
Boundary Labeling in a Circular Orbit
Annika Bonerath #

University of Bonn, Germany

Martin Nöllenburg #

Algorithms and Complexity Group, TU Wien, Austria

Soeren Terziadis #

TU Eindhoven, The Netherlands

Markus Wallinger #

Chair for Efficient Algorithms, TU Munich, Germany

Jules Wulms #

TU Eindhoven, The Netherlands

Abstract
Boundary labeling is a well-known method for displaying short textual labels for a set of point
features in a figure alongside the boundary of that figure. Labels and their corresponding points are
connected via crossing-free leaders. We propose orbital boundary labeling as a new variant of the
problem, in which (i) the figure is enclosed by a circular contour and (ii) the labels are placed as
disjoint circular arcs in an annulus-shaped orbit around the contour. The algorithmic objective is to
compute an orbital boundary labeling with the minimum total leader length. We identify several
parameters that define the corresponding problem space: two leader types (straight or orbital-radial),
label size and order, presence of candidate label positions, and constraints on where a leader attaches
to its label. Our results provide polynomial-time algorithms for many variants and NP-hardness for
others, using a variety of geometric and combinatorial insights.
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1 Introduction

Labeling spatial data on a map is a well-studied topic in computational geometry [1, 10,17].
Commonly the feature points are annotated with labels that display the names or additional
descriptions, ensuring non-overlapping labels to guarantee full readability. The labels are
placed either next to the feature points [16] (internal label positions), or remotely along the
contour of a bounding shape such that the feature points are connected to their labels by
crossing-free leaders (external labeling models) [5]. Often, for high feature-point densities, the
external labeling model is more advantageous since the background map is not obscured by
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Figure 1 An orbital labeling highlighting points of interest in a map section (left) and an orbital
labeling of NFL-Championship winning teams, where the label sizes are scaled with the number of
won titles (center). Our notation (right) with an SL-leader in blue and OR-leaders in red.

annotations. A special case of external labeling is boundary labeling [3,4] where the labels are
attached to the (mostly rectangular) boundary of the map. The interest in visualizing data
on round displays, e.g., on smartwatch faces (see Figure 1) or on round displays in cockpits,
is growing, as discussed by Islam et al. [14] in their recent survey; but, from a visualization
perspective, it is still an under-explored topic compared to traditional rectangular displays.
The design space description of Islam et al. [14] includes geospatial data representations as
well as placement of text labels and icons on a round display. With this in mind, we initiate
the investigation of boundary labeling for maps with circular boundaries, surrounded by a
peripheral fixed-width ring, in which the labels are placed. We call these labels orbital. We
assume that the lengths of the orbital labels are normalized, s.t., they sum up to at most the
perimeter of the boundary of the map. Orbital labels can also be used for other purposes,
e.g., to display donut charts representing statistical data values of different feature points
within the map, such that the label sizes are proportional to the data values (Figure 1).
Previous research on circular map displays considered either multirow circular labels where
the sum of label lengths does not equate to the map’s boundary length [12], radial labels [2,9],
or horizontal labels [9, 13,15]. The latter two settings are relevant on rectangular displays
but not suitable for circular displays with a narrow annulus reserved for labels. Furthermore,
these settings differ in their geometric properties and hence their labeling algorithms do not
immediately generalize to orbital labels.

Formally, we assume that we are given a disk D in the plane R2 centered at a point X.
The disk contains n points P = {p1, . . . , pn}. We call the set P of points features and we
refer to the boundary of the disk as the boundary B. The feature closest to X is denoted by
pmin. We may assume that D has a radius of 1. Throughout this paper, unless otherwise
specified, the angle between two points p, q refers to the smallest angle with the center X of D,
i.e., min(∡pXq,∡qXp). Every feature p ∈ P has an associated label representing additional
information to be placed along a circular arc on the boundary starting at a point b1 ∈ B and
ending at a point b2 ∈ B. The circular arc along B is denoted as b1b2

∧

. Usually, the start and
endpoint of the label are not fixed in the input, however, the length of the arc is part of the
input. We represent the associated label simply as a number λ(p), which indicates the length
of the associated label. We assume that

∑n
i=1 λ(pi) is equal to the circumference of D, i.e.,

all labels can be placed in a non-overlapping way without gaps between the arcs on B.
In a labeling L, every feature p ∈ P is assigned a label with starting point sL(p) ∈ B

and an endpoint eL(p) ∈ B, s.t., |sL(p)eL(p)
∧

| = λ(p). We require that all labels in L are
pairwise non-overlapping. Additionally, every feature p is connected to its label via a curve
called a leader. We denote the length of a leader ψ using |ψ|. We call the point on a
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label arc where the leader connects to B the port ξL(p). We represent a port by the port

ratio ρ(p) = |sL(p)ξL(p)
∧

|
λ(p) which is the ratio of the arc from the starting point sL(p) to

the port ξL(p) and the arc from the start-point to the end-point. ε ≤ |sL(p)ξL(p)
∧

| and
ε ≤ |ξL(p)eL(p)
∧

|, i.e., there is always at least a small distance between the ends and the port
of the label. A distance of ε between two points on B should be interpreted as a distance
along B. Now, we define the generic orbital labeling problem.

▶ Problem 1 (Orbital Boundary Labeling). Given a disk D, containing n feature
points P with their labels λ(p) for p ∈ P , compute a labeling L, in which all leaders are
pairwise interior-disjoint and where the sum of leader lengths is minimal.1

A labeling in which the sum over all leader lengths is minimum is also called a leader
length minimal labeling. We consider two leader types in this paper. A straight-line leader or
SL-leader is simply a straight-line segment starting at p and ending at ξL(p). Its length is
the Euclidean distance between p and ξL(p). An orbital-radial leader or OR-leader consists
of two parts: a (possibly empty) orbital circular arc with center point X starting at the
feature p and ending at a bend point q, and a radial segment that connects q to ξL(p); see
Figure 1. We call the line through X and ξL(p) the supporting line of the radial part. Note
that for any pair of feature and port, there are exactly two possible OR-leaders. We call
an OR-leader leaving its feature in clockwise direction a clockwise leader and analogously
define counter-clockwise leaders. We will also refer to the OR-leader whose orbital part spans
an angle larger than π as the feature’s long and to the other one as its short leader. For a
feature pi let ri be the radius of the circle concentric with D containing pi. The length of the
OR-leader can be expressed as a function g : P × [0, 2π] → R with g(pi, θ) = riθ + (1 − ri),
where 0 ≤ θ < 2π describes the angle spanned by the orbital part of a leader connected to pi.

▶ Observation 2. For a fixed feature p, the function g(p, θ) is continuous and linear in θ.

Based on this problem description, we delineate the space of the possible problem variants
and a suitable naming scheme for such variants in the following section.

2 Problem Space

In this paper, we refer to variants of Orbital Boundary Labeling based on the six-
dimensional T -COSA-Orbital Boundary Labeling scheme introduced in this section.
The first dimension, denoted by T , determines the leader type, whereas the other dimensions,
denoted by variables COSA, characterize properties of the labels (A encodes two dimensions).
We use OR and SL as substitutes for T in the T -COSA scheme. Without the T - prefix,
we refer to both OR-COSA and SL-COSA (leader types are not mixed in a labeling). We
mostly focus on OR-leaders, while still discussing which of the results extend to SL-leaders.

For the five dimensions regarding the labels, we use each letter of COSA to describe the
variants for the respective dimension.

[C] Candidate port positions on the boundary. If we are given a set C of candidate
positions on B, we require in any valid labeling L that the set ΞL of all ports in L is a
subset of C, we say the port candidates are locked (and use the symbol C ) otherwise they
are free (C ). For variants with C we assume that sufficiently many, but no more than
linearly many candidates are specified (n ≤ |C|). Otherwise, C is the more reasonable
choice.

1 This definition does allow a leader to contain another feature, i.e., the endpoint of another leader.
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Table 1 An overview of the problem space and our results. Only locked port ratios (A ) are
shown. The abbreviation “w. NP-h” denotes weakly NP-hard. Red cells represent polytime, due to
the reduction to the algorithm of Benkert et al. [7]. Light red cells are covered by the reduction
but are superseded by faster dedicated approaches. Blue cells with a question mark are conjectures.
Cells indicate the section containing the relevant result; SL-leader results are in the full version [8].

C C

A> A� A> A�

OR
O

S> O(|C|n2) [S. 4.1] O(|C|n2) [S. 4.1] O(n2) [S. 4.3] O(n2) [S. 4.3]

S� O(|C|n2) [S. 4.1] O(|C|n2) [S. 4.1] O(n2) [S. 4.3] O(n2) [S. 4.3]

O
S> O(|C|2n) [S. 4.2] O(|C|n3) [S. 3] O(n5) [S. 3] O(n5) [S. 3]

S� O(|C|4) [S. 3] O(|C|4) [S. 3] w. NP-h [S. 5] w. NP-h [S. 5]

SL
O

S> O(|C|n2) [8, B.1] O(|C|n2) [8, B.1]] O(n2) ? [8, B.3] O(n2) ? [8, B.3]

S� O(|C|n2) [8, B.1] O(|C|n2) [8, B.1] O(n2) ? [8, B.3] O(n2) ? [8, B.3]

O
S> O(|C|2n) [8, B.2]

S� w. NP-h [8, B.4] w. NP-h [8, B.4]

[O] Order. Consider the cyclic order of labels around B. If a certain label order is
pre-specified, we say the label order is locked (O ); otherwise, for the unconstrained
setting, we say the label order is free (O ).
[S] Size of labels. We distinguish the setting where λ(p) = 2π

n for all p ∈ P , in which
case we say that the label size is uniform (S>), otherwise the label size is non-uniform (S�).
[A] Port position on labels. We differentiate between uniform port ratios, where
ρ(p) = ρ(q) for all p, q ∈ P (A>), and non-uniform port ratios (A�). Additionally the
port ratios can be fixed as part of the input (A ) or can be free to be chosen (A ).

To specify a T -COSA variant we substitute C, O, S and A with C /C , O /O , S>/S� and
A>/A�/A>/A� , respectively. Whenever a statement applies to all variants along a COSA
dimension, we drop the sub- or superscript. For example, C O SA> refers to the variants
where the leader style is either OR or SL, the port candidates are free (C ), the order is
locked (O ), the label sizes could be fixed to be uniform or they could be non-uniform (S)
and all port ratios are fixed (A ) to the same (A>) given value.

Contributions. The remainder of the paper is structured as follows (see also Table 1).
Our focus is OR-COSA and we show how results for these variants extend to SL-COSA
and eventually to all COSA variants. Section 3 presents a reduction from OR-COSA to a
problem called Boundary Labeling [7], for which polynomial time algorithms are known.
This approach is applicable to a number of OR-COSA variants. In Section 4 we introduce
dedicated approaches for some variants, which improve the runtime of the reduction approach.
In Section 5 we prove that OR-C O S�A variants are weakly NP-hard. Section 6 outlines
the extensions to straight-line leaders and free port ratios (details in Appendices B and C of
the full version [8], respectively), while Section 7 provides some concluding remarks.

3 Reduction to Boundary Labeling

We begin by investigating the relation between Orbital Boundary Labeling and an al-
ready established related problem called Boundary Labeling. In an instance of Boundary
Labeling, we are given a set of points which are entirely left of a vertical line ℓ. Additionally,
we have a set of n disjoint rectangular labels, which are placed to the right of ℓ. The goal is
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Figure 2 All leaders of gray points in (a) are entirely contained within the green annulus. The
radial part of the blue leader spans the entire intersection between its supporting line and the green
annulus. In the labeling shown in (b), a clockwise rotation of the ports is not possible without
introducing a crossing between the green leader and the one in gray (indicated with a dashed line).
In (c) any rotation clockwise or counterclockwise increases the length of the green leader. Both (b)
and (c) show the implied ports in yellow.

to find a set of parallel-orthogonal (po) leaders, which consist of a line segment parallel to ℓ
starting at a feature point and a second line segment orthogonal to ℓ connecting to a port on
a label. If the label sizes are interchangeable, i.e., every point can be connected to any label,
there is an O(n3) dynamic program [6, 7], which minimizes an arbitrary badness function
for a leader (under the assumption that the function can be computed in linear time). The
dynamic program, which first splits the instance into horizontal strips, defined by points
and the boundaries of the rectangles, then assigns a specific horizontal strip to the feature
farthest from ℓ and then recurses on the two sub-instances defined by this assignment. One
instance contains all features and rectangles above the assigned horizontal strip, the second
everything below.

To create an instance of Boundary Labeling from an instance of Orbital Boundary
Labeling, we consider D as an annulus (by introducing a small circle at the center, which
does not contain any features), find a line segment s orthogonal to B from the boundary of
the small circle to a point on B and transform the annulus into a rectangle, turning B into a
straight line. The basis for this reduction is the following observation, which – intuitively
speaking – prove that there exists a radial line, which we can use to cut and unroll our
instance to remove the cyclic nature of Orbital Boundary Labeling.

▶ Observation 3. In a crossing-free leader-length minimal labeling for problems in OR-
COSA, the supporting line of the radial part for the leader of pmin intersect no other
leader.

Observation 3 is also illustrated in Figure 2a. Based on this observation we know that
in any crossing free labeling, there is always a radial line, which does not intersect a leader
other than the one of pmin. Moreover it is sufficient to check all possibilities for the port of
pmin to obtain such a line. Next, we need to show that there is only a polynomial number of
possibilities for the port of pmin. The exact number depends on the variant we are considering.
If we are considering a labeling for a problem in the set OR-C OSA, we are given the set C
of possible ports, leading to the following observation.

▶ Observation 4. For problems in C OSA there are only |C| possibilities for ξL(pmin).

It is less obvious if and how we can discretize these options for problems without a fixed
candidate set for the ports. If we are considering a problem in the set C O SA, we can
reduce the number of relevant options using the following lemma.

GD 2024
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▶ Lemma 5. For problems in OR-C O SA there are only n2 possibilities for ξL(pmin).

Proof. Let S be the set of the n intersection points between B and any ray starting at X
through a feature. We prove that there is a leader-length minimal labeling, in which at least
one port is in S. Assume that L is a leader-length minimal labeling, where no port is in S.
Consider a small rotation of all ports clockwise. If such a rotation is not possible without
introducing a crossing, the radial segment of a clockwise leader already contains another
feature, and therefore its port was in S (see Figure 2b). Otherwise, a small enough rotation
neither changes the order of labels nor does it introduce any intersections and therefore
results in a new valid labeling. If this rotation decreases the total leader length, then L was
not optimal, which contradicts our assumption. If the total leader length stays the same,
we can continue the rotation until either the orbital segment of a counter-clockwise leader
reaches length 0 or the radial segment of a clockwise leader hits another feature. In both
cases, its port is in S. If the leader length increases, we instead rotate counter-clockwise.
Again, if the total leader length decreases or stays the same, the arguments above apply.
Assume therefore that the total leader length again increases. Since by Observation 2 the
change in leader length is linear in the angle by which we rotate, there must be a single
leader that increases its length in both rotation directions, which implies that its orbital part
has length 0 in L (see Figure 2c).

Therefore in any optimal labeling, at least one port is in S. Since the order is fixed,
choosing a specific label to have its port at an element in S fixes all other ports and specifically
the location of the port of pmin. Therefore every element of S induces n possible choices for
this port which results in n2 choices in total. ◀

In general, the previous method does not extend to the problems in OR-C O SA, since
choosing one element in S still leaves (n−1)! possible orders of the remaining labels. However,
in the special case where both the label sizes and the port ratios are uniform, we know that
all ports in any valid labeling are distributed equally along B, which implies that again
every element in S induces exactly n possible labels (even if we do not know which label is
connected to which port). Therefore, we state the following observation.

▶ Observation 6. For problems in OR-C O S>A> there are only n2 possibilities for ξL(pmin).

We can now proceed to describe how we create an instance of Boundary Labeling
based on a given instance of Orbital Boundary Labeling.

▶ Lemma 7. Given a port ξ for pmin, we can reduce any problem in OR-CO SA to
Boundary Labeling with po-leaders [7].

Proof. We first map all features to points in the plane (also shown in Figure 3). Let X be
the center of D. For any feature pi ∈ P , let αi be the angle between ξ and pi (recall that
this is defined as the smaller angle formed between these two points at X) and let ri = |Xpi|.
Using polar coordinates we then create a point qi = (ri, αi) for every point pi ∈ P . We now
place a vertical line ℓ at x = 1. Recall that the radius of D is 1 and therefore all points
q1, . . . , qn are left of ℓ. Since the port ratio is locked as part of the input, the fixed position of
ξ also fixes the exact position of the label of pmin. If the problem is in the set OR-CO SA ,
the order of labels is fixed, and therefore ξ also fixes the position of all other labels. For
every point pi we place a rectangle of height λ(pi) − 2ε in the order of the labels (recall that
any port has to have a minimal distance of ε to the boundary of the label), s.t., the lowest
point of the lowest rectangle is at height |sL(pmin)ξ

∧

| + ε.
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(a) Instance of Orbital Boundary Labeling.

σ

ρ

ℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓ

(b) Instance of Boundary Labeling.

Figure 3 An instance (a) of Orbital Boundary Labeling together with a fixed port for pmin.
We use an appropriate mapping to construct an instance of Boundary Labeling, whose solution
(b) corresponds to the solution of Orbital Boundary Labeling. This maps the angle σ between
two features in (a) to their horizontal distance between the mapped features in (b) and the distance
ρ of a feature to B in (a) to the distance of the mapped feature to ℓ in (b). Note that only the
remaining non-fixed labels are part of the new instance.

Now, the length of the radial segment of an orbital-radial leader connecting pi to a point
b ∈ B in our problem is equal to the length of the orthogonal linepart of the po-leader
connecting qi to a point v on ℓ. The relation between the length of the parallel part of the
po-leader and the length of the orbital segment of the OR-leader is more complicated. The
length of the parallel part of the po-leader is simply the difference in y-coordinate between qi

and v. Note that we mapped the clockwise angle of a point qi relative to ξ to the y-coordinate
of qi. However, the length of the orbital part of the OR-leader is dependent on the distance of
pi to X, i.e., two OR-leaders whose orbital part span the same angle can have different lengths.
Specifically, the length of an orbital part in an OR-leader of a feature pi is exactly ri · αi.
Therefore, we define our badness function simply as bad(qi, v) = 1 − ri + ri(|αi − y(qi)|),
where y(q) is the y-coordinate of qi. Note that the restriction of port placement on ℓ to a
specific range (e.g., a point in a candidate set C or a point within a label corresponding
to a fixed port ratio) can be encoded in this badness function too, by setting the value of
bad(qi, v) = ∞ if v lies outside of the permitted range. Finally, also note that we can check
in O(n) time if the split into sub-instances induced by the combination of q and v respects
the fixed order of the labels and, if it does not, also set bad(qi, v) = ∞. This completes the
reduction. ◀

If we do not have a fixed order of labels, we have to pay attention to the order in which
the rectangles are placed. However, if the labels have uniform size, any order will result in
the same set of rectangles resulting in the following observation.

▶ Observation 8. Given a port ξ for pmin, we can reduce any problem in OR-CO S>A to
po-Boundary Labeling [7].

Lastly, if the label sizes are not uniform, and if a candidate set C is fixed, we can adapt
the dynamic program slightly to leverage this fact, by placing smaller rectangles at every
possible candidate position and avoid overlap by restricting the sub-instances to appropriate
ranges. The proof of the following lemma can be found in Appendix A of the full version [8].

GD 2024
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(a) (b) (c)

Figure 4 Three rotations for case OR-C O SA . Candidates are shown in yellow. The blue
feature is the first that is placed and we iteratively test every port candidate. Due to the fixed
order, the other leaders are directly obtained. In a valid labeling (a) all ports (obtained due to a
fixed port ratio) coincide with a candidate and no two leaders cross. A labeling is invalid if ports do
not coincide with a candidate – highlighted red in (b) – or the obtained leaders contain crossings
between themselves, which is shown with the red crosses in (c). In (c) the green leader changed
from a clockwise to a counter-clockwise leader to avoid crossing the blue leader.

▶ Lemma 9. Given a port ξ for pmin, any problem in OR-C O S�A can be solved in
O(|C|3) time by adapting the dynamic program of Benkert et al. [7].

With all the pieces assembled, we obtain the runtime of solving a number of problem
variants via this reduction. We present the relevant runtimes in the following theorem.

▶ Theorem 10. For any problem P in OR-CO SA , OR-C OSA and OR-C O SA let
AP be the size of the set of possible ports for pmin, s.t., the set can be computed in O(AP )
time and let the time required to solve the created instance of Boundary Labeling be
O(BP ). Then P can be solved in time O(AP ·BP ).

Proof. We compute the set of possible ports for pmin as stated in Observation 4, Lemma 5 or
Observation 6. For any element of these sets, we create an instance of Boundary Labeling
and solve it as described in Lemma 7, Observation 8 and Lemma 9. We obtain a po-labeling
minimizing the badness function, which has a one-to-one correspondence to a leader length
minimal OR-labeling of our original instance. ◀

We remark that Benkert et al. [7] point out that their algorithm can be changed to handle
non-uniform labels leading to a pseudopolynomial time algorithm. By Theorem 10 this would
result in pseudopolynomial time algorithms for the problems in OR-C O S�A , however,
these are superseded by a dedicated approach in Section 4, so we omit further details here.

4 Improvement via dedicated approaches

Having established the reduction as a general approach baseline, we will now present a variety
of bespoke approaches, which improve the runtime implied by Theorem 10.

4.1 Locked Port Candidates and Locked Order
We begin by investigating the problem set OR-C O SA . Recall that we are given a set C of
candidate positions for the ports. The placement of the label of pmin determines the position
of all other labels. The following lemma (which is applicable to a larger set of problems)
shows that the same is true for all OR-leaders.
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(a) Case 1.
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(b) Rerouted leaders.
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(c) Case 2.

Figure 5 Given a free label order O we can reroute the leaders to arrive at a crossing-free
solution with a shorter total leader length.

▶ Lemma 11. For OR-CO SA , the choice of a port for pmin uniquely determines the
OR-leader of any other feature p′, which does not cross the OR-leader of pmin.

Proof. Note that the orbital parts of the two possible OR-leaders connecting p′ to any point
on B form a circle concentric with B. Therefore one of the two orbital parts crosses the
radial part of the leader of pmin (we also refer again to Figure 2a). The lemma follows. ◀

By Lemma 11 it is sufficient to place λ(pmin) with ξL(p) coinciding with one candidate
(O(|C|) possibilities). Then we check in O(n) time if the ports of the remaining labels in
the correct order also coincide with candidates, in O(n2) time that no two leaders cross,
and finally we compute in O(n) time the total leader length, leading to a total runtime of
O(|C|n2) (see Figure 4) and to the following theorem.

▶ Theorem 12. The problems OR-C O SA can be solved in O(|C|n2) time.

4.2 Locked Port Candidates, Free Order and Uniform Port Distribution
If the order can freely be chosen, then a uniform port ratio together with uniform labels
guarantee that any two labels can be exchanged without creating overlap between two labels.
We can thus utilize a matching algorithm to solve the problems OR-C O S>A> . To obtain a
crossing-free labeling we first prove the following lemma showing that a solution minimizing
total leader length naturally does not contain any crossings.

▶ Lemma 13. Given an instance of a problem variant in OR-CO S>A> every leader-length
minimal labeling L is crossing-free.

Proof. Assume a leader-length minimal labeling L contains two crossing leaders γ1 and γ2
connecting p1 to its port ξL(p1) = ξ1 and p2 to its port ξL(p2) = ξ2, respectively. Both leaders
begin with an orbital segment p1q1

∧
(or q1p1

∧
) and p2q2

∧
(or q2p2

∧
), respectively, connecting

to their bend points q1 and q2, followed by their radial straight-line segment q1ξ1 and q2ξ2.
Clearly, the crossing x occurs between the radial segment of the point closer to the center of
D and the orbital segment of the point closer to B. We assume, w.l.o.g., that x = p1q1

∧
∩ q2ξ2,

and that p1 is on the counter-clockwise end of p1q1
∧

. Let q′ be the intersection of the
supporting line of q1ξ1 and the circle containing q2p2

∧
. There are two cases, as shown in

Figure 5.
In the first case (Figure 5a), we can replace γ1 with a curve consisting of p1x

∧
and xξ2 and

γ2 with curve consisting of p2q
′

∧

and q′ξ1 (Figure 5b). Since |q2x| = |q′q1| and |xq1
∧

| > |q2q
′

∧

|,
the total leader length has decreased. Note that the rerouting might have introduced new
crossings, but since this method reduces the total leader length, we can iteratively apply this
procedure and will never obtain an already seen labeling. Since there is a finite number of
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(a)

p1

p3
p5

p4

p2

p6

c1

c2

c3
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b
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(b)

c1
c2
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c4
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c6

p1
p2
p3
p4
p5
p6

c7

a+ b

Figure 6 Case C O S>A>. Each feature p1, . . ., p6 and port candidate c1, . . . , c7 (a) introduces
a vertex in the weighted complete bipartite graph (b). An edge in the bipartite graph corresponds
to a leader and is weighted with the leader’s length.

possible solutions, we have to arrive at a solution, which does not contain crossings anymore
(otherwise we could apply the procedure infinitely many times contradicting the finite number
of possible solutions). We arrive at a labeling, that has a smaller total leader length, which
is a contradiction to L being optimal. While the second case (Figure 5c) looks different
geometrically, we can resolve the crossing identically to the first case to again reduce the sum
of leader lengths. In the special case where both features have the same distance to X, it is
again obvious that by simply switching the ports the newly obtained leaders are a subset
of the old leaders, removing the overlap and reducing the total leader length. In all three
cases, we arrived at a labeling that is better than L which is a contradiction, concluding the
proof. ◀

Next, we show that we can always use the shorter of the two OR-leaders.

▶ Lemma 14. Given an instance of a problem variant in OR-CO S>A> any leader-length
minimal labeling L uses only the shorter of the two possible OR-leaders for any point.

Proof. Assume L contains a long OR-leader for a point p. Replacing the leader with the
short leader between p and its port yields a labeling L′ with a shorter total leader length. If
L′ is crossing-free this is a contradiction to the optimality of L, otherwise we can iteratively
apply the uncrossing procedure of the proof of Lemma 13, which, by Lemma 13, results in
a crossing free labeling with the same or smaller total leader length compared to L′ again
contradicting the optimality of L. ◀

With Lemmas 13 and 14 we know that every combination of feature and port defines
a unique leader and the shortest possible set of such leaders is crossing free. This leads
naturally to a formulation of the problem as finding a minimum-weight matching between
features and ports. However, we still have to guarantee that the ports we select in such a
matching are equally distributed around B; a requirement stemming from uniform label-sizes
and fixed uniform port ratios. To this end, we state the following observation.

▶ Observation 15. Given a set C of candidate ports, we can partition C into at most k = |C|
n

subsets C1, . . . , Ck of size n, s.t., all candidates in one set Ci are equally distributed around
B. This can be done in O(|C|2) time.

Now we can state the central result of this subsection.

▶ Theorem 16. The problems in OR-C O S>A> can be solved in O(|C|2n) time.
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a b0

r

r + π

2π

r + 2π

g′(p, θ1)

θ1

Figure 7 An example of the function g′(p, θ1) for a point p with a distance of 1 − r to X. the
points a and b are defined as in the proof of Lemma 17.

Proof. We begin by creating the k subsets (Observation 15). For each subset Ci we let Gi

be a weighted complete bipartite graph between the set of features P and Ci using the length
of the (short) leader between a feature p ∈ P and a potential port c ∈ C as the weight of the
edge (p, c); see Figure 6. For OR-leaders it is by Lemma 14 sufficient to use the length of the
shorter of the two leaders. Now a minimum weight bipartite matching in G corresponds to a
leader-length minimal labeling. We know by Lemma 13, that such a labeling is crossing-free
and an optimal solution (for Ci). Such a matching in a bipartite graph with |V | vertices and
|E| edges can be computed in O(|V |2 log |V | + |V ||E|) time [11]. In our case |V | = 2n and
|E| = n2. Therefore the runtime for one subset is O(n3) and since we run this algorithm for
at most |C|

n subsets, we arrive at a final runtime of O(|C|2 + |C|n2). ◀

It is important to note that the total runtime of all iterations of the matching algorithm is
strictly better than the runtime of O(|C|n3) yielded by Theorem 10, due to the preprocessing
runtime of O(|C|2). Theorem 16 only guarantees an improvement for |C| ∈ o(n3).

4.3 Free Candidates and Locked Order
Now we turn to the problem set OR-C O SA . Intuitively, these are problem variants,
in which we can rotate the ports continuously around B to obtain other labelings as long
as we do not change the label order or introduce any crossings. To solve these problems,
we formulate a univariate piece-wise linear function of bounded complexity, whose global
minimum corresponds to an optimal labeling.

Let ω(i) be the index of the label of pi in the fixed order (assuming ω(1) = 1). For any
feature pi let θL

i be the angle between pi and ξL(pi) in a specific labeling L. Recall that by
Lemma 11 the choice of the port for the innermost feature in L also fixes all other ports and
leaders. We will therefore replace θL

i with Θi(θL
1 ), i.e., a function which simply returns the

value of θL
i implied by the value of θL

1 . Since the order of labels is fixed, it is not guaranteed
that every feature is connected to its port using the short OR-leader. To do so we define a
Boolean variable cw(i, θL

1 ). Let si be the intersection of B and a ray starting at X through
pi. Then cw(i, θL

1 ) is true if (in the labeling L implied by the value θ1) starting at si and
traversing B clockwise we encounter ξL(pi) before ξL(p1) and false otherwise.

With this we define the function g′ : P × [0, 2π] → R as

g′(pi, θ1) =
{
g(pi,Θi(θ1)) if cw(i, θ1) or i = 1
g(pi, 2π − Θi(θ1)) otherwise

(1)

We now provide a lemma bounding the complexity of these functions.
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Figure 8 Illustration of the interval (blue area) of θ in which the two leaders of the points pi and
pj do not cross, while increasing θ from 0 (a) to 2π (h). The heavy blue line is the supporting line
for the radial part of the leader of pmin. The endpoints are the value of θ for which the leader of pi

changes from clockwise to counter-clockwise to avoid crossing the leader of the innermost point (c)
and the value for which the radial part of the leader of pj crosses pi (g).

▶ Lemma 17. Any function g′(pi, θ1) consists of at most three continuous linear parts in the
interval 0 ≤ θ1 < 2π.

Proof. Assume cw(i, 0) is true, i.e., we encounter ξL(pi) before ξL(p1) when traversing B
clockwise starting at si. While increasing θ1 the value of cw(i, θ1) changes to false exactly
when ξL(p1) = si and back to true exactly when ξL′(pi) = si, where L and L′ are labelings
implied by some values θ1 = a and θ1 = b, respectively, s.t., a < b (see also Figure 7).
Since for θ1[0, a) ∪ [b, 2π) we have g′(pi, θ1) = g(pi,Θi(θ1)) and for θ1 ∈ [a, b) we have
g′(pi, θ1) = g(pi, 2π − Θi(θ1)) and by Observation 2 the function g is continuous and linear
in these intervals. The case for cw(i, 0) being false is symmetrical and the lemma follows. ◀

We can now create a function h(θ1) =
∑n

i=1 g
′(pi, θ1), which exactly captures the total

leader length of a labeling implied by θ1, which adheres to the order ω. However, it is
important to observe that, while such a labeling does not contain any crossing between the
leader of p1 and any other leader, crossings between any other pair of leaders are still possible.
To avoid these, we restrict θ1 to O(n2) intervals which capture exactly the values, in which
the labeling implied by θ1 does not contain any crossing. We define a new Boolean variable
cr(i, j, θ1), which is true if the two OR-leaders of pi and pj that are implied by θ1, cross.
Let pi be the feature closer to the center of D than pj . Similar to the proof of Lemma 17,
we can find two values θa, θb, s.t., cr(i, j, x) = cr(i, j, x′) for any value x, x′ ∈ [θa, θb) and
cr(i, j, x) = cr(i, j, x′) for any value x, x′ ∈ [0, θa) ∪ [θb, 2π).

▶ Lemma 18. Let I be the set of intervals, s.t., θ1 implies a labeling in which all leaders are
crossing-free if and only if θ1 ∈ I for some I ∈ I. Then |I| ≤ n2.

Proof. For any pair of features, there is exactly one interval in which their leaders do not
cross and one interval in which they do (considering the intervals modulo 2π). An example
is shown in Figure 8. We prove the lemma by induction. The base case is a single feature,
which is always crossing free, therefore |I| = 12. Assume that there are at most n2 such
intervals for n features. We add the (n+ 1)-th feature p. For any of the existing n features,
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2

1

1

(a) Placement of two blocker features pU and pD. (b) Detail of the placement of p1, . . . , pn.

Figure 9 Visualization of the reduction. The two points pU and pD are placed close to the
boundary (a) and all points p1, . . . , pn are placed in the very small red circle. A zoomed-in picture
of the red circle is shown in (b).

p defines a single interval in which their leaders do not cross. Consider the possibilities for
adding one of these intervals I ′ to I. Let I ∈ I. If I ∩ I ′ = ∅, we remove I, if I ∩ I ′ = I,
we retain I and if I ∩ I ′ = I ′, we remove I and add I ′. Otherwise, I contains one or two
endpoints of I ′ but not the entire interval. If I contains only one endpoint of I ′, we remove
I and add I ∩ I ′. Since I ′ is an interval, this can happen with at most two other intervals.
Both times we remove one interval and add a new one, thereby not changing the size of
I. Finally, if I contains both endpoints of I ′ but not the entire interval – intuitively the
intervals wrap around B in two different directions – then we remove I and add the two
continuous parts of I ∩ I ′ increasing |I| by one. In this case all other intervals of I are either
entirely contained in I or disjoint from I and therefore |I| does not increase any further.
We iteratively add all n new intervals and increase |I| by a total of at most n. Therefore
|I| ≤ n2 + n < n2 + 2n+ 1 = (n+ 1)2. ◀

With this, we have everything in place to prove the following theorem.

▶ Theorem 19. The problem variants in OR-C O SA can be solved in O(n2) time.

Proof. We set up the function g′(pi, θ1) as in Equation 1 and let h(θ1) =
∑n

i=1 g
′(pi, θ1) as

above. Then we restrict θ1 to the set I of n2 intervals (Lemma 18) in which the implied
labelings do not contain any crossings. Since by Lemma 17 there are at most O(1) continuous
linear pieces for any function g′, we conclude that h consists of O(n) continuous linear pieces
and thus also has at most O(n) local minima. To find the global minimum of h it is sufficient
to check all O(n) local minima as well as the O(n2) endpoints of the intervals in I. ◀

5 Free Candidates, Free Order and Non-uniform labels are NP-hard

The results presented so far cover most of the top half of Table 1. It remains to address the
problems in OR-C O S�A . Due to the flexibility of non-uniform labels, as well as the free
order and lack of a discrete candidate set, these problems turn out to be weakly NP-hard.
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▶ Theorem 20. Given an instance of OR-C O S�A together with k ∈ R it is (weakly)
NP-hard to decide whether there exists a labeling L with a total leader length of less than k.

Proof. For the purpose of this proof, we will relax the requirement that D has a radius
of 1. The final construction can be scaled down to meet that requirement. The reduction
(visualized in Figure 9) is from the weakly NP-hard problem Partition, where we are given
a set X of n integers with S =

∑
x∈X x and need to decide if X can be partitioned into two

sets X1 and X2, s.t.,
∑

x∈X1
x =

∑
x∈X2

x = S/2. For the reduction we place for every xi ∈ X
a feature pi =

(
0, i

4πn2

)
. Additionally we place two features pU = (0, r) and pD = (0,−r),

where r > S+2
4π . We define λ(pi) = xi for all 1 ≤ i ≤ n and λ(pU ) = λ(pD) = 1. Note that∑n

i=1 λ(pi) + λ(pU ) + λ(pD) = S + 2 and the radius of the enclosing disk is therefore S+2
2π .

Any feature pi, s.t., 1 ≤ i ≤ n is contained in a disk of radius 1
4πn and circumference 1

2n

centered at the origin. Let o(i) and r(i) be the orbital and radial part of γpi

L , respectively.
Note that the sum over all r(i) is equal in all labelings. Let this sum be equal to Lradial.
Further note that for any pi, o(i) < 1

2n . Therefore the sum
∑n

i=1 o(i) <
1
2 .

For the problem variants OR-C O S�A>, in any labeling L the port ratios ρ(pU ), and
ρ(pD) are necessarily equal. For the variant OR-C O S�A� port ratios are described as part
of the input and we define them, s.t., ρ(pU ) = ρ(pD). Finally we set k = 1/2 + Lradial.

If there exists a partition of X into two sets X1,X2, s.t.,
∑

x∈X1
x =

∑
x∈X2

x, then
we can make three observations. First, there exists a labeling L in which the length of
the orbital part of γpU

L and γpD

L is equal to 0 and therefore γpU

L and γpD

L are straight
lines. Second, in L both spaces between the labels of pU and pD are equally spaced, i.e.,
|eL(pU )sL(pD)
∧

| = |eL(pD)sL(pU )
∧

|, since ρ(pU ) = ρ(pD). Third, in a labeling L′, in which the
length of the orbital part of γpU

L or γpD

L is not equal to 0, the sum of the length of the orbital
parts of γpU

L′ and γpD

L′ (and therefore the sum over the lengths of all orbital parts of leaders
in L′) is at least 2π

S+2 · S+2
4π = 1

2 . This is because the difference between eL′(pU )sL′(pD)
∧

and
eL′(pD)sL′(pU )
∧

is at least 1 (since the label sizes are integers). Therefore the sum over all
leader lengths in L is less than 1/2 + Lradial, while in L′ it is at least 1/2 + Lradial and L′

can never be optimal.
Assume now that X can be partitioned into two subsets X1,X2, s.t.,

∑
x∈X1

x =
∑

x∈X2
x.

Then the labels can be equally partitioned and the leaders of pU and pD can be straight
lines. Therefore the total sum of leader lengths is less than k. Conversely, assume no such
partition exists. Then the leaders of pU and pD must together contain orbital segments of
length at least 1/2 and the total sum of leader lengths is at least k, concluding the proof. ◀

6 Extensions to SL-Leaders and Free Port Ratios

So far we considered problems in OR-COSA , i.e., settings which use OR-leaders and have a
fixed port ratio. Some results can be translated (with small to medium effort adaptions) to
the settings using SL-leaders and/or free port ratios. In this section, we will give a high-level
overview of which results can be adapted and how. The set of results for free port ratios
is shown in Table 2; results for SL-leaders are included as the bottom part of both Table 1
and 2.

Some results (e.g., Theorem 12) are independent of the leader length (beyond computation
of leader length). Using a matching algorithm as stated in Theorem 16 also extends to the
SL variant (although it requires proving that here also leader-length minimal labelings are
crossing-free). Extending Lemma 19 is harder, since the number of possible local minima of
a function describing the sum of SL leader lengths is not obvious. We include a conjecture
for the settings SL-C O SA one of which extends to a setting with free port ratio due to
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Table 2 A tabular overview of the problem space and our results. Only free port ratios are
shown. The abbreviation “w. NP-h” stands for weakly NP-hard. Blue cells are conjectures. These
results can be found in the full version [8]; cells indicate the section containing the relevant result.

C C

A> A� A> A�

OR
O

S> O(|C|n2) [8, C.1] O(|C|2n3) [8, C.2] O(n2) [8, C.1] O(n6) [8, C.2]

S� O(|C|5n) [8, C.2] O(n7) [8, C.2]

O
S> O(|C|2n) [8, C.1] O(|C|2n3) [8, C.2] O(n5) [8, C.1] O(n6) [8, C.2]

S� w. NP-h [8, C.3]

SL
O

S> O(|C|n2) [8, C.1] O(n2) ? [8, C.1]

S�

O
S> O(|C|2n) [8, C.1]

S� w. NP-h [8, C.3]

the equivalence of labelings. The construction of our NP-hardness reduction can be reused
for the SL-leader case, however, it requires new arguments that it still works as intended.
Details can be found in Section B of the full version [8].

While OR-leaders are related to po-leaders, no such immediate relation exists for SL-
leaders, one reason being that OR-leaders monotonically increase their distance to X, which
is not true for SL-leaders. Therefore the reduction to Boundary Labeling explained in
Section 3 does not extend to SL-leaders. It also does not work as is for free port ratios, since
we relied on the fact that a position of the port of pmin fixes the position of its label, which
is not true for free port ratios. For some instances, we can leverage candidate positions or
a fixed order to prove again that only a certain set of linear or quadratic size needs to be
considered for such a label. Therefore we obtain similar runtimes with an additional linear
or quadratic factor. However this reduction only works for non-uniform port ratios, since
otherwise the subproblems in the dynamic program of Benkert et al. [7] are not independent.
Detailed results for free port ratios can be found in Section C of the full version [8].

7 Conclusion

We have introduced orbital labeling as a variant of boundary labeling for circular boundaries,
in which labels are placed as circular arcs in an annulus along the boundary. We provided a
broad overview of problem variants, based on five different parameters of this labeling problem.
We showed that from an algorithmic point of view, the different parameter combinations lead
to distinctively different computational problems. In general, it appears that (unsurprisingly)
the non-uniform label setting is computationally harder than the uniform setting. Similarly
computing the layout for a fixed order is easier than for a free order of labels. The fixed
candidate setting discretizes the problem and allows for an exhaustive search through all
possible solutions, in contrast to the free candidate setting. In opposition to leader length,
non-uniform port ratios seem to make the problem more approachable if the port ratios are
also free, since free but uniform port ratios introduce a property, which has to be fulfilled
globally, while free non-uniform port ratios can be fixed locally. Concerning leader types, the
linear behaviour of the length of an OR-leader relative to the angle of their port with the
x-axis allows for some approaches, which are not (or at least not immediately) applicable to
SL-leaders.
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It would be interesting to further investigate orbital labeling through a visualization lens
as well: the variants have distinct visual styles and portray varying levels of visual complexity
and uniformity. We are conducting user experiments to determine whether certain variants
are superior to others.
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