
Revisiting ILP Models for Exact Crossing
Minimization in Storyline Drawings
Alexander Dobler #

TU Wien, Austria

Michael Jünger
University of Cologne, Germany

Paul J. Jünger #

University of Bonn, Germany

Julian Meffert #

University of Bonn, Germany

Petra Mutzel #

University of Bonn, Germany

Martin Nöllenburg #

TU Wien, Austria

Abstract
Storyline drawings are a popular visualization of interactions of a set of characters over time, e.g., to
show participants of scenes in a book or movie. Characters are represented as x-monotone curves that
converge vertically for interactions and diverge otherwise. Combinatorially, the task of computing
storyline drawings reduces to finding a sequence of permutations of the character curves for the
different time points, with the primary objective being crossing minimization of the induced character
trajectories. In this paper, we revisit exact integer linear programming (ILP) approaches for this
NP-hard problem. By enriching previous formulations with additional problem-specific insights and
new heuristics, we obtain exact solutions for an extended new benchmark set of larger and more
complex instances than had been used before. Our experiments show that our enriched formulations
lead to better performing algorithms when compared to state-of-the–art modelling techniques. In
particular, our best algorithms are on average 2.6–3.2 times faster than the state-of-the-art and
succeed in solving complex instances that could not be solved before within the given time limit.
Further, we show in an ablation study that our enrichment components contribute considerably to
the performance of the new ILP formulation.

2012 ACM Subject Classification Human-centered computing → Graph drawings; Mathematics of
computing → Integer programming; Mathematics of computing → Permutations and combinations

Keywords and phrases Storyline drawing, crossing minimization, integer linear programming,
algorithm engineering, computational experiments

Digital Object Identifier 10.4230/LIPIcs.GD.2024.31

Related Version Full Version: https://arxiv.org/abs/2409.02858 [6]

Supplementary Material Software: https://doi.org/10.17605/OSF.IO/3BUA2 [5]

Funding Alexander Dobler : Vienna Science and Technology Fund (WWTF) grant [10.47379/
ICT19035].
Julian Meffert: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 459420781.
Petra Mutzel: partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – 459420781.
Martin Nöllenburg: Vienna Science and Technology Fund (WWTF) grant [10.47379/ICT19035].

© Alexander Dobler, Michael Jünger, Paul J. Jünger, Julian Meffert, Petra Mutzel, and
Martin Nöllenburg;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Graph Drawing and Network Visualization (GD 2024).
Editors: Stefan Felsner and Karsten Klein; Article No. 31; pp. 31:1–31:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adobler@ac.tuwien.ac.at
https://orcid.org/0000-0002-0712-9726
mailto:paul.j.juenger@gmail.com
mailto:s6jumeff@uni-bonn.de
https://orcid.org/0009-0008-9670-4569
mailto:pmutzel@uni-bonn.de
https://orcid.org/0000-0001-7621-971X
mailto:noellenburg@ac.tuwien.ac.at
https://orcid.org/0000-0003-0454-3937
https://doi.org/10.4230/LIPIcs.GD.2024.31
https://arxiv.org/abs/2409.02858
https://doi.org/10.17605/OSF.IO/3BUA2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings

(a) Solution with 374 crossings computed in 0.15 s by a greedy heuristic.

(b) Drawing with the minimum number of 236 crossings computed in 401.23 s by our new ILP formulation.

Figure 1 Storylines for the first Harry Potter movie. Interactions are shown as vertical gray bars.

1 Introduction

Storyline drawings are a well-studied visualization style for complex event-based temporal
interaction data and have been popularized by the xkcd comic “Movie Narrative Charts”
in 2009 [19]. They show a set of characters, e.g., from the plot of a movie or book, and
how they interact or co-occur in a sequence of events over time, e.g., by participating in the
same scene or conversation of the evolving story. A storyline drawing is a two-dimensional
diagram, where the x-axis represents time and the y-dimension is used for the vertical
grouping of characters according to their interaction sequence. The exact temporal distance
of interactions is usually not depicted, only their order. Each character is represented as
an x-monotone curve, and interactions are represented by vertically grouping the curves
of the participating characters at the x-coordinate corresponding to the interaction time.
Characters that are not participating in an interaction at any specific point in time are
vertically separated from each other. Figure 1 shows an example of a storyline drawing.
Due to their popularity and the intuitive data encoding, they are well suited for visual
storytelling and have since been used as visual metaphors for representing a variety of
different event-based data sets beyond the original book and movie plots [19, 28], e.g., for
software projects [20,27], newspaper articles [1], political debates on social media [18], visual
summaries of meeting contents [23], scientific collaborations [14], sports commentary [34],
and gameplay data [33].

There is one main degree of freedom when computing and optimizing storyline drawings:
the (vertical) linear order and positioning of the characters at each discrete time steps. The
only hard constraint is that all characters participating in the same interaction must be
consecutive as a group. This degree of freedom can thus be used to minimize the number of
crossings between character curves, their wiggles (i.e. the amount of vertical movement of

A. Dobler, M. Jünger, P. J. Jünger, J. Meffert, P. Mutzel, and M. Nöllenburg 31:3

character lines in the visualization), and any excessive white space in the diagram, which are
the three major objectives that have been identified for computing storyline drawings [27,28].
While the number of crossings is determined purely combinatorially by the sequence of
character permutations, wiggles and white space depend on the actual y-coordinates assigned
to each character curve at each point in time.

In this paper, our interest is the combinatorial crossing minimization problem. It is the
primary objective in practical storyline optimization pipelines [18], where it forms the input
to the subsequent steps of reducing wiggles and white space while maintaining the character
order. Additionally, crossing minimization is one of the most fundamental graph drawing
problems [2, 22] and it is well known that graph drawings with fewer crossings increase
readability [21]. Unfortunately, crossing minimization in storyline drawings is an NP-hard
problem [9,17] and hence practical approaches for storyline visualization usually resort to
heuristics, even though they cannot guarantee optimal solutions.

We consider the crossing minimization problem from the opposite side and revisit exact
integer linear programming (ILP) approaches [11] for computing provably optimal solutions.
Such approaches often lead to practical exact algorithms. Our goal is to improve on the
runtime performance of such exact methods by enriching the models with both new problem-
specific insights and better heuristics. Faster exact algorithms for crossing minimization
in storyline drawings are practically relevant for two reasons: firstly, solving moderately
sized instances to optimality within a few seconds provides a strictly better alternative to
commonly used suboptimal heuristics, and secondly, knowing optimal solutions for a large
set of representative benchmark instances (even if their computations take several minutes or
up to a few hours) is a prerequisite for any thorough experimental study on the performance
of non-exact crossing minimization heuristics and for generating crossing-minimum stimuli
in user experiments.

Related Work. Tanahashi and Ma [28] introduced storyline drawings as an information
visualization problem, provided the first visual encoding model, and defined the above-
mentioned optimization criteria (crossings, wiggles, white space). They suggested a genetic
algorithm to compute storyline drawings. Ogawa and Ma [20] used a greedy algorithm to
compute storylines to depict software evolution. Due to slow computation times of previous
methods, Liu et al. [18] split the layout process into a pipeline of several subproblems ordered
by importance, the first one being crossing minimization. They solved the character line
ordering by an iterated application of a constrained barycenter algorithm, a classic heuristic
for multi-layer crossing minimization [25]. Their results were obtained in less than a second
and had fewer crossings than those computed by the genetic algorithm [28], which took more
than a day to compute on some of the same instances. Tanahashi et al. [27] enhanced previous
methods to take into account streaming data and apply a simple sequential left-to-right
sorting heuristic. Recent practical works on storyline drawings focus on other aspects, such
as an interactive editor [30] or a mixed-initiative system including a reinforcement learning
AI component [29]; both these systems apply a two-layer crossing minimization heuristic [8].

Several authors focused on the combinatorial crossing minimization problem and its
complexity. Kostitsyna et al. [17] observed that the NP-hardness of the problem follows from
a similar bipartite crossing minimization problem [9] and proved fixed-parameter tractability
when the number of characters is bounded by a parameter k. Gronemann et al. [11] were
the first to model the problem as a special type of tree-constrained multi-layer crossing
minimization problem. They implemented an exact branch-and-cut approach that exploits
the equivalence of the quadratic unconstrained 0/1-optimization problem with the maximum

GD 2024

31:4 Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings

cut problem in a graph. They managed to solve many instances with up to 20 characters
and 50 interactions optimally within a few seconds. Van Dijk et al. [31, 32] proposed block-
crossing minimization in storyline drawings, which counts grid-like blocks of crossings rather
than individual crossings. They showed NP-hardness and proposed greedy heuristics, a
fixed-parameter tractable algorithm, and an approximation algorithm. In a follow-up work,
van Dijk et al. [32] implemented and experimentally evaluated an exact approach for the
block crossing minimization problem using SAT solving. A different variation of storylines
was studied by Di Giacomo et al. [10], who considered ubiquitous characters as x-monotone
trees with multiple branches, enabling characters to participate in multiple simultaneous
interactions; they solved the crossing minimization aspect using an adaptation of the previous
SAT model [32]. Dobler et al. [7] consider time interval storylines, where additionally to the
order of characters, the order of time steps in so-called time-intervals can be permuted.

The problem is also similar to crossing minimization in layered graph drawing, which
was introduced by Sugiyama et al. [25]. The problem is to draw a graph with its vertices on
multiple parallel lines while minimizing crossings. A notable difference to storyline crossing
minimization is that vertices can have arbitrary degree and that edges can span more than
one layer. For a survey of algorithms and techniques in layered graph drawing, we refer to
Healy and Nikolov [13].

Contributions. The contributions of this paper are the following:
We identify structural properties of storyline drawings and prove that there exist crossing-
minimum drawings satisfying them, reducing the search space of feasible solutions.
We propose a new ILP formulation exploiting these structural insights in order to (i)
significantly reduce the number of required constraints and (ii) apply symmetry breaking
constraints to strengthen the ILP model.
We introduce several new heuristics that support the exact solver, either as initial
heuristics to improve branch-and-bound pruning or for deriving integral solutions from
fractional ones during the incremental ILP solving process.
We have compiled a new benchmark set of storyline instances, including those of earlier
studies, as well as several challenging new ones.
We have conducted a detailed experimental evaluation of our new ILP model using the
above benchmark set. We compare its ability to solve instances with state-of-the-art ILP
models. Moreover, in an ablation study, we show that our further enhancements (e.g.,
adding symmetry breaking constraints and novel heuristics) contributes considerably to
the performance of both the new and several state-of-the-art ILP formulations.
We show that our ILP models are able to solve previously unsolved instances from the
literature and obtain a speedup of 2.6–3.2 compared to the state of the art.

Data sets, source code, evaluation, and a visualization software are available on
https://osf.io/3bua2/.
Due to space constraints, statements marked with (⋆) are proved in a full version of the
paper [6].

2 Preliminaries

Permutations. Given a set X = {x1, . . . , xn}, a permutation π is a linear order of its
elements, or equivalently, a bijective mapping from {1, 2, . . . , |X|} to X. For x, x′ ∈ X we
write x ≺π x′ if x comes before x′ in π. For Y ⊆ X, π[Y] is the permutation π restricted
to Y , formally, for y, y′ ∈ Y , y ≺π[Y] y′ if and only if y ≺π y′. For two permutations π, ϕ

https://doi.org/10.17605/OSF.IO/3BUA2

A. Dobler, M. Jünger, P. J. Jünger, J. Meffert, P. Mutzel, and M. Nöllenburg 31:5

t1 t2 t3 t4 t5 t6 t7

c1c2c3c4

c5c6c7 c8

A(c1) = {t1, t2}

I1

I2 I3

I4
I5

I6 I7

I8

AC(t3) = AC(t1, t7) = {c2, c3, . . . , c7}
I(t3) = {I3, I4}
CI(t3) = {c2, c3, c6, c7}

Figure 2 Illustration of important notation throughout this paper with the aid of a storyline
drawing depicting interactions I1–I8 of the characters c1–c8 over the time steps t1–t7.

of two sets X and Y with X ∩ Y = ∅, we denote by π ⋆ ϕ their concatenation. Given two
permutations π, π′ of the same set X, the inversions between π and π′ is the number of pairs
x, x′ ∈ X such that π−1(x) < π−1(x′) and π′−1(x) > π′−1(x′).

Problem input. A storyline instance consists of a 4-tuple (T, C, I, A) where T =
{t1, t2, . . . , tℓ} is a set of totally ordered time steps (or layers), C = {c1, c2, . . . , cn} is a
set of characters, and I = {I1, I2, . . . , Im} is a set of interactions. Each interaction I ∈ I has
a corresponding time step time(I) ∈ T and consists of a set of characters char(I) ⊆ C. Further,
A maps each character c ∈ C to a consecutive set of time steps, i.e., A(c) = {ti, ti+1, . . . , tj}
for 1 ≤ i ≤ j ≤ ℓ. We say that character c is active at the time steps in A(c), it starts at ti

and ends at tj . We define AC(t) for t ∈ T as the set of all characters c ∈ C active at time t, i.e.,
AC(t) = {c ∈ C | t ∈ A(c)}. Clearly, for each interaction I ∈ I, char(I) ⊆ AC(time(I)) must
hold. Next, we define the set of all characters active in the time interval [ti, tj] (1 ≤ i ≤ j ≤ ℓ)
as AC(ti, tj) = AC(ti) ∩ AC(ti+1) ∩ · · · ∩ AC(tj). For a time step t ∈ T we define the set
of interactions at t as I(t) = {I ∈ I | time(I) = t} and its corresponding set of characters
as CI(t) =

⋃
I∈I(t) char(I). Without loss of generality, for the interactions at time step

t we assume that |I(t)| ̸= 0 and that the sets of characters of the interactions I(t) are
pairwise disjoint. This is a reasonable assumption as characters usually participate in at
most one interaction at any given time, e.g. in movies. Important notation is also illustrated
in Figure 2.

Problem output. Solutions to storyline instances (T, C, I, A) consist of a sequence of ℓ

permutations S = (π1, π2, . . . , πℓ) such that πi is a permutation of AC(ti) for all i = 1, . . . , ℓ

satisfying the condition that the set of characters of each interaction I ∈ I(ti) appears
consecutively. We call S a storyline solution or drawing.

The number of crossings cr(πi, πi+1) between two consecutive permutations πi and πi+1
is defined as the number of inversions of the two permutations πi[C] and πi+1[C], where
C = AC(ti) ∩ AC(ti+1). The number of crossings in a storyline solution is

∑ℓ−1
i=1 cr(πi, πi+1).

The problem addressed in this paper is the following.

▶ Problem 1 (Storyline Problem). Given a storyline instance (T, C, I, A), find a storyline
drawing S with the minimum number of crossings.

GD 2024

31:6 Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings

3 Standard Models for the Storyline Problem

The most natural ILP formulation to solve Problem 1 has a quadratic objective function and
is based on the linear ordering model, which uses binary variables in order to encode the
linear ordering at each time step. The number of crossings between two subsequent time
steps is then given by the number of inversions of the two permutations.

From now on, we assume that characters cu, cv, cw are pairwise different, even if we write
for example cu, cv ∈ C for some set C of characters.

Quadratic Model (QDR)

For each time step ti, i = 1, 2, . . . , ℓ and each tuple of characters cu, cv ∈ AC(ti) we introduce
a binary ordering variable xi,u,v which is equal to 1 if and only if cu ≺πi

cv. The quadratic
model QDR is given as follows:

min
ℓ−1∑
i=1

∑
cu,cv∈AC(ti,ti+1)

xi,u,vxi+1,v,u (QDR)

xi,u,v = 1 − xi,v,u for all i = 1, . . . , ℓ; cu, cv ∈ AC(ti) with u < v (EQ)
xi,u,v + xi,v,w + xi,w,u ≤ 2 for all i = 1, . . . , ℓ; cu, cv, cw ∈ AC(ti) (LOP)

xi,u,w = xi,v,w for all i = 1, . . . , ℓ; I ∈ I(ti); (TREE)
cu, cv ∈ char(I), u < v; cw ∈ AC(ti) \ char(I)

xi,u,v ∈ {0, 1} for all i = 1, . . . , ℓ; cu, cv ∈ AC(ti), (BIN)

The character curves for cu and cv cross between the two layers ti and ti+1 if and only if
one of the terms xi,u,vxi+1,v,u and xi,v,uxi+1,u,v equals 1. The (LOP) and (EQ) constraints
ensure transitivity of the set of characters AC(ti) present at time step ti and guarantee that
they define a total order. For all interactions I ∈ I(ti) the (TREE) constraints ensure that
characters from I appear consecutively at the respective time step ti.

Linearized Model (LIN)

The standard linearisation of quadratic integer programs introduces additional variables
yi,u,v that substitute the quadratic terms xi,u,vxi+1,v,u for all ti, i = 1, 2, . . . , ℓ − 1 and each
tuple of characters cu, cv ∈ AC(ti, ti+1) in the objective function. In order to link the new
variables with the ordering variables, we introduce the following constraints:

yi,u,v ≥ xi,u,v − xi+1,u,v for all i = 1, . . . , ℓ; cu, cv ∈ AC(ti, ti+1) (CR)

Obviously, the variable yi,u,v is forced to 1, if the character cu is before cv at time step ti in
the solution represented by the y-variables, and the order of both characters is reversed at
time step ti+1. The linearised model (LIN) is given as follows.

min
ℓ−1∑
i=1

∑
cu,cv∈AC(ti,ti+1)

yi,u,v (LIN)

yi,u,v, xi,u,v satisfy (BIN), (EQ), (LOP), (TREE), and (CR)

A. Dobler, M. Jünger, P. J. Jünger, J. Meffert, P. Mutzel, and M. Nöllenburg 31:7

Max-Cut Model (CUT)
Gronemann et al. [11] have suggested a formulation based on the transformation of the problem
into a quadratic unconstrained binary program with additional (TREE) constraints, which
is then solved using a maximum cut approach. Here, we omit the detour via the quadratic
binary program and directly provide the corresponding maximum cut formulation. Starting
with a feasible storyline drawing Ŝ = (π̂1, . . . , π̂ℓ), we define the graph GM = (VM , EM):
The vertex set VM is given by a vertex v∗ and the union of the sets Vi (i = 1, . . . , ℓ), where
Vi has a vertex ci

uv for each pair cu, cv ∈ AC(ti) with cu ≺π̂i cv.
We introduce an edge between the vertices ci

uv and ci+1
pq if the corresponding characters

coincide. In the case that cu = cp and cv = cq, the (type-1) edge e = ei
uv gets a weight of

we = −1, and in the case that cu = cq and cv = cp, the (type-2) edge e = ei
uv gets a weight

of we = 1. We define the constant K as the number of edges of type (2). The intention is the
following: An edge of type (1) results in a crossing if and only if it is in the cut, and an edge
of type (2) results in a crossing if and only if it is not in the cut. This construction allows for
associating the maximum cut objective function values W to corresponding crossing numbers
K − W . In particular, W = 0 for the empty cut corresponds to the number of crossings K

in Ŝ. In order to guarantee that the characters of an interaction appear consecutively, we
introduce type-3 edges with weight 0 from the additional vertex v∗ to every vertex in Vi for
all i = 1, . . . , ℓ, and add the additional constraints (TRC). We introduce a binary variable ze

for every edge e ∈ EM in the graph, which is 1 if and only if the edge is contained in the
computed cut.

The following model guarantees that every optimal solution corresponds to a constrained
maximum cut in the graph GM that provides the optimal solution to the storyline problem.
The constraints (CYC) capture the fact that any intersection of a cut and a cycle in a graph
has even cardinality. The correctness is provided in [11], see also [3, 24].

max
∑

e∈EM

weze (CUT)

∑
e∈F

ze −
∑

e∈C\F

ze ≤ |F | − 1 for all cycles C ⊆ EM , F ⊆ C, |F | odd (CYC)

0 ≤ z(v∗,ci
uv) + z(v∗,ci

vw) − z(v∗,ci
uw) ≤ 1 for all i = 1, . . . , ℓ; ci

uv, ci
vw, ci

uw ∈ Vi (LOPC)
with cu ≺π̂i

cv ≺π̂i
cw

z(v∗,ci
uw) = z(v∗,ci

vw) if cu, cv ≺π̂i
cw

z(v∗,ci
wu) = z(v∗,ci

wv) if cu, cv ≻π̂i
cw

}
for all i = 1, . . . , ℓ; I ∈ I(ti);
cu, cv ∈ char(I); cw ∈ AC(ti) \ char(I)

(TRC)

ze ∈ {0, 1} for all e ∈ EM (BIC)

4 Structural Properties of Storyline Solutions

In this section, we identify structural properties of storyline solutions that will help us to
optimize the models proposed in Section 5, and that guide the exact optimization process.
First, we define two properties of storyline drawings. Definition 2 captures that the relative
order of characters in an interaction can be propagated backwards.

▶ Definition 2 (Type-1 consistency). Let S = (π1, π2, . . . , πℓ) be a solution to a storyline
instance (T, C, I, A). Let I ∈ I, ti = time(I) and C = char(I). Let 1 < j(I) ≤ i be the index
of the earliest time step tj(j) such that C ⊆ AC(tj(I), ti) and

∀k ∈ {j(I) + 1, . . . , i} : CI(tk) ∩ C = ∅ ∨ ∃I ∈ I(tk) : C ⊆ char(I).

GD 2024

31:8 Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings

We say that S is I-consistent if

∀k ∈ {j(I), j(I) + 1, . . . , i} : πk[C] = πi[C].

Further, we say that S is type-1-consistent if it is I-consistent for all I ∈ I.

Definition 3 defines the property that between suitable pairs of interactions with the
same set of characters, these characters are kept together between the two time steps. Note
that this is not implied by type-1 consistency.

▶ Definition 3 (Type-2 consistency). Let S = (π1, π2, . . . , πℓ) be a solution to a storyline
instance (T, C, I, A). Consider two interactions I1, I2 ∈ I such that

char(I1) = char(I2) = C,
i = time(I1) < time(I2) = j, and
∀k ∈ N : i < k < j ⇒ [CI(tk) ∩ C = ∅ ∨ ∃I3 ∈ I(tk) : C ⊆ char(I3)].

We say that S is (I1, I2)-consistent if

∀i < k < j : ∃πa, πb : πk = πa ⋆ πi[C] ⋆ πb.

Further, we say that S is type-2-consistent if it is (I1, I2)-consistent for all such pairs (I1, I2).

The following lemma shows that we can achieve type-1 consistency for storyline drawings
without increasing the number of crossings. Essentially, if a storyline solution is not type-1
consistent for an interaction I, we can propagate the relative order of characters in that
interaction forward from the time step tj(I) from Definition 2.

▶ Lemma 4 (⋆). Let (T, C, I, A) be an instance with a solution S. We can construct from S

a type-1-consistent solution S′ such that cr(S′) ≤ cr(S). If S is type-2-consistent, so is S′.

A similar result with a related proof argument holds for type-2 consistency.

▶ Lemma 5 (⋆). Let (T, C, I, A) be an instance with a solution S. We can construct from S

a type-2-consistent solution S′ such that cr(S′) ≤ cr(S). If S is type-1-consistent, so is S′.

The following is a direct consequence.

▶ Corollary 6. For each storyline instance (T, C, I, A) there exists a crossing-minimum
solution S that is type-1-consistent and type-2-consistent.

Theorem 7 is the main ingredient for a new ILP formulation given in Section 5. It shows that
we can in specific cases assume the order of characters Ca above and Cb below an interaction
at time step ti to be equal to the relative order at ti−1. This is similar to type-1-consistency,
where the relative order of characters in an interaction sometimes can be kept.

▶ Theorem 7 (⋆). Let (T, C, I, A) be a storyline instance. There exists a crossing-minimum
solution S = (π1, π2, . . . , πℓ) with the following property. For all ti ∈ {t2, t3, . . . , tℓ} with
|I(ti)| = 1, where I(ti) = {I}, the following holds.
(1) ∃Ca, Cb : πi = πi[Ca] ⋆ πi[char(I)] ⋆ πi[Cb],
(2) if Ca ⊆ AC(ti−1, ti), then πi[Ca] = πi−1[Ca],
(3) if char(I) ⊆ AC(ti−1, ti), then πi[char(I)] = πi−1[char(I)], and
(4) if Cb ⊆ AC(ti−1, ti), then πi[Cb] = πi−1[Cb].

Proof sketch. For time steps t with |I(t)| = 1 let Ca be the characters above the interaction
in an optimal solution. Similarly, let Cb be the characters below. By imagining that Ca and
Cb form two respective interactions, the result follows from Lemma 4. ◀

A. Dobler, M. Jünger, P. J. Jünger, J. Meffert, P. Mutzel, and M. Nöllenburg 31:9

5 Refining the ILP models

We apply our structural insights from Section 4 to the models (besides the (CUT)-model) to
obtain a new ILP formulation, including a reduction of the number of (LOP) constraints in
Section 5.1 via Theorem 7 and the inclusion of additional symmetry breaking constraints in
Section 5.2 via Corollary 6.

5.1 The Propagated Linear Ordering Model (PLO)
For our new formulation, we take the linearized model (LIN) as basis, but remove some of
the (LOP)-constraints for time step ti as we can make use of propagating the ordering at ti−1
by Theorem 7 as follows. If I(ti) for i > 1 contains only one interaction I, and no characters
outside the interaction start at ti (i.e., AC(ti) \ AC(ti−1) ⊆ CI(ti)), we only include a part
of the (LOP)-constraints for time step ti using a representative character cw ∈ char(I):

From the set of (LOP)-constraints containing at least one character in AC(ti)\char(I), we
keep only those that contain exactly two characters in AC(ti)\ char(I) and the representative
character cw ∈ char(I). This is sufficient, because we can define the order of the active
characters in ti relative to the order of the characters in the interaction I based on Theorem 7.
Hence, let cw be a representative character from the set char(I), and consider a pair of
characters cu, cv ∈ AC(ti) \ char(I). By Theorem 7, if both cu and cv are above or below cw,
then their relative order can be fixed by their relative order at ti−1. Otherwise, their relative
order is already given by their relative order to cw. That is, if, e.g., cu is above cw and cv

is below cw, then we know that cu is above cv. To ensure the above, we add the following
constraints in addition to the (LOP)-constraints for cu, cv, and cw at time step ti.

xi,u,v ≥ xi−1,u,v + xi,u,w + xi,v,w − 2 (PROP-R1)
xi,u,v ≥ xi−1,u,v + xi,w,u + xi,w,v − 2 (PROP-R2)

The two constraints ensure that cu is above cv if the requirements are met. By switching cu

and cv, these constraints also ensure the case that cu is below cv.
If additionally char(I) ⊆ AC(ti−1) we can apply Theorem 7 (3) to further reduce the

number of those (LOP)-constraints, whose triples are taken from the set char(I): In this
case, we do not add any of the (LOP)-constraints for the characters in I, but instead for
each pair cu, cv ∈ char(I), we add the following constraint ensuring that the relative order of
cu and cv is the same for ti and ti−1.

xi,u,v = xi−1,u,v (PROP-I)

If both reductions for (LOP) apply, we get a quadratic rather than cubic number of constraints
for ti. We call this formulation propagated linear order (PLO). Note that this idea of reducing
the number of (LOP)-constraints also works for any of the other standard ILP models.

▶ Theorem 8 (⋆). Every optimal solution to the formulation (PLO) corresponds to a crossing
minimum storyline drawing.

Proof sketch. Since we have only reduced some of the (LOP)-constraints, the correctness
follows by induction on the time steps w.r.t. transitivity of the computed character order. ◀

5.2 Symmetry Breaking Constraints
We introduce the set (SBC) of symmetry breaking constraints that are based on Corollary 6
and might improve the solving process of the models, as they constitute equalities:

GD 2024

31:10 Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings

We can assume that a crossing-minimum solution is type-1 consistent. Thus let I ∈ I
with ti = time(I) and let j(I) be defined as in Definition 2. For all pairs cu, cv ∈ char(I)
and all j(I) ≤ k < i we can add the following constraint enforcing type-1 consistency:

xk,u,v = xi,u,v (SBC-1)

We can assume that a crossing-minimum solution is type-2 consistent. Thus, let I1, I2 ∈ I
be two distinct interactions satisfying the properties of Definition 3. Let i = time(I1) and
j = time(I2). For all i < k < j, all pairs cu, cv ∈ char(I1), and all cw ∈ AC(tk) \ char(I1)
we add the following constraint, enforcing type-2 consistency:

xk,u,w = xk,v,w (SBC-2)

6 Implementation

In this section, we discuss relevant implementation details and new heuristic-based approaches
to improve our algorithms.

6.1 Initial Heuristic
We propose a heuristic that is provided to the ILP solver as starting solution: Roughly, we
solve intervals of the instance consisting of ℓ̂ < ℓ consecutive time steps optimally using the
(PLO) ILP formulation. The first ŝ ≤ ℓ̂ layers of those are saved as the heuristic solution.
Then, the last layer is fixed (i.e. layer ŝ) by fixing the ordering variables accordingly, in order
to compute the solution for the next interval, and so on. Initial testing showed that ŝ = 5
and ℓ̂ = 30 yields a good tradeoff between runtime and solution quality. A more detailed
description is given in the full version [6].

6.2 Rounding and Local Improvement Heuristics
We propose a rounding heuristic that exploits fractional LP-solutions. Furthermore, we try
to improve these solutions as well as incumbent solutions found by the solver software by
proposing three local improvement heuristics Rem-DC, Push-CR, and SL-Bary.

Rounding Heuristic. We propose a strategy to round fractional solutions of the ordering
variables to valid integer solutions corresponding to a drawing of the storyline instance.
Roughly, the orders πi are computed by considering for each ordering variable xi,u,v its
rounded up or down value if the fractional value is different from 0.5 in the LP solution,
and propagating the relative order of u and v in πi−1 if the fractional value is 0.5. Then,
the characters are sorted by the sums of the rounded values, characters belonging to the
same interaction are “treated as one character”. A detailed description is given in the full
version [6].

Local Improvement Heuristics.
Rem-DC (remove double crossings) This heuristic finds pairs of characters that cross twice,

and both crossings can be removed without increasing the total number of crossings.
Formally, this is possible for a drawing S and two characters c, c′ if there exist 1 ≤ i < j ≤ ℓ

with j − i > 1 such that
c and c′ cross between ti and ti+1, and tj−1 and tj , and
for all k ∈ N with i < k < j, c and c′ either belong to the same interaction in tk, or
they both are in no interaction for tk.

A. Dobler, M. Jünger, P. J. Jünger, J. Meffert, P. Mutzel, and M. Nöllenburg 31:11

Then for all k as above we can exchange c and c′ in πk. This removes the double-crossing
between c and c′ and further does not introduce new crossings.

Push-CR This heuristic proceeds from i = 2, . . . , ℓ in this order and tries to push crossings
between πi−1 and πi forward by one time step: Let C be a maximal set of characters
such that (1) all characters in C appear consecutively in πi, (2) C ⊆ AC(ti−1, ti), and (3)
all characters in C either appear in the same interaction in ti or no character in C is part
of an interaction. For each such set of characters C we replace in πi, πi[C] by πi−1[C].
By similar arguments as in Section 4 this never increases the number of crossings.

Bary-SL Lastly, we describe a variant of the barycenter heuristic [25] for storylines that
iteratively improves a storyline drawing by updating πi for 1 ≤ i ≤ ℓ based on πi−1 and
πi+1 or one of them if not both exist. It is only applied to πi if |I(ti)| = 1. Informally,
we say that a pair of characters c, c′ is comparable if c and c′ have the same relative order
in πi−1 and πi+1. We compute an ordering πi such that most comparable pairs have the
same relative order in πi−1, πi, πi+1 as follows. We compute the directed auxiliary graph
GC whose vertex set is a subset S of AC(ti) and which contains an arc from c to c′ for
each comparable pair c and c′ such that c is before c′ in πi−1 and πi+1. Then, an order of
S is built by iteratively selecting the vertex from GC with the fewest incoming arcs. We
also ensure that characters c that are not part of I are above or below the characters in I

depending on which option leads to fewer crossings between c and char(I) with respect to
the considered time steps ti−1, ti, ti+1. The algorithm computing the order based on the
graph GC is then applied to the characters in the interaction yielding πI , and those not in
the interaction yielding πC , respectively. The ordering πC is inserted into the maximum
position of πI such that all characters before πC “prefer” being above the interaction
with regard to crossings with char(I). The new πi is only accepted if it decreases the
number of crossings.

Both Bary-SL and Push-CR are applied successively to layers 2, . . . , ℓ. This is repeated
five times and applied to valid integer solutions found by the solver and the rounding heuristic
described above. If enabled, the rounding heuristic is applied to every LP solution found by
the solver. Rem-DC is applied five times to each pair of characters.

6.3 Max-Cut Implementation Details
Since the original implementation of Gronemann et al. [11] is not available, we provide our
own implementation that was optimized beyond their algorithm. After reading the input, we
first find an initial starting solution by applying adapted barycenter techniques as described
in [11]. We start the root relaxation with the objective function and the tree constraints
(TRC) as the only constraints, and start separating the odd cycle (CYC) (as suggested by
Charfreitag et al. [4]) and the (LOPC) constraints. The (LOPC) constraints are separated by
complete enumeration. Whenever a new LP solution is available, all nonbinding inequalities
are eliminated, and we try to exploit the information in the (fractional) solution in order to
obtain a better incumbent solution.

The root phase ends when no violated inequalities are found. Then the branch-and-cut
phase is started by changing the variable types from continuous in the interval [0, 1] to binary.
In the Gurobi “MIPSOL” callbacks at branch-and-cut nodes with an integer solution, we
check if the integral solution is the characteristic vector of a storyline drawing. If so and if
the number of crossings is lower than the one of the incumbent solution, the latter is updated,
otherwise, the exact (CYC) and (LOPC) separators are called to provide violated inequalities
that are passed to Gurobi as lazy constraints. In the Gurobi “MIPNODE” callbacks it is
tried to exploit the fractional solution for a possible update of the incumbent solution.

GD 2024

31:12 Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings

6.4 Implementation of the ILP Models
The models (QDR), (LIN), and (PLO) include many symmetries regarding ordering variables
and crossing variables. For each ti ∈ T and pair of characters cu, cv ∈ AC(ti) we only keep
the ordering variables xi,u,v and crossing variables yi,u,v with u < v. The constraints are
adjusted with standard projections [11,12].

We take the linearized model (LIN) as basis for our refined ILP model described in
Section 5, because preliminary experiments showed no performance gain from refining (QDR)
instead. Further, the linearized model (LIN) is competitive with the max-cut approach when
implemented in Gurobi. Therefore, we decided on refining the linearized model that is simpler
to implement and more accessible when compared with the max-cut approach. Furthermore,
implementing any of the ILP models naively includes up to O(ℓn3) (LOP)-constraints in the
model. We have experimented with adding these constraints during a cutting-plane approach
and also by including them into the Gurobi solver as lazy constraints, i.e., constraints that
the solver can decide to include at later stages during the solving process. We decided to
always add (LOP) as lazy constraints, as this leads to the best performance. Hence, we
consider the following algorithms for our experimental evaluation.

MC: the max-cut formulation (as a baseline) implemented as described in Section 6.3
LIN: the linearized model (LIN) with (LOP)-constraints included as lazy constraints
QDR: the quadratic model (QDR) with (LOP)-constraints included as lazy constraints
PLO: the PLO formulation with (LOP)-constraints included as lazy constraints

The latter three algorithms are by default extended with the symmetry breaking constraints
described in Section 5.2 (SBC), the initial heuristic from Section 6.1 (INIT), and the rounding
and local improvement heuristics from Section 6.2 (RND). This is not done for MC, as it
should serve as a state-of-the-art baseline and allow comparison with Gronemann et al. [11].

7 Experiments and Evaluation

In our experimental evaluation, we are interested in the following research questions.
Q1: Does the algorithm PLO based on our new ILP model dominate the state-of-the-art

model MC? Will we be able to solve hard instances that have not been solved to
optimality before? How do the various algorithms compare to each other?

Q2: What effect do the structural insights have when applied to the LIN-formulation?
Q3: What is the effect of the newly introduced components SBC, INIT, and RND?

In the following we describe our experimental setup, our benchmark instances, and the
results of our study. We also provide our results and analysis on https://osf.io/3bua2/.

7.1 Setup
Systems employed for all experiments have AMD EPYC 7402, 2.80GHz 24-core CPUs and
1024GB of RAM, running Ubuntu 18.04.6 LTS; experiments were run using a single thread.

MC is implemented in C and compiled with gcc 7.5.0, GNU make 4.1, and flag -O3,
all remaining code is written in C++17, compiled with cmake 3.10.2 and g++ 11.4.0 in
Release mode. To solve the ILPs we used Gurobi 11.0.1. The time limit is 3600s (same
as Gronemann et al. [11]) and the memory limit is 16GB for all experiments. We do not
know the memory limit for Gronemann, however memory was certainly not our limiting
factor. The time for the initial heuristic is negligible (< 1% of the overall runtime), so it is
not counted towards the solving time.

https://doi.org/10.17605/OSF.IO/3BUA2

A. Dobler, M. Jünger, P. J. Jünger, J. Meffert, P. Mutzel, and M. Nöllenburg 31:13

To mitigate performance variability, we ran each instance-setting combination with five
different seeds provided to Gurobi; data displayed below corresponds to the seed with the
median runtime. With this, an instance counts as “solved in the time limit”, if the majority
of the five runs does not time out. Source code for the new formulations is available on
https://osf.io/3bua2/.

7.2 Test Data
The instances used in our computational study are taken from the literature [7,10,11,26].
However, we also present a new data set, including existing instances, in a specifically
designed storyline data format, together with tools for transformation and visualization
of the storyline layouts on https://osf.io/3bua2/. We also provide data on best known
crossing numbers.

The existing instances from Gronemann et al. [11] consist of three book instances from
the Stanford GraphBase database [16], i.e., Anna Karenina (anna), Les Misérables (jean)
and Adventures of Huckleberry Finn (huck), and the movie instances TheMatrix, Inception,
and StarWars. The instances gdea10, gdea20 from Dobler et al. [7] consist of publication
data from 10 (resp. 20) authors from the GD conference. The publication instances ubiq1,
ubiq2 are from Di Giacomo et al. [10]. Furthermore, anna and jean are split up into slices of
1-4 consecutive chapters as was done by Gronemann et al. [11]1. The new instances consist
of scenes from nine blockbuster movies, namely Avatar, Back to The Future, Barbie, Forrest
Gump, Harry Potter 1, Jurassic Park, Oceans 11, Oppenheimer, and Titanic.

In all 59 resulting instances, characters are active from their first interaction to their last
interaction, and most instances have one interaction per time step.

7.3 Evaluation
Several instances could be solved within 30s by all algorithms, others could not be solved
within the time limit by any of the algorithms. The three instances TheMatrix, Inception,
and StarWars used commonly in heuristic storyline visualization were all solved within 450ms.
We exclude all these instances and focus on the 23 challenging instances that remain. Out
of these, the maximum number of characters is 88, and the maximum number of layers is
234. An extended experimental evaluation and more detailed statistics are given in the full
version [6].

Answering Q1 and Q2. Figure 3 displays the number of instances solved over time for
each algorithm. We observe that the algorithms differ in their ability to solve challenging
instances: PLO solves the most, followed by LIN and MC, with QDR last. In fact, PLO
solves one instance that cannot be solved by any other algorithm, and additionally solves
six instances that could not be solved by Gronemann et al. [11] and three more than MC
within the same time limit. Hence, we answer the first part in Q1 positively. For further
illustration, the exact runtimes per instance are also shown in Figure 4.

Answering Q2, the structural insights as applied in PLO reduce the number of constraints
by a factor of five on average, comparing LIN and PLO. More so, they enhance Gurobi’s
capabilities of strengthening the LP relaxation, as the two instances not solved by LIN are

1 We could not replicate this process fully equivalently, as sometimes our optimal crossing numbers are
different to those of Gronemann et al. [11].

GD 2024

https://doi.org/10.17605/OSF.IO/3BUA2
https://doi.org/10.17605/OSF.IO/3BUA2

31:14 Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings

0 500 1000 1500 2000 2500 3000 3500

Runtime [s]

0

5

10

15

20

#
o

f
in

st
a

n
ce

s
so

lv
ed

Number of solved instances vs runtime

PLO

LIN

QDR

MC

Figure 3 Number of solved instances per time limit given.

A
va

ta
r

B
ar

b
ie

H
ar

ry
P

o
tt

er
1

O
ce

a
n

s1
1

a
n

n
a

1
-2

a
n

n
a

1
-3

a
n

n
a

2
-3

a
n

n
a

2
-4

a
n

n
a

3
-5

a
n

n
a

4
-5

a
n

n
a

4
-6

a
n

n
a

5
-6

a
n

n
a

6
-7

a
n

n
a

6
-8

a
n

n
a

7
g

d
ea

2
0

h
u

ck
je

a
n

1
-3

je
a

n
1

-4
je

a
n

2
-3

je
a

n
2

-4
je

a
n

3
-4

je
a

n
4

-5

Instance

500

1000

1500

2000

2500

3000

timeout

R
u

n
ti

m
e

[s
]

Scatter Plot of RuntimesPLO

LIN

QDR

MC

Figure 4 Runtimes of algorithms per instance.

A. Dobler, M. Jünger, P. J. Jünger, J. Meffert, P. Mutzel, and M. Nöllenburg 31:15

0 1000 2000 3000

Runtime [s]

0

2

4

6

8

10

12

14

16

18

20

22

24

#
o

f
In

st
a

n
ce

s
so

lv
ed

(a) LIN

LIN

LIN-noSBC

LIN-noINIT

LIN-noRND

0 1000 2000 3000

Runtime [s]

(b) QDR

QDR

QDR-noSBC

QDR-noINIT

QDR-noRND

0 1000 2000 3000

Runtime [s]

0

2

4

6

8

10

12

14

16

18

20

22

24

#
o

f
In

st
a

n
ce

s
so

lv
ed

(c) PLO

PLO

PLO-noSBC

PLO-noINIT

PLO-noRND

Figure 5 Number of instances solved per time limit given, broken down by algorithm. Algorithms
are compared with their counterparts where exactly one component is disabled.

solved by PLO in the root, while LIN starts branching early and times out. QDR enters
branching in all 23 instances, PLO in two, MC in three, LIN in seven instances. PLO solves
21 out of 23 instances in the root, the remaining two with branching.

Furthermore, we computed the speedup factor of PLO, LIN, and QDR, when compared
with MC on instances where both respective algorithms did not time out. This factor is the
runtime of MC divided by the runtime of, e.g., PLO. The geometric means of these values
are 2.6 for PLO, 3.2 for LIN, and 2.7 for QDR. Hence, our new algorithms are 2.6–3.2 times
faster than the state-of-the-art algorithm MC.

Ablation study to answer Q3. We conduct an ablation study to discern the impact each of
the methods proposed in Sections 5 and 6 has on the algorithms’ performance. To this end,
we enable all the proposed methods as the baseline configuration for PLO, LIN, and QDR,
namely SBC, INIT and RND. Then, each component is disabled one at a time to measure
the component’s impact on overall performance. In Table 1 we present the speedup factors of

GD 2024

31:16 Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings

Table 1 Geometric means of the speedup factor of each baseline algorithm vs. its counterpart
where the respective component is disabled.

speedup factor PLO LIN QDR

SBC 1.12 1.35 1.42

INIT 1.05 1.09 0.97

RND 1.50 1.37 1.52

(a) Solution with 765 crossings computed in 0.57 s by a greedy heuristic.

(b) With the minimum number 244 of crossings computed in ≈ 7 hours.

Figure 6 Storyline of Les Misérables (jean) with 80 characters and 402 layers.

the algorithms vs. their counterparts with the specific component disabled. From this table,
we conclude that SBC and the RND are beneficial for all algorithms, while INIT has a small
to no noticeable impact. This is further supported by Figure 5, which shows that disabling
SBC or RND, results in all the formulations solving fewer instances (curves with noSBC
and noRND are below the baseline). This is because SBC introduces equalities between two
variables, and hence improve presolving capabilities and reduce the search space that solvers
have to explore. The heuristics of RND help the solver find optimal solutions early in the
process. This answers Q3.

Large Instances. Finally, we demonstrate that our implementations are capable of solving
even very large instances to proven optimality: Figure 6(a) shows the raw drawing of the data
for Victor Hugo’s Les Misérables [15] as provided in the data file jean.dat of the Stanford
GraphBase [16]. After roughly 7 hours of single thread computation, we obtained the proven
crossing minimum layout shown in Figure 6(b).

A. Dobler, M. Jünger, P. J. Jünger, J. Meffert, P. Mutzel, and M. Nöllenburg 31:17

8 Conclusion and Future Work

As shown in our experimental study, our new methods and algorithms dominate the state-
of-the-art algorithms and are able to solve large instances to optimality, while the newly
introduced improvements are beneficial towards all considered formulations. We observe two
directions for future work.

Our new components for improvement could be implemented into the max-cut formulation.
However, initial experiments have shown that the simple linearized formulation (LIN)
performs comparably to the more complex max-cut formulation, hence we expect that
this will result in a negligible or no improvement over our proposed formulations.
Out of our 59 instances (see https://osf.io/3bua2/) we were able to solve 55 when
increasing the time limit. The remaining four unsolved instances should pose a challenge
to engineer new exact methods for crossing minimization in storylines.

References
1 Vanessa Peña Araya, Tong Xue, Emmanuel Pietriga, Laurent Amsaleg, and Anastasia Bezeri-

anos. Hyperstorylines: Interactively untangling dynamic hypergraphs. Inf. Vis., 21(1):38–62,
2022. doi:10.1177/14738716211045007.

2 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

3 Christoph Buchheim, Angelika Wiegele, and Lanbo Zheng. Exact algorithms for the quadratic
linear ordering problem. INFORMS J. Comput., 22(1):168–177, 2010. doi:10.1287/IJOC.
1090.0318.

4 Jonas Charfreitag, Michael Jünger, Sven Mallach, and Petra Mutzel. McSparse: Exact Solutions
of Sparse Maximum Cut and Sparse Unconstrained Binary Quadratic Optimization Problems,
pages 54–66. Proc. Symposium on Algorithm Engineering and Experiments (ALENEX’22),
2022. doi:10.1137/1.9781611977042.5.

5 Alexander Dobler, Michael Jünger, Paul J. Jünger, Julian Meffert, Petra Mutzel, and Martin
Nöllenburg. Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings:
Supplementary Material. Software (visited on 2024-10-14). URL: https://doi.org/10.17605/
OSF.IO/3BUA2.

6 Alexander Dobler, Michael Jünger, Paul Jünger, Julian Meffert, Petra Mutzel, and Martin
Nöllenburg. Revisiting ILP models for exact crossing minimization in storyline drawings.
CoRR, abs/2409.02858, 2024. doi:10.48550/arXiv.2409.02858.

7 Alexander Dobler, Martin Nöllenburg, Daniel Stojanovic, Anaïs Villedieu, and Jules Wulms.
Crossing minimization in time interval storylines. CoRR, abs/2302.14213, 2023. doi:10.
48550/arXiv.2302.14213.

8 Michael Forster. A fast and simple heuristic for constrained two-level crossing reduction. In
János Pach, editor, Proc. Graph Drawing and Network Visualization (GD’04), volume 3383 of
LNCS, pages 206–216. Springer, 2004. doi:10.1007/978-3-540-31843-9_22.

9 Michael R. Garey and David S. Johnson. Crossing number is NP-complete. SIAM J. on
Algebraic and Discrete Methods, 4(3):312–316, 1983. doi:10.1137/0604033.

10 Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani, and Alessandra
Tappini. Storyline visualizations with ubiquitous actors. In David Auber and Pavel Valtr,
editors, Proc. Graph Drawing and Network Visualization (GD’20), volume 12590 of LNCS,
pages 324–332. Springer, 2020. doi:10.1007/978-3-030-68766-3_25.

11 Martin Gronemann, Michael Jünger, Frauke Liers, and Francesco Mambelli. Crossing mini-
mization in storyline visualization. In Yifan Hu and Martin Nöllenburg, editors, Proc. Graph
Drawing and Network Visualization (GD’16), volume 9801 of LNCS, pages 367–381. Springer,
2016. doi:10.1007/978-3-319-50106-2_29.

GD 2024

https://doi.org/10.17605/OSF.IO/3BUA2
https://doi.org/10.1177/14738716211045007
https://doi.org/10.1287/IJOC.1090.0318
https://doi.org/10.1287/IJOC.1090.0318
https://doi.org/10.1137/1.9781611977042.5
https://doi.org/10.17605/OSF.IO/3BUA2
https://doi.org/10.17605/OSF.IO/3BUA2
https://doi.org/10.48550/arXiv.2409.02858
https://doi.org/10.48550/arXiv.2302.14213
https://doi.org/10.48550/arXiv.2302.14213
https://doi.org/10.1007/978-3-540-31843-9_22
https://doi.org/10.1137/0604033
https://doi.org/10.1007/978-3-030-68766-3_25
https://doi.org/10.1007/978-3-319-50106-2_29

31:18 Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings

12 Martin Grötschel, Michael Jünger, and Gerhard Reinelt. Facets of the linear ordering polytope.
Math. Program., 33(1):43–60, 1985. doi:10.1007/BF01582010.

13 Patrick Healy and Nikola S. Nikolov. Hierarchical drawing algorithms. In Roberto Tamassia,
editor, Handbook on Graph Drawing and Visualization, chapter 13, pages 409–453. Chapman
and Hall/CRC, 2013.

14 Tim Herrmann. Storyline-Visualisierungen für wissenschaftliche Kollaborationsgraphen.
Master’s thesis, Universität Würzburg, 2022. URL: https://www1.pub.informatik.
uni-wuerzburg.de/pub/theses/2022-herrmann-masterarbeit.pdf.

15 Victor Hugo. Les Misérables. Jules Rouff et Cie editeurs, Paris, 1862.
16 Donald E. Knuth. The Stanford GraphBase – A platform for combinatorial computing. ACM,

1993.
17 Irina Kostitsyna, Martin Nöllenburg, Valentin Polishchuk, André Schulz, and Darren Strash.

On minimizing crossings in storyline visualizations. In Emilio Di Giacomo and Anna Lubiw,
editors, Proc. Graph Drawing and Network Visualization (GD’15), volume 9411 of LNCS,
pages 192–198. Springer, 2015. doi:10.1007/978-3-319-27261-0_16.

18 Shixia Liu, Yingcai Wu, Enxun Wei, Mengchen Liu, and Yang Liu. Storyflow: Tracking
the evolution of stories. IEEE Trans. Vis. Comput. Graph., 19(12):2436–2445, 2013. doi:
10.1109/TVCG.2013.196.

19 Randall Munroe. Movie narrative charts, 2009. URL: https://xkcd.com/657/.
20 Michael Ogawa and Kwan-Liu Ma. Software evolution storylines. In Alexandru C. Telea,

Carsten Görg, and Steven P. Reiss, editors, Software Visualization (SoftVis’10), pages 35–42.
ACM, 2010. doi:10.1145/1879211.1879219.

21 Helen Purchase. Which aesthetic has the greatest effect on human understanding? In Proc.
Graph Drawing and Network Visualization (GD’97), volume 1353 of LNCS, pages 248–261.
Springer, 1997. doi:10.1007/3-540-63938-1_67.

22 Marcus Schaefer. Crossing Numbers of Graphs. CRC Press, 2018.
23 Yang Shi, Chris Bryan, Sridatt Bhamidipati, Ying Zhao, Yaoxue Zhang, and Kwan-Liu Ma.

Meetingvis: Visual narratives to assist in recalling meeting context and content. IEEE Trans.
Vis. Comput. Graph., 24(6):1918–1929, 2018. doi:10.1109/TVCG.2018.2816203.

24 Caterina De Simone. The cut polytope and the boolean quadric polytope. Discret. Math.,
79(1):71–75, 1990. doi:10.1016/0012-365X(90)90056-N.

25 Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11(2):109–125, 1981.
doi:10.1109/TSMC.1981.4308636.

26 Y. Tanahashi. Movie data set, 2013. URL: http://vis.cs.ucdavis.edu/~tanahashi/
datadownloads/storylinevisualizations/story_data.tar.

27 Yuzuru Tanahashi, Chien-Hsin Hsueh, and Kwan-Liu Ma. An efficient framework for generating
storyline visualizations from streaming data. IEEE Trans. Vis. Comput. Graph., 21(6):730–742,
2015. doi:10.1109/TVCG.2015.2392771.

28 Yuzuru Tanahashi and Kwan-Liu Ma. Design considerations for optimizing storyline visualiza-
tions. IEEE Trans. Vis. Comput. Graph., 18(12):2679–2688, 2012. doi:10.1109/TVCG.2012.
212.

29 Tan Tang, Renzhong Li, Xinke Wu, Shuhan Liu, Johannes Knittel, Steffen Koch, Lingyun
Yu, Peiran Ren, Thomas Ertl, and Yingcai Wu. Plotthread: Creating expressive storyline
visualizations using reinforcement learning. IEEE Trans. Vis. Comput. Graph., 27(2):294–303,
2021. doi:10.1109/TVCG.2020.3030467.

30 Tan Tang, Sadia Rubab, Jiewen Lai, Weiwei Cui, Lingyun Yu, and Yingcai Wu. iStoryline:
Effective convergence to hand-drawn storylines. IEEE Trans. Vis. Comput. Graph., 25(1):769–
778, 2019. doi:10.1109/TVCG.2018.2864899.

31 Thomas C. van Dijk, Martin Fink, Norbert Fischer, Fabian Lipp, Peter Markfelder, Alexander
Ravsky, Subhash Suri, and Alexander Wolff. Block crossings in storyline visualizations. J.
Graph Algorithms Appl., 21(5):873–913, 2017. doi:10.7155/JGAA.00443.

https://doi.org/10.1007/BF01582010
https://www1.pub.informatik.uni-wuerzburg.de/pub/theses/2022-herrmann-masterarbeit.pdf
https://www1.pub.informatik.uni-wuerzburg.de/pub/theses/2022-herrmann-masterarbeit.pdf
https://doi.org/10.1007/978-3-319-27261-0_16
https://doi.org/10.1109/TVCG.2013.196
https://doi.org/10.1109/TVCG.2013.196
https://xkcd.com/657/
https://doi.org/10.1145/1879211.1879219
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1109/TVCG.2018.2816203
https://doi.org/10.1016/0012-365X(90)90056-N
https://doi.org/10.1109/TSMC.1981.4308636
http://vis.cs.ucdavis.edu/~tanahashi/datadownloads/storyline visualizations/story_data.tar
http://vis.cs.ucdavis.edu/~tanahashi/datadownloads/storyline visualizations/story_data.tar
https://doi.org/10.1109/TVCG.2015.2392771
https://doi.org/10.1109/TVCG.2012.212
https://doi.org/10.1109/TVCG.2012.212
https://doi.org/10.1109/TVCG.2020.3030467
https://doi.org/10.1109/TVCG.2018.2864899
https://doi.org/10.7155/JGAA.00443

A. Dobler, M. Jünger, P. J. Jünger, J. Meffert, P. Mutzel, and M. Nöllenburg 31:19

32 Thomas C. van Dijk, Fabian Lipp, Peter Markfelder, and Alexander Wolff. Computing storyline
visualizations with few block crossings. In Fabrizio Frati and Kwan-Liu Ma, editors, Proc.
Graph Drawing and Network Visualization (GD’17), volume 10692 of LNCS, pages 365–378.
Springer, 2017. doi:10.1007/978-3-319-73915-1_29.

33 Günter Wallner, Letian Wang, and Claire Dormann. Visualizing the spatio-temporal evolution
of gameplay using storyline visualization: A study with league of legends. Proc. ACM Hum.
Comput. Interact., 7(CHI):1002–1024, 2023. doi:10.1145/3611058.

34 Yunchao Wang, Guodao Sun, Zihao Zhu, Tong Li, Ling Chen, and Ronghua Liang. E2Storyline:
Visualizing the relationship with triplet entities and event discovery. ACM Trans. Intell. Syst.
Technol., 15(1):16:1–16:26, 2024. doi:10.1145/3633519.

GD 2024

https://doi.org/10.1007/978-3-319-73915-1_29
https://doi.org/10.1145/3611058
https://doi.org/10.1145/3633519

	1 Introduction
	2 Preliminaries
	3 Standard Models for the Storyline Problem
	4 Structural Properties of Storyline Solutions
	5 Refining the ILP models
	5.1 The Propagated Linear Ordering Model (PLO)
	5.2 Symmetry Breaking Constraints

	6 Implementation
	6.1 Initial Heuristic
	6.2 Rounding and Local Improvement Heuristics
	6.3 Max-Cut Implementation Details
	6.4 Implementation of the ILP Models

	7 Experiments and Evaluation
	7.1 Setup
	7.2 Test Data
	7.3 Evaluation

	8 Conclusion and Future Work

