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Abstract
A nonplanar drawing Γ of a graph G divides the plane into topologically connected regions, called
faces (or cells). The boundary of each face is formed by vertices, crossings, and edge segments. Given
a positive integer k, we say that Γ is a k+-real face drawing of G if the boundary of each face of Γ
contains at least k vertices of G. The study of k+-real face drawings started in a paper by Binucci
et al. (WG 2023), where edge density bounds and relationships with other beyond-planar graph
classes are proved. In this paper, we investigate the complexity of recognizing k+-real face graphs,
i.e., graphs that admit a k+-real face drawing. We study both the general unconstrained scenario
and the 2-layer scenario in which the graph is bipartite, the vertices of the two partition sets lie on
two distinct horizontal layers, and the edges are straight-line segments. We give NP-completeness
results for the unconstrained scenario and efficient recognition algorithms for the 2-layer setting.
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1 Introduction

Drawing nonplanar graphs in the plane while avoiding forbidden crossing configurations
is a prominent line of research in graph drawing. Over the past twenty years, numerous
papers have addressed this topic, commonly recognized as beyond-planar graph drawing. For
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32:2 On the Complexity of Recognizing k+-Real Face Graphs

example, one of the most studied graph hierarchies is this context is the one of k-planar
graphs, i.e., graphs that admit a drawing in which each edge is crossed at most k times (see,
e.g., [24, 26]). Another classical example is the class of right-angle-crossing graphs (RAC
graphs), which admit a straight-line drawing where any two crossing edges form 90◦ angles at
their crossing point (see, e.g., [11, 12]). We refer the reader to surveys, books, and seminar
reports for a comprehensive overview on beyond-planar graph drawing [13, 18, 19, 21].

In this paper, we study k+-real face graphs, a beyond-planar graph hierarchy recently
introduced in [5, 6] and further studied in [23]. Namely, a nonplanar graph Γ of a graph G

divides the plane into topologically connected regions, called faces (or cells). The boundary
of each face is formed by vertices, crossings, and edge segments. Given a positive integer
k, the drawing Γ is a k+-real face drawing of G if the boundary of each face of Γ contains
at least k vertices of G. In this case, G is a k+-real face graph. The research in [5, 6, 23]
concentrates on providing tight bounds on the edge density of k+-real face graphs, and on
establishing relationships between k+-real face graphs and other prominent beyond-planar
graph classes. Conversely, testing which graphs admit a k+-real face drawing and computing
such a drawing when the test is positive are almost unexplored problems. Trivial recognition
algorithms exist only for complete graphs and complete bipartite graphs, exploiting results
about edge density and crossing numbers for these families [5].

Contribution. Following a consolidated line of research in beyond-planar graph drawing,
and addressing a problem mentioned in [5], we investigate the complexity of recognizing
k+-real face graphs. We study both the general unconstrained scenario and the classical
2-layer scenario for bipartite graphs, in which the vertices of the two partition sets are placed
on two distinct horizontal lines and the edges are drawn as straight-line segments. We remark
that the 2-layer scenario has a long tradition in graph drawing (see, e.g., [1, 15, 16, 22, 27, 28])
and in beyond-planar graph drawing (see, e.g., [3, 4, 7, 9, 10]). Our results are as follows:

We prove that, for the set of instances ⟨G, k⟩, where G is a graph and k is a positive integer,
testing whether G admits a k+-real face drawing is NP-complete. More specifically, we
prove that the problem is already NP-complete for k ∈ {1, 2} and even if G is biconnected
(Section 3). This excludes that recognizing k+-real face graphs is fixed-parameter tractable
(FPT) or even slicewise polynomial (XP) when parameterized by k, unless P=NP.
We provide tight upper bounds on the edge density of 2-layer k+-real face graphs for any
positive integer k (Section 4.1). Then, we describe linear-time algorithms for recognizing
2-layer k+-real face graphs for any k ≥ 2, and for recognizing optimal 2-layer k+-real face
graphs for any given k ≥ 1 (Section 4.2). The optimal graphs are those that match the
maximum possible edge density. Recognizing optimal graphs for specific beyond-planar
graph families is also a classical problem in graph drawing [2, 8, 20].

For space reasons, some proofs are sketched or omitted.

2 Basic Terminology and Tools

We consider connected, simple graphs, i.e., without parallel edges and self-loops. Given a
graph G = (V, E) and a set E′ ⊆ E, let V ′ ⊆ V be the set of the end-vertices of the edges
in E′. The graph G′ = (V ′, E′) is the subgraph of G induced by E′. A block B of G is a
biconnected component of G. If B is an edge, it is a trivial block, otherwise B is non-trivial.

In a drawing Γ of a graph G the vertices are represented as points of the plane and the
edges are simple Jordan arcs. We only consider simple drawings, that is: (i) adjacent edges
do not intersect, except at their common endpoint; (ii) two independent (i.e., non-adjacent)
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(a) (b)

Figure 1 (a) A 2+-real face drawing. (b) A 2-layer 2+-real face drawing.

edges intersect at most in one of their interior points, called a crossing point; and (iii) no three
edges intersect at a common crossing point. A vertex of Γ is either a point corresponding to
a vertex of G, called a real-vertex, or a crossing point, called a crossing-vertex. An edge of Γ
is a curve connecting two vertices of Γ; an edge of Γ whose endpoints are both real-vertices
coincides with an edge of G; otherwise, it is just a proper portion of an edge of G. A drawing
Γ subdivides the plane into topologically connected regions, called faces (or cells). The
boundary of each face is a circular sequence of vertices and edges of Γ. The face corresponding
to the the infinite plane region is the external face of Γ; the other faces are the internal faces.

For an integer k ≥ 0, we say that f is a k-real face (resp. k+-real face) if it contains
exactly (resp. at least) k real vertices. For an integer k ≥ 1, a k+-real face drawing of a
graph G is a drawing such that each face is a k+-real face (see Figure 1a for an example with
k = 2). If G admits such a drawing, it is a k+-real face graph. A k+-real face graph whose
number of edges is the maximum possible over all its number of vertices is said to be optimal.

2-layer drawings. In a 2-layer drawing Γ of a bipartite graph G = (V1 ∪ V2, E), the vertices
in V1 and in V2 lie on two distinct horizontal lines L1 and L2, called layers, and the edges
are straight-line segments. If Γ is also k+-real face then it is a 2-layer k+-real face drawing,
and G is a 2-layer k+-real face graph (see Figure 1b for an example with k = 2). Again, a
2-layer k+-real face graph is optimal if it matches the maximum possible edge density.

Given a 2-layer drawing Γ of a graph G, we say that there is a fan crossing in Γ if two
adjacent edges of G are crossed by a third one in Γ; we also say that these three edges form
a fan crossing. Further, Γ is a 2-layer RAC drawing if any two crossing edges only cross at
right angles. A 2-layer RAC graph is a graph admitting a 2-layer RAC drawing.

Given a bipartite graph G = (V1 ∪ V2, E), let π1 and π2 be two linear (left-to-right)
orderings of the vertices in V1 and in V2, respectively. A 2-layer embedding γ = (π1, π2)
of G is the equivalence class of 2-layer drawings of G that induce the orderings π1 and π2.
In other words, γ is an abstraction of a 2-layer drawing where only the vertex orderings
on the layers matter, independent of the vertex coordinates. A drawing of γ is any 2-layer
drawing of G in the class γ. If γ has a 2-layer RAC drawing, it is a 2-layer RAC embedding.
Analogously, if γ has a k+-real face drawing (for some k ≥ 1), then γ is a 2-layer k+-real face
embedding. Note that, in fact, if γ is a 2-layer k+-real face embedding, every drawing of γ is
a 2-layer k+-real face drawing. Indeed, it is not difficult to see that any two distinct drawings
of the same 2-layer k+-real face embedding γ have the same set of faces, which is uniquely
determined by the linear orderings of the vertices on the two layers1 Hence, for a 2-layer
k+-real face embedding γ, we will refer to the faces of γ to indicate the faces of any 2-layer
drawing of γ. Similarly, the edge crossings of a graph G in a 2-layer drawing Γ of G only

1 If a 2-layer drawing Γ has a face without real-vertices, its 2-layer embedding γ does not uniquely
determine the set of faces, i.e., another drawing of γ may have a set of faces different from that of Γ.
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depend on the 2-layer embedding γ of Γ. A crossing in γ between two edges of G refers to
the crossing formed by these edges in any drawing of γ; real- and crossing-vertices of γ refer
to the real- and crossing-vertices of any drawing of Γ. Since two real-vertices of the same
layer cannot belong to the same internal face of a 2-layer drawing, the next property holds.

▶ Property 1. Let γ be a 2-layer embedding of a connected bipartite graph G. In every
drawing of γ, each internal face has at most two real-vertices.

A caterpillar is a tree such that removing all its leaves yields a path. A ladder is a
bipartite outerplanar graph consisting of two paths of the same length ⟨u1, . . . , u n

2
⟩ and

⟨w1, . . . , w n
2

⟩ plus the edges (ui, wi) for i = 1, . . . , n
2 ; the edges (u1, w1) and (u n

2
, w n

2
) are

the extremal edges of the ladder (see Figure 6). The next result will be used in the following.

▶ Theorem 2 (Di Giacomo et al. [9]). A 2-layer embedding γ of a bipartite graph is a 2-layer
RAC embedding if and only if there is no fan crossings in γ.

3 Recognizing Unconstrained k+-real face graphs

For optimal graphs, the results in [5, 6] imply that for k ≥ 3, recognizing k+-real face graphs
corresponds to recognizing planar graphs that have an embedding with all faces of degree k.
This last problem is tractable for k ≤ 6 whereas it is NP-complete for odd k ≥ 7 and for even
k ≥ 10 [25]. Moreover, recognizing optimal 2+-real face graphs is equivalent to recognizing
optimal 1-planar graphs [6], which is linear-time solvable [8]. In this section we prove that
recognizing k+-real face graphs is NP-complete; in particular, the next theorem shows that
the problem is NP-complete for k = 2 and even for biconnected graphs.

▶ Theorem 3. Deciding if a graph G is 2+-real face is NP-complete, even if G is biconnected.

Membership of the problem in NP can be easily verified using standard arguments. We
reduce from the 3-Partition problem, which is known to be strongly NP-hard [17]. Recall
that an instance of 3-Partition consists of a set A = {a1, a2, . . . , a3m} of 3m integers, each
of which is strictly between B/4 and B/2, where B = 1

m

∑3m
i=1 ai. Then, the problem asks

whether A can be partitioned into m subsets A1, A2, . . . , Am, each of cardinality 3, such that
the sum of the integers in each subset is B.

Proof overview. The idea is to construct a rigid frame which admits a unique 2+-real face
drawing (up to a homeomorphism of the plane) and contains a large face. Inside this face, we
arrange, in a grid-like fashion, 3m vertical gadgets and m horizontal paths. The former,
called columns, encode the integers of an instance A of 3-Partition; see Figure 5a. If a
2+-real face drawing exists, one can read a solution for A by looking at how the paths intersect
the columns; see Figure 5b. A crucial ingredient is an intertwined design of the columns and
of the path gadgets such that the latter must cross the former in a controlled manner.

Construction. Let A be an instance of 3-Partition. We will construct in polynomial time
a graph G, such that A admits a partition if and only if G admits a 2+-real face drawing. In
our construction, we will leverage K6 as a building block, since any 2+-real face drawing of
it is 1-planar as we prove in the following lemma; refer to Figure 2a for an illustration.

▶ Lemma 4. Any 2+-real face drawing of K6 is 1-planar.
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⇐⇒

(a) (b)

Figure 2 (a) A 1-planar and 2+-real face drawing of K6, and its schematic representation. (b)
Schematic representations of a belt of length three, and of a 2-belt.

LEFT WALL RIGHT WALL

TOP BEAM

BOTTOM BEAM

P

L

(a)

2M

M + ai ⇐⇒

(b)

Figure 3 (a) A ring barrier. (b) Three channels of a column, two are dense and one is sparse,
along with their schematic representation.

Proof. By Lemma 1 of [6] it follows that, for a 2+-real face drawing, it holds χ ≤ n − 2,
where χ is the number of crossings in the drawing and n is the number of real vertices. For
K6, this implies χ ≤ 4. Suppose by contradiction that K6 admits a 2+-real face drawing Γ
with an edge crossed at least twice. Thus, Γ contains a face of degree at least four (namely
a face with at least two real vertices and two crossing-vertices). Since each other face of Γ
has at least degree three and since the sum of the degrees of the faces of Γ equals twice the
number µ of its edges, we have 2µ ≥ 3(ϕ − 1) + 4 = 3ϕ + 1, where ϕ denotes the number
of faces of Γ. Since µ = m + 2χ and ϕ = m + χ + 2 − n, the last inequality implies that
2(m + 2χ) ≥ 3(m + χ + 2 − n) + 1 or equivalently χ ≥ m − 3n + 7 holds. For K6, we know
n = 6 and m = 15, thus χ ≥ 10, which contradicts the bound χ ≤ 4. ◀

A belt of length k is a chain of k copies of K6 that are glued such that two consecutive
copies share one edge; see also Figure 2b. A b-belt of length k is obtained by merging together
b > 1 belts of length k, as shown in Figure 2b. To construct graph G, we first create a quite
rigid structure, called ring barrier R, consisting of four components: the top beam, the right
wall, the bottom beam and the left wall. Each of the top and bottom beams consists of a
T -belt of length L, while each of the left and right walls consists of a T -belt of length P ,
with the following choice of parameters: (i) M = ⌈B/2⌉ + 1; (ii) X = 2M ; (iii) L = 3mX;
(iv) P = 3m + 2; (v) T = L2. Note that M > ai for each i = 1, . . . , 3m. Also, L and P are
chosen to accommodate 3m column gadgets and m transversal gadgets, to be defined later.
T makes the ring barrier thick enough; it is formed by gluing in a circular arrangement the
endpoints of the top beam, right wall, bottom beam and left wall; see Figure 3a.

GD 2024
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D1 +D2 +D3

(a) (b)

Figure 4 (a) Two transversal gadgets (only a part of the ring barrier is shown and columns are
omitted). (b) A transversal gadget routed through a channel.

The top and bottom beams are connected by a set of 3m columns; see Figure 3b. Each
column contains a stack of 2m − 2 copies of the barrier-gadget, which is formed by gluing X

copies of K6. Within each column, consecutive copies of the barrier-gadget are connected
by an even set of pairwise disjoint edges whose size will be defined later, interleaved by
an edge in the middle of the sequence forming two triangles, as shown in Figure 3b. The
topmost and the bottommost copy of the barrier-gadget of each column is connected to the
top and bottom beam, respectively, also in the same fashion. The edges that realize these
connections are called vertical edges and form the so-called channels. In particular, there are
m − 1 topmost channels, one central channel and m − 1 bottommost channels. The central
channel of the i-th column is sparse containing only M + ai vertical edges (note that, by
construction, X = 2M > M + ai); the remaining ones are dense containing X edges each.

We conclude the construction of graph G by introducing m pairwise disjoint gadgets,
π1, π2, . . . , πm, called the transversal gadgets of G. Each transversal gadget consists of two
edges, called guide edges, and one path of D1 + D2 + D3 vertices, where the three parameters
are specified below. The intuition is that, in order to realize a 2+-real face drawing, each path
must cross all columns through one of their channels, and each path will be able to do so if
and only if it can be routed through exactly three sparse channels whose number of vertical
edges is equal to B; therefore, the length of a single path is crucial: (i) D1 = (3m−3)(2X +8),
for the path to be able to cross 3m − 3 dense channels; (ii) D2 = 2B + 6M + 24, for the
path to be able to cross 3 sparse channels; (iii) D3 = 2(3m − 1), for the path to be able to
cross the faces between consecutive columns. These gadgets are attached at independent
consecutive vertices along the left and right walls, as shown in Figure 4a (each of the m

gadgets takes three vertices on the left wall and on the right wall, which are both made by
T -belts of length 3m + 2). Note that G does not contain any cut-vertex.

Proof sketch for Theorem 3. To prove that A admits a partition if and only if G admits
a 2+-real face drawing, we need a few definitions. A canonical drawing of G is one such
that, if two edges cross, then one of the following cases applies: (i) both edges are part of
a K6, or (ii) one edge is part of a transversal gadget and the other is a vertical edge of a
channel, or (iii) one is a guide edge of transversal gadget and the other is an edge of the
path of the same transversal gadget. Consider a column C and a channel c of C. We say
that a transversal gadget π is routed through c, if c is the only channel of C whose edges
are crossed by some edges of π, see Figure 4b. If A1, . . . , Am is a solution of A, then a
2+-real face drawing of G can be obtained by routing each transversal gadget πi through
m − 3 dense channels and 3 sparse channels corresponding to the elements of Ai as shown
in Figure 5. Proving the other direction requires a more involved argument. We first prove
that a crossing-minimal 2+-real face drawing of G, if any, is a canonical drawing. Next we
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(a) (b)

Figure 5 (a) A canonical drawing (schematic representation) where the transversal gadgets are
omitted. (b) A complete canonical drawing in which the three transversal gadgets are schematized
as thick polylines of different colors and their intersections with sparse cells are highlighted.

can show that each transversal gadget is routed through m − 3 dense channels and 3 sparse
channels such that no two gadgets traverse the same channel. This allows the construction
of a solution A1, . . . , Am of A as follows: if πj crosses the κ-th, λ-th and µ-th columns of G

through sparse channels, where 1 ≤ κ, λ, µ ≤ 3m, then Aj = {aκ, aλ, aµ}. ◀

▶ Remark 5. The proof of Theorem 3 can be adapted to show that recognizing 1+-real face
graphs is also NP-complete. At high level, we substitute the copies of K6 with copies of K7,
slightly modify the channel structure by introducing two edges that cross (to ensure that a
single guide edge cannot be routed through a channel without an associated path) and halve
the length of the paths. In the interest of space, we defer the details to the journal version.

4 2-Layer k+ graphs

In this section we focus on 2-layer k+-real face drawings. We start giving edge-density results
for each positive integer k (Section 4.1); they represent a preliminary step for the recognition
problem. Then, we describe algorithms to recognize 2-layer k+-real face graphs for k ≥ 2,
and algorithms to recognize optimal 2-layer k+-real face graphs for k ≥ 1 (Section 4.2).

4.1 Edge Density
We give tight upper bounds on the edge density of n-vertex 2-layer k+-real face graphs, for
any k ∈ [1, n]. For k ∈ [3, n] the next theorem establishes that the n-vertex connected 2-layer
k+-real face graphs are caterpillars, thus they have n − 1 edges.

▶ Theorem 6. An n-vertex connected graph is 2-layer k+-real face for any k ∈ [3, n] if and
only if it is a caterpillar.

Proof. A connected graph has a 2-layer planar embedding if and only if it is a caterpillar [14].
Suppose first that γ is a 2-layer k+-real face embedding of a connected graph G for a given
k ∈ [3, n]. By Property 1, γ cannot have internal faces, i.e., all real-vertices of γ belong
to the external face. In particular, there cannot be any two edges of G that cross in γ,
otherwise, since G is connected, there would be an internal face in γ. Hence G is 2-layer

GD 2024
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u1 u2 u3 u4 u5

w1 w2 w3 w4 w5

u1 u3 u5w2 w4

u2 u4w1 w3 w5

u6

w6

w6

u6

ΓG

Figure 6 Illustration for Theorem 7. An optimal 2-layer 2+-real face graph G with n = 12
vertices (left) and a 2-layer 2+-real face drawing Γ of G (right).

u1 u2 u3 u4 u5

w1 w2 w3 w4 w5

u1 u3 u5w2 w4

u2 u4w1 w3 w5

u6

w6

w6

u6

ΓG

Figure 7 Illustration for Theorem 8. An optimal 2-layer 1+-real face graph G with n = 12
vertices (left) and a 2-layer 1+-real face drawing Γ of G (right).

planar, which implies that it is a caterpillar. Conversely, if G is a caterpillar it has a 2-layer
planar embedding. This embedding has a unique face (the external face), which contains all
the vertices of the graph, thus it is a 2-layer k+-real face embedding for every k ∈ [3, n]. ◀

▶ Theorem 7. Any n-vertex 2-layer 2+-real face graph has at most 1.5n − 2 edges, and this
bound is tight.

Proof. Let G = (V1 ∪V2, E) be an n-vertex bipartite graph that admits a 2-layer 2+-real face
drawing Γ, and let m be the number of edges of G. Augment Γ (and G) with n − 2 (non-
crossing) straight-line edges that connect all the vertices in each vertex set Vi (i = 1, 2), in
their linear ordering along the corresponding layer. The resulting drawing Γ′ is an outer
2+-real face drawing of a graph G′ with n′ = n vertices, i.e., a 2+-real face drawing with all
vertices on the external face. In [6] it is proved that such a graph G′ has at most 2.5n − 4
edges. Since G′ has m′ = m + n − 2 edges, we have m ≤ 1.5n − 2. About the tightness of
the bound, the ladders on n vertices are optimal 2-layer 2+-real face graphs (Figure 6). ◀

▶ Theorem 8. Any n-vertex 2-layer 1+-real face graph has at most 2n − 4 edges, and this
bound is tight.

Sketch. The proof is analogous to that of Theorem 7, but exploits the fact that an outer
1+-real face drawing has at most 3n − 6 edges [6]. A 2-layer 1+-real face graph that matches
this bound is a ladder with some extra edges (see Figure 7 when n = 12). Namely, let
V1 = {u1, . . . , u n

2
} and V2 = {w1, . . . , w n

2
}. For i = 1, . . . , n

2 there is an edge (ui, wi). For
i = 1, . . . , n

2 − 1 there are the two edges (ui, wi+1) and (ui+1, wi). For each i ∈ {1, . . . , n
2 − 2}

there is an edge (ui, wi+2). This graph has in total m = n
2 +n−2+ n

2 −2 = 2n−4 edges. ◀

4.2 Recognition
For k ∈ [3, n], Theorem 6 implies that testing whether an n-vertex graph G is 2-layer
k+-real face is equivalent to testing whether G is a caterpillar. Hence, the following holds.
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▶ Theorem 9. Let G be any connected graph with n vertices and let k ≥ 3. There exists an
O(n)-time algorithm that tests whether G is 2-layer k+-real face and that computes a 2-layer
k+-real face drawing if one exists.

Theorem 9 extends trivially to the recognition of optimal 2-layer k+-real face graphs for
k ≥ 3, since by Theorem 6 any connected 2-layer k+-real face graph with k ≥ 3 is optimal.
Recognizing 2-layer k+-real face graphs for k ∈ {1, 2} is more involved. The following
definition will be used in the next subsections. Let G be a bipartite graph, P be a simple
path in G, and γ be a 2-layer embedding of G. We say that P is a zig-zag path in γ if the
restriction of γ to P is not self-crossing (see, e.g., the path from w to w′ in Figure 8). If P

is a zig-zag path, there exists a drawing of γ in which P is x-monotone; thus, with a slight
abuse of terminology, we also refer to the left-to-right order of the vertices of P in γ.

4.2.1 2-layer 2+-real face graphs
We start with the following inclusion relationship.

▶ Lemma 10. Any 2-layer 2+-real face embedding is a 2-layer RAC embedding.

Proof. Suppose that γ is a 2-layer 2+-real face embedding of a graph. There cannot be a fan
crossing in γ, as otherwise γ would have a triangular 1-real face, contradicting the hypothesis
that γ is a 2+-real face embedding. Hence, by Theorem 2, γ is a 2-layer RAC graph. ◀

Lemma 10 implies that the family of 2-layer 2+-real face graphs is included in the family
of 2-layer RAC graphs. The reverse does not hold, as the next lemma proves.

▶ Lemma 11. There exist infinitely many graphs that are 2-layer RAC but not 2-layer
2+-real face.

Sketch. For any even positive integer k, consider a bipartite graph G = (V1∪V2, E) consisting
of: (i) two 4-cycles B and B′; (ii) a path P of length k between a vertex w ∈ V2 of B and a
vertex w′ ∈ V2 of C ′; (iii) two paths P and P ′ of length k

2 + 2, where P is attached to w and
P ′ is attached to w′. See Figure 8 for an illustration where: k = 4, w = w2, w′ = w8; C, C ′,
and P are in bold; P is in blue and P ′ is in red. In any 2-layer RAC embedding of G, P and
P ′ are zig-zag paths that cross each other, thus forming a 1-real face f (see Figure 8). ◀

u1 u2

w1 w2 = w

u9 u10

w3 w4 w5 w6 w7 w8 = w′ w9

u3 u4 u5 u6 u7 u8

B B′ee′
f

Figure 8 Illustration for Lemma 11. A 2-layer RAC graph that is not 2-layer 2+-real face.

Note however that the graphs of Lemma 11 are not biconnected. If we restrict to
biconnected graphs, we are able to prove that 2-layer RAC graphs and 2-layer 2+-real face
graphs are in fact the same family. More precisely, the following result is known (see [9]).

▶ Theorem 12 (Di Giacomo et al. [9]). An n-vertex biconnected graph G is 2-layer RAC if
and only if it is a spanning subgraph of a ladder. Also, there exists an O(n)-time algorithm
that tests whether G is 2-layer RAC, and computes a 2-layer RAC drawing of G if one exists.
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From the considerations above, we derive the following characterization.

▶ Lemma 13. A biconnected graph is 2-layer 2+-real face if and only if it is a spanning
subgraph of a ladder.

Proof. As shown, every ladder is a 2-layer 2+-real face graph, and hence every spanning
subgraph of a ladder is a 2-layer 2+-real face graph. Vice versa, let G be a biconnected
2-layer 2+-real face graph and let γ be a 2-layer 2+-real face embedding of G. By Lemma 10,
γ is 2-layer RAC, and hence, G is a spanning subgraph of a ladder by Theorem 12. ◀

The next theorem follows by combining Lemma 13 and Theorem 12.

▶ Theorem 14. An n-vertex biconnected G is 2-layer 2+-real face if and only if it is 2-layer
RAC. Also, there exists an O(n)-time algorithm that tests whether G is 2-layer 2+-real face
and that computes a 2-layer 2+-real face drawing if one exists.

Moreover, by Lemma 13 and since any n-vertex ladder is optimal 2-layer 2+-real face
(Theorem 7), whereas any non-biconnected n-vertex 2-layer 2+-real face graph has less than
1.5n − 2 edges, we get the following result for optimal 2-layer 2+-real face graphs.

▶ Corollary 15. An n-vertex graph G is optimal 2-layer 2+-real face if and only if it is a
ladder. Optimal 2-layer 2+-real face graphs can be recognized in O(n) time.

We now focus on the recognition of connected 2-layer 2+-real face graphs that are not
biconnected. By Lemma 10, every 2-layer 2+-real face embedding of a bipartite graph G (if
any) must be searched in the space of 2-layer RAC embeddings of G. Hence, we first recall in
some details what is the structure of any 2-layer RAC embedding γ of a connected graph G;
then we establish an extra property that γ must fulfill to be a 2-layer 2+-real face embedding.

Structure of 2-layer RAC embeddings. Let G be a 1-connected graph and let γ be a 2-layer
RAC embedding of G. As showed in [9], the embedding γ consists of two parts:

Skeleton. The first part, called skeleton, is a (possibly empty) left-to-right sequence
of non-trivial blocks; any two consecutive blocks either share a cut-vertex of G or are
connected by a zig-zag path, placed between them, which we call an in-between path. The
first (last) block of the sequence may be preceded (followed) by a maximal zig-zag path
attached to it, called an extremal path. If G is a tree (without non-trivial blocks), the
skeleton is just a single zig-zag path; by convention, the extremal paths coincide with
such a zig-zag path. We denote by skelγ(G) the subgraph of G induced by the edges of G

in the skeleton of γ.
Dangling Paths. The second part is a set of zig-zag paths, each path P sharing exactly one
vertex w with the skeleton. We call P a dangling path and w the attaching vertex of P .
Two dangling paths are either edge-disjoint or they have exactly one edge in common,
which is the one containing the attaching vertex of the paths. We denote by dangγ(G)
the subgraph of G induced by the edges that belong to the dangling paths.

Clearly, the edges of skelγ(G) and of dangγ(G) partition the edge set of G. When G

is not a tree, we also denote by skel−γ (G) the subgraph of skelγ(G) consisting only of the
non-trivial blocks and their in-between paths. Figure 9 shows an example of 2-layer RAC
embedding and its parts. Note that, by definition, if G is not a tree, each zig-zag path of
skelγ(G) is attached to two non-trivial blocks (if this path is an in-between path) or to one
non-trivial block (if this path is an extremal path). Further, by Lemma 13, each non-trivial
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γ

(a)

skelγ(G)

skel−(G)

(b)

extremal path
B2 extremal path

in-between path

B1
B3

(c)

dangling paths

(d)

dangγ(G)

(e)

extended
extremal path extended in-between path

B1 B2

B3

extended
extremal path

(f)

Figure 9 (a) A 2-layer RAC embedding γ of a graph G; the colored vertices are attaching vertices;
(b) skelγ(G) and skel−(G); (c) the components of skelγ(G); (d) the dangling paths of γ; (e) dangγ(G).
(f) The extended zig-zag paths of the 2-layer RAC embedding γ.
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block B of G is a spanning subgraph of a ladder, and the leftmost and rightmost edges of B,
which we call the extremal edges of B in γ, coincide with the extremal edges of such a ladder.
A skeleton zig-zag path extended with the extremal edges of the non-trivial blocks to which
it is attached will be called an extended zig-zag path of skelγ(G). For example, Figure 9f
shows the extended zig-zag paths of the 2-layer RAC embedding of Figure 9a.

The following properties hold for any 2-layer RAC embedding γ, otherwise it is easy to
see that γ would contain a fan-crossing (see [9] for details).

▶ Property 16. A dangling path cannot cross any non-trivial block in γ.

▶ Property 17. Let P and P ′ be two edge-disjoint dangling paths of γ that cross each other,
and let w and w′ be their attaching vertices. Then: (a) w and w′ are distinct vertices of the
same extended zig-zag path of the skeleton; (b) if (w.l.o.g.) w is to the left of w′, then all the
vertices of P (P ′) distinct from w (w′) are to the right of w (to the left of w′).

▶ Property 18. Each edge of a dangling path in γ crosses at most one edge of the skeleton.
Also, if P and P ′ are two edge-disjoint dangling paths that cross each other in γ, then each
edge of P and of P ′, with the possible exception of the edges incident to their attaching
vertices, crosses exactly one edge of the skeleton.

▶ Property 19. Let w be any vertex of an extended zig-zag path of the skeleton. Then, there
are at most two dangling paths of length larger than one attached to w.

▶ Property 20. If G is not a tree and if γ′ is a 2-layer RAC embedding of G distinct from γ,
then skel−γ (G) = skel−γ′(G). Also the restriction of γ to skel−γ (G) coincides with the restriction
of γ′ to skel−γ′(G) (up to mirroring).

By Property 20, we can denote skel−γ (G) by skel−(G), as it does not depend on the specific
embedding γ. We can get skel−(G) by recursively removing from G the degree-1 vertices.

Structure of 2-layer 2+-real face graphs. A 2-layer RAC embedding γ of a graph G is
dangling-crossing free if it does not have two dangling paths that cross each other. The next
lemma is a key ingredient to efficiently recognize 2-layer 2+-real face graphs.

▶ Lemma 21. Let γ be a 2-layer RAC embedding of a connected graph G. Then, γ is a
2-layer 2+-real face embedding if and only if it is dangling-crossing free.

Sketch. Let n ≥ 2 denote the number of vertices of G. Suppose first that γ is dangling-
crossing free. The external face of γ contains all the vertices of G, thus it is an n-real face,
and hence a 2+-real face. Consider now any internal face f of γ. By Property 16, a dangling
path cannot cross any edge of a non-trivial block of G in γ. Hence, if f is formed only
by skeleton edges of γ then it is a face internal to the embedding of a non-trivial block B.
Since by Lemma 13, B is a spanning subgraph of a ladder (and it is drawn RAC), the face
f is either a triangle with two real-vertices or a quadrilateral with two real-vertices (see
Figure 10a). Finally, assume that f is formed by skeleton edges and by edges of a single
dangling path P (f cannot contain edges of two distinct dangling paths, because we are
assuming that the dangling paths are pairwise non-crossing). In this case, the skeleton edges
that cross P to form f belong to a zig-zag path (either an extremal path or an in-between
path of γ). Since by Property 18 each edge of P crosses at most one skeleton edge and since
P is also a zig-zag path, f is either a 2-real triangle or a 2-real quadrilateral (see Figure 10b).

Suppose vice versa that γ is a 2-layer 2+-real face embedding. If there were in γ two
dangling paths that cross each other, they would form a 1-real face, like f in Figure 8. ◀
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f1 f2
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Figure 10 (a) Internal faces created by skeleton edges (bold); (b) Internal faces created by
skeleton edges (bold) and dangling path edges (thin).

Before stating the main result of this section, we give an additional auxiliary lemma.

▶ Lemma 22. If G is a 2-layer 2+-real face graph, then G admits a 2-layer 2+-real face
embedding such that the attaching vertex of each dangling path has degree at least three.

▶ Theorem 23. Let G be an n-vertex bipartite graph. There exists an O(n)-time algorithm
that tests whether G is 2-layer 2+-real face, and that computes a 2-layer 2+-real face drawing
of G if one exists.

Proof. Based on Lemma 21, we describe an algorithm that attempts to construct a dangling-
crossing free 2-layer RAC embedding γ of G, if one exists. We distinguish two main cases:
Case 1 – G is not a tree (G contains at least one non-trivial block); Case 2 – G is a tree.

Case 1 – G is not a tree. The algorithm executes the following steps:

Step 1. (See Figure 11.) It tests whether there exists a subgraph of G that is a valid skel−(G).
To this aim, it recursively removes from G all the vertices of degree one and then applies
the algorithm of Theorem 12 to check whether the resulting graph G′ admits a 2-layer RAC
embedding, and to compute one if any. If such an embedding does not exist, the algorithm
stops and rejects the instance. Otherwise, G′ coincides with skel−(G) and, by Property 20,
its 2-layer RAC embedding γ′ is unique (up to mirroring); the algorithm goes to the next
step.

Step 2. Let B1, . . . , Bh (h ≥ 1) be the non-trivial blocks in the left-to-right order defined by γ′.
The edges of G \ skel−(G) form a forest F of trees, each tree sharing exactly one vertex with
skel−(G). At most two of these trees share a vertex with the leftmost extremal edge of B1
in γ′; let Fℓ be the subset of F that contains these (at most two) trees. Analogously, at most
two trees share a vertex with the rightmost extremal edge of Bh in γ′; let Fr be the subset
of F that contains these trees. In this step, the algorithm tests if the trees in F \ {Fℓ, Fr}
form a valid set of dangling paths that can be attached to γ′ to get a dangling-crossing free
2-layer RAC embedding γ′′. This is done by executing the following substeps.

Step 2.1. (See Figure 12a.) First, the algorithm considers the paths attached to every
cut-vertex shared by two non-trivial blocks. Specifically, for each such cut-vertex w, all
the paths attached to w can be successfully embedded (between the two non-trivial blocks
sharing w) if and only if each of them consists of a single edge; otherwise one of these
paths would cross a non-trivial block, thus violating Property 16.
Step 2.2. (See Figure 12b.) For each in-between path P , delimited by two blocks Bi and
Bi+1, the algorithm checks whether there are some paths attached to the vertex u of
the rightmost extremal edge of Bi not in P , or attached to the vertex v of the leftmost
extremal edge of Bi+1 not in P . In particular, there can be at most one such a path,
call it P (resp. P ′), attached to u (resp. to v), because two paths attached to u (or to
v) cannot be embedded without causing a fan crossing with P . Further, P and P ′ must
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G

(a)

F r

G′ = skel−(G)

F ℓ
F \ {F ℓ,F r}

(b)

B1 B2 B3

(c)

Figure 11 Step 1: (a) an input bipartite graph G; (b) decomposition of G into skel−(G) and a
forest F ; (c) a 2-layer RAC embedding of skel−(G). The attaching vertices are in white.

necessarily be embedded to the right of u and to the left of v, respectively. Hence, if both
P and P ′ exist in the graph, the algorithm checks that they do not cross each other in
their unique embedding. If only one among P and P ′ exists, say P , the algorithm checks
that it does not cross Bi+1 in its unique embedding. If any of the above checks fails, then
the algorithm rejects the instance, otherwise it continues with the next substep.
Step 2.3. (See Figures 13a and 13b.) For each in-between path P of γ′, the algorithm
considers the paths that in G are attached to P , and checks if they can be embedded so
to be pairwise non-crossing. Formally, let Bi and Bi+1 be the two non-trivial blocks that
delimit P (1 ≤ i ≤ h − 1). Also, let W = ⟨w1, w2, . . . , wp⟩ be the left-to-right sequence of
attaching vertices of P , i.e., the vertices to which some trees of F \ {Fℓ, Fr} are attached.
By Property 16, all the paths attached to P must be embedded between Bi and Bi+1.
Hence, we can process the vertices of W in their left-to-right order and test, for each
vertex wj ∈ W , if all paths attached to wj can be suitably embedded as zig-zag paths
so that: (i) they do not cross with any previously embedded dangling paths attached
to wg, with g < j, or with Bi, or with the dangling path P attached to Bi embedded in
Step 2.2; (ii) they leave the maximum degree of freedom for embedding the dangling paths
attached to wj+1, subject to condition (i). Conditions (i) and (ii) together guarantee the
correctness of the testing algorithm. However, to satisfy these conditions, we sometimes
need to process contemporary all the vertices in specific subsequences of W , as done in [9]
for testing 2-layer RAC embeddability (a necessary condition in our case).
More in details as proved in [9], there are only three possible types of graph structures,
called feasible structures, that could be attached to the vertices of W without necessarily
creating fan crossings (see Figures 14a and 14b):

star-tree: it is a subdivision of a star rooted at a vertex w ∈ W . By Property 19, at
most two paths attached to w have length larger than one. Call them the long paths.
y-tree: it is a tree attached to a vertex w ∈ W and consisting of two paths sharing
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Figure 12 (a) Step 2.1: Addition of paths attached to a cut-vertex w shared by two non-trivial
blocks; (b) Step 2.2: Addition of the paths P and P ′.

only the edge that contains w.
k-fence: it is a set of vertex-disjoint paths attached to a maximal subsequence W ′ of
vertices of W that are consecutive in P . Each w ∈ W ′ has exactly one path attached
to it. Also, if k ≥ 5, all the paths attached to the vertices of W ′, except possibly those
attached to the first two and to the last two vertices of W ′, have length at most two.

Hence, the testing algorithm first checks whether all the vertices in W can be partitioned
into maximal subsequences W1, W2, . . . , Wq (q ≥ 1), such that each subsequence Wi

contains the attaching vertices of a feasible structure, which we denote by T (Wj) (|Wj | = 1
if T (Wj) is a star-tree or a y-tree). If this is not possible, the algorithm rejects the instance.
Otherwise, it searches for an embedding of each T (Wj) such that all these embeddings,
along with the embeddings of Bi, Bi+1, and P , result in a 2-layer RAC embedding that is
dangling-crossing free. Namely, in [9] it is shown that, for the 2-layer RAC embeddability,
the number of candidate embeddings for each structure is bounded by a small constant.
More precisely (see Figures 14c–14f): (i) For a star-tree it must be decided which of the
(at most) two long paths can go to the left and which to the right (the paths of length
one can always be embedded without crossing the skeleton); (ii) for a y-tree it must be
decided which of the two paths goes to the left and which to the right; (iii) for a k-fence,
the set of candidate embeddings is at most 2 if k = 2, or at most 3 if k = 3, or at most
4 if k ≥ 4. In particular, in a valid embedding of each k-fence, one of its paths will
be embedded to the left of the k-fence, one to the right, and the others in-between the
leftmost and the rightmost vertices of the k-fence (see [9] for more details).
However, differently from [9], we can only accept the embeddings of T (W1), . . . , T (Wq)
where no two dangling paths cross each other. To this aim, our testing algorithm processes
all Wj from left to right in a greedy fashion. Each time a subsequence Wj is considered,
the algorithm checks if the feasible structure T (Wj) has some candidate RAC embeddings
that do not cause crossings with dangling paths already embedded to the left of Wj . If
not, the instance is rejected; otherwise, among the candidate embeddings, the algorithm
selects one for which the dangling path of T (Wj) that goes to the right is as short as
possible, which maximizes the degrees of freedom for dangling paths that will be processed
in the future. This guarantees that the test is positive if and only if a 2-layer 2+-real face
embedding exists. At the end, the algorithm checks whether the embedding of T (Wq)
causes a crossing of a dangling path of T (Wq) with Bi+1 (or with a dangling path attached
to Bi+1 in Step 2.2). If so, it rejects the instance, otherwise goes to the next step.
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T (W1)
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Figure 13 Step 2.3: (a) feasible structures attached to the in-between path of the graph of
Figure 11a; (b) addition of T (W1), T (W2), and T (W3). Step 3: (c) addition of the extremal paths;
(d) completion of the 2-layer RAC embedding.

Step 3.(See Figures 13c and 13d.) The algorithm tests if Fℓ and Fr can be added to the
embedding γ′′ of Step 2, to form the final dangling-crossing free 2-layer RAC embedding γ. If
so, Fℓ and Fr coincide with the graph formed by the two extremal paths of skelγ(G) and by
the dangling paths attached to (the extended version of) these extremal paths. To perform
this test for Fr, the algorithm has to determine the path corresponding to the extremal path
P in Fr. Then, it will apply the same procedures as in Steps 2.2 and 2.3 to test whether
the remaining part of Fr consists of dangling paths attached to (the extended version of) P ,
and whether they can be embedded without crossing each other and without creating fan
crossings. The test for Fℓ is the same, but the procedures of Steps 2.2 and 2.3 are applied
going from right to left. We now explain how the algorithm can test for the existence of a
valid P in Fr (for Fℓ the algorithm is symmetric).

Let e = (u, v) be the rightmost extremal edge of the last non-trivial block Bh, and let
Tu and Tv be the two trees of Fr attached to u and v, respectively. If both Tu and Tv are
non-empty and contain vertices of degree larger than two (other than u and v), then Fr

cannot be the union of an extended extremal path with dangling paths attached to it. Hence,
the algorithm can reject the instance in this case. On the other hand, if both Tu and Tv are
paths, the algorithm can arbitrarily choose one of them as the desired extremal path and the
other as a dangling path; these two paths can always be embedded as zig-zag paths going
from left to right, without creating fan crossings. Finally, assume without loss of generality,
that Tu is the only tree (among Tu and Tv) that contains vertices of degree larger than two
(in addition to u). Denote by W the set of vertices of degree at least three in Tu (including u).
The desired extremal path (if any) must contain all vertices in W . If this is not the case,
the algorithm rejects the instance. Otherwise, let P ′ be the path in Tu starting from u and
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Figure 14 (a) Examples of a y-tree and a star-tree; (b) Examples of a 2-fence and of a 5-fence;
(b)-(e) Two possible 2-layer RAC embeddings for each of the structures in (a) and (b).

containing all the vertices of W ; also, let w be the last vertex of W encountered along P ′.
The desired extremal path P must be obtained by extending P ′ with a path attached to w.
Let P denote the set of paths attached to w and extending P ′. Note that, there can be at
most three paths in P with more than one edge, because, by Property 19, there can be at
most two dangling paths of length larger than one attached to w. We can get P by extending
P ′ with an arbitrarily chosen path P ∈ P of maximum length. Indeed, suppose that there
exists a 2-layer 2+-real face embedding γ where P is extended with a path P ′ ∈ P shorter
than P . We can always obtain from γ a new 2-layer embedding by exchanging P ′ with P ,
possibly after a horizontal flip of these two paths. Since P ′ is shorter than P , such a flip can
only reduce the number of crossings in γ and does not create two dangling paths that cross
each other; thus the new embedding remains a 2+-real face embedding.

Case 2 – G is a tree. In this case, if γ is a 2-layer 2+-real face embedding of G, the skeleton
skelγ(G) of γ is simply a zig-zag path, and the graph structures formed by the dangling
paths attached to skelγ(G) must be star-trees, or y-trees, or k-fences. Since, by Lemma 10, γ

is also a 2-layer RAC embedding, the algorithm can just apply the procedure of Step 2.3
on every path of G that is a candidate skeleton for a 2-layer RAC embedding of G. In [9],
it is proved that the number of such candidate skeletons is bounded by a small constant
(precisely, there are at most 49 candidate skeletons).

Time Complexity. About the time complexity of the described algorithm, consider first
the case in which G is not a tree. The recursive removal of degree-1 vertices in Step 1 is
executed in O(n) time, and testing if the resulting graph admits a 2-layer RAC embedding is
done in O(n) time by the algorithm in [9]. Hence, Step 1 takes overall O(n) time.

About Step 2, we have that: (i) Steps 2.1 and 2.2 can be easily executed in O(n) time
by visiting the subgraphs in the set F \ {Fr, Fℓ}. (ii) In Step 2.3, we apply the O(n)-
time algorithm in [9] to test whether all subgraphs attached to an in-between path are
feasible structures and to partition W into maximal subsequences W1, W2, . . . , Wq. Then,
the subsequent greedy procedure that processes W1, W2, . . . , Wq from left to right can be
executed in linear time, because for each Wj the algorithm evaluates a constant number of
candidate embeddings. Hence, Steps 2 takes O(n) time.
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About Step 3, the procedure described to find a candidate extremal path P is executed
in linear time by simply visiting Fr and Fℓ. The remaining part of this step uses the same
strategy as Steps 2.2 and 2.3, thus it takes O(n) time.

Finally, if G is a tree, the algorithm computes all candidate skeletons, which are bounded
by a constant number. This is done through the O(n)-time procedure in [9]. For each
candidate skeleton, the algorithm uses the strategy of Steps 2.2, which takes O(n) time. ◀

4.2.2 Optimal 2-layer 1+-real face graphs
To derive a linear-time recognition algorithm for optimal 2-layer 1+-real face graphs, we prove
several structural properties of these graphs. We denote by G an optimal 2-layer 1+-real face
graph and by Γ a 2-layer 1+-real face drawing of G. Since the removal of vertices or edges
from Γ yields a 2-layer 1+-real face drawing, any subgraph of G is also 2-layer 1+-real face.

▶ Property 24. The minimum vertex-degree of G is 2.

Proof. Assume for a contradiction that G has a vertex u with deg(u) = 1. Let H be the
graph obtained from G by removing vertex u, that is, H = G \ {u}. Since G has n vertices
and 2n − 4 edges, graph H has n − 1 vertices and 2n − 3 edges. By Theorem 8, this is a
contradiction, since graph H is a 2-layer 1+-real face graph (as a subgraph of G). ◀

▶ Property 25. The maximum vertex-degree of G is 4.

Proof. Assume to the contrary that G has a vertex u with deg(u) ≥ 5. To derive a
contradiction, we first consider the case in which deg(u) = 5. Assume without loss of
generality that u belongs to layer L1 of Γ and let u1, . . . , u5 be the neighbors of u in L2 in
this left-to-right order. We observe that vertex u3 cannot have two neighbors, say v and w,
that are both either to the left or to the right of u in L1, as otherwise the edges (u3, v) and
(u3, w) together with the edges (u, u1) and (u, u2) in the former case or with the edges (u, u4)
and (u, u5) in the latter case would form a face in Γ that does not contain a real-vertex on
its boundary (see the gray colored face in Figure 15a); a contradiction. This implies that
deg(u3) ≤ 3, namely, u3 can be adjacent to u, to a vertex v to the left of u, and to a vertex
w to the right of u in L1; see Figure 15b. In particular, if (u3, v) belongs to G, then v cannot
be connected to a vertex to the right of u3 in L2, as otherwise this connection together
with the edges (u3, v), (u, u1), and (u, u2) would form a face in Γ without real-vertices on
its boundary (see the gray colored face in Figure 15b); a contradiction. Symmetrically, if
(u3, w) belongs to G, then w cannot be connected to a vertex to the left of u3 in L2. Let H

be the graph obtained by (i) removing vertex u3 from G, (ii) adding the edge (u4, v), if the
edge (u3, v) belongs to G, and (iii) adding the edge (u2, w), if the edge (u3, w) belongs to G.
Since graph G is a 2-layer 1+-real face graph, graph H is a 2-layer 1+-real face graph, as
well. Since G has n vertices and 2n − 4 edges, graph H has n − 1 vertices and 2n − 3 edges.
By Theorem 8, this is a contradiction, since graph H is a 2-layer 1+-real face graph.

To complete the proof, consider the case in which deg(u) ≥ 6. Let u1, . . . , udeg(u) be
the neighbors of u in L2 in this left-to-right order. Vertices u3 and u4 can have neither a
common neighbor nor two distinct neighbors that are both to the left or to the right of u

in L1, as otherwise this would imply a face in Γ with no real-vertex on its boundary; see
Figures 15d and 15e, respectively. Further, as in the case in which deg(u) = 5, we can prove
that neither u3 nor u4 can have two neighbors that are both to the left or both to the right
of u in L1; see Figure 15a. Hence, by Property 24, each of u3 and u4 has degree exactly 2 in
G. In particular, there exist two vertices v and w on opposite sides of u along L1, such that
u3 is adjacent to v and u3 is adjacent to w. Let H be the graph obtained by removing vertex
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Figure 15 Illustrations for the proof of Theorem 31.

u3 from G and by adding the edge (u4, v); see Figure 15f. Since G is a 2-layer 1+-real face
graph, graph H is a 2-layer 1+-real face graph, as well. Since G has n vertices and 2n − 4
edges, graph H has n − 1 vertices and 2n − 3 edges, which again contradicts Theorem 8. ◀

▶ Property 26. Neither the leftmost nor the rightmost vertex of each layer in Γ has degree 4.

Proof. Assume to the contrary that the leftmost vertex, say u, of L1 has degree 4 and let
u1, . . . , u4 be its neighbors in L2 in this left-to-right order. By Property 24, deg(u1) ≥ 2 and
deg(u2) ≥ 2; hence, u1 and u2 either have a common neighbor to the right of u in L1 or have
two distinct neighbors that are both to the right of u in L1. Both cases, however, cause a
face without real-vertices in Γ; see Figures 15g and 15h, respectively; a contradiction. ◀

▶ Property 27. Either the leftmost (rightmost) vertex of L1 or the leftmost (rightmost)
vertex of L2 in Γ has degree 2.

Proof. Assume to the contrary that neither the leftmost vertex u in L1 nor the leftmost
vertex v in L2 has degree 2. By Properties 24–26, deg(u) = deg(v) = 3. Let u1 and u2
be two neighbors of u in L2, and let v1 and v2 be two neighbors of v in L1, such that
{u, v} ∩ {u1, u2, v1, v2} = ∅. The edges (u, u1), (u, u2), (v, v1), and (v, v2) form a face in Γ
without real-vertices (see Figure 15h); a contradiction. ◀

▶ Property 28. The leftmost (rightmost) vertex of L1 and the leftmost (rightmost) vertex of
L2 in Γ are adjacent.

Proof. If the leftmost (resp. rightmost) vertices of L1 and L2 are not adjacent, one can
connect them without introducing any crossing, which contradicts that G is optimal. ◀

GD 2024
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▶ Property 29. The leftmost (rightmost) vertex of L1 and the leftmost (rightmost) vertex of
L2 in Γ cannot be both of degree 2.

Proof. Assume to the contrary that the leftmost vertex u in L1 and the leftmost vertex v in
L2 are both of degree 2. By Property 28, u and v are adjacent. Let H be the subgraph of G

obtained by removing u and v from G. Since G has n vertices and 2n − 4 edges, it follows
that H has n − 2 vertices and 2n − 7 edges, which contradicts Theorem 8. ◀

▶ Property 30. If G has at least seven vertices, the vertex to the right (left) of the leftmost
(rightmost) degree-2 vertex in Γ has degree 3.

Proof. By Properties 26–28, the leftmost two vertices of G are of degree 2 and 3, and the
same holds for the rightmost two vertices of G. Since by Property 25 the maximum degree
of G is 4 and since G has n vertices and 2n − 4 edges, by the hand-shaking lemma G has
two more vertices of degree 3 (besides the two aforementioned extreme ones), while each of
the remaining n − 6 vertices has degree 4. Assume by contradiction that the vertex to the
right of the leftmost degree-2 vertex has degree 4. Let H be the graph obtained by removing
the leftmost degree-2 vertex from G. The obtained subgraph H has n − 1 vertices and
2n − 6 = 2(n − 1) − 4 edges, thus it is still optimal. Hence, it satisfies Properties 26 and 28.
In particular, none of its two leftmost vertices can be of degree 4, a contradiction. ◀

▶ Theorem 31. Let G be an n-vertex bipartite graph. There exists an O(n)-time algorithm
that tests whether G is an optimal 2-layer 1+-real face graph, and that computes a 2-layer
1+-real face drawing of G in one exists.

Proof. Let G = (V1 ∪ V2, E) be an n-vertex optimal 2-layer 1+-real face graph and let Γ
be a 2-layer 1+-real face drawing of G. The vertex-degree of G ranges between 2 and 4
(Properties 24 and 25). However, neither the leftmost nor the rightmost vertex of each of the
layers L1 and L2 of Γ has degree 4 (Property 26). In particular, assuming that the graph
has at least seven vertices, the leftmost (rightmost) two vertices of L1 and L2 are adjacent,
such that one of them has degree 2 and the other has degree 3 (Properties 27, 28, and 30).

From these properties, we can derive our linear-time recognition algorithm. If n ≤ 6,
then we can check whether G is an optimal 2-layer 1+-real face graph by generating all its
2-layer embeddings and checking whether at least one of them is a 2-layer 1+-real face. If
n ≥ 7, then we identify one of its vertices of degree 2, say v. If there is no such vertex,
then the instance is rejected (by Property 27). Otherwise, we additionally check whether
v is neighboring a degree-3 vertex, say w. If no such vertex exists, then the instance is
rejected (by Properties 24, 26, and 29). Otherwise, we remove v from G and recursively
check whether the obtained instance is a 2-layer 1+-real face graph starting now from w

(which has degree 2). The implementation is straightforward, and the algorithm works in
O(n) time. The correctness follows from a direct application of Properties 24–30. ◀

5 Open Problems

A question that directly stems from our research is whether 2-layer 1+-real face graphs can
be recognized efficiently. In the unconstrained scenario, are there subfamilies of k+-real face
graphs that can be recognized efficiently? Also, are there meaningful parameterizations that
make the recognition problem tractable?
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