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Abstract
Given a finite set, A ⊆ R2, and a subset, B ⊆ A, the MST-ratio is the combined length of the
minimum spanning trees of B and A \ B divided by the length of the minimum spanning tree of A.
The question of the supremum, over all sets A, of the maximum, over all subsets B, is related to
the Steiner ratio, and we prove this sup-max is between 2.154 and 2.427. Restricting ourselves to
2-dimensional lattices, we prove that the sup-max is 2, while the inf-max is 1.25. By some margin
the most difficult of these results is the upper bound for the inf-max, which we prove by showing
that the hexagonal lattice cannot have MST-ratio larger than 1.25.
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1 Introduction

The recent development of measuring the interaction between two or more sets of points
with methods from topological data analysis motivates the discrete geometric question about
minimum spanning trees studied in this paper; see [1, 7] for background in this general area.
We refer to the measured interaction as mingling, in which higher values corresponding to
more mingling. The ambiguity of the term is deliberate and leaves the concrete meaning to
the geometric and algebraic constructions described in [5]. As explained in the appendix of
the current paper, one of these measurements can be expressed in elementary terms:

▶ Definition. Given a finite set, A ⊆ R2, we write MST(A) for the (Euclidean) minimum
spanning tree of the complete graph on A, with edge weights equal to the distances between
the points. For B ⊆ A, the MST-ratio of A and B is the combined length of the minimum
spanning trees of B and A \B, divided by the length of the minimum spanning tree of A:

µ(A,B) = |MST(B)| + |MST(A \B)|
|MST(A)| . (1)
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3:2 The Euclidean MST-Ratio of Bi-Colored Lattices

To make use of this measure for statistical or other purposes, we ought to know how small
and how large the ratio can get (the extremal question), and how it behaves for random data.
A first result in the latter direction can be found in [6], who prove that for points chosen
uniformly at random in the unit square, the expected MST-ratio for a random partition
into two subsets is at least

√
2 − ε, for any ε > 0. In the non-random setting, we study the

maximum MST-ratio, over all partitions of A into two sets, and consider both the infimum
and supremum of the maximum, over all sets in a class of point sets. If these sets are infinite,
like for example 2-dimensional lattices, then we talk about the supremum rather than the
maximum MST-ratio.

Given any set, A, the minimum MST-ratio is achieved by removing the longest edge
from MST(A) and letting B and A \ B be the vertices of the resulting two trees, so it is
less than 1. Indeed, any other partition of A would produce two minimum spanning trees
that together are at least as long as MST(B) and MST(A \B). More interestingly, the
maximum MST-ratio is related to the Steiner ratio of the Euclidean plane [8, 10], and we
exploit this connection to prove that the supremum is between 2.154 and 2.427 (Theorem 2.1
in Section 2). The infimum of the maximum is again less interesting: allowing ourselves to
pick points arbitrarily close to each other, and one far away, this infimum can be seen to be
arbitrarily close to 1.

This motivates us to study the MST-ratio for a restricted class of sets, and our choice are
the (Euclidean) lattices, which are well studied objects with many applications in mathematics
and beyond; see e.g. [12]. Since we optimize over subsets of an infinite set, we talk about the
supremum rather than the maximum, and taking a sequence of progressively larger but finite
portions of such a lattice, we have well defined minimum spanning trees and can study the
asymptotic behavior of the MST-ratio. Our main result is that the supremum MST-ratio
of the hexagonal lattice is 1.25 (Theorem 4.2 in Section 4). Observe that this is an upper
bound on the infimum, over all lattices, of the supremum MST-ratio. We complement this
with a matching lower bound (Claim 3.5 in Section 3), and with matching lower and upper
bounds for the supremum, over all lattices, of the supremum MST-ratio, which we establish
is 2 (Claims 3.2 and 3.4 in Section 3).

2 The Maximum MST-ratio for Finite Sets

The main question we ask is to what extent two minimum spanning trees can be longer than
a single minimum spanning tree of the same points; see the definition of the MST-ratio of
a set A ⊆ R2 and a subset B ⊆ A in the introduction. We are interested in the maximum
MST-ratio, over all subsets B ⊆ A, and in the supremum and infimum of this maximum,
over all finite sets A ⊆ R2.

The supremum is related to the well-studied Steinter tree problem. Given a finite set,
X ⊆ R2, the Steiner tree of X is the minimum spanning tree of X ∪B, in which B = B(X)
is chosen to minimize the length of this tree. The Steiner ratio of the Euclidean plane is the
infimum of the length ratio, |MST(X ∪B)|/|MST(X)|, over all finite sets X and B in the
plane. There are sets X ⊆ R2 for which the ratio is only

√
3/2 = 0.866 . . .; take for example

the vertices of an equilateral triangle as X and the barycenter of this triangle as the sole
point in B. It is conjectured that

√
3/2 is the Steiner ratio of the Euclidean plane [8], but

the current best lower bound proved in [2] is only 0.824 . . .. We use this bound to prove
upper and lower bounds for the supremum maximum MST-ratio:

▶ Theorem 2.1. The supremum, over all finite A ⊆ R2, of the maximum, over all subsets
B ⊆ A, of the MST-ratio satisfies 2.154 ≤ supA maxB µ(A,B) ≤ 2.427.
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Proof. We first prove the upper bound. Since B is a subset of A, the MST of A cannot
be shorter than the Steiner tree of B. Similarly, the MST of A cannot be shorter than
the Steiner tree of A \ B. Hence, |MST(A)| ≥ 0.824 . . . · |MST(B)| and |MST(A)| ≥
0.824 . . . · |MST(A \B)|. It follows that the ratio satisfies

µ(A,B) ≤ 2 · [|MST(B)| + |MST(A \B)|]
0.824 . . . · [|MST(B)| + |MST(A \B)|] = 2.426 . . . . (2)

This inequality holds for every B ⊆ A. We second prove the lower bound for the sup-
max by constructing a set A of seven points that implies the inequality. Let B ⊆ A be
the three vertices of an equilateral triangle with unit length edges, and let A \ B be the
vertices of another equilateral triangle with unit length edges, but this time together with
the barycenter. Hence, |MST(B)| = 2 and |MST(A \B)| =

√
3. Assuming the distance

between corresponding vertices of the two equilateral triangles is less than ε > 0, we have
|MST(A)| <

√
3 + 3ε. This implies

µ(A,B) > 2 +
√

3√
3 + 3ε

> 2.154 . . .− 4ε. (3)

Since we can make ε > 0 arbitrarily small, this implies the claimed lower bound. ◀

The example used to establish the lower bound can be extended to larger numbers of
points, e.g. the following disjoint union of three lattices: B is the hexagonal lattice (to be
defined shortly), and A \B is a slightly shifted copy of the hexagonal lattice, together with
the barycenters of the triangles in every fourth row, which is a rectangular lattice with
distances 1 and

√
3 between consecutive rows and columns.

The question about the infimum of the maximum MST-ratio turns out to be less interesting,
with 1 as answer. To see the lower bound, set B = A, in which case |MST(B)| = |MST(A)|
and |MST(A \B)| = 0. The ratio is therefore 1. We get the upper bound by constructing a
set A of n ≥ 2 points. It contains the origin, n − 2 points each at distance at most ε > 0
from the origin, and another point, which we call b, at unit distance from the origin. Assume
b ∈ B, and consider the case in which B contains at least one other point of A. Then

1 ≤ |MST(A)| ≤ 1 + 2(n− 2)ε, (4)
1 − ε ≤ |MST(B)| ≤ 1 + 2(n− 2)ε, (5)

0 ≤ |MST(A \B)| ≤ 2(n− 3)ε. (6)

For any given δ > 0, we can choose ε > 0 sufficiently small such that the ratio is smaller
than 1 + δ. In the other case, in which B = {b}, we have |MST(B)| = 0 and |MST(A \B)| ≤
2(n− 2)ε, so we can make the ratio arbitrarily small and certainly smaller than 1.

3 Two-dimensional Lattices

Motivated by the triviality of the infimum maximum MST-ratio for general finite sets, we
aim for a restriction that disallows extremely unbalanced distributions. There are many
choices, and we opt for a maximally restricted setting in which the MST-ratio is still an
interesting question. Specifically, we focus on 2-dimensional lattices.

▶ Definition. The (Euclidean) lattice spanned by two linearly independent vectors, u,v ∈ R2,
consists of all integer combinations of these vectors: Λ(u,v) = {iu + jv | i, j ∈ Z}.

GD 2024



3:4 The Euclidean MST-Ratio of Bi-Colored Lattices

By definition, lattices are infinite. To cope with the difficulty of constructing the minimum
spanning tree of infinitely many points, we take progressively larger but finite portions of a
lattice and monitor the sequence of MST-ratios. Specifically, we fix a partition of the infinite
lattice, take rhombi centered at the origin and spanned by the vectors of the shortest basis
of the lattice, for each rhombus get the MST-ratio for the points inside the rhombus, and
consider the sequence of MST-ratios as the size of the rhombus increases. If this sequence
converges, we call the limit the MST-ratio of the chosen partition of the lattice.

Figure 1 Left: a portion of the hexagonal lattice and all its shortest edges. Middle: a partition
into one and two thirds of the points, with MST-ratio converging to (2 +

√
3)/3 = 1.245 . . .. Right:

a partition into one and three quarters of the points, with MST-ratio converging to 1.25.

A particularly interesting lattice is the triangular or hexagonal lattice, which is spanned
by u = (1, 0) and v = 1

2 (1,
√

3); see the left panel in Figure 1. The minimum distance
between its points is 1, so all edges of the MST have length 1. The two partitions illustrated
in the middle and right panels of Figure 1 have MST-ratios 1.245 . . . and 1.25, respectively.
In one way or another, we use this lattice to prove all four bounds claimed in the following
theorem.

▶ Theorem 3.1. The supremum and infimum, over all 2-dimensional lattices, Λ, of the
supremum, over all subsets, B ⊆ Λ, of the MST-ratio are C0 = supΛ supB µ(Λ, B) = 2 and
c0 = infΛ supB µ(Λ, B) = 1.25.

Each of the subsequent subsections restates and proves one of the four bounds, except for the
last subsection, which only sketches the proof strategy, with the proof presented in Section 4.

3.1 Lower Bound for Sup-Sup
This subsection exhibits a lattice, and a partition of this lattice into two sets, such that the
MST-ratio of progressively larger finite portions of the lattice approaches the supremum of
the supremum MST-ratio claimed in Theorem 3.1 from below.

▷ Claim 3.2. C0 ≥ 2.

Proof. Let Λ be the hexagonal lattice horizontally stretched by a factor 9, and let B ⊆ Λ
be the one third of the points drawn blue in Figure 2. The (vertical) distance between
neighboring points in a column of Λ is

√
3, and the (horizontal) distance between two

neighboring columns is 9
2 . For each r ≥ 0, let Λr ⊆ Λ and Br ⊆ B be the points in

[−r, r]2. Hence, Λr consists of pr = 2⌊2r/9⌋ + 1 vertical columns, which alternate between
qr = 2⌊r/

√
3⌋ + 1 and qr − 1 or qr + 1 points. Observe that pr and qr are both odd, and that

nr = qrpr ± (pr − 1)/2 is the cardinality of Λr. The number of points of Br in the columns
alternates between br = 2⌊r/(3

√
3)⌋ + 1 and br − 1 or br + 1, so mr = brpr ± (pr − 1) is the

cardinality of Br. It is easy to see that nr − 2pr ≤ 3mr ≤ nr + 2pr.
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Figure 2 The portion of the horizontally stretched hexagonal lattice, Λ, and the subset of blue
points, B, inside a square centered at the origin. The edges show the union of all possible minimum
spanning trees of the blue points.

By choice of the stretch factor, B is a hexagonal lattice with distance 3
√

3 between closest
points. Hence, |MST(Br)| = 3

√
3(mr − 1). Compare this with a minimum spanning tree of

Λr, which first connects the points in each column and second connects neighboring columns
with one edge for each pair. Hence,

|MST(Λr)| =
√

3(nr − pr) +
√

21(pr − 1), (7)

because every point, except the last in each column, has a neighbor at distance
√

3 below,
and any two neighboring columns have points at distance

√
21 from each other. Similarly,

any minimum spanning tree of Λr \Br first connects the points in each column and second
connects neighboring columns with one edge for each pair. Its length is therefore the same
as that of MST(Λr). Using 3mr = nr + o(nr), this implies

|MST(Br)| + |MST(Λr \Br)|
|MST(Λr)| = 3

√
3(mr − 1) +

√
3(nr − pr) +

√
21(pr − 1)√

3(nr − pr) +
√

21(pr − 1)
(8)

= 2
√

3nr + o(nr)√
3nr + o(nr)

r→∞−→ 2. (9)

For any ε > 0, we can choose r sufficiently large such that the MST-ratio exceeds 2 − ε,
which implies the claimed lower bound. ◁

3.2 Upper Bound for Sup-Sup
This subsection proves the upper bound that matched the lower bound established in the
preceding subsection. Given any lattice and any partition of this lattice into two sets, we
show that for any ε > 0, the MST-ratio cannot exceed 2 + ε. We begin with a bound for the
length of the minimum spanning tree of any finite set in a square.

▶ Lemma 3.3. The length of the minimum spanning tree of any n or fewer points in [0, n]2
is at most 2n

√
n.

Proof. Assuming the number of points is k ≤ n, the minimum spanning tree has k− 1 edges,
and we write ℓ1, ℓ2, . . . , ℓk−1 for their lengths. The sum of the squares of these lengths is at
most 4n2, as proved in [8]. By the Cauchy–Schwarz inequality, the sum of the ℓi is maximized
when all terms are the same, namely ℓ2

i = 4n2/(k − 1) for all i. This implies∑k−1

i=1
ℓi ≤ (k − 1)

√
4n2/(k − 1) = 2n

√
k − 1, (10)

from which the claimed bound follows. ◀

GD 2024



3:6 The Euclidean MST-Ratio of Bi-Colored Lattices

Lemma 3.3 will provide a crucial step in the proof of the upper bound for the supremum
maximum MST-ratio, which we present next.

▷ Claim 3.4. C0 ≤ 2.

Proof. We show that the MST-ratio of any lattice Λ ⊆ R2 and any subset B ⊆ Λ is at most
the claimed upper bound. Let u be the shortest non-zero vector in Λ, and v the shortest
non-zero vector that is not a multiple of u, breaking ties arbitrarily if necessary. Suppose
their lengths satisfy 1 = ∥u∥ ≤ ∥v∥ = ν. To simplify language, we call the points on a line
parallel to u a row of Λ. For every positive integer, n, let Λn ⊆ Λ contain all points αu + βv,
with 0 ≤ α, β ≤ n. The minimum spanning tree of Λn first connects the points in each row
and then the neighboring rows, so

|MST(Λn)| = (n+ 1)n+ nν. (11)

Set Bn = B∩ Λn. We construct a spanning tree, T (Bn), by first connecting the points within
the rows. This allows for the possibility that some rows do not contain any points of Bn.
In each of the other rows, we choose an arbitrary but fixed point of Bn, write B′

n ⊆ Bn for
the chosen points, construct MST(B′

n), and add its edges to T (Bn). Since T (Bn) spans Bn

but is not necessarily the shortest such tree, so |MST(Bn)| ≤ |T (Bn)|. To bound the latter,
recall that there are n+ 1 rows, each of length at most n. Furthermore, B′

n consists of at
most n+ 1 points that fit inside a square of side length n(ν + 1), in which ν is independent
of n. Lemma 3.3 implies |MST(B′

n)| ≤ 2(ν + 1)
√
ν + 1 · n

√
n. Hence,

|MST(Bn)| ≤ (n+ 1)n+ 2(ν + 1)
√
ν + 1 · n

√
n. (12)

By symmetry, we have the same upper bound for the length of MST(Λn \Bn). Comparing
this with the minimum spanning tree of Λn, we get

|MST(Bn)| + |MST(Λn \Bn)|
|MST(Λn)| ≤ 2n2 + 2n+ 4(ν + 1)3/2 · n

√
n

n2 + n+ νn

n→∞−→ 2. (13)

For every ε > 0, we can choose n large enough so that the MST-ratio is less than 2 + ε. This
works for every lattice and partition, which implies the claimed upper bound. ◁

3.3 Lower Bound for Inf-Sup
This subsection establishes the lower bound for the infimum, over all lattices, of the supremum
MST-ratio. We do this by establishing a partition into one and three quarters that can be
defined for any lattice and has MST-ratio at least as large as claimed in Theorem 3.1.

▷ Claim 3.5. c0 ≥ 1.25.

Proof. Let u and v be two vectors spanning Λ, and let B be the sublattice spanned by 2u
and 2v. Assuming the minimum distance between two points in Λ is 1, most edges of MST(Λ)
have length 1, while most edges of MST(B) have length 2. Write Λn ⊆ Λ for the points
iu + jv, with −2n ≤ i, j ≤ 2n + 1, and Bn ⊆ Λn for the points with even i and j. Since
Bn contains only a quarter of the points, this implies limn→∞ |MST(Bn)|/|MST(Λn)| = 1

2 .
The complement of Bn contains three quarters of the points, and the edges in its minimum
spanning tree have length at least 1, which implies limn→∞ |MST(Λn \Bn)|/|MST(Λn)| ≥ 3

4 .
Hence, the MST-ratio of B ⊆ Λ is at least 1

2 + 3
4 = 1.25. ◁
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3.4 Upper Bound for Inf-Sup
The upper bound for the infimum of the supremum MST-ratio will be proved in Section 4.
This proof is carefully constructed from a network of inequalities that require attention
to detail. This subsection makes an argument why it is not unreasonable to believe that
significant short-cuts may be difficult to find.

Figure 3 Four partitions of the hexagonal lattice into two sets, in which we draw each (blue)
point of the smaller set with its hexagonal neighborhood. The proportions of blue versus white
points are 1 : 2 in the upper middle, 1 : 3 on the left, 1 : 6 on the right, and 1 : 8 in the lower middle.
The corresponding MST-ratios are approximately 1.245, 1.25, 1.236, and 1.222, in this sequence.

The lattice that is most resistant to large MST-ratios is the hexagonal lattice, Λ, of which
four different subsets, B ⊆ Λ, are illustrated as packings of hexagonal neighborhoods in
Figure 3. Starting at the upper middle, then left, then right, and finally the lower middle,
the density of the packing decreases monotonically as the minimum distance between points
of B increases from

√
3 to 2, to

√
7, and finally to 3. Correspondingly, B contains one third,

one quarter, one seventh, and one ninth of the points. Perhaps surprisingly, the MST-ratio
does not vary monotonically and attains the largest value for the subset B that contains one
quarter of the points. The purpose of Section 4 is to prove that no other subset of Λ achieves
a larger MST-ratio; that is: 1.25 is the supremum MST-ratio of the hexagonal lattice.

▷ Claim 3.6. c0 ≤ 1.25.

Because the value matches the lower bound stated in Claim 3.5, this implies that 1.25 is
indeed the infimum, over all 2-dimensional lattices, of the supremum MST-ratio. Prior
to studying the hexagonal lattice, the authors of this paper proved that the supremum
MST-ratio of the integer lattice is

√
2 – which happens to match the ratio found for random

sets [6] – and the optimizing subset are the points whose coordinates add up to even integers.
The proof is similar to the one for the hexagonal lattice presented in Section 4, and almost
as long. If instead we consider the points whose coordinates add up to odd integers, we get

GD 2024



3:8 The Euclidean MST-Ratio of Bi-Colored Lattices

the same MST-ratio, so the integer lattice has at least two globally optimal partitions that
are far from each other if the difference is measured in terms of the color changes needed to
turn one into the other. Similarly, the hexagonal lattice has at least four globally optimal
partitions, and moving from one to the other (by flipping colors) means walking a path along
which the MST-ratio is sometimes barely below 1.25. To support the hypothesis of a rugged
but shallow landscape, we conducted computational experiments for finite subsets of the
integer lattice, which identified many local maxima that prevent local improvement strategies
from reaching any global maximum. We feel that these findings justify the exhaustive case
analysis in Section 4, and the many delicate inequalities in that section give evidence for
how close the paths get to the supremum MST-ratio.

4 Hexagonal Lattice on Torus

In this section, we prove Claim 3.6 for the hexagonal lattice on the torus. We begin by
constructing this lattice from a portion of the hexagonal lattice in the plane and proving
that the minimum spanning trees in the two topologies are not very different in length. In
the remaining subsections, we give a precise statement of the theorem that implies Claim 3.6
and prove the theorem with a packing argument in six steps.

4.1 Plane versus Torus
We consider the hexagonal lattice on the torus rather than in R2 in order to eliminate
boundary effects, which appear when we study a finite portion of the hexagonal lattice. Let
u and v be two unit vectors with a 60◦ degree angle between them, and write Λ ⊆ R2 for
the hexagonal lattice they span. For every positive n ∈ Z, let Λn ⊆ Λ contain the n2 points
a = αu + βv with 0 ≤ α, β ≤ n − 1. We write Λ′

n for the same n2 points but with the
topology of the torus, which we get by identifying a with a+ inu + jnv for all i, j ∈ Z, and
defining the distance as the minimum Euclidean distance between any two representatives.
Equivalently, consider the rhombus of points φu +ψv for real coefficients − 1

2 ≤ φ,ψ ≤ n− 1
2 ,

Figure 4 The hexagonal lattice of 36 points on the torus, obtained by gluing opposite sides of
the rhombus. The sublattice with twice the distance between neighboring points in shown in blue.

and glue this rhombus along opposite sides as illustrated for n = 6 in Figure 4. Call the
boundary of this rhombus the seam. Its length is 4n in the plane but only 2n on the torus
since the sides are glued in pairs. Note also that every point of Λ has distance at least

√
3/4

from the nearest point in the seam.

▶ Lemma 4.1. Let Λ ⊆ R2 be the hexagonal lattice, Λn ⊆ Λ the subset of n2 points, and
Λ′

n the same n2 points but on the torus, as described above. For any subset Bn ⊆ Λn and
the corresponding subset B′

n ⊆ Λ′
n on the torus, the lengths of the minimum spanning trees

satisfy |MST(B′
n)| ≤ |MST(Bn)| ≤ |MST(B′

n)| + 32
√

2 · n
√
n.
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Proof. Fix two minimum spanning trees, T of Bn in R2 and T ′ of B′
n on the torus. Since

the distances on the torus are smaller than or equal to those in R2, we have |T ′| ≤ |T |, which
is the first claimed inequality. Let E′ be the edges of T ′ that have the same length in both
topologies, and let E′′ be the other edges of T ′, which are shorter on the torus than in R2.
To draw an edge of E′′ in the plane so its length matches the length on the torus, we need to
connect representatives of the endpoints that lie in different rhombi. Assuming one endpoint
is in Λn, this edge crosses the seam. In contrast, every edge in E′ can be drawn between
two points of Λn, so without crossing the seam. We will prove shortly that the distance
between two crossings measured along the seam is at least 1

2 . Since the length of the seam is
2n, this implies that E′′ contains at most 4n edges. Let V ′′ ⊆ Λn be the set of at most 8n
endpoints of the edges in E′′, and let T ′′ be a minimum spanning tree of V ′′, with distances
measured in R2. Since Λn easily fits inside a square with sides of length 8n, Lemma 3.3
implies |T ′′| ≤ 32

√
2 · n

√
n. The edges in E′ together with the edges of T ′′ form a connected

graph with vertices Λn. Hence,

|T | ≤ |T ′| + |T ′′| ≤ |T ′| + 32
√

2 · n
√
n, (14)

which is the second claimed inequality. It remains to show that the distance between two
crossings along the seam is at least 1

2 . Let ab and xy be two edges in E′′, and recall that
the greedy construction of the minimum spanning tree prohibits x and y to lie inside the
smallest circle that passes through a and b, and vice versa. If the edges share an endpoint,
then the angle between them is at least 60◦. Since the common endpoint is at distance at
least

√
3/4 from the seam, this implies the claimed lower bound on the distance between the

two crossings. So assume a, b, x, y are distinct, and let c ∈ ab and z ∈ xy be the points that
minimize the distance between the edges, and observe that ∥c− z∥ is a lower bound for the
distance between the crossings. At least one of c and z must be an endpoint, so suppose
z = x. But since x lies outside the smallest circle of a and b, and outside the unit circles
centered at a and b, the distance of x to any point of ab is at least 1. ◀

The inequalities in Lemma 3.3 generalize to all 2-dimensional lattices. Letting u and
v be two shortest vectors that span a lattice, and assuming 1 = ∥u∥ ≤ ∥v∥ = ν, we get
2(4 + 4ν)3/2 · n

√
n as an upper bound for the difference in length, in which we compare a

rhombus of n× n points in R2 and on the torus, as before.

4.2 Statement of Theorem
We fix n to an even integer and write ∆ = Λ′

n for the hexagonal lattice on the torus. Since
n is even, ∆1 = {2x | x ∈ ∆} is a hexagonal sublattice of ∆, and we set ∆3 = ∆ \ ∆1; see
Figure 4. The lengths of the three minimum spanning trees are easy to determine because
they use only the shortest available edges, which have length 1 for ∆ and ∆3, and length 2
for ∆1. The MST-ratio is therefore

µ(∆,∆1) = |MST(∆1)| + |MST(∆3)|
|MST(∆)| =

2
(
n2/4 − 1

)
+

(
3n2/4 − 1

)
n2 − 1

n→∞−→ 1.25. (15)

Call an edge short if its length is 1. All other edges have length larger than the desired
average, which is 5

4 = 1.25, so we call them long. While MST(∆3) has only short edges, and
MST(∆1) uses only the shortest edges connecting its points, we claim that their combined
length is as large as it can be.

▶ Theorem 4.2. Let ∆ be a hexagonal lattice on the torus. Then the maximum MST-ratio
of ∆ converges to 5

4 = 1.25 from below.
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3:10 The Euclidean MST-Ratio of Bi-Colored Lattices

The proof consists of six steps, which are presented in the same number of subsections: 4.3
introduces the hexagonal distance, compares its MST with the Euclidean MST, and uses the
former to formulate the proof strategy; 4.4 introduces the main tool, which are hexagonal-
neighborhoods of the lattice points; 4.5 constructs a hierarchy of such neighborhoods aimed
at counting the short edges; 4.6 introduces so-called satellites, which provide additional short
edges needed in the proof; 4.7 forms loop-free subgraphs of short edges and bounds their
sizes; and 4.8 does the final accounting while paying special attention to the cases in which
all long edges have length between

√
3 and 3. Throughout this proof, we use the fact that

the minimum spanning tree can be computed by greedily adding the shortest available edge
that does not form a cycle to the tree [9, 11].

4.3 Hexagonal Distance and Proof Strategy
It is convenient to write the points in ∆ with three integer coordinates. To explain this, let

x = 1√
3 (0, 1) , y = 1√

3

(
−

√
3

2 ,−
1
2

)
, z = 1√

3

( √
3

2 ,−
1
2

)
(16)

be three vectors, each of length
√

3/3, that mutually enclose an angle of 120◦. These are
the projections of the unit coordinate vectors of R3 onto the plane normal to the diagonal
direction, scaled such that the three points are mutually one unit of distance apart. The
plane consists of all points u = ax + by + cz for which a+ b+ c = 0, and such a point belongs
to the hexagonal lattice iff a, b, c ∈ Z; see Figure 5. Given a second point, v = αx + βy + γz,
we write i = a− α, j = b− β, k = c− γ to compute the squared Euclidean distance between
u and v. Since x2 = y2 = z2 = 1

3 and xy = yz = zx = − 1
6 , we get

∥u− v∥2 = ∥ix + jy + kz∥2 = 1
3 (i2 + j2 + k2) − 1

3 (ij + ik + jk) = i2 + ij + j2, (17)

in which we get the final expression using k = −(i+ j). For points of the hexagonal lattice, i
and j are integers, and so is the squared Euclidean distance between them. It follows that
the minimum distance between two points in ∆ is 1.

z − x

x

y z

y − z z − y

x − yx − z

y − x

Figure 5 The unit disk under the hexagonal distance in the plane. The edges that connect the
origin to the corners at ±(x − y), ±(y − z), ±(z − x) decompose the hexagon into six equilateral
triangles, whose barycenters are ±x, ±y, ±z.

We adapt the notion of distance to construct neighborhoods in the hexagonal lattice. By
definition, the hexagonal distance between points u = ax + by + cz and v = αx + βy + γz is

∥u− v∥hex = max{|a− α|, |b− β|, |c− γ|} = max{|i|, |j|, |i+ j|}. (18)

The unit disk under this distance consists of all points with hexagonal distance at most 1
from the origin: H = {u ∈ R2 | ∥u− 0∥hex ≤ 1}. It is the regular hexagon with unit length
sides that is the convex hull of the points ±(x − y), ±(y − z), ±(z − x); see Figure 5. For
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B ⊆ ∆, we write MSThex(B) for the spanning tree that minimizes the hexagonal length. We
construct it by adding the edges in sequence of non-decreasing hexagonal length, breaking
ties with Euclidean length, and breaking the remaining ties arbitrarily. Since MSThex(B) is
a spanning tree but not necessarily the one that minimizes Euclidean length, we have

|MST(B)| ≤ |MSThex(B)|, (19)

in which we measure the Euclidean length on both sides. To prove Theorem 4.2, we show
that for every B ⊆ ∆, the average (Euclidean) length of the long edges in MSThex(B) and
the short edges in MSThex(∆ \B) is at most 5

4 . Interchanging B and ∆ \B, we get the same
relation by symmetry. Using (19), this implies

|MST(B)| + |MST(∆ \B)| ≤ |MSThex(B)| + |MSThex(∆ \B)| ≤ 5
4 (n2 − 2). (20)

Compare this with (15), which establishes |MST(∆1)|+|MST(∆3)| = 5
4n

2−3 for the partition
∆ = ∆1 ⊔ ∆3. The right-hand side differs from the upper bound in (20) by only a small
additive constant. We thus conclude that the maximum MST-ratio of ∆ converges to 5

4 from
below, as claimed by Theorem 4.2.

4.4 Hierarchy of Habitats
Let Tℓ be the subset of edges in MSThex(B) whose hexagonal lengths are at most ℓ, together
with the endpoints of these edges. For example, T0 has zero edges, T1 consist of all short
edges, and Tℓ = MSThex(B) for sufficiently large ℓ. All edges connecting points in different
components of Tℓ have hexagonal length ℓ+ 1 or larger. We thus write kH for the scaled
copy of the unit disk and call

Dk(B) =
⋃

u∈B
(kH + u) (21)

the k-th thickening of B, in which kH + u is the translate of kH whose center is u. As
illustrated in Figure 6, the k-th thickenings of points u and v overlap, touch, are disjoint if
the hexagonal distance between u and v is less than, equal to, larger than 2k, respectively.

The boundary of kH passes through 6k points of the hexagonal lattice, which we call
the vertices of kH. Furthermore, we call the 6k (short) edges that connect these points in
cyclic order the edges of kH. Let Bk ⊆ B be the vertex set of a component of T2k−1, and
observe that for all u, v ∈ Bk there is a sequence of points u = x1, x2, . . . , xm = v in Bk such
that kH + xi and kH + xi+1 overlap for all 1 ≤ i ≤ m − 1. We define the frontier of the
component, denoted ∂Dk(Bk), as the lattice points and the connecting (short) edges in the
boundary of Dk(Bk). Furthermore, ∂Dk(B) is the union of frontiers of the components of
T2k−1. These notions are illustrated in Figure 6, which shows ∂D1(B) and ∂D2(B) for six
marked points. Note that the edge shared by H + a and H + b is part of ∂D1(B).

4.5 Subdivided Foreground and Background
Consider the 1-st thickening of B, which for the time being we call the foreground. Letting
B1 ⊆ B2 be the vertex sets of two nested components of T1 and T2, we call D1(B1) a room
and D1(B2) a block of the foreground. We say two rooms are adjacent if they share at least
one edge. In Figure 6, there are five rooms, two of which are adjacent, and three blocks, one
of which contains three rooms.

To make a finer distinction, observe that for any edge, its Euclidean length is smaller
than or equal to the hexagonal length. The two notions agree on edges with slope 0,

√
3,

and −
√

3. Consider T2 and T3 after removing all edges whose Euclidean length equals 2
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c

b

fe

a

d

Figure 6 The blue 1-st thickening and the pink 2-nd thickening of B = {a, b, c, d, e, f} in the
hexagonal lattice. H + a and H + b share an edge and therefore form two rooms in a common house,
while H + e and H + f overlap and thus form a one-room house in D1(B). These two houses form a
block, and together with H + d, they form a compound of two blocks. H + c is a room, a house, a
block, and a compound by itself. The two compounds lie in the interior of a room in D2(B).

and 3, respectively, and let B′
2 and B′

3 be the vertex sets of the components that satisfy
B1 ⊆ B′

2 ⊆ B2 ⊆ B′
3. Observe that any two rooms in D1(B′

2) have a sequence of pairwise
adjacent rooms connecting them. We therefore call D1(B′

2) a house. For comparison, any two
rooms in D1(B2) have a sequence of rooms connecting them such that any two consecutive
rooms share at least a vertex but not necessarily a full edge. Similarly, for any two blocks in
D1(B′

3), there is a sequence of blocks connecting them such that the channel separating any
two consecutive blocks at its narrowest place is only

√
3/2 wide. We therefore call D1(B′

3)
a compound; see Figure 6 for examples. For comparison, the channel that separates two
compounds is at its narrowest place at least one unit of distance wide. A few observations:

(i) all vertices of ∂D1(B) are points in ∆ \B;
(ii) all edges of ∂D1(B) are short;
(iii) the frontier of a room consists of at least six (short) edges.

We call the complement of the foreground the background, and the components of the
background its backyards. We say a backyard is adjacent to a house if the two share a
non-empty portion of their boundary. There are configurations in which the number of
backyards is twice the number of houses; see Figure 3 on the left, where each backyard
is adjacent to three houses, and each house is adjacent to six backyards. In general, we
distinguish between backyards adjacent to at most two and at least three houses, denoting
their numbers α1 and β1, respectively. We prove an upper bound for β1 in terms of the
number of houses and blocks.

▶ Lemma 4.3. Given h1 houses arranged in b1 blocks, the number of backyards adjacent to
three or more houses satisfies β1 ≤ 2h1 − 2b1 + 2.

Proof. We construct a graph G = G(B) on the torus by placing a node inside each house,
and whenever two houses meet at a boundary vertex, we connect the corresponding nodes
with a curved arc that passes through the shared vertex. This can be done such that no
two of the arcs cross and each face of G contains one backyard. A face bounded by a single
arc (loop) or two arcs (multi-arcs) contains a backyard adjacent to at most two houses and
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thus does not count toward β1. We remove this face by deleting the loop or one of the
two multi-arcs. The resulting graph has h1 nodes, b1 components, and β1 faces. Write a1
for the number of arcs. If the graph is connected and all faces are bounded by three arcs,
we have h1 − a1 + β1 = 0 because the Euler characteristic of the torus is 0. Whenever we
remove an arc from this graph, we either merge two faces or split a component, but it is also
possible that the removal of the arc has neither of those two side-effects. Hence, we have
h1 − a1 + β1 ≥ b1 − 1 in the general case. Since 2a1 ≥ 3β1, this implies β1 ≤ 2h1 − 2b1 + 2,
as claimed. ◀

4.6 Satellites
By definition, compounds cannot be packed as tightly as blocks; see Figure 3 with lattice
points between the compounds in the lower middle but no such points between the blocks on
the right. Recall that each component of D1(B) is contained in a room of D2(B). For each
such room, we single out the largest compound it contains – breaking ties arbitrarily – and
call this the big compound of the room. All others are small compounds of the room. We
refer to certain lattice points close to one or more compounds as satellites. The targeted
lattice points are at distance

√
3/2 outside D1(B) and either on the boundary or in the

interior of D2(B).

Figure 7 From left to right: a single, a double, another double, and a triple satellite in red. In
the left two cases, the satellite belongs to the frontier of a room of the 2-nd thickening of B, while
in the right two cases, the satellite lies in the interior of such a room.

The difference between small and large compounds influences which lattice points we
call satellites. For each small compound we find three satellites as follows: sandwich the
compound between three lines with slopes 0,±

√
3, choose a (short) edge as the basis of an

equilateral triangle outside the compound on each line, and pick the vertex of this triangle
opposite to the basis as a satellite. Observe that the Euclidean distance between any two
satellites of the same compound is at least 3. In contrast, we pick six lattice points as the
satellites of the big compound by sandwiching it between six lines, two each of slope 0,±

√
3,

choosing one basis on each line, and picking the vertex of the equilateral triangle opposite to
the basis as a satellite. The Euclidean distance between any two such satellites is at least

√
3.

As illustrated in Figure 7, a lattice point can be a satellite of one, two, or three compounds
in the same room. Accordingly, we call the point a single, double, or triple satellite of the
room, respectively. A single satellite is necessarily a vertex on the frontier of the room, a
triple satellite is necessarily in the interior of the room, and a double satellite can be one
or the other. For a room, R, we write s(R) and d(R) for the number of single and double
satellites on its frontier, and e(R) and t(R) for the number of double and triple satellites in its
interior. Summing over all rooms in D2(B), we set s1 =

∑
s(R), d1 =

∑
d(R), e1 =

∑
e(R),

t1 =
∑
t(R), and refer to s1, d1, e1, t1 as the satellite sums of D2(B). Furthermore, let

c1 be the number of compounds of D1(B) and r2 the number of rooms of D2(B). Since
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3:14 The Euclidean MST-Ratio of Bi-Colored Lattices

s(R) + 2d(R) + 2e(R) + 3t(R) is three times the number of small compounds in R plus six
for the big compound, the satellite sums satisfy a linear relation, which we state together
with a property of short edges connecting satellites in the interior:

(iv) if c1 > 1, then the satellite sums of D2(B) satisfy s1 + 2d1 + 2e1 + 3t1 = 3c1 + 3r2;
(v) any unit length edge connecting blocks of D1(B) inside a room of D2(B) with each

other or to satellites in the interior of this room is contained in the interior of this room.

By construction, there are s(R) + d(R) satellites that are vertices of R. We prove a stronger
lower bound on the number of vertices, which also strengthens Claim (iii).

▶ Lemma 4.4. Assume r2 ≥ 2 and let R be a room of D2(B). Then the frontier of R has at
least 6 + 2

3s(R) + 4
3d(R) vertices.

Proof. Let p, s, d be the number of non-satellite lattice points, single satellites, double
satellites, and write per(R) for the perimeter, which is the length of or the number of (short)
edges in the frontier of R. To begin note that a satellite in the frontier of R is in the boundary
of at most one backyard. This is because the external angle is 180◦ at a single satellite and
60◦ at a double satellite. The internal angle at any vertex of another room is at least 120◦,
so there is not enough space for two backyards around a satellite; see the left two panels
in Figure 7. This implies that we may assume that the frontier of R is a simple polygon,
or a collection of such. Indeed, if the polygon touches itself at a vertex, this must be a
non-satellite, which we can duplicate, and if the polygon touches itself along a sequence of
edges, we can remove these edges and their shared vertices. This operation neither changes
the number of single and double satellites, nor does it increase the perimeter. A room that
contains only one compound can have perimeter as small as 12, but a room with at least
two compounds has significantly larger perimeter, certainly larger than 15. For per(R) ≤ 15,
we thus get only one compound and, by construction, only 6 single and no double satellites.
This implies the claimed inequality. We therefore assume (22), aim at proving (23), and note
that (24) follows as the convex combination of (22) and (23) with coefficients 1

3 and 2
3 :

per(R) ≥ 16; (22)
per(R) ≥ 1 + s+ 2d; (23)
per(R) ≥ 1

3 16 + 2
3 (1 + d+ 2d) = 6 + 2

3s+ 4
3d. (24)

It remains to prove (23). Call the endpoints of an edge in the frontier of R neighbors. Two
neighbors cannot both be double satellites, else they would belong to a common compound,
which contradicts that the distance between them is at least

√
3. Furthermore, if a double

satellite neighbors a single satellite, then this is only possible if they are vertices of an
equilateral triangle bounding a backyard, as in Figure 8 on the left. For lack of space around
this triangle, its third vertex is a non-satellite. The contribution of these three vertices to
the right-hand side of (23) is 2 + 1 + 0 = 3. Hence, we can remove the three edges from the
left-hand side and the three vertices from the right-hand side of (23) without affecting the
validity of the inequality. As illustrated in Figure 8 on the left, two such triangles may touch
at a non-satellite vertex, but this does not matter and we can remove the edges and vertices
of both triangles from (23).

We can therefore assume that both neighbors of a double satellite are non-satellites.
Hence, between any two double satellites there is at least one non-satellite, which implies
p ≥ d. But p = d only if p = d = 0 or there is strict alternation between double satellites
and non-satellites. It is not possible that all vertices in the frontier are single satellites,



S. Cultrera di Montesano et al. 3:15

because this contradicts that the distance between any two of them is at least
√

3. Strict
alternation is possible, but only for the polygon of 12 edges shown in Figure 8 on the right.
By assumption, D2(B) has at least two rooms, so not all backyards of R can be bounded by
such 12-gons. But this implies p ≥ d+ 1, so per(R) = p+ s+ d ≥ 1 + s+ 2d, as claimed. ◀

To generalize the above concepts to k ≥ 1, we let B2k−1 ⊆ B2k be the vertex sets of
two nested components of T2k−1 and T2k, and call Dk(B2k−1) a room and Dk(B2k) a block
of Dk(B). The rooms that share edges join to form houses, and the blocks separated by
channels that are only

√
3/2 wide join to form compounds. Write rk, hk, bk, ck for the number

of rooms, houses, blocks, compounds of Dk(B), αk, βk for the number of backyards adjacent
to at most 2, at least 3 houses, and sk, dk, ek, tk for the satellite sums of Dk+1(B). We can
now extend Claims (i) to (v) and Lemmas 4.3 and 4.4 merely by substituting Dk(B) for
D1(B), βk for β1, ck for c1, etc. In particular, the extension of Claim (iv) to

sk + 2dk + 2ek + 3tk = 3ck + 3rk+1 (25)

assuming ck > 1 will be needed shortly. We note that (25) and the extension of Lemma 4.4
can be strengthened, but it is not necessary for the purpose of proving Theorem 4.2.

4.7 Loop-free Subgraphs
Let Vk be the vertices of Dk(B) together with all double and triple satellites that lie in the
interior of rooms in Dk+1(B), and note that Vj ∩ Vk = ∅ whenever j ≠ k. Let V ′

k be Vk

together with the remaining satellites of Dk(B), and note that Vj ∩ V ′
k = ∅ if j < k, but V ′

k

and Vk+1 may share points. To account for this difference, let ℓ be the smallest integer such
that rℓ+1 = 1, and define

V =


V1 if ℓ = 0;
V1 ⊔ . . . ⊔ Vℓ−1 ⊔ Vℓ if ℓ ≥ 1 and cℓ = 1;
V1 ⊔ . . . ⊔ Vℓ−1 ⊔ V ′

ℓ if ℓ ≥ 1 and cℓ > 1.
(26)

By construction, all points in V belong to ∆ \B, and all unit length edges connecting these
points are candidates for MSThex(∆ \B). We therefore let U be a maximal loop-free graph
whose vertices are the points in V and whose edges all have unit length. Since U has no
loops, there is an MSThex(∆ \B) that contains U as a subgraph. We are therefore motivated
to study the number of edges in U . Using a slight abuse of notation, we denote this number
#U . For every k, let Uk and U ′

k be the subgraphs of U induced by Vk and V ′
k, respectively.

We first count the edges in U1 and U ′
1 in Lemma 4.5.

Figure 8 Left: two touching triangular backyards. Their shared vertex is a non-satellite, the
two red vertices are double satellites, and the two pink vertices are single satellites. Right: unique
polygon with strictly alternating double satellites and non-satellites. On both sides, all (partially
drawn) blue compounds are different and belong to the same (partially drawn) pink room.
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▶ Lemma 4.5. Let r1 ≥ h1 ≥ b1 ≥ c1 be the number of rooms, houses, blocks, and compounds
of D1(B), and s1, d1, e1, t1 the satellite sums of D2(B). Then

#U1 ≥ 2r1 + h1 + 3b1 + (e1 + t1) − r2 − 4; (27)
#U ′

1 ≥ 2r1 + h1 + 3b1 + (s1 + d1 + e1 + t1) − 5, (28)

in which we assume c1 > r2 = 1 for the second inequality.

Proof. We argue in three steps: first counting edges in ∂D1(B), second counting edges
connecting blocks, and third counting edges connecting the satellites. In each case, we count
only unit length edges, and we make sure that the edges we count do not form loops.

For the first step, it is convenient to count half-edges, which are the two sides of an edge.
These two sides either face two rooms, or one faces a room and the other faces the background.
For a house, H, we make its r(H) rooms accessible from the outside by removing r(H) − 1
edges shared by adjacent rooms plus 1 edge shared with the background. By (iii), each room
was originally faced by at least 6 half-edges, so we still have at least 4r(H) + 1 of them left.
Doing this for each house, we make all r1 rooms accessible from the background, and we
have at least 4r1 + h1 half-edges left facing these rooms.

Observe that the convex hull of a house contains at least six of the (short) edges that
bound the house. One may have been removed, so we still have at least 5 half-edges facing
the background. Keeping in mind that the cycles that bound backyards still need to be
opened, we now have at least 4r1 +h1 + 5h1 half-edges and therefore at least 2r1 + 3h1 edges.
If a backyard is adjacent to at most two houses, then it has two consecutive (short) edges
that enclose an angle less than π and that are both shared with the same house. Hence, the
complementary angle on the side of the house is larger than π, which implies that these two
edges cannot belong to the convex hull of the house. We remove one of them and use the
half-edge facing the backyard of the other to compensate for the removed half-edge facing
the room. Since both edges have not yet been accounted for, we still have at least 2r1 + 3h1
edges. If a backyard is adjacent to three or more houses, we also remove one edge, but this
time count one less. Recalling that β1 is the number of such backyards, we still have at
least 2r1 + 3h1 − β1 ≥ 2r1 + h1 + 2b1 − 2 edges, in which we get the right-hand side from
Lemma 4.3.

For the second step, we connect the b(R) blocks inside a common room of D2(B) with
b(R) − 1 short edges. A total of b1 blocks are hierarchically organized in r2 rooms, so we add
b1 − r2 short edges to those counted in the first step. Similarly, we add e1 + t1 short edges
that connect the double and triple satellites in the interiors of the rooms to the vertices in the
frontier of D1(B). Finally, we remove two edges to open the meridian and longitudinal cycles
of the graph, if they exist. The final count is therefore at least 2r1 +h1 +3b1 +(e1 +t1)−r2 −4,
which is the claimed lower bound for #U1.

For the third step, we assume c1 > r2 = 1. Since there is only one room, there are no
shared satellites between different rooms, and we can connect them to the frontier of D1(B)
with s1 + d1 short edges without creating any loop. This implies that the number of edges in
U ′

1 is at least 2r1 + h1 + 3b1 + (s1 + d1 + e1 + t1) − 5, as claimed. ◀

The bounds in Lemma 4.5 generalize to k > 1, but there are differences. Most important
is the existence of a loop-free graph for thickness k − 1. In particular, we have satellites that
affect the structure and size of Uk and U ′

k.
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▶ Lemma 4.6. Let rk ≥ hk ≥ bk ≥ ck be the number of rooms, houses, blocks, compounds of
Dk(B), and sk, dk, ek, tk the satellite sums of Dk+1(B). Then for k ≥ 2, we have

#Uk ≥ (3rk + 1
3sk−1 + 2

3dk−1) + 4hk + 3bk + (ek + tk) − rk+1 − 4; (29)
#U ′

k ≥ (3rk + 1
3sk−1 + 2

3dk−1) + 4hk + 3bk + (sk + dk + ek + tk) − 5, (30)

in which we assume ck > rk+1 = 1 for the second inequality.

Proof. We argue again in three steps: first counting edges in ∂Dk(B), second counting edges
connecting blocks, and third counting edges connecting to the satellites. Each of these three
steps is moderately more involved than the corresponding step in the proof of Lemma 4.5,
and we emphasize the differences.

The first step starts the construction with Lemma 4.4, which implies that the rooms
in Dk(B) are faced by a total of at least 6rk + 2

3sk−1 + 4
3dk−1 half-edges. After making

all rooms accessible to the background, we still have at least (4rk + 2
3sk−1 + 4

3dk−1) + hk

half-edges. Adding the at least 11 half-edges per house facing the background, we have at
least (4rk + 2

3sk−1 + 4
3dk−1) + 12hk half-edges and thus at least (2rk + 1

3sk−1 + 2
3dk−1) + 6hk

edges. Let αk and βk be the number of backyards adjacent to at most two and at least three
houses, respectively. By extension of Lemma 4.3, we have βk ≤ 2hk − 2bk + 2. We remove an
edge per backyard, which for the first type does not affect the current edge count, while the
backyards of the second type reduce the count to (2rk + 1

3sk−1 + 2
3dk−1) + 4hk + 2bk − 2.

For the second step, we connect the blocks of Dk(B) inside a common room of Dk+1(B)
with bk − rk+1 edges. Furthermore, we add rk edges to connect the blocks of Dk−1(B) inside
a common room of Dk(B) – which inductively are already connected to each other – to the
frontier of this room, and we add at least ek + tk edges connecting to the triple satellites
of compounds inside the rooms of Dk+1(B). After removing two additional edges to break
the meridian and longitudinal loops, if they exist, we arrive at a lower bound of at least
(3rk + 1

3sk−1 + 2
3dk−1) + 4hk + 3bk + (ek + tk) − rk+1 − 4 edges in Uk.

For the third step, we assume ck > rk+1 = 1, in which case we can add at least sk + dk

edges connecting to the single and double satellites. This implies #U ′
k ≥ (3rk + 1

3sk−1 +
2
3dk−1) + 4hk + 3bk + (sk + dk + ek + tk) − 5. ◀

4.8 Book-keeping
The goal is to show that the average (Euclidean) length of the long edges in MSThex(B)
and the short edges in MSThex(∆ \B) is at most 5

4 . We thus assign a credit of α = 1
4 to

every short edge and set the cost of a long edge to be its Euclidean length minus 5
4 . For

convenience, we set the value of α to 1 Euro and convert the costs into Euros; see Table 1.

Table 1 The Euclidean lengths of the edges with hexagonal lengths 2 to 5, and their costs in
Euros, each truncated beyond the first two digits after the decimal point.

hex 2 2 3 3 4 4 4 5 5 5
L2

√
3

√
4

√
7

√
9

√
12

√
13

√
16

√
19

√
21

√
25

cost 1.92 3.00 5.58 7.00 8.85 9.42 11.00 12.43 13.33 15.00

For the accounting, we need the costs of the last two edges for each hexagonal length.
Letting wk, xk and yk, zk be the costs of the two longest edges with hexagonal length 2k and
2k + 1, respectively, we have
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wk = 1
α

[√
4k2 − 2k + 1 − 5

4

]
, xk = 1

α

[
2k − 5

4
]
, (31)

yk = 1
α

[√
4k2 + 2k + 1 − 5

4

]
, zk = 1

α

[
(2k + 1) − 5

4
]

; (32)

see Table 1, which shows the values of w1, x1, y1, z1, w2, x2, y2, z2 in boldface. Listing the
edges in sequence, we need bounds for the cost differences between consecutive edges:

2 ≤ wk − zk−1 ≤ 2.928 . . . ; 1.071 . . . ≤ xk − wk ≤ 2; (33)
2 ≤ yk − xk ≤ 2.583 . . . ; 1.414 . . . ≤ zk − yk ≤ 2, (34)

which are not difficult to prove using elementary computations. We use accounting with
credits and costs to prove that the average (Euclidean) edge length of the two minimum
spanning trees is less than 5

4 . Note that the hexagonal lattice on the torus is obtained by
gluing a regular hexagonal portion of the Euclidean hexagonal lattice along opposite sides. If
we choose 12n2 points, then this hexagon has 2n+ 1 vertices and therefore 2n edges per side.
Taking only every other point – so 3n2 of the 12n2 – we still get an integer number of edges
per side. It follows that the 3n2 points are the minority color in a 1 : 3 coloring of the 12n2

points.

▶ Lemma 4.7. Let ∆ be the hexagonal lattice with 12n2 points and unit minimum distance
on the torus, and B ⊆ ∆. Then |MST(B)| + |MST(∆ \B)| ≤ 15n2 − 5

2 .

Proof. By (19), it suffices to prove the inequality for MSThex(B) and MSThex(∆ \B). For
k ≥ 1, we compare the edges of hexagonal length 2k and 2k + 1 in MSThex(B) with the
(short) edges in Uk or possibly in U ′

k. Since T2k+1 \ T2k−1 is the set of these long edges, we
can do this in one step by comparing T2ℓ+1 with U , for sufficiently large ℓ and U as defined
right after the definition of V in (26). Recall that rk is the number of components of T2k−1
or, equivalently, the number of rooms of Dk(B). These rooms are organized hierarchically
into hk houses, bk blocks, and ck compounds. Hence, r1 ≥ h1 ≥ b1 ≥ c1 ≥ r2, etc. This
implies that there are

r1 − h1 edges of hexagonal length 2 and Euclidean length less than 2 that connect the
rooms pairwise inside the h1 houses;
h1 − b1 edges of hexagonal and Euclidean length 2 that connect the houses pairwise inside
the b1 blocks;
b1 − c1 edges of hexagonal length 3 and Euclidean length less than 3 that connect the
blocks pairwise inside the c1 compounds;
c1 − r2 edges of hexagonal and Euclidean length 3 that connect the compounds pairwise
inside the r2 rooms of D2(B), etc.

The costs for these edges are w1, x1, y1, z1, respectively. Setting z0 = 0, and generalizing to
k ≥ 1, we observe that the total cost satisfies

cost ≤
∑

k≥1
[wk(rk − hk) + xk(hk − bk) + yk(bk − ck) + zk(ck − rk+1)] (35)

=
∑

k≥1
[(wk − zk−1)rk + (xk − wk)hk + (yk − xk)bk + (zk − yk)ck] (36)

≤ [2r1 + h1 + 3b1 + c1 − 7] +
∑

k≥2
[3rk + hk + 3bk + ck − 8]. (37)

To see how (37) derives from (36), we first make the sums finite by letting ℓ be the smallest
integer such that rℓ+1 = 1. Then the last non-zero term in (35) is zℓ(cℓ − rℓ+1) and,
correspondingly, the last term in (36) is zℓrℓ+1 = zℓ, which by (32) is equal to 8ℓ−1. But this is
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the same as the sum of constants in (37). Furthermore, we note that if rk = hk = bk = ck = 1,
for every k, then (36) vanishes because (35) vanishes, and (37) vanishes because for any k the
corresponding sum of four terms minus the constant vanishes. Hence, the difference between
(37) and (36) vanishes. To prove the inequality, we reintroduce the variables, which satisfy
r1 ≥ h1 ≥ . . . ≥ cℓ, and look at their coefficients. The first is 2 − w1 + z0, which is positive
because w1 < 2 and z0 = 0. Indeed, using the inequalities in (33) and (34), we observe
that the coefficients alternate between positive and negative. For example, 3 − wk + zk−1
is positive because wk − zk−1 < 3, and 1 − xk + wk is negative because xk − wk > 1. This
implies that the difference is non-negative, so (37) follows.

The difficult cases are the edges of hexagonal lengths 2 and 3. We therefore consider the
special cases in which all edges in MSThex(B) have Euclidean length at most

√
3,

√
4,

√
7,

√
9,

so h1 = 1, b1 = 1, c1 = 1, r2 = 1, respectively; see Figure 3. From (37), we get

cost ≤


2r1 − 2 if r1 > h1 = 1;
2r1 + h1 − 3 if h1 > b1 = 1;
2r1 + h1 + 3b1 − 6 if b1 > c1 = 1;
2r1 + h1 + 3b1 + c1 − 7 if c1 > r2 = 1.

(38)

The cost needs to be paid from the credit contributed by the (short) edges in U , which
in these four cases is either U1 or U ′

1. Recall that after the conversion, each short edge
contributes one Euro of credit, so Lemma 4.5 provides lower bounds:

credit ≥


2r1 − 1 if r1 > h1 = 1;
2r1 + h1 − 2 if h1 > b1 = 1;
2r1 + h1 + 3b1 − 5 if b1 > c1 = 1;
2r1 + h1 + 3b1 + (s1 + d1 + e1 + t1) − 5 if c1 > r2 = 1.

(39)

Comparing (39) with (38), we get cost ≤ credit trivially in the first three cases. Using
Claim (iv), we get use s1 + d1 + e1 + t1 ≥ c1 ≥ (s1 + 2d1 + 2e1 + 3t1) − r2 = c1, which
supports the same in the fourth case. To compare the cost with the credit in the remaining
cases, we use Lemmas 4.5 and 4.6 to compute a lower bound for the latter, assuming that
ℓ > 1 is the smallest integer for which rℓ+1 = 1:

credit ≥ #U1 +
∑ℓ−1

k=2
#Uk + #U ′

ℓ (40)

≥
[
2r1 + h1 + 3b1 + ( 1

3s1 + 2
3d1 + e1 + t1) − r2 − 4

]
+

∑ℓ−1

k=2

[
3rk + 4hk + 3bk + ( 1

3sk + 2
3dk + ek + tk) − rk+1 − 4

]
+ [3rℓ + 4hℓ + 3bℓ + (sℓ + dℓ + eℓ + tℓ) − 5] , (41)

in which we group the terms with index k − 1 that appear in the bounds for #Uk and #U ′
k

with the terms that have the same index. Using the extension of Claim (iv) to k ≥ 1 stated
in (25), we get 1

3sk + 2
3dk + ek + tk ≥ 1

3 (sk + 2dk + 2ek + 3tk) = ck + rk+1, so the lower
bound in (41) exceeds the upper bound in (37). Hence, cost ≤ credit. In other words, the
average Euclidean length of the edges in MSThex(B) and MSThex(∆ \B) is at most 5

4 . It
follows that their total Euclidean length is at most 5

4 (n2 − 2), which by (19) implies the same
for MST(B) and MST(∆ \B). ◀

By Lemma 4.7, the average Euclidean length of the edges in MST(B) and MST(∆ \B)
is less than 5

4 . Together with (15), this implies Theorem 4.2.
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5 Discussion

This paper proves bounds on the supremum and infimum of the maximum MST-ratio for
finite sets, as well as of the supremum MST-ratio for lattices in the plane. There are many
directions of generalization, and their connection to the topological analysis of colored point
sets started in [5] provides a potential path to relevance outside of mathematics.

What about sets in the plane that are less restrictive than lattices but still disallow
arbitrarily dense clusters of points, such as periodic sets or Delone sets? A first result in
this direction is the lower bound of 1 + 1/(11(2c+ 1)2) for the maximum MST-ratio of a
set of n points with spread at most c

√
n proved in [6].

What about partitions of A ⊆ R2 into three or more sets? For example, is it true that
the supremum MST-ratio of the hexagonal lattice partitioned into three subsets is

√
3, as

realized by the unique partition into three congruent hexagonal grids? Is
√

3 the infimum,
over all lattices in R2, of the supremum, over all partitions into three subsets?
What about three and higher dimensions? Consider for example the FCC lattice in
R3 (all integer points whose sums of coordinates are even), and partition it into 2FCC
and the rest. The MST-ratio of this example is 9

8 = 1.125. Is it true that this is the
supremum MST-ratio of the FCC lattice? Is 1.125 the infimum, over all lattices in R3, of
the supremum, over all partitions into two subsets?

Beyond these extensions in discrete geometry, it would be interesting to study the MST-ratio
stochastically, to determine the computational complexity of the maximum MST-ratio, and
to frame notions of mingling as measured by homology classes of dimension 1 and higher in
elementary geometric terms.
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A Connection to Chromatic Persistence

As mentioned in the introduction, the study of the MST-ratio is motivated by a recent topolo-
gical data analysis method for measuring the “mingling” of points in a colored configuration;
see Figure 9, which shows six persistence diagrams measuring various aspects of the mingling
in a bi-colored configuration. This appendix addresses the meaning of some of these diagrams
and explains the connection to the MST-ratio, while referring to [5] for a detailed account of
the method. In particular, we short-cut the description by ignoring the discrete structures
that are necessary for the algorithm. We first sketch the general background from [7] and [4],
and then explain the specific setting that motivates the MST-ratio.

Let A ⊆ R2 be a finite set of points, χ : A → {0, 1} a bi-coloring, and write B = χ−1(0)
and C = A \ B = χ−1(1). Let a : R2 → R be the function that maps every x ∈ R2 to
the minimum Euclidean distance between x and the points in A, and let b : R2 → R and
c : R2 → R be the similarly defined functions for B and C. Furthermore, write Ar = a−1[0, r],
Br = b−1[0, r], and Cr = c−1[0, r] for the sublevel sets at distance threshold r ≥ 0. Each is a
union of disks with radius r centered at the points of A, B, and C, respectively. The inclusions
Br ⊆ Ar and Cr ⊆ Ar induce homomorphisms in p-th homology, br : Hp(Br) → Hp(Ar) and
cr : Hp(Cr) → Hp(Ar), for each dimension p ∈ Z and every threshold r ≥ 0. Assuming field
coefficients in the construction of the homology groups, the latter are vector spaces and the
homomorphisms are linear maps.

We also have Ar ⊆ As whenever r ≤ s, so there are also linear maps from Hp(Ar) to
Hp(As). By now it is tradition in the field to consider the filtration of the Ar, for r from 0
to ∞, and the corresponding sequence of homology groups together with the linear maps
between them. Reading this sequence from left to right, we see homology classes being born
and dying. There is a unique way to pair the births with the deaths that regards the identity
of the classes, and the persistence diagram summarizes this information by drawing a point
(r, s) ∈ R2 for every homology class that is born at Ar and dies entering As; see e.g. [7,
Chapter VII]. Every death is paired with a birth, but it is possible that a birth remains
unpaired – when the homology class is of the domain – in which case the corresponding point
is at infinity. We write Dgmp(a) for the persistence diagram defined by the sublevel sets of
a, noting that it is a multi-set of points vertically above the diagonal.

Besides Dgmp(a), we consider Dgmp(b) and Dgmp(c), which are the persistence diagrams
of the sublevel sets of b and c, respectively, and work with the disjoint union, Br ⊔ Cr.
Conveniently, the p-th persistence diagram of b ⊔ c : R2 ⊔ R2 → R is the disjoint union
of Dgmp(b) and Dgmp(c), for all p. Write br ⊕ cr : Hp(Br) ⊕ Hp(Cr) → Hp(Ar) for the
corresponding map in homology. As proved in [4], the sequence of images of the br ⊕ cr

admit linear maps between them and thus define another persistence diagram, denoted
Dgmp(im b ⊔ c → a). Similarly, the kernels of the br ⊕ cr define a persistence diagram,
denoted Dgmp(ker b ⊔ c → a). To simplify the notation, we write κr = br ⊕ cr and use
mnemonic notation to indicate whether a persistence diagram belongs to the domain, image,
or kernel of the map:
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Domp(κ) = Dgmp(b ⊔ c), (42)
Imp(κ) = Dgmp(im b ⊔ c → a), (43)

Kerp(κ) = Dgmp(ker b ⊔ c → a). (44)

The 1-norm of a persistence diagram, D, is the sum of the absolute differences between birth-
and death-coordinates over all points in D, denoted ∥D∥1. To cope with points at infinity,
we use a cut-off – e.g. the maximum finite homological critical value, denoted ω0 – so that
the contribution of a point at infinity to the 1-norm is finite.

#pts 1-norm fin
dim 0 25 12.000
dim 1 48 11.713
total 73 23.713
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Figure 9 The six-pack for the 10 × 10 portion of the hexagonal lattice with coloring as in Figure 4.
Important for the current discussion are the diamond-shaped points in the domain, image, and kernel
diagrams. To get the MST-ratio, the 1-norms of the diagrams are computed while ignoring the points at
infinity, giving 61.0 and 49.5 for the domain and the image diagrams, respectively. Compare the ratio of
1.232 . . . with the upper bound of 1.25 proved in Theorem 4.2.

The kernel, domain, and image form a short exact sequence that splits, which implies
∥Imp(κ)∥1 + ∥Kerp(κ)∥1 = ∥Domp(κ)∥1; see [5, Theorem 5.3]. For dimension p = 0, all
three 1-norms can be rewritten in terms of minimum spanning trees. Indeed, ∥Dgm0(b)∥1 =
1
2 |MST(B)| + ω0 because every edge in the minimum spanning tree of B marks the death of
a connected component in the sublevel set, and ω0 is contributed by the one component that
never dies. Similarly, ∥Dgm0(c)∥1 = 1

2 |MST(C)| + ω0, which implies (45):

∥Dom0(κ)∥1 = ∥Dgm0(b)∥1 + ∥Dgm0(c)∥1 = 1
2 |MST(B)| + 1

2 |MST(C)| + 2ω0; (45)
∥Im0(κ)∥1 = 1

2 |MST(A)| + ω0. (46)

Since persistence diagrams are stable, as originally proved in [3], these relations imply that
minimum spanning trees are similarly stable. (46) deserves a proof. There are two ways
a connected component of Br can die in the image: by merging with a component of Cr
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or with another component of Br. In the first case, the death corresponds to an edge of
MST(A) that connects a point in B with a point in C, and in the second case, it corresponds
to an edge of MST(A) that connects two points in B. There is also the symmetric case in
which the edge connects two points in C. This establishes a bijection between the deaths in
Im0(κ) and the edges of MST(A). There is one component that never dies, which accounts
for the extra cut-off term and implies (46).

The 1-norm of the kernel diagram is the difference between the 1-norms of the domain
diagram and the image diagram: ∥Ker0(κ)∥1 = ∥Dom0(κ)∥1 − ∥Im0(κ)∥1. It thus makes
sense to call ∥Im0(κ)∥1/∥Dom0(κ)∥1 and ∥Ker0(κ)∥1/∥Dom0(κ)∥1 the image share and kernel
share, respectively. Observe that both are real numbers between 0 and 1 and that they add
up to 1. The intuition is that the kernel share is a measure of the amount of “0-dimensional
mingling” of B and C. In other words, the smaller the image share, the more the two colors
mingle. We therefore get

µ(A,B) = |MST(B)| + |MST(C)|
|MST(A)| =

∥Dom0(κ)∥1 − 2ω0

∥Im0(κ)∥1 − ω0
, (47)

for the MST-ratio, which besides the cut-off terms is the reciprocal of the image share. Hence,
the larger the MST-ratio the more the two colors mingle. In this interpretation, Theorem 3.1
says that among all lattices in R2, the hexagonal lattice is most restrictive to mingling as it
does not permit MST-ratios larger than the inf-max, which for 2-dimensional lattices is 1.25.
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