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Abstract
Storyline visualizations show interactions between a given set of characters over time. Each character
is represented by an x-monotone curve. A meeting is represented by a vertical bar that is crossed by
the curves of exactly those characters that participate in the meeting. Therefore, character curves
may have to cross each other. In the context of publication networks, we consider storylines where
the characters are authors and the meetings are joint publications. We are especially interested in
visualizing a group of colleagues centered around an author, the protagonist, who participates in all
selected publications. For such instances, we propose a drawing style where the protagonist’s curve
is drawn at a prominent position and never crossed by any other author’s curve.

We consider two variants of storylines with a protagonist. In the one-sided variant, the protagonist
is required to be drawn at the top position. In this restricted setting, we can efficiently compute a
drawing with the minimum number of pairwise crossings, whereas we show that it is NP-hard to
minimize the number of block crossings (i.e., pairs of blocks of parallel curves that intersect each
other). In the two-sided variant, the task is to split the set of co-authors of the protagonist into two
groups, and to place the curves of one group above and the curves of the other group below the
protagonist’s curve such that the total number of (block) crossings is minimized.

As our main result, we present an algorithm for bundling a sequence of pairwise crossings into a
sequence of few block crossings (in the absence of meetings). It exploits a connection to a rectangle
dissection problem. In the presence of meetings, it yields results that are very close to a lower bound.
Based on this bundling algorithm and our exact algorithm for the one-sided variant, we present a
new heuristic for computing two-sided storylines with few block crossings.

We perform an extensive experimental study using publication data of 81 protagonists from
GD 2023 and their most frequent collaborators over the last ten years. Our study shows that, for
two-sided storylines with a protagonist, our new heuristic uses fewer block crossings (and fewer
pairwise crossings) than two heuristics for block crossing minimization in general storylines.
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1 Introduction

Storyline visualizations are a visual tool to convey information about interactions between
a group of entities – usually people – over time. Arguably, storyline visualizations have
a long history that was started by Minard’s startling visualization of Napoleon’s Russian
campain [24], but certainly they have become quite popular since Munroe [26] used them to
cleverly visualize several cinema classics. Our use case is different; see Figure 1.
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Figure 1 Storyline visualization of Robert Ganian and the 15 coauthors with whom he published
most in the last year. In our drawing style, the protagonist (dashed line) has a prominent position –
their curve is not crossed by any other curve. Make your own at https://publines.github.io!

More formally, a storyline S is a pair (C,M), where C = {1, . . . , k} is a set of characters
and M = [m1, . . . ,mn] is a sequence of meetings. If 1 ≤ i < j ≤ n, we say that meeting mi

takes place before meeting mj or that mj is later than mi. Every meeting is a subset of C
of size at least 1. Note that we do not encode at what time a meeting happens exactly. In
a storyline visualization, each character is represented by a continuous x-monotone curve.
Let i ∈ {1, . . . , n}. At meeting mi ⊆ C, the characters that participate in the meeting
have to form an interval in the vertical order of the character curves. The meeting mi is
represented by a vertical line segment si at x-coordinate xi such that (i) exactly the character
curves in mi cross si and (ii) xi < xj if i < j. A storyline visualization thus maps every
point t ∈ [x1, xn] in time to a vertical order πt of the characters.

In order to measure the quality of storyline visualizations (and to eventually design
algorithms that produce readable drawings), various esthetic criteria have been suggested.
Most works have focused on reducing the number of crossings of the character curves (simple
pairwise crossings [12] or more complex types of crossings [31, 32]), others have also tried to
minimize the number of wiggles [11] (that is, the number of turns) and/or the amount of
vertical white-space [29, 23].

In this paper, we investigate a new variant of storylines that is motivated by the visual-
ization of coauthor networks centered around a given main author or protagonist, that is,
a character that is part of every meeting in a storyline. In order to stress the role of the
protagonist, we disallow other curves to cross the protagonist’s curve which can thus be
drawn as a straight horizontal line. We consider two variants concerning the placement of the
protagonist: in the one-sided variant, the line of the protagonist is simply placed topmost,
whereas in the two-sided variant, the line of the protagonist splits the other characters into
two groups; those above and those below the line (see Figure 2). In both variants, we focus on
minimizing crossings (but, in our experiments, we also keep track of the number of wiggles).

As we will show, minimizing pairwise crossings is easy in the one-sided variant. Therefore,
we try to group these simple crossings into larger units, so-called block crossings. In a block
crossing, two groups of curves are exchanged in the vertical ordering while no two curves
within a group change their order. Such a grouping underlines the structure of the intersection
pattern and leads to less visual clutter. Block crossings have also been investigated thoroughly
beyond storyline visualization; in edge bundling [8], in metro maps [10], and due to their
connection to the genus of a graph [3, 4, 5].

Our contribution. We introduce and formally define four variants of the new problem
storyline crossing minimization with a protagonist; see Section 2. We show that one-sided
storyline crossing minimization with a protagonist (1-SCM-P) can be solved efficiently; see
Section 3. For the two-sided version of the problem (2-SCM-P), the characters have to
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be split into two groups, which are then drawn above and below the horizontal line that
represents the protagonist – using the algorithm for the one-sided case. We reduce the
splitting problem to a max-cut problem and solve it heuristically; see Section 4. We then
show that both variants of the storyline block crossing minimization problem (1-SBCM-P
and 2-SBCM-P) are NP-hard; see Section 5.

In order to group pairwise crossings into blocks, we exploit a connection to partitioning
the cells of crossing complexes into rectangular groups of cells that was observed by Fink
et al. [8] in a more general topological setting. Note that in a purely geometric setting, the
partitioning problem (namely of a simple orthogonal polygon into the minimum number of
rectangles) can be solved efficiently, even in the presence of point holes [28]. In order to
benefit from this, our bundling algorithm modifies the crossing complex heuristically such
that it can be partitioned using algorithms for the geometric setting.

In our extensive experimental study we use publication data of 81 protagonists from GD
2023 and their most frequent collaborators over the last ten years; see Section 8. Somewhat
unsurprisingly, a comparison shows that, for storylines with a protagonist, our specialized
heuristic for 2-SBCM-P (combined with the bundling heuristic) uses fewer block crossings
(and fewer pairwise crossings) than two heuristics for storyline block crossing minimization
(SBCM) without a protagonist. On the other hand, these heuristics are free to allow the
protagonist to cross other characters. From this point of view, it is indeed surprising that
our 2-SBCM-P heuristic outperforms the two heuristics for SBCM.

We also evaluate the performance of our bundling heuristic against lower bounds that we
obtain by partitioning the crossing complex without modifying it first. In general, this yields
an optimal partitioning that cannot be realized geometrically, and hence, a lower bound.
It turns out that the numbers of block crossings that our bundling heuristic produces are
usually very close to this lower bound.

More related work. The egocentric storylines of Muelder, Crnovrsanin, Sallaberry, and
Ma [25] probably come closest to our idea of storylines with a protagonist. However, their
aim is to visualize large dynamic networks by selecting and drawing parts that are interesting
for the user. As in our protagonist-setting, Muelder et al. allow the user to select a specific
node p of the network, which is then displayed as a horizontal strip; in their case at the
bottom of the layout. Then they select a subset of the nodes that are active in the current
time step, namely nodes that are of relevance to p according to graph distance (combined
with a time-based weight). Their input does not specify meetings; instead, more relevant
nodes are placed closer to p. Nodes are shown as x-monotone strips between their first and
last appearance; in time steps in which a node is not selected its strip becomes very thin and
is placed behind the strips of selected nodes. Strips are colored according to a time-dependent
clustering. Crossings are treated only implicitly, namely by reusing the vertical ordering of
the nodes from the previous time step and inserting newly selected nodes according to their
relevance.

Kim, Card, and Heer [17] visualized genealogical data using a storyline-like type of
visualization. People are represented by x-monotone curves that start when they are born
and end when they die (or when the diagram ends). The only type of meeting is marriage;
that is, all meetings are of size 2. If a child is born, the start point of its curve is connected
to its parents’ curves by a dashed vertical line. Ancestors are placed by in-order, descendants
by pre-order traversal of the family tree. Interestingly, when visualizing Elizabeth Taylor
and her seven husbands [17, Fig. 9], the authors drew her as a protagonist and experiment
with a 1- and a 2-sided layout. Again, crossings were not minimized; instead, after divorce,
spouse curves simply return to the y-coordinate where they were before marriage.
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Very recently, Kuo, Liu, and Ma [20] presented SpreadLine, a storyline-like visualization
framework for egocentric networks that shares some properties with our two-sided approach.
Instead of splitting the character set such that crossings are minimized, their split is based
on an attribute of the characters given with the input. Hence, if the attribute of a character
changes over time with respect to the protagonist’s attribute, the character’s curve will
cross the protagonist’s curve. For generating the layout, Kuo et al. use the StoryFlow
framework [23]. For crossing minimization, they use the well-known barycenter heuristic
for one-sided crossing minimization in a sweeping fashion (i.e., starting on one side, and
sweeping back and forth until the number of crossings no longer decreases).

We now briefly review the existing (and not so closely related) approaches for storyline
visualization in terms of computational techniques. Tanahashi and Ma [29] used a genetic
algorithm to draw storylines with few crossings, few wiggles, and little white-space. Their
algorithm is rather slow but produces esthetically pleasing results. Gronemann, Jünger,
Liers, and Mambelli [12] used integer linear programming (ILP) to solve storyline crossing
minimization (SCM) exactly. Fröschl and Nöllenburg [11] also used ILP, but in order to
minimize the weighted number of wiggles (where each non-horizontal piece of a character’s
curve is weighted by its height). Kostitsyna, Nöllenburg, Polishchuk, Schulz, and Strash [18]
presented a fixed-parameter (FPT) algorithm for SCM. Van Dijk, Fink, Fischer, Markfelder,
Ravsky, Suri, and Wolff [31] ([30]) gave the first FPT algorithm for SBCM and improved upon
the running time of the FPT algorithm for SCM of Kostitsyna et al. Later, Van Dijk, Lipp,
Markfelder, and Wolff [32] did an experimental study showing that, for SBCM, SAT-based
algorithms are faster than ILP-based algorithms. Di Giacomo, Didimo, Liotta, Montecchiani,
and Tappini [7] drew storylines where each character is represented by a plane tree rather
than just by a curve, so a character can participate in several meetings simultaneously. They
did two case studies, visualizing collaboration between scientists and work groups over time.

Another problem related to storyline visualization is metro-map layout, where metro lines
are routed along the edges of an underlying graph whose vertices correspond to the metro
stations. Note that other than the character curves in storyline visualization, the metro lines
cannot go around a metro station if the station lies on the prescribed path that the metro
line needs to follow. Fink and Pupyrev [9] showed that, given a fixed layout of the underlying
graph, metro-line crossing minimization is NP-hard.

2 Preliminaries and Formal Problem Statement

We say that a meeting m fits a permutation π of C (or a permutation π supports a meeting
m) if the characters in m form an interval in π. In order to enable support for all meetings
in M , the order of characters may have to change at several points in time. Whenever this
order changes, the character curves cross. Since crossings make it harder for an observer to
follow a character curve, we aim to minimize the number of crossings.

We describe a crossing that swaps two characters by their position in π. If a crossing
swaps the character at a with that at a+1, it maps the permutation ⟨1, . . . , a, a+1, . . . , k⟩ to
the permutation ⟨1, . . . , a− 1, a+ 1, a, a+ 2, . . . , k⟩. When two disjoint blocks of curves cross
all at once while staying parallel inside their respective blocks, we call this a block crossing.
Let (a, b, c) with a ≤ b < c be a block crossing that swaps the consecutive blocks ⟨a, . . . , b⟩
and ⟨b+ 1, . . . , c⟩. The permutation ⟨1, . . . , a, . . . , b, . . . , c, . . . , k⟩ is therefore mapped to the
permutation ⟨1, . . . , a − 1, b + 1, . . . , c, a, . . . , b, c + 1, . . . , k⟩. Note that the block crossing
(a, a, a + 1) is equivalent to the pairwise crossing that swaps exactly the characters at a
and a + 1. Let πid = ⟨1, 2, . . . , k⟩ be the identity permutation for a set of k elements.
For i ∈ {1, . . . , k}, we write π(i) for the position of character i in π. Analogously, for
j ∈ {1, . . . , k}, we write π−1(j) for the character at position j in π.
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(a) One-sided storyline drawing with p at the top.

1

2

3

4

5

6

p

(b) Two-sided drawing of the same storyline.

Figure 2 In one- and two-sided storylines, the protagonist is drawn as a straight line and does
not participate in any crossings.

In our visualization style, the protagonist maintains a fixed position and therefore, it
must not participate in any (block) crossing that would move it away from that position.
In a further restricted variant, we require the protagonist to be placed either at the top or
bottom of the stack of character lines.

▶ Definition 1 (Two-Sided Storyline Crossing Minimization with a Protagonist (2-SCM-P)).
Given a storyline instance (C,M) with a protagonist p ∈ C and M = [m1,m2, . . . ,mn], find
a start permutation π0 and a sequence X = [X1, X2, . . . , Xn] of (possibly empty) sequences
of crossings such that (i) p is not involved in any crossing, (ii) for 1 ≤ i ≤ n, πi = Xi(πi−1)
supports mi, and (iii) the total number of crossings is minimized.

The variant of the problem where we additionally require that π0(1) = p is called One-Sided
Storyline Crossing Minimization with a Protagonist (1-SCM-P). The variants of the problem
where we count block crossings instead of pairwise crossings are called (One-/Two-Sided)
Storyline Block Crossing Minimization with a Protagonist (1-/2-SBCM-P).

A realization of (C,M) is a pair (π0,X ), where π0 is a start permutation and X is a
sequence of sequences of (block) crossings such that every meeting is supported. Figure 2
shows drawings of a one- and a two-sided storyline with a protagonist.

3 Minimizing Pairwise Crossings in 1-SCM-P

1-SCM-P has fewer degrees of freedom than the more general SCM problem. Indeed, we will
show that 1-SCM-P can be solved in polynomial time. We start with a simple observation.

▶ Observation 2. Given two characters c and d, if a meeting m contains c but not d and a
later meeting m′ contains d but not c, then c and d must cross between m and m′.

A crossing that fulfills the condition stated in the above observation is unavoidable. For
each character c ∈ C, we define its attendance vector vc ∈ {0, 1}|M | where vc(i) = 1 if and
only if c ∈ mi. For any pair (c, d) of characters with c < d, we count the number Ucd of
unavoidable crossings between c and d by removing entries from the attendance vectors
until only those remain that inflict unavoidable crossings. First, remove all entries i where
vc(i) = vd(i). Then, remove all entries j where (vc(j), vd(j)) = (vc(j + 1), vd(j + 1)). Now
Ucd is the number of remaining entries minus one, and the number of unavoidable crossings
for the whole storyline is

∑
1≤c<d≤k Ucd.

▶ Lemma 3. Every instance of 1-SCM-P can be realized with unavoidable crossings only.

GD 2024
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Proof. The statement is trivial for storylines that can be realized without crossings. For
a storyline (C,M) with protagonist p that requires crossings, we show the statement by
contradiction. Let (π0,X ) be a 1-SCM-P realization of (C,M) with the minimum number
of crossings. Let c and d be two characters whose curves cross. Let c be the upper curve
before the crossing, and let t ∈ [0, n] be the point in time when they cross. Clearly, in order
to cross, c and d must lie on the same side of p, say below. Now assume that this crossing is
not unavoidable by our definition. Hence, there is a meeting mi with i < t that contains c
but not d and there is no meeting mj with j > i that contains d but not c. (The case that
the later meeting contains only d but not c, and there is no earlier meeting that contains c
but not d is symmetric to the case that we study and can be handled analogously.)

We can safely remove the crossing of c and d at time t and swap the positions of c and d
in all permutations after t. Any meeting mj with j > i that either contains both c and d or
none of the two is not affected by this change. A meeting mj that contains only c would
require another crossing between c and d, which we could also remove safely. Hence, we
obtain a realization with fewer crossings than (π0,X ), contradicting our choice of (π0,X ). ◀

▶ Theorem 4. There is an algorithm that solves 1-SCM-P in O(k2n) time, where k is the
number of characters and n is the number of meetings.

Proof. From Lemma 3 we know that the unavoidable crossings are sufficient to realize a
storyline with a protagonist. Therefore, we present Algorithm 1 and prove that it produces
exactly the unavoidable crossings.

We set the start permutation π0 such that the characters are in descending lexicographic
order with respect to their attendance vectors. Note that the first meeting m1 fits π0. Let
i ∈ {2, 3, . . . , k} and assume that we have already computed a storyline up to and including
meeting mi−1. Let πi−1 be the permutation right after mi−1. Given πi−1, in order to support
mi, we have to move all characters in S1 = mi \mi−1 towards p (who attends all meetings)
and all characters in S2 = mi−1 \mi away from p. Since we must not cross p, every character
in S1 must cross every character in S2. By Observation 2, these crossings are unavoidable.
For S1 and S2 to form contiguous blocks, we may have to introduce additional crossings.
Assume that we need such a crossing between characters c and d to move d closer to p.
Let mk be the latest meeting before mi−1 that contains c but not d. Such a meeting must
exist, otherwise c and d would be swapped in π0. Hence, due to Observation 2, mk and mi

induce an unavoidable crossing between c and d. Consequently, our algorithm produces only
unavoidable crossings.

Any crossing introduced by one of the inner while-loops of Algorithm 1 moves character c
upwards (that is, decreases π−1(c) in that loop). Therefore, the foreach-loops check at most
k2 pairs of characters, and Algorithm 1 runs in O(k2n) time. ◀

4 Minimizing Pairwise Crossings in 2-SCM-P

In 1-SCM-P, we restrict the storyline such that the protagonist p always is at the topmost
position. This may introduce a lot of crossings compared to storyline visualizations without
this constraint. The variant 2-SCM-P drops this constraint but still requires that p does not
participate in any crossing (i.e., can be drawn straight); see Figure 2b.

We map an instance (C,M) of 2-SCM-P to two instances of 1-SCM-P by splitting C \ {p}
into two sets C1 and C2. For j ∈ {1, 2}, we set Cj = Cj ∪ {p} and let Mj be the restriction
of M to characters in Cj . In order to find a split, we define the crossing graph of (C,M) to
be the complete graph with vertex set C \ {p}, where, for characters c and d with c < d, edge
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Algorithm 1 One-sided storyline with minimum number of pairwise crossings.
Input: Instance (C, M) of one-sided SCM, attendance vectors v1, v2, . . . , vk

Output: Realization (π0,X = [X1, . . . , X|M|]) of (C, M)
1 π0 ← characters in descending lexicographic order by attendance vectors
2 π ← π0

3 X1 ← ∅
4 for i← 2 to |M | do
5 Xi ← ∅
6 if mi fits π then continue
7 S0 ← mi−1 ∩mi

8 S1 ← mi−1 \mi

9 S2 ← mi \mi−1

10 S3 ← C \ (mi−1 ∪mi)
11 foreach c ∈ S0 ordered by π−1 do
12 while d← π(π−1(c)− 1) ∈ S1 do
13 switch c and d in π

14 append (π−1(c), π−1(c), π−1(d)) to Xi // a pairwise crossing

15 foreach c ∈ S2 ordered by π−1 do
16 while d← π(π−1(c)− 1) ∈ S3 do
17 switch c and d in π

18 append (π−1(c), π−1(c), π−1(d)) to Xi // a pairwise crossing

19 append (|S0|+ 1, |mi|, |mi|+ |S2|) to Xi // a block crossing
20 apply Xi to π

21 return (π0,X )

{c, d} has weight Ucd. Consider the problem (Weighted) Min-UnCut which asks for a
2-coloring of the vertices of a graph such that the number (total weight) of the monochromatic
edges is minimized. If two characters c and d are on different sides of p, then they do not
cross. Otherwise they cause exactly Ucd unavoidable crossings, independently of the presence
of other characters. By Theorem 4, we can solve the two 1-SCM-P instances resulting from
the split optimally. Hence a split that minimizes the number of crossings corresponds to a
solution of Weighted Min-UnCut in the crossing graph.

Unfortunately, Min-UnCut is MaxSNP-hard [27]; it admits an O(
√

logn)-approxima-
tion [1]. Note that Min-UnCut is the complement of Max-Cut, which asks for a 2-coloring
of the vertices of a graph such that the number of the bichromatic edges is maximized. In
particular, the set of optimal solutions is the same for both problems.

We can efficiently detect instances of 2-SCM-P that can be drawn without crossings.

▶ Theorem 5. Given a 2-SCM-P instance with k characters and n meetings, we can test in
O(nk2) time whether it admits a solution without crossings.

Proof. Construct the crossing graph, test whether it is bipartite, and if yes, draw the two
resulting one-sided instances using Theorem 4. ◀

Also if the crossing graph is planar, Weighted Max-Cut and hence 2-SCM-P can be
solved efficiently [22]. Similarly, exact FPT algorithms for Weighted Max-Cut [6] carry
over to 2-SCM-P. For our application where we require fast response for larges instances,
we use a heuristic for Weighted Max-Cut [16] that is easy to implement and, although
asymptotically O(|C|3), sufficiently fast.

GD 2024
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5 Hardness of 1-SBCM-P and 2-SBCM-P

Van Dijk et al. [31] showed that SBCM is NP-complete by reducing from Sorting by
Transpositions (SBT). In SBT, given a permutation π and an integer t, the task is to
decide whether π can be transformed into the identity permutation by applying a sequence
of at most t transpositions (which we call block crossings). SBT is NP-hard [2]. Whereas in
SBT the start permutation is given, for SBCM we need a gadget in order to ensure that there
is a point in time where the characters are ordered as in π. We now construct such a gadget.

▶ Lemma 6. Given a set C of k characters and a permutation π of C, there exists a sequence
of meetings M of size k − 1 such that the one-sided storyline (C,M) with protagonist π(1)
can be drawn crossing-free and π is the only permutation that supports all meetings in M .

Proof. For any given order of characters the sequence of meetings [m1, . . . ,mk−1] with
mi = {1, . . . , i+ 1} is supported by the identity permutation πid. Any permutation π′ ̸= π

contains at least two characters c and d with c < d whose positions are swapped compared
to π. By construction, π′ does not support mc−1. ◀

▶ Theorem 7. The problems 1-SBCM-P and 2-SBCM-P are NP-complete.

Proof. It is easy to see that the decision variants of both 1-SBCM-P and 2-SBCM-P lie in
NP. The number of (block) crossings necessary to support any meeting is bounded by

(
k
2
)
.

So we can simply check a solution from left to right, in time polynomial in k and n.
Next we show that 1-SBCM-P is NP-hard. Using Lemma 6 we can build a one-sided

storyline with a protagonist p such that C \ {p} is in π-order just after mk−1 and in πid-order
just after mk; encoding the permutations for SBT (see the blue box in Figure 3).

Solving 1-SBCM-P for this instance gives us a start permutation π0 = π and a sequence
X = [X1, . . . , Xk−1, Xk, Xk+1, . . . , X2k−2] of (possibly empty) sequences of block crossings.
Let πj denote the order of characters right after mj . Meetings m1, . . . ,mk−1 allow us to
maintain π from π0 to πk−1. Because of that, we can prepend (in order) all block crossings
from X1, . . . , Xk−1 to Xk The same is true for meetings mk, . . . ,m2k−2 and the identity
permutation. So block crossings from Xk+1, . . . , X2k−2 can be appended (in order) to Xk.
Now, Xk contains a minimum set of block crossings (a.k.a. transpositions) necessary in order
to transform π to the identity.

For the NP-hardness of 2-SBCM-P, we reuse our proof for the one-sided variant. We use
a simple gadget consisting of one additional author q and 2k2 meetings to fix an assignment
of the authors to the sides that has all authors that are part of our one-sided instance in the
same half of the drawing (see the red box in Figure 3). We add meetings M ′ = [m′

1, . . . ,m
′
2k2 ]

where meetings with even index contain exactly p and q while those with odd index contain
p and all characters 1, . . . , k. The resulting storyline (C,M ′) can be drawn crossing-free if
and only if C ∪ {q} is split (C \ {q}, {q, p}). Any other split introduces at least 2k2 − 2 block
crossings (one for each meeting in M ′ except for the first and the last one). On the other
hand, transforming π into identity takes at most

(
k
2
)

crossings. Therefore, (C \ {q}, {q, p})
is the only optimal split, and the two-sided instance (C ∪ {q},M ′ ◦ M), where ◦ denotes
concatenation, encodes the one-sided instance (C,M). ◀
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1-SBCM-P

2-SBCM-P

Figure 3 The NP-hardness construction for 2-SBCM-P reuses the one for 1-SBCM-P (blue box).

6 Bundling Pairwise Crossings in Storylines

While we can solve at least 1-SCM-P efficiently, we have seen that 1-SBCM-P is already
NP-hard (Theorem 7). Still, we prefer block crossings from a cognitive point of view; they
structure the set of pairwise crossings. Therefore, we now discuss the problem of covering
a given set of pairwise crossings by the smallest number of block crossings. Fink et al. [8]
introduced this problem for general graph embeddings and showed its NP-hardness.

6.1 Bundling in the absence of meetings

Fortunately, in the special case of storylines, we can solve the following local version of the
problem efficiently as shown below in Theorem 11. The version corresponds to the problem
that needs to be solved between two consecutive meetings, given the sequence of pairwise
crossings.

▶ Definition 8 (Local Bundling for Storylines). Given a permutation π and a sequence X of
pairwise crossings, find the shortest sequence X ′ of block crossings such that, when applying X ′

to π, exactly the same lines cross as when applying X to π.

Fink, Hershberger, Suri, and Verbeek [8] observed a connection between the bundled
crossings problem and the minimum dissection problem for orthogonal polygons with holes.
Soltan and Gorpinevich [28] showed that an orthogonal polygon with arbitrary holes can be
dissected into the minimum number of rectangles in polynomial time. Their algorithm can
be adapted to solve Local Bundling for Storylines as we will show now.

We say that two crossings χ1 and χ2 touch (and can hence be combined into a block
crossing) if (i) they share exactly one character c and (ii) the part of the curve that represents c
between the corresponding crossing points is y-monotone and is not crossed by any other
curve. In Figure 4a, crossings χ1 and χ2 touch, but χ1 and χ3 do not touch and, unlike [8],
we cannot combine them into a block crossing. We call the graph G that has a vertex for
every pairwise crossing in X and an edge for every pair of touching crossings the touching
graph of X. Following Fink et al. [8], we define the crossing complex C for a sequence X of
pairwise crossings in a storyline as a special type of complex that consists of quadrilateral
cells with sides and corners, where two respectively four cells touch:

GD 2024
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χ1

χ2

χ3

c

★

(a) Storyline drawing.

★
χ1

χ2

χ3

(b) Crossing complex C. (c) Bundled crossings.

Figure 4 The crossing complex C of a storyline drawing (a) contains a quadrilateral cell for each
crossing. In (b) the cells are bounded by either the gray exterior (which includes holes) of C or
the thin black lines. Each cell shares a side (black line segments) with at most four other cells. A
bundling corresponds to a dissection of C into (blue shaded) rectangular groups of cells (c).

1. The complex C contains a quadrilateral cell for each crossing in X. Each side of a cell
corresponds to one “half” of a character curve; the one before and the one after the
crossing.

2. If two crossings χ = {b, c} and ψ = {c, d} in X touch each other, then their cells share
the sides that correspond to the unique character in χ ∩ ψ. (Note that, in Figure 4b, the
cells of χ1 and χ2 share a side, whereas the cells of χ1 and χ3 do not share a side.)

3. If the storyline drawing contains a quadrilateral face and the adjacent crossings form a
cycle in G, then the unique corner shared by the corresponding cells is part of C (e.g., the
starred face in Figure 4a becomes the starred corner in Figure 4b).

The crossing complex of the storyline drawing in Figure 4a is shown in Figure 4b. The
exterior of C is shaded in gray. Corners and sides that lie in the interior of C are referred to
as internal. In Figure 4b internal corners are marked by small black disks and internal sides
by solid black line segments.

▶ Lemma 9. The crossing complex C of a storyline drawing can be laid out such that all
internal sides are either falling or rising (i.e., have a slope of 45◦ or −45◦).

Proof. By item 2 of the definition above, an internal side can be drawn perpendicular to
the curve of the common character of the two touching crossings. Since G is a partial grid
graph, it can be drawn orthogonally with respect to the embedding implied by the storyline
drawing (see Figure 4b). Every crossing touches at most four other crossings, and the four
arms of a crossing naturally yield a grid embedding. Therefore, internal sides can be drawn
on a grid rotated by 45◦. ◀

We assume that C has been laid out as described in Lemma 9. In order to dissect C into
the minimum number of rectangular groups of cells, we cut C along chords. A chord is a
sequence of colinear internal sides that starts and ends in a boundary corner (i.e., a corner
that is not internal) and has only internal corners in between. It is easy to see that cuts
are necessary at every concave corner on the boundary ∂C of C. Following Fink et al. [8],
for each boundary corner z, we define its measure of “concaveness” κ(z) = ⌊(α(z) − 1)/2⌋,
where α(z) is the number of cells incident to z. This measure indicates how many cuts are
necessary to make a corner convex. We will show that two cuts always suffice.

▶ Lemma 10. Let z be a corner of C. Then at most five cells are incident to z, and κ(z) ≤ 2.
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Proof. Corners in C (and on the boundary of C) map to faces in the original storyline drawing.
Internal corners in C, by construction, result from a quadrilateral face in the storyline drawing;
therefore, they have only four adjacent cells. All other corners lie on points on ∂C where
internal sides have a common endpoint. This is the case when the crossings around a face in
the storyline drawing form a path in G (each touching pair of crossings implies an internal
side). Since, at each touching pair of crossings, a face has a corner with an angle of 90◦ and
the sum of angles of a face is 360◦, such a path cannot be longer than five crossings. ◀

All corners with four adjacent cells are internal by definition. By Lemma 10, we know
that concave boundary corners have three or five adjacent cells and thus, their measure is 1
or 2. Hence, every cut along a chord starting in a concave corner z decreases κ(z) by 1.

We identify two different types of chords; effective chords, which connect two concave
corners and therefore decrease κ(C) =

∑
z∈∂C κ(z) by 2, and simple chords, which connect

a concave and a convex corner. In order to minimize the number of cuts (and therefore
rectangles), we must maximize the number of cuts along effective chords. Note that not
all combinations of effective chords are feasible. Two effective chords are in conflict if they
share a common internal corner. After cutting along one of them, the other one is no longer
effective by our definition. Instead, it was cut into two simple chords. Recall that concave
corners have measure 1 or 2. Let z be a corner. If κ(z) = 1, then every pair of effective chords
incident to z is in conflict, because a single cut is sufficient to make z convex. If κ(z) = 2,
then only those pairs of effective chords incident to z are in conflict if the two chords together
do not reduce κ(z) to 0. This is the case if, after cutting twice, z still has three consecutive
cells.

In order to identify a maximum set of effective chords, we find a maximum independent
set in their conflict graph. Note that due to the orthogonal nature of our chords, the conflict
graph is bipartite and therefore a maximum independent set can be found in polynomial time
(see Kőnig’s theorem [21]). After applying cuts along a maximum set of effective chords, we
handle the remaining concave corners by choosing an arbitrary simple chord starting at the
corner and cutting along it. After that all connected components of C are rectangular (i.e.,
their boundary corners are 90◦ or 180◦). For the storyline depicted in Figure 4a, a dissection
into rectangles is shown in Figure 4c.

It remains to translate the order of rectangles implied by the embedding of C back into a
feasible order for the bundles. Given two bundles A and B, A must happen before B if, for
any two crossings χA in A and χB in B, (i) the cell of χA has a top-right or bottom-right
edge to the cell of χB in G (according to its grid embedding) or (ii) χA and χB are on the
same level (i.e., if πA is the permutation right before χA and πB is the one right before χB ,
the character curves involved in χA have the same position in πA as those of χB in πB)
and χA comes before χB in X. We then topologically sort the directed graph with a vertex
for every bundle and arcs corresponding to the ordering constraints. This gives us a feasible
order for the bundles.

▶ Theorem 11. Given a storyline with a sequence X of pairwise crossings, Local Bundling
for Storylines can be solved in O(|X|2) time.

Proof. The complex C can be constructed in time linear in |X| since the storyline yields the
topology and, for each crossing in X, we introduce at most four sides and corners. We then
find the effective chords in time linear in |X| because at most four chords start, end, or go
through any corner, and no two chords overlap. Since effective chords are in conflict only
if they start at, end at, or go through the same corner, the number of nodes and edges in
the conflict graph is linear in |X|. Hence, we can find a dissection of C (corresponding to
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A ✓

B ✗

C ✗

m1 m3m2 m4 m5 m6

(a) Some (in)feasible bundles.

m1

m3

m2

m4

m5

m6

(b) C with meetings.

★ χR
m4

m1 m3m2 m4 m5 m6

(c) Bundles around meetings.

Figure 5 Not all bundles are feasible when it comes to meetings (a). Meetings correspond to
point holes in the crossing complex C (b). A possible bundling is shown in (c).

a maximum independent set in the conflict graph) in O(|X|2) time using the algorithm of
Soltan and Gorpinevich [28]. Applying the set of effective chords and adding the remaining
simple chords is again bounded by the number of sides because every side is cut at most
once. The number of bundles is bounded by |X|. We can find all ordering constraints and
topologically sort the conflict graph in O(|X|2) time. ◀

6.2 Bundling in the presence of meetings

So far we only bundled crossings between two neighboring meetings. It is obviously beneficial
and often possible to bundle crossings across meetings. We allow a meeting only to happen
before or after a block crossing (as shown in Figure 5c) but not inside. Hence, we may neither
trap a meeting inside a bundle (see bundle C in Figure 5a) nor change the order of meetings.
For example, in Figure 5a, meeting m4 must happen before the bundled crossing B, whereas
meeting m3 must happen after B. Because we cannot change the order of meetings, such
bundles are prohibited.

For a meeting m, let χR
m be the first crossing after m where one of the characters whose

curves cross is part of m, whereas the other is not. We say that χR
m touches m from the right

(see Figure 5c). Note that χR
m is adjacent to one of the faces where m ends (see the black

star in Figure 5c). In order to prevent bundles (such as C in Figure 5a) to trap meetings
inside, we prohibit faces where meetings end from being part of a bundle. For the crossing
complex C, this means that we remove the corresponding corner from C. The dissection
algorithm can be easily enhanced to support point holes [28]. Point holes get a measure of
two and effective chords starting or ending at a point hole are in conflict if and only if they
have different slopes (one falling one rising).

The last step of the bundling procedure, ordering bundles, must adhere to two further
kinds of constraints, namely meeting–meeting and meeting–bundle constraints. A meeting
must be placed to the right of (or after) another meeting as indicated by the sequence M of
meetings. A bundle must be placed to the right of a meeting m if any crossing in the bundle
touches m from the right. In Figure 6b, the constraints between meetings m2 and m3 and
the bundle marked with the blue star are depicted as black arrows. An arrow starting at a
and pointing at b indicates that a must be placed to the right of b. Unfortunately, sometimes
these constraints form cycles and therefore the bundling cannot be realized geometrically
(for example the bundle with the blue star in Figure 6b or bundle B in Figure 5a).
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(a) Split between m2 and m3.
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(b) Optimal but infeasible.
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(c) Feasible but suboptimal.

Figure 6 With the optimal dissection this bundling has a dependency cycle between
meetings m2, m3, and the bundle marked with the blue star (b). When we split the storyline
between the conflicting meetings (a), the dissection becomes feasible but suboptimal (c) as three
bundles would be sufficient.

We propose the following heuristic: whenever we encounter such a cycle, we split the
storyline after the first meeting in the cycle (i.e., the meeting with the smallest index). See
Figure 6a for an example. Note that every such cycle must involve at least one meeting. It
remains open whether or not we can find a cut through C that still produces an optimal
result regarding the number of bundles. Cutting straight after a meeting and through the
full height of the storyline can worsen the solution as shown in Figure 6c. We can insert the
point holes and find the additional constraints within the same asymptotic runtime as above.
We effectively run our algorithm once per split so theoretically our heuristic has a runtime
of O(|X|3). However, in practice splits are rare and bundling is almost imperceptibly quick
(see Section 8).

Summarizing, we can find an optimal bundling (i.e., with the minimum number of bundles)
as long as no dependency cycles occur when ordering the resulting block crossings. Otherwise,
we can use the number of bundles in the infeasible solution as a lower bound for the optimal
number of bundles. Our experiments (see below) show that even our simple heuristic that
splits the storyline whenever it encounters a conflict yields optimal results for many instances.

7 A Greedy Heuristic for SBCM

In this section we present a greedy algorithm to draw a storyline with few block crossings
in O(k2sn) time, where |C| = k is the number of characters, |M | = n is the number of
meetings, and

∑
i |Xi| = s is the number of block crossings. Because SBCM is NP-hard [31],

we cannot hope for an optimal solution. Our algorithm repeatedly adds block crossings
until all meetings fit. Our heuristic is based on previous work by Herrmann [15], but we use
the following more involved scoring function. Our scoring function considers possible block
crossings and chooses weights differently; moreover, we do not limit the number of meetings
that are factored into the scoring. We use the attendance vector vc of a character c (see
Section 3) in order to find t-conflict-free pairs, that is, pairs that can stay in the same block
for the next t meetings. A pair of characters (c, d) at a meeting mi is t-conflict-free for a
number t if vc(j) = vd(j) for i ≤ j ≤ i+ t.

We process the meetings in order. For i ∈ {2, 3, . . . , n}, let π be the permutation right
after mi−1. Let ⟨π(a), . . . , π(b− 1)⟩ and ⟨π(c), . . . , π(d)⟩ be two maximal blocks of characters
in π that all attend mi and are separated by another block of characters ⟨π(b), . . . , π(c− 1)⟩
that all do not attend mi. Note that if no such configuration exists, mi fits π and we continue
with mi+1. We now have several options to join the two blocks with a single block crossing.
We can either merge the first block into the second or the second into the first and we can
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Algorithm 2 SelectBlockCrossing.
Input: Permutation π, meeting mi, attendance vectors v1, . . . , vk

Output: Block crossing
1 find a < b < c ≤ d such that
2 {π(j) | j ∈ {a, . . . , b− 1, c, . . . , d}} ⊆ mi and
3 {π(j) | j ∈ {1, . . . , a− 1, b, . . . , c− 1, d + 1}} ∩mi = ∅
4 best ← ∅
5 σbest ← −∞
6 foreach χ ∈ {(z, c− 1, d) | z ∈ {a, . . . , b}} ∪ {(a, b− 1, z) | z ∈ {c− 1, . . . , d}} do
7 π′ ← π with χ applied
8 σχ ← 0
9 foreach (e, f) ∈ {(π′(j), π′(j + 1)) | a− 1 ≤ j ≤ d} do

10 i′ ← i

11 while ve[i′] == vf [i′] do i′ ← i′ + 1
12 σχ ← σχ + i′ − i

13 if σbest < σχ or (σbest == σχ and size(best) > size(χ)) then
14 best ← χ

15 σbest ← σχ

16 return best

choose any position inside one of the blocks where we insert the other block. We use the
procedure described in Algorithm 2 in order to rank the possible block crossings and select
the best based on adjacent conflict-free pairs and the size of the block crossing (i.e., number
of characters involved). Let π′ be the permutation after applying the block crossing that we
found in the previous step. If π′ does not support mi, we repeat the described procedure
with π′ instead of π.

Our algorithm heavily depends on a good start permutation. We propose the following
strategy to find one. Let M ′ be the sequence of meetings obtained by reversing M , and
let π̃ be a random permutation. We apply our greedy algorithm to (C,M ′) with π̃ as a start
permutation and record the permutation π′

end after the last meeting. Note that the last
meeting in M ′ is the first meeting in M . We use π′

end as the start permutation for the actual
run.

For each block crossing in the final drawing, we call SelectBlockCrossing (see
Algorithm 2) once. The parameters a, b, c, and d can be determined in O(k) time. At most k
block crossings are considered and each requires up to k − 1 pairs of characters to be scored.
The scoring function can be computed in O(n) time. Therefore, the total runtime is O(k2sn),
where s is the number of block crossings. Note that, in most cases, a lot fewer than n

comparisons are required to score a pair of characters. If the worst-case runtime bound is a
concern, the maximum number of comparisons can be limited by a constant, which reduces
the runtime to O(k2s) (and may slightly increase the number of block crossings).

8 Experiments

Our use case for storylines with a protagonist is to visualize how the peer group of a scientific
author changes over time. We are interested in comparing heuristics for visualizing storylines
with a protagonist to heuristics for visualizing storylines without a protagonist. We want to
measure whether the latter benefit from the additional degree of freedom that allows them to
choose realizations where the protagonist’s curve is crossed by the curves of other characters.
We also want to evaluate the performance of the bundling heuristic that we presented in
Section 6.2.
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Benchmark set. For our experiments, we identified the 81 authors of short and long papers
in the GD 2023 proceedings that have at least 20 coauthors on publications over the last
10 years that are listed in the dblp computer science bibliography at https://dblp.org,
a very reliable source of publication data (for computer science). For each among the 81
authors, we created storylines with their 5, 10, 15, and 20 most frequent coauthors. This
yielded our benchmark set with 324 instances.

Metrics. Metrics for assessing the quality of a visualization look for measurable features
that influence legibility and aesthetics. In the context of storylines, Tanahashi and Ma [29]
discussed formative design criteria and suggested to measure line wiggles, line crossings, and
white-space. Because our drawing style does not produce white-space, we measure wiggles
and crossings. Additionally, we count the number of block crossings (or bundled crossings).
We define the number of wiggles as the number of times a character curve changes position.
This is equivalent to the sum of the sizes of all block crossings where the size of a block
crossing is the number of lines involved. Note that the wiggles metric, as we defined it, is
equivalent to what is known as passages in the context of metro maps [13].

Algorithms. We implemented the following four algorithms for drawing storylines with a
protagonist with few (block) crossings. We call the algorithm that solves 1-SCM-P exactly
1-Sider (see Section 3). Recall that our heuristic for the two-sided variant first splits the
set of characters using a heuristic for Max-Cut and then solves the resulting 1-SCM-P
instances exactly (see Section 4). We call this heuristic for 2-SCM-P 2-Sider. We call our
greedy heuristic for SBCM GreedyBlocks (see Section 7).

As a baseline for our experiments we used a simple heuristic that we call Median. For each
meeting, it selects the median of all attending characters (by their position in the current
permutation) and join the remaining participants with the minimum number of crossings.
For finding a decent start permutation, we use the same trick as with GreedyBlocks and draw
the reversed storyline with a random start permutation.

We combine 1-Sider, 2-Sider, and Median with our algorithm for bundling pairwise
crossings into block crossings (see Section 6). Note that our implementation uses Kuhn’s
classic algorithm [19] for computing a maximum independent set in a bipartite graph; its
cubic runtime is worse than what we stated in Theorem 11, but the algorithm is easy to
implement and fast enough in our setting.

We implemented all algorithms as TypeScript web applications. We performed the tests
under Fedora Linux 40 and node.js v20 on an AMD Ryzen 7 7840HS with 64 GB of RAM.

Results. We applied the four algorithms to each instance in our benchmark set and compared
the results in terms of crossings, block crossings, and wiggles. In Table 1, µ denotes the
average of that metric over all 81 realizations of that algorithm and number of characters.
For every algorithm we also counted how often they produced the best result (with that
metric) out of all algorithms tested; see the columns labeled β.

The results for the largest storylines with 21 authors are shown in detail in Figure 7. All
measurements are relative to GreedyBlocks, so an algorithm with a measure below 1 performs
better than GreedyBlock for that specific data set. For each algorithm, a horizontal line
marks the median of its results. The medians and the detailed results in general support the
overall trend that Table 1 shows.

GD 2024
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Table 1 Experimental results on a dataset of 81 protagonists. The mean µ is calculated for each
algorithm and each number of authors k. β measures the percentage of cases where an algorithm
achieved the best result. Sums over 100 % are possible due to ties.

1-Sider 2-Sider Median GreedyBlocks
k µ β µ β µ β µ β

crossings 6 85.1 0 24.3 88 32.8 21 47.0 11
11 283.0 0 103.3 70 113.3 32 197.3 2
16 536.9 0 211.8 59 222.6 33 418.0 10
21 823.6 0 342.6 53 346.2 42 623.5 5

block crossings 6 33.8 0 18.7 68 21.1 32 23.0 26
11 59.2 0 41.8 59 45.2 22 45.5 30
16 75.9 0 58.9 63 63.4 22 62.8 27
21 87.9 0 72.3 54 76.2 19 72.8 38

wiggles 6 112.6 0 42.9 81 53.5 26 67.3 11
11 286.5 0 136.7 75 152.6 25 208.8 4
16 469.0 0 239.3 68 266.6 26 388.3 6
21 649.1 0 344.1 77 386.6 21 535.8 2

We expected the algorithms that implement our protagonist-focused style to be at a
disadvantage compared to algorithms without that restriction. With about 30 % more block
crossings, 80 % more wiggles, and more than twice as many crossings, for the 1-Sider algorithm
this was clearly the case. The 2-sider algorithm in contrast was competitive in every metric.
Both the 2-sider and Median algorithms match or even outperform the GreedyBlocks heuristic
when it comes to block crossings, showing the effectiveness of our bundling algorithm.

As discussed in Section 6, the bundling algorithm is not always optimal but we can
determine a lower bound on the optimal number of bundles for any input. We evaluate
the quality of our heuristic that splits the storyline whenever it encounters a conflict by
comparing its results with the lower bound. The results can be found in Figure 8. For 1-Sider,
77 % of our test set is bundled optimally; for 2-Sider, 73 %. The results for Median are rather
inconclusive. While most instances are close to the optimum, the overall gap between the
lower bound and the actual number of block crossings is wider. Apparently, the protagonist
benefits bundling.
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Figure 7 Results of 1-Sider , 2-Sider , and Median relative to GreedyBlocks when applied to
the largest instances (with 21 characters) in our benchmark set. Horizontal lines mark the medians.
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Figure 8 For most of the 324 storylines in our benchmark set, the bundling heuristic operated at
(or very close to) the lower bound.
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Figure 9 For most of the 324 storylines, rebundling reduced the number of block crossings.

The bundling heuristic can also be applied to the results of GreedyBlocks as a post-
processing step. So we run GreedyBlocks, resolve all block crossings into pairwise ones (we
replace any block crossing with a block of a lines intersecting a block of b lines by a × b

pairwise crossings), and then use the bundling heuristic to “rebundle” them again into block
crossings. On the same dataset as used before (324 storylines derived from 81 protagonists)
none of the instances in our dataset had more block crossings than without rebundling,
despite the heuristic nature of our algorithm. See Figure 9 for detailed results. Rebundling
decreased the number of block crossings in 75 % of cases. As a post-processing step it showed
positive results across the board.

Running times. For the dataset of large storylines (20 coauthors) we measured running
times of 100 repetitions per input and algorithm. See Figure 10 for the results. We can
clearly see that bundling takes a toll but overall, for our interactive use case, the running
times are always tolerable and most of the time imperceptible.

9 Conclusion

Storylines with a protagonist arise naturally when visualizing how the peer group of a
scientific author changes over time. Minimizing the number of (block) crossings helps to make
such visualizations more readable. We have presented an efficient algorithm for minimizing
pairwise crossings in a restricted case (1-SCM-P), and we have shown that it is NP-hard to
minimize the number of block crossings (1-SBCM-P) even in the simpler protagonist setting.
Our experimental evaluation has shown that our heuristic for bundling pairwise crossings
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Figure 10 Running times of 1-Sider , 2-Sider , Median , and GreedyBlocks for the largest
instances (with 21 characters) in our benchmark set. Each point is the average of 100 repetitions.

into block crossings performed close to optimal on our benchmark set. Our heuristics for
2-SBCM(-P) are fast enough for interactive applications. The fact that 2-Sider outperformed
GreedyBlocks and Median underlines that more cleverness is needed to exploit the additional
freedom that 2-SBCM offers compared to 2-SBCM-P. On the other hand, having a designated
protagonist can be beneficial in use cases other than the visualization of publication histories;
Kuo et al. [20] used a somewhat less strict notion of a protagonist to visualize (i) interactions
among actors in social media and (ii) disease propagation centered around a primary outbreak.

Still, some questions remain open. Is 2-SCM-P NP-hard? Can bundling in the presence
of meetings (see Section 6.2) be solved efficiently? Can we efficiently minimize the weighted
number of wiggles [11] in the one-sided setting?

Figures 11–14 show some storyline visualizations produced by our algorithms. The
storylines depicted are not necessarily part of our benchmark set. They were specifically
chosen (and some of them cropped) in order to highlight noteworthy properties of the
algorithms. Clicking on the star in a caption opens an interactive storyline visualization of
the same setting using current publication data on dblp.

(a) Drawn by 1-Sider with bundling. ⋆

(b) Drawn by 2-Sider with bundling. ⋆

Figure 11 Clippings of two storylines visualizing Karsten Klein and his 10 most frequent coauthors
in the past 7 years. Note that 2-Sider yields a much more compact drawing (more meetings in the
same sceen space).

https://publines.github.io/?p=*7_19%2F555518_Karsten+Klein+0001&s=1!_**24!aaabb*a10!b7!*aa
https://publines.github.io/?p=*7_19%2F555518_Karsten+Klein+0001&s=1!_**24!aaabb*a10!b7!*ab
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(a) Drawn by 2-Sider with bundling (55 pairwise crossings, 11 block crossings, and 52 wiggles). ⋆

(b) Drawn by GreedyBlocks (44 pairwise crossings, 11 block crossings, and 55 wiggles). ⋆

Figure 12 Two complete storylines visualizing Stefan Felsner and his 16 most frequent coauthors
in the past 3 years. Note that GreedyBlocks produces larger block crossings than 2-Sider.

Figure 13 A clipping of a storyline visualizing Michael Bekos and his 16 most frequent coauthors
in the past 10 years. This realization uses the Median algorithm with bundling. Note that, at
meetings 32 and 33, our bundling heuristic missed an obvious opportunity to merge two 2× 1 block
crossings into a 2× 2 block crossing. ⋆

GD 2024

https://publines.github.io/?p=*7_09%2F298014_Stefan+Felsner&s=1!_**24!aaabb*a16!b3!*ab
https://publines.github.io/?p=*7_09%2F298014_Stefan+Felsner&s=1!_**24!aaabb*a16!b3!*bd
https://publines.github.io/?p=*7_06%2F145716_Michael+A.+Bekos&s=1!_**24!aaabb*a16!c10!*ac
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(a) Drawn by 2-Sider with bundling (58 pairwise crossings, 10 block crossings, and 53 wiggles). ⋆

(b) Drawn by GreedyBlocks (16 pairwise crossings, 8 block crossings, and 24 wiggles). ⋆

Figure 14 Two complete storylines visualizing Vít Jelínek and his 16 most frequent coauthors
in the past 7 years. Note that when more than two disjoint groups collaborate, allowing the
protagonist’s curve to cross other curves can reduce the number of (block) crossings. This happened,
however, not very often in the data set we analyzed.
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