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Abstract
The associahedron is the graph GN that has as nodes all triangulations of a convex N -gon, and
an edge between any two triangulations that differ in a flip operation. A flip removes an edge
shared by two triangles and replaces it by the other diagonal of the resulting 4-gon. In this paper,
we consider a large collection of induced subgraphs of GN obtained by Ramsey-type colorability
properties. Specifically, coloring the points of the N -gon red and blue alternatingly, we consider
only colorful triangulations, namely triangulations in which every triangle has points in both colors,
i.e., monochromatic triangles are forbidden. The resulting induced subgraph of GN on colorful
triangulations is denoted by FN . We prove that FN has a Hamilton cycle for all N ≥ 8, resolving
a problem raised by Sagan, i.e., all colorful triangulations on N points can be listed so that any
two cyclically consecutive triangulations differ in a flip. In fact, we prove that for an arbitrary fixed
coloring pattern of the N points with at least 10 changes of color, the resulting subgraph of GN

on colorful triangulations (for that coloring pattern) admits a Hamilton cycle. We also provide an
efficient algorithm for computing a Hamilton path in FN that runs in time O(1) on average per
generated node. This algorithm is based on a new and algorithmic construction of a tree rotation
Gray code for listing all n-vertex k-ary trees that runs in time O(k) on average per generated tree.
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1 Introduction

The associahedron is a polytope of fundamental interest and importance [6, 14, 17], as
it lies at the heart of many recent developments in algebraic combinatorics and discrete
geometry; see [21] and the references therein. In this paper we are specifically interested in
its combinatorial structure, namely the graph of its skeleton; see Figure 1. This graph, which
we denote by GN , has as nodes all triangulations of a convex N -gon (N ≥ 3), and an edge
between any two triangulations that differ in a flip operation, which consists of removing an
edge shared by two triangles and replacing it by the other diagonal of the resulting 4-gon.
The graph GN is isomorphic to the graph that has as nodes all binary trees with N − 2
vertices, and an edge between any two trees that differ in a tree rotation. Each binary tree
arises as the geometric dual of a triangulation, with the root given by “looking through” a
fixed outer edge, and flips translate to tree rotations under this bijection; see Figure 2.
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30:2 Flips in Colorful Triangulations

N = 6

G6

Figure 1 The graph of the 3-dimensional associahedron. The top edge of each triangulation is
the outer edge that determines the root of the corresponding binary tree (see little arrow).
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R1 = [[A,B], C] R2 = [A, [B,C]]

Figure 2 Correspondence between flips in triangulations (top) and rotations in binary trees
(bottom).

Properties of the graph GN have been the subject of extensive investigations in the
literature. Most prominently, the diameter of GN was shown to be 2N − 10 for all N >

12 [22, 24]. Furthermore, the graph GN is regular with degree N − 3, and this number is
also its connectivity [16]. The chromatic number of GN is at most O(log N) [3, 10], while
the best known lower bound is only 4.

Another fundamental graph property that we focus on in this paper is Hamiltonicity.
To this end, Lucas [18] first proved that GN admits a Hamilton cycle for N ≥ 5, and a
short proof was given by Hurtado and Noy [16]. A Hamilton path in GN can be computed
efficiently and yields a Gray code ordering of all binary trees by rotations [19]. This algorithm
is a special case of the more general Hartung-Hoang-Mütze-Williams permutation language
framework [12, 13, 20, 5].

In this paper, we consider a large collection of induced subgraphs of GN obtained by
Ramsey-type colorability properties. This line of inquiry was initiated by Sagan [23], following
a sequence of problems posed by Propp on a mailing list in 2003. Specifically, we label the
points of the convex N -gon by 1, . . . , N in counterclockwise order, and we color them red (r)
and blue (b) alternatingly. It follows that point i is colored red if i is odd and blue if i is
even. For even N , any two neighboring points have opposite colors, whereas for odd N this
property is violated for the first and last point, which are both red.



R. Acharya, T. Mütze, and F. Verciani 30:3

N = 6

G6

N = 5

G5

F5

F6

1

1

2

3

4

5

2

3 4

5

6

Figure 3 Induced subgraphs of the associahedron G5 (top left) and G6 (bottom left) obtained
for the coloring sequence rbrb · · · by forbidding monochromatic triangles. The triangulations with
monochromatic triangles are still shown, but they are not part of the graphs F5 and F6 (top right
and bottom right, respectively) and hence crossed out.

We say that a triangulation is colorful if every triangle has points of both colors, i.e., no
triangles in which all three points have the same color. We write FN for the subgraph of GN

induced by all colorful triangulations. In other words, FN is obtained from GN by deleting
all triangulations that have a monochromatic triangle; see Figure 3.

1.1 Sagan’s problem and its generalization
Sagan [23] proved that FN is a connected graph, and he asked [personal communication]
whether FN admits a Hamilton path or cycle. Looking at the first two interesting in-
stances N = 5 and N = 6 in Figure 3, we note that F5 has a Hamilton path, but no cycle,
and F6 has no Hamilton path and hence no cycle either. Furthermore, F7 admits a Hamilton
path (see Figure 12), but no Hamilton cycle, which seems rather curious (cf. Theorem 5
below). We prove the following result.

▶ Theorem 1. For any N ≥ 8, the graph FN has a Hamilton cycle.

The resolution of Sagan’s question immediately gives rise to the following more general
problem: We consider an arbitrary sequence α of coloring the points 1, . . . , N red or blue, and
let Fα be the corresponding induced subgraph of GN obtained by forbidding monochromatic
triangles. For which sequences α does Fα admit a Hamilton path or cycle?

Formally, a coloring sequence is a sequence α = (α1, . . . , αℓ) of even length ℓ ≥ 2 with
αi ≥ 1 for i = 1, . . . , ℓ, and it encodes the coloring pattern

rα1bα2rα3bα4 · · · rαℓ−1bαℓ (1)

GD 2024



30:4 Flips in Colorful Triangulations

for the points 1, . . . , N , where N =
∑ℓ

i=1 αi, and rαi and bαj denote αi-fold and αj-fold
repetition of red and blue, respectively. In words, the first α1 many points are colored red,
the next α2 many points are colored blue, the next α3 many points are colored red etc.
Clearly, the special cases considered by Sagan are α1 = α2 = · · · = αℓ = 1 for even N = ℓ,
or α1 = 2 and α2 = · · · = αℓ = 1 for odd N = ℓ + 1, respectively (in the second case, the
two consecutive points of the same color are 1 and 2 instead of 1 and N as before, but this
is only a cyclic shift of indices). We let Fα be the induced subgraph of GN induced by the
colorful triangulations with coloring sequence α.

We provide the following generalization of Theorem 1 before. Specifically, our next
theorem applies to all coloring patterns with at least 10 changes of colors.

▶ Theorem 2. For any coloring sequence α = (α1, . . . , αℓ) of (even) length ℓ ≥ 10, the
graph Fα has a Hamilton cycle.

Note that there are 2N−2 different coloring sequences satisfying the conditions of the
theorem, i.e., there are exponentially many subgraphs of the associahedron to which Theorem 2
applies. This also shows that the associahedron has cycles of many different lengths.

In view of the last theorem, it remains to consider short coloring sequences, i.e., sequences
of length ℓ ≤ 8. We offer three simple observations in this regime. We first consider the
easiest case ℓ = 2, i.e., the coloring sequence has the form α = (a, b). The resulting graph Fα

for α = (4, 4) is shown in Figure 4. Another way to think about such a triangulation is as
a triangulation of the so-called double-chain, where each triangle has to touch both chains.
We observe that the number of colorful triangulations in this case is

(
N−2
a−1

)
=

(
N−2
b−1

)
where

N := a + b. Moreover, these triangulations are in bijection with bitstrings of length N − 2
with a − 1 many 0s and b − 1 many 1s, so-called (a − 1, b − 1)-combinations. This bijection is
defined as follows; see Figure 4: Given a triangulation, we consider a ray separating the red
from the blue points, and we record the types of triangles intersected by this ray one after
the other, specifically we record a 1-bit or 0-bit if the majority color of the three triangle
points is red and blue, respectively. We see that flips in the triangulations correspond to
adjacent transpositions in the corresponding bitstrings. In the following, we use the generic
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100110

011010

011100

110001

010110
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011001 010101
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100011
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Figure 4 Flip graph of colorful triangulations for the coloring sequence α = (4, 4) (rrrrbbbb),
which is isomorphic to the flip graph of (3, 3)-combinations under adjacent transpositions. The
black arrow in the leftmost triangulation is the ray that separates red from blue points, and the
combination is obtained by reading the triangle types that intersect this ray from top to bottom
(red=1, blue=0). The nodes of degree 1 and a Hamilton path in the flip graph are highlighted.
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term flip graph for any graph that has as nodes a set of combinatorial objects, and an edge
between any two objects that differ in a certain change operation. From what we said before,
it follows that F(a,b) is isomorphic to the flip graph of (a − 1, b − 1)-combinations under
adjacent transpositions. Applying known results from [4, 9] thus yields the following theorem.

▶ Theorem 3. For integers a, b ≥ 1 with a + b ≥ 3, the graph F(a,b) is isomorphic to the flip
graph of (a − 1, b − 1)-combinations under adjacent transpositions. Consequently, F(a,b) has a
Hamilton path if and only if a ∈ {1, 2}, or b ∈ {1, 2}, or a and b are both even. Furthermore,
if a, b ≥ 2, then F(a,b) has no Hamilton cycle.

The reason for the non-existence of a Hamilton cycle is that F(a,b) has two nodes of
degree 1, corresponding to the combinations 1a−10b−1 and 0b−11a−1; see Figure 4.

The next result is a simple observation for the special case of coloring sequences of
length ℓ = 4 with exactly two non-consecutive blue points; see Figure 5.

▶ Theorem 4. For integers a, b ≥ 1, the graph F(a,1,b,1) is isomorphic to an a × b rectangular
grid with one pending edge attached to each node. Consequently, it does not have a Hamilton
path unless a · b ≤ 2.

The nodes of degree 1 are the triangulations in which the two blue points are not connected
by an edge, in which case the only possible flip restores this edge between them.

1

2

3

4

5

6

7

8

9

F(4,1,3,1)

Figure 5 Illustration of Theorem 4 for the coloring sequence α = (4, 1, 3, 1) (rrrrbrrrb). The
nodes of degree 1 in the flip graph are highlighted.

The last result is for coloring sequences of length ℓ = 6 and yields an infinite family of
natural flip graphs that admit a Hamilton path but no Hamilton cycle, despite the fact that
they have minimum degree 2; see Figure 6.

▶ Theorem 5. For α = (a, 1, 1, 1, 1, 1), the graph Fα has no Hamilton cycle if a ≥ 1, but a
Hamilton path unless a ∈ {1, 3}.

1.2 Algorithmic questions and higher arity
We also provide an algorithmic version of Theorem 1.

GD 2024
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F(1,1,1,1,1,1)

F(2,1,1,1,1,1)

F(3,1,1,1,1,1)

F(4,1,1,1,1,1)

a = 1

a = 2

a = 3

a = 4

Figure 6 Illustration of the family of graphs F(a,1,1,1,1,1).

▶ Theorem 6. For any N ≥ 8, a Hamilton path in the graph FN can be computed in
time O(1) on average per node.

The initialization time and memory requirement for this algorithm are O(N).
Our construction of a Hamilton path/cycle in FN relies on a Gray code ordering of

ternary trees by rotations. We first describe this setup, generalizing our earlier definitions
about triangulations and binary trees; see Figures 7 and 8 for illustration. Let k ≥ 2 and
n ≥ 1 be integers, and let N := (k − 1)n + 2. We consider a dissection of a convex N -gon
into n many (k + 1)-gons. A flip operation removes an edge shared by two (k + 1)-gons and
replaces it by one of the other k − 1 possible diagonals of the resulting 2k-gon. Dissections of
an N -gon into (k + 1)-gons are in bijection with k-ary trees with n vertices. Each k-ary trees
arises as the geometric dual of a dissection into (k + 1)-gons, with the root given by “looking
through” the outer edge 1N , and flips translate to tree rotations under this bijection.

We denote the corresponding flip graph of dissections of an N -gon into (k + 1)-gons by
GN,k+1. The associahedron is the special case k = 2, i.e., the graph GN,3 = GN . By what
we said before, the graph GN,k+1 is isomorphic to the rotation graph of k-ary trees with n

vertices, where N = (k − 1)n + 2. Huemer, Hurtado, and Pfeifle [15] first proved that GN,k+1
has a Hamilton cycle for all k ≥ 3, which combined with the results of Hurtado and Noy [16]
for the case k = 2 (binary trees) yields the following theorem.

▶ Theorem 7 ([16] for k = 2; [15] for k ≥ 3). For any k ≥ 2, n ≥ max{2, 5 − k} and
N := (k − 1)n + 2, the graph GN,k+1 has a Hamilton cycle.

The proof from [15] for the case k ≥ 3 does not generalize the simple inductive construction
of a Hamilton path/cycle in the associahedron (the case k = 2) described in [16], and it
imposes substantial difficulties when translating it to an efficient algorithm. Consequently, we
provide a unified and simplified proof for Theorem 7, valid for all k ≥ 2, which can be turned
into an efficient algorithm. This result generalizes the efficient algorithm for computing
a Hamilton path in the associahedron provided by Lucas, Roelants van Baronaigien, and
Ruskey [19].
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Figure 7 Bijection between dissections of an N -gon into (k + 1)-gons and k-ary trees, illustrated
for the case k = 3.
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R1 = [[A,B,C], D,E] R2 = [A, [B,C,D], E] R3 = [A,B, [C,D,E]]

Figure 8 Correspondence between flips in quadrangulations (top) and rotations in ternary trees
(bottom); cf. Figure 2.

▶ Theorem 8. For any k ≥ 2, n ≥ max{2, 5 − k} and N := (k − 1)n + 2, a Hamilton path
in GN,k+1 can be computed in time O(k) on average per node.

The initialization time and memory requirement for this algorithm are O(kn).

GD 2024
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We implemented the algorithms mentioned in Theorems 6 and 8 in C++, and made the
code available for download and experimentation on the Combinatorial Object Server [7].

1.3 Three colors
We now consider colorings of the points 1, . . . , N with more than two colors. To start with,
we color the points in counterclockwise order alternatingly red (r), blue (b) and green (g),
and we consider triangulations in which every triangle has points of all three colors, i.e., one
point of each color. This setting has also been considered by Sagan [23]. Note that flips
of a single diagonal as before are not valid operations anymore (in the sense that the flip
graph would not have any edges), so we consider a modified flip operation instead which
consists of a particular sequence of 4 flips. Specifically, a twist “rotates” a triangle that is
surrounded by three triangles, i.e., the inner triangle is removed, creating an empty 6-gon,
and the triangle is inserted the other way; see Figure 9. We write HN for the flip graph of
colorful triangulations under twists; see Figure 10.

▶ Theorem 9. For any N that is a multiple of 3, the graph HN is connected.

A

B C D EA B C

E

A

B

C

D

EA

B D

E

C

twist

T = [[[A,B], [C,D]], E] T ′ = [A, [[B,C], [D,E]]]

D

left-twist

right-twistT T ′

Figure 9 Twist operation and the corresponding binary
trees.

N = 9

H9

H6

N = 6

Figure 10 Fflip graphs H6 and H9.

1.4 Outline of this paper
In this extended abstract we focus on proving Theorems 1 and 2. Before providing the proofs
in Section 3, we collect a few definitions and auxiliary results in Section 2. The proofs of
all other results can be found in the preprint [1]. We conclude with some open questions in
Section 4.



R. Acharya, T. Mütze, and F. Verciani 30:9

2 Preliminaries

2.1 String operations
For any string x and any integer k ≥ 0, we write xk for the k-fold concatenation of x. Given
any sequence x = (x1, . . . , xℓ), we write rev(x) := (xℓ, xℓ−1, . . . , x1) for the reversed sequence.

2.2 Dissections and trees
For integers k ≥ 2 and n ≥ 1, let N := (k − 1)n + 2. We write DN,k+1 for the set of all
dissections of a convex N -gon into (k + 1)-gons. In particular, DN,3 are triangulations of a
convex N -gon. We write Tn,k for the set of all k-ary trees with n vertices, and tn,k := |Tn,k|.
Both objects are counted by the k-Catalan numbers (OEIS sequence A062993), i.e., we have

|DN,k+1| = |Tn,k| = tn,k = 1
(k − 1)n + 1

(
kn

n

)
.

We also define t′
n,3 :=

∑n
i=0 ti,3 · tn−i,3 as the number of pairs of ternary trees with n vertices

in total (OEIS A006013). We have the explicit formula

t′
n,3 = 1

n + 1

(
3n + 1

n

)
.

2.3 Colorful triangulations
For any coloring sequence α, we write Cα for the set of colorful triangulations with coloring
pattern defined in (1). By these definitions, Fα is the subgraph of GN induced by the
triangulations in Cα. Sagan’s question concerned the special case α := 1N for even N

and α := (2, 1N−2) for odd N , and for those particular coloring sequences α we simply
write CN = Cα and FN = Fα. Sagan proved the following.

▶ Theorem 10 ([23, Thm. 2.1]). For any q ≥ 1 we have

|CN | =
{

2q · tq,3 = 2q

2q+1
(3q

q

)
if N = 2q + 2,

2q · t′
q,3 = 2q

q+1
(3q+1

q

)
if N = 2q + 3.

The two sequences in this theorem are OEIS A153231 and A369510, respectively.

2.4 Graphs
For a graph G, we write ∆(G) for its maximum degree. Also, we write G ≃ H for two
graphs G and H that are isomorphic.

For any integer d ≥ 1, the d-dimensional hypercube Qd is the graph that has as vertices
all bitstrings of length d, and an edge between any two strings that differ in a single bit.

▶ Lemma 11 ([8]). For any d ≥ 2 and any set E of at most 2d − 3 edges in Qd that together
form vertex-disjoint paths, there is a Hamilton cycle that contains all edges of E.

For integers a ≥ 1 and d ≥ 1 we define S(a, d) as the set of all a-tuples of non-decreasing
integers from the set {1, . . . , d}, i.e., S(a, d) = {(j1, . . . , ja) | 1 ≤ j1 ≤ j2 ≤ · · · ≤ ja ≤ d}.
Furthermore, we let G(a, d) be the graph with vertex set S(a, d) and edges between any two
a-tuples that differ in a single entry by ±1; see Figure 11.

GD 2024
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G(1, 5)
a = 1 a = 2 a = 3

54321
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, 4
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H 4
≃
G
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H 5
≃
G
(2
, 1
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Figure 11 Illustration of the graph G(a, d) and Lemma 12. The spanning trees and the extremal
vertices are highlighted.

▶ Lemma 12. For any a ≥ 1 and d ≥ 1, the graph G(a, d) has a spanning tree T with
∆(T ) ≤ 3.

We refer to the vertices 1a and da as extremal vertices, and note that they have degree 1
in G(a, d), unless a = d = 1, in which case the graph is a single vertex having degree 0.

Proof. We argue by induction on a and d. For a = 1 and any d ≥ 1, the graph G(a, d)
is the path on d vertices, so the claim is trivially true. For the induction step let a ≥ 2.
We split G(a, d) into subgraphs Hi for i = 1, . . . , d where Hi contains all vertices in which
the first coordinate equals i. Note that Hi ≃ G(a − 1, d − (i − 1)) for all i = 1, . . . , d, in
particular Hd ≃ G(a − 1, 1) is a single vertex. By induction, Hi has a spanning tree Ti with
∆(Ti) ≤ 3 for all i = 1, . . . , d. Furthermore, the two extremal vertices have degree 1 in Ti

for i = 1, . . . , d − 1 and degree 0 in Td. We join the trees Ti to a single spanning tree T

of G(a, d) by adding the edges
(
(i, da−1), (i + 1, da−1)

)
for i = 1, . . . , d − 1 between their

extremal vertices. ◀

3 Colorful triangulations

In this section we consider the setting of colorful triangulations introduced by Sagan, with
the goal of proving Theorems 1 and 2. ri

3.1 Alternating colors
We first assume that the number N of points is even and the coloring sequence is α = 1N ,
i.e., the coloring pattern along the points 1, . . . , N is rbrb · · · rb = (rb)N/2. Recall that CN

denotes the set of all colorful triangulations with this coloring sequence.
Let T ∈ CN be a colorful triangulation. We say that an edge of T is monochromatic if

both endpoints have the same color, and we say that it is colorful if both endpoints have
distinct colors. We observe the following:

(i) Every triangle of T has exactly one monochromatic edge.
(ii) Every monochromatic edge of T is an inner edge.

Consequently, if we remove from T all monochromatic edges, keeping only the colorful ones,
then the resulting dissection r(T ) is a quadrangulation on the point set. Indeed, by (i)
every triangle is destroyed, and by (i)+(ii) destroying a triangle creates a quadrangle. While
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R3 R2
R1

c(R2)re
v(
c(
R 1
))

re
v(
c(
R 3
))

Figure 12 Flip graphs of colorful triangulations and reduced graphs for N = 4, 5, 6, 7.

T has N − 2 = n triangles, r(T ) has q := (N − 2)/2 = n/2 quadrangles. Furthermore,
there are 2q many colorful triangulations that yield the same quadrangulation r(T ) by
removing monochromatic edges. They are obtained from r(T ) by placing a diagonal in each
of the q quadrangles in one of the two ways. Note that the subgraph of FN induced by

GD 2024
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Figure 13 Reduced graphs of colorful triangulations for N = 8, 9.

those 2q triangulations is isomorphic to the q-dimensional hypercube Qq, as each of the q

monochromatic edges in T can be flipped independently from the others. We thus obtain a
partition of FN into hypercubes Qq, plus edges between them. These copies of hypercubes
are highlighted by blue bubbles in Figure 12.

We also note that every quadrangulation R on N points equals r(T ) for some colorful
triangulation T ∈ CN . Indeed, given R, then coloring the N points red and blue alternat-
ingly will make all edges colorful. We define a reduced graph F ′

N , that has as nodes all
quadrangulations on N points, and for any two colorful triangulations T and T ′ that differ
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in a flip of a colorful edge, we add an edge between r(T ) and r(T ′) in F ′
N ; see Figures 12

and 13. We observe that F ′
N is isomorphic to the flip graph of quadrangulations GN,4, i.e.,

we have F ′
N ≃ GN,4. These arguments yield a direct combinatorial proof for the first equality

in Theorem 10.

▶ Lemma 13. Let q ≥ 3 be an integer and N := 2q + 2, and let S be a spanning tree of F ′
N .

(i) If q = 3 and ∆(S) ≤ 2 (i.e., S is a Hamilton path), then FN has a Hamilton cycle.
(ii) If q ≥ 4 and ∆(S) ≤ 3, then FN has a Hamilton cycle.

The conclusions of the lemma do not hold when q = 2: Indeed, while F ′
6 has a Hamilton

path (the graph is a triangle), there is no Hamilton path or cycle in F6; see Figure 12.

Proof. The idea is to “uncompress” the spanning tree S in F ′
N to a Hamilton cycle in FN .

Specifically, for any quadrangulation R we consider the 2q colorful triangulations C(R) :=
{T ∈ CN | r(T ) = R}, and we let Q(R) denote the subgraph of FN spanned by the
triangulations in C(R). Recall that Q(R) ≃ Qq, i.e., Q(R) is isomorphic to the q-dimensional
hypercube. In the first step of the uncompression, we replace each edge (R, R′) of S by two
edges (T1, T ′

1), (T2, T ′
2) with T1, T2 ∈ C(R) and T ′

1, T ′
2 ∈ C(R′). We refer to the edges (T1, T ′

1)
and (T2, T ′

2) as connectors, and to their end nodes T1, T2, T ′
1, T ′

2 as terminals. In the second
step, each quadrangulation R with degree d in S is replaced by d paths that together visit all
nodes in Q(R) and which join the connectors at their terminals to a single Hamilton cycle.

We now describe both steps in detail. For a given quadrangulation R, we associate each
of the colorful triangulations T ∈ C(R) by a bitstring b(T ) ∈ {0, 1}q as follows: We label the
q quadrangles of R arbitrarily by j = 1, . . . , q, and we define b(T )j := 0 if the monochromatic
edge of T that sits inside the jth quadrangle of R connects the two red points, and otherwise
(if it connects two blue points) b(T )j := 1.

p1

p2

p3 p4

p5

p6

R R′

Q(R) := FN [C(R)]

FN

p1

p2

p3 p4

p5

p6

p1
p2

p3 p4

p5

p6

(p1, p4) ↔ (p2, p5)

≃ Qq

Q(R′) ≃ Qq

p1
p2

p3 p4

p5

p6

connectors

Qq−2

shortcuts

F ′
N

Qq−2

(a) (b)

R

Q(R)

H(R)

d

Figure 14 Illustration of the proof of Lemma 13.

Now consider an edge (R, R′) of S, which we aim to replace by two connectors (T1, T ′
1),

(T2, T ′
2) with T1, T2 ∈ C(R) and T ′

1, T ′
2 ∈ C(R′). We denote the edge flipped in R by (p1, p4),

and we label the points of the adjacent 4-gons in circular order by p1, p2, p3, p4 and p4, p5, p6, p1,
respectively, such that the edge (p1, p4) is replaced by (p2, p5); see Figure 14 (a). It follows
that T1, T ′

1, T2, T ′
2 must be triangulations that contain the two monochromatic edges (p2, p4)

GD 2024



30:14 Flips in Colorful Triangulations

and (p5, p1) (but neither (p1, p3) nor (p4, p6)). Consequently, the two corresponding bits
of b(T1), b(T ′

1), b(T2), b(T ′
2) must have a prescribed value, and therefore T1, T2 and T ′

1, T ′
2 can

be chosen from a (q − 2)-dimensional subcube of Q(R) and Q(R′), respectively. Also, we
will choose the connectors so that the pairs of terminals (T1, T2) and (T ′

1, T ′
2) differ only in a

single flip, i.e., we select the two pairs of terminals as edges in their respective cubes, and we
call these edges in Q(R) and Q(R′) shortcuts. Note that the two connectors with the two
shortcuts form the 4-cycle (T1, T ′

1, T ′
2, T2). By the assumption q ≥ 3 we have q − 2 ≥ 1, i.e.,

there is at least one choice for each prescribed edge.
If the node R has degree d in S, then we have to choose d distinct shortcut edges in

the hypercube Q(R), each selected from a distinct (but not necessarily disjoint) (q − 2)-
dimensional subcube, and to find a Hamilton cycle H(R) in Q(R) that contains all of these
edges; see Figure 14 (b). By Lemma 11, it is enough to ensure that the shortcut edges
together form paths in Q(R). If d ≤ 2 (case (i) of the lemma), then this is clear, as one or
two edges always form one or two paths. If d = 3 (case (ii) of the lemma), one has to avoid
that all three shortcut edges are incident to the same node, which is easily possible under
the stronger assumption q ≥ 4.

Then the Hamilton cycle in FN is obtained by taking the symmetric difference of the edge
sets of the cycles H(R) ⊆ Q(R) for all quadrangulations R on N points with the 4-cycles
formed by the connectors and shortcuts (i.e., the shortcuts are removed, and the connectors
are added instead). This completes the proof. ◀

3.2 General coloring patterns
We now consider an arbitrary coloring sequence α = (α1, . . . , αℓ) and the corresponding
coloring pattern defined in (1). Recall that Cα denotes the set of all colorful triangulations with
this coloring pattern, and that the corresponding flip graph is denoted by Fα. The graph Fα

is an induced subgraph of the associahedron GN , where N =
∑ℓ

i=1 αi. As in the previous
section, a colorful triangulation T ∈ Cα has two types of edges, namely monochromatic and
colorful edges. We write Eα for the set of boundary edges that are monochromatic in T , i.e.,
these are the pairs of points (i, i + 1) for i = 1, . . . , N (modulo N) where both endpoints
receive the same color. Generalizing the discussion from the previous section, we observe the
following:

(i) Every triangle of T has exactly one monochromatic edge.
(ii) Except the edges in Eα, every monochromatic edge of T is an inner edge.

Consequently, if we remove from T all monochromatic inner edges (the edges in Eα are
boundary edges and hence not removed), keeping only the colorful ones, then the resulting
dissection r(T ) has t := N − ℓ triangles that contain the edges in Eα and q := (ℓ − 2)/2
quadrangles. Furthermore, there are 2q many colorful triangulations that yield the same
dissection r(T ) by removing monochromatic edges. They are obtained from r(T ) by placing
a diagonal in each of the q quadrangles in one of the two ways. Note that the subgraph
of Fα induced by those 2q triangulations is isomorphic to the q-dimensional hypercube Qq.
We thus obtain a partition of Fα into hypercubes Qq, plus edges between them.

We refer to a dissection of a convex N -gon into q quadrangles and t triangles that
contain all the edges of Eα as an α-angulation, and we write Dα for the set of all such
dissections. We also note that every α-angulation R on N points equals r(T ) for some colorful
triangulation T ∈ Cα. Indeed, given R, then coloring the N points according to the pattern
in (1) will make all edges except the ones in Eα colorful. We define a reduced graph F ′

α that
has as nodes all α-angulations on N points, and for any two colorful triangulations T and T ′

that differ in a flip of a colorful edge, we add an edge between r(T ) and r(T ′) in F ′
α; see

Figures 12, 13 and 15.
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The proof of Lemma 13 presented in the previous section generalizes straightforwardly,
yielding the following statement. Note that the variable ℓ in Lemma 14 below plays the
role of N = 2q + 2 in Lemma 13, and so the assumptions ℓ = 8 and ℓ ≥ 10 translate to
q = (ℓ − 2)/2 = 3 and q ≥ 4 used in the proof of Lemma 13, respectively.

▶ Lemma 14. Let α = (α1, . . . , αℓ) be a coloring sequence of (even) length ℓ ≥ 8, and let S
be a spanning tree of F ′

α.
(i) If ℓ = 8 and ∆(S) ≤ 2 (i.e., S is a Hamilton path), then Fα has a Hamilton cycle.
(ii) If ℓ ≥ 10 and ∆(S) ≤ 3, then Fα has a Hamilton cycle.

The next lemma allows us to duplicate the occurrence of a color that appears only once
(i.e., we change αi = 1 to some larger number αi > 1), while inductively maintaining spanning
trees with small degrees in the corresponding reduced flip graphs.

▶ Lemma 15. Let β = (β1, . . . , βℓ) and α = (α1, . . . , αℓ) be coloring sequences of (even)
length ℓ ≥ 4 that agree in all but the ith entry such that βi = 1 and αi > 1.

(i) If F ′
β has a Hamilton path and αi = 2, then F ′

α has a Hamilton path.
(ii) If F ′

β has a spanning tree T with ∆(T ) ≤ 3, then F ′
α has a spanning tree S with

∆(S) ≤ 3.

In Figure 12, part (i) of this lemma is applied to construct a Hamilton path in F ′
7 from

one in F ′
6. Similarly, in Figure 13, a Hamilton path in F ′

9 is constructed from one in F ′
8.

ℓ = 6, N = 9
α = (α1, . . . , α6) = (2, 1, 2, 2, 1, 1)

F ′
α

t = N − ℓ = 3
q = (ℓ− 2)/2 = 2

1
2
3

4
5

6
7
8

9

Figure 15 Reduced graph of colorful triangulations for the coloring sequence α = (2, 1, 2, 2, 1, 1)
(rrbrrbbrb).
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The idea for the proof of part (i) is the same as the one used by Hurtado and Noy [16].

Proof. We consider the point p :=
∑i

j=1 βj on the boundary, which is neighbored by two
points p − 1 and p + 1 (modulo N =

∑ℓ
j=1 βj) of the opposite color. We also define

a := αi − 1, i.e., we want to add a points of the same color as p next to p. Let R ∈ Dβ be a
β-angulation, and let (p, q1), (p, q2), . . . , (p, qd) be the edges incident with the point p in R in
counterclockwise order (all these edges are colorful), such that q1 = p + 1 and qd = p − 1; see
Figure 16. If a = 1, then for j = 1, . . . , d we let Rj be the α-angulation obtained from R by
inflating the edge (p, qj) to a triangle (p, p′, qj). Specifically, the single point p is split into
two consecutive points p and p′ on the boundary joined by an edge, and q1, . . . , qj remain
connected to p′, whereas qj , qj+1, . . . , qd remain connected to p. More generally, we define
J(R) := {(j1, . . . , ja) | 1 ≤ j1 ≤ j2 ≤ · · · ≤ ja ≤ d}, qȷ(R) := 1a and pȷ(R) := da, and for any
(j1, j2, . . . , ja) ∈ J(R) we let R(j1,...,ja) be the β-angulation obtained from R by inflating
each of the edges (p, qj1), . . . , (p, qja) to a triangle. Note that the same edge may be inflated
multiple times; see the bottom rows with labels a = 2 and a = 3 in Figure 16. Specifically,
if some value jb, b ∈ {1, . . . , a}, appears c times in the list j1, . . . , ja, then the edge (p, qjb

)
is inflated to c many triangles. Furthermore, observe that R(j1,...,ja) differs from R(j′

1,...,j′
a)

in a flip if and only if (j1, . . . , ja) and (j′
1, . . . , j′

a) differ in a single entry by ±1, i.e., the
subgraph of F ′

α induced by the α-angulations R(j1,...,ja), (j1, . . . , ja) ∈ J(R), is isomorphic

qd = p− 1p+ 1 = q1

q2

q3

q4

R

R1 R2 R3 R4 R5

c(R) = (R1, R2, R3, R4, R5)

p

qdq1
pp′

qd
q1 pp′qdq1

pp′ qdq1
pp′ qdq1

pp′

a = 1

a = 3

R(1,1,1) R(5,5,5)R(1,3,4)

a = 2

R(1,1) R(5,5)R(1,2) R(2,4)

R(1,1,2)

. . . . . .

. . . . . .

Figure 16 Illustration of the proof of Lemma 15. Edges of the β-angulation R that are not
incident to the point p are not shown for clarity.
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S(R)

S ⊆ F ′
α

T̂ qT

Rȷ̂(R)

Rqȷ(R)

R

T ⊆ F ′
β

Figure 17 Illustration of the proof of part (ii) of Lemma 15. The fork-like structures are the
spanning trees obtained from Lemma 12 (cf. Figure 11).

to the graph G(a, d) defined in Section 2.4. By Lemma 12, it admits a spanning tree S(R)
with ∆(S(R)) ≤ 3, in which the nodes Rqȷ(R) and Rpȷ(R) have degree 1. If a = 1, then
this subgraph and spanning tree is simply a path, and we refer to it as children sequence
c(R) := (R1, R2, . . . , Rd). Also note that if (R, Q) is an edge in F ′

β , then (Rqȷ(R), Qqȷ(Q))
and (Rpȷ(R), Qpȷ(Q)) are both edges in F ′

α.
We now prove (i), using the assumption αi = 2, i.e., a = 1. Let P = (R1, . . . , RL) be a

Hamilton path in F ′
β . Then a Hamilton path in F ′

α is given by P ′ := (rev(c(R1)), c(R2),
rev(c(R3)), c(R4), . . .); see Figures 12 and 13.

For proving (ii), let T be a spanning tree in F ′
β with ∆(T ) ≤ 3. We partition its edges into

two disjoint forests of paths qT and pT , i.e., we have ∆( qT ) ≤ 2 and ∆( pT ) ≤ 2; see Figure 17.
We then define the spanning tree S as the union of the trees S(R) for all β-angulations R

plus the edges {(Rqȷ(R), Qqȷ(Q)) | (R, Q) ∈ qT } and {(Rpȷ(R), Qpȷ(Q)) | (R, Q) ∈ pT }. It is easy to
check that S is indeed a spanning tree of F ′

α with ∆(S) ≤ 3. ◀

3.3 Proofs of Theorems 1 and 2
Proof of Theorem 2. For the given coloring sequence α = (α1, . . . , αℓ) of length ℓ ≥ 10, we
consider the alternating coloring sequence β = 1ℓ of length ℓ, i.e., all repetitions of colors
are reduced to a single occurrence, and β corresponds to coloring ℓ points alternatingly red
and blue. The corresponding reduced flip graph F ′

ℓ is isomorphic to the rotation graph
of ternary trees, i.e., we have F ′

β = F ′
ℓ ≃ Gℓ,4. Theorem 7 yields a Hamilton path in the

graph F ′
β = F ′

ℓ. Applying Lemma 15 (ii) once for each αi with αi > 1, we obtain that F ′
α

has a spanning tree S with ∆(S) ≤ 3. Lastly, applying Lemma 14 (ii) yields that Fα has a
Hamilton cycle. ◀

Proof of Theorem 1. For N ≥ 10 the result is a special case of Theorem 2, so it remains to
cover the cases N = 8 and N = 9. A Hamilton path P in F ′

8 is guaranteed by Theorem 7;
see Figure 13. Applying Lemma 13 (i) to P yields that F8 has a Hamilton cycle. Applying
Lemma 15 (i) to P proves that F ′

9 has a Hamilton path P ′. Applying Lemma 13 (i) to P ′

shows that F9 has a Hamilton cycle. ◀

4 Open questions

Tables 1 and 2 show all coloring sequences α on up to N ≤ 11 points for which the graph Fα

has no Hamilton path or cycle. The sequences are shown up to rotational symmetry, reversal,
and exchange of the two colors. In several cases, Theorems 3, 4 and 5 provide an explanation
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Table 1 Coloring sequences α for N ≤ 11
for which Fα has no Hamilton cycle but a
Hamilton path.

N α Reason
6 (4, 2) Thm. 3

(2, 1, 1, 2)
7 (5, 2) Thm. 3

(2, 1, 1, 1, 1, 1) Thm. 5
8 (6, 2) Thm. 3

(4, 4) Thm. 3
9 (7, 2) Thm. 3

(4, 1, 1, 1, 1, 1) Thm. 5
10 (8, 2) Thm. 3

(6, 4) Thm. 3
(5, 1, 2, 2)
(5, 1, 1, 1, 1, 1) Thm. 5
(4, 1, 3, 2)
(4, 1, 2, 3)

11 (9, 2) Thm. 3
(6, 1, 1, 1, 1, 1) Thm. 5
(5, 1, 2, 3)
(5, 1, 1, 4)

Table 2 Coloring sequences α for N ≤ 11
for which Fα has no Hamilton path.

N α Reason
6 (3, 1, 1, 1) Thm. 4

(3, 3) Thm. 3
(1, 1, 1, 1, 1, 1) Thm. 5

7 (4, 3) Thm. 3
(3, 1, 2, 1) Thm. 4
(3, 1, 1, 2)

8 (5, 1, 1, 1) Thm. 4
(5, 3) Thm. 3
(4, 1, 2, 1) Thm. 4
(4, 1, 1, 2)
(3, 1, 3, 1) Thm. 4
(3, 1, 1, 1, 1, 1) Thm. 5
(3, 1, 1, 3)
(3, 2, 1, 2)

9 (6, 1, 1, 1) Thm. 4
(6, 3) Thm. 3
(5, 1, 2, 1) Thm. 4
(5, 1, 1, 2)
(5, 4) Thm. 3
(4, 1, 3, 1) Thm. 4
(4, 1, 1, 3)
(3, 1, 3, 2)
(3, 1, 2, 3)

10 (7, 1, 1, 1) Thm. 4
(7, 3) Thm. 3
(6, 1, 2, 1) Thm. 4
(6, 1, 1, 2)
(5, 1, 3, 1) Thm. 4
(5, 1, 1, 3)
(5, 5) Thm. 3
(4, 1, 4, 1) Thm. 4
(4, 1, 1, 4)
(3, 1, 3, 3)

11 (8, 1, 1, 1) Thm. 4
(8, 3) Thm. 3
(7, 1, 2, 1) Thm. 4
(7, 1, 1, 2)
(7, 4) Thm. 3
(6, 1, 3, 1) Thm. 4
(6, 1, 1, 3)
(6, 5) Thm. 3
(5, 1, 4, 1) Thm. 4
(5, 1, 3, 2)
(4, 1, 3, 3)
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for the non-Hamiltonicity; see the third column in the tables. In the other cases, we are still
missing such an explanation. Based on this data, we feel that Theorem 2 can be strengthened
and the requirement ℓ ≥ 10 relaxed to ℓ ≥ 8. Furthermore, it seems that for ℓ = 6 there is
always a Hamilton path in Fα unless α ∈ {(1, 1, 1, 1, 1, 1), (3, 1, 1, 1, 1, 1)}.

Also, Theorem 9 on twists in 3-colored triangulations invites deeper investigation. We
conjecture that the graph HN has a Hamilton cycle for all N ≥ 9 that are divisible by 3.
Furthermore, it seems that if N = 2 (mod 3) the graph HN is not connected. What are the
properties of the flip graphs for general coloring patterns with three or more colors?

Another interesting question concerns bijections between k-ary trees and classes of per-
mutations. For k = 2 (binary trees), there is a natural bijection to 231-avoiding permutations.
Are there similar correspondences between k-ary trees and pattern-avoiding permutations
for k ≥ 3? In particular, do tree rotations translate to nice operations on the permutations,
specifically to so-called jumps heavily used in [12, 13, 20, 5]?

Going back to the uncolored setting and the associahedron GN , Theorem 2 shows that GN

admits cycles of many different lengths. What is the cycle spectrum of GN , i.e., the set S(GN )
of all possible lengths of cycles in GN ? We conjecture that almost all lengths are possible.

▶ Conjecture 16. We have |S(GN )|/|DN,3| = 1 − o(1) as N → ∞.

Baur, Bergerova, Voon and Xu [2] recently introduced another family of flip graphs on
triangulations in which the triangles are colored, not the vertices. The resulting graphs are
disconnected in general, and their structure is still not very well understood (in [11] these
graphs are related to the famous Four Color Theorem).
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