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Abstract
The classical Crossing Lemma by Ajtai et al. and Leighton from 1982 gave an important lower
bound of c m3

n2 for the number of crossings in any drawing of a given graph of n vertices and m

edges. The original value was c = 1/100, which then has gradually been improved. Here, the
bounds for the density of k-planar graphs played a central role. Our new insight is that for k = 2, 3
the k-planar graphs have substantially fewer edges if specific local configurations that occur in
drawings of k-planar graphs of maximum density are forbidden. Therefore, we are able to derive
better bounds for the crossing number cr(G) of a given graph G. In particular, we achieve a
bound of cr(G) ≥ 73

18 m − 305
18 (n − 2) for the range of 5n < m ≤ 6n, while our second bound

cr(G) ≥ 5m − 407
18 (n − 2) is even stronger for larger m > 6n.

For m > 6.79n, we finally apply the standard probabilistic proof from the BOOK and obtain
an improved constant of c > 1/27.61 in the Crossing Lemma. Note that the previous constant was
1/29. Although this improvement is not too impressive, we consider our technique as an important
new tool, which might be helpful in various other applications.
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1 Introduction

The classical Crossing Lemma by Ajtai et al.[4] and Leighton [10] has been considerably
improved constant-wise from 1

100 in many subsequent works [3, 11, 13] and for many vari-
ants [16], such as bipartite graphs [5], graphs of bounded girth [12], multigraphs [9, 14], etc.
Székely [17] gave an collection of applications of the Crossing Lemma in discrete geometry.

The gradual improvement of the above mentioned constant has been mainly done by using
the linear bounds for the number of edges for planar, 1-planar, 2-planar, etc. graphs. k-planar
graphs have a drawing where each edge is crossed at most k times. Density bounds for
k-planar n-vertex graphs have been subject to intensive research in the past. While planar
graphs have at most 3n − 6 edges, the best known upper bounds for 1-planar, 2-planar
and 3-planar graphs are 4n − 8 [18], 5n − 10 [13] and 5.5n − 11.5 [7] respectively; for the
corresponding non-simple versions the bounds might slightly differ [7]. They have been
directly applied for better bounds for the crossing lemma. The current best constant of 1

29
uses even the bound for 4-planar graphs [1], which is 6n − 12.

We will perform a more refined analysis by considering drawings that are in some sense
between k-planar and k + 1-planar drawings for k = 1, 2. In their paper from 2006 [11], Pach,
Radoicic, Tardos and Tóth used a similar approach to improve the corresponding constant of
the Crossing Lemma. They considered the density of 1-planar drawings with a fixed number
of crossing-free triangles, a class of drawings between planar and 1-planar in general.
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A similar road has been taken in the paper [2] about simple quasi-planar graphs. While
the general density bound here is 6.5n, the authors consider drawings without triangular
cells that have no vertex on the boundary. For such a more general class, a bound of 7n can
be derived. This bound has not been applied for the Crossing Lemma, though. We will apply
such a refined look to 2- and 3-planar drawings: It turns out that either we can prove much
smaller bounds for the edge density than provided by the upper bounds of the corresponding
k-planar classes (which is per se good for the Crossing Lemma) or we can characterize the
drawing in a very good way, which simplifies the way of counting the crossings.

The idea has been motivated by some results in the literature. (Non-simple) optimal
2-planar and 3-planar graphs have been characterized [7], and there is very limited flexibility
for the structure of such graphs. We know that with much less restrictions on the drawings,
the limits of the maximum density for some superclasses for 1-planar and 2-planar graphs are
still roughly at the same value. Examples for this effect are the min-1-planar and min-2-planar
graphs [8] as superclasses of 1-planar and 2-planar graphs, as well as gap-planar graphs as a
superclasse of 2-planar graphs [6].

To use the concept of k-planarity for various values of k, we planned to specify at which
point between k- and k + 1-planarity the density is changing. This turned out to be difficult,
and hence we go the other way around and forbid local configurations that have to occur in
optimal k-planar drawings. That leads to nice insights on the density bounds and surprising
results. Note that all our results hold for non-simple graphs and non-simple drawings.

2 Definitions and Notation

A drawing or topological graph D is a graph drawn in the plane such that the vertices
are pairwise distinct points and the edges are represented as Jordan arcs connecting the
corresponding endpoints. We assume simplicity in the sense that edges do not overlap other
vertices in the interior. Two edges might cross, but we do not allow that more than two
edges cross at a single point. We also assume that two edges have only a finite number of
common interior points and no two edges meet tangentially. Remark that we will consider
not necessarily simple drawings, i.e., we will allow non-homotopic multiple edges as well as
adjacent crossing edges, while loops are forbidden. Since we mostly assume that the number
of crossings will be minimal, there will be no empty lenses, i.e., empty regions having a
boundary that is being defined by two edges; c.f. Proposition 10.

The crossing number cr(D) is defined to be the total number of crossing points in D.
For an abstract graph G, the crossing number cr(G) is the minimum value of cr(D) over all
drawings D with D is a drawing of G. A drawing D is k-planar if no edge is crossed more
than k times. A graph G is k-planar if it has a k-planar drawing.

Forbidden configurations. We now define three forbidden configurations that play a key
role: A full k-planar p-gon F k

p can be described by a p-cycle Cp of planar edges with no other
vertices inside, which is then greedily extended by a maximal number of edges to be placed
inside that are as short as possible observing this subgraph is still k-planar. To finally arrive
at F k

p , we delete the planar cycle Cp at the boundary. In this way, we define a full 2-planar
pentagon F 2

5 to be the graph K5 − C5 drawn in the way described above (see Figure 1a).
Similarly, we can define full 2-planar hexagons F 2

6 and full 3-planar hexagons F 3
6 as specific

drawings of subgraphs of K6 − C6. More precisely, a full 2-planar hexagon consists of the six
short, i.e., 2-hop edges inside a planar C6 (see Figure 1b). A full 3-planar hexagon consists
of all possible 2-hop and two 3-hop edges inside a planar C6 (see Figure 1c).
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(a) (b) (c)

Figure 1 (a) A full 2-planar pentagon F 2
5 , (b) a full 2-planar hexagon F 2

6 and (c) a full 3-planar
hexagon F 6

3 with their boundaries (dashed).

Clearly, a configuration F k
p may be crossed by some other edges. But for full 2-planar penta-

gons and full 2-planar hexagons, this cannot happen in the case of 2-planar drawings, which
motivates to define the planar 5-cycle resp. 6-cycle surrounding them as their boundary (even
if not all of its edges may exist in a drawing). This implies that, for 2-planar drawings,
full 2-planar pentagons and hexagons are edge-disjoint (while they may have common
boundary edges). Similarly, in the case of 3-planarity and full 3-planar hexagons, the cycle
surrounding them consists of uncrossed edges if there are no empty lenses. With this in
mind, we analogously define the boundary of a full 3-planar hexagon, and observe that these
configurations are edge-disjoint for 3-planar drawings.

Using the definitions above, we are able to state our main results in the next section.

3 Results

In this section, we present our results. The proofs of Theorem 1 and Theorem 3 use the
discharging method and can be found in Section 4.

▶ Theorem 1. Any graph G with n ≥ 3 vertices that admits a 2-planar F 2
5 -free drawing has

at most 4.5(n − 2) edges. If the drawing is also F 2
6 -free, then G has at most 13

3 (n − 2) edges.

Counting the number of edges in a drawing consisting of 0.5(n − 2) full 2-planar hexagons,
we see that the first of the two bounds is tight. For the second bound, we refer to a
pentagonalization of the plane, where four edges have been added within each pentagon.

▶ Corollary 2. For every 2-planar drawing of any graph with n ≥ 3 vertices and 13
3 (n−2)+x

edges for x ∈ [0, 2
3 (n − 2)], the number of F 2

5 and F 2
6 configurations is at least x.

Note that G cannot be 2-planar for x > 2
3 (n − 2) by the corresponding density bound.

Proof. Assume that drawing D is a 2-planar drawing of a graph with n vertices and
13
3 (n − 2) + x edges such that the number of F 2

5 or F 2
6 configurations is y < x. We can

destroy those configurations by removing one edge from each F 2
5 and F 2

6 . Hence, we still
have more than 13

3 (n − 2) edges, which is a contradiction to Theorem 1. ◀

This implies that drawings of optimal 2-planar graphs consist of 2
3 (n − 2) full 2-planar

pentagons, a fact that has been already known [7]. Similar results hold for 3-planar drawings.

▶ Theorem 3. Any graph with n ≥ 3 vertices that admits a 3-planar F 3
6 -free drawing has at

most 5(n − 2) edges.

GD 2024



29:4 Improving the Crossing Lemma

This bound is tight, which one can see by considering optimal 2-planar graphs.
The next corollary allows us to characterize drawings of dense 3-planar graphs very well.

This extends the characterization of optimal 3-planar graphs, which must have a drawing
consisting of 1

2 (n − 2) F 3
6 configurations and their boundaries [7].

▶ Corollary 4. For ervery 3-planar drawing of any graph with n ≥ 3 vertices and 5(n − 2) + x

edges for x ∈ [0, 0.5(n − 2)], the number of F 3
6 configurations is at least x.

Note that G cannot be 3-planar for x > 0.5(n − 2) by the corresponding density bound.

Proof. Analogously to the proof of Corollary 2, we assume that there is a 3-planar drawing
D of a graph with n vertices and 5(n − 2) + x edges such that the number of F 2

5 or F 2
6

configurations is y < x. Those configurations can be destroyed by removing one edge from each
F 3

6 , hence we still have more than 5(n − 2) edges, which is a contradiction to Theorem 3. ◀

A consequence of this is a new upper bound for the edge density of simple 3-planar graphs,
i.e., the case where multi-edges are forbidden. Note that the best known bound before was
5.5n − 11.5 edges [7] and there exist examples with 5.5n − 15 edges [11].

▶ Corollary 5. There are no 3-planar graphs on n ≥ 3 vertices with 5.5n − 11.5 edges.
Therefore, any simple 3-planar graph on n ≥ 3 vertices has at most 5.5n − 12 edges.

Proof. Assume that there exists a (not necessarily simple) 3-planar graph G with 5.5n − 11.5
edges. Then, by Corollary 4, we would find in any 3-planar drawing D of G at least
0.5(n − 2) − 0.5 full 3-planar hexagons. Let H be any triangulation on the set of vertices that
includes all the boundaries of all F 3

6 configurations in D. As F 3
6 configurations consist of

four triangles, only 2(n − 2) − 4(0.5(n − 2) − 0.5) = 2 triangles in H do not belong to an F 3
6 .

Now we count the edges. Starting with the edges of H, each F 3
6 consists of five additional

edges. The other two triangles may contain one additional edge, which gives in total at most
3(n − 2) + 2.5(n − 2) − 2.5 + 1 = 5.5n − 12.5 edges, contradicting the assumed density. ◀

From Theorem 1 and Theorem 3 we can also derive new lower bounds for the number of
crossings in a graph. The proof can be found in Section 5.

▶ Theorem 6. Let G be a graph with n > 2 vertices and m edges. Then
(a) cr(G) ≥ 73

18 m − 305
18 (n − 2),

(b) cr(G) ≥ 5m − 407
18 (n − 2).

A slightly weaker bound than in (a) of cr(G) ≥ 4m − 50
3 (n − 2) can be derived with a

significantly shorter proof by only applying Theorem 3; we point this out in the proof.
That improves the best known results for m > 5(n−2), which are cr(G) ≥ 4m− 103

6 (n−2)
[11] respectively cr(G) ≥ 5m − 139

6 (n − 2) [1]. Theorem 6 implies directly a better constant
in the Crossing Lemma.

▶ Theorem 7. Let G be a graph with n vertices and m edges. Then cr(G) ≥ 6000
165649

m3

n2 −
218351
165649 n > 1

27.61
m3

n2 − 1.32n. If m ≥ 6.79n > 407
60 n, then cr(G) ≥ 6000

165649
m3

n2 > 1
27.61

m3

n2 .

Proof. Let G be a graph with n vertices and m edges. For the case m ≥ 407
60 n, we construct

a random subgraph G′ by selecting every vertex of G independently with probability p =
407
60 n/m ≤ 1. We denote the number of edges and vertices in G′ by m′ and n′. By Theorem 6

and linearity of expectation, we obtain E[cr(G′)] ≥ 5E[m′] − 407
18 E[n′]. We replace E[n′] = pn,

E[m′] = p2m and E[cr(G′)] = p4 cr(G), and get

cr(G) ≥ 5m

p2 − 407n

18p3 = 6000
165649

m3

n2 .
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For the case m < 407
60 n we compare the bound cr(G) ≥ 6000

165649
m3

n2 − 218351
165649 n with the

corresponding best known linear bounds cr(G) ≥ m − 3(n − 2), cr(G) ≥ 7
3 m − 25

3 (n − 2) [11]
and Theorem 6. ◀

One direct application of the improved Crossing Lemma is a new bound on the edge
density for k-planar graphs.

▶ Corollary 8. For k ≥ 2, any simple k-planar graph with n vertices has at most 3.72
√

kn

edges.

Proof. As in [13], the new bound for k-planar graphs can be derived directly from the new
Crossing Lemma and the fact that each edge can be crossed at most k times:

1
27.61

m3

n2 ≤ cr(G) ≤ km/2,

which then leads to m ≤
√

13.805kn ≤ 3.72
√

kn. ◀

The best previous constant in the bound was 3.81.

4 Proof of Theorems 1 and 3

In this section, we give the proofs of the two central theorems of our paper. First, we will
introduce some necessary concepts, we basically adopted the notation by Ackerman [1].

Notation. We interpret a drawing D as a plane map M(D) = (V ′, E′) whose vertices V ′

are either vertices V (D) of D or crossing points of D. An edge e in E′ connects two vertices
of V ′, i.e., it is a crossing-free segment of an edge of D, which we denote by e. We call an
edge of E′ an r-edge, if r ∈ {0, 1, 2} of its endpoints are vertices of D. For a vertex v ∈ V (D),
we write deg(v) for its degree. The degree of a crossing is always four.

Let F ′ be the set of faces of M(D). For a face f ∈ F ′, we write |f | for the number of
edges in E′ that are incident to f . Similarly, |V (f)| denotes the number of (real) vertices of
D that are incident to f . Note that we will assume 2-connectivity, hence the boundary of
every face is a simple cycle and we avoid double-counting of the vertices. A face with |f | = s

is called a s-gon. In the cases of s = 3, 4, 5, 6, 7 we write instead triangle, quadrilateral,
pentagon, hexagon and heptagon. If we want to denote that |V (f)| = r and |f | = s, we write
r-s-gon and use this wording also for 2-triangles, 0-quadrilaterals, etc. for simplicity. If we
only want to specify for a face that |V (f)| = r, then we call it an r-face.

Further, we need some definitions for relations between faces in F ′. Two faces are r-
neighbors if they share an r-edge. Let now be e0 ∈ E′ a 0-edge of a face f0 ∈ F ′ and f1 ∈ F ′

the 0-neighbor of f0 at e0. For i ≥ 1, if fi ∈ F ′ is a 0-quadrilateral, then let be fi+1 ∈ F ′ the
0-neighbor of fi at the edge ei opposite to fi−1. The face fi, for which i is maximal, is called
the wedge-neighbor of f0 at e0. Since D is 3-planar, we have i ≤ 3. Notice the alternative
definition of a wedge-neighbor by Ackerman [1]. Finally, we define two faces f, f ′ ∈ F ′ to be
vertex-neighbors, if f and f ′ share a crossing-vertex c, but not an edge in E′ incident to c.
See Figure 2 for an illustration of the defined terms.

Preliminaries for the proofs. We prove both theorems by induction. This will allow us, as
in [1], to study only 2-connected drawings (see Proposition 9). For n = 3, independently from
the forbidden configurations, there are at most three non-homotopic edges in any drawing
and therefore both theorems hold. If n > 3 and there is a vertex v ∈ G with deg(v) ≤ 4,
then the theorems follow after removing v by induction.

GD 2024
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f

f ′

f

f ′

f

f ′

(a)

f0

e0

e1

f1

f2

(b)

f

f ′

(c)

Figure 2 Illustrations of the defined neighborhood-relations. (a) From top to bottom: The faces f

and f ′ are 0-neighbors, 1-neighbors, 2-neighbors resp. (b) The 0-pentagon f2 is the wedge-neighbor
of the 1-triangle f0 at its edge e0. (c) The faces f and f ′ are vertex-neighbors.

▶ Proposition 9. If D is not 2-connected, then Theorem 1 and Theorem 3 are true.

Proof. The argument follows the lines of [1]. To argue for the different scenarios of Theorem 1
and Theorem 3 at the same time, let a(n − 2) for a ∈ { 13

3 , 4.5, 5} be an upper bound on the
number of edges, which we want to prove. Assume that there is a vertex x ∈ E′ such that
M(D) \ {x} is not connected. Then x is either a vertex or a crossing of D.

If x is a vertex of D, then D \ {x} is not connected, so let D1, ..., Dk be the connected
components of D \ {x}. Let further D′ be the drawing induced by V (D1) ∪ {x} and D′′

the drawing induced by V (D2) ∪ ... ∪ V (Dk) ∪ {x}. Let |V (D′)| = n′, |V (D′′)| = n′′ and
observe n′ + n′′ = n + 1. Since every vertex has at least degree four, 4 < n′, n′′ < n holds.
By induction, it follows m ≤ (an′ − 2a) + (an′′ − 2a) = a(n + 1) − 4a < a(n − 2).

Assume now that x is a crossing of D. Let D̂ be the drawing obtained by replacing
x by a vertex. This increases the number of vertices by one and the number of edges
by two. Let D1, ..., Dk be the connected components of D̂ \ {x}. Again, let D′ be the
drawing induced by V (D1) ∪ {x} and D′′ the drawing induced by V (D2) ∪ ... ∪ V (Dk) ∪ {x}.
For |V (D′)| = n′, |V (D′′)| = n′′ we observe 4 < n′, n′′ < n. By induction, we get m ≤
(an′ − 2a) + (an′′ − 2a) − 2 = a(n + 2) − 4a − 2 < a(n − 2). ◀

Therefore we will always assume that D is 2-connected. As both theorems consider upper
bounds for the number of edges for the specific graph classes, we also assume that we consider
graphs G that are edge-maximum for the specific class of graphs, and for such graphs a
corresponding drawing D that is crossing-minimum. These assumptions will enable us to
conduct a focused analysis of the bounds for the number of edges.

▶ Proposition 10. Let D be a drawing that is either (1) 2-planar F 2
5 -free or (2) 2-planar

F 2
5 -free and F 2

6 -free or (3) 3-planar F 3
6 -free and maximally-dense-crossing-minimal under

this restriction. Then the following properties hold:
(a) There are no empty lenses.
(b) For all faces f ∈ F ′ we have |f | ≥ 3.
(c) The wedge-neighbor of a 0-triangle or a 1-triangle is a face f ∈ F ′ with |f | ≥ 4 that is

not a 0-quadrilateral.
(d) If there are two vertices u, v ∈ V (D) on the boundary of a face f ∈ F ′, then the edge uv

is part of the boundary of f . Therefore every face f ∈ F ′ with |V (f)| > 2 is a 3-triangle.
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Proof.
(a) Since there are no two homotopic edges, there are no empty lenses with two vertices.

Any other empty lens can be destroyed by swapping the segments of the edges of D

that define the empty lens (without creating one of the forbidden configurations). This
reduces the number of crossings contradicting that D is crossing-minimal.

(b) Loops and self-intersecting edges are forbidden, so there is no face f ∈ F ′ with |f | = 1.
Every face f ∈ F ′ with |f | = 2 is an empty lens, which does not appear in D by (a).

(c) Let f be an arbitrary face. By definition, the face f is never a 0-quadrilateral. If |f | = 3,
then this would imply an empty lens.

(d) For an arbitrary face f , assume that no edge e = uv exists on the boundary of f .
Therefore, we may insert e contradicting that D is maximally dense. By this, we
cannot create one of the three forbidden configurations F 2

5 , F 2
6 and F 3

6 , since they do not
contain planar edges. This does not create homotopic edges as every other edge e′ = uv

homotopic to e would have been already on the boundary of f or would have formed an
empty lens with an edge of the boundary of f contradicting (a).
Assume now that a face f with |V (f)| > 2 exists that is not a 3-triangle. Then we find
three vertices in V (D) on the boundary of f , which do not all appear next to each other.
We introduce a new edge between two of them, contradicting the maximality of D. ◀

In the following, we will use the discharging method. See [1, 2, 8, 15] for similar applications
of this technique. We define a charging function ch : F ′ → R that assigns an initial charge of

ch(f) = |f | + |V (f)| − 4 (1)

to every face f ∈ F ′. It is known that for the total charge
∑

f∈F ′ ch(f) = 4n − 8 holds
(refer to [2] for details). The challenge now is to redistribute the charge so that in the end
every face f ∈ F ′ has a charge of ch′(·) that satisfies ch′(f) ≥ α|V (f)| for a suitable α > 0,
while the total charge does not change. From this and the observation that

∑
f∈F ′ |V (f)| =∑

v∈V (D) deg(v) = 2m holds, we can derive an upper bound of

m ≤ 2
α

(n − 2) (2)

on the number of edges. For a given α and a face f with charge c, we say that |c − α|V (f)||
is the demand of f , if c − α|V (f)| is negative, otherwise we call it the excess of f . If f has
no demand, then we also say that f is satisfied.

4.1 Proof and Discharging for Theorem 1
▶ Theorem 1. Any graph G with n ≥ 3 vertices that admits a 2-planar F 2

5 -free drawing has
at most 4.5(n − 2) edges. If the drawing is also F 2

6 -free, then G has at most 13
3 (n − 2) edges.

Proof. We start with the bound of 13
3 (n − 2). Let D be a 2-planar, F 2

5 -free and F 2
6 -

free drawing that is maximally-dense-crossing-minimal. Assign to every face f ∈ F ′ the
initial charge ch(f) according to Equation (1). The initial charges are distributed in the
following way:

Step 1: Each 0-triangle receives 1
3 charge from each of its wedge-neighbors.

Step 2: Each 1-triangle receives 1
26 charge from both 1-neighbors.

Step 3: Each 1-triangle receives 5
13 charge from its wedge-neighbor.

Step 4: Each 2-quadrilateral contributes its excess to its wedge-neighbor.
Step 5: For each 2-triangle f , let C(f) be the inclusion-minimal planar cycle of D enclosing
f (i.e. the planar cycle that does not contain other planar edges). Then f distributes its
excess equally over those faces that lie inside C(f) and have a demand.

GD 2024



29:8 Improving the Crossing Lemma

f

(a)

f

(b)

f

(c)

f

(d)

Figure 3 Discharging for Theorem 1. Planar edges that exist by Proposition 10 are dashed.

Denote the charges after the i-th step by chi(·). With this, we have ch′(·) = ch5(·).

▶ Proposition 11. For all faces f ∈ F ′, we have ch′(f) ≥ 6
13 |V (f)|.

Proof. We analyze the final charge ch′(·) for all faces. Note that a face contributes through
each edge of its boundary in Step 1-3 at most once and the only contributing faces in
Step 1 are 2-quadrilaterals (see Figure 3a) and in Step 2 2-triangles (see Figure 3b). Also
ch3(f) ≥ 6

13 |V (f)| already implies ch′(f) ≥ 6
13 |V (f)|. Because of Proposition 10 there are

only 3-triangles and faces f with |f | ≥ 3 and |V (f)| ≤ 2.
f is a 0-triangle. Then f receives in Step 1 in 3 · 1

3 charge and never contributes charge.
Therefore ch3(f) = −1 + 1 = 0 ≥ 6

13 · 0.
f is a 1-triangle. Then f receives in Step 2 2 · 1

26 charge, in Step 3 5
13 charge and never

contributes charge. Therefore ch3(f) = 0 + 6
13 ≥ 6

13 · 1.
f is a 2-triangle. Then f starts with 1 charge and contributes in Step 2 at most 2 · 1

26
charge. Therefore ch3(f) ≥ 1 − 1

13 = 12
13 ≥ 6

13 · 2.
f is a 3-triangle. Then f never receives or contributes charge. Thus ch3(f) = 2 ≥ 6

13 · 3.
f is a 0-quadrilateral. Then f starts with 0 charge and never receives or contributes
charge as it cannot be the wedge-neighbor of another face. Therefore ch3(f) = 0 ≥ 6

13 · 0.
f is a 1-quadrilateral. Then f starts with 1 charge. If f contributes in Step 3 to less than
two 1-triangles, we have ch3(f) ≥ 1 − 5

13 = 8
13 ≥ 6

13 · 1. Otherwise, we know that f is
bounded by a 5-cycle of planar edges (Figure 3c). Here, charges do not change in Step 4,
but we can find 3

13 charge from the excesses of 2-triangles in this 5-cycle and move that
to f in Step 5. Therefore, we have ch′(f) = 1 − 2 · 5

13 + 3
13 = 6

13 ≥ 6
13 · 1.

f is a 2-quadrilateral. Then f has one wedge-neighbor, to which it contributes either 1
3

charge in Step 1 or 5
13 charge in Step 3. So we have ch3(f) ≥ 2 − 5

13 = 21
13 ≥ 6

13 · 2
f is a 0-pentagon. Note that all wedge-neighbors of f are 1-triangles or 2-quadrilaterals,
as otherwise there would be an edge with three crossings or a face with two real vertices
that are not connected by an edge. If f contributes to five 1-triangles in Step 3, then
we would have an F 2

5 configuration, which is forbidden. Otherwise, at least one 2-
quadrilateral contributes its excess of 14

13 to f in Step 4 (see Figure 3d). Therefore we
have ch4(f) ≥ 1 + 14

13 − 4 · 5
13 = 7

13 ≥ 6
13 · 0.

f is a 1-pentagon or a 2-pentagon resp. Then f contributes to at most three or two
1-triangles resp. in Step 3. Therefore, we have ch3(f) ≥ 2 − 3 · 5

13 = 11
13 ≥ 6

13 · 1 resp.
ch3(f) ≥ 3 − 2 · 5

13 = 29
13 ≥ 6

13 · 2.
f is a 0-hexagon. If f contributes to six 1-triangles in Step 3, then we would have an F 2

6
configuration, which is forbidden. Otherwise, we have ch3(f) ≥ 2 − 5 · 5

13 = 1
13 ≥ 6

13 · 0.
f is a 1-hexagon resp. 2-hexagon. Then f contributes to at most four resp. three
1-triangles in Step 3 and we have ch3(f) ≥ 3 − 4 · 5

13 = 19
13 ≥ 6

13 · 2.
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f is a face with |f | ≥ 7. Then f may contribute charge to at most |f | wedge-neighbors
in Step 3. Therefore ch3(f) ≥ |f | + |V (f)| − 4 − 5

13 · |f | ≥ 8
13 · 7 + |V (f)| − 4 ≥ 6

13 |V (f)|.
Therefore, all faces f ∈ F ′ are satisfied, which proves the proposition. ◀

Combining Proposition 11 and Equation (2), m ≤ 2 · 13
6 (n − 2) is implied, as claimed.

For drawings, where F 2
6 configurations are allowed, we can use similar discharging steps

to prove the bound of 4.5(n − 2) on the number of edges. Here we set α = 4
9 , and therefore

1-triangles can receive 1
18 charge from both its 1-neighbors each in Step 2 without creating a

demand for any 2-triangles. Therefore, faces have to contribute in Step 3 only 1
3 charge to

satisfy all 1-triangles. Now let f be a 0-hexagon that is the wedge-neighbor of six 1-triangles.
Starting with 2 charge, it contributes at most 6 · 1

3 in Step 3, and therefore ends with 0 ≥ 4
9 · 0

charge. For all other faces we still have enough charge with the same analysis as above.
Therefore, there exists a function ch′(·) satisfying ch′(f) ≥ 4

9 |V (f)| for all f ∈ F ′, while
the total amount of charge is still 4n − 8. By Equation (2) we get m ≤ 2 · 9

4 (n − 2). ◀

4.2 Proof and Discharging for Theorem 3
▶ Theorem 3. Any graph with n ≥ 3 vertices that admits a 3-planar F 3

6 -free drawing has at
most 5(n − 2) edges.

Proof. Let D be a 3-planar F 3
6 -free drawing that is maximally-dense-crossing-minimal. As

in the proof of Theorem 1, we assign the initial charges ch(f) to the faces of M(D) and
redistribute them to achieve a function ch′(·). The discharging takes place in seven steps:

Step 1: Each 0-triangle receives 1 charge from each 0-neighbor that is a 2-quadrilateral.
Step 2: Each 0-triangle with a demand receives 1

3 charge from all wedge-neighbors.
Step 3: Each 2-triangle distributes its excess equally over all 1-neighbors that are 1-
triangles.
Step 4: Each 1-triangle receives its demand from its wedge-neighbor.
Step 5: Each face distributes its excess equally over the wedge-neighbors that are 0-
pentagons, but at most 0.3 to each of them, and keeps the rest.
Step 6: Each face distributes its excess equally over all vertex-neighbors that are 0-
quadrilaterals or 0-pentagons. The 0-quadrilaterals distribute this charge equally over
their 0-neighbors that have a demand.
Step 7: For each face f , let C(f) be the inclusion-minimal planar cycle of D enclosing f

(i.e. the planar cycle that does not contain other planar edges). Then f distributes its
excess equally over those faces that lie inside C(f) and have a demand.

Again, we denote by chi(·) the charges after the i-th step and by ch′(·) the final charges.
Our goal is to show ch′(f) ≥ 0.4|V (f)| for all faces f ∈ F ′. Note that this is already implied
by ch4(f) ≥ 0.4|V (f)|, as in Step 5-7 faces contribute only their excesses. We structure the
proof into several propositions, collecting statements about the discharging steps.

▶ Proposition 12. After Step 2, 0-triangles are and remain satisfied.

Proof. Let f be a 0-triangle. We have ch(f) = −1. If f receives in Step 1 charge, then
ch1(f) = 0. Otherwise, f receives 3 · 1

3 charge in Step 2, so ch2(f) = 0. 0-triangles do not
contribute charge in Step 3-4, since they are not wedge-neighbors of 1-triangles. Therefore,
ch′(f) ≥ 0.4 · 0 holds. ◀

▶ Proposition 13. In Step 1-2, 0-faces contribute no charge.
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Figure 4 Illustrations for the proofs of Proposition 13, Proposition 14 and Proposition 15.

Proof. No faces except 2-quadrilaterals contribute charge in Step 1, so we consider only
Step 2. Assume that a 0-face f0 contributes charge to a 0-triangle f in Step 2, and f0 and f

are therefore 0-neighbors at an edge e0. Let e1, e2 be the other edges of f and f1, f2 the
0-neighbors at these edges (see Figure 4a). Since f0 is a 0-face, it is incident to two crossings
each with e1 and e2 and these edges also cross each other at f . Therefore e1 and e2 have
already three crossings and end at f1 resp. f2. The edge e0 ends also at one of f1 or f2, as
otherwise it would have four crossings. W.l.o.g. e0 ends at f1 and by Proposition 10 f1 is a
2-quadrilateral. Hence, ch1(f) ≥ 0.4 · |V (f)|, contradicting that f receives charge later. ◀

▶ Proposition 14. After Step 3, 1-triangles have a demand of at most 0.3 charge.

Proof. Let f be a 1-triangle with the real vertex v and the 0-edge e. Let further f1, f2 be
the 1-neighbors of f (see Figure 4b). Then e ends at one of f1 and f2, as otherwise it would
have more than three crossings. W.l.o.g. let f1 be that face with the vertex v′ to which e is
incident. Then by Proposition 10 the edge vv′ exists and f1 is a 2-triangle. Therefore, f1
starts with 1 charge and has an initial excess of 0.2. Thus, f receives 0.1 charge in Step 3.
We have ch3(f) = 0.1, which is equivalent to a demand of 0.3. ◀

▶ Proposition 15. After Step 4, all 1-quadrilaterals are satisfied.

Proof. Let f be a 1-quadrilateral. We have ch(f) = 1 and f contributes charge only in Step
2 and Step 4. If f contributes to at most one wedge-neighbor or to two 1-triangles, then
ch4(f) ≥ 1 − 0.6 ≥ 1 · 0.4. Otherwise, f contributes either to two wedge-neighbors that are
both 0-triangles or to one 0-triangle and one 1-triangle. In the first case, both 0-triangles are
already satisfied after Step 1, as they have wedge-neighbors that are 2-quadrilaterals (see
Figure 4c). In the second case, f contributes not more than 0.2 charge to the 1-triangle f ′,
because one of its 1-neighbors is a 2-triangle contributing its excess of 0.2 charge only to f ′

in Step 3 (see Figure 4d). Therefore, we have ch4(f) ≥ 1 − 1
3 − 0.2 ≥ 1 · 0.4. ◀

▶ Proposition 16. After Step 4, all faces are and remain satisfied that are not 0-pentagons
that are the wedge-neighbor of four or five 1-triangles.

Proof. Note again that for a face f the charge ch4(f) ≥ 0.4|V (f)| implies already that it
has no demand in Step 5-7, since faces only there contribute their excesses.

To see that 0-triangles and 1-quadrilaterals are satisfied, we refer to Propositions 12 and
15. 1-triangles are satisfied by definition of Step 4. Remember that only 3-triangles and
r-s-gons with r ≤ 2, s ≥ 3 can exist by Proposition 10. Now we discuss the other cases:

f is a 2-triangle. We start with ch(f) = 1. As only wedge-neighbors contribute in Step
1-2 and Step 4 and f cannot be a wedge-neighbor of another face, the only critical step
is Step 3. Here, f contributes in total at most its excess of 0.2 charge, and therefore
ch4(f) ≥ 1 − 0.2 ≥ 2 · 0.4.
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f is a 3-triangle. We start with ch(f) = 2 and f never contributes charge. It follows that
ch4(f) = 2 ≥ 3 · 0.4 holds.
f is a 0-quadrilateral. Again, f never contributes charge, and therefore ch(f) = ch4(f) =
0 ≥ 0 · 0.4 holds.
f is a 2-quadrilateral. We start with ch(f) = 2. Note that f contributes only once as it
has only one wedge-neighbor, and therefore we have ch4(f) ≥ 2 − 1 ≥ 2 · 0.4.
f is a 0-pentagon with at most three wedge-neighbors that are 1-triangles. We have
ch(f) = 1 and f contributes only to three faces. With Proposition 13 and Proposition 14
ch4(f) ≥ 1 − 3 · 0.3 ≥ 0 · 0.4 follows.
f is a 1-pentagon or a 2-pentagon. f starts with ch(f) ≥ 2 and we have ch4(f) ≥
2 − 3 · 1

3 ≥ 2 · 0.4.
f is a face with |f | ≥ 6. Then f may contribute to at most |f | wedge-neighbors charge.
Therefore, we have ch4(f) ≥ |f | + |V (f)| − 4 − 1

3 · |f | ≥ |V (f)|. ◀

It remains to prove that 0-pentagons with four or five wedge-neighbors that are 1-triangles
have at least zero charge after Step 7. We show this by the following four propositions, which
we only state here; the proofs can be found in Appendix A.

▶ Proposition 17. In Step 5, each 0-pentagon receives 0.3 charge from all wedge-neighbors
that are not 1-triangles, 0-triangles or 0-pentagons.

▶ Proposition 18. In Step 6, each 1-face and 2-face f with |f | ≥ 5 and each 0-face f with
|f | ≥ 7 contributes at least 0.4 charge to the vertex-neighbors that are 0-quadrilaterals or
0-pentagons.

▶ Proposition 19. After Step 7, all 0-pentagons that are the wedge-neighbor of four 1-triangles
are satisfied.

▶ Proposition 20. After Step 7, all 0-pentagons that are the wedge-neighbor of five 1-triangles
are satisfied.

By Propositions 16, 19 and 20 ch′(f) ≥ 0.4 · |V (f)| holds for all faces f ∈ F ′. Since charge
is only moved, its total amount is still 4n − 8 and Equation (2) implies m ≤ 2

0.4 (n − 2). ◀

5 Proof of Theorem 6

In this section, we present the proof of Theorem 6 that shows how to use the earlier stated
observations and theorems and leads to a better bound for the Crossing Lemma.

▶ Theorem 6. Let G be a graph with n > 2 vertices and m edges. Then
(a) cr(G) ≥ 73

18 m − 305
18 (n − 2),

(b) cr(G) ≥ 5m − 407
18 (n − 2).

Proof. We start proving the bound in (a). If m ≤ 5(n − 2), then the bound follows from
the linear bound cr(G) ≥ 7

3 m − 25
3 (n − 2) [11]. So assume m > 5(n − 2) and let D be a

crossing-minimal drawing of G. From D, we iteratively remove the edge with the most
crossings until 5(n − 2) edges are left. In particular, as long as the maximum number of
crossings is three, we always remove an edge from an F 3

6 configuration. By Theorem 3,
we stop latest, when there are no F 3

6 configurations. By this process, edges are iteratively
deleted until we reach 5(n − 2) edges, as following:
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Figure 5 Three independent edges (blue) with three crossings in an F 3
6 configuration. In D3 one

of them is already deleted, in D3− also the other two.

m5+ edges with five or more crossings – denote the resulting drawing by D4,
then m4 edges with four crossings – denote the resulting drawing by D3 and the set of
edges deleted in this step by E4,
then m3 edges with three crossings from F 3

6 configurations – denote the resulting drawing
by D3−.

Note that m4 or m3 could be zero in the case that we reached 5(n − 2) already during step
(1) or (2). Afterwards we have m3 edge-disjoint F 3

6 configurations with a missing edge in
D3−. So we are able to find 2m3 more independent edges with three crossings and delete
them (see Figure 5). Continue the deletion process by still removing the edge with the most
crossings until this edge no longer has three or more crossings; we denote the number of
these deleted edges by m3−. Call the achieved drawing D2. By applying the linear bound
from [11] again, we have

cr(G) ≥ [5m5+ + 4m4 + 3m3] + [2 · 3m3 + 3m3−] +
[7

3(5(n − 2) − 2m3 − m3−) − 25
3 (n − 2)

]
= 5m5+ + 4m4 + 13

3 m3 + 2
3m3− + 10

3 (n − 2). (3)

As all values are non-negative, it is not hard to see that this is at least

≥ 4(m5+ + m4 + m3 + 5(n − 2)) − 50
3 (n − 2) = 4m − 50

3 (n − 2).

For the better bound of cr(G) ≥ 73
18 m − 305

18 (n − 2) we have to elaborate on the value m4, as
there was no slack in the last inequality.

As a preparation, we first consider the structure of D2. Let cpent be the number of F 2
5

configurations and chex the number of F 2
6 configurations in D2. Let further E0 be the set of

crossing-free edges on the boundary of the forbidden configurations in D3 resp. D2 that do
not exist in D2, and therefore may be added. We denote |E0| = m0 and state the following;
the proof is in Appendix B.

▶ Proposition 21. With the notation above, cpent + chex ≥ 2
3 (n − 2) − 4

3 m3 − m3− + m0.

Next, we show how to limit the number of the edges of E4, i.e., the deleted edges that
were accounted with four crossings in D4. For that, we introduce a triangulation H on the
set of the n vertices of D4 that contains (1) the boundary of every F 3

6 configuration in D3,
(2) the boundary of every F 2

5 and F 2
6 configuration in D2, (3) every edge in E4 that lies

completely outside of these forbidden configurations. This definition is refined in the proof
of the next proposition. Note that it is always possible to achieve such a triangulation H,
because edges of E4 cannot cross each other.
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▶ Proposition 22. Let H′ ⊆ H be the set of triangles that do not belong to the forbidden
configurations and let c△ = |H′|. Then m4 ≤ m3 + chex + 4m0 + 4c△.

The proof can be found in Appendix B. Combining the results, we can finish the first
part of the proof. Proposition 21 implies

c△ ≤ 2(n − 2) − 4m3 −
[2

3(n − 2) − 4
3m3 − m3− + m0

]
· 3 − chex = 3m3− − 3m0 − chex,

because the total number of triangles is 2(n − 2) and a pentagon resp. hexagon contains
three resp. four triangles. Together with Proposition 22, this gives

m4 ≤ m3 + chex + 4m0 + 4(3m3− − 3m0 − chex) ≤ 5m3 + 12m3−.

Multiplying this term by 1
18 and adding it to Equation (3), we get as desired

cr(G) ≥ 5m5+ + 4m4 + 13
3 m3 + 2

3m3− + 10
3 (n − 2) + m4 − (5m3 + 12m3−)

18
≥ 73

18(m5+ + m4 + m3) + 10
3 (n − 2)

= 73
18(m5+ + m4 + m3 + 5(n − 2)) − 305

18 (n − 2).

For the bound in (b) see the following: If m ≤ 6(n − 2), then we can apply the bound of
(a). So let be m > 6(n − 2). Iteratively delete the edge with the most crossings in a crossing-
minimal drawing D until 6(n − 2) edges are left; these edges have at least five crossings, as
the density of 4-planar graphs is ≤ 6(n − 2) [1]. With the bound in (a), this implies

cr(G) ≥ 5(m − 6(n − 2)) + 73
18 · 6(n − 2) − 305

18 (n − 2) = 5m − 407
18 (n − 2). ◀

6 Discussion

We have improved the leading constant of the lower bound for the crossing number of a given
graph G. Although this improvement does not seem to be too impressive at first sight, we
worked out some interesting observations for drawings with a limited number of crossings per
edge. This leads to further improvements, conjectures and suggestions for future research.

In particular, we have improved for m > 5(n − 2) the lower bound of the crossing
number, unfortunately we did not reach tightness. We confirm the conjecture by [11]
that cr(G) ≥ 25

6 m − 35
2 (n − 2) holds and highlight that this bound would follow from our

proofs, if we were able to show a slightly stronger statement in Proposition 22, namely
m4 ≤ m3 + chex + 4m0 + 4

3 c△. The corresponding upper bound can be obtained by a
construction where the plane subgraph consists only of pentagonal and hexagonal faces [11].

Applying our technique to 4-planar drawings might show that these drawings without full
hexagons F 4

6 have density ≤ 5.5(n − 2). This would provide a characterization of optimal
4-planar graphs, which is a well-known open problem. Further, we can look at 5-planar
graphs, a class that has been considered as too complex for actual research. Just applying
Corollary 8 improves the current known density bound from 8.52n to 8.32n.

It seems to be worthwhile to apply the idea to bipartite graphs to obtain improvements
of the Crossing Lemma. Here, the corresponding linear bound cr(G) ≥ 3m − 17

2 n + 19 used
in the current proof in [5] is not tight.

Furthermore, we have indicated a way how to obtain the exact density bound of optimal
simple 3-planar graphs. Note that we only did one step in this direction.
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Figure 6 (a) No face contributes to two consecutive vertex-neighbors in Step 6. (b) If a 0-heptagon
f contributes to three vertex-neighbors f1, f2, f3 in Step 6, then it contributes not to all its seven
wedge-neighbors in Step 1-5. (c) A 1-pentagon f contributing to all three wedge-neighbors in Step
1-5 and to two vertex-neighbors in Step 6 leads to a contradiction.

A Details for Section 4

▶ Proposition 17. In Step 5, each 0-pentagon receives 0.3 charge from all wedge-neighbors
that are not 1-triangles, 0-triangles or 0-pentagons.

Proof. Note that in the calculations of Proposition 16, we assumed for all faces that are
possibly a wedge-neighbor of a 0-pentagon except 0-triangles, 1-triangles, 1-quadrilaterals
and 0-pentagons that they give at least 0.3 charge to all wedge-neighbors. If such a face f has
a wedge-neighbor that is a 0-pentagon, then it did not contribute charge to it in Step 1-4, and
therefore has 0.3 charge left for it in Step 5. The only critical case is a 1-quadrilateral f with
a 0-pentagon and a 0-triangle f ′ as wedge-neighbors. Observe that in this case ch1(f ′) = 0
already, because there is a 2-quadrilateral next to f ′ as in Figure 4c, and therefore ch4(f) = 1.
Thus, f can contribute 0.3 charge to the 0-pentagon. ◀

▶ Proposition 18. In Step 6, each 1-face and 2-face f with |f | ≥ 5 and each 0-face f with
|f | ≥ 7 contributes at least 0.4 charge to the vertex-neighbors that are 0-quadrilaterals or
0-pentagons.

Proof. Let e be a 0-edge of a face f incident to the crossings x and y. Let f1 be the
vertex-neighbor of f at x and f2 the vertex-neighbor at y. If f1 and f2 are 0-faces, then e

has more than three crossings, a contradiction. Therefore, no face can contribute charge
through two consecutive crossings on its boundary in Step 6. For a face f , this implies that
it can contribute to at most

⌊
|f |
2

⌋
vertex-neighbors in this step.

Now we distinguish different cases for the face f that might contribute to vertex-neighbors.
We start with the case that f is a 0-face. Here, after Step 5, f has an excess of

ch5(f) ≥ |f | − 4 − |f | · 0.3 = 0.7|f | − 4,

which is at least 0.4 ·
⌊

|f |
2

⌋
for |f | ≥ 8 and therefore enough. If f is a 0-heptagon, then, by

the inequality above, there is enough charge if f contributes to at most two vertex-neighbors
in Step 6. So assume that it contributes to three vertex-neighbors. It is not hard to see that
there are wedge-neighbors of f with |f | ≥ 4 and |V (f)| ≥ 1 (see Figure 6a), so f contributes
in Step 1-5 to at most six faces. Now we have ch5(f) ≥ 3 − 6 · 0.3 = 1.2, which is sufficient
to give three vertex-neighbors 0.4 charge each in Step 6.
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Let f now be a 1-face. Then f has an excess of

ch5(f) − 0.4 ≥ |f | + 1 − 4 − (|f | − 2) · 1
3 − 0.4 = 2

3 |f | − 3.4 + 2
3 ,

which is at least 0.4 ·
⌊

|f |
2

⌋
if |f | ≥ 6. If f is a 1-pentagon, then, by the inequality above,

there is enough charge if f contributes to at most one vertex-neighbor in Step 6. So assume
the opposite, i.e., f contributes to two vertex-neighbors f1, f2 in Step 6. If f contributes in
Step 1-5 to only one or two wedge-neighbors, then its excess after Step 5 is at least 1.6 − 2

3
charge and therefore sufficient, so assume this is not the case either.

Walking along the boundary of f , let e0 be a 1-edge of f , let e1, e2, e3 be the 0-edges and
let e4 be the other 1-edge of f . Let further ti be the wedge-neighbor of f at ei for i ∈ {1, 2, 3}.
W.l.o.g. f1 lies at the crossing of e0, and therefore the face t2 is a 1-triangle, as otherwise f

would not contribute charge to t2 in Step 1-5 (see Figure 6b). Therefore, f2 lies at the crossing
of e4. Note that e2 ends at t1 or t3, say w.l.o.g. at t1. But then |t1| ≥ 4 and |V (t1)| ≥ 1, so
f does not contribute charge to t1 in Step 1-5, a contradiction to our assumption. Therefore,
1-pentagons can contribute 0.4 charge to the desired vertex-neighbors.

The last case is that f is a 2-face. Then f has an excess of

ch5(f) − 0.8 ≥ |f | + 2 − 4 − (|f | − 3) · 1
3 − 0.8 ≥ 2

4 |f | − 1.8,

which is at least 0.4 ·
⌊

|f |
2

⌋
for |f | ≥ 5. ◀

▶ Proposition 19. After Step 7, all 0-pentagons that are the wedge-neighbor of four 1-triangles
are satisfied.

Proof. We introduce a notation for the edges and faces at a 0-pentagon f . Let ei, i ∈ {0, ..., 4}
be the edges forming the boundary of f , so that ei and e(i+1 mod 5) have a crossing at f .
Further we denote by ti the wedge-neighbor of f at ei and by fi the vertex-neighbor of f at
the crossing of ei and e(i+1 mod 5).

Let f be a 0-pentagon with four wedge-neighbors that are 1-triangles. So we have
ch4(f) ≥ 1−4 ·0.4 = −0.2. Let w.l.o.g. t0 be the wedge-neighbor of f that is not a 1-triangle.
If t0 is not a 0-triangle or 0-pentagon, then it contributes, by Proposition 17, 0.3 charge to f

in Step 5 and f is satisfied. Otherwise, distinguish between the type of the face t0.
Case 1: t0 is a 0-triangle. Observe that e1 and e4 already have three crossings and e0
two crossings. Therefore, e0 ends at f0 or f4, say w.l.o.g. f0, so f0 is a 2-quadrilateral
(see Figure 7a). Then f0 has an excess of 0.2 after Step 5, as it only contributes in Step 1
charge. Note that the vertex-neighbors of f0 are f and f4. Since f4 is not a 0-face, f0
contributes its excess of 0.2 charge in Step 6 only to f , and therefore ch6(f) ≥ 0.
Case 2: t0 is a 0-pentagon. Again, e1 and e4 already have three crossings and e0 two
crossings. Therefore, f2 is a 2-triangle and also one of f1 and f3, say w.l.o.g. f1 (see
Figure 7b). So we have ch3(t2) = −0.2, and therefore ch4(f) ≥ 1 − 3 · 0.3 − 0.2 ≥ −0.1.
Note that the only face besides f that may receive charge from t0 in Step 5 is f4. Therefore,
we distinguish two cases:

Case 2.1: f4 is a 0-pentagon. If less than three wedge-neighbors of t0 are 1-triangles,
then ch4(t0) ≥ 0.4 and f receives enough charge in Step 5. If three wedge-neighbors of
t0 are 1-triangles, then the 1-triangle at the vertex at which e1 ends has −0.2 charge
after Step 3, as it lies between two 2-triangles (see Figure 7c). Therefore, we have
ch4(t0) = 1 − 2 · 0.3 − 0.2 = 0.2 and f can receive a half of it in Step 5, which is enough.
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Figure 7 Illustrations for the proof of Proposition 19 Case 1 and 2.1.
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Figure 8 Illustrations for the proof of Proposition 19 Case 2.2.

Case 2.2: f4 is not a 0-pentagon. If ch4(t0) ≥ 0.1, then f receives its missing charge
already in Step 5. So assume the opposite, which implies that four wedge-neighbors of
t0 are 1-triangles (see Figure 8a).
If now f3 is a 2-triangle, then ch3(t3) = −0.2 and we have ch(f) = 1−2 ·0.3−2 ·0.2 = 0
and f never has a demand. Otherwise, there is an edge e crossing e3 at f3 that has
already three crossings, and therefore f3 is either a 2-quadrilateral or a 1-triangle. In
the first case, f3 has an excess of at least 0.2 and only contributes it to f in Step 6. In
the second case, we have a planar cycle of length seven, in which all faces except f are
satisfied after Step 6. Here, f receives its demand in Step 7 from a 2-quadrilateral that
is a vertex-neighbor of t0 (Figure 8c). In all cases f is satisfied after Step 6. ◀

▶ Proposition 20. After Step 7, all 0-pentagons that are the wedge-neighbor of five 1-triangles
are satisfied.

Proof. We continue to use the notation introduced in the proof of Proposition 19. Let f be
a 0-pentagon with five wedge-neighbors that are 1-triangles. We distinguish the number of
0-neighbors of f that are 0-quadrilaterals. Note that at most two such faces can exist next
to a 0-pentagon.

Case 1: No 0-neighbor of f is a 0-quadrilateral. Then all five vertex-neighbors are
2-triangles (see Figure 9a) and we have ch′(f) = ch4(f) = 1 − 0.5 · 2 = 0.
Case 2: Exactly one 0-neighbor of f is a 0-quadrilateral. Assume w.l.o.g. that this
0-quadrilateral lies at e0. We consider the wedge-neighbors t2 and t3 of f (see Figure 9b).
Observe that ch3(t2) = ch3(t3) = −0.2, and therefore ch4(f) ≥ 1 − 3 · 0.3 − 2 · 0.2 = −0.3.
Note further that f0 and f4 cannot be 0-faces, and therefore, by Proposition 18, f receives
the missing charge in Step 6 if |f0| or |f4| is at least five. The same holds if one of f0
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Figure 9 Illustrations for the proof of Proposition 20 Cases 1 and 2.

and f4 is a 2-quadrilateral or both are 1-quadrilaterals, because in this case there is an
excess of at least 0.3 charge after Step 5, which is only contributed to f (their other
vertex-neighbor is t0, which does not receive charge in Step 5, see Figure 9b).
Further f1 and f2 cannot be 2-triangles or 3-triangles. If both are 1-triangles, then there
would be homotopic multi-edges, which is not allowed. So the last case to consider is
when one of them – w.l.o.g. f4 – is a 1-triangle and the other – therefore f0 – is a
1-quadrilateral. If f4 is the only wedge-neighbor, to which f0 contributes in Step 1-5,
then it contributes its excess of 0.3 charge to f in Step 6 and f is satisfied. Otherwise,
the second wedge-neighbor of f0 is also a 1-triangle and we have a planar cycle of length
six (see Figure 9c). Here, f0 contributes 0.1 charge to f in Step 6 and the 1-neighbor of
f0 that is a 2-triangle can contribute its excess of 0.2 to f in Step 7. Therefore, we have
ch′(f) ≥ 0.
Case 3: Exactly two 0-neighbors of f are 0-quadrilaterals. W.l.o.g. one 0-quadrilateral is at
e0. If the other 0-quadrilateral would be at e2 (resp. e3), then e1 (resp. e4) would have four
crossings. Therefore, we can assume w.l.o.g. that the second 0-quadrilateral is at e4. Here,
we have ch3(t2) = −0.2 as f1 and f2 are 2-triangles, thus ch4(f) ≥ 1 − 4 · 0.3 − 0.2 = −0.4
(see Figure 10a).
We distinguish the type of the vertex-neighbor f4. Note that |f4| ≥ 4 and f4 cannot be a
2-quadrilateral. If f4 is not a 0-quadrilateral, 1-quadrilateral, 0-pentagon or 0-hexagon,
then, by Proposition 18, f4 contributes 0.4 charge to f in Step 6, and therefore f is
satisfied. The other cases are more complex, but they all have in common that if one
of f0 and f3 is a 2-quadrilateral, then it has an excess of at least 2 − 2 · 0.4 − 0.3 = 0.9
charge after Step 5 and this is enough to ensure ch6(f) ≥ 0.

Case 3.1: f4 is a 0-quadrilateral. Then the only case to consider is that f3 and f4 are
1-triangles. This directly implies a planar cycle of length seven (see Figure 10b). Here,
we make use of the second part of Step 6 and have two 2-quadrilaterals contributing 0.9
charge each to the 0-neighbors of f at e0 and e4, which then is moved to f . Therefore,
f is satisfied after Step 6.
Case 3.2: f4 is a 1-quadrilateral. Then t0 and t4 receive at least 0.2 charge in Step 3,
and therefore we have ch4(f) ≥ 1 − 2 · 0.3 − 3 · 0.2 = −0.2. If now f4 contributes to less
than two 1-triangles in Step 4, f receives from f4 enough charge in Step 6. Otherwise,
f0 and f3 are 1-triangles, implying a planar cycle of length six (Figure 10c). Here, t0
and t4 have two 1-neighbors that are 2-triangles and ch3(t0) = ch3(t4) = −0.1 holds.
Therefore, f contributes only 2 · 0.1 + 0.2 + 2 · 0.3 = 1 charge and f never has a demand.
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Figure 10 Illustrations for the proof of Proposition 20 Case 3, 3.1 and 3.2.

Case 3.3: f4 is a 0-pentagon. We introduce some new notation for f4 and its wedge-
neighbors, likewise for the 0-pentagon f itself: Let f̃ := f4, ẽ0 the edge-segment of e4
at f̃ , ẽ1 the edge-segment of e0 at f̃ and so on (see Figure 11a). Analogously, we denote
by t̃i the wedge-neighbor of f̃ at ẽi and by f̃i the vertex-neighbor at the crossing of
ẽi and ẽ(i+1 mod 5). Note that t̃0 = f0 and t̃1 = f3 are 1-triangles or 2-quadrilaterals
and, as pointed out above, we only have to consider the case that both are 1-triangles.
Observe that f is the only vertex-neighbor of f4 that may receive charge from f4 in
Step 6, as all its other vertex-neighbors cannot be 0-faces. Distinguish the number of
1-triangles that are wedge-neighbors of f4. Note that the wedge-neighbors of f4 can
never be 0-triangles or 0-pentagons, so, by Proposition 17, they contribute 0.3 charge
to f4 if they are not 1-triangles. If three or less wedge-neighbors of f4 are 1-triangles,
then ch5(f) ≥ 1 − 3 · 0.3 + 2 · 0.3 ≥ 0.7, which then is contributed to f in Step 6
implying ch6(f) ≥ 0. If all five wedge-neighbors of f4 are 1-triangles, then we have the
F 3

6 configuration, which is forbidden. So the case remains that four wedge-neighbors
of f4 are 1-triangles. Here, ch5(f4) ≥ 1 − 4 · 0.3 + 0.3 = 0.1 holds and this charge is
contributed to f in Step 6, so there is only 0.3 charge missing for f .
By symmetry, t̃2 is w.l.o.g. a 1-triangle. If t̃3 is the wedge-neighbor of f̃ that is not a
1-triangle, then it must be 2-quadrilateral and this implies a planar cycle of length
seven, in which f is the only face with a demand after Step 6 (see Figure 11b). The
2-quadrilateral t̃3 has an excess of 0.9 charge after Step 6 and contributes it in Step 7
to f . Therefore, f is satisfied.
So assume now that t̃3 is a 1-triangle and t̃4 is the wedge-neighbor that is not a
1-triangle (see Figure 11c). Note that t̃4 is not a 0-face. So for all cases, except that t̃4
is a 1-quadrilateral or 2-quadrilateral, Proposition 18 guarantees that t̃4 contributes in
Step 6 0.4 charge to all its vertex-neighbors. In particular, the 0-neighbor of f at e0
receives 0.4 charge and gives it completely to f . Thus, in this case, f is satisfied.
If t̃4 is a 2-quadrilateral, then we have ch5(t4) = 0.9 and it contributes in the same
way enough charge to f via the 0-neighbor of f at e0. This works also if t̃4 is a
1-quadrilateral contributing to only one wedge-neighbor (namely f̃) in Step 1-5.
In the last case where t̃4 is a 1-quadrilateral and contributes to f̃ and another wedge-
neighbor in Step 1-5, this second wedge-neighbor is f̃3 and must be a 1-triangle. This
implies a planar cycle of length seven (see Figure 11d). In this case, t̃4 and its 1-
neighbor that is a 2-triangle have an excess of 0.1 resp. 0.2 charge after Step 5 and
contribute it to f in Step 6 and Step 7. Therefore, f is satisfied.
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Figure 11 Illustrations for Case 3.3 in the proof of Proposition 20.
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Figure 12 Illustrations for Case 3.4 in the proof of Proposition 20.

Case 3.4: f4 is a 0-hexagon. Note that no wedge-neighbor of f4 can be a 0-face, so f4
contributes no charge in Step 1-3 and Step 5 (see Figure 12a). If at most four wedge-
neighbors of f4 are 1-triangles, then ch5(f4) ≥ 2 − 4 · 0.3 = 0.8 holds by Proposition 17.
In this case, there is at most one other vertex-neighbor of f4 besides f that can be
a 0-quadrilateral or 0-pentagon and f4 can contribute to both 0.4 charge in Step 6.
That is enough to satisfy f .
If five wedge-neighbors of f4 are 1-triangles, then no vertex-neighbor of f4 except f is a
0-face. Therefore, f receives the excess of f4 in Step 6, which is at least 2 − 5 · 0.3 = 0.5.
So again f is satisfied.
Assume now that all six wedge-neighbors of f4 are 1-triangles (see Figure 12b). Then
two of them have a demand of only 0.2 after Step 3 as they have two 1-neighbors that
are 2-triangles. Therefore, ch5(f4) ≥ 2 − 4 · 0.3 − 2 · 0.2 = 0.4. Here, f is the only face
to which f4 contributes in Step 6 and we have ch6(f) ≥ 0. ◀

B Details for Section 5

▶ Proposition 21. With the notation above, cpent + chex ≥ 2
3 (n − 2) − 4

3 m3 − m3− + m0.

Proof. Insert the m0 missing planar edges to D2 at the boundaries of the forbidden config-
urations. Further add a vertex v and five edges in every F 3

6 configuration from D3 as shown
in Figure 13. More precisely, notice that in D2 three edges have been deleted from each F 3

6
configuration. Those three edges form a path consisting of a 2-hop edge, a 3-hop edge and
a second 2-hop edge. Only one 3-hop edge e still exists and it is crossing-free in D2. We
arbitrarily choose a side of e and place the new vertex v close to e at this side. We realize
the five new edges by connecting v to the two vertices of the configuration that are on same
side of e, further to the two endpoints of e, and to one of the two endpoints on the opposite
side of e. We do not create new forbidden configurations by this operation, thus the number
of F 2

5 and F 2
6 configurations in D2 does not change.
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ev

Figure 13 Illustration for the proof of Proposition 21. We augment each F 3
6 configuration after

the deletion of the three blue edges in Figure 5 by one vertex and five edges for the drawing D̃.

As a next step, we remove one edge from each F 2
5 and F 2

6 configuration in D2 and call
this drawing D̃. Remark that D̃ is 2-planar, F 2

5 -free, F 2
6 -free and has 5(n − 2) − 2m3 − m3− +

m0 + 5m3 − (cpent + chex) edges on n + m3 vertices.
Assume we have fewer F 2

5 and F 2
6 configurations in D2 than stated in the proposition.

Then D̃ would have more than

5(n − 2) − 2m3 − m3− + m0 + 5m3 −
[2

3(n − 2) − 4
3m3 − m3− + m0

]
= 13

3 (n − 2 + m3)

edges, which contradicts the statement of Theorem 1 for D̃. ◀

▶ Proposition 22. Let H′ ⊆ H be the set of triangles that do not belong to the forbidden
configurations and let c△ = |H′|. Then m4 ≤ m3 + chex + 4m0 + 4c△.

Proof. Our strategy is to account for every edge in E4 an unique F 2
6 or an unique F 3

6
configuration (there are m3 + chex of them) (Case 1) or to account for four non-assigned E4
edges either an edge that might be inserted in D2 in a planar way (Case 2) or a triangle in
H′ (Cases 3 and 4). For the assignment, we use the fact that edges of E4 do not cross each
other and D4 is 4-planar.
1. e ∈ E4 lies completely in one of the forbidden configurations. This can only be the case

in an F 2
6 or F 3

6 configuration as all five edges of an F 2
5 configuration still exist in D2. In

each F 2
6 or F 3

6 configuration all 2-hops exist in D3. Therefore, e is a 3-hop and crosses
the other 3-hops inside the hexagon, which therefore cannot be in E4. So e is the only
edge in E4 inside the forbidden configuration and can be assigned to it.

2. e ∈ E4 starts in a forbidden configuration P and ends in another one, say P ′. Let uu′ be
the edge on the boundary of P that e crosses. We will assign the edge e to uu′ and argue
that uu′ ∈ E0. Let e1, e2 and e′

1, e′
2 resp. be the 2-hop edges of P and P ′ that enclose

the edge uu′ (see Figure 14a). Each of these four edges is crossed at least twice by edges
belonging to the same forbidden configurations P or P ′. Edge e crosses at least two of
those four edges. And since those edges must not be crossed more than four times, there
are at most four edges of E4 that will be assigned to the same boundary edge uu′. Note
also that uu′ ∈ E0, as otherwise e has at least five crossings (two each in the forbidden
configurations and one with uu′). Therefore, at most four edges of E4 will be assigned to
uu′ ∈ E0.

3. e ∈ E4 is completely outside of any forbidden configuration. By the properties of
triangulation H, e is an edge of a triangle of the triangulation H′. We assign e to that
triangle. By this, at most three such edges of E4 belong to the same triangle in H′.
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Figure 14 (a) At most four edges of E4 (blue) can leave a forbidden configuration P through the
same edge of its boundary, as otherwise one of the 2-hops e1, e2 of P has more than four crossings.
(b) For an edge uu′ on the boundary of a forbidden configuration P that is crossed by edges in E4

(blue), the neighboring triangle in H′ is defined by the edges ua and au′ (red).

4. e ∈ E4 lies partially in the faces of H′ and a forbidden configuration. This is the remaining
case. Let uu′ be a boundary edge of the forbidden configuration P that is crossed by
edge e ∈ E4. To define the triangle t, which is adjacent to the boundary edge uu′, we
consider the crossing edge, say e = ab that has the crossing c with uu′ that is closest to
u. Consider the two segments (a, c) and (c, b) of e, such that (a, c) is completely outside
of the forbidden configuration P . We define the edges of the triangle t, which is adjacent
to uu′, to be the edge that closely follows the two segments (u, c) and (c, a); as the third
edge of t, we take the edge that closely follows the two segments (a, c) and (c, u′), see
Figure 14b. Note that, by the choice of the triangulation, Case 4 can only occur on one
of the edges of the triangle t, here the edge uu′ (an edge in E4 that enters t through
another edge and ends at u or u′ would cross e, a contradiction to the fact that edges of
E4 do not cross each other). We distinguish two cases:

uu′ is crossed by at most two edges of E4. We assign those edges to the triangle t.
In the extreme case, we might have two more edges from Case 3 being assigned to t.
Thus, not more than four edges are assigned to t in total.
uu′ is crossed more often. As in Case 2, we observe that there are at most four edges
crossing uu′. We claim that neither the edge ua nor u′a can be in E4. For that, observe
that uu′ is crossed already at least three times (by assumption) and e at least two
times (in the forbidden configuration P ). Every edge crossing ua or ua′ must cross
either uu′ or e and they cannot have four additional crossings in total since D4 is
4-planar.
This implies that it is sufficient to assign the edges in E4 that cross uu′ to the
triangle t. ◀
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