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Abstract
We present singly-exponential quantum algorithms for the One-Sided Crossing Minimization
(OSCM) problem. We show that OSCM can be viewed as a set problem amenable for exact algorithms
with a quantum speedup with respect to their classical counterparts. First, we exploit the quantum
dynamic programming framework of Ambainis et al. [Quantum Speedups for Exponential-Time
Dynamic Programming Algorithms. SODA 2019] to devise a QRAM-based algorithm that solves
OSCM in O∗(1.728n) time and space. Second, we use quantum divide and conquer to obtain an
algorithm that solves OSCM without using QRAM in O∗(2n) time and polynomial space.
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1 Introduction and Preliminaries

We study, from the quantum perspective, the One-Side Crossing Minimization (OSCM)
problem, one of the most studied problems in Graph Drawing, which is defined below.

2-Level Drawings. In a 2-level drawing of a bipartite graph the vertices of the two sets of
the bipartition are placed on two horizontal lines and the edges are drawn as straight-line
segments. The number of crossings of the drawing is determined by the order of the vertices
on the two lines. Formally, let G = (U, V,E) be a bipartite graph, where U and V are the two
parts of the vertex set of G and E ⊆ U × V is the edge set of G. In the following, we write
n, nU , and nV for |U ∪ V |, |U |, and |V |, respectively; also, for every integer h, we use the
notation [h] to refer to the set {1, . . . , h}. A 2-level drawing of G is a pair (πU , πV ), where
πU : U ↔ {1, . . . , |U |} is a linear ordering of U and πV : V ↔ {1, . . . , |V |} is a linear ordering
of V . We denote the vertices of U by ui (i ∈ [nU ]), and the vertices of V by vj (j ∈ [nV ]).
Two edges (u1, v1) and (u2, v2) in E cross in (πU , πV ) if: (i) u1 ̸= u2 and v1 ̸= v2 and (ii)
either πU (u1) < πU (u2) and πV (v2) < πV (v1), or πU (u2) < πU (u1) and πV (v1) < πV (v2).
The number of crossings of a 2-level drawing (πU , πV ) is the number cr(G, πU , πV ) of distinct
(unordered) pairs of edges that cross. Problem OSCM is defined as follows:
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Input: A bipartite graph G = (U, V, E) and a linear ordering πU : U ↔ [nU ].
Output: A linear ordering πV : V ↔ [nV ] such that cr(G, πU , πV ) is minimum.

One-Sided Crossing Minimization (OSCM)

State of the art. The importance of the OSCM problem, which is NP-complete [10] even
for sparse graphs [19], in Graph Drawing was first put in evidence by Sugiyama in [22].

Exact solutions of OSCM have been searched with branch-and-cut techniques, see e.g. [16,
20, 24], and with FPT algorithms. The parameterized version of the problem, with respect to
its natural parameter k = minπV

cr(G, πU , πV ), has been widely investigated. Dujmovic et
al. [7, 8] were the first to show that OSCM can be solved in f(k)nO(1) time, with f ∈ O(ψk),
where ψ ≈ 1.6182 is the golden ratio. Subsequently, Dujmovic and Whitesides [5, 6] improved
the running time to O(1.4656k + kn2). Fernau et al. [11], exploiting a reduction to weighted
FAST and the algorithm by Alon et al. [1], gave a subexponential parameterized algorithm
with running time 2O(

√
k log k) +nO(1). The reduction also gives a PTAS using [17]. Kobayashi

and Tamaki [18] gave the current best FPT result with running time O(k2
√

2k + n).
Quantum Graph Drawing has recently gained popularity. Caroppo et al. [4] applied

Grover’s search [14] to several Graph Drawing problems obtaining a quadratic speedup over
classical exhaustive search. Fukuzawa et al. [12] studied how to apply quantum techniques for
solving systems of linear equations [15] to Tutte’s algorithm for drawing planar 3-connected
graphs [23]. Recently, in a paper that pioneered Quantum Dynamic Programming, several
vertex ordering problems related to Graph Drawing have been tackled by Ambainis et al. [2].

Our Results. First, we exploit the quantum dynamic programming framework of Ambainis
et al. to devise an algorithm that solves OSCM in O∗(1.728n) time and space. We compare
the performance of our algorithm against the algorithm proposed in [18], based on the value
of k. We have that the quantum algorithm performs asymptotically better than the FPT
algorithm, when k ∈ Ω(n2). Second, we use quantum divide and conquer to obtain an
algorithm that solves OSCM using O∗(2n) time and polynomial space. Both our algorithms
improve the corresponding classical bounds in either time or space or both.

In our first result, we adopt the QRAM (quantum random access memory) model of com-
putation [13], which allows (i) accessing quantum memory in superposition and (ii) invoking
any T -time classical algorithm that uses a (classic) random access memory as a subroutine
spending time O(T ). In the second result we do not use the QRAM model of computation
since we do not need to explicitly store the results obtained in partial computations.

Notation. For ease of notation, given positive integers a and b, we denote ⌈ a
b ⌉ as a

b and
⌈log a⌉ as log a. If f(n) = O(nc) for some constant c, we will write f(n) = poly(n). In case
f(n) = dnpoly(n) for some constant d, we use the notation f(n) = O∗(dn) (see, e.g., [25]).

Quantum Tools. We will use quantum search primitives, such as the one of Theorem 1,
and exploit the fact that they can perform condition checking on data stored in QRAM.

▶ Theorem 1 (Quantum Minimum Finding, QMF [9]). Let f : D → C be a polynomial-time
computable function, whose domain D has size N and whose codomain C is a totally ordered
set (such as N) and let F be a procedure that computes f . There exists a bounded-error quan-
tum algorithm that finds x ∈ D such that f(x) is minimized using O(

√
N) applications of F .

Because of space limitations, some proofs are sketched or omitted. They can be found in
the full version of the paper [3].
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Algorithm 1 Procedure QuantumDP is the algorithm of Lemma 2. Procedure OPT is a recursive
procedure invoked by QuantumDP. Procedure QMF performs quantum minimum finding.

1: procedure QuantumDP(X)
2: Input: Set X of size n; Output: the value OPTP(X).
3: for all sets W ⊂ X such that |W |≤ (1 − α)n/4 do ▷ in order of increasing size
4: Compute OPTP(W ) classically via dynamic programming ▷ use Equation (1)
5: with k = |W |−1
6: Store OPTP(W ) in QRAM
7: end for
8: return OPT(X)
9: end procedure

10: procedure OPT(S)
11: Input: Subset S ⊆ X; Output: the value OPTP(S).
12: if |S|≤ (1 − α)n/4 then
13: return value OPTP(S) stored in QRAM
14: else
15: return the result of QMF over all S ⊂ X to find

min
W ⊂S,|W |= |S|

2

{OPT(W ) + OPT(S \W ) + fP(W,S \W )}

16: end if
17: end procedure

2 Quantum Dynamic Programming for One-Sided Crossing
Minimization

In this section, we first describe the quantum dynamic programming framework of Ambainis
et al. [2], which is applicable to numerous optimization problems involving sets. Then, we
show that OSCM is a set problem over V that falls within this framework. We use this fact
to derive a quantum algorithm (Theorem 4) exhibiting a speedup over the corresponding
classical singly-exponential algorithm (given in [3]) in both time and space complexity.

Quantum dynamic programming for set problems. The framework by Ambainis et al. is
defined by the following lemma derivable from [2].

▶ Lemma 2. Let P be an optimization problem (say a minimization problem) over a set X.
Let |X|= n and let OPTP(X) be the optimal value for P over X. Suppose that there exists
a polynomial-time computable function fP : 2X × 2X → R such that, for any S ⊆ X, it holds
that for any k ∈ [|S|−1]:

OPTP(S) = min
W ⊂S,|W |=k

{OPTP(W ) +OPTP(S \W ) + fP(W,S \W )} (1)

Then, OPTP(X) can be computed by a quantum algorithm that uses QRAM in O∗(1.728n)
time and space.

Proof sketch. The algorithm for the proof of the lemma is presented as Algorithm 1. The
main idea of the algorithm is to precompute solutions for smaller subsets using classical
dynamic programming and then recombine the results of the precomputation step to obtain
the optimal solution for the whole set (recursively) applying QMF (see Theorem 1). ◀

GD 2024
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Quantum dynamic programming for OSCM. In the following, let (G, πU ) be an instance
of OSCM. For any S ⊆ E, consider the subgraph H = (U, V, S) of G. For ease of notation,
we denote cr(H,πU , πV ) simply as crS(πU , πV ). Also, let πV be a linear ordering of the
vertices in V and V1, V2 ⊆ V be two subsets of the vertices of V such that V1 ∩ V2 = ∅. We
say that V1 precedes V2 in πV , denoted as V1 ≺πV

V2, if for any v1 ∈ V1 and v2 ∈ V2, it holds
that πV (v1) < πV (v2). Also, for a any W ⊆ V , we denote by E(W ) the subset of E defined
a follows E(W ) := {(ua, vb) : (ua, vb) ∈ E ∧ vb ∈ W}. We will exploit the following.

▶ Lemma 3. Let G = (U, V,E) be a bipartite graph and let πU : U ↔ [nU ] be a linear
ordering of the vertices of U . Also, let V1, V2 ⊆ V be two subsets of the vertices of V such
that V1 ∩ V2 = ∅. Then, there exists a constant γ(πU , V1, V2) such that, for every linear
ordering πV : V ↔ [nV ] with V1 ≺πV

V2 we have that:

γ(πU , V1, V2) = crE(V1)∪E(V2)(πU , πV ) − crE(V1)(πU , πV ) − crE(V2)(πU , πV ) (2)

Observe that, given an ordering πV of V such that V1 precedes V2 in πV , the value
γ(πU , V1, V2) represents the number of crossings in a 2-level drawing (πU , πV ) of G determined
by pairs of edges, one belonging to E(V1) and the other belonging to E(V2).

We are now ready to derive our dynamic programming quantum algorithm for OSCM. To
this aim, we argue next that the framework of Lemma 2 can be applied to the optimization
problem associated with OSCM (i.e., computing the minimum number of crossings over all
2-level drawings (πU , πV ) of G with πU fixed), which we call MinOSCM. First, we have that
MinOSCM is a set problem over V , whose optimal solution respects a recurrence of the
same form as Equation (1). In fact, for a subset S of V , let OPT (S) denote the minimum
number of crossings in a 2-level drawing (πU , πS) of the graph GS = (U, S,E(S)), where
πS : S ↔ [|S|] is a linear ordering of the vertices of S. Then, by Lemma 3, we can compute
OPT (S) by means of the following recurrence for any k ∈ [|S|−1]:

OPT (S) = min
W ⊂S,|W |=k

{OPT (W ) +OPT (S \W ) + γ(πU ,W, S \W )}

Clearly, OPT (V ) corresponds to the optimal solution for (G, πU ). Also, function γ plays the
role of function fP of Lemma 2. Second, we have that γ can be computed in poly(n) time.

In [3], we show that Algorithm 1 applied to MinOSCM can also be adapted to compute
an ordering πV of V that yields a drawing with the minimum number of crossings.

Altogether, we have finally proved the following.

▶ Theorem 4. There is a bounded-error quantum algorithm that solves OSCM in O∗(1.728nV )
time and space.

Comparing Theorem 4 against the current best FPT result [18] solving OSCM in
O(k2

√
2k + n) time, where k bounds the number of allowed crossings, we have the following.

▶ Corollary 5. The algorithm of Theorem 4 is asymptotically more time-efficient than the
FPT algorithm parameterized by the number k of crossings in [18] when k ∈ Ω(n2).

3 Quantum Divide and Conquer for One-Sided Crossing Minimization

Shimizu and Mori [21] used divided and conquer to obtain quantum exponential-time
polynomial-space algorithms for coloring problems that do not rely on the use of QRAM.
In this section, we first generalize their ideas to obtain a framework designed to speedup,
without using QRAM, some classical exponential-time polynomial-space divide and conquer
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Algorithm 2 The quantum algorithm of Lemma 6.

1: procedure QuantumDC(X):
2: Input: Set X of size n; Output: the value OPTP(X).
3: if |S|≤ cP then
4: return fP(S, ∅)
5: end if
6: return the result of QMF over all W ⊂ S with |W |= |S|

2 to find

min
W ⊂S,|W |= |S|

2

{QuantumDC(W ) + QuantumDC(S \W ) + fP(W,S \W )}

7: end procedure

algorithms for set problems. Then, we show that OSCM is a set problem over V that falls
within this framework. We use this fact to derive a quantum algorithm (Theorem 7) that
improves the time bounds of the corresponding classical singly-exponential algorithm (given
in the full version of the paper [3]), while maintaining polynomial space complexity.

Quantum divide and conquer for set problems. In the remainder, we provide a general
quantum framework, defined by the following lemma.

▶ Lemma 6. Let P be an optimization problem (say a minimization problem) over a set X.
Let |X|= n and let OPTP(X) be the optimal value for P over X. Suppose that there exists
a polynomial-time computable function fP : 2X × 2X → R and a constant cP such that, for
any S ⊆ X, it holds that: (i) If |S|≤ cP , then OPTP(S) = fP(S, ∅); (ii) If |S|> cP , then

OPTP(S) = min
W ⊂S,|W |= |S|

2

{OPTP(W ) +OPTP(S \W ) + fP(W,S \W )} (3)

We have that, OPTP(X) can be computed by a quantum algorithm without using QRAM in
O∗(2n) time and polynomial space.

Proof. The algorithm for the proof of the lemma is presented as Algorithm 2 and is based
on the recurrence in Equation (3). It works recursively as follows. If the input set X is
sufficiently small, i.e., |X|≤ cP , then the optimal value for X is computed directly as fP(X, ∅).
Otherwise, it uses QMF to find the optimal pair (S,X \S) that achieves OPTP(X) according
to Equation (3), where OPTP(S) and OPTP(X \ S) have been recursively computed.

The running time Q(k) of Algorithm 2 when |X|= k obeys the following recurrence:

Q(k) ≤

√
O

((
k

k/2

))(
Q(⌊k/2⌋) +Q(k/2) + poly(k)

)
Hence, Q(k) ≤ 2kpoly(k), and the total running time of Algorithm 2 is bounded by O∗(2n).

The space complexity of Algorithm 2 (procedure QuantumDC) can be proved polynomial
as follows; see Figure 1. The execution of QuantumDC determines a rooted binary tree T
whose nodes are associated with its recursive calls; see Figure 2. Each call corresponds to a
circuit in Figure 1. We denote by QDC(i,j) the circuit, at the ith-level of the recursion tree
T , with i = 0, . . . , logn− 1, associated with the jth-call, with j ∈ 0, . . . , 2i − 1. The input to
each of such circuits consists of a set of registers defined as follows. For i = 0, 1, . . . , logn− 1
and j = 0, 1, . . . , 2i − 1, there exists a register Ai,j with n

2i qubits. It stores a superposition

GD 2024
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Figure 1 Schematic representation of the circuit realizing Algorithm 2 for a set X with n = 16.
The qubits in Li,j in input to the circuit QDC(i,j) are incident to its left boundary.
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L2,0 = [A0,0, A1,0] L2,1 = [A0,0, A1,0] L2,2 = [A0,0, A1,1] L2,3 = [A0,0, A1,1]

L3,0 = [A0,0, A1,0, A2,0] L3,1 = [A0,0, A1,0, A2,0]

L3,2 = [A0,0, A1,0, A2,1] L3,3 = [A0,0, A1,0, A2,1]

L3,5 = [A0,0, A1,1, A2,2]
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L3,4 = [A0,0, A1,1, A2,2]

QDC(2,1)QDC(2,0) QDC(2,2) QDC(2,3)

Figure 2 The tree T whose nodes are associated with the recursive calls of Algorithm 2.

corresponding to a subset Si,j of X (to be defined later) of size n
2i , which represents all

possible ways of splitting the subset into two equal-sized subsets. Specifically, a status 0
for Ai,j [k] corresponds to assigning the kth-element of the subset associated with Ai,j to
one side of the split, while a status 1 of Ai,j [k] corresponds to assigning the kth-element of
such a subset to the other side of the split. In Figure 2, we associate the split defined by
the status-0 qubits (by the status-1 qubits) with the left (right) child of a node. Moreover,
in Figure 2, each edge of T is labeled with the registers representing the corresponding split.

The input of QDC(i,j) is a set Li,j of i+ 1 registers of size n, n
2 , n

4 , . . . , n
2i , respectively;

see Figure 1. The registers in input to QDC(i,j) can be recursively defined as follows. The
register Ai−1,⌊j/2⌋ belongs to Li,j and it is the smallest register in this set. Also, if Ac,d with
c ≥ 1 belongs to Li,j , then Ac−1,⌊d/2⌋ also belong to Li,j . In particular, observe that Li,j
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always contains A0,0. The circuit QDC(i,j) solves problem P on a subset Si,j of X of size
n
2i , which is defined by the states of the registers in Li,j . In particular, the set Si,j can be
determined by following the path of T connecting QDC(i,j) to the root, and observing that
the parity of j determines whether a node in the path is the left or right child of its parent.

We can finally bound the space complexity of Algorithm 2, in terms of both bits and
qubits. Since our algorithm does not rely on external classic memory, we only need to bound
the latter. Note that the number of circuits QDC(i,j) (which are in a bijection with the nodes
of T ) is linear in n and that the number of qubits in Li,j , which form the input of QDC(i,j),
is at most

∑log n
i=0

n
2i = 2n. Hence, the space complexity of Algorithm 2 is polynomial. ◀

Quantum divide and conquer for OSCM. We now describe a quantum divide and conquer
algorithm for OSCM. We start by showing that the framework of Lemma 6 can be applied
to MinOSCM (see Section 2). This can be done in a similar fashion as for the Lemma 2. In
particular, the fact that the MinOSCM problem is a set problem over V immediately follows
from the observation that Equation (3) is the restriction of Equation (1) to the case in which
k = |W |= |S|

2 . Moreover, recall that γ can be computed in poly(n) time. The execution
of Algorithm 2 produces as output a superposition of the registers Ai,j such that the state
with the highest probability of being returned, if measured, corresponds to an ordering πV

of V that yields a drawing with the minimum number of crossings. In [3], we show how to
obtain πV from such a state. Altogether we have proved the following.

▶ Theorem 7. There is a bounded-error quantum algorithm that solves OSCM in O∗(2nV )
time and polynomial space.

4 Conclusions

We presented singly-exponential quantum algorithms for OSCM, exploiting both quantum
dynamic programming and quantum divide and conquer. We believe that this research will
spark further interest in the design of exact quantum algorithms for hard graph drawing
problems. In [3], we highlight two meaningful applications of our results.
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