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Abstract
The rectilinear crossing number of G is the minimum number of crossings in a straight-line drawing
of G. A single-crossing graph is a graph whose crossing number is at most one. We prove that every
n-vertex graph G that excludes a single-crossing graph as a minor has rectilinear crossing number
O(∆n), where ∆ is the maximum degree of G. This dependence on n and ∆ is best possible. The
result applies, for example, to K5-minor-free graphs, and bounded treewidth graphs. Prior to our
work, the only bounded degree minor-closed families known to have linear rectilinear crossing number
were bounded degree graphs of bounded treewidth as well as bounded degree K3,3-minor-free graphs.
In the case of bounded treewidth graphs, our O(∆n) result is again tight and it improves on the
previous best known bound of O(∆2n) by Wood and Telle, 2007.
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1 Introduction

In this article graphs are undirected, simple, and finite, unless stated otherwise. For a graph
G, with vertex set V (G) and edge set E(G), let |G| := |V (G)| and ∥G∥ := |E(G)|. 1

A drawing of a graph represents each vertex by a distinct point in the plane, and represents
each edge by a simple closed curve between its endpoints, such that the only vertices an edge
intersects are its own endpoints, and no three edges intersect at a common point (except at
a common endpoint). A drawing is rectilinear if each edge is a line segment. 2 A crossing
is a point of intersection between two edges (other than a common endpoint). A drawing
with no crossings is crossing-free. A graph is planar if it has a crossing-free drawing. The
crossing number of a graph G, denoted by cr(G), is the minimum number of crossings in
any drawing of G. The rectilinear crossing number of a graph G, denoted by cr(G), is the
minimum number of crossings in any rectilinear drawing of G.

Crossing number is a fundamental and extensively studied graph parameter with wide
ranging applications and rich history (see the survey by Schaefer [37] for over 700 references
on the crossing number and its variants). Computationally the problem of determining the

1 For each vertex v of G, let NG(v) := {w ∈ V (G) : vw ∈ E(G)} be the neighbourhood of v in G. The
degree of v, denoted by degG(v), is |NG(v)|. Let ∆(G) be the maximum degree of G. When the graph
is clear from the context, we will sometimes write deg(v) instead of degG(v) and ∆ instead of ∆(G).

2 Rectilinear drawings are also known as straight-line drawings in the literature.
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crossing number of a given graph, is notoriously difficult. Computing the crossing number
is NP-hard by Garey and Johnson [19], even for planar graph plus an edge [8]. It is hard
to approximate even for cubic graphs [7] and until recently there were no approximation
algorithms with sub-polynomial in n approximation factor even for bounded degree graphs [10].
On the positive side, Kawarabayashi and Reed [23] give an O(f(k)·|G|) algorithm for deciding
whether a given graph G has crossing number at most k.

Since computing the exact, or even an asymptotic, crossing number of a graph is hard, a
great deal of past research has been focused on deriving asymptotic bounds. Regardless of
the applications, be it visualization or circuit design [4, 26, 27], having as few crossings as
possible is a desirable property in a drawing of a graph. This naturally leads to a study on
upper bounds and lower bounds on the crossing number of various graph families.

Trivially, the (rectilinear) crossing number of every graph G is at most O(∥G∥2). For
some graphs this bound is asymptotically tight, including for example, the complete graph
and a random cubic graph. For others, it is far from optimal. We would like to understand
what classes of graphs have rectilinear crossing number better than O(∥G∥2) and by how
much. To understand that, we consider next the known lower bounds on the crossing number,
which clearly apply to rectilinear crossing number.

Every planar triangulation G is known to have 3|G| − 6 edges (if |G| ⩾ 3). Consequently,
for every n ⩾ 3, there are n-vertex graphs with 3n − 6 edges that can be drawn with zero
crossings. The following result, known as the crossing lemma, tells us that as soon as a
graph has a little more than 3|G| edges, it must have vastly more than zero crossings in
every drawing. Specifically, the crossing lemma, proposed by Erdős and Guy [18], proved by
Leighton [28] and Ajtai et al. [3]; and, subsequently improved [2, 29, 31] states the following.

▶ Theorem 1. For any ϵ > 0, there exists cϵ such that, every graph G with ∥G∥ > (3+ ϵ) · |G|
edges, cr(G) ⩾ cϵ

∥G∥3

|G|2

An immediate consequence of this theorem is that all graphs G that have at least (3 + ϵ) · |G|
edges have crossing number at least Ω(|G|). We say that a family of graphs has a linear
crossing number if there exists a constant c such that every graph G in the family has
cr(G) ⩽ c · |G|. The crossing lemma tells us that for most graph families the best one can
hope of is that they have linear crossing number. By the crossing lemma, any family of
graphs that has members with the number of edges superlinear in the number of vertices
cannot have linear crossing number. Thus the only candidates for linear crossing number
are families of graphs whose members all have a linear number of edges. One example of
such a family is a family of graphs whose members have the maximum degree bounded by
a constant. Another example is a family of graphs that exclude some fixed graph H as a
minor. 3 Kostochka [24] and Thomason [39] proved independently that H-minor free graphs
G have O(|H|

√
log |H| · |G|), and thus a linear, number of edges.

It turns out that neither of these two families of graphs have linear crossing number.
Consider, for example, the graph K3,n. It has a linear number of edges and it is K5-minor-free,
yet it is known to have crossing number Ω(n2) [30, 32]. Similarly, consider the family of all
cubic graphs. They have a linear number of edges and yet, for every large enough n, there is
a cubic n-vertex graph whose crossing number is Ω(n2) [25, 13, 14, 28].

3 Let vw be an edge of a graph G. Let G′ be the graph obtained by identifying the vertices v and w,
deleting loops, and replacing parallel edges by a single edge. Then G′ is obtained from G by contracting
vw. A graph X is a minor of a graph G if X can be obtained from a subgraph of G by contracting
edges. A graph G is X-minor-free if X is not a minor of G. A family of graphs F is minor-closed if
G ∈ F implies that every minor of G is in F . F is proper if it is not the family of all graphs.
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Thus to admit a linear crossing number, it is not enough for a family of graphs to
have a bounded degree only or to only exclude a fixed graph as a minor. Having both
of these properties however is enough. Böröczky et al. [22] first showed such a result for
bounded Euler genus graphs (see Theorem 2). Note that by the above mentioned result by
Kostochka [24] and Thomason [39], for every graph G from a proper minor closed family of
graphs ||G|| ∈ O(|G|). That fact will be used throughout this article, starting with the next
theorem.

▶ Theorem 2 ([1, 22]). For every integer γ ⩾ 0, there is a function f such that every graph G

with Euler genus γ has crossing number cr(G) ⩽ f(γ)·
∑

v∈V (G) deg(v)2 ⩽ 2·f(γ)·∆(G)·||G|| ∈
O(f(γ) · ∆(G) · |G|)

An improvement on the dependence on γ in Theorem 2 for orientable surfaces was shown
by Djidjev and Vrťo [15], with cr(G) ⩽ c · γ · ∆(G) · |G| for some constant c. Wood and
Telle [41] were the first to show that excluding a minor and bounding the maximum degree
were sufficient to ensure a linear crossing number, as stated in the next theorem.

▶ Theorem 3 ([41]). For every graph H, there is a constant c := c(H) such that every
H-minor-free graph G has crossing number cr(G) ⩽ c · ∆(G)2 · |G|

Theorem 3 was improved by Dujmović et al. [16] by reducing ∆(G)2 to ∆(G).

▶ Theorem 4 ([16]). For every graph H, there is a constant c := c(H) such that every
H-minor-free graph G has crossing number cr(G) ⩽ c · ∆(G) · |G|

In addition, the result in Theorem 4 was shown to have the best possible dependence of
∆(G) and |G|. These results show that we know very strong, in fact best possible, bounds
on the crossing number of all proper minor-closed families of graphs of bounded degree.

Much less is known about the rectilinear crossing number. Fáry [21] and Wagner [40]
proved independently that every planar graph has a rectilinear drawing with no crossings.
Hence, every planar graph G has the rectilinear crossing number 0, and thus for planar
graphs G, cr(G) = cr(G). One may be tempted to conjecture that the rectilinear crossing
number and crossing number are tied. However, that is not the case. In particular, Bienstock
and Dean [5] proved that for every m and every k ⩾ 4, there exists a graph G with cr(G) = k,
but cr(G) ⩾ m. Therefore, Theorem 3 and Theorem 4 do not imply that bounded degree
proper minor-closed families of graphs have linear rectilinear crossing number.

In fact, in addition to planar graphs, we are only aware of the following two meinor-closed
families of bounded degree admitting linear rectilinear crossing number. The first is the
result on K3,3-minor-free graphs by Dujmović et al. [16].

▶ Theorem 5 ([16]). Every K3,3-minor-free graph G has rectilinear crossing number cr(G) ⩽∑
v∈V (G) deg(v)2 ⩽ 2 · ∆(G) · ||G|| ∈ O(∆(G) · |G|)

The second is a result on the convex crossing number of bounded treewidth graphs
by Wood and Telle [41]. Rectilinear drawings where vertices are required to be in convex
positions are called convex drawings. For a graph G, the minimum number of crossings over
all convex drawings of G is called convex crossing number of G and is denoted by cr∗(G).
Clearly, for every G, cr(G) ⩽ cr(G) ⩽ cr∗(G).

▶ Theorem 6 ([41]). Every graph G of treewidth k has convex crossing number cr∗(G) ∈
O(k2 · ∆(G)2 · ||G||) ∈ O(k3 · ∆(G)2 · |G|)

In the case of the rectilinear crossing number a stronger bound is known but still with a
quadratic dependence on ∆(G) in the worst case.

GD 2024
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▶ Theorem 7 ([16]). Every graph G of treewidth k has rectilinear crossing number cr(G) ∈
O(k · ∆(G) ·

∑
v∈V (G) deg(v)2) ∈ O(k · ∆(G)2 · |G|)

Our goal in this article is to extend this result to much wider minor-closed families of
graphs of bounded degree, in particular, a family of graphs that exclude a single-crossing
graph as a minor. A single-crossing graph is a graph whose crossing number is at most one.
Single-crossing minor-free graphs have been studied by the algorithms community [17, 12, 9]
where at times these results were precursors to algorithms and techniques applicable to
more general minor-closed classes [12, 11]. K3,3, K5 and every planar graph are examples of
single-crossing graphs. Note however that a minor of a single-crossing graph is not necessarily
a single-crossing graph itself (see [12] for easy examples). Note finally that a graph excluding
a single-crossing graph as a minor may have arbitrarily large crossing number. For example,
any n-vertex graph G, composed of disjoint union of ⌊ n

6 ⌋ copies of K3,3, excludes K5 as a
minor (K5 is a single-crossing graph) and yet the crossing number of G is Θ(n).

The following theorem is our main result.

▶ Theorem 8. Let X be a single-crossing graph. There exists a constant c := c(X), such
that every X-minor-free graph G has the rectilinear crossing number of at most c · ∆(G) · |G|.

The dependence on ∆ and |G| in the above theorem is best possible. A standard lower
bound constructions implies it (see for example [22, 41]). Specifically, consider a graph
comprised of the disjoint union of Ω(n/∆) copies of K3,3 where each K3,3 is transformed
into a maximum degree ∆ graph by adding Ω(∆) paths of length two between every pair
of adjacent vertices in each copy of K3,3. This graph has maximum degree ∆ and is still
K5-minor-free (and thus single-crossing minor-free) and yet has crossing number Ω(∆ · n). It
also has treewidth at most 5. Thus the following two corollaries of Theorem 8 are both tight.
Since K5 is a single-crossing graph, the following is an immediate corollary of Theorem 8.

▶ Corollary 9. There exists a constant c such that every K5-minor-free graph G has a
rectilinear crossing number of at most c · ∆(G) · |G|.

It is known that the family of graphs of treewidth at most k excludes a planar grid of
size kc as a minor (for some constant c) [35]. Since every planar graph is a single-crossing
graph, Theorem 8 implies the following result.

▶ Corollary 10. For every integer k > 0, there exists a constant ck such that every graph G

of treewidth at most k has a rectilinear crossing number at most ck · ∆(G) · |G|.

In the process of proving the main result, Theorem 8, we establish a more precise upper
bound for treewidth-k graphs: k · (k + 2) · ∆(G) · ||G||. See Theorem 19.

This corollary improves the previous best known bound on rectilinear crossing number of
bounded treewidth graphs from O(∆(G)2 · |G|) (see Theorems 6 and 7 above) to the optimal
O(∆(G) · |G|) bound. It should be noted however that Theorem 6 by Wood and Telle [41]
gives an O(∆(G)2 · |G|) bound for the convex crossing number of bounded treewidth graphs,
and that bounds still stands as the best known for convex drawings.

In the next section, Section 2, we introduce key concepts that will be helpful in proving
Theorem 8. In Section 3, we present the proof of Theorem 8. Finally, we conclude in
Section 4.
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2 Preliminaries

Recall that the definition of drawing of a graph has the following condition: “no three edges
intersect at a common point (except at a common endpoint)”. In relation to this, we define
a set of points P to be in general position if no three points of P lie on one line and if no
three line segments between pairs of points in P intersect in one point unless all three share
a common endpoint. For the ease of presentation we will add to the definition of rectilinear
drawings the condition that all endpoints of G are in general position.

2.1 Multigraphs
Our proof of the main result, Theorem 8, will require the use of multigraphs. Recall that a
multigraph is a graph that may have parallel edges but no loops. For the remainder of this
paper, we will use the term “multigraph” when parallel edges are allowed, and “graph” when
they are not, i.e., when the graph is simple. The degree of a vertex v in a multigraph Q,
denoted by degQ(v), is the number of edges of Q incident to v. However, unlike in simple
graphs, degQ(v) is not necessarily equal to |NQ(v)|.

A rectilinear drawing of a multigraph Q represents vertices, V (Q), by a set of |V (Q)|
points in the plane in general position and represents each edge by a line segment between its
endpoints. The general position assumption implies that the only vertices an edge intersects
are its own endpoints, and no point in the drawing is in three distinct line segments (unless
all three share a common endpoint). It should be noted that parallel edges between the
same pair of vertices in such a drawing overlap, as they are represented by the same line
segment. A crossing-pair is a pair of edges in a rectilinear drawing that do not have a common
endpoint and whose line segments intersect at a common point. The number of crossings in
a rectilinear drawing of a multigraph is the number of crossing-pairs in the drawing. The
rectilinear crossing number of a multigraph Q, denoted by cr(Q), is the minimum number of
crossings over all rectilinear drawings of Q.

Note that by these definitions, a pair of overlapping edges in a rectilinear drawing of a
multigraph is not considered a crossing-pair. This is because, in our main proof, we start
with a rectilinear drawing of a certain multigraph Q. We eventually replace parallel edges
(and their overlapping line segments) with incident edges (and thus line segments that have
one endpoint in common) and such edges can never cross. Notice also that if one is allowed
to replace line segments by arcs in a rectilinear drawing of a multigraph Q, then it is trivial
to redraw Q such that the resulting “arc” drawing of Q has no overlapping edges and has the
same number of crossings as the starting rectilinear drawing of Q. Finally, if Q is a simple
graph, these definitions of rectilinear drawing and rectilinear crossing number are equivalent
to the earlier ones for simple graphs.

2.2 Decompositions and Treewidth
For graphs G and H, an H-decomposition of G is a collection (Bx ⊆ V (G) : x ∈ V (H)) of
sets of vertices in G (called bags) indexed by the vertices of H, such that
1. for every edge vw of G, some bag Bx contains both v and w, and
2. for every vertex v of G, the set {x ∈ V (H) : v ∈ Bx} induces a non-empty connected

subgraph of H.

The width of a decomposition is the size of the largest bag minus 1. The adhesion of a
decomposition is the size of the largest intersection between two bags that share an edge in
H. If H is a tree, then an H-decomposition is called a tree decomposition. The treewidth of

GD 2024
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a graph G is the minimum width of any tree decomposition of G. Tree decomposition and
treewidth are key concepts in graph minor structure theory and they have been extensively
studied ever since their introduction by Halin [20] and by Robertson and Seymour [34].

2.3 Rectilinear Drawings
In the process of proving our main result, Theorem 8 in Section 3.1, we will construct
drawings of graphs where at one stage we will replace a point (representing some vertices)
with disks that fulfill certain criteria. The following lemma will be helpful for that stage.

For any positive integer h, let [h] denote the sequence of numbers [1, · · · , h]. When it
is clear from the context, we will make no distinction between a vertex v of a graph and
the point that represents it in a drawing. Specifically, we will refer to both as v when no
confusion can arise. The same will be true for an edge e and the line segment representing it
in a drawing.

▶ Lemma 11. Let D be a rectilinear drawing of any graph G. Then for each vertex w ∈ V (G),
there exists a disk Cw of positive radius centered at w such that the following is true. Let
v1, . . . , vd be the neighbours of w in G. Let Pw be any set of at most d points in Cw such
that V (G) ∪ Pw is in general position. For each i ∈ [d], replace the line segment wvi of D

by a line segment between vi and any point in Pw. Denote that point by pi. The resulting
drawing D′ (of the resulting graph G′) has the following properties:
1. Any two edges in G, neither of which is incident to w, cross in D′ if and only if they

cross in D.
2. For each i ∈ [d], the edge wvi and any edge xy where {x, y} ⊆ V (G) − {w, vi} cross in D

if and only if vipi and xy cross in D′.
3. All the remaining crossings in D′ are crossings between pairs of segments with distinct

endpoints in Pw.

It should be noted that if |Pw| = 1, that is if Pw has exactly one point, then D′ is a
rectilinear drawing of G where a pair of edges of G cross in D′ if and only if they cross in D.

Proof. Start with the drawing D of G and a disk C centered at w such that the only parts
of D that intersect C are w and the edges incident to w. Then, for each i ∈ [d], let Si be
the union of all possible line segments from vi to any point in C. Let S denote the union of
all Si, i ∈ [d]. By reducing the radius of C to some positive radius r and then redefining S

accordingly, the following becomes true for D and C.
No vertex of G is in S other than w, v1, . . . , vd.
For each i ∈ [d], the only vertices of G that are in Si are vi and w.
For each i ∈ [d], the only crossing points of D in Si are crossings between wvi and the
edges not incident to w in G.
No segment between two crossings in D is fully contained in S, unless it lies on one of
the edges wvi, i ∈ [d].

Such a positive radius r exists by continuity and the resulting disk meets the conditions
imposed on Cw. ◀

3 Main Result

In order to prove our main result, Theorem 8, we will use, as one of the tools, Robertson and
Seymour’s structure theorem for graphs that exclude a single-crossing graph as a minor [33].
This structure theorem uses the notion of clique-sum, that we define next. Let G1 and G2 be
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two disjoint graphs. Let C1 = {v1, v2, · · · , vk} be a clique in G1 and C2 = {w1, w2, · · · , wk}
be a clique in G2, each of size k, for some integer k ⩾ 1. Let G be a graph obtained from
G1 and G2 by identifying vi and wi for each i ∈ [k] and possibly deleting some of the edges
uiuj in the resulting clique C = {u1, u2, · · · , uk} of G. Then we say that G is obtained by
k-clique-sums of graphs G1 and G2 (at C1 and C2). A (⩽ k)-clique-sum is an l-clique-sum
for any l ⩽ k. The following theorem by Robertson and Seymour [33] describes a structure
of graphs that exclude a single-crossing graph as a minor. 4

▶ Theorem 12 ([33]). For every single-crossing graph X, there exists a positive integer
t := t(|X|) such that if G is an X-minor-free graph, then G can be obtained by (⩽ 3)-clique-
sums of graphs G1, . . . , Gh such that for each i ∈ [h], Gi is a planar graph (with no separating
triangles) or the treewidth of Gi is at most t.

The graphs G1, · · · , Gh in Theorem 12 are called the pieces of the decomposition.
Theorem 12 is equivalent to stating that every X-minor-free graph G has a tree decom-

position of adhesion at most 3 such that the vertices in each bag of the decomposition induce
in G either a planar graph (with no separating triangles) or a graph of treewidth at most
t. Armed with these notions, we are now ready to state a more precise version of our main
result.

▶ Theorem 13. Let X be a single-crossing graph. Let G be an X-minor-free graph and let
t := t(|X|) be the integer from Theorem 12. Then cr(G) ⩽ 3 · (t2 + 2t + 2) · ∆(G) · ||G||.

Theorem 13 is a strengthened version of Theorem 8 by Theorem 12 and the fact that
∥G∥ ∈ O(|X|

√
log |X| · |G|) [24, 39] (as discussed earlier). Hence, the remainder of this

section will be dedicated to proving Theorem 13. To do so, one has to be able to produce
rectilinear drawings of the pieces, G1, . . . , Gh, of the decomposition (from Theorem 12) with
the claimed number of crossings and then combine these drawings by conducting clique-sums.
The following is a sketch of the two main steps our proof will take.

Step 1. Foremost, Theorem 13 has to be true for the pieces Gi of the decomposition, namely
the planar graphs and bounded treewidth graphs. By the Fáry-Wagner theorem [21, 40],
we know that Theorem 13 is true for all planar graphs. In fact, it is true with bound
zero for the rectilinear crossing number. On the contrary, if Gi is a bounded treewidth
graph, the required O(∆(Gi) · |Gi|) bound on its rectilinear crossing number was not
known prior to our work. Thus one of the goals of this paper is to prove that bound for
bounded treewidth graphs as one of the necessary steps in the proof of Theorem 13.

Step 2. Suppose now that for each piece, Gi of the decomposition, we have already established
the O(∆(Gi) · |Gi|) bound for the rectilinear crossing of Gi. The main goal then becomes
demonstrating that the rectilinear drawings of G1, G2, . . . , Gh can be joined by performing
clique-sums without increasing the number of crossings in the final drawing of G by too
much. Prior to this work it was not known how to conduct clique-sums on rectilinear
drawings while achieving that goal. In particular, we need to join rectilinear drawings
of G1, G2, . . . , Gh in such a way that the resulting number of crossings in the rectilinear
drawing of G is O(∆(G) · |G|).

4 Note that the original statement of Theorem 12 by Robertson and Seymour [36] does not mention
separating triangles. The reason such a statement can be made is that any planar graph G containing a
separating triangle can itself be obtained by 3-clique-sums of two strictly smaller planar graphs, G1 and
G2, where the clique-sum is performed on that separating triangle.

GD 2024
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The main challenge for proving Theorem 13 is Step 2 above. To overcome that challenge,
we introduce the notion of simplicial blowups of graphs. The use of these simplicial blowups
however impacts Step 1. In particular, it is not enough anymore to prove that the pieces
of the decomposition have O(∆(Gi) · |Gi|) rectilinear crossing number. We must prove a
stronger condition, namely that the simplicial blowups of the pieces have such a rectilinear
crossing number.

In Section 3.1 we introduce simplicial blowups and demonstrate how to achieve Step 2.
In Section 3.2 we introduce graph partitions and present a helpful lemma for producing
rectilinear drawings. In Section 3.3 and 3.4, we then prove that Step 1 above can be
accomplished, or more precisely that simplicial blowups of planar graphs and bounded
treewidth graphs have the desired rectilinear crossing number. Once those two steps have
been achieved, we will conclude the proof of Theorem 13 in Section 3.5.

3.1 Bound for Rectilinear Crossing Number Using Clique-Sums
A multigraph Q is called a (⩽ k)-simplicial blowup of a graph G if Q can be obtained from
G by adding an independent set of vertices S to G, and performing the following steps for
each vertex u in S:
1. Make u adjacent to all the vertices of some clique of size at most k of G

2. Add zero or more parallel edges between u and its neighbours in G.
and finally, once Steps 1 and 2 are conducted on all vertices of S, delete zero or more edges
from each clique of G involved in Step 1.

Theorem 14 is the key technical tool of this paper. It shows how rectilinear drawings
(of simplicial blowups) of the pieces of a decomposition can be combined into a rectilinear
drawing of a graph obtained by clique-sums of the pieces, all while not increasing the final
number of crossings by too much. The previous result on the crossing number of minor-closed
families (Theorem 4) by Dujmović et al. [16], also had to deal with performing clique-sums
on drawings while controlling the crossing number. Our proof of Theorem 14 is inspired by
their proof. However the drawings produced by their theorem have many bends per edge
and are thus far from rectilinear drawings.

The following theorem is stated in a form that is more general than we will require.
Specifically, the theorem does not require the pieces Gi of the decomposition to be planar or of
bounded treewidth. As such, Theorem 14 may be useful in future work on rectilinear crossing
numbers of X-minor-free graphs where X is not necessarily a single-crossing graph and thus
the pieces of the decomposition are the almost embeddable graphs from the Robertson and
Seymour graph minor theory.

We say that a graph R is (k, c)-agreeable if for every induced subgraph R′ of R and every
(⩽ k)-simplicial blowup R∗ of R′, cr(R∗) ⩽ c · ∆(R∗) · ||R∗||.

▶ Theorem 14. Let c be a positive number, k a positive integer, and G1, · · · , Gh a collection of
graphs such that every Gi is (k, c)-agreeable. Then every graph G that can be obtained by (⩽ k)-
clique-sums of graphs G1, · · · , Gh has rectilinear crossing number cr(G) ⩽ k·(c+2)·∆(G)·||G||.

Proof. Since clique-sums identify vertices, to avoid confusion, we will assume that the vertices
of the final graph G have names and that each vertex in each piece Gi, i ∈ [h] inherits its
name from G. Thus vertices that are identified by clique-sums have the same name in the
pieces involved. Consequently, there may be multiple vertices with the same name in the
disjoint union of G1, G2, . . . Gh.
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We may assume that the indices 1, . . . , h are such that for all j ⩾ 2, there exists a
minimum i such that i < j where Gi and Gj are joined at some clique C of Gi when
constructing G. We define Gi to be the parent of Gj , with Pj = V (C) being the parent clique
of Gj . The parent clique of G1 is the empty set. Note that, by the introductory paragraph
of this proof, it makes sense to talk about the clique Pj as existing in both in Gi and in Gj .

Let T be a rooted tree with vertex set {1, . . . , h}, where ij is an edge of T if and only
if Gj is a child of Gi. Let Ti denote the subtree of T rooted at i and Ui be the set of the
children of i in T .

For each i ∈ [h], let G−
i = Gi − Pi. Note that for each v ∈ V (G), there is exactly one

i ∈ [h] such that v is in V (G−
i ). Thus V (G−

1 ), · · · , V (G−
h ) is a partition of V (G). We say

that a vertex v of G belongs to vertex i of T if v ∈ G−
i . For each i ∈ [h], let G[Ti] denote the

graph induced in G by the vertices of G that belong to the vertices of Ti, that is the graph
induced in G by

⋃
{V (G−

j ) : j ∈ Ti}.

Defining the (⩽ k)-simplicial blowups of pieces. To prove the theorem, we now define,
for each G−

i , i ∈ [h], a specific (⩽ k)-simplicial blowup, denoted by Q−
i . To define Q−

i , start
with G−

i . For each child Gj of Gi, add a new vertex cj to G−
i . We call cj a dummy vertex

and say that cj represents Gj in Q−
i . Note that for all j ∈ [2, · · · , h], there is exactly one

i < j such that Q−
i has a vertex that represents Gj (namely, the vertex cj). For the clarity

of the next statement, note first that V (G−
i ) ∩ Pj is not empty as otherwise Pj would also

exist in some Gf where f < i and Gj would not be a child of Gi. For each edge vw ∈ E(G),
where v ∈ V (G−

i ) ∩ Pj and w ∈ G−
ℓ , where i < ℓ and ℓ ∈ V (Tj), connect v to cj by an edge.

Label that edge with the triple (v, w, Pvw), where Pvw is the path in T from i to ℓ. We call
the edge labelled (v, w, Pvw) in Q−

i an isthmus edge. It represents the edge vw in the final
drawing of G. We consequently refer to the edge vw of G as isthmus edge as well. We say
that two isthmus edges are siblings if they are adjacent to the same dummy vertex. For a
vertex u in Q−

i such that u is in Pj for some child Gj of Gi, we say that u is involved in a
clique-sum in Q−

i . Thus each isthmus edge of Q−
i has an endpoint in G−

i that is involved in
some clique-sum in Q−

i . We finally remove from Q−
i the edges in Pj that are not in G. We

set the resulting multigraph to be Q−
i .

Notice that Q−
i is a (⩽ k)-simplicial blowup of G−

i . Since Gi is (k, c)-agreeable (by
the assumption) and since G−

i is an induced subgraph of Gi, it follows that cr(Q−
i ) ⩽

c · ∆(Q−
i ) · ||Q−

i ||.
For i ∈ [h], consider a rectilinear drawing of Q−

i with at most c · ∆(Q−
i ) · ||Q−

i || crossings.
We will construct the desired rectilinear drawing of G by joining these rectilinear drawings
of Q−

i . Consider for a moment solely the disjoint union of these rectilinear drawings. The
resulting rectilinear drawing of the disjoint union has at most

∑
i∈[h] c · ∆(Q−

i ) · ||Q−
i ||

crossings.
Notice that there is one-to-one mapping between the edges of G and the edges in the

union of all Q−
1 , Q−

2 , . . . , Q−
h , that is in

⋃
i∈[h] E(Q−

i ) (where the isthmus edges of G map to
the isthmus edges in the union and where the non-isthmus edges of G map to the non-isthmus
edges of the union). Thus ||G|| =

∑
i∈[h] ||Q−

i ||. Hence, if for all i ∈ [h], ∆(Q−
i ) ⩽ k · ∆(G),

the above sum would be upper bounded by c · k · ∆(G) ·
∑

i∈[h] ||Q−
i || = c · k · ∆(G) · ||G||.

This is akin to the upper bound that we want on the rectilinear crossing number of G. Thus
we want to first bound the degree of each vertex in Q−

i by k · ∆(G). This is not completely
obvious due to the addition of the dummy vertices in the construction of Q−

i and also due to
the fact that clique-sums allow for edge deletions from the cliques.

▷ Claim 1. For every i ∈ [h] and every v ∈ Q−
i , degQ−

i
(v) ⩽ k · ∆(G).
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Proof. There are three cases to consider.
Case 1. v is a dummy vertex of Q−

i .
By construction, for some j ∈ Ui, v represents some Gj and is adjacent to at most
k vertices of the parent clique Pj in Gi. Each edge between a vertex u ∈ Pj and v

corresponds to an (isthmus) edge in G adjacent to u. Since degG(u) ⩽ ∆(G), v is incident
to at most k · ∆(G) edges, giving degQ−

i
(v) ⩽ k · ∆(G).

Case 2: v is in G−
i (and thus not a dummy vertex) and v is not involved in any clique-sums.

Then, it follows that degQ−
i

(v) ⩽ degG(v).
Case 3: v is in G−

i (and thus not a dummy vertex) and is involved in at least one clique-sum.
Consider every j ∈ Ui such that v ∈ Pj . Then v has a least one neighbour in G[Tj ] and
thus at least one edge connecting it to cj , otherwise the clique-sum could have omitted v.
Additionally, there exists a one-to-one mapping between the set of edges in G between
v and its neighbours in G[Tj ] and the set of (parallel isthmus) edges between v and
cj in Q−

i . In other words, there is a one-to-one mapping between the isthmus edges
incident to v in Q−

i and the isthmus edges incident to v in G. Finally, consider the
non-isthmus edges incident to v in G−

i . Each edge of Gi that has been removed in the
construction of Q−

i (namely the edges removed from Pj) was also removed in G, thus
degQ−

i
(v) ⩽ degG(v). ◁

With degrees of the vertices of Q−
i sorted out, we are ready to describe how to construct

a rectilinear drawing of G from the rectilinear drawings of Q−
1 , Q−

2 , . . . , Q−
h .

Constructing the rectilinear drawing of G from the rectilinear drawings of Q−
1 , Q−

2 ,..., Q−
h.

Since for each i ∈ [h], Q−
i is (k, c)-agreeable, cr(Q−

i ) ⩽ c · ∆(Q−
i ) · ||Q−

i ||. By Claim 1,
cr(Q−

i ) ⩽ c · k · ∆(G) · ||Q−
i ||. Let D(Q−

i ) denote a rectilinear drawing of Q−
i with at most

c · k · ∆(G) · ||Q−
i || crossings. For the remainder of the proof, we will show how to construct a

rectilinear drawing, D(G), of G by combining the rectilinear drawings D(Q−
i ) of Q−

i , i ∈ [h],
such that the resulting number of crossings in D(G) is as claimed in the theorem.

Note that removing dummy vertices (and their incident isthmus edges) from D(Q−
i )

gives a rectilinear drawing of G−
i . Denote these rectilinear drawings by D(G−

i ). In the
final drawing, D(G), the drawing of each G−

i will be identical to D(G−
i ), possibly scaled

and/or rotated. In other words, in D(G), the implied rectilinear drawing of the disjoint
union of G−

1 , G−
2 , . . . , G−

h will be the disjoint union of D(Q−
1 ), D(Q−

2 ), . . . , D(Q−
h ) without

the isthmus edges. The isthmus edges will be redrawn in this construction.
We will join the rectilinear drawings D(Q−

i ), i ∈ [h] in the order of their indices. For
ℓ ∈ [h], Dℓ denotes the rectilinear drawing obtained by joining D(Q−

1 ), D(Q−
2 ), . . . , D(Q−

ℓ )
(joining is detailed below). The rectilinear drawing Dh will thus be the desired rectilinear
drawing D(G) of G. While joining these drawings, we will maintain the invariant that for
each j > ℓ, such that the parent of Gj is some Gi with i ∈ [ℓ], the rectilinear drawing Dℓ

contains the representative dummy vertex (cj) of each Gj . Furthermore we maintain that
Dℓ minus the dummy vertices (that is Dℓ − ∪j>ℓcj) is isomorphic to G − ∪j>ℓV (G[Tj ]).

We start by defining D1 = D(Q−
1 ). D1 satisfies the above invariant. For j ∈ [2, · · · , h]

we construct Dℓ from Dℓ−1 and D(Q−
ℓ ) as follows. By the invariant, Dℓ−1 has a dummy

vertex cℓ representing Gℓ. Let Cℓ be a disk centered in the point cℓ in Dℓ−1 that meets the
conditions of Lemma 11. Let v1, v2, . . . , vd be the neighbours of cℓ in Dℓ−1. Construct Dℓ

by the following steps.
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1. Remove cℓ and its incident (isthmus) edges.
2. Scale down D(Q−

ℓ ). Place it inside Cℓ and rotate it such that all the vertices of Dℓ are in
general position.

3. For each isthmus edge labelled with (x, y, Pxy) that was incident to cℓ, (re)draw it as the
line segment from x to y if y in Q−

ℓ . Otherwise, by construction, D(Q−
ℓ ) has a point cj ,

j > ℓ and y ∈ G[Tj ]. In that case, draw a line segment between x and cj . By Lemma 11,
the only new crossings (pairs) that this introduces are crossings between (a) a pair of
(re)drawn sibling isthmus edges (that were both incident to cℓ) or (b) one such isthmus
edge (incident to cℓ) and edges strictly inside the disk Cℓ (that is, edges in G−

ℓ ).

The resulting drawing Dℓ satisfies the invariant. Note that at the end of this process,
when ℓ = h, there are no more dummy vertices and each edge labelled (x, y, Pxy) in Dh is an
actual line segment connecting vertex x and y in G and thus actually represents the isthmus
edge xy of G. The final drawing Dh is a rectilinear drawing D(G) of G. It remains to prove
that D(G) has the claimed number of crossings.

Before joining the drawings D(Q−
i ), i ∈ [h], the total number of crossings in the disjoint

union of all drawings was at most c · k · ∆(G) · ||G||, as argued earlier. We name this quantity
the initial sum. We now prove that joining these drawings into a drawing of G does not
increase the initial sum by much. Specifically, we will show that all new crossings can be
charged to the edges of G such that each edge is charged at most 2 · k · ∆(G) new crossings,
which will complete the proof.

By the construction, the new crossings must involve at least one isthmus edge. Consider
such an isthmus edge e labelled (v, w, Pvw), where v ∈ Q−

i and w ∈ Q−
p , i < p and w ∈ G[Tj ]

where j ∈ Ui (and thus p ∈ Tj). There are four cases to consider.

Case 1. Consider first a crossing in D(G) between e and a non-isthmus edge e′ in Q−
i . That

crossing is already accounted for in the initial sum by the crossing in D(Q−
i ) between e′

and edge vcj labelled (v, w, Pvw).
Case 2. Consider next a crossing between e and an isthmus edge e′ labelled (x, y, Pxy), where

x ∈ Q−
i and y ∈ G[Tr], with r ∈ Ui. 2a) If r ̸= j (so e and e′ are not sibling isthmus

edges), then crossing between e and e′ was accounted for as well in the initial sum by the
crossing in D(Q−

i ) between the edge vcj labelled (v, w, Pvw) and the edge xcr labelled
(x, y, Pxy). 2b) If r = j, it must be that v ̸= x as otherwise e and e′ cannot cross. By
construction both w and y are in the disk Cr. In the construction of G, G[Tj ] is added
via a (⩽ k)-clique-sum to Gi (with parent clique Pj). Thus at most k · ∆(G) (isthmus)
edges cross the cycle bounding Cr. Thus e can be crossed by at most k∆(G) such edges
e′. We charge these at most k · ∆(G) crossings to e.

Case 3. Consider next a crossing between e and any edge e′ where both endpoints of e′ are
in G[Tj ]. The endpoints of e′ are thus in Q−

a and Q−
b where j ⩽ a ⩽ b. We charge the

crossing to e′. (Think of that crossing being charged to e′ in Q−
a ). As argued above, at

most k · ∆(G) (isthmus) edges cross the cycle Ca that replaced the dummy vertex ca thus
each such edge e′ is charged at most k · ∆(G) new crossings.

Case 4. Finally consider a crossing between e and an isthmus edge e′ labelled (x, y, Pxy),
where x ∈ Q−

f with f < i. Then there exists g ∈ Uf such that i ∈ Tg. In that case both
endpoints of e are in G[Tg] and we are in Case 3 with the roles of e and e′ reversed. Thus
at most k · ∆(G) crossings are charged to e.

By the arguments above, each edge of G is charged at most 2 · k · ∆(G) new crossings (at
most k · ∆(G) in Case 2b and at most k · ∆(G) in Case 4). Together with the initial sum
that results in at most (c + 2) · k · ∆(G) · ||G|| crossings. ◀
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3.2 Rectilinear Drawings of Multigraphs via Graph Partitions
As mentioned previously, in order to prove our main result, (Theorem 13), we will use as a
main tool the theorem that we have just proved, Theorem 14. Theorem 12 tells us that in
order to use Theorem 14, we need to show that planar graphs and bounded treewidth graphs
are (3, c)-agreeable for some constant c. In this section, we define graph partitions and prove
a lemma that will be helpful in proving that planar graphs are (3, c)-agreeable in Section 3.3
and that bounded treewidth graphs are (k, c)-agreeable for any k ⩾ 1 in Section 3.4.

An H-partition of a (multi)graph G is comprised of a graph H and a partition of vertices
of G such that

each vertex of H is a non-empty set of vertices of G (called a bag),
every vertex of G is in exactly one bag of H, and
if an edge of G has one endpoint in A and the other endpoint in B and A and B are
distinct, then AB is an edge of H.

The width of a partition is the maximum number of vertices in a bag. The density of a
bag of an H-partition is the number of edges of G with at least one endpoint in that bag.
The density of an H-partition is the maximum density over all bags of H. A bag is said to
be solitary if it contains exactly one vertex of G.

The proof of the following lemma is a slight modification of a similar result by Wood and
Telle [41].

▶ Lemma 15. Let K be a multigraph and H a simple graph such that K has an H-partition
of width w and density d. Let X be the set of all vertices of K that are not in solitary bags
of H. Then we have the following.
1. cr(K) ⩽ cr(H) · w2 · ∆(K)2 + (w − 1) ·

∑
v∈X degK(v)2

2. if H is planar, then
(a) there exists a rectilinear drawing of K with a most 2 · d crossings per edge.
(b) if in addition, the non-solitary bags of H form an independent set in H, then there is

a rectilinear drawing of K with at most d crossings per edge.

Proof. We start with a rectilinear drawing D(H) of H with cr(H) crossings. Consider any
vertex (bag) B of H. Let Cϵ(B) be a disk of radius ϵ > 0 centered at B in D(H). For each
edge AB of H, let Cϵ(AB) be the region defined by the union of all the line segments with
one endpoint in Cϵ(A) and the other in Cϵ(B). Note that there exists an ϵ small enough
such that all of the following conditions are met:

Cϵ(A) ∩ Cϵ(B) = ∅ for all distinct bags A and B of H;
Cϵ(AB) ∩ Cϵ(PQ) = ∅ for every pair of edges AB and PQ of H that have no endpoints
in common and do not cross in D(H);
Cϵ(AB) ∩ Cϵ(Q) = ∅ for every triple of distinct bags A, B, Q of H where AB is an edge
of H;
For each crossing-pair of edges AB and PQ in D(H), Cϵ(AB) ∩ Cϵ(PQ) is non-empty.
We call that region, Cϵ(AB) ∩ Cϵ(PQ), of the plane busy region of pair AB and PQ.
Finally, the busy regions of all distinct pair of edges are pairwise disjoint.

For each vertex v of K such that v is in a bag B of H, draw v as a point in Cϵ(B) such
that the final set of points representing V (K) is in general position. Draw every edge of K

straight. This defines a rectilinear drawing D(K) of K, since no edge in D(K) contains a
vertex other than its own endpoints and no three edges of D(K) cross at one point.
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We first prove that the number of crossings in D(K) is at most cr(H) · w2 · ∆(K)2 + (w −
1) ·

∑
v∈X degK(v)2 which will prove the first part of the theorem. Consider two crossing

edges e and f in D(K). There are two cases to consider (based on two types of crossings
that can occur in D(K)).

Case 1: there is bag B of H that has at least one endpoint of e and at least one endpoint
of f . Order all the vertices of B = {v1, v2, · · · , vℓ}, l ⩽ w such that degK(v1) ⩽ · · · ⩽
degK(vℓ). Let vi be an endpoint of e and vj and endpoint of f , i < j. We charge the
crossing between e and f to vj .
Thus the number of crossings charged to vj is at most∑

i<j

degK(vi) · degK(vj) ⩽
∑
i<j

degK(vj)2 ⩽ (ℓ − 1) · degK(vj)2 ⩽ (w − 1) · degK(vj)2

The vertices in the solitary bags of H are charged 0 crossings, rendering the total number
of crossings in Case 1 is at most (w − 1)

∑
v∈X degK(v)2.

Case 2: there is no bag of H that has both an endpoint of e and an endpoint of f . This
implies that four endpoints of e and f are in four distinct bags, A, B, P, Q of H. Let
e ∈ Cϵ(AB) and f ∈ Cϵ(PQ). Since e and f cross, their crossing point must be the
busy region of AB and PQ. Denote that region by R. There are at most ∆(K) · w

edges of K drawn inside Cϵ(AB) that intersect R and at most ∆(K) · w edges of K

drawn inside Cϵ(PQ) that intersect R. We charge the crossings between these pairs
of edges to the busy region R. Thus the number of crossings charged to R is at most
w∆(K) · w∆(K) = w2 · ∆(K)2. Since D(H) has cr(H) crossings, there are exactly cr(H)
busy regions determined by crossing edges in D(H). Thus the total number of crossings
in Case 2 is at most cr(H) · w2 · ∆(K)2.

Thus cr(K) ⩽ cr(H) · w2 · ∆(K)2 + (w − 1) ·
∑

v∈X degK(v)2 as stated in part 1.
We now prove the second part of the theorem. In this case, H is planar. By the Fáry-

Wagner theorem [40, 21], there is a rectilinear drawing D(H) of H with no crossings. Starting
with such crossing-free drawing D(H), we produce a rectilinear drawing D(K) of K using
the algorithm described above. Let e be an edge of K with an endpoint in some bag A of H.
We now prove that the number of crossings on e in D(K) is at most 2d as claimed in part
2a. There are two cases to consider:

Case 1: both endpoints of e are in A. Then, e is only crossed by the edges that have at
least one endpoint in A. As there are at most d such edges, there is at most d crossings
on e in D(K).
Case 2: the other endpoint of e is in a bag B of K distinct from A. Then, since D(H) is
crossing-free, e can only be crossed by the edges that have at least one endpoint in A or
in B. There is at most 2d such edges, thus there is at most 2d crossings on e in D(K).

In either case, e is crossed by at most 2d edges in D(K) as required by part 2a.
Finally, consider the case when the non-solitary bags of H form an independent set in H.

Let e be an edge of K. If two endpoints of e are in two distinct solitary bags of H then no
edge of K crosses e since D(H) is crossing-free. Therefore, in that case, trivially, there are
at most d crossings on e in D(K). Thus we may assume that at least one endpoint of e is
in a non-solitary bag of H. Let A denote that bag. If the other endpoint of e is also in A,
the result follows from Case 1 above. Therefore, we may assume that the other endpoint, v,
of e is in a bag B of H distinct from A. B is then a solitary bag (by the independent set
assumption). Since the edges incident to the same vertex (v in this case) cannot cross, the
only edges that can cross e are those with an endpoint in A. There is at most d edges with
endpoints in A and thus there are at most d crossings on e in D(K). ◀
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3.3 Rectilinear Crossing Number of Simplicial Blowups of Planar Graphs
Theorem 12 tells us that in order to use Theorem 14, it is enough to consider (⩽ 3)-simplicial
blowups of planar graphs with no separating triangles. In other words, it is enough to prove
that planar graphs with no no separating triangles are (3, c)-agreeable for some constant c.
The next lemma achieves that.

▶ Lemma 16. Every planar graph G that has no separating triangles is (3, 3)-agreeable.

Proof. Since every induced subgraph of G is also planar and with no separating triangles, it
is enough to show that every (⩽ 3)-simplicial blowup Q of G has rectilinear crossing number
cr(Q) ⩽ 3 · ∆(Q) · ||Q||.

Let S = V (Q)−V (G). Since adding a 1-simplicial or 2-simplicial vertex to a planar graph
results in a planar graph, we may assume that each vertex in S has exactly 3 neighbours in
G. We now define an H-partition of Q. To start, we make H isomorphic to G and put each
v ∈ V (G) in the bag Bv in H. Currently, all the bags in H are solitary bags. Since G, and
therefore the current H, has no separating triangles and since S is an independent set in Q,
we have that for each v ∈ S, NQ(v) induces a face in an embedding of G and thus it is a
face in the equivalent embedding of H. For each vertex set {x, y, z} in H that forms such a
face, we add a bag Bxyz adjacent to x, y and z in H. The resulting graph H is simple and
planar. For each vertex v ∈ S adjacent to x, y and z in Q, add v to the corresponding bag
Bxyz in H. Thus the defined graph H and the assignment of the vertices of Q to its bags
defines an H-partition of Q.

As every vertex of Q in bag Bxyz is adjacent to all vertices in {x, y, z}, the maximum
number of edges of Q with an endpoint in a non-solitary bag Bxyz is at most degQ(x) +
degQ(y) + degQ(z) ⩽ 3 · ∆(Q). The maximum number of edges of Q with an endpoint in a
solitary bag of H is clearly ∆(Q). Thus the density of the H-partition is at most 3 · ∆(Q).
Additionally, the non-solitary bags of H form an independent set in H which, by Lemma 15
(2b), implies that Q has a rectilinear drawing with at most 3 · ∆(Q) crossings per edge, giving
the desired result, cr(Q) ⩽ 3 · ∆(Q) · ||Q||. ◀

3.4 Rectilinear Crossing Number of Simplicial Blowups of Treewidth-k
Graphs

In this section, we prove that bounded treewidth graphs are (k, c)-agreeable for some constants
k and c. We start with the following trivial bound applicable to all graphs.

▶ Lemma 17. Every graph G is (|G|, |G| − 1)-agreeable.

Proof. If |G| = 1, the statement is trivial since every (⩽ 1)-simplicial blowup of G is a star
thus the crossing number of every such blowup is zero. Assume now that |G| ⩾ 2. Since
every induced subgraph of G is also in the class of all graphs, it is enough to show that every
(⩽ |G|)-simplicial blowup Q of G has rectilinear crossing number cr(Q) ⩽ (|G|−1)·∆(Q)·||Q||.

Let S = V (Q) − V (G). We build an H-partition of Q as follows. Start with H := K2
with V (H) = {v, w}. Place one vertex of G in Bv and all the remaining vertices of G in Bw.
Add an independent set of |S| of vertices to H and make each connected to v and w. It is
simple to verify that H is a simple planar graph. Place each vertex of S in a new vertex
(bag) of H. That defines an H-partition of Q where H is a simple planar graph and where
all bags of H are solitary except for one bag, that is Bw. Trivially, that one non-solitary bag
forms an independent set in H. Since H is planar and since the density of H is at most
(|G| − 1) · ∆(Q), we obtain the desired result, cr(Q) ⩽ (|G| − 1) · ∆(Q) · ||Q|| by Lemma 15
(2b). ◀
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The following result, obtained by setting |G| = t, is an immediate corollary of Lemma 17.

▶ Corollary 18. The complete graph, Kt, is (t, t − 1)-agreeable.

We are now ready to prove that every bounded treewidth graph G has cr(G) ∈ O(∆(G) · |G|).

▶ Theorem 19. For k ⩾ 1, let G denote a family of graphs of treewidth at most k. For every
graph G ∈ G , cr(G) ⩽ k · (k + 2) · ∆(G) · ||G||.

Proof. It is well known (see [6] for example) that G can be obtained by (⩽ k)-clique-sums on
graphs G1, G2 · · · , where each Gi, is the complete graph on at most k+1 vertices. Corollary 18
implies that, for each i, i ∈ [h], Gi is (k + 1, k)-agreeable and thus (k, k)-agreeable. This
fulfills the sole condition of Theorem 14. Thus cr(G) ⩽ k · (k + 2) · ∆(G) · ||G||. ◀

Theorem 19 gives an O(∆(G) · |G|) bound for the rectilinear crossing number of bounded
treewidth graphs G. As discussed in the introduction, the bound is optimal and it improves
on the previously known bounds (see Theorems 6 and 7).

Since every k-simplicial blowup of any graph of treewidth at most k itself has treewidth
at most k, we get the following immediate corollary of Theorem 19.

▶ Lemma 20. For every positive integer k, every graph of treewidth at most k is (k, k·(k+2))-
agreeable.

3.5 Proof of Theorem 13
Recall that Theorem 13 of Robertson and Seymour states that each piece in the decomposition
is either a graph of treewidth at most t or it is a planar graph with no separating triangle.
Lemma 16 then implies that every planar piece Gi of the decomposition is (3, 3)-agreeable.
Consider the non-planar pieces of the decomposition. By Theorem 12, they have treewidth
at most t, where t ⩾ 3, as graphs of treewidth at most 2 are planar [6]. Lemma 20 states
that every treewidth at most t graph is (t, t · (t + 2))-agreeable. Since every non-planar piece
of the decomposition has treewidth at most t with t ⩾ 3, these pieces are (3, t · (t + 2))-
agreeable. Since t ⩾ 1 for all pieces of the decomposition, if we choose c := t · (t + 2)
all the pieces of the decomposition are (3, c)-agreeable. Theorem 14 (and Theorem 12
by Robertson and Seymour) then implies that G has rectilinear crossing number at most
3 · (t · (t + 2) + 2) · ∆(G) · ||G|| = 3 · (t2 + 2t + 2) · ∆(G) · ||G||, as claimed.

4 Conclusion and Open Problems

In this article, we proved that n-vertex bounded degree single-crossing minor-free graphs
have O(n) rectilinear crossing number. More strongly we proved that for any single-crossing
graph X, every n-vertex X-minor-free graph G has rectilinear crossing number at most
O(∆(G) · n) and the bound is best possible. The result represents a strong improvement
over the previous state of the art on the rectilinear crossing numbers of minor-closed families
of graphs, as argued in the introduction.

The ultimate goal for future work would be to obtain the above result for any fixed graph
X. For such families an O(f(∆) · n) bound is not known for any function f . In fact, the
best known bound on the rectilinear crossing number of bounded degree proper minor-closed
families is O(n log n) [38].

In order to attempt to prove an O(f(∆) · n) bound, that is, a linear rectilinear crossing
number for all proper minor-closed families of graphs of bounded degree, Robertson and
Seymour’s graph minor theory tells us that one should provide two ingredients. The first
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ingredient is to prove the result for k-almost embeddable graphs. The second is to be able to
handle clique-sums of those. Proving the result for almost embeddable graphs entails proving
it for bounded Euler genus graphs, that is, proving a result akin to Theorem 2 by Pach and
Tóth [1] but with the crossing number replaced by the rectilinear crossing number. However,
such a result is not even known for all bounded degree toroidal graphs.

The second ingredient however, handling the clique-sums of rectilinear drawings, can be
achieved by our Theorem 14. In particular, one can change the definition of (k, c)-agreeable
to (k, f(∆))-agreeable so as to allow for any function f(∆) and not just the linear function,
c · ∆, and then recall that the proof of Theorem 14 in fact shows that the rectilinear
drawings of (k, f(∆))-agreeable graphs can be joined by (⩽ k)-clique sums into a rectilinear
drawing of the resulting graph G while only increasing the total number of crossings by
2 · k · ∆(G) · ||G||. Suppose, in the future, one could provide the first ingredient above, that
is, show that almost embeddable n-vertex graphs G have linear rectilinear crossing number,
that is cr(G) ⩽ g(∆) · n for some function g. In that case the following lemma, Lemma 21,
would imply that simplicial blowups of almost embeddable graphs are (k, f(∆))–agreeable
with f(∆) ∈ O(∆4) · g(∆). That and Theorem 14, as discussed in this paragraph, would
imply that all proper minor-closed families of graphs of bounded degree have linear rectilinear
crossing number.

▶ Lemma 21. For every graph G and every (⩽ k)-simplicial blowup Q of G, cr(Q) ⩽
(∆(Q) + 1)2 · cr(G) + ∆(Q)4 · ||Q||.

Proof. Let S = V (Q) − V (G). We now define an H-partition of Q. To start, we make H

isomorphic to G and put each v ∈ V (G) in the bag Bv in H. For each vertex u ∈ S, u

is adjacent to all the vertices of some clique C in G. Place u in a bag Bv where v ∈ C.
This does not change H since v is adjacent to all the neighbours of u in G. This defines an
H-partition of multigraph Q.

For each v ∈ H, each vertex of S in Bv is adjacent to v in Q thus the width of H is at
most ∆(Q) + 1. Thus by Lemma 15, cr(Q) ⩽ (∆(Q) + 1)4 · cr(H) + ∆(Q)2 · ||Q|| which is
equal to (∆(Q) + 1)4 · cr(G) + ∆(Q)2 · ||Q|| since H is isomorphic to G. ◀
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