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Abstract
We show that if a bipartite graph G with n ≥ 3 vertices can be drawn in the plane such that (i)
each edge is involved in at most three crossings per edge or (ii) each crossing is assigned to one of
the two involved edges and each edge is assigned at most one crossing, then G has at most 4n − 8
edges. In both cases, this bound is tight up to an additive constant as witnessed by lower-bound
constructions. The former result can be used to improve the leading constant for the crossing lemma
for bipartite graphs which in turn improves various results such as the biplanar crossing number or
the maximum number of edges a bipartite k-planar graph can have.
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1 Introduction

There is a rich literature about planar graphs which includes both algorithmic and combin-
atorial results. Since minimizing the number of edge crossings in a drawing improves its
readability [18], a drawing should be planar whenever possible. Using Euler’s Formula, one
can easily derive that a planar graph with n vertices can have at most 3n − 6 edges, which,
however, implies that most graphs are in fact not planar. Empirical studies showed that not
only the number of crossings but also their topological/geometrical properties play a crucial
role regarding the readability of a drawing [9, 12]. This gave rise to the research area of
beyond planarity, where graph classes are defined in terms of forbidden crossing configurations
– see [8] for a survey of the area. While there is a plethora of beyond-planar classes, we are
here concerned with k-planar and k-gap-planar graphs. A graph G is k-planar if there exists
a drawing of G in the plane such that each of its edges has at most k crossings. A graph G

is k-gap-planar, if G can be drawn in the plane such that there exists an assignment of every
crossing to one of the involved edges such that each edge is assigned at most k crossings.
While the research of k-planar graphs (in particular, 1-planar graphs) started already more
than half a century ago [15], k-gap-planar graphs were introduced quite recently [5] and can,
in some sense, be interpreted as an asymmetric version of k-planar graphs. The authors
of [5] showed that every 2k-planar graph is k-gap-planar, but, for any fixed choice of k, there
exists a 1-gap-planar graph which is not k-planar.
One of the most studied questions regarding a beyond-planar graph class is to determine
its edge density, i.e., the maximum number of edges an n-vertex graph that belongs to this
class can have, see e.g. [2, 7, 11] for some work in this direction. There is an additional
motivation to study the edge density of k-planar graphs in particular: Improved results
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Table 1 Overview of related edge density bounds and summary of our results (red angle brackets).

Bipartite

Graph class Upper bound Lower bound
Previous Ours

1-planar: 3n − 8 [10] – 3n − 8 [10]
2-planar: 3.5n − 7 [3] – 3.5n − 12 [3]
3-planar: 5.205n [3] 4n − 8 ⟨6⟩ 4n − 12 ⟨7⟩
k-planar: 3.005

√
kn [3] 2.871

√
kn ⟨17⟩ –

1-gap-planar: 4.25n [16] 4n − 8 ⟨5⟩ 4n − 16 [16]
k-gap-planar: 4.25

√
kn [16] 4.06n ⟨18⟩ –

in turn improve the leading constant of the celebrated Crossing Lemma which has various
applications, see [1] – currently there are tight (up to a constant number of edges) bounds for
k ∈ {1, 2, 3, 4} [15, 14, 13, 1]. The edge density was also studied when one imposes additional
restrictions on (i) the drawings (e.g., the drawing is outer [6]) or on (ii) the graphs, where
the most common restriction is to consider bipartite graphs, i.e., graphs which do not contain
any odd cycle. In Table 1, we highlight the important past results regarding the edge density
of bipartite graphs for our work.

Our contribution

In Section 3 and Section 4, we show that both bipartite 1-gap-planar graphs as well as
bipartite 3-planar graphs on n vertices have at most 4n − 8 edges, thus (partially) answering
an open problem posed in [3] and proving a conjecture posed in [16]. In Section 5, we use
the result of Section 4 to improve the constant of the bipartite crossing lemma from 1

18.1
to 1

16.5 which in turn improves the upper bound on the edge density of bipartite k-planar
graphs from ≈ 3.005

√
kn to ≈ 2.871

√
kn.

2 Preliminaries

Throughout the paper, we will assume that all drawings are simple in the sense that no two
adjacent edges cross and no edge crosses itself1. We consider bipartite graphs G = (A, B, E)
with A ∩ B = ∅ and let n = |A ∪ B| and m = |E|. We will usually denote a vertex of A (of
B) by ai (by bi). We do not require that G is simple, i.e., several edges between the same
two endpoints are allowed if they are non-homotopic in the corresponding drawing Γ, i.e., for
any such pair of edges, both the interior and the exterior of the closed region (defined by the
pair) contains at least one vertex of G.

Let B be a beyond-planar graph class. Denote by G the set of all tuples (G, Γ) where
G ∈ B is a bipartite graph of n vertices and Γ is a drawing of G (satisfying the constraints of
B) where any two copies of an edge are non-homotopic. Let G′ ⊂ G consist of all elements
(G, Γ) such that G has the maximum number of edges among all graphs contained in G.
Finally, let G′′ ⊂ G′ consist of all elements (G, Γ) such that Γ has the minimum number of
crossings among all drawings contained in G′. In the remainder, we will refer to such a tuple
(G, Γ) ∈ G′′ as a MaxMin tuple (since G has the maximum number of edges and since Γ has
the minimum number of crossings).

1 we explicitly allow that two edges cross more than once
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3 Bipartite 1-gap-planar graphs

Since we only consider 1-gap-planar graphs, we will abbreviate it henceforth by gap-planar.
The crossing graph of a drawing Γ of graph G has a vertex ve for any edge e of G and an
edge (ve, ve′) if and only if the edges e and e′ intersect in Γ. The following lemma is directly
derived from the definition of gap-planarity.

▶ Lemma 1 ([5]). Let G be a gap-planar graph. Then G admits a gap-planar drawing Γ
such that the crossing graph of Γ is a pseudoforest.

For the remainder of this section, we will fix (G, Γ) as a MaxMin tuple (regarding gap-
planarity). In order to show that G has at most 4n − 8 edges, we want to find a set of edges
of G, denoted by X , such that no two edges of X cross in Γ and such that |X | ≥ m

2 . The
result then follows immediately since X induces a bipartite planar subgraph of G, hence
|X | ≤ 2n − 4 and thus m ≤ 4n − 8 follows. To define X , we will consider the components of
the crossing graph I of Γ. Recall that by definition, no two edges that belong to different
components of I intersect, thus we can consider the components separately.

▶ Lemma 2. Let X be an arbitrary component of I. If X (i) is a tree, (ii) contains an
even-length cycle or (iii) contains an odd-length cycle C and at least one rooted tree at
a vertex of C (that is edge-disjoint from C) is a path of odd length, then X contains an
independent set of size at least |X|

2 .

Proof. If X is a tree or contains an even-length cycle, then by definition and Lemma 1
X is bipartite and thus its vertices can be colored using two colors. Each color induces
an independent set, from which one has size at least |X|

2 . For the third case, let C =
(v1, v2, . . . , vk) be the unique odd cycle of X and w.l.o.g. assume that the tree rooted at v1
is in fact a path (u1, u2, . . . , u2j+1) such that (v1, u1) ∈ I. Coloring ui with i odd implies
that we have colored j + 1 vertices in one color, which is enough to accommodate for all
vertices of the path in addition to v1. Clearly, the only vertex that is not on the path which
is influenced by the coloring is v1. Removing v1 (and the whole path) from X yields a tree
which has an independent set of the desired size as shown in the previous case. Combining
both independent sets then concludes the proof. ◀

Components of I which do not meet the criteria of Lemma 2 are called critical. By Lemma 2,
any such component X is a pseudotree whose unique odd cycle C is of odd length and none
of the trees rooted at the vertices of C are odd-length paths. For these critical components,
we cannot directly find an independent set in I of appropriate size. To be more precise, we
can only find an independent set of size

⌈
|X|−1

2

⌉
. To overcome this issue, we will show that

for any such component X, there exists an uncrossed edge in Γ (i.e., a singleton in I) which
we can uniquely assign to X. The next lemma follows by our choice of (G, Γ).

▶ Lemma 3. Let e1 = (a1, b1) and e2 = (a2, b2) be two edges of G that intersect in Γ. Then,
(a1, b2) or (a2, b1) drawn along the curves of e1 and e2 is present in Γ.

Proof. Suppose for a contradiction that neither (a1, b2) nor (a2, b1) drawn along e1 and e2
exist in Γ . Denote by x the intersection point between e1 and e2. W.l.o.g. assume that
the crossing between e1 and e2 was assigned to e1 in Γ. This implies that no crossing on
the (open) segments a1x and xb1 can be assigned to e1. Moreover, at most one crossing is
assigned to e2 by definition – w.l.o.g. assume this crossing is due to an edge that intersects e2
on the segment a2x. Now, consider the graph G′ = G \ {(a1, b1), (a2, b2)} ∪ {(a1, b2), (a2, b1)}

GD 2024
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with corresponding drawing Γ′ where the drawing of all edges but (a1, b2) and (a2, b1) is
inherited from Γ, while the edges (a1, b2) and (a2, b1) are drawn along (the original curves
of) e1 and e2, refer to Fig. 1a. First observe that G′ is a non-homotopic multigraph, as
neither (a1, b2) nor (a2, b1) drawn along e1 and e2 were present by assumption. Further, Γ′

is a valid gap-planar drawing as we do not need to assign (a1, b2) any crossing, while (a2, b1)
is assigned at most one crossing. But now we have a contradiction to our choice of G and Γ,
as G′ contains the same number of edges as G, but Γ′ contains less crossings than Γ. ◀

▶ Lemma 4. Let S be the set of singletons in I and let Z be the set of critical components
of I. Then |S| ≥ |Z|.

Proof. As we will argue about graph G and its crossing graph I simultaneously, we will
assume in the following that an edge ei = (ai, bi) of G corresponds to a vertex vi of I. Let
X ∈ Z be a critical component in I and let C = (v1, v2, . . . , v2j+1) be its unique odd cycle
in I. Pick two adjacent vertices v1 and v2 of C with corresponding edges e1 = (a1, b1) and
e2 = (a2, b2) of G. Lemma 3 ensures that at least one of (a1, b2) or (a2, b1) exists in G such
that its curve follows e1 and e2 in Γ. W.l.o.g. assume that (a1, b2) exists and denote by v

the corresponding vertex of (a1, b2) in I. We distinguish between the following two cases
based on whether v is adjacent to a vertex of C or not.

Assume first that v is adjacent to some vertex of C, i.e., (a1, b2) intersects an edge of G

associated with a vertex of C in Γ. As (a1, b2) is drawn along e1 and e2, this edge is either
e2j+1 or e3 by construction. We first observe that (a1, b2) cannot intersect both e3 and e2j+1,
as otherwise X is not a pseudoforest (this also holds in the case where e3 = e2j+1, i.e., C is a
3-cycle, in which case (a1, b2) intersects this edge at most once). W.l.o.g assume that (a1, b2)
crosses e3, the other case is symmetric. If there is an additional edge e′ besides e3 that is
crossing (a1, b2), then e′ also crosses either e1 or e2 as (a1, b2) is drawn along e1 and e2, but
then X is not a pseudoforest as this crossing would close another cycle. In particular, if it
crosses e1, then we obtain the cycle (v1, v2, v3, v, v′), and otherwise we obtain (v2, v3, v, v′),
where v′ is the corresponding vertex of e′ in I. Hence, (a1, b2) only crosses e3 – but then we
have an odd-length path rooted at v3 in I (that only contains vertex v), in which case X is
not critical, a contradiction.

Thus we can assume from now on that v is not adjacent to any vertex of C. This means
that either (a1, b2) is crossing free in Γ, or there is an edge e′ that intersects (a1, b2) and
thus either e1 or e2. We keep the former case in mind and consider the latter case. W.l.o.g.
assume that e′ intersects e1, the other case is symmetric. Denote by v′ the corresponding
vertex of e′ in I. Now, in I, we have a tree T ⊂ I[X] rooted at v1 such that (v1, v′) ∈ T and
(v′, v) ∈ T . Let t be the depth of T , let uk be a leaf of depth t and let uk−1 be the unique
parent of uk. Denote by u1

k, . . . , ur
k the children of uk with uk = u1

k and let (α, β) be the
corresponding edge to uk−1 in G. By traversing (α, β) starting from α, the first intersection
we encounter is either with an edge that corresponds to a leaf ui

k or with the edge that
corresponds to the unique parent of uk−1. If the latter case occurs, observe that by traversing
(α, β) starting at β we encounter a leaf first. Denote by (α′, β′) the corresponding edge to
ui

k in G. Hence, w.l.o.g. assume that the crossing x with (α′, β′) is the first one that we
encounter when traversing (α, β) starting at α. This implies that the segment αx is crossing
free. Moreover, since ui

k is a leaf, both segments α′x and xβ′ are crossing free – but then the
edge (α, β′) exists (crossing free) in Γ by maximality.

In both cases, we found an uncrossed edge for a fixed pair of consecutive vertices. By
repeating this argumentation for any two consecutive vertices of C, we can find a set of edges
P with |P | = |C| ≥ 3 such that any edge in P is uncrossed in Γ, i.e., belongs to S.



A. Büngener and M. Pfister 28:5

a1 b1

a2

b2
(a)

e3

e2

e1 e′1

e′2

e′3

(b)

Figure 1 (a) Illustration for Lemma 3. (b) Subgraph formed by edges ei, e′
1 for i ≤ 3. The blue

edge is a non-homotopic copy of the red ones.

It remains to consider the interaction of different components of I. Given two critical
components X and Y of I, it is possible that an edge occurs in both PX and PY . We claim
the following: any non-homotopic copy of such an edge occurs in at most two such sets.
Assuming we have this claim at hand, the total number of uncrossed edges in Γ is at least

1
2

|Z|∑
i=1

Xi ≥ 1
2

|Z|∑
i=1

3 = 3|Z|
2 ≥ |Z|

since any odd cycle of I has size at least three. It remains to prove the claim. Suppose for a
contradiction that one copy of an edge (a, b) belongs to at least three (critical) components
X1, X2 and X3. Denote by ei and e′

i the two edges of Xi where (a, b) is drawn along. By
definition, no edge of Xi crosses an edge of Xj for i ̸= j. But then e1 and e′

1, e2 and e′
2

and e3 and e′
3 need to bound the same cell of Γ which is impossible, as e1, e2 and e3 are all

incident to a, while e′
1, e′

2 and e′
3 are all incident to b, see Fig.1b. ◀

By Lemma 4, there exists a bijective mapping from S to Z. We will call a critical component
with an additional (singleton) edge an augmented component. Observe that every augmented
component X has an independent set of size

⌈
|X|−1

2

⌉
+ 1 ≥ |X|

2 .

▶ Theorem 5. An n-vertex bipartite gap-planar multigraph without homotopic parallel edges
has at most 4n − 8 edges.

Proof. Let X be the union of the maximum independent sets of every (augmented) component
X of I. Since we established that every component of I, in particular also the augmented
critical components, has an independent set of size at least half its size, it follows that |X | ≥ m

2 .
Clearly, no two edges of X intersect in I, hence the edges of X induce a planar bipartite
multi-graph GX . Since GX does not contain any homotopic multiedges by construction,
it still holds that any face of GX has length at least four. Since Euler’s formula can also
be applied to non-simple graphs, we have that GX has at most 2n − 4 edges, and thus
m ≤ 4n − 8 which concludes the proof. ◀

The lower-bound construction in [16], which yields n-vertex bipartite gap-planar graphs with
4n − 16 edges, asserts that our bound is tight up to an additive constant.

4 Bipartite 3-planar graphs

In this section, we will establish an upper bound on the number of edges a bipartite 3-planar
graph can have.

GD 2024
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▶ Theorem 6. A bipartite 3-planar graph G with n vertices has at most 4n − 8 edges.

Before we prove Theorem 6, we will provide a lower-bound construction to show its tightness
(which has been suggested in [3]).

Figure 2 Lower bound construction for bipartite 3-planar graphs. The vertices of the first and
last row coincide.

▶ Theorem 7. For infinitely many n, there exists a bipartite 3-planar graph G with n vertices
and 4n − 12 edges.

Proof. Assume n is divisible by four. We arrange the vertices equally in four rows (i.e.,
every row contains n

4 vertices) and wrap the construction around a cylinder; i.e., the topmost
and the bottommost row in Figure 2 coincide. Clearly, the drawing is 3-planar. In order
to determine the number of edges, let us count the degrees of the vertices. The vertices in
the first and last column have degree five, while all other vertices have degree eight. Hence,
2m = 8(n − 8) + 8 · 5 and thus m = 4n − 12. ◀

Similar to the previous section, we will fix (G, Γ) as a MaxMin tuple (w.r.t. 3-planarity)
for the remainder of the section. In order to prove Theorem 6, we will use the Discharging
Method, which was initially introduced in order to prove structural properties of planar
graphs, e.g., for the proof of the Four Color Theorem [4]. Our proof will reuse parts of
the notation and ideas from [1] where the author proved an upper bound on the number
of edges of 4-planar graphs. We denote by P (Γ) the so called planarization of Γ, i.e, the
vertices and crossing points of Γ are the vertices of P (Γ), while the edges of P (Γ) are the
crossing-free segments in Γ which are bounded by vertices and crossing points. We will refer
to the vertices of P (Γ) ∩ G as original. We will denote by e = (a, b) an edge of G while the
segment of e restricted to a face f of P (Γ) is denoted by f [e], or, if the two endpoints x and
y of the segment are known, we might also refer to the segment as xy. We will also use (B)
and (3P ) to abbreviate the bipartite and 3-planar property, respectively.

We will prove Theorem 6 by induction on the number of vertices of G. Clearly, if n ≤ 6,
we have 4n − 8 >

(
n
2
)

and the theorem holds. Thus, we assume that n ≥ 7. Moreover, we
can assume that every vertex in G has degree at least 5, as otherwise the theorem follows by
removing a vertex of small degree and applying the induction hypothesis. We begin with the
following important observation for P (Γ); its proof is analogous to the one in [1].

▶ Property 8. If P (Γ) is not 2-connected, then G has at most 4n − 8 edges.

Proof. Assume that P (Γ) has a vertex x such that P (Γ) \ {x} is not connected. The vertex
x is either a vertex of G or a crossing point of two of its edges. Suppose first that x is vertex
of G. Then, G \ {x} is also not connected. Let G1, . . . , Gk be the connected components
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of G \ {x}, let G′ be the graph induced by V (G1) ∪ {x} and let G′′ be the graph induced
by V (G2) ∪ . . . ∪ V (Gk) ∪ {x}. Note that 4 ≤ |V (G′)|, |V (G′′)| < n, since we established
earlier that the minimum degree of a vertex of G is at least 5. Therefore, it follows from the
induction hypothesis that |E(G)| ≤ 4|V (G′)| − 8 + 4|V (G′′)| − 8 = 4(n + 1) − 16 < 4n − 8.

Suppose now that x is a crossing point of two edges e1 and e2. Let Ĝ be the graph we
obtain by adding x as a vertex to G. Therefore, |V (Ĝ)| = n + 1 and |E(Ĝ)| = |E(G)| + 2.
Let G1, . . . , Gk be the connected components of Ĝ \ {x}, let G′ be the graph induced by
V (G1)∪{x} and let G′′ be the graph induced by V (G2)∪ . . .∪V (Gk)∪{x}. Again, note that
4 ≤ |V (G′)|, |V (G′′)| < n by our observation about the minimum degree. It follows from the
induction hypothesis that |E(G)| ≤ 4|V (G′)|−8+4|V (G′′)|−8−2 = 4(n+2)−18 < 4n−8. ◀

Property 8 allows us to assume that P (Γ) is 2-connected. The boundary δf of a face f in
P (Γ) consists of all the edges of P (Γ) that are incident to f . Since P (Γ) is 2-connected, the
boundary of every face in P (Γ) is a simple cycle. Thus, we can define the size of a face f , |f |,
as the number of edges of P (Γ) on its boundary. We will denote by V (f) the set of original
vertices on the boundary of f .

▶ Observation 9. The boundary of every face in P (Γ) is a simple cycle.

Similar to [1], we begin by assigning a charge to every face of P (Γ) such that the total
charge is 4n − 8. Then, we redistribute the charge in several steps such that the charge
of every face is non-negative and the charge of every original vertex v is at least deg(v)/2.
Hence, |E(G)| =

∑
v∈V (G) deg(v)/2 ≤ 4n − 8 and we get the desired bound on |E(G)|.

Let V ′, E′, and F ′ denote the vertex, edge, and face sets of P (Γ), respectively. Clearly,∑
f∈F ′ |V (f)| =

∑
v∈V (G) deg(v) and

∑
f∈F ′ |f | = 2|E′| =

∑
u∈V ′ deg(u) holds. Every

vertex in V ′ \ V (G) is a crossing point in G and therefore its degree in P (Γ) is four. Hence,∑
f∈F ′

|V (f)| =
∑

v∈V (G)

deg(v) =
∑

u∈V ′

deg(u) −
∑

u∈V ′\V (G)

deg(u) = 2|E′| − 4 (|V ′| − n) .

Assigning every face f ∈ F ′ a charge of |f | + |V (f)| − 4, we get a total charge of∑
f∈F ′

(|f | + |V (f)| − 4) = 2|E′| + 2|E′| − 4 (|V ′| − n) − 4|F ′| = 4n − 8,

Recall that we will redistribute the initial charge s.t. the charge of every face of F ′ is
non-negative, while every original vertex v has charge at least deg(v)/2. An equivalent
precondition is that

ch(f) ≥ 0.5 · |V (f)| for all f ∈ F ′ (1)

as we can then redistribute the excess charge from the faces to the original vertices in a
final step. Let f be face of F ′ with |V (f)| = x and |f | = y. We will then refer to f as
an x-y face. To ease the notation, we will use the terms triangles, quadrangles, pentagons,
hexagons and heptagons to refer to faces of size 3,4,5,6 and 7, respectively. For example,
a 2-triangle is a face of size 3 whose boundary contains two original vertices. Since Γ is a
non-homotopic drawing with the minimum number of crossings, there are no faces of size 2 in
F ′. Therefore, initially, the only faces which do not satisfy Equation (1) are 0-triangles and
1-triangles. In order to ensure that a face f still satisfies Equation (1) after it redistributed
some of its charge to another face, we will introduce the notion of local charge for faces that
contain sufficiently many original vertices. Let f ∈ F ′ be a face of P (Γ) with |V (f)| ≥ 2. Let

GD 2024
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v1, v2, . . . vk be the (ordered) sequence of vertices of P (Γ) that are contained in δf . Let vi

and vj be two consecutive original vertices of δf with i < j, i.e., all vertices vk with i < k < j

are crossing points in Γ.
If |j−i| > 1 (mod(k−1)) holds, then we split f along the hypothetical edge (vi, vj) and obtain
a so called subdivision face fa = (vi, vi+1, . . . , vj). Observe that |fa| ≥ 3 and |V (fa)| = 2.

For example, let f be a 2-pentagon with vertices v1, v2, v3, v4, v5 such that v1 and v3
are original vertices. By splitting along the pair {v1, v3} we obtain the subdivision face
fa = (v1, v2, v3) and, as a remainder, fb = (v3, v4, v5, v1). Observe that in this particular case,
fb is also a subdivision face as |fb| ≥ 3 and |V (fb)| = 2, but this is not the case in general.
Let us now consider the charge distribution of such a subdivision. Since a subdivision always
occurs at an edge between two original vertices, we have |V (fa)| + |V (fb)| = |V (f)| + 2
and |fa| + |fb| = |f | + 2. Hence, ch(f) = ch(fa) + ch(fb) after the initial assignment holds.
Since both fa and fb contain the two original vertices on their boundary which defined the
subdivision edge and since the subdivision edges do not contribute to the degree of these two
vertices, fa and fb have to retain less charge. In particular, we require that every subdivision
face fa satisfies

ch(fa) ≥ 0.5 (2)

while the remainder fb has to satisfy

ch(fb) ≥ 0.5(|V (fb)| − s(fb)) (3)

where s(fb) is the number of subdivision edges on the boundary of fb. Observe that
Equation (2) is a special case of Equation (3) when |V (f)| = 2 and s(f) = 1. If all
subdivision faces fx of a face f (and its possible remainder) satisfy Equation (2) and
Equation (3), it is immediate that f satisfies Equation (1), which allows us to argue about
the charge in a more local way. In order to describe the way the charging of {0, 1}-triangles
works we will need the following definitions. Let f be a face, let e be one of its edges, and let
f ′ be the other face that shares e with f . We say that f ′ is the immediate neighbor of f at e.
Note that f ′ ̸= f since P (Γ) is 2-connected. The following two definitions are taken from [1].

Wedge-neighbors. Let f0 be a {0, 1}-triangle in P (Γ) and let x1 and y1 be two vertices of
f0 that are crossing points in Γ. Denote by ex (resp., ey) the edge of G that contains x1 (resp.,
y1) and does not contain y1 (resp., x1). Note that ex and ey intersect at the other vertex
of f0. Let f1 be the immediate neighbor of f0 at x1y1. For i ≥ 1, if fi is a 0-quadrangle,
then denote by xi+1yi+1 the edge of P (Γ) opposite to xiyi in fi, such that ex contains xi+1
and ey contains yi+1, and let fi+1 be the immediate neighbor of fi at xi+1yi+1. Observe
that fi ̸= fj for i < j, for otherwise xj coincides with one of xi and xi+1 (which implies
that ex crosses itself) or with one of yi and yi+1 (which implies that ex and ey intersect
more than once). Let j be the maximum index for which fj is defined. We then call fj the
wedge-neighbor of f0 at x1y1 (note that fj is uniquely defined). We also say that f0 is the
wedge-neighbor of fj at xjyj . Observe that since the relations being an immediate neighbor
at a certain edge of P (Γ) and being an opposite edge in a 0-quadrangle are both one-to-one,
it follows that indeed there cannot be another triangle but f0 that is a wedge-neighbor of fj

at xjyj . Note also that since ex and ey already intersect at a vertex of f0, and by definition
fj cannot be a 0-quadrangle, either |fj | ≥ 5 or |fj | = 4 and |V (fj)| ≥ 1.

▶ Observation 10 ([1]). Let f be a face and let e be one of its edges. Then there is at most
one triangle t such that t is a wedge-neighbor of f at e. If such a triangle exists, then either
|f | ≥ 5 or |f | = 4 and |V (f)| ≥ 1.
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Vertex-neighbors. Let x be a crossing point in Γ and let f0, f1, f2 and f3 be the four faces
that are incident to x in clockwise order around x. Note that these faces are distinct, since
P (Γ) is 2-connected. We say that f0 and f2 (resp., f1 and f3 ) are vertex-neighbors at x.

We will introduce one additional kind of neighbor relation.

Rich immediate neighbor. Let f be a face with edges e0, e1, . . . ek. We call an immediate
neighbor f ′ of f at edge ei rich if, in the facial walk of f ′, we have ej−1, ej , ej+1 such that
ei = ej , the common endpoint of ej−1 and ej (ej+1 and ej) is a crossing point in Γ, while
the other endpoint of ej−1 (ej+1) is an original vertex.

4.1 Step 1: Charging the 0-triangles
Consider a 0-triangle f and its immediate neighbors f0,f1 and f2. If one such fi is a rich
immediate neighbor, it charges one unit to f . Otherwise, f obtains 1

3 units of charge from
each of its three wedge-neighbors. Hence, in every case, ch(f) = 0 for all 0-triangles f .

▶ Property 11. Let f be a 0-triangle. If one immediate neighbor fi of f is a 0-x face, then
f has a rich immediate neighbor fj with fj ̸= fi.

Proof. Assume that the edges that define f are denoted by e0, e1 and e2 such that face fi

shares the edge ei with f . W.l.o.g. assume that f0 is a 0-x face. Then, by definition, e1 and
e2 have a crossing in δf0 \ δf and are thus crossed three times each. Since e0 is crossed by e1
and e2 already, it can be crossed at most once more, w.l.o.g. assume that e0 has a crossing
in δf1 \ δf . But then f2[e0] and f2[e1] each contain an original vertex by (3P ) and hence f2
is a rich immediate neighbor. ◀

▶ Observation 12. No 0-x face has to pay in the initial charging step.

Obviously, a sufficiently large face can be a wedge-neighbor and an immediate neighbor to
several other faces. Fix an edge e. Since both the immediate neighbor relation and the
wedge-neighbor relation is unique, e can be assigned to at most one wedge-neighbor (to at
most one immediate neighbor). Further, if e is used for the rich immediate neighbor relation,
it substitutes the wedge-neighbor relation. Hence, a face f is either a wedge-neighbor or
a rich immediate neighbor over each of its edges. Since every rich immediate neighbor
relation introduces three new edges and an original vertex (every wedge-neighbor relation
introduces one new edge), our face gets an additional charge of four (one) units which clearly
accommodates for the discharge if our face is sufficiently large. For example, a 2-pentagon
that is wedge-neighbor to one rich immediate neighbor has, after discharging, still two units of
charge left, which clearly satisfies Equation (1). We conclude with the following observation:

▶ Observation 13. After the initial charging step, only the 1-triangles and (possibly) the
1-quadrangles do not satisfy Equation (1).

Observe that the charge of every 1-triangle is 0, while the charge of a 1-quadrangle can be as
low as 1

3 (this occurs when a 1-quadrangle is a wedge-neighbor to two 0-triangles).

4.2 Step 2: Charging the 1-triangles
Every 1-triangle obtains 0.5 units of charge from its unique wedge-neighbor. Since a 1-triangle
is not a wedge-neighbor to a 0-triangle by Observation 10, it did not loose charge in the
previous step, hence we have ch(f) = 0.5 for any 1-triangle f ∈ F ′. Observe that after these
two rounds, every triangle satisfies Equation (1) (while this is explicit for {0, 1}-triangles,
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Observation 10 guarantees that no triangle is a wedge-neighbor and, by definition, they are
also not a rich immediate neighbor, hence the charge of 2-triangles still satisfies Equation (1)).
Moreover, by definition, 0-quadrangles are not a wedge-neighbor nor a rich neighbor. Since
any x-y face can be wedge-neighbor to at most y − x triangles, they loose at most 1

2 (y − x)
charge in the second step and thus always satisfy Equation (1) if y ≥ 8. Recall that wedge-
neighbor relations and rich immediate neighbor relations cannot interfere and rich immediate
neighbors give a vast surplus of charge to our face. Thus, the only faces which potentially do
not satisfy Equation (1) are 0-heptagons, 0-hexagons, 0-pentagons and 1-quadrangles. We
will now establish that the first two in fact satisfy Equation (1):
1. Face f is a 0-heptagon: By Observation 12, f did not discharge to a 0-triangle. Since

its initial charge of three is sufficient if f is a wedge-neighbor to at most six triangles,
f needs to a be a wedge-neighbor to seven 1-triangles. But this is impossible as the
corresponding edges would form an odd cycle in G, a contradiction to (B).

2. Face f is a 0-hexagon: Again, we have by Observation 12 that f did not discharge to a
0-triangle. Its initial charge is sufficient if f is wedge-neighbor to at most four 1-triangles.
If f is a wedge-neighbor to five or six 1-triangles, we again have an induced cycle of odd
length in G, a contradiction to (B).

4.3 Step 3: Recharging 0-pentagons and 1-quadrangles
In order for a 0-pentagon (1-quadrangle) to not satisfy Equation (1), it requires a quite
limited local structure which we will exploit to locally redistribute charges.

Throughout the analysis, we will denote by e0, e1 . . . ek−1 the original edges (i.e., the
edges in G) whose pairwise crossing points (and the corresponding segments) define face f .
Let ei = (ai, bi) where ai ∈ A and bi ∈ B are original vertices. We will refer to the immediate
neighbor to f at the edge ei as fi. We will denote by xi the common endpoint of f [ei]
and f [ei+1] which is part of the boundary δf of f . We will further denote by f ′

i the vertex
neighbor of f at xi. Finally, we will denote by ti the 1-triangle which is the wedge-neighbor
to f at edge ei (if it exists). Note that if ti exists, then ti = fi unless fi is a 0-quadrangle.
We denote the unique real vertex of ti as vi. Throughout the proof, our charging scheme will
maintain the following invariant.

▶ Invariant 14. Let x be an intersection point that belongs to the boundary δf of a face f

and let e1 and e2 be the edges which define x. If neither f [e1] nor f [e2] contains an original
vertex, then f does not discharge over x.

4.3.1 f is a 1-quadrangle
With a slight abuse of notation, let v = x3 be the real vertex of f . W.l.o.g. assume that
v ∈ A.
1. f is wedge-neighbor to two 0-triangles. It follows that e1 and e2 are crossed three times

each. Consider f ′
0. By assumption, δf ′

0 contains f ′
0[e0], f ′

0[e1] and f ′
0[e2] such that the

endpoints of f ′
0[e1] \ f ′

0[e0] and f ′
0[e2] \ f ′

0[e0] are original vertices by (3P ), see Fig. 3a.
Hence, f ′

0 is a rich immediate neighbor to f1. A similar observation holds for f ′
2 and f2.

Thus, f did not loose any charge in the initial step and thus satisfies Equation (1), see
Fig. 3a.

2. f is wedge-neighbor to two 1-triangles. Consider the edges e1 and e2. They both have
exactly two crossings which belong to δf .
a. f0[e1] contains an original vertex. In particular, since f2 is a 1-triangle, we have by

(B) that the endpoint of f0[e1] is of the same partition as v and thus it is a1. This
implies that the segment of e1 delimited by a1 and x0 is not crossed (in which case
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Figure 3 Illustrations used in the recharging of 1-quadrangles.

the gray-dashed edge in Fig. 3b that intersects e0 is not present) and the sequence
(a1, x0, v) of f0 defines a subdivision face, which contains 0.5 excess charge which will
be redistributed to f (over its vertex neighbor f1 at x0).

b. f3[e2] contains an original vertex. Following an analogous argument as before, this
original vertex is a2 and thus the sequence (v, x2, a2) forms a subdivision face and
distributes its excess charge to f via f2.

c. Neither f0[e1] nor f3[e2] contains an original vertex. This setting can be observed in
Fig. 3b if we assume that both gray-dashed edges are present. Consider the vertex
neighbor f ′

1 to f at x1. Since e1 and e2 are both crossed thrice, it follows that both
f ′

1[e1] and f ′
1[e2] contain an original vertex. Thus (b1, x1, b2) forms a subdivision face

which will transfer its excess charge to its vertex-neighbor f at x1.
3. f is wedge-neighbor to one 0-triangle and one 1-triangle. W.l.o.g. assume that the

wedge-neighbor to f via edge e1 is a 0-triangle and hence the wedge-neighbor to f via
edge e2 is a 1-triangle. By assumption, edge e2 has three crossings. Assume first that,
a2 ∈ f3[e2], see Fig. 3c. Suppose first that f2 ̸= t2, i.e., the gray-dashed edge in Fig. 3c is
present. Observe that in this case, we have that e1 and e2 have three crossings each. But
then f ′

0 is a rich immediate neighbor to f1 (as witnessed by the edges f ′
0[e2], f ′

0[e0] and
f ′

0[e1]) and hence f did not charge f1 to begin with, a contradiction to our assumption.
If f2 = t2 holds, then we observe that (v, x2, a2) defines a subdivision face of f3, which
will distribute its excess charge to its vertex-neighbor f2 at x2, which will then propagate
it to its unique wedge-neighbor f . Otherwise, we have b2 ∈ f3[e2] and thus a2 ∈ f ′

0[e2].
If also a1 ∈ f ′

0[e1] holds, then f ′
0 is a rich immediate neighbor to f1 – hence f did not

redistribute charge to f1 and thus its charge was sufficient to begin with. Hence assume
that a1 ̸∈ f ′

0[e1], which implies e1 has an additional crossing which belongs to δf ′
0. In this

case, consider f ′
2 and observe that (b2, x2, b3) lie consecutively on the boundary of f ′

3, as
the dotted red edge in Fig. 3d cannot be present due to (3P ), hence the sequence defines
a subdivision face which distributes its excess charge to its vertex neighbor f at x2.

4.3.2 f is a 0-pentagon
Observation 12 establishes that f is not a (discharging) wedge-neighbor to any 0-triangle.
By (B), f cannot be a wedge-neighbor to five 1-triangles.

f is a wedge-neighbor to exactly three 1-triangles

Observe that in this case, it is sufficient to distribute 0.5 units of charge to f . Assume first
that the three 1-triangles appear consecutively. W.l.o.g. assume that t0, t1 and t2 exist and
that the common endpoint of e0 and e2 (i.e., v1) is of the same partition as v0.
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Figure 4 Illustrations used in the recharging of 0-pentagons that are wedge-neighbors to three
1-triangles.

1. f3 is a 0-x face. In this case, both e2 and e4 have a crossing in δf4 \ δf and are thus
crossed three times each – this implies that f0 = t0 and f1 = t1 and thus the sequence
(v1, x0, v0) forms a subdivision face of f ′

0 which can distribute its excess charge of 0.5
units to its vertex-neighbor f at x0, see Fig. 4a.

2. f3 is a 1-quadrangle, hence either e2 or e4 has a crossing in δf3 \ δf .
e2 has a crossing in δf3 \ δf . Again we observe that f3 cannot be a wedge-neighbor at
e2 by (B). Thus, if f ′

2 is not a 0-pentagon, f3 has sufficient excess charge which can be
distributed to its immediate neighbor f at e3, see Fig. 4b. If f ′

2 is a 0-pentagon, then
we necessarily have an additional edge that intersects both e1 and e3. But then, by
assumption both e1 and e2 have three intersections each – hence it holds that f0 = t0
and f1 = t1 and thus (v1, x0, v0) forms a subdivision face of f ′

0 which distributes its
excess charge to its vertex-neighbor f at x0, see Fig. 4c.
e4 has a crossing in δf3 \ δf . In this case, the immediate neighbor of f3 at e4 can
be a 1-triangle f ′, see Fig. 4d (if this is not the case, we proceed as in the previous
case). Let us denote the unique original vertex of f ′ by v′. If b0 ∈ f4[e0] then the
sequence (b0, x4, x3, v′) either defines f4 or forms a subdivision face – in both cases
it has sufficient excess charge to distribute 0.5 units each to its vertex-neighbor f0
at x4, which then propagates the charge to its unique wedge-neighbor f . Otherwise,
b0 ̸∈ f4[e0]. Since e4 and e0 have three crossings each, it follows that f0 = t0 and
f1 = t1 and hence again (v1, x0, v0) forms a subdivision face of f ′

0 which distributes its
excess charge to its vertex-neighbor f at x0, again see Fig. 4d.

3. In the remaining cases, f3 always has sufficient charge which it can distribute to f over
edge e3. The crucial observation is that the edge e3 is neither part of a wedge-neighbor
relation nor of a rich immediate neighbor relation. Since we discharge 0.5 units over e3,
which is the same quantity as a discharge over an edge that defines a wedge-neighbor
relation in the second step, the analysis at the start of Step 2 still holds.

Assume now that the three 1-triangles do not appear consecutively. W.l.o.g. assume that
t0, t2 and t3 exist and that v0 ∈ A (which implies v2 ∈ B and v3 ∈ B). Further, assume that,
when traversing e0 starting at a0, we encounter x4 before x0, see Fig. 4e.
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1. f4 is a 0-x face. This implies that both e0 and e3 have a crossing in δf4 \ δf . Consider
f1. By construction b0 ∈ f1[e0], thus f1 is not a 0-x face. By assumption, f1 is not a
1-triangle. If f1 is a 1-quadrangle, it is not a wedge-neighbor to any 1-triangle by (B)
and it cannot be a wedge-neighbor to a 0-triangle due to (3P ) (as it would necessarily
have to cross e1 and hence also e3, which already has three crossings), see Fig. 4e. The
crucial observation here is that f ′

1 cannot be a 0-pentagon, as this would imply f2 ̸= t2
and thus an additional crossing of e3, a contradiction to (3P ). Hence, f1 does not have
to distribute charge over the edge e2 and hence has sufficient excess charge to distribute
0.5 units of charge to its immediate neighbor f . Finally, if f1 is any larger face, it again
has sufficient excess charge which can be distributed to f (the argument is analogous to
the previous case).

2. f4 is a 1-quadrangle. Assume first that a0 ̸∈ f4[e0]. Hence, a3 is the unique vertex of
f4, see Fig. 4f. By (B), f ′

4 cannot be a 1-triangle. If f ′
4 is a 0-x face, then there is an

edge e′ that intersects e4 and e1 such that f0 ̸= t0. But then both e1 and e4 have three
crossings each, and hence the sequence (v3, x2, v2) forms a subdivision face of f ′

2 which
distributes 0.5 units of charge to its vertex-neighbor f , see Fig. 4f. If f ′

4 is not a 0-x face
(in particular, not a 0-pentagon), then f4 has sufficient charge which it distributes to its
immediate neighbor f at e4.
Assume now that a3 ̸∈ f4[e3]. Hence, a0 is the unique vertex of f4. If f0 = t0, then
the sequence (v0, x4, a0) defines a subdivision face of f ′

4 which distributes its charge to
its vertex-neighbor f at x4. This situation is depicted in Fig. 4g when the dashed-gray
edge does not exist. Otherwise, f0 ̸= t0 and thus f0 is a 0-quadrangle. This implies that
t2 = f2 and t3 = f3 by (3P ). But then the sequence (v3, x2, v2) defines a subdivision face
of f ′

2 which distributes its excess charge to its vertex-neighbor f at x2, again see Fig. 4g.
3. f4 is a larger face. Again, f4 contains sufficient charge which it can distribute to f .

f is a wedge-neighbor to four 1-triangles

W.l.o.g. we assume that f4 is not a 1-triangle and that v0 ∈ A, which implies that v1 ∈
A, v2 ∈ B and v3 ∈ B.
1. f4 is a 0-x face. It follows that both e0 and e3 have three crossings each. Let us first

consider the case where f4 is a 0-quadrangle. Let e′ be the edge of f4 opposite to e4.
Further, denote by x (y) the intersection of e′ with e0 (e3). Let f ′ be the immediate
neighbor of f4 at e′. By (B) and (3P ) we have b0 ∈ δf ′ and a3 ∈ δf ′. But then the
sequence fa = (b0, x, y, a3) forms a subdivision of f ′ (note that fa could coincide with f ′)
which has an excess of at least one charge. Since it is not possible that both immediate
neighbors of f4 different from f ′ and f are 0-pentagons by (3P ), f ′ looses at most 0.5
charge over a vertex-neighbor relation – thus it can distribute 0.5 charge to f through f4.
In order to determine who supplies the remaining 0.5 charge, consider e0. If e0 has no
crossing in δf0 \ f , then the sequence (v1, x0, v0) forms a subdivision which distributes
its excess charge to f ; otherwise, if e0 has a crossing in δf0 \ f , then by (3P ) e0 has
no crossing in δf3 \ f and hence (v3, x2, v2) forms the desired subdivision, see Fig. 5a.
Henceforth, we can thus assume that f4 is not a 0-quadrangle.
a. e4 has no crossing outside of δf . Observe that this implies that also e1 and e2 do not

have any additional crossings outside of δf , as an edge which is crossing e1 or e2 would
necessarily also cross either e0, e3 or e4. We can thus identify two pairs of consecutive
vertices of the same partition, namely (v0, v1) and (v2, v3). Observe that δf ′

0 (δf ′
2)

contains both v0 and v1 (v2 and v3). Hence, (v1, x0, v0) and (v3, x2, v2) each form a
subdivision face which can distribute its excess charge to its vertex-neighbor f at x0
and x2, respectively, see Fig. 5b.
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ẽ1

f ′
0

(e)

e0

v0

f4

v2

v1

v3

e4

f ′
2

f0

f ′

f̃

ẽ0
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Figure 5 Illustrations used for the first part of the case analysis where face f is a 0-pentagons
that is a wedge-neighbor to four 1-triangles.

b. e4 has a crossing in δf0 \ δf with an edge e′ = (a′, b′), the case where e4 has a crossing
in δf3 \ f is symmetric. This implies that v0 ̸∈ f0[e4] and thus f0 ̸= t0. We can then
again observe that f3 = t3 and f2 = t2 holds and thus (v3, x2, v2) forms a subdivision
face of f ′

2, which distributes its excess charge of 0.5 to its vertex-neighbor f at x2. For
the remaining 0.5 charge, we consider the following cases.
i. a′ ∈ f ′

0[e′] and a′ ̸= v1 or b′ ∈ f ′
0[e′], see Fig. 5c. Let v′ be the original vertex of

f ′
0[e′]. Hence, by assumption v′ = b′ or v′ = a′, in both cases it holds that v′ ̸= v1

(by (B) or by assumption). The sequence (v1, x0, x, v′), where x is the intersection
point of e′ and e1, then defines a subdivision face fa (in the case of v′ = b′, it is
possible that fa and f ′

0 coincide). Observe that the vertex-neighbor of fa at x is t0,
which does not require any charge. Note that fa is potentially a wedge-neighbor via
the edge e1. However, since the initial charge of fa is at least 2 (the extremal case
occurs if fa = f ′

0 holds). In every case, fa has an excess charge of at least one unit,
it has sufficient charge such that it can distribute 0.5 to its wedge-neighbor and 0.5
to its vertex-neighbor f at x.
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ii. a′ ∈ f ′
0[e′] and a′ = v1. Again, let x be the intersection between e′ and e1 and let f ′

be the vertex-neighbor of f0 at x. Since a′ ∈ f ′
0[e′] and since e1 already has three

crossings, it follows that (v1, x, v0) forms a subdivision of f ′, see Fig. 5d, which
charges 0.5 units to its vertex-neighbor f0 at x. Before we propagate this charge
from f0 to f , we first have to consider f ′

4. If f ′
4 is not a 0-pentagon, f ′

4 has sufficient
charge even before the third step, unless f ′

4 is a 1-quadrangle. However, in the
previous case analysis, we never required a 0-quadrangle to propagate the charge to
a 1-quadrangle – hence, we can safely propagate 0.5 units of charge from f0 to f .
Hence, consider now the case that f ′

4 is a 0-pentagon. Note that this implies that f4
cannot be a 0-triangle by (3P ). Since the following analysis is quite detailed, we set
f̃ = f ′

4 and reuse the adjusted notation of f . In particular, we get ẽ0 = e′, ẽ1 = e4
and ẽ2 = e0, see Fig. 5e. Observe that t̃1 = f ′

0 and sincef̃2 = f4 and since we
covered the case where f4 is a 0-quadrangle already, it follows that t̃2 does not exist.

A. f̃ is wedge-neighbor to at most two 1-triangles. In this case, f̃ does not require
any charge and hence f0 can propagate 0.5 units to f .

B. f̃ is wedge-neighbor to three 1-triangles.
t̃3 is missing. Assume first that f̃3 is a 1-quadrangle. By (B), it is not a
wedge-neighbor at ẽ4 to a 1-triangle, see Fig. 5f. Moreover, the immediate face
at ẽ4 is not a 0-x face by (3P ). Thus, f̃3 does not loose charge over ẽ4 and we
can therefore distribute the excess charge to f̃ . If f̃3 is not a 1-quadrangle,
then the sequence (b̃4, x̃3, x̃2, b̃2) forms a subdivision of face f̃3, see Fig. 5g.
This subdivision has 1.5 units of excess charge and can therefore charge 0.5 to
its immediate neighbor f̃ at ẽ3 as well as 0.5 to its vertex-neighbors at x̃2 and
x̃3 (if required).
t̃4 is missing. By (3P ), face f̃4 is not a 1-quadrangle as it contains an original
vertex of ẽ3, which we denote by ṽ as well as b̃0. The sequence (b̃0, x̃4, x̃3, ṽ)
forms a subdivision face fa of face f̃4 (observe that fa = f̃4 is possible) – hence
fa has at least one unit of excess charge, see Fig. 5h. Since its vertex-neighbor
at x̃4 is a 1-triangle, it does not charge over x̃4 (the same holds for x̃3, but
this is not necessary), and thus its excess charge is sufficient to distribute 0.5
units to its immediate neighbor f̃ at f̃4.
t̃0 is missing. Assume first that f̃0 is a 1-quadrangle. Note that in this case,
it is possible that f̃0 is a wedge-neighbor at ẽ4 to a 1-triangle t∗. If this is
not the case, we proceed as in the first subcase, i.e., f̃0 charges its excess of
0.5 units to its immediate neighbor f̃ at ẽ0. If f̃0 is a wedge-neighbor at ẽ4,
then we consider the immediate neighbor of f̃0 at the edge e∗ = (ã1, b̃0), see
Fig. 5i, which we denote by f∗. If we denote by x∗ the intersection point
between e∗ and ẽ4, then the sequence (ã1, x∗, ã3) defines a subdivision face
which distributes its excess charge to its vertex-neighbor t∗ at x∗. Thus, f̃0
can again distribute its excess charge to f̃ as desired. The case where f̃0 is
not a 1-quadrangle is analogous to the previous ones, i.e., we can identify a
suitable subdivision face.

C. f̃ is wedge-neighbor to four 1-triangles. In this extremal case, we have the setting
depicted in Fig. 6a. We can again observe that the sequence (b̃0, x̃3, b̃2) forms
a subdivision face of f̃ ′

3 which can distribute 0.5 units of charge to f̃ . In this
case, we will evenly split the charge that f0 obtained earlier such that each of
f̃ and f obtain 0.25 units. Note that both f̃ and f need an additional charge
of 0.25 units. Consider face f4. Recall that f4 is a 0-x face by assumption, but
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Figure 6 Illustrations used for the second part of the case analysis where face f is a 0-pentagons
that is a wedge-neighbor to four 1-triangles.

it cannot be a 0-triangle as observed earlier. If f4 has size at least seven, it has
sufficient charge to distribute 0.25 to each of f̃ and f . To see this, let x = |f4|
and observe that f4 has an excess charge of x − 4. Since f4 does not contain
any original vertices, it cannot be a rich immediate neighbor nor a discharging
vertex-neighbor by Inv. 14. Further, since f looses a combined charge of 0.5 over
the edges e0 and e4, it follows that it discharges at most 0.5(x − 1) ≤ x − 4 for
x ≥ 7. If f4 is a 0-6 and does not have sufficient charge, then we have exactly
the setting depicted in Fig. 6b. But then the sequence (ã3, x, a3) is a subdivision
face which distributes 0.5 charge to its vertex-neighbor f4 at x, which can then
be used to charge f̃ and f . Hence, assume that f4 is a 0-5 face, see Fig. 6c for
the extremal case where f4 is an immediate neighbor to two 0-pentagons f̃ and f

as well as a wedge-neighbor to two 1-triangles (the other possible arrangements
of the two 1-triangles surrounding f4 are symmetric). Let f ′ be the immediate
neighbor of f4 at the edge ẽ3. By (3P ) we have b̃2 ∈ δf ′. Now, consider the
edge e∗ = (a∗, b∗) that is incident to v3 (i.e., v3 = b∗) and intersects the edge ẽ3.
If a∗ ∈ δf ′, then we can find a subdivision face, see Fig. 6c, which charges its
immediate neighbor f4 at ẽ3. Otherwise, if a∗ ̸∈ δf ′, then e∗ is intersected by an
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additional edge e′′. If e′′ = (a3, b̃2), then a3 and a∗ (together with an intersection
point) again define a subdivision face, see Fig. 6d. We remark here that the local
configuration which can be observed in Fig. 6d is dense, i.e., we do not have
any excess charge left – this then yields, after an appropriate concatenation of
the configurations, an alternative construction of bipartite 3-planar graphs on n

vertices and 4n − O(1) edges.
If e′′ ̸= (a3, b̃2), we claim that (G, Γ) ̸∈ G′′. Indeed, by substituting the edge
ẽ3 by the edge (a3, b̃2) (which will be drawn along the old curve of ẽ3 and e0)
and inheriting the remainder of the drawing, we can construct a graph G′ and a
corresponding 3-planar drawing Γ′ with strictly less crossings. Observe that by
our construction, any copy of (a3, b̃2), if it exists, is not homotopic to our new
curve. Hence, we obtain a contradiction to our choice of (G, Γ).

iii. a′ ̸∈ f ′
0[e′] and b′ ̸∈ f ′

0[e′]. Suppose first that, when traversing e′ starting at a′, we
encounter its intersection with e4 before its intersection with e0, see Fig. 6e. Let
x be the intersection between e′ and e4 and let f ′ be the vertex-neighbor of f0 at
x. The sequence (v0, x, a′) defines a subdivision face which charges 0.5 units to its
vertex-neighbor f0 at x. The crucial observation is that by (3P ), a′ is necessarily
part of f ′

4 – by a similar argument as in the previous case, f ′
4 has sufficient charge

and thus f0 can propagate 0.5 to f .
Suppose now that, when traversing e′ starting at b′, we encounter its intersection
with e4 before its intersection with e0, see Fig. 6f. But then our choice of (G, Γ) is
a contradiction to our assumption unless b′ and b0 coincide, as the drawing Γ′ of
G \ e′ ∪ {(b′, v1)}, which inherits the curve of all edges of Γ and adds the edge (b′, v1)
such that its curve is drawn along e′, e1 and e0, see the green edge in Fig. 6f, has
strictly less crossings. Suppose therefore that b′ and b0 would coincide. But since
f4 is by assumption a 0-x face, we have that e0 contains a crossing in δf4 \ f – but
then by (3P ) we necessarily have b0 = b′ ∈ δf ′

0, a contradiction to our assumption.

2. f4 is a x-y face with x ≥ 1. By assumption, f4 is not a 1-triangle and by construction it
cannot be a 2-triangle.

f4 is a quadrangle. Observe that it cannot be a wedge-neighbor via edges e3 or e0 by
(B), see the red dotted edge in Fig. 6g for the case of e0, the other is symmetric. W.l.o.g.
we assume that f4[e0] does not contain an original vertex, i.e., the unique original
vertex of f4 is an endpoint of e3. Now, consider face f ′

4. If f ′
4 is not a 0-pentagon,

then f ′
4 does not loose any charge over e0 and hence can distribute its excess charge to

its immediate neighbor f at e4. If f ′
4 is a 0-pentagon, we necessarily have that f0 ≠ t0,

see Fig 6h. But then e1 and e4 are crossed by an edge e′ which has, by definition,
an additional crossing in f ′

4. Consequently, by (3P ), f ′
0 contains an endpoint of e′.

Let v′ be this endpoint and denote by x′ the intersection of e′ with e1. If v′ ≠ v1,
we either have f ′

0 = (v1, x0, x′, v′) or (v1, x0, x′, v′) forms a subdivision face of f ′
0, see

Fig. 6h. In either case, f ′
0 has sufficient charge such that it can distribute 0.5 units to

its vertex-neighbor f at x0. Otherwise, v′ and v1 coincide, see Fig. 6i and we are in the
same setting as in Case 1(b)ii with the difference that f4 is a 1-quadrangle instead of a
0-x face. Again, we can observe that (v1, x, v0), where x is the intersection between e′

and e1, forms a subdivision face and it charges 0.5 units to its vertex-neighbor f0 at x0.
Similar to the previous case, f0 distributes 0.5 units to f unless f ′

4 is a wedge-neighbor
to exactly four 1-triangles. If f ′

4 is a wedge-neighbor to four 1-triangles, then the
remaining charge for f ′

4 and f (we will cover the missing 0.5 charge for f right after)
is provided by f4 – as it has 0.5 excess charge, it can distribute 0.25 to each of its
wedge-neighbors, see Fig. 6i.
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f4 is a larger face. Similar to previous cases, f4 then always has sufficient excess charge
to distribute 0.5 to its immediate neighbor f at edge e4.

In order to determine who distributes the missing 0.5 charge to f , we consider face f4.
By assumption, f4 contains at least one original vertex. Assume first that both b0 and
a3 belong to δf4. In this case f4 is a 2-quadrangle (or a larger face) and has an excess
charge of at least one. Since the vertex-neighbor at x3 is a 1-triangle, it does not loose
charge over x3 – hence, it has sufficient charge to (potentially) distribute 0.5 via x4 and
to distribute 0.5 to its immediate neighbor f . Hence, assume that exactly one of b0 or a3
belongs to δf4. Assume w.l.o.g. that a3 belongs to δf4 which implies that e0 has and
additional crossing in δf4 \ f . Now, if f0 = t0 holds, then (v1, x0, v0) defines a subdivision
face which distributes its excess charge to its vertex-neighbor f at x0. Otherwise, if
f0 ̸= t0, then e1 and e4 have an additional crossing. But then neither e2 nor e3 can have
an additional crossing by (3P ), hence t2 = f2 and t3 = f3 and hence (v3, x2, v2) forms a
subdivision face which distributes 0.5 units of charge to its vertex-neighbor f at x2.

After this final step, every face of F ′ satisfies Equation (1) which concludes the proof.

5 Implications

We will now use the main result of Section 4 to improve the lower-bound for the number
of crossings, which consequently improves various other results. Note that, besides some
numerical differences, the proof strategies for Sections 5.1 and 5.2 are identical to the ones
of [3], while the proofs of Section 5.3 are identical to the ones of [17].

5.1 Crossing Lemma and Edge Density bounds
▶ Theorem 15. Let G be a simple bipartite graph with n ≥ 3 vertices and m edges. Then,
the crossing number cr(G) satisfies the following:

cr(G) ≥ 4m − 25
2 n + 27

Proof. The statements clearly holds when m ≤ 2n − 4. Hence, we may assume w.l.o.g. that
m > 2n − 4. It follows from [10] that if m > 3n − 8, then G has an edge that is crossed by at
least two other edges. Also, by [3], we know that if m > 7

2 n − 7, then G has an edge that is
crossed by at least three other edges. Finally, if m > 4n − 8, then Theorem 6 establishes that
G has an edge that is crossed by at least four other edges. Hence we obtain by induction on
the number of edges of G that the crossing number cr(G) is at least:

cr(G) ≥ (m− (2n−4))+(m− (3n−8))+(m− (7
2n−7))+(m− (4n−8)) = 4m− 25

2 n+27

◀

▶ Theorem 16. Let G be a simple bipartite graph with n vertices and m edges, where
m ≥ 75

16 n. Then, the crossing number cr(G) satisfies the following:

cr(G) ≥ 1024
16875 · m3

n2 ≈ 1
16.5

m3

n2

Proof. Assume that G admits a drawing on the plane with cr(G) crossings and let p =
75n
16m ≤ 1. Choose independently every vertex of G with probability p, and denote by Gp the
graph induced by the vertices chosen in Gp. Let also np, mp and cp be the random variables
corresponding to the number of vertices, of edges and of crossings of Gp. Taking expectations
on the relationship cp ≥ 4mp − 25

2 np + 27, which holds by Theorem 15, we obtain:
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p4cr(G) ≥ 4p2m − 25
2 np ⇒ cr(G) ≥ 4m

p2 − 25n

2p3

The proof of the theorem follows by plugging p = 75n
16m (which is at most 1 by our assumption

on m) to the inequality above. ◀

▶ Theorem 17. Let G be a simple bipartite k-planar graph with n vertices and m edges, for
some k ≥ 2. Then:

m ≤
√

16875
2048 kn ≈ 2.871

√
kn

Proof. For k = 2 and k = 3, the bounds of this theorem are weaker than the corresponding
ones of [3], and of Theorem 6, respectively. So, we may assume w.l.o.g. that k > 3. We may
also assume that m ≥ 75

16 n, as otherwise there is nothing to prove. Combining the fact that
G is k-planar with the bound of Theorem 16 we obtain:

1024
16875 · m3

n2 ≤ cr(G) ≤ 1
2mk

which implies:

m ≤
√

16875
2048 kn ≈ 2.871

√
kn ◀

▶ Theorem 18. Let G be a simple bipartite k-gap-planar graph with n vertices and m ≥ 75
16 n

edges. Then:

m ≤
√

16875
1024

√
kn ≈ 4.06

√
kn

Proof. By definition, we have that

cr(G) ≤ k · m

for any k-gap-planar graph G with m edges. On the other hand, Theorem 16 gives us

cr(G) ≥ 1024
16875

m3

n2

since G is bipartite. Thus

1024
16875

m3

n2 ≤ cr(G) ≤ k · m

and the result follows. ◀

5.2 Exclusion of complete bipartite graphs
▶ Theorem 19. Let Kn,m be a complete bipartite graph and let n ≤ m. Then, K5,m1 with
m1 ≥ 13, K6,m2 with m2 ≥ 9 and K7,m3 with m3 ≥ 7 are not 3-planar and not gap-planar.

Proof. K5,13 has 5 · 13 = 65 edges, but any bipartite 3-planar (gap-planar) graph on 18
vertices has at most 4 · 18 − 8 = 64 edges, a contradiction. Similarly, we have that K6,9 has
54 > 4 · 15 − 8 = 52 and K7,7 has 49 > 4 · 14 − 8 = 48 edges. ◀
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5.3 Biplanar crossing number
The biplanar (k-planar) crossing number of a graph G, denoted by cr2(G) (crk(G)), is the
minimum number of crossings over all possible drawings of the edges of G in two (k) disjoint
planes.

▶ Theorem 20. Let Kp,q be a complete bipartite graph with p, q ≥ 30. Then

cr2(Kp,q) ≥ p(p − 1)q(q − 1)
204

Proof. Applying [17, Lemma 1] together with Lemma 15 yields cr2(G) ≥ 4m − ( 25
2 n − 27) · 2

and thus cr2(K17,17) ≥ 360. Using the recurrence relation

cr2(Kp+1,p+1) ≥
⌈p + 1

p − 1

⌈p + 1
p − 1cr2(Kp,q)

⌉⌉
repeatedly as in [17], we obtain cr2(K30,30) ≥ 3723 and thus

cr2(Kp,q) ≥ p(p − 1)q(q − 1)
30 × 29 × 30 × 29cr2(K30,30)

which yields the desired result. ◀

▶ Theorem 21. For all p, q ≥ 9k + 2,

crk(Kp,q) ≥ p(p − 1)q(q − 1)
66.3k2

Proof. Using Lemma 15, we obtain

crk(K9k+2,9k+2) ≥ 99k2 + 121k + 16

Following the proof of Theorem 7 in [17] we then obtain the desired result. ◀

6 Conclusions and Open Problems

We have established tight upper bounds on the number of edges of bipartite gap-planar and
bipartite 3-planar graphs. The following questions follow naturally:

What is the density of bipartite k-planar graphs, in particular for k = 4? One could
most likely apply the discharging method in a similar way for any fixed k – the issue that
arises for larger k is just the sheer number of cases one has to consider. Hence, we ask as
an open problem if one can (partially) automate such a charging proof in a similar way
to [4]. This is of course also an interesting question in the normal (non-bipartite) setting.
A graph is quasi-planar if there is a drawing in which no three edges mutually cross.
What is the edge density of bipartite quasi-planar graphs?
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