is connected,
there exists an edge e = {u, v} of G that is not drawn in D′ and such that u and v belong to
different components represented by D′. By the first part of the lemma, the vertices u and v

are incident to the same face of D′. So, let D+ be the planar drawing obtained from D′ by
adding a crossing-free arc representing the edge e. Clearly, every edge of G is still incident to
a common face of D+, and so D+ can be completed into a drawing of G such that D+ stays
uncrossed. The subgraph of G represented by D+ has fewer components than we started
with, and so we find the desired D′′ by induction. ◀

Figure 2 The wheel graph W15.

For a graph G, let h(G) be the maximum number of uncrossed edges in some drawing D

of G. Let DWn be a planar drawing of the wheel graph Wn on n vertices; see Figure 2. Note
that DWn is unique up to homeomorphism of the sphere and reflection as Wn is 3-connected.
The following result by Ringel [18] gives a formula for h(Kn) for every integer n ≥ 4, and
additionally claims that drawings of Kn with the maximum number of uncrossed edges have
a unique structure.
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▶ Theorem 8 ([18]). For every integer n ≥ 4, we have h(Kn) = 2n − 2. Moreover, if D is
a drawing of Kn with 2n − 2 uncrossed edges, then D contains the drawing DWn with all
edges from D \ DWn being drawn in the outer face of DWn.

We also mention an analogous result for the complete bipartite graphs Km,n, derived by
Mengersen [15].

▶ Theorem 9 ([15]). For all positive integers m and n with m ≤ n, we have

h(Km,n) =


2m + n − 2, for m = n

2m + n − 1, for m < n < 2m

2m + n, for 2m ≤ n.

The parameter h(G) can be used to estimate the uncrossed number of G. Let {D1, . . . , Dk}
be an uncrossed collection of drawings of a graph G that has m edges. Since every drawing
Di contains at most h(G) edges that are uncrossed by any other edge in Di, we immediately
obtain the following lower bound

unc(G) ≥
⌈

m

h(G)

⌉
. (6)

This bound together with Theorems 8 and 9 give us quite close estimates for unc(Kn) and
unc(Km,n), respectively. In particular, for n ≥ 2 we have

unc(Kn) ≥

⌈ (
n
2
)

2n − 2

⌉
. (7)

On the other hand, we recall the upper bound (2) on the uncrossed number of an arbitrary
graph G using the notion of outerthickness of G.

3 Proof of Theorem 1

In this section, we prove Theorem 1 by providing the exact formula for the uncrossed number
of complete graphs. That is, we show

unc(Kn) =


⌈ n+1

4 ⌉, for n /∈ {4, 7}
3, for n = 7
1, for n = 4

for every positive integer n.
We start with the upper bound, which is easier to prove. For n /∈ {4, 7}, the upper bound

follows from (2) and (4) as we have

unc(Kn) ≤ θo(Kn) =
⌈

n + 1
4

⌉
.

For n = 4, we obviously have unc(K4) = 1 as K4 is planar. Finally, unc(K7) = 3 was proved
by Hliněný and Masařík [11, Proposition 3.1].

It remains to prove the lower bound. Since we already know that unc(K7) = 3 and
unc(K4) = 1 and the statement is trivial for n ≤ 3, it suffices to consider the case n ≥ 5 with
n ̸= 7. Let {D1, . . . , Dk} be an uncrossed collection of drawings of Kn and let D′

1, . . . , D′
k be

corresponding uncrossed subdrawings of Kn such that D′
1 ∪ · · · ∪ D′

k covers E(Kn). By (7),

unc(Kn) ≥

⌈ (
n
2
)

2n − 2

⌉
.

GD 2024
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By Theorem 8, we get that if any uncrossed subdrawing D′
i contains 2n − 2 edges, then D′

i

(as a wheel) contains a universal vertex, that is, a vertex that is adjacent to all remaining
vertices in D′

i. If every drawing D′
i contains at most 2n − 3 edges, then

unc(Kn) ≥

⌈ (
n
2
)

2n − 3

⌉
=
⌈

n

4 + n

4(2n − 3)

⌉
=
⌈

n + 1
4

⌉
(8)

and we are done.
Thus, suppose that some drawing D′

i contains 2n − 2 edges. Without loss of generality,
we can assume i = 1. We then know that D′

1 contains a universal vertex v. In every drawing
D′

j with j > 1, the edges incident to v are already counted for D′
1, thus we can consider the

drawings D′
2, . . . , D′

k to be uncrossed drawings for Kn−1 obtained from Kn by removing v.
Note that these uncrossed drawings of Kn−1 cover E(Kn−1). Then, each D′

j contributes at
most 2n − 4 new uncrossed edges of Kn−1 as h(Kn−1) = 2(n − 1) − 2 = 2n − 4 by Theorem 8.
So the number k of drawings satisfies(

n

2

)
≤ 2n − 2 + (k − 1)(2n − 4) = (2n − 4)k + 2. (9)

However, (2n − 4)k + 2 ≤ (2n − 3)k when k ≥ 2, which is satisfied for n ≥ 5 by (9). Hence,
for k′ being the smallest positive integer that satisfies

(
n
2
)

≤ k′(2n − 3) we obtain k ≥ k′.
Thus, we again have the inequality (8). ◀

A proof of Theorem 2 follows a similar path as that of Theorem 1, but there are several
complications on the way. The upper bound requires a construction for case n ≥ 2m − 1
besides using bounds (2) and (5). The lower bound is handled by Theorem 9 except for cases
m < n ≤ 2m − 2 that require a detailed lengthy analysis. Hence, we left the full proof for
the arXiv version [1].

4 Proof of Theorem 3

Here, we show that every connected graph G with n ≥ 3 vertices and m ≥ 0 edges satisfies

unc(G) ≥
⌈

m

f(n, m)

⌉
where f(n, m) = (3n − 5 +

√
(3n − 5)2 − 4m)/2.

Let D(G) = {D1, . . . , Dk} be an uncrossed collection of drawings of G. For every i ∈ [k],
let D′

i be a subdrawing of Di containing only edges of Di that are uncrossed in Di. By
Lemma 7, each drawing D′

i is then a plane graph with the property that every edge of G

that is not an edge of D′
i is contained in a single face of D′

i. Moreover, since G is connected,
we can assume without loss of generality by this lemma that each D′

i represents a connected
subgraph of G as to bound unc(G) from below it suffices to consider drawings D′

i with as
many edges as possible.

Fix an arbitrary i ∈ [k]. The number of vertices of D′
i equals n. We use mi to denote the

number of edges of D′
i and we will show that mi ≤ f(n, m).

We set Fi to be the set of faces of D′
i and fi = |Fi|. For a face F of D′

i, we use v(F ) for
the number of vertices of D′

i that are contained in the boundary of F and we write |F | for the
number of times we meet an interior of an edge of D′

i when traversing F along its boundary.
That is, |F | is the length of the facial walk. Note that each edge can be counted once or
twice in |F | and so we have v(F ) ≤ |F | as D′

i represents a connected subgraph of G. We
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assume that at least one edge of F is counted once in |F | and that v(F ) ≥ 3 for every face F

as otherwise there is only a single face in Fi and D′
i is a tree with mi ≤ n − 1 ≤ f(n, m) for

n ≥ 3. Also, observe that∑
F ∈Fi

|F | = 2mi (10)

as every edge is incident to a face of D′
i from the left and from the right.

Since every edge of G that is not an edge of D′
i is contained in a single face of D′

i, we
have∑

F ∈Fi

((
v(F )

2

)
− v(F )

)
≥ m − mi. (11)

This is because vertices of each face F can span up to
(

v(F )
2
)

edges of Di and at least v(F )
pairs of vertices of Di are already used for edges of D′

i as each face F contains an edge that
is counted only once in |F |. The left hand side of (11) can be rewritten as

1
2
∑

F ∈Fi

v(F )(v(F ) − 3).

Since v(F ) ≥ 3 and |F | ≥ v(F ) for every face F from Fi, we obtain

1
2
∑

F ∈Fi

|F |(|F | − 3) ≥ m − mi.

Since |F | − 3 ≥ 0, the left-hand side can be bounded from above by

1
2

(∑
F ∈Fi

|F |

)(∑
F ∈Fi

(|F | − 3)
)

= mi(2mi − 3fi)

where we used (10) twice. Altogether, we obtain mi(2mi − 3fi) ≥ m − mi, which can be
rewritten as

fi ≤ 2mi

3 − m − mi

3mi
.

Plugging this estimate into Euler’s formula n − mi + fi = 2, we get

mi ≤ 3n − 5 − m

mi
,

which after solving the corresponding quadratic inequality for mi gives the final estimate

mi ≤ (3n − 5 +
√

(3n − 5)2 − 4m)/2 = f(n, m).

Since i was arbitrary, we see that each drawing D′
i contains at most f(n, m) edges of G

and therefore, we indeed have

k ≥ unc(G) ≥
⌈

m

f(n, m)

⌉
. ◀

GD 2024
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1

2

3

4

5

6

7

8

c

Figure 3 EdgeCrossingNumber instance for proof of Theorem 4 in Section 5. Red edges are
crossed. Thick edges represent M -bundles corresponding to edges from the Maximum Outerplanar
Subgraph instance G, see in detail the edges between 1 and 2 and between 6 and 4. The dashed
edges and c form the central star.

5 Proof of Theorem 4

In this section, we prove that EdgeCrossingNumber is NP-complete. Membership of
this problem in the class NP is trivial. To show NP-hardness, we reduce from the following
NP-complete problem [13, 20].

Maximum Outerplanar Subgraph
Input: A graph G = (V, E) and a positive integer k.
Question: Is there an outerplanar subgraph of G with at least k edges?

Assume an instance of Maximum Outerplanar Subgraph. Let M > |V |, say
M = 2|V |, and k′ = |E| − k. We augment G into a graph G′, and show that G′ can
be drawn with at most Mk′ + |V | crossed edges, if and only if G admits an outerplanar
subgraph with at least k edges. The graph G′ is obtained via two augmenting steps: We
add a central star, i.e., a vertex with an edge to each original vertex of G. Then, we replace
each original edge in G by M parallel paths of length two, which we call an M -bundle. An
example of this transformation can be seen in Figure 3.

Suppose there is a drawing of G′ with at most Mk′ + |V | crossed edges. We want to
modify this drawing into a drawing of G. To this end, we first remove every path belonging
to an M -bundle, if either of its two edges is crossed. We also remove the central vertex
and all of its incident edges. All remaining edges are uncrossed and belong to an M -bundle
path. As there are at most Mk′ + |V | < M(k′ + 1) crossed edges in the drawing, for at least
|E| − k′ = k edges from G there is at least one path of its corresponding M -bundle that
is not removed. We contract for each edge of G one edge of one of the remaining paths of
its M -bundle and remove all other M -bundle paths. The vertices from G all share the face
created by removing the central vertex and all vertices from M -bundles are either contracted
or removed. Thus, we have an outerplanar drawing of a subgraph of G with at least k edges.

Similarly, for every outerplanar subgraph H of G with at least k edges we can construct
a drawing of G′ with at most Mk′ + |V | crossed edges. First, we draw H in an outerplanar
embedding, then we draw the central star into the outer face. Next, we draw the at most
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(b) Second drawing. Vertices 3 and 6 swapped places.

Figure 4 An instance of the reduction from OuterThickness to UncrossedNumber. The
original graph G in this instance is drawn with solid edges and has outerthickness 2 (as the two
subdrawings in solid black and gray edges certify). The dashed edges and black vertices form the
central star around c added to G in the reduction. In each drawing, all crossed edges are red and
uncrossed edges of the particular drawing are black, and gray edges are uncrossed in both drawings.

|E| − k = k′ remaining edges of G in such a way that they only cross one another and the
edges of the central star. Finally, we replace every edge of G with an M -bundle. The newly
added vertices are positioned in such a way that at most one of the edges of each path is
crossed. Therefore, there are at most Mk′ crossed edges from the M -bundles and at most
|V | crossed edges from the central star, for a total of at most Mk′ + |V | crossed edges. ◀

6 Proof of Theorem 6

We show that if Outerthickness is NP-hard, then UncrossedNumber is NP-hard as well
using a reduction from Outerthickness to UncrossedNumber.

The reduction employs similar arguments as used in Section 5. Let (G, k) be an instance
of the problem Outerthickness. We augment the input graph G into a graph G′ by adding
a vertex and connecting each vertex of G to it with a path of length two. We call the added
structure the central star. See Figure 4 for an example of this transformation.

Let D be a drawing of G′. Consider the uncrossed subdrawing D′
G consisting of the

vertices and all uncrossed edges from G. As there is a path in D \ D′
G between each two

vertices from G, we know that D′
G is outerplanar. Thus, if unc(G′) ≤ k and D1, . . . , Dk is

an uncrossed collection of G′, then the respective subdrawings restricted to G decompose G

into k outerplanar graphs.
Conversely, if G can be decomposed into k ≥ 2 outerplanar subgraphs G1, . . . , Gk, then

we can construct an uncrossed collection D1, . . . , Dk of G′ in the following way: In every
drawing Di, we first draw Gi as an outerplanar graph and we embed the central star in the
outer face. Then, we draw the remaining original edges in such a way that they only cross
each other and edges from the central star. In D1, all crossings on the central star lie on
edges incident to vertices of G, and in all other drawings, the crossings on the central star
involve only edges incident to the universal vertex. This way we assure that also every edge
of the central star is uncrossed in some drawing. ◀

GD 2024
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7 Conclusions and Open Problems

We provided exact values of the uncrossed number for complete and complete bipartite graphs.
The hypercube graphs form another natural graph class to consider as their outerthickness
and thickness were determined exactly; see [5, 12]. However, we are not aware of any formula
for the uncrossed number for the hypercube graphs.

▶ Question 10. Determine the exact value of the uncrossed number for the hypercube graphs.

In Theorem 3, we determined a general lower bound on unc(G) in terms of the number
of the edges and vertices of G by showing unc(G) ≥ ⌈ m

cn ⌉ − O(n) − O(m) for some constant
c with 0 < c ≤ 3. In particular, we argued that the smallest obtainable constant c is
approximately 2.82 for the case of dense n-vertex graphs with εn2 edges where ε ∈ (0, 1/2)
is a fixed constant. Can one obtain a better leading constant in the general lower bound on
unc(G) for such dense graphs G?

We also propose investigating other properties of the uncrossed number. We conjecture
that the uncrossed number can be arbitrarily far apart from the outerthickness despite them
being quite similar on the graph classes we mainly investigated in this paper. In fact, it
follows from our results that the difference between the outerthickness and the uncrossed
number of complete and complete bipartite graphs is never larger than one.

▶ Conjecture 11. For every positive integer k, there is a graph G such that

θo(G) − unc(G) ≥ k.

Lastly, it would be interesting to finally settle the computational complexity of the
outerthickness problem. We conjecture that the Outerthickness problem is NP-hard. Note
that if true, this would also settle the computational complexity of UncrossedNumber by
Theorem 6.
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