
Upward Pointset Embeddings of Planar st-Graphs
Carlos Alegría #

Roma Tre University, Rome, Italy
Susanna Caroppo #

Roma Tre University, Rome, Italy

Giordano Da Lozzo #

Roma Tre University, Rome, Italy
Marco D’Elia #

Roma Tre University, Rome, Italy

Giuseppe Di Battista #

Roma Tre University, Rome, Italy
Fabrizio Frati #

Roma Tre University, Rome, Italy

Fabrizio Grosso #

Roma Tre University, Rome, Italy
Maurizio Patrignani #

Roma Tre University, Rome, Italy

Abstract
We study upward pointset embeddings (UPSEs) of planar st-graphs. Let G be a planar st-graph and
let S ⊂ R2 be a pointset with |S| = |V (G)|. An UPSE of G on S is an upward planar straight-line
drawing of G that maps the vertices of G to the points of S. We consider both the problem of
testing the existence of an UPSE of G on S (UPSE Testing) and the problem of enumerating all
UPSEs of G on S. We prove that UPSE Testing is NP-complete even for st-graphs that consist of
a set of directed st-paths sharing only s and t. On the other hand, for n-vertex planar st-graphs
whose maximum st-cutset has size k, we prove that it is possible to solve UPSE Testing in O(n4k)
time with O(n3k) space, and to enumerate all UPSEs of G on S with O(n) worst-case delay, using
O(kn4k log n) space, after O(kn4k log n) set-up time. Moreover, for an n-vertex st-graph whose
underlying graph is a cycle, we provide a necessary and sufficient condition for the existence of an
UPSE on a given poinset, which can be tested in O(n log n) time. Related to this result, we give
an algorithm that, for a set S of n points, enumerates all the non-crossing monotone Hamiltonian
cycles on S with O(n) worst-case delay, using O(n2) space, after O(n2) set-up time.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases Upward pointset embeddings, planar st-graphs, st-cutset, non-crossing
monotone Hamiltonian cycles, graph drawing enumeration

Digital Object Identifier 10.4230/LIPIcs.GD.2024.24

Related Version Full Version: https://arxiv.org/abs/2408.17369 [1]

Funding This research was supported, in part, by MUR of Italy (PRIN Project no. 2022ME9Z78 –
NextGRAAL and PRIN Project no. 2022TS4Y3N – EXPAND).

1 Introduction

Given an n-vertex upward planar graph G and a set S of n points in the plane, an upward
pointset embedding (UPSE) of G on S is an upward planar drawing of G where the vertices
are mapped to the points of S and the edges are represented as straight-line segments. The
Upward Pointset Embeddability Testing Problem (UPSE Testing) asks whether
an upward planar graph G has an UPSE on a given pointset S.

Pointset embedding problems are classic challenges in Graph Drawing and have been
considered for both undirected and directed graphs. For an undirected graph, a pointset
embedding (PSE) has the same definition of an UPSE, except that the drawing must be
planar, rather than upward planar. The Pointset Embeddability Testing Problem
(PSE Testing) asks whether a planar graph has a PSE on a given pointset S. Pointset
embeddings have been studied by several authors. It is known that a graph admits a PSE on

© Carlos Alegría, Susanna Caroppo, Giordano Da Lozzo, Marco D’Elia, Giuseppe Di Battista,
Fabrizio Frati, Fabrizio Grosso, and Maurizio Patrignani;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Graph Drawing and Network Visualization (GD 2024).
Editors: Stefan Felsner and Karsten Klein; Article No. 24; pp. 24:1–24:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:carlos.alegria@uniroma3.it
https://orcid.org/0000-0001-5512-5298
mailto:susanna.caroppo@uniroma3.it
https://orcid.org/0009-0001-4538-8198
mailto:giordano.dalozzo@uniroma3.it
https://orcid.org/0000-0003-2396-5174
mailto:marco.delia@uniroma3.it
https://orcid.org/0009-0008-6266-3324
mailto:giuseppe.dibattista@uniroma3.it
https://orcid.org/0000-0003-4224-1550
mailto:fabrizio.frati@uniroma3.it
https://orcid.org/0000-0001-5987-8713
mailto:fabrizio.grosso@uniroma3.it
https://orcid.org/0000-0002-5766-4567
mailto:maurizio.patrignani@uniroma3.it
https://orcid.org/0000-0001-9806-7411
https://doi.org/10.4230/LIPIcs.GD.2024.24
https://arxiv.org/abs/2408.17369
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Upward Pointset Embeddings of Planar st-Graphs

every pointset in general position if and only if it is outerplanar [12, 26]; such a PSE can be
constructed efficiently [7, 8, 9, 10]. PSE Testing is, in general, NP-complete [11], however
it is polynomial-time solvable if the input graph is a planar 3-tree [35]. More in general, a
polynomial-time algorithm for PSE Testing exists if the input graph has a fixed embedding,
bounded treewidth, and bounded face size [5]. PSE becomes NP-complete if one of the latter
two conditions does not hold. PSEs have been studied also for dynamic graphs [15, 16].

The literature on UPSEs is not any less rich than the one on PSEs. From a combinatorial
perspective, the directed graphs with an UPSE on a one-sided convex pointset have been
characterized [6, 27]; all directed trees are among them. Conversely, there exist directed
trees that admit no UPSE on certain convex pointsets [6]. Directed graphs that admit an
UPSE on any convex pointset, but not on any pointset in general position, exist [3]. It is
still unknown whether every digraph whose underlying graph is a path admits an UPSE on
every pointset in general position, see, e.g., [33]. UPSEs where bends along the edges are
allowed have been studied in [6, 24, 25, 30, 31]. From the computational complexity point of
view [28, 29], it is known that UPSE Testing is NP-hard, even for planar st-graphs and
2-convex pointsets, and that UPSE Testing can be solved in polynomial time if the given
poinset is convex.

Our contributions. We tackle UPSE Testing for planar st-graphs. Let G be an n-vertex
planar st-graph and S be a set of n points in the plane. We adopt the common assumption
in the context of upward pointset embeddability, see e.g. [3, 6, 28, 29], that no two points of
S lie on the same horizontal line. Our results are the following:

In Section 3, we show that UPSE Testing is NP-hard even if G consists of a set of
internally-disjoint st-paths (Theorem 1). A similar proof shows that UPSE Testing is
NP-hard for directed trees consisting of a set of directed root-to-leaf paths (Theorem 2).
This answers an open question from [4] and strengthens a result therein, which shows
NP-hardness for directed trees with multiple sources and with a prescribed mapping for a
vertex.
In Section 4, we show that UPSE Testing can be solved in O(n4k) time and O(n3k)
space, where k is the size of the largest st-cutset of G (Theorem 7). This parameter
measures the “fatness” of the digraph and coincides with the length of the longest directed
path in the dual [18]. By leveraging on the techniques developed for the testing algorithm,
we also show how to enumerate all UPSEs of G on S with O(n) worst-case delay, using
O(kn4k log n) space, after O(kn4k log n) set-up time (Theorem 8).
In Section 5, we provide a simple characterization of the pointsets in general position
that allow for an UPSE of G, if G consists of two (internally-disjoint) st-paths. Based on
that, we provide an O(n log n) testing algorithm for this case (Theorem 9).
Finally, in Section 6, inspired by the fact that an UPSE of a planar st-graph composed
of two st-paths defines a non-crossing monotone Hamiltonian cycle on S, we provide
an algorithm that enumerates all the non-crossing monotone Hamiltonian cycles on
a given pointset with O(n) worst-case delay, and O(n2) space usage and set-up time
(Theorem 10).

Concerning our last result, we remark that a large body of research has considered
problems related to enumerating and counting non-crossing structures on a given pointset [2,
13, 22, 32, 36]. Despite this effort, the complexity of counting the non-crossing Hamiltonian
cycles, often called polygonalizations, remains open [20, 32, 34]. However, it is possible
to enumerate all polygonalizations of a given pointset in singly-exponential time [37, 38].
Recently, an algorithm has been shown [21] to enumerate all polygonalizations of a given

C. Alegría et al. 24:3

pointset in time polynomial in the output size, i.e., bounded by a polynomial in the number
of solutions. However, an enumeration algorithm with polynomial (in the input size) delay is
not yet known, neither in the worst-case nor in the average-case acception. Our enumeration
algorithm achieves this goal for the case of monotone polygonalizations.

Because of space limitations, some proofs are sketched or omitted. They can be found in
the full version of the paper [1].

2 Preliminaries

We use standard terminology in graph theory [19] and graph drawing [17]. For an integer
k > 0, let [k] denote the set {1, . . . , k}. A permutation with repetitions of k elements from U

is an arrangement of any k elements of a set U , where repetitions are allowed.

We denote by CH(S) the convex hull of a set S of points and by B(S) its boundary. The
points of S with lowest and highest y-coordinates are the south and north extreme of S,
respectively; together, they are the extremes of S. The left envelope of S is the subpath EL(S)
of B(S) to the left of the line through the extremes of S (including the extremes of S). The
right envelope ER(S) of S is defined analogously. We denote the subset of S in EL(S) and
ER(S) by HL(S) and HR(S), respectively. A ray is upward if it passes through points whose
y-coordinate is larger than the one of the starting point of the ray.

A polyline (p1, . . . , pk) is y-monotone if y(pi) < y(pi+1), for i = 1, . . . , k − 1. A monotone
path on a pointset S is a y-monotone polyline (p1, . . . , pk) such that the points p1, . . . , pk

belong to S. A monotone cycle on S consists of two monotone paths on S that share their
endpoints. A monotone Hamiltonian cycle (p1, . . . , pk, p1) on S is a monotone cycle on S

such that each point of S is a point pi (and vice versa).

A path (v1, . . . , vk) is directed if, for i = 1, . . . , k − 1, the edge (vi, vi+1) is directed from
vi to vi+1; the vertices v2, . . . , vk−1 are internal. A planar st-graph is an acyclic digraph with
one source s and one sink t, which admits a planar embedding in which s and t are on the
boundary of the outer face. An st-path in a planar st-graph is a directed path from s to t.
A drawing of a directed graph is straight-line if each edge is represented by a straight-line
segment, it is planar if no two edges cross, and it is upward if every edge is represented
by a Jordan arc monotonically increasing in the y-direction from the tail to the head. A
digraph that admits an upward planar drawing is an upward planar graph. Every upward
planar graph admits an upward planar straight-line drawing [18]. An Upward Pointset
Embedding (UPSE, for short) of an upward planar graph G on a pointset S is an upward
planar straight-line drawing of G that maps each vertex of G to a point in S. In this paper,
we study the following problem.

Input: An n-vertex upward planar graph G and a pointset S ⊂ R2 with |S| = n.
Question: Does there exist an UPSE of G on S?

Upward Pointset Embeddability Testing Problem (UPSE Testing)

In the remainder, we assume that not all points in S lie on the same line, as otherwise
there is an UPSE if and only if the input is a directed path. Recall that no two points in S

have the same y-coordinate. Unless otherwise specified, we do not require points to be in
general position, i.e., we allow three or more points to lie on the same line.

GD 2024

24:4 Upward Pointset Embeddings of Planar st-Graphs

3 NP-Completeness of UPSE Testing

In this section we prove that UPSE Testing is NP-complete. The membership in NP is
obvious, as one can non-deterministically assign the vertices of the input graph G to the
points of the input pointset S and then test in polynomial time whether the assignment
results in an upward planar straight-line drawing of G. In the remainder of the section, we
prove that UPSE Testing is NP-hard even in very restricted cases.

We first show a reduction from 3-Partition to instances of UPSE in which the input is a
planar st-graph composed of a set of internally-disjoint st-paths. An instance of 3-Partition
consists of a set A = {a1, . . . , a3b} of 3b integers, where

∑3b
i=1 ai = bB and B/4 ≤ ai ≤ B/2,

for i = 1, . . . , 3b. The 3-Partition problem asks whether A can be partitioned into b subsets
A1, . . . , Ab, each with three integers, so that the sum of the integers in each set Ai is B. Since
3-Partition is strongly NP-hard [23], we may assume that B is bounded by a polynomial
function of b. Given an instance A of 3-Partition, we show how to construct in polynomial
time, precisely O(b · B), an equivalent instance (G, S) of UPSE Testing.

The n-vertex planar st-graph G is composed of 4b+1 internally-disjoint st-paths. Namely,
for i = 1, . . . , 3b, we have that G contains an ai-path, i.e., a path with ai internal vertices,
and b + 1 additional k-paths, where k = 2B + 1. Note that n = 2 + (b + 1)k +

∑3b
i=1 ai =

2 + (b + 1)k + bB.
The points of S lie on the plane as follows (see Figure 1a):
p1 is the origin, with coordinates (0, 0).
Consider b + 1 upward rays ρ1, . . . , ρb+1, whose starting point is p1, such that the angles
α1, . . . , αb+1 that they respectively form with the x-axis satisfy 3π/4 > α1 > · · · >

αb+1 > π/4. Let ℓ be a line intersecting all the rays, with a positive slope smaller than
π/4. For j = 1, . . . , b + 1, place k points pj,1, . . . , pj,k (in this order from bottom to top)
along ρj , so that pj,k is on ℓ and no two points share the same y-coordinate. Observe
that pb+1,k is the highest point placed so far.
Place pn at coordinates (0, 10 · y(pb+1,k)).
Finally, for j = 1, . . . , b, place B points along a non-horizontal segment sj in such a way
that: (i) sj is entirely contained in the triangle with vertices pj,k, pj+1,k, and pn, (ii) for
any point p on sj , the polygonal line p1p ∪ ppn is contained in the region Rj delimited by
the polygon p1pj,k ∪ pj,kpn ∪ pnpj+1,k ∪ pj+1,kp1, and (iii) no two distinct points on any
two segments si and sj share the same y-coordinate.

Note that S has 2 + (b + 1)k + bB = n points. The described reduction is the main ingredient
for the proof of the following theorem.

▶ Theorem 1. UPSE Testing is NP-hard even for planar st-graphs consisting of a set of
directed internally-disjoint st-paths.

Proof. First, the construction of G and S takes polynomial time. In particular, the coordi-
nates of the points in S can be encoded with a polylogarithmic number of bits. In order to
prove the NP-hardness, it remains to show that the constructed instance (G, S) of UPSE
Testing is equivalent to the given instance A of 3-Partition. Refer to Figure 1b.

Suppose first that A is a positive instance of 3-Partition, that is, there exist sets
A1, . . . , Ab, each with three integers, such that the sum of the integers in each set Aj is B.
We construct an UPSE of G on S as follows. We map s to p1 and t to pn. For j = 1, . . . , b+1,
we map the k internal vertices of a k-path to the points pj,1, . . . pj,k, so that vertices that
come first in the directed path have smaller y-coordinates. Furthermore, for j = 1, . . . , b, let
Aj = {aj1 , aj2 , aj3}. Then we map the aj1 internal vertices of an aj1-path, the aj2 internal
vertices of an aj2 -path, and the aj3 internal vertices of an aj3 -path to the set of B points in
the triangle with vertices pj,k, pj+1,k, and pn, so that vertices that come first in the directed

C. Alegría et al. 24:5

p1

to pn

s1 s2 s3
sb

ℓ p1,k p2,k p3,k
pb+1,k

p1,k−1

p1,k−2

p1,1

p1,2

pb,k

R1
R2 Rb−1 Rb

(a)
source s

to the target t

(b)

Figure 1 Illustration for the proof of Theorem 1. (a) The pointset S. (b) The UPSE of G on S.

paths have smaller y-coordinates and so that the internal vertices of the aj1 -path have smaller
y-coordinates than the internal vertices of the aj2-path, which have smaller y-coordinates
than the internal vertices of the aj3-path. This results in an UPSE of G on S.

Suppose next that (G, S) is a positive instance of UPSE Testing. Trivially, in any UPSE
of G on S, we have that s is drawn on p1 and t on pn. Consider the points p1,1, . . . pb+1,1.
The paths using them use all the (b + 1)k points pj,i, with j = 1, . . . , b + 1 and i = 1, . . . , k.
Indeed, if these paths left one of such points unused, no other path could reach it from s

without passing through p1,1, . . . pb+1,1, because of the collinearity of the points along the
rays ρ1, . . . , ρb+1. Hence, there are at most b + 1 paths that use (b + 1)k points. Since
the ai-paths have less than k internal vertices, these b + 1 paths must all be k-paths. Let
P1, . . . , Pb+1 be the left-to-right order of the k-paths around p1. For j = 1, . . . , b + 1, path Pj

uses all points pj,i on ρj , as if Pj used a point ph,i with h > j, then two among Pj , . . . , Pb+1
would cross each other. Note that, after using pj,k, path Pj ends with the segment pj,kpn.
Hence, for j = 1, . . . , b, the region Rj is bounded by Pj and Pj+1; recall that Rj contains the
segment sj . The ai-paths must then use the points on s1, . . . , sb. Since B/4 < ai < B/2, no
two ai-paths can use all the B points in one region and no four ai-paths can lie in the same
region. Hence, three ai-paths use the B points in each region, and this provides a solution to
the given 3-Partition instance. ◀

A similar reduction, illustrated in Figures 2a and 2b, allows us to state the following.

▶ Theorem 2. UPSE Testing is NP-hard even for directed trees consisting of a set of
directed root-to-leaf paths.

4 Testing and Enumeration Algorithms for Planar st-Graphs with
Maximum st-Cutset of Bounded Size

An st-cutset of a planar st-graph G = (V, E) is a subset W of E such that:
removing W from E results in a graph consisting of exactly two connected components
Cs and Ct,
s belongs to Cs and t belongs to Ct, and
any edge in W has its tail in Cs and its head in Ct.

GD 2024

24:6 Upward Pointset Embeddings of Planar st-Graphs

p1,1
p1,2
p1,3

ℓ
pℓ,1

pℓ,2

pℓ,b−1

pb,3

pb,2

pb,1

p1

R1
R2

Rb−1
Rb

(a)
source s

(b)

Figure 2 Illustration for the proof of Theorem 2. (a) The pointset S. The points of S visible
from p1 (green points) are as many as the children of the root of the tree T . (b) The UPSE of T

on S corresponding to a solution to the original instance 3-partition (red vertices).

In this section, we consider instances (G, S) where G is a planar st-graph, whose maximum
st-cutset has bounded size k. In Theorem 7, we show that UPSE Testing can be solved
in polynomial time for such instances (G, S). Moreover, in Theorem 8, we show how to
enumerate all UPSEs of (G, S) with linear delay. The algorithm for Theorem 7 is based on a
dynamic programming approach. It exploits the property that, for an st-cutset W defining
the connected components Cs and Ct, the extensibility of an UPSE Γ′ of Cs ∪ W on a subset
S′ of S to an UPSE of G on S only depends on the drawing of the edges of W , and not on
the embedding of the remaining vertices of Cs, provided that in Γ′ there exists an horizontal
line that crosses all the edges of W . The algorithm for Theorem 8 leverages a variation of
the dynamic programming table computed by the former algorithm to efficiently test the
extensibility of an UPSE of Cs ∪ W (in which there exists a horizontal line that crosses all
the edges of W) on a subset S′ of S to an UPSE of G on S.

The proofs of Theorems 7 and 8 exploit two dynamic programming tables T and Q defined
as follows. Each entry of T and Q is indexed by a key that consists of a set of h ≤ k triplets
⟨ei, pi, qi⟩, where, for any i = 1, . . . , h, it holds that ei ∈ E(G), pi, qi ∈ S, and y(pi) < y(qi).
Moreover, each key χ =

⋃h
i=1⟨ei, pi, qi⟩ satisfies the following constraints:

the set E(χ) =
⋃h

i=1 ei is an st-cutset of G and, for every i, j, with i ≠ j, it holds true
that ei ̸= ej (that is, |E(χ)| = h);
for every i, j, with i ̸= j, it holds true that pi = pj (resp. that qi = qj) if and only if ei

and ej have the same tail (resp. the same head); and
let ℓχ be the horizontal line passing through the tail with largest y-coordinate among
the edges in E(χ), i.e., ℓχ := y = y(pi) s.t. y(pj) ≤ y(pi) for any ⟨ej , pj , qj⟩ ∈ χ; then ℓχ

intersects all the segments pjqj , possibly at an endpoint.
For brevity, we sometimes say that the edge ei has its tail (resp. its head) mapped by χ on pi

(resp. on qi). We also say that ei is drawn as in χ if its drawing is the segment piqi.
Let χ =

⋃h
i=1⟨ei, pi, qi⟩ be a key of T and of Q; see Figure 3a. Let Gχ be the connected

component containing s of the graph obtained from G by removing the edge set E(χ).
The entry T [χ] contains a Boolean value such that T [χ] = True if and only if there exists

an UPSE of G+
χ = Gχ ∪ E(χ) on some subset S′ ⊂ S with |S′| = |V (G+

χ)| such that:

C. Alegría et al. 24:7

the lowest point ps of S belongs to S′ and s lies on it, and
for i = 1, . . . , h, the edge ei is drawn as in χ.

If T [χ] = False, the entry Q[χ] contains the empty set ∅. If T [χ] = True and E(χ) coincides
with the set of edges incident to s, then Q[χ] stores the set {⊥}. If T [χ] = True and E(χ)
does not coincide with the set of edges incident to s, Q[χ] stores the set Φ of keys with the
following properties. Let eτ be any edge whose tail vτ has maximum y-coordinate among the
edges in E(χ), i.e., ⟨eτ , pτ , qτ ⟩ is such that y(pτ) ≥ y(pj) for any ⟨ej , pj , qj⟩ ∈ χ. For each
φ ∈ Φ, we have that:

T [φ] = True;
E(χ) ∩ E(φ) contains all and only the edges in E(χ) whose tail is not vτ , and each edge
ei ∈ E(χ) ∩ E(φ) is drawn in φ as it is drawn in χ; and
all the edges in E(φ) \ E(χ) have vτ as their head.

Additionally, we store a list Λ of the keys σ such that T [σ] = True and E(σ) is the set
of edges incident to t. Note that each edge in E(σ) has its head mapped by σ to the point
pt ∈ S with largest y-coordinate.

We use dynamic programming to compute the entries of T and Q in increasing order of
|V (Gχ)|. By the definition of T , we have that G admits an UPSE on S if and only if Λ ̸= ∅.

First, we initialize all entries of T to False and all entries of Q to ∅.
If |V (Gχ)| = 1, then Gχ only consists of s. We set T [χ] = True and Q[χ] = {⊥} for every

key χ =
⋃h

i=1⟨ei, pi, qi⟩ such that:
e1, . . . , eh are the edges incident to s;
p1 = · · · = ph = ps; and
for every distinct i and j in {1, . . . , h}, we have that ps, qi, and qj are not aligned.

If |V (Gχ)| > 1, we compute T [χ] and Q[χ] as follows, see Figure 3b. If two segments
piqi and pjqj , with i ≠ j, cross (that is, they share a point that is internal for at least one
of the segments), then we leave T [χ] and Q[χ] unchanged; in particular, T [χ] = False and
Q[χ] = ∅. Otherwise, we proceed as follows. Let eτ be any edge whose tail vτ has maximum
y-coordinate among the edges in E(χ). Let H− be the set of edges obtained from E(χ) by
removing all the edges having vτ as their tail, and let H+ be the set of edges of G having
vτ as their head. We define the set H := H− ∪ H+. We have the following claim, which is
illustrated in Figure 4.

e4

e5

ℓχ

ps

q3=q2

pt

q4

q5
q1

e1

p1

p4=p5

p3
p2

e3
e2

(a)

ps

vτ

H+

H−

pt

e3
e2 e1 ℓφ

(b)

Figure 3 (a) An entry χ =
⋃5

i=1⟨ei, pi, qi⟩ with T [χ] = True and a corresponding UPSE of Gχ on
a subset of S that includes ps. (b) An entry φ from which χ stems; the points in S↓ are filled white.

GD 2024

24:8 Upward Pointset Embeddings of Planar st-Graphs

ℓχ

ps

Cs

pt

Ct

vτ

(a)

ps

pt

vτ

C ′
s

C ′
t

(b)

Figure 4 Illustrations for Claim 3. (a) The connected components Cs (dashed) and Ct (solid
black) defined by the st-cuteset E(χ). (b) The connected components C′

s (dashed) and C′
t (solid

black) defined by the st-cuteset H (blue and orange edges).

▷ Claim 3. H is an st-cutset of G.

Consider the set S↓ consisting of the points in S whose y-coordinates are smaller than y(pτ).
We have the following crucial observation.

▶ Observation 4. T [χ] = True if and only if there exists some key φ, with E(φ) = H, such
that T [φ] = True, the edges in H− are drawn in φ as in χ, the edges in H+ have their heads
mapped by φ on pτ and their tails on a point in S↓.

In view of Observation 4, we can now define a procedure to compute T [χ] and Q[χ].
Assume that the edges e1, . . . , e|H−|, . . . , e|H| ∈ H are ordered so that the edges of H− precede
those of H+. By Observation 4, if |S↓| < |H+|, then we leave T [χ] and Q[χ] unchanged, i.e.,
T [χ] = False and Q[χ] = ∅. In fact, in this case, there are not enough points in S↓ to map
the tails of the edges in H+. Otherwise, let D be the set of all permutations with repetitions
of |H+| points from S↓. We define a set Φ of keys that, for each (d1, . . . , d|H+|) ∈ D, contains
a key φ such that:

(i) E(φ) = H;
(ii) for any i = 1, . . . , |H−|, the triple containing ei in φ is the same as the triple containing

ei in χ (note that ei ∈ H−);
(iii) for any j = |H−|+1, . . . , |H|, the triple containing ej in φ has qj = pτ , and pj = dj−|H−|

(note that ej ∈ H+); and
(iv) for every i = 1, . . . , |H−| and j = |H−| + 1, . . . , |H|, it holds pi = pj if and only if ei

and ej have the same tail.
Let ΦT = {φ : φ ∈ Φ ∧ T [φ] = True}. By Observation 4, we have T [χ] = True if and only if
|ΦT| ≥ 1. Thus, we set T [χ] =

∨
φ∈Φ T [φ] and Q[χ] = ΦT. We say that χ stems from any key

φ ∈ Φ with T [φ] = True.
We now upper bound the sizes of T and Q and the time needed to compute them.

▷ Claim 5. Tables T and Q have size in O(n3k) and O(kn4k log n), respectively.

The proof of Claim 5 is based on the fact that the number of entries of T (and, thus, of
Q) is bounded by

(
m
k

)
· nk · nk ≤ (mn2)k. This is because an st-cutset E(χ) has size at most

h ≤ k and because the number of permutations with repetitions of the points describing a

C. Alegría et al. 24:9

mapping of the tails (or of the heads) of E(χ) on them is nk. Further,
(

a
b

)
≤ ab. Since each

entry of T stores a single bit, we immediately have that T has O(n3k) size. Instead, each
entry of Q stores at most O(nk) keys of size O(k log n); thus, Q has O(kn4k log n) size.

Computing T [χ] requires accessing the values of up to |S↓||H+| < nk entries of T . Also,
the time used to compute each entry Q[χ] is upper bounded by the time needed to write the
O(nk) keys in Q[χ], each of which has O(k log n) size. Hence, we have the following.

▷ Claim 6. Tables T and Q can be computed in O(n4k) and O(kn4k log n) time, respectively.

Finally, recall that in order to verify whether G admits an UPSE on S, we need to check
whether Λ ̸= ∅. Computing the maximum size of an st-cutset of a planar st-graph G can be
done in linear time, as it reduces to the problem of computing the length of a shortest path
in the dual of any embedding of G (between the vertices representing the left and right outer
faces of this embedding) [14, 18]. Therefore, the overall running time to test whether G

admits an UPSE on S is dominated by the time needed to compute T , that is, O(n4k) time.
If the algorithm terminates with a positive answer, we obtain an UPSE Γ of G on S by

exploiting table T . Let σ be a key in Λ. We initialize Γ to a drawing of the edges in E(σ) as
they are drawn in σ. Then we search in T a key χ with T [χ] = True such that σ stems from
χ, and update Γ accordingly, until a key α is reached such that T [α] = True and E(α) is the
set of edges incident to s. As the depth of the recursion is linear in the size of G and a key χ

can be searched in O(nk) time, we have the following.

▶ Theorem 7. Let G be an n-vertex planar st-graph whose maximum st-cutset has size k

and let S be a set of n points. UPSE Testing can be solved for (G, S) in O(n4k) time and
O(n3k) space; if an UPSE of G on S exists, it can be constructed within the same bounds.

We describe the algorithm to enumerate all UPSEs of G on S that exploits table Q and
set Λ. The algorithm defines and explores an acyclic digraph D. The nodes of the digraph
correspond to the keys χ of the table Q such that Q[χ] ̸= ∅, plus a source nS and a sink
nT . Let χi and χj be two keys of Q such that Q[χi] ̸= ∅ and Q[χj] ̸= ∅, and let n(χi) and
n(χj) be the nodes corresponding to χi and χj in D, respectively. There exists an edge from
n(χi) to n(χj) in D if χj ∈ Q[χi]. Also, there exists an edge from nS to each node n(σ) such
that σ ∈ Λ and an edge to nT from each node n(χ) such that Q[χ] = {⊥}. Then D is an
nSnT -graph since nS is its unique source and nT is its unique sink.

The algorithm performs a depth-first traversal of D, in which every distinct nSnT -path
corresponds to an UPSE of G on S. We initialize an UPSE Γ on S as Γ = S (only S

is drawn). When the visit traverses an edge (n(χi), n(χj)) of D, it adds to Γ the edges
in E(χj) \ E(χi), drawn as in χj . When the traversal reaches nT , an UPSE Γ of G on
S is produced. Backtracking to a node n(χi) along an edge (n(χi), n(χj)), the edges in
E(χj) \ E(χi) are removed from Γ .

To prove the correctness (see the full version of the paper [1] for a complete proof), we
show that:

(i) Distinct paths from nS to nT in D correspond to different UPSEs of G on S.
(ii) For each UPSE of G on S, there exists in D a path corresponding to it.

Item i can be proved by contradiction: if two distinct nSnT -paths P1 and P2 yielded the
same UPSE Γ, there would be a node n(χx) shared by P1 and P2 such that the nodes n(χ1)
and n(χ2) of P1 and P2 following n(χx) are different. Since n(χx) is shared by P1 and P2,
the keys χ1 and χ2 have the same edge-set E(χ1) = E(χ2) but the tails of the edges in
E(χx) \ E(χ1) are mapped differently, implying that the UPSEs yielded by P1 and P2 are
different. To prove Item ii, we show that, if Γ is an UPSE of G on S, then there exists an

GD 2024

24:10 Upward Pointset Embeddings of Planar st-Graphs

nSnT -path that yields Γ. For i = 1, . . . , n, let Si be the set of the lowest i points of S. Also,
for i = 1, . . . , n − 1, let Γi be the restriction of Γ to the vertices of G mapped to Si and
to all their incident edges. We proceed by induction on i, showing that, for each Γi and
Γi+1 there exists an edge (n(χi), n(χ+1)) in D that produces Γi+1. This involves finding a
suitable st-cutset in Γ and proving that this corresponds to a key in D.

We now discuss the running time of the algorithm. Table Q can be constructed in
O(kn4k log n) time, by Claim 6. Also, the digraph D can be constructed in linear time in the
size of Q, which is O(kn4k log n) by Claim 5. Finally, we discuss the delay of our algorithm.
Since the paths from nS to nT have O(n) size and since between an UPSE and the next one
at most two paths are traversed, the delay of our algorithm is O(n). We get the following.

▶ Theorem 8. Let G be a n-vertex planar st-graph whose maximum st-cut has size k and
let S be a set of n points. It is possible to enumerate all UPSEs of G on S with O(n) delay,
using O(kn4k log n) space, after O(kn4k log n) set-up time.

5 Planar st-Graphs Composed of Two st-Paths

In this section, we consider the special case of Theorem 7 in which the underlying graph of
the given planar st-graph is an n-vertex cycle. Here, Theorem 7 would yield an O(n8)-time
testing algorithm. We give a much faster algorithm based on a characterization of the positive
instances, provided that the points are in general position.

▶ Theorem 9. Let G be an n-vertex planar st-graph consisting of two st-paths PL and PR,
and let S be a pointset with n points in general position. We have that G admits an UPSE
on S with PL to the left of PR if and only if |PL| ≥ | HL(S)| and |PR| ≥ | HR(S)|. Also, it
can be tested in O(n log n) time whether G admits an UPSE on S.

Proof. Provided the characterization in the statement holds, we can test whether G admits
an UPSE on S by computing the convex hull CH(S) of S (in O(n log n) time), deriving the
sets HL(S) and HR(S) (in O(n) time, by scanning CH(S)), and finally comparing their sizes
with the ones of PL and PR (in O(1) time). Thus, we focus on proving the characterization.

The necessity is obvious. In the remainder we prove the sufficiency by induction on the
size of S (and, thus, of V (G)). We give some preliminary definitions; see Figures 5–7. Let ps

(pt) be the south (north) extreme of S and let ℓst be the line through ps and pt. Let SL (SR)
be the subset of S in the closed half-plane to the left (right) of ℓst, including ps and pt. Note
that HL(S) ⊆ SL and HR(S) ⊆ SR. Also, since S is in general position, SL ∩ SR = {ps, pt}.

In the base case, it either holds that SL = {ps, pt} and | HR(S)| = |PR|, or SR = {ps, pt}
and | HL(S)| = |PL|. We discuss the former case (see Figure 5), as the latter case is symmetric.
In this case, an UPSE Γ of G on S can be constructed by drawing PR as the right envelope
ER(S) and PL as the y-monotone polyline connecting the point of SR \ HR(S).

If the base case does not hold, we distinguish two cases based on whether both SL and
SR contain a vertex different from ps and pt (Case A), or only one of them does (Case B).

If Case A holds, assume |PL| ≥ |SL|; the case |PL| < |SL| is symmetric, as in that case
it holds true that |PR| ≥ |SR|. Refer to Figure 6. Then HL(S) contains a point p different
from ps and pt; see Figure 6a. Since by the statement |PL| ≥ | HL(S)| and | HL(S)| ≥ 3, we
have that PL contains at least one internal vertex. Let S′ = S \ {p}, let P ′

L be an st-path
with |P ′

L| = |PL| − 1, and let G′ be the st-graph P ′
L ∪ PR. Since | HL(S′)| ≤ |SL| − 1 and

|SL| ≤ |PL|, we have that | HL(S′)| ≤ |PL| − 1 = |P ′
L|. Thus, the graph G′ and the pointset

S′ satisfy the conditions of the statement. Since |S′| = |S| − 1 (and |V (G′)| = |V (G)| − 1), by
induction we have that the graph G′ admits an UPSE Γ′ on S′ (see Figure 6b). Figures 6b
and 6c show how to modify Γ′ to obtain an UPSE Γ of G on S.

C. Alegría et al. 24:11

pt

ps

ℓst

SL SR

PL

PR

Figure 5 Illustration for the base case of Theorem 9.

ℓst

SL

p

pt SR

ps

S

(a) {ps, pt} ⊂ SL, SR.

ℓst

SL

p

P ′
L

pt SR

PR

ps

S ′
hp

ep

d

q

(b) UPSE Γ′ of G′ on S′.

ℓst

SL

p

pt SR

PR

ps

S

PL

(≡ w)

(c) UPSE Γ of G on S.

Figure 6 Illustrations for Case A in the proof of Theorem 9.

pt

ps

ℓst

SL SR

S

X

cv(S ′)

a1

p∧=aα

p∨=bγ

b1

p− = b0

p

p+ = a0

(a) {ps, pt} ⊂ SL, SR.

pt

ps

ℓst

SL SR

PL

S∗

P ∗
R

p− = b0

p

p+ = a0

e+

e− F

(b) UPSE Γ∗ of G∗ on S∗.

pt

ps

ℓst

SL SR

PR

PL

S

p− = b0

p

p+ = a0

(c) UPSE Γ of G on S.

Figure 7 Illustrations for Case B2 in the proof of Theorem 9.

If Case B holds, recall that SL = {ps, pt} ⊂ SR, and since the base case does not apply,
we have that |PR| > | HR(S)|. Let p be any point in HR(S) \ {ps, pt} and S′ = S \ {p}. By
the conditions of Case B, the path PR contains at least one internal vertex. Let P ′

R be an
st-path with |P ′

R| = |PR| − 1, and let G′ be the st-graph PL ∪ P ′
R. We distinguish two cases

based on the size of HR(S′). In Case B1, it holds |P ′
R| ≥ | HR(S′)|, whereas in Case B2, it

holds |P ′
R| < | HR(S′)|. In Case B1, we have that the pair (G′, S′) satisfies the conditions

of the statement. In particular, the pair (G′, S′) either matches the conditions of the base

GD 2024

24:12 Upward Pointset Embeddings of Planar st-Graphs

case or again those of Case B. Thus, since |S′| = |S| − 1 (and |V (G′)| = |V (G)| − 1), we
can inductively construct an UPSE Γ′ of G′ on S′, and obtain an UPSE of G on S with a
redrawing similar to the one in Figure 6c. In Case B2, we proceed as follows; see Figure 7.
Let p+ (p−) be the point of HR(S) with the smallest y-coordinate and above p (with the
largest y-coordinate and below p). Let X be the set of points of S in the interior of the
triangle ∆p+pp− together with p+ and p− (but not p). Clearly, the right envelope of CH(X)
forms a subpath of the right envelope of CH(S′); see Figure 7a. The set HR(X) consists
of p−, p+, and of k vertices not belonging to HR(S) (squares in Figure 7). We denote by
k∗ = |PR| − | HR(S)| the number of points in the interior of CH(S) that need to be the
image of a vertex of PR in an UPSE of G on S. Note that k > k∗ > 0 holds. Let p∧

(p∨) be the point of HR(S′) with the smallest y-coordinate and above p (with the largest
y-coordinate and below p). Up to renaming, let a0 = p+, a1, . . . , aα = p∧ be the subsequence
of points of ER(X) encountered when traversing ER(X) from p+ to p∧ (these points have
decreasing y-coordinates). Similarly, let b0 = p−, b1, . . . , bγ = p∨ be the subsequence of
points of ER(X) encountered when traversing ER(X) from p− to p∨ (these points have
increasing y-coordinates). We define the set X∗ ⊂ HR(X) as follows. If k∗ ≤ α, then
X∗ = {ai|1 ≤ i ≤ k∗}, otherwise X∗ = {ai|1 ≤ i ≤ α} ∪ {bi|1 ≤ i ≤ k∗ − α}. Observe that,
|X∗| = k∗. Also, by the definition of k∗, the path PR contains HR(S)−2+k∗ internal vertices
and since HR(S) ≥ 3 in Case B, we have that PR contains at least k∗ + 1 internal vertices.
Let S∗ = S \ X∗, let P ∗

R be an st-path with |PR| − k∗ vertices, and let G∗ be the st-graph
PL ∪ P ∗

R. Clearly, the pair (G∗, S∗) satisfies the statement, and in particular the base case.
In fact, |P ∗

R| = |PR| − k∗, and by the definition of k∗, we have that |PR| − k∗ = | HR(S)|.
Moreover, by construction, HR(S) = HR(S∗), since the vertices of X∗ lie in the interior
of CH(S). Thus, since |S∗| = |S| − k∗, by induction G∗ admits an UPSE Γ∗ on S∗; see
Figure 7b. Moreover, as the base case applies to (G∗, S∗), we have that the endpoints of the
edges of P ∗

R are consecutive along ER(S). In particular, there exist two adjacent edges e−

and e+ of P ∗
R such that the tail of e− is mapped to p−, the head of e− (i.e., the tail of e+) is

mapped to p, and the head of e+ is mapped to p+. Thus, it is possible to obtain an UPSE Γ
of G on S from Γ∗ (see Figure 7c) by replacing the drawing of the edges e+ and e− with a
y-monotone polyline that passes through all the points in X∗. Such a polyline lies inside
the region F (shaded gray in Figures 7b and 7c) obtained by subtracting from the triangle
∆p+pp− (interpreted as a closed region) all the points of CH(X). In particular, observe that,
in Γ∗, the region F is not traversed by any edge and that the only points of S∗ that lie on
the boundary of F are p and the points in HR(X) \ X∗. ◀

6 Enumerating Non-crossing Monotone Hamiltonian Cycles

Theorem 9 allows us to test whether an n-vertex planar st-graph G composed of two st-paths
can be embedded as a non-crossing monotone Hamiltonian cycle on a set S of n points. We
now show an efficient algorithm for enumerating all the non-crossing monotone Hamiltonian
cycles on S. Figure 8 shows two non-crossing monotone Hamiltonian cycles on a pointset.

▶ Theorem 10. Let S be a set of n points. It is possible to enumerate all the non-crossing
monotone Hamiltonian cycles on S with O(n) delay, using O(n2) space, after O(n2) set-up
time.

Let p1, . . . , pn be the points of S, ordered by increasing y-coordinates. This order can be
computed in O(n log n) time. For i ∈ [n], let Si = {p1, . . . , pi}. A bipath B on Si consists
of two non-crossing monotone paths L and R on Si, each of which might be a single point,
such that L and R start at p1, each point of Si is the image of an endpoint of a segment of
B, and if L and R both have at least one segment, then L is to the left of R (see Figure 9).

C. Alegría et al. 24:13

p1

pn

(a)

p1

pn

(b)

p1

pn

(c)

Figure 8 Two non-crossing monotone Hamiltonian cycles on the same pointset.

p1

R
L

pn

(a)

p1

R
L

pn

(b)

p1

L R

pn

(c)

Figure 9 Three bipaths on S4. The first two bipaths are extensible, while the third one is not.

p1

pn

L R

pr(B)

R(B)pℓ(B)

(a)

p1

pn

L R

pℓ(B)

pr(B)

L(B)

(b)

Figure 10 (a) Region R(B) for a bipath B. (b) Region L(B) for a bipath B.

We say that a bipath B is extensible if there exists a non-crossing monotone Hamiltonian
cycle on S whose restriction to Si is B. Consider a bipath B on Si with 1 < i < n. Let pℓ(B)
and pr(B) be the endpoints of L and R with the highest y-coordinate, respectively. Suppose
first that ℓ(B) > r(B). Consider the rightmost ray ρ(pr(B), Sℓ(B) \ Sr(B)) starting at pr(B)
through a point of Sℓ(B) \ Sr(B). We denote by R(B) the open region of the plane strictly to
the right of ρ(pr(B), Sℓ(B) \ Sr(B)) and strictly above the horizontal line through pℓ(B); see
Figure 10a. Similarly, if pr(B) is higher than pℓ(B), then L(B) is the open region of the plane
strictly to the left of the leftmost ray ℓ(pℓ(B), Sr(B) \ Sℓ(B)) from pℓ(B) through a point of
Sr(B) \ Sℓ(B) and strictly above the horizontal line through pr(B); see Figure 10b.

For any i ∈ [n − 1], we say that a bipath B on Si is safe if:

GD 2024

24:14 Upward Pointset Embeddings of Planar st-Graphs

(i) i = 1; or
(ii) i > 1, pℓ(B) is higher than pr(B), and |R(B) ∩ S| ≥ 1; or
(iii) i > 1, pr(B) is higher than pℓ(B), and |L(B) ∩ S| ≥ 1.

We have the following lemma which is proved in the full version of the paper [1].

▶ Lemma 11. A bipath B is extensible if and only it is safe.

Our enumeration algorithm implicitly defines and explores a search tree T . Its leaves have
level n and correspond to non-crossing monotone Hamiltonian cycles on S. The internal
nodes at level i correspond to extensible bipaths on Si and have at most two children each.
The exploration of T performed by the algorithm is a depth-first traversal. When a node µ is
visited, the number of its children is established. If µ has at least one child, the visit proceeds
with any child of µ. Otherwise, µ is a leaf; then the visit proceeds with any unvisited child
of the ancestor of µ that has largest level, among the ancestors of µ with unvisited children.

The algorithm starts at the root of T , which corresponds to the (unique) safe bipath on S1.
At each node µ at level i ∈ [n − 2], corresponding to a bipath B(µ), we construct either one
or two bipaths on Si+1, associated with either one or two children of µ, respectively. Let L(µ)
and R(µ) be the left and right non-crossing monotone paths composing B(µ), respectively,
and let pℓ(B(µ)) and pr(B(µ)) be the endpoints of L(µ) and R(µ) with the highest y-coordinate,
respectively. If pℓ(B(µ))pi+1 does not cross R(µ), then let BL = B(µ) ∪ pℓ(B(µ))pi+1. We test
whether BL is a safe bipath and, in the positive case, add to µ a child µL corresponding to BL.
Analogously, if pr(B(µ))pi+1 does not cross L(µ), we test whether BR = B(µ) ∪ pr(B(µ))pi+1
is a safe bipath and, in the positive case, add to µ a child µR corresponding to BR. Note
that the algorithm guarantees that each non-leaf node of T is safe, and thus, by Lemma 11,
extensible. Finally, at each node µ at level n − 1, we add a leaf λ to µ corresponding to
the non-crossing monotone Hamiltonian cycle B(µ) ∪ pℓ(B(µ))pn ∪ pr(B(µ))pn. Since µ is
extensible, such a cycle is indeed non-crossing.

In order to complete the proof of Theorem 10, we show what follows:
(i) Each node of T at level i ̸= n is internal.
(ii) Each leaf corresponds to a non-crossing monotone Hamiltonian cycle on S.
(iii) Distinct leaves correspond to different non-crossing monotone Hamiltonian cycles on S.
(iv) For each non-crossing monotone Hamiltonian cycle on S, there exists a leaf of T

corresponding to it.
(v) Using O(n2) pre-processing time and O(n2) space, the algorithm enumerates each

non-crossing monotone Hamiltonian cycle on S with O(n) delay.

To prove Item i, we show that the leaves of T have all level n. Consider a node µ of T

with level i < n − 1, we prove that it has a child in T . Recall that B(µ) is safe, otherwise
it would not had been added to T , and thus, by Lemma 11, it is extensible. Hence, there
exists a non-crossing monotone Hamiltonian cycle C on S whose restriction to Si is B(µ).
Also, the restriction of C to Si+1 is a bipath B′(µ) on Si+1 which coincides with B(µ),
except that it contains either the segment pℓ(B(µ))pi+1 or the segment pr(B(µ))pi+1. Since
B′(µ) is the restriction of C to Si+1, it is extensible and thus, by Lemma 11, it is safe. It
follows that µ has a child corresponding to B′(µ), which is inserted in T when adding
either the segment pℓ(B(µ))pi+1 or the segment pr(B(µ))pi+1 to B(µ). The proof that a
node with level n − 1 is not a leaf is analogous.
To prove Item ii, consider a leaf λ and its parent µ in T . Note that µ is associated with a
safe bipath B(µ) on Sn−1; by Lemma 11, we have that B(µ) is extensible. Since B(µ) is
extensible, the (unique) monotone Hamiltonian cycle on S whose restriction to Sn−1 is
B(µ) is non-crossing. This cycle corresponds to λ and is added to T when visiting µ.

C. Alegría et al. 24:15

To prove Item iii, suppose for a contradiction that there exist two leaves λ1 and λ2
associated with two monotone Hamiltonian cycles C1 and C2, respectively, with C1 = C2.
Let µ be the lowest common ancestor of λ1 and λ2 in T . Let j be the level of µ. Denote
by µi the child of µ leading to λi, with i ∈ {1, 2}. By the construction of T , we have that
exactly one of the bipaths B(µ1) and B(µ2) contains the segment pℓ(B(µ))pj+1, while the
other one contains the segment pr(B(µ))pj+1. This contradicts the fact that C1 = C2.
To prove Item iv, let C be a non-crossing monotone Hamiltonian cycle on S. Consider
the safe bipath B on Sn−1 obtained by removing from C the point pn, together with its
two incident segments. It suffices to show that T contains a node µ such that B = B(µ).
In fact, in this case, µ is an extensible node of level n − 1 whose unique child in T is the
leaf corresponding to C. To prove that T contains such a node µ, we prove by induction
that, for every level i = 1, . . . , n − 1, the tree T contains a node corresponding to the
restriction Bi of B to Si. The base case trivially holds. For the inductive case, suppose
that T contains a node ν whose associated bipath B(ν) is Bi−1. Then Bi is obtained
by adding either the segment pℓ(B(ν))pi or the segment pr(B(ν))pi to Bi−1. Since Bi is
extensible, by Lemma 11 it is safe, and hence ν has a child in T corresponding to Bi.
Finally, we discuss Item v. To this aim, we compute in O(n2) time two tables C and
D of O(n2) size that allow us to test in O(1) time whether a bipath B on Si, with
i ∈ {2, . . . , n − 1}, can be extended to a bipath on Si+1 and whether B is safe. The tables
C and D are indexed by triples ⟨pa, pb, X⟩, where pa, pb ∈ S with a < b and X ∈ {L, R}.
Each entry of C contains a Boolean value C[pa, pb, X] that is set to True if and only if the
segment papb+1 does not cross any bipath B on Sb composed of two monotone st-paths L

and R respectively ending at points pa and pb (if X = L) or respectively ending at points
pb and pa (if X = R). Each entry of D contains a Boolean value D[pa, pb, X] that is set
to True if and only if the open region that is (i) strictly to the right of the rightmost (if
X = R, or leftmost if X = L) ray starting at pa and passing through a point in Sb \ Sa

and (ii) strictly above the horizontal line through pb contains a point of S. For each fixed
a ∈ [n − 2] and X ∈ {L, R}, we compute all the entries C[pa, pb, X] and D[pa, pb, X] with
b = a + 1, a + 2, . . . , n − 1 in overall O(n) time. This sums up to O(n2) time over all the
entries of C and of D. The query time of C and D, together with the fact that T has n

levels, implies that the algorithm’s delay is in O(n). More details can be found in the full
version of the paper [1].

Items i–iv prove the correctness of the enumeration algorithm, while Item v proves its
efficiency. This concludes the proof of Theorem 10.

7 Conclusions and Open Problems

We addressed basic pointset embeddability problems for upward planar graphs. We proved
that UPSE testing is NP-hard even for planar st-graphs composed of internally-disjoint
st-paths and for directed trees composed of directed root-to-leaf paths. For planar st-graphs,
we showed that UPSE Testing can be solved in O(n4k) time, where k is the maximum
st-cutset of G, and we provided an algorithm to enumerate all UPSEs of G on S with O(n)
worst-case delay. We also showed how to enumerate all monotone polygonalizations of a
given pointset with O(n) worst-case delay. We point out the following open problems.

Our NP-hardness proofs for UPSE testing use the fact that the points are not in general
position. Given a directed tree T on n vertices and a set S of n points in general position,
is it NP-hard to decide whether T has an UPSE on S?

GD 2024

24:16 Upward Pointset Embeddings of Planar st-Graphs

Can UPSE testing be solved in polynomial time or does it remain NP-hard if the input
is a maximal planar st-graph?
We proved that UPSE testing for a planar st-graph is in XP with respect to the size of
the maximum st-cutset of G. Is the problem in FPT with respect to the same parameter?
Are there other interesting parameterizations for the problem?
Let S be a pointset and P be a non-crossing path on a subset of S. Is it possible to
decide in polynomial time whether P can be extended to a polygonalization of S? A
positive answer would imply an algorithm with polynomial delay for enumerating the
polygonalizations of a pointset, with the same approach as the one we adopted in this
paper for monotone polygonalizations.

References
1 Carlos Alegria, Susanna Caroppo, Giordano Da Lozzo, Marco D’Elia, Giuseppe Di Battista,

Fabrizio Frati, Fabrizio Grosso, and Maurizio Patrignani. Upward pointset embeddings of
planar st-graphs. CoRR, abs/2408.17369, 2024. arXiv:2408.17369.

2 Victor Alvarez, Karl Bringmann, Radu Curticapean, and Saurabh Ray. Counting triangulations
and other crossing-free structures via onion layers. Discret. Comput. Geom., 53(4):675–690,
2015. doi:10.1007/S00454-015-9672-3.

3 Patrizio Angelini, Fabrizio Frati, Markus Geyer, Michael Kaufmann, Tamara Mchedlidze, and
Antonios Symvonis. Upward geometric graph embeddings into point sets. In Ulrik Brandes
and Sabine Cornelsen, editors, 18th International Symposium on Graph Drawing (GD 2010),
volume 6502 of LNCS, pages 25–37. Springer, 2010. doi:10.1007/978-3-642-18469-7_3.

4 Elena Arseneva, Pilar Cano, Linda Kleist, Tamara Mchedlidze, Saeed Mehrabi, Irene Parada,
and Pavel Valtr. Upward point set embeddings of paths and trees. In Ryuhei Uehara, Seok-
Hee Hong, and Subhas C. Nandy, editors, 15th International Conference and Workshops
on Algorithms and Computation (WALCOM 2021), volume 12635 of LNCS, pages 234–246.
Springer, 2021. doi:10.1007/978-3-030-68211-8_19.

5 Therese Biedl and Martin Vatshelle. The point-set embeddability problem for plane graphs. In
Tamal K. Dey and Sue Whitesides, editors, 28th ACM Symposium on Computational Geometry
(SoCG 2012), pages 41–50. ACM, 2012. doi:10.1145/2261250.2261257.

6 Carla Binucci, Emilio Di Giacomo, Walter Didimo, Alejandro Estrella-Balderrama, Fabrizio
Frati, Stephen G. Kobourov, and Giuseppe Liotta. Upward straight-line embeddings of directed
graphs into point sets. Comput. Geom., 43(2):219–232, 2010. doi:10.1016/J.COMGEO.2009.
07.002.

7 Prosenjit Bose. On embedding an outer-planar graph in a point set. In Giuseppe Di Battista,
editor, 5th International Symposium on Graph Drawing (GD ’97), volume 1353 of LNCS,
pages 25–36. Springer, 1997. doi:10.1007/3-540-63938-1_47.

8 Prosenjit Bose. On embedding an outer-planar graph in a point set. Comput. Geom., 23(3):303–
312, 2002. doi:10.1016/S0925-7721(01)00069-4.

9 Prosenjit Bose, Michael McAllister, and Jack Snoeyink. Optimal algorithms to embed trees
in a point set. In Franz-Josef Brandenburg, editor, Symposium on Graph Drawing (GD ’95),
volume 1027 of LNCS, pages 64–75. Springer, 1995. doi:10.1007/BFB0021791.

10 Prosenjit Bose, Michael McAllister, and Jack Snoeyink. Optimal algorithms to embed trees in
a point set. J. Graph Algorithms Appl., 1(2):1–15, 1997. doi:10.7155/JGAA.00002.

11 Sergio Cabello. Planar embeddability of the vertices of a graph using a fixed point set is
NP-hard. J. Graph Algorithms Appl., 10(2):353–363, 2006. doi:10.7155/JGAA.00132.

12 Netzahualcoyotl Castañeda and Jorge Urrutia. Straight line embeddings of planar graphs on
point sets. In Frank Fiala, Evangelos Kranakis, and Jörg-Rüdiger Sack, editors, 8th Canadian
Conference on Computational Geometry (CCCG 1996), pages 312–318. Carleton University
Press, 1996. URL: http://www.cccg.ca/proceedings/1996/cccg1996_0052.pdf.

https://arxiv.org/abs/2408.17369
https://doi.org/10.1007/S00454-015-9672-3
https://doi.org/10.1007/978-3-642-18469-7_3
https://doi.org/10.1007/978-3-030-68211-8_19
https://doi.org/10.1145/2261250.2261257
https://doi.org/10.1016/J.COMGEO.2009.07.002
https://doi.org/10.1016/J.COMGEO.2009.07.002
https://doi.org/10.1007/3-540-63938-1_47
https://doi.org/10.1016/S0925-7721(01)00069-4
https://doi.org/10.1007/BFB0021791
https://doi.org/10.7155/JGAA.00002
https://doi.org/10.7155/JGAA.00132
http://www.cccg.ca/proceedings/1996/cccg1996_0052.pdf

C. Alegría et al. 24:17

13 Gi-Sang Cheon, Hong Joon Choi, Guillermo Esteban, and Minho Song. Enumeration of
bipartite non-crossing geometric graphs. Discret. Appl. Math., 317:86–100, 2022. doi:10.
1016/J.DAM.2022.04.008.

14 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, 4th Edition. MIT Press, 2022. URL: https://mitpress.mit.edu/9780262046305/
introduction-to-algorithms/.

15 Giuseppe Di Battista, Walter Didimo, Luca Grilli, Fabrizio Grosso, Giacomo Ortali, Maurizio
Patrignani, and Alessandra Tappini. Small point-sets supporting graph stories. In Patrizio
Angelini and Reinhard von Hanxleden, editors, 30th International Symposium on Graph
Drawing and Network Visualization (GD 2022), volume 13764 of LNCS, pages 289–303.
Springer, 2022. doi:10.1007/978-3-031-22203-0_21.

16 Giuseppe Di Battista, Walter Didimo, Luca Grilli, Fabrizio Grosso, Giacomo Ortali, Maurizio
Patrignani, and Alessandra Tappini. Small point-sets supporting graph stories. J. Graph
Algorithms Appl., 27(8):651–677, 2023. doi:10.7155/JGAA.00639.

17 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

18 Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane representations of acyclic
digraphs. Theor. Comput. Sci., 61:175–198, 1988. doi:10.1016/0304-3975(88)90123-5.

19 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

20 David Eppstein. Counting polygon triangulations is hard. Discret. Comput. Geom., 64(4):1210–
1234, 2020. doi:10.1007/S00454-020-00251-7.

21 David Eppstein. Non-crossing hamiltonian paths and cycles in output-polynomial time. In
Erin W. Chambers and Joachim Gudmundsson, editors, 39th International Symposium on
Computational Geometry (SoCG 2023), volume 258 of LIPIcs, pages 29:1–29:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.SOCG.2023.29.

22 Philippe Flajolet and Marc Noy. Analytic combinatorics of non-crossing configurations. Discret.
Math., 204(1-3):203–229, 1999. doi:10.1016/S0012-365X(98)00372-0.

23 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, first edition edition, 1979.

24 Emilio Di Giacomo, Henry Förster, Daria Kokhovich, Tamara Mchedlidze, Fabrizio Montec-
chiani, Antonios Symvonis, and Anaïs Villedieu. On 1-bend upward point-set embeddings of
st-digraphs. In José A. Soto and Andreas Wiese, editors, 16th Latin American Symposium on
Theoretical Informatics (LATIN 2024), Part I, volume 14578 of LNCS, pages 3–18. Springer,
2024. doi:10.1007/978-3-031-55598-5_1.

25 Francesco Giordano, Giuseppe Liotta, Tamara Mchedlidze, Antonios Symvonis, and Sue
Whitesides. Computing upward topological book embeddings of upward planar digraphs. J.
Discrete Algorithms, 30:45–69, 2015. doi:10.1016/J.JDA.2014.11.006.

26 Peter Gritzmann, Bojan Mohar, János Pach, and Richard Pollack. Embedding a planar
triangulation with vertices at specified points. The American Mathematical Monthly, 98(2):165,
1991. doi:10.2307/2323956.

27 Lenwood S. Heath, Sriram V. Pemmaraju, and Ann N. Trenk. Stack and queue layouts of
directed acyclic graphs: Part I. SIAM J. Comput., 28(4):1510–1539, 1999. doi:10.1137/
S0097539795280287.

28 Michael Kaufmann, Tamara Mchedlidze, and Antonios Symvonis. Upward point set embed-
dability for convex point sets is in P. In Marc J. van Kreveld and Bettina Speckmann, editors,
19th International Symposium on Graph Drawing (GD 2011), volume 7034 of LNCS, pages
403–414. Springer, 2011. doi:10.1007/978-3-642-25878-7_38.

29 Michael Kaufmann, Tamara Mchedlidze, and Antonios Symvonis. On upward point set
embeddability. Comput. Geom., 46(6):774–804, 2013. doi:10.1016/J.COMGEO.2012.11.008.

GD 2024

https://doi.org/10.1016/J.DAM.2022.04.008
https://doi.org/10.1016/J.DAM.2022.04.008
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/
https://doi.org/10.1007/978-3-031-22203-0_21
https://doi.org/10.7155/JGAA.00639
https://doi.org/10.1016/0304-3975(88)90123-5
https://doi.org/10.1007/S00454-020-00251-7
https://doi.org/10.4230/LIPICS.SOCG.2023.29
https://doi.org/10.1016/S0012-365X(98)00372-0
https://doi.org/10.1007/978-3-031-55598-5_1
https://doi.org/10.1016/J.JDA.2014.11.006
https://doi.org/10.2307/2323956
https://doi.org/10.1137/S0097539795280287
https://doi.org/10.1137/S0097539795280287
https://doi.org/10.1007/978-3-642-25878-7_38
https://doi.org/10.1016/J.COMGEO.2012.11.008

24:18 Upward Pointset Embeddings of Planar st-Graphs

30 Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few bends suffice for
planar graphs. In Jan Kratochvíl, editor, 7th International Symposium on Graph Drawing
(GD’99), volume 1731 of LNCS, pages 165–174. Springer, 1999. doi:10.1007/3-540-46648-7_
17.

31 Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few bends suffice for
planar graphs. J. Graph Algorithms Appl., 6(1):115–129, 2002. doi:10.7155/JGAA.00046.

32 Dániel Marx and Tillmann Miltzow. Peeling and nibbling the cactus: Subexponential-time
algorithms for counting triangulations and related problems. In Sándor P. Fekete and Anna
Lubiw, editors, 32nd International Symposium on Computational Geometry (SoCG 2016),
volume 51 of LIPIcs, pages 52:1–52:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPICS.SOCG.2016.52.

33 Tamara Mchedlidze. Upward planar embedding of an n-vertex oriented path on O(n2) points.
Comput. Geom., 46(8):1003–1008, 2013. doi:10.1016/J.COMGEO.2013.05.004.

34 Joseph S. B. Mitchell and Joseph O’Rourke. Computational geometry column 42. Int. J.
Comput. Geom. Appl., 11(5):573–582, 2001. doi:10.1142/S0218195901000651.

35 Rahnuma Islam Nishat, Debajyoti Mondal, and Md. Saidur Rahman. Point-set embeddings of
plane 3-trees. Comput. Geom., 45(3):88–98, 2012. doi:10.1016/J.COMGEO.2011.09.002.

36 Andreas Razen and Emo Welzl. Counting plane graphs with exponential speed-up. In
Cristian S. Calude, Grzegorz Rozenberg, and Arto Salomaa, editors, Rainbow of Computer
Science - Dedicated to Hermann Maurer on the Occasion of His 70th Birthday, volume 6570 of
LNCS, pages 36–46. Springer, 2011. doi:10.1007/978-3-642-19391-0_3.

37 Manuel Wettstein. Counting and enumerating crossing-free geometric graphs. J. Comput.
Geom., 8(1):47–77, 2017. doi:10.20382/JOCG.V8I1A4.

38 Katsuhisa Yamanaka, David Avis, Takashi Horiyama, Yoshio Okamoto, Ryuhei Uehara, and
Tanami Yamauchi. Algorithmic enumeration of surrounding polygons. Discret. Appl. Math.,
303:305–313, 2021. doi:10.1016/J.DAM.2020.03.034.

https://doi.org/10.1007/3-540-46648-7_17
https://doi.org/10.1007/3-540-46648-7_17
https://doi.org/10.7155/JGAA.00046
https://doi.org/10.4230/LIPICS.SOCG.2016.52
https://doi.org/10.1016/J.COMGEO.2013.05.004
https://doi.org/10.1142/S0218195901000651
https://doi.org/10.1016/J.COMGEO.2011.09.002
https://doi.org/10.1007/978-3-642-19391-0_3
https://doi.org/10.20382/JOCG.V8I1A4
https://doi.org/10.1016/J.DAM.2020.03.034

	1 Introduction
	2 Preliminaries
	3 NP-Completeness of UPSE Testing
	4 Algorithms for Planar st-Graphs
	5 Planar st-Graphs Composed of Two st-Paths
	6 Enumerating Non-crossing Monotone Hamiltonian Cycles
	7 Conclusions and Open Problems

