Harborth's Conjecture for 4-Regular Planar Graphs

Daniel J. Chang

Department of Computer Science, San Francisco State University, CA, USA

$Timothv$ Sun \boxtimes

Department of Computer Science, San Francisco State University, CA, USA

Abstract

We show that every 4-regular planar graph has a straight-line embedding in the plane where all edges have integer length. The construction extends earlier ideas for finding such embeddings for 4-regular planar graphs with diamond subgraphs or small edge cuts.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Planar graph, straight-line embedding, Diophantine equation

Digital Object Identifier [10.4230/LIPIcs.GD.2024.38](https://doi.org/10.4230/LIPIcs.GD.2024.38)

1 Introduction

In this paper, graphs are *simple*, i.e., they do not have self-loops or parallel edges. A *Fáry embedding* of a graph is an embedding in the plane where each edge is drawn as a straight line segment. It is a well-known fact that such drawings exist for all planar graphs [\[6,](#page-6-0) [12,](#page-6-1) [15\]](#page-7-0), and a longstanding conjecture of Harborth (see [\[8\]](#page-6-2)) posits that every planar graph has a Fáry embedding where every edge has integer (or equivalently, rational) length. Geelen, Guo, and McKinnon [\[7\]](#page-6-3), using a result of Berry [\[2\]](#page-6-4), showed that all planar graphs of maximum degree 3 satisfy Harborth's conjecture. Since then, there have been simpler proofs of the cubic case [\[3,](#page-6-5) [13\]](#page-7-1) and extensions of their application of Berry's theorem to graphs of higher maximum degree [\[1,](#page-6-6) [3,](#page-6-5) [5\]](#page-6-7).

Sun [\[14\]](#page-7-2) showed how these ideas can be used to find rational Fáry embeddings of two families of 4-regular graphs. We correct an error in one of those constructions and show that those techniques can be strengthened to cover all 4-regular planar graphs:

▶ **Theorem 1.** *Every 4-regular planar graph has a rational Fáry embedding.*

2 Background

Given a planar graph $G = (V, E)$, we treat Fáry embeddings of G as injective mappings $\phi: V \to \mathbb{R}^2$. We say that a Fáry embedding is *rational* if all its edge lengths are rational and *fully rational* if it is rational and the vertices are at rational coordinates. Two Fáry embeddings ϕ and ϕ' of *G* are said to be *ε-close* if, for every vertex $v \in V$, the Euclidean distance $d(\phi(v), \phi'(v))$ between the images of *v* is less than ε . A planar graph *G* is said to be *fully approximable* if, for every Fáry embedding ϕ of *G* and every $\varepsilon > 0$, there exists a fully rational Fáry embedding *ϕ* ′ that is *ε*-close to *ϕ*. Geelen, Guo, and McKinnon [\[7\]](#page-6-3) were the first to consider such a property because of the following result on Diophantine equations:

▶ **Theorem 2** (Berry [\[2\]](#page-6-4))**.** *Let x, y, and z be non-collinear points in the plane such that* $d(x, y)$, $d(y, z)^2$, and $d(z, x)^2$ are rational. Then, the set of points at rational distance from *all three points is dense in the plane.*

© Daniel J. Chang and Timothy Sun; $\boxed{6}$ $\boxed{0}$ licensed under Creative Commons License CC-BY 4.0 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Editors: Stefan Felsner and Karsten Klein; Article No. 38; pp. 38:1–38:9 [Leibniz International Proceedings in Informatics](https://www.dagstuhl.de/lipics/) Leibniz international ruceedings in miorimetric

LIPICS [Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany](https://www.dagstuhl.de)

38:2 Harborth's Conjecture for 4-Regular Planar Graphs

We note that the squares of the distances are automatically rational if the points have rational coordinates. Using Theorem [2,](#page-0-0) Geelen et al. constructed fully rational Fáry embeddings of planar graphs of maximum degree 3, but Biedl [\[3\]](#page-6-5) was the first to observe that their method extends to a more general family of graphs. Let *G* be a graph on *n* vertices. An ordering of its vertices v_1, \ldots, v_n is said to be a *3-elimination order* if:

- *G* has only one vertex, i.e., $n = 1$, or
- v_1 has degree at most 2 and v_2, \ldots, v_n is a 3-elimination order for $G v_1$, or
- v_1 has degree 3 and there are two neighbors *u* and *u*' of v_1 such that v_2, \ldots, v_n is a 3-elimination order for $(G - v_1) \cup \{uu'\}.$

Given a 3-elimination order, one can recursively construct a fully rational Fáry embedding of $G - v_1$ or $(G - v_1) \cup \{uu'\}$, and then add v_1 using Theorem [2:](#page-0-0)

▶ **Theorem 3** (Geelen et al. [\[7\]](#page-6-3), Biedl [\[3\]](#page-6-5))**.** *Every planar graph with a 3-elimination order is fully approximable.*

A graph is called (2, 1)*-sparse* if every nonempty induced subgraph *H* satisfies $|E(H)|$ < $2|V(H)| - 1$. Biedl [\[3\]](#page-6-5) identified the $(2, 1)$ -sparse graphs as a rich family of graphs with 3-elimination orders, but unfortunately, the original proof has an error. For our purposes, we do not explicitly need (2*,* 1)-sparseness (a discussion and a corrected proof are deferred to Appendix [A\)](#page-7-3). Instead, we rely on just a special case: a graph is said to be *subquartic* if it has maximum degree 4, but is not 4-regular. Biedl [\[3\]](#page-6-5) showed that connected subquartic graphs are (2*,* 1)-sparse while Benediktovich [\[1\]](#page-6-6) directly proved that such graphs have 3-elimination orders:

▶ **Theorem 4** (Benediktovich [\[1\]](#page-6-6), Biedl [\[3\]](#page-6-5))**.** *Every connected subquartic graph has a 3 elimination order. Hence, planar connected subquartic graphs are fully approximable.*

4-regular planar graphs cannot have 3-elimination orders because there is no possible first vertex v_1 . To circumvent this, Sun [\[14\]](#page-7-2) considered two approaches. If the graph has low edge connectivity, then a rational Fáry embedding can be pieced together from its subquartic blocks. The other idea is to apply a theorem of Kemnitz and Harborth [\[8\]](#page-6-2) to remove a vertex of a diamond subgraph. In Theorems [5](#page-1-0) and [14,](#page-4-0) we improve upon each approach.

3 The low connectivity case

Using rigidity theory, Sun [\[14\]](#page-7-2) proved that 4-regular planar graphs with edge connectivity 2 have rational Fáry embeddings. We upgrade this result to *vertex* cuts of size 2:

▶ **Theorem 5.** *Every connected 4-regular planar graph that is not 3-connected has a rational Fáry embedding.*

Proof. By the handshaking lemma, minimal edge cuts in 4-regular graphs must have even size. If the graph has an edge cut of size 2 (which includes when the graph has a cutvertex), then the result of Sun [\[14\]](#page-7-2) applies. Now suppose the graph *G* is 4-edge-connected and has a vertex cut $\{u, v\}$. Deleting the cut disconnects the graph into exactly two connected components C_1 and C_2 . Furthermore, since G does not have an edge cut of size 2, u and v both have exactly two neighbors in both C_1 and C_2 .

For $i = 1, 2$, define H_i to be the induced subgraph $G[V(C_i) \cup \{u, v\}]$, with the edge *uv* added. Since C_{3-i} is connected, there is a path in C_{3-i} from *u* to *v*, so H_i is planar. Choose Fáry embeddings of *H*¹ and *H*² where *uv* is on the boundary of the embeddings' convex hulls. By applying Theorem [4,](#page-1-1) we obtain two nearby rational Fáry embeddings of H_1 and

D. J. Chang and T. Sun 38:3

*H*2. As shown in Figure [1,](#page-2-0) after applying a rational scaling to one of the embeddings so that the length of the edge *uv* is the same in both, they can be glued together at this edge to obtain a rational Fáry embedding of *G*.

Figure 1 Pasting together two rational Fáry embeddings at two vertices.

4 The 3-connected case

4.1 The geometric part

Let *vpgr* be a quadrilateral where *vq* is an internal diagonal and $d(v, p)$, $d(v, q)$, $d(v, r)$. $d(p, q)^2$, and $d(q, r)^2$ are rational. Kemnitz and Harborth [\[8\]](#page-6-2) applied the theory of Diophantine equations to find a point *u* on the line \overline{vq} at rational distance from *v, p, q, r*. If *v, p, q, r* are vertices of a graph, then the lengths required to be rational form a complete bipartite graph $K_{1,3}$, where *v* is the vertex of degree 3. We say that a Fáry embedding of $K_{1,3}$ is *permissible* if the rational constraints above are satisfied and Kemnitz and Harborth's solution for *u* lies on the interior of the line segment *vq*.

Sun [\[14\]](#page-7-2) gave an explicit example of a permissible quadrilateral: we call a Fáry embedding of $K_{1,3}$ a *good kite* if *vpqr* forms a convex quadrilateral, $d(p,q) = d(p,v) = 3$, $d(r,q) =$ $d(r, v) = 4$, and $d(q, v) = 5$. A good kite and the location of the new vertex *u* are shown in Figure [2\(](#page-2-1)a) and (b), respectively.

Figure 2 A special "one-sided" polygon (a) enables a useful solution to a certain system of Diophantine equations (b).

• Proposition 6 (Sun [\[14\]](#page-7-2)). Let ϕ be a permissible embedding of $K_{1,3}$. Then, there exists $\varepsilon_0 > 0$ *such that any fully rational Fáry embedding* ϕ' *that is* ε_0 -close to ϕ *has a point on the interior of the line segment qv at rational distance to each of v, p, q, r.*

38:4 Harborth's Conjecture for 4-Regular Planar Graphs

However, when trying to use Proposition [6,](#page-2-2) Sun [\[14\]](#page-7-2) erroneously claimed that any drawing of an internal face as a convex polygon can be extended to a Fáry embedding of the entire graph. A simple counterexample is the wheel graph on 5 vertices whose quadrangular face is drawn as a square: the only way to add the remaining vertex is inside of the square.

Fortunately, the convex quadrilateral found in a good kite can be extended. Using the terminology in Mchedlidze, Nöllenburg, and Rutter [\[10\]](#page-6-8), given a maximal plane graph with a specified unbounded face, we say that a cycle is *outerchordless* if all of its chords are in the interior of the cycle. A convex polygon is said to be *one-sided* if there is a point in the exterior of the polygon which is visible from every vertex of the polygon.

▶ **Theorem 7** (Mchedlidze et al. [\[10\]](#page-6-8), Theorem 2)**.** *Let G be a maximal plane graph, and let C be an outerchordless cycle in G. Then any drawing of C as a one-sided polygon can be* extended to a Fáry embedding ϕ of G , possibly with a different unbounded face, where a face *is internal to* C *in* ϕ *if and only if it is internal to* C *in* G *.*

The original statement of the above result in [\[10\]](#page-6-8) does not mention preserving internal faces, but it is implicit in their proof. We note that this is not their main result (Theorem 4 in [\[10\]](#page-6-8)), which applies to arbitrary convex polygons and is able to preserve the unbounded face, though it has additional requirements on so-called "petals" of the cycle.

 \blacktriangleright **Lemma 8.** Let G be a plane graph, where the rotation at some vertex v is of the form $(\ldots p, q, r \ldots)$ *, and* p *and* r *are not adjacent. Then, there is a Fáry embedding of* G *where the restriction to the* $K_{1,3}$ *subgraph formed by the edges vp, vq, and vr forms a good kite, and vq is the only edge that intersects the interior of the convex hull of the K*1*,*³ *subgraph.*

Proof. Triangulate the graph to obtain a maximal plane graph G' so that there are faces $[v, q, p]$ and $[v, r, q]$ (which may require changing the locations of the edges pq and qr , if they already exist) and the edge *pr* is still missing, introducing additional vertices if necessary. Draw the $K_{1,3}$ subgraph as a good kite and consider the cycle *vpqr*. Since the edge vq is in the interior of the cycle and there is no edge pr , the cycle is outerchordless. In Figure [2\(](#page-2-1)a), there is a point in the shaded region that extends perpendicularly from *qr* where all four vertices are visible from that point, so the cycle has been drawn as a one-sided quadrilateral. Thus, we may apply Theorem [7](#page-3-0) to *vpqr* to obtain a Fáry embedding of all of *G*′ . Since *G*′ is 3-connected, Whitney's theorem ensures that the new drawing has the same set of rotations, and hence the same set of faces. Consequently, no other edge besides *vq* intersects the interior of the convex quadrilateral $v \rho q r$.

Adding a vertex using Proposition [6](#page-2-2) creates what we call a *diamond*, two triangular faces meeting at an edge. We call that intersecting edge the *central* edge and its endpoints *central vertices*. As seen in Figure [2,](#page-2-1) undoing the vertex addition is combinatorially equivalent to contracting the edge *uv*. We can subsequently summarize the aforementioned geometric results in a graph-theoretic manner:

▶ **Lemma 9.** *Let G be a plane graph with a diamond where one of its central vertices has degree 4, and the two non-central vertices are not adjacent. Let G*′ *be the graph after contracting the diamond's central edge. If G*′ *has a 3-elimination order, then G has a rational Fáry embedding.*

Proof. Reusing earlier notation, let the rotation at *u* be (*v, p, q, r*) and let the diamond's faces be $[u, p, v]$ and $[u, v, r]$. Contract the edge *uv* and call the new vertex *v*. Apply Lemma [8](#page-3-1) to obtain a Fáry embedding ϕ of G' . There exists $\varepsilon_1 > 0$ such that, in any Fáry embedding

*ε*1-close to *ϕ*, the quadrilateral *vpqr* is convex, and no other edge intersects the interior of *vpqr* (i.e., the same guarantees as in Lemma [8\)](#page-3-1). In particular, adding a new vertex anywhere in the interior of *vpqr* and connecting it to v, p, q, r would not create any crossings. Since *G*′ has a 3-elimination order, use Theorem [3](#page-1-2) to find a fully rational Fáry embedding $\min(\varepsilon_0, \varepsilon_1)$ -close to ϕ . Finally, use Proposition [6](#page-2-2) to find a point in the interior of *vq* to add back vertex u and its incident edges so that those edges have rational length.

Guaranteeing non-adjacency for applications of Lemma [9](#page-3-2) is aided by the following facts:

▶ **Proposition 10** (Sun [\[14\]](#page-7-2))**.** *In a 4-edge-connected 4-regular plane graph, every 3-cycle is facial.*

 \triangleright **Corollary 11.** In a 4-edge-connected 4-regular plane graph, if the rotation at a vertex is of *the form* (*a, b, c, d*)*, then a and c are not adjacent.*

We note that, for 4-regular graphs, 3-connectivity implies 4-edge-connectivity by the same parity argument mentioned in the proof of Theorem [5.](#page-1-0)

4.2 The combinatorial part

Given a 3-connected 4-regular plane graph, we say that a vertex is of *type* (t_1, t_2, t_3, t_4) , where $t_1 \leq t_2 \leq t_3 \leq t_4$, if the lengths of the faces $f_1 \leq f_2 \leq f_3 \leq f_4$ incident with the vertex satisfy $f_i \leq t_i$, for $i = 1, \ldots, 4$.

▶ **Theorem 12** (Lebesgue [\[9\]](#page-6-9)). *Every 3-connected 4-regular plane graph has a vertex of type* (3*,* 3*,* 3*,* ∞)*,* (3*,* 3*,* 4*,* 11)*,* (3*,* 3*,* 5*,* 7)*, or* (3*,* 4*,* 4*,* 5)*.*

We extract a few configurations of faces from Lebesgue's criterion. A *bowtie* consists of two triangular faces intersecting at a vertex, and a *house* consists of a triangular face and a quadrangular face intersecting at an edge.

▶ **Corollary 13.** *Every 3-connected 4-regular plane graph contains a diamond, a bowtie, or a house.*

Proof. If the vertex in Theorem [12](#page-4-1) is incident with at least two triangular faces, then there is a diamond or a bowtie. Otherwise, the vertex is of type (3*,* 4*,* 4*,* 5). At least one of the quadrangular faces intersects the triangular face at an edge, forming a house.

Note that the latter two configurations are necessary: of the three configurations above, the medial graphs of the dodecahedron and cuboctahedron graphs have only bowties and houses, respectively.

▶ **Theorem 14.** *Every planar 3-connected 4-regular graph has a rational Fáry embedding.*

Proof. For each such graph *G*, we will create a diamond (if one does not already exist) by adding an edge near a triangular face, and then verify that this graph satisfies the conditions in Lemma [9.](#page-3-2) In each case, the diamond's non-central vertices will not be adjacent by Corollary [11,](#page-4-2) so it remains to show that contracting the diamond's central edge yields a graph *G*′ with a 3-elimination order. If *G* already has a diamond, then *G*′ would be connected and subquartic, so assume otherwise.

We note that in the remaining cases, the inclusion of another edge causes G' to have degree sequence $3, 4, \ldots, 4, 5$, which implies that it has too many edges to be $(2, 1)$ -sparse. Instead, we will have to specify the first few vertices of the 3-elimination order until we are able to invoke Theorem [4](#page-1-1) to generate the rest of the ordering.

38:6 Harborth's Conjecture for 4-Regular Planar Graphs

By Corollary [13,](#page-4-3) *G* must have a bowtie or a house. If there is a bowtie, let its two triangular faces be $[x, a, b]$ and $[x, c, d]$, as seen on the left of Figure [3.](#page-5-0) In the subsequent drawings, blue triangles and red pentagons denote vertices of degree 3 and 5, respectively. Suppose that the rotation at vertex *d* is (c, x, y, z) . By Corollary [11,](#page-4-2) *x* and *z* are not adjacent. Adding the edge *cz* creates a diamond where the edge *cd* is shared between two triangular faces, and vertex *d* has degree 4. After contracting *cd*, *x* and *c* are the vertices of degree 3 and 5, respectively. Let *x* be the first vertex in the 3-elimination order for *G*′ , and choose *a* and *b* to be its neighbors. The subsequent graph $(G'-x) \cup \{ab\} = G'-x$ is subquartic and connected, since it is a spanning supergraph of $G - \{x, d\}$, and *G* is 3-connected.

Figure 3 Reducing a bowtie by specifying the first vertex in the 3-elimination order.

If there is a house, label the vertices so that its two faces are $[w_1, w_\ell, b, c]$ and $[w_1, c, d]$, the rotation at vertex *d* is (c, w_1, y, z) , and $[w_1, w_2, \ldots, w_\ell]$ is the face sharing the edge $w_1 w_\ell$ with the quadrangular face. Since the graph is simple, there are four distinct neighbors of *w*1. If, say, $c = w_i$, for some $i \in \{2, \ldots, \ell - 1\}$, then deleting w_1 and c would disconnect w_2 from w_{ℓ} , contradicting the assumption that *G* is 3-connected. Similarly, $d \neq w_i$ as well. Thus, the vertices $c, d, w_1, \ldots, w_\ell$ are all distinct.

Like in the bowtie case, add the edge *cz* and contract the edge *cd*. As depicted in Figure [4,](#page-6-10) the first vertices in the 3-elimination order are w_1, w_2, \ldots, w_ℓ , where the neighbors u, u' of w_i , for each $i = 1, \ldots, \ell - 1$, are chosen to be the two that are not w_{i+1} . Each vertex w_i has degree 3 by the time it is deleted, since they each started with degree 4. For *wℓ*, we choose *b* and *c* as its neighbors. The edges *bc* and *bw*_{*l*} are in the original graph, but cw_ℓ was only added when deleting vertex *w*1.

The resulting graph is now subquartic, so it remains to check that it is connected. It is a spanning supergraph of $(G/cd) - \{w_1, \ldots, w_\ell\}$, but since $c, d \neq w_i$, we obtain the same graph if we reverse the order of these two operations. Face boundaries in 3-connected plane graphs are non-separating cycles (see, e.g., Proposition 2.4.7 of Diestel [\[4\]](#page-6-11)). Thus, deleting w_1, \ldots, w_ℓ does not disconnect the graph, and neither would contracting the edge *cd* afterwards. ◀

5 Future Directions

We showed that the solutions to certain Diophantine equations [\[2,](#page-6-4) [8\]](#page-6-2) can be used to construct rational Fáry embeddings for all 4-regular planar graphs. However, the proof of Theorem [2](#page-0-0) is quite complicated and does not give an explicit method for calculating the locations of such points. Is there a simpler construction, perhaps exploiting the additional condition that vertices are placed at rational coordinates?

Because the proof of Theorem [5](#page-1-0) possibly applies a rotation to a Fáry embedding, the vertices are not guaranteed to be at rational coordinates. Is it possible to use the proof technique for 3-connected graphs (or other methods) to find fully rational Fáry embeddings in the low connectivity case?

Figure 4 Reducing a house by transforming the quadrangular face into a triangular one.

Finally, Harborth's conjecture is still wide open. Are there any methods for finding a point at rational distance to families of five-point sets? What other interesting families of graphs, especially those with $3n - O(1)$ edges, have 3-elimination orders?

References

- **1** Vladimir I. Benediktovich. On rational approximation of a geometric graph. *Discrete Mathematics*, 313(20):2061–2064, 2013. [doi:10.1016/J.DISC.2013.06.018](https://doi.org/10.1016/J.DISC.2013.06.018).
- **2** T. G. Berry. Points at rational distance from the vertices of a triangle. *Acta Arithmetica*, 62:391–398, 1992.
- **3** Therese Biedl. Drawing some planar graphs with integer edge-lengths. In *Canadian Conference on Computational Geometry*, pages 291–296, 2011.
- **4** Reinhard Diestel. *Graph Theory*, volume 173. Springer, 2017.
- 5 Artūras Dubickas. On some rational triangles. *Mediterranean Journal of Mathematics*, 9(1):95–103, 2012.
- **6** István Fáry. On straight-line representation of planar graphs. *Acta Sci. Math. (Szeged)*, 11:229–233, 1948.
- **7** Jim Geelen, Anjie Guo, and David McKinnon. Straight line embeddings of cubic planar graphs with integer edge lengths. *Journal of Graph Theory*, 58(3):270–274, 2008. [doi:](https://doi.org/10.1002/JGT.20304) [10.1002/JGT.20304](https://doi.org/10.1002/JGT.20304).
- **8** Arnfried Kemnitz and Heiko Harborth. Plane integral drawings of planar graphs. *Discrete Mathematics*, 236:191–195, 2001. [doi:10.1016/S0012-365X\(00\)00442-8](https://doi.org/10.1016/S0012-365X(00)00442-8).
- **9** Henri Lebesgue. Quelques conséquences simples de la formule d'Euler. *Journal de Mathématiques Pures et Appliquées*, 19(1-4):27–43, 1940.
- **10** Tamara Mchedlidze, Martin Nöllenburg, and Ignaz Rutter. Drawing planar graphs with a prescribed inner face. In *International Symposium on Graph Drawing*, pages 316–327. Springer, 2013. [doi:10.1007/978-3-319-03841-4_28](https://doi.org/10.1007/978-3-319-03841-4_28).
- **11** Anthony Nixon and John Owen. An inductive construction of (2*,* 1)-tight graphs. *arXiv preprint arXiv:1103.2967*, 2011.
- **12** Sherman K. Stein. Convex maps. *Proceedings of the American Mathematical Society*, 2(3):464– 466, 1951.

38:8 Harborth's Conjecture for 4-Regular Planar Graphs

- **13** Timothy Sun. Rigidity-theoretic constructions of integral Fary embeddings. In *Canadian Conference on Computational Geometry*, pages 287–290, 2011.
- **14** Timothy Sun. Drawing some 4-regular planar graphs with integer edge lengths. In *Canadian Conference on Computational Geometry*, pages 193–198, 2013.
- **15** Klaus Wagner. Bemerkungen zum Vierfarbenproblem. *Jahresbericht der Deutschen Mathematiker-Vereinigung*, 46:26–32, 1936.

A (2*,* **1)-sparse graphs have 3-elimination orders**

Figure 5 A potential dead end in a graph with a 3-elimination order.

The original proof in [\[3\]](#page-6-5) attempts to show that (2*,* 1)-sparse graphs have 3-elimination orders via induction. In particular, the inductive step claimed that when deleting a vertex v_1 of degree 3, adding *any* edge between its neighbors still results in a $(2, 1)$ -sparse graph. Figure [5](#page-7-4) illustrates a case where the choice of neighbors is important: deleting vertex v_1 and adding an edge between its neighbors *u* and *u'* create a 4-regular component. Consequently, this new graph is not $(2, 1)$ -sparse and does not have a 3-elimination order, even though the original graph is connected and subquartic.

Given a subset of vertices $X \subseteq V$, let $e(X)$ denote the number of edges in the subgraph induced by *X*. In this notation, a graph is $(2, 1)$ -sparse if for all nonempty $X \subseteq V$, $e(X) \leq 2|X| - 1$. The key argument in the following proof is due to Nixon and Owen [\[11\]](#page-6-12), who used it to characterize the (2, 1)-sparse graphs *G* with exactly $|E(G)| = 2|V(G)| - 1$ edges.

▶ **Lemma 15** (Biedl [\[3\]](#page-6-5))**.** *Every* (2*,* 1)*-sparse graph has a 3-elimination order.*

Proof. We induct on the number of vertices. Given a (2*,* 1)-sparse graph *G*, the result is true when *G* has one vertex. Since *G* has average degree strictly less than 4, there is a vertex *v* of degree at most 3. If *v* has degree at most 2, or has degree 3 and two of its neighbors are adjacent, then $G - v$ is also (2, 1)-sparse by definition. The remaining case is when v has degree 3, and none of its neighbors w_1, w_2, w_3 are adjacent.

We show that there is at least one choice of neighbors w_i and w_j such that $(G-v) \cup \{w_i w_j\}$ is still $(2, 1)$ -sparse. Assume that no such choice exists, so that for each pair of neighbors w_i and w_j , there is a subset of vertices X_{ij} such that $v \notin X_{ij}$, $w_i, w_j \in X_{ij}$, and $e(X_{ij}) = 2|X_{ij}| - 1$ (i.e., a subset that cannot afford having another edge). Then, consider the subgraph induced by $X' = X_{12} \cup X_{23} \cup \{v\}$. This graph has

$$
e(X') = e(X_{12} \cup X_{23}) + 3
$$

= $e(X_{12}) + e(X_{23}) - e(X_{12} \cap X_{23}) + 3$
= $(2|X_{12}| - 1) + (2|X_{23}| - 1) - e(X_{12} \cap X_{23}) + 3$
 $\geq (2|X_{12}| - 1) + (2|X_{23}| - 1) - (2|X_{12} \cap X_{23}| - 1) + 3$
= $2|X_{12} \cup X_{23}| + 2$
= $2|X'|$

edges, violating (2, 1)-sparseness. The inequality relies on the fact that $X_{12} \cap X_{23}$ is nonempty (since w_2 is in it), which allows us to apply the definition of $(2, 1)$ -sparseness to it. \blacktriangleleft