
Morphing Planar Graph Drawings via Orthogonal
Box Drawings
Therese Biedl #

University of Waterloo, Canada

Anna Lubiw #

University of Waterloo, Canada

Jack Spalding-Jamieson #

University of Waterloo, Canada

Abstract
We give an algorithm to morph planar graph drawings that achieves small grid size at the expense of
allowing a constant number of bends on each edge. The input is an n-vertex planar graph and two
planar straight-line drawings of the graph on an O(n) × O(n) grid. The planarity-preserving morph
is composed of O(n) linear morphs between successive pairs of drawings, each on an O(n) × O(n)
grid with a constant number of bends per edge. The algorithm to compute the morph runs in O(n2)
time on a word RAM model with standard arithmetic operations – in particular no square roots or
cube roots are required.

The first step of the algorithm is to morph each input drawing to a planar orthogonal box
drawing where vertices are represented by boxes and each edge is drawn as a horizontal or vertical
segment. The second step is to morph between planar orthogonal box drawings. This is done by
extending known techniques for morphing planar orthogonal drawings with point vertices.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases morphing, graph morphing, linear morph, planar graph drawing, orthogonal
box drawing, orthogonal drawing, algorithm

Digital Object Identifier 10.4230/LIPIcs.GD.2024.40

Related Version This work has appeared as the third author’s Master’s thesis.
Thesis: https://hdl.handle.net/10012/20172
Full Version: https://arxiv.org/abs/2409.04074

Funding Therese Biedl: Research supported by NSERC FRN RGPIN-2020-03958.
Anna Lubiw: Research supported by NSERC.

1 Introduction

Algorithms to compute a straight-line drawing of a planar n-vertex graph on an O(n) × O(n)
grid have been known since the 1980’s [7, 12], but it is an open problem to achieve such
straight-line small-grid results for planar graph morphing. To make this precise, let P and
Q be two planar straight-line drawings of a graph G that are compatible, meaning that
they have the same faces and the same outer face. A linear morph sequence from P to Q

is a sequence of explicit intermediate drawings of G starting with P and ending with
Q. By taking a linear morph, i.e., a linear interpolation of vertex positions, between each
successive pair of explicit intermediate drawings, we obtain a continuous piece-wise linear
morph from P to Q indexed by time t ∈ [0, 1]. The morph is planarity-preserving if the
drawing at every time t ∈ [0, 1] is planar. A straight-line drawing of a graph lies on a grid
if the points representing the vertices lie at grid points; in case edges are drawn as poly-lines
with bends, the bends must also lie at grid points. The following problem is open:

© Therese Biedl, Anna Lubiw, and Jack Spalding-Jamieson;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Graph Drawing and Network Visualization (GD 2024).
Editors: Stefan Felsner and Karsten Klein; Article No. 40; pp. 40:1–40:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:biedl@uwaterloo.ca
https://orcid.org/0000-0002-9003-3783
mailto:alubiw@uwaterloo.ca
https://orcid.org/0000-0002-2338-361X
mailto:jacketsj@gmail.com
https://orcid.org/0000-0002-1209-4345
https://doi.org/10.4230/LIPIcs.GD.2024.40
https://hdl.handle.net/10012/20172
https://arxiv.org/abs/2409.04074
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Morphing Planar Graph Drawings via Orthogonal Box Drawings

▶ Open Problem. For a planar graph G with n vertices and a compatible pair of planar
straight-line drawings P and Q of G on an O(n) × O(n) grid, is there a planarity-preserving
piece-wise linear morph from P to Q where each explicit intermediate drawing is a straight-line
drawing on an O(n) × O(n) grid?

The morphing algorithm of Alamdari, Angelini, Barrera-Cruz, Chan, Da Lozzo, Di
Battista, Frati, Haxell, Lubiw, Patrignani, Roselli, Singla, and Wilkinson [1] – which is based
on Cairns’ edge contraction method – finds a planarity-preserving linear morph sequence of
length O(n) but with no guarantee on the grid size of the explicit intermediate drawings. In
fact, the vertex coordinates are computed using cube roots on a real RAM model, and vertices
may become almost coincident to imitate edge contractions. The recent morphing algorithm
of Erickson and Lin [9] achieves the same bound of O(n) linear morphs for the subclass of
3-connected graphs and avoids the edge-contraction paradigm by following Floater’s method
of interpolating the matrix of barycentric coordinates/weights. However, computing the
barycentric weights requires square roots, and, even if that were avoided, the reliance on
Tutte/Floater drawings means that the vertex coordinates can require Ω(n) bits of precision,
and thus a grid of size Ω(2n × 2n) [8]. The open problem was solved for the special case of
Schnyder drawings by Barrera-Cruz, Haxell, and Lubiw [2].

Note that the Open Problem asks about the existence of a small-grid morph, regardless
of algorithmic considerations. Of course, one would also like a fast algorithm to find the
morph, and current research has been much more successful with regard to run-time than
grid-size. The general morphing algorithm of Alamdari et al. [1] runs in O(n3) time. This
was improved to O(n2 log n), and to O(n2) for 2-connected graphs, by Klemz [10]. The
morphing algorithm of Erickson and Lin [9], which involves solving linear systems and only
applies to 3-connected graphs, runs in O(n1+ω/2) time, where ω < 2.371552 is the matrix
multiplication exponent [14]. Note that a runtime of O(n2) is optimal if all the explicit
intermediate drawings must be given as output, since Ω(n) such drawings may be required [1].

We approach the Open Problem by insisting that explicit intermediate drawings lie on an
O(n) × O(n) grid, but we relax the condition that edges be drawn as straight line segments,
and allow a constant number of bends per edge. Our main result is as follows.

▶ Theorem 1. Let G be a connected planar graph with n vertices. For a compatible pair
of planar straight-line drawings P and Q of G on an O(n) × O(n) grid, there exists a
planarity-preserving linear morph sequence from P to Q of length O(n), where each explicit
intermediate drawing lies on an O(n) × O(n) grid and has O(1) bends per edge. Moreover,
this sequence can be found in O(n2) time.

This result improves the algorithm of Lubiw and Petrick [11] that finds a linear morph
sequence of length O(n6) with explicit intermediate drawings on an O(n3) × O(n3) grid
with O(n5) bends per edge and has run-time O(n6). Besides the bad bounds, the algorithm
introduces bends at non-grid points, which our present result avoids.

For Theorem 1, the way we keep vertices of the explicit intermediate drawings on the
grid is to impose an even stronger condition that every edge is drawn as a poly-line with
all segments along grid lines (in particular, orthogonal) except for the two segments at its
endpoints. The non-orthogonal segments incident to a vertex will live in an orthogonal
rectangle called a box. Expressed differently, the first step of the algorithm is to morph each
of the input straight-line drawings to a planar orthogonal box drawing where a vertex
is represented by a box, and an edge is drawn as an orthogonal poly-line, a sequence of
horizontal and vertical segments, joining two vertex boxes. See Figure 1. In this way, we
reduce our problem to the problem of morphing planar orthogonal box drawings. In fact, we
only need the special case where the input orthogonal box drawings have no bends.

T. Biedl, A. Lubiw, and J. Spalding-Jamieson 40:3

Our second main result is an algorithm to find a planarity-preserving morph between two
compatible planar orthogonal box drawings. For a precise definition of such a morph, see
Section 1.1. When the drawings lie on a small grid with few bends, our analysis of grid size,
bends, and run-time allows us to prove Theorem 1.

▶ Theorem 2. Let G be a connected planar graph with n vertices. If P and Q are a compatible
pair of planar orthogonal box drawings of G on an O(n) × O(n) grid with O(1) bends per
edge, then there exists a planarity-preserving linear morph sequence from P to Q of length
O(n) where each explicit intermediate drawing is an orthogonal box drawing that lies on an
O(n) × O(n) grid with O(1) bends. Moreover, this sequence can be found in O(n2) time.

We prove Theorem 2 by building on algorithms to morph between planar orthogonal
drawings where a vertex is drawn as a point and an edge is drawn as an orthogonal poly-line, a
more limited setting since vertices must have degree at most 4. For these algorithms, n is the
number of vertices plus bends. The algorithm of Biedl, Lubiw, Petrick, and Spriggs [4] uses
O(n2) linear morphs and runs in O(n3) time. Van Goethem, Speckmann, and Verbeek [13]
improved the number of linear morphs to O(n) by performing operations simultaneously,
however without a run-time analysis. We follow the two phases of Biedl et al.: (1) morph so
that for each directed edge, its sequence of directions of edge segments (ignoring segment
lengths) is the same in both drawings; and (2) morph between such “parallel” orthogonal
graph drawings. We use the second phase as-is. However, we must do some work to extend
the first phase to the setting of orthogonal box drawings, and to improve the number of
linear morphs to O(n) by performing many operations simultaneously as in Van Goethem et
al., while keeping the grid size small and the run-time fast.

1.1 Preliminaries
Most graph drawing methods represent the vertices as points. In a straight line drawing an
edge is drawn as a line segment between the vertex points, whereas in a poly-line drawing
an edge is drawn as a simple poly-line – a non-self-intersecting path of line segments joined
at bends.

In a linear morph from drawing P to Q, the position of a defining point representing
a vertex or bend is linearly interpolated between its position in P and in Q, so the point
travels on a straight line at constant speed. A unidirectional morph is a special case of a
linear morph where the lines along which the points move are all parallel. In a horizontal
[vertical] morph, these lines are horizontal [vertical].

Our algorithm works with poly-line drawings, and the algorithm may add degenerate
bends at existing vertices/bends or at a grid point along an edge segment. The algorithm
may also delete such degenerate bends. We separate the steps of a linear morph sequence
into: steps that add/delete degenerate bends; and steps that linearly interpolate between
drawings that have the same number of bends along every edge, in which case their orders of
appearance along the edge in the two drawings determines their correspondence.

In an orthogonal point drawing vertices are represented by points and edges by
orthogonal poly-lines. In an orthogonal box drawing a vertex is represented by a positive
area box with two horizontal sides and two vertical sides, and edges are represented by
orthogonal poly-lines. The point where an edge attaches to a vertex box is called a port.
An orthogonal box drawing is planar if there are no extraneous feature intersections: no
coincident ports, no intersecting vertex boxes, no intersections between an edge and another
edge, no intersection between an edge and a vertex box except at a port. One exception is
that we will allow a port at a corner of a vertex box. For orthogonal box drawings, there is
one more type of degenerate bend in addition to those defined above: a bend at a port.

GD 2024

40:4 Morphing Planar Graph Drawings via Orthogonal Box Drawings

Reduction

a b

c

d

b

a

c d

a

b

c d

a b

c

d

(B) (H)

(A)
(J)

Figure 1 The two straight-line point drawings (A) and (J) are (respectively) morphed to admitted
drawings of the orthogonal box drawings (B) and (H), by introducing two bends to each edge. A
morph from (B) to (H) (see the relevant part of Figure 2) then induces a morph from (A) to (J).

Phase Ia

Phase Ib

Twist

Elim
3 more twists
and elims

Phase Ic

Phase II

a b

c

d

a

b

c d

a b

c

d

a

b

c

d

a

b

c d

a b

c

d

a b

c

d

a b

c

d

(G)

(B)

(C)

(D)

(E)

(I)

(F)

(H)

Figure 2 Morphing between orthogonal box drawings where one drawing has bends. The input
drawings are (B) and (I). Phase Ia morphs (B) to (C), port-aligned with (I). Phase Ib morphs (C)
to (D) and (I) to (H), eliminating zig-zags. In (D) we need 4 clockwise twists of b to match spirality
with (H). Twisting once morphs (D) to (E), and eliminating zig-zags gives (F). Three more twists
and zig-zag eliminations give (G), which is morphed to the parallel drawing (H) in Phase II.

T. Biedl, A. Lubiw, and J. Spalding-Jamieson 40:5

We use the following relationship between box drawings and poly-line drawings. Any
planar orthogonal box drawing has a corresponding planar admitted poly-line drawing,
where the vertex box is replaced by a vertex point at the center of the box joined by straight
segments to the ports, which become bends in the edges. Thus an edge drawn with k bends
in the orthogonal box drawing becomes an edge with k + 2 bends in the admitted drawing.
Figure 2 shows extra segments for the admitted drawings with dotted lines.

A morph of an orthogonal box drawing D is specified in terms of its defining points
which are the vertex box corners, the ports, and the edge bends. In a linear morph between
two orthogonal box drawings the positions of the defining points are linearly interpolated.
We restrict to structure-preserving linear morphs that meet the following conditions:
1. At every time during the morph the positions of the four corners of a vertex box determine

a vertex rectangle which is a rectangle of positive area, though not necessarily with
horizontal and vertical sides, and ports stay attached to their vertex rectangle.

2. For an edge from u to v, every segment along the edge remains orthogonal (horizontal or
vertical) and does not change its direction (upward, downward, rightward or leftward). If
a segment has length zero at a strictly intermediate time during the morph, then it has
length zero throughout the morph.

By allowing non-axis-aligned vertex rectangles in condition (1) we can “twist” a square vertex
box as shown in Figure 31. The figure shows a clockwise twist where each corner moves to
the position of its clockwise neighbouring corner, so two of the corners move horizontally
and the other two move vertically. Ports and bends may move non-orthogonally. Twists will
be defined formally in Section 4.3.1. Apart from twists, all our morphs of orthogonal box
drawings will in fact be horizontal or vertical.

Figure 3 An example of a twist at a vertex box. Red arrows show motion to come; dashed
portions show past motion.

A linear morph of an orthogonal box drawing is planarity-preserving if the drawing
is planar at every time during the morph. When we say a planarity-preserving linear
morph of an orthogonal box drawing we always mean that the morph is also structure-
preserving. We prove in Section 3 that a planarity-preserving linear morph of an orthogonal
box drawing induces a planarity-preserving linear morph of its admitted poly-line drawing.

We morph orthogonal box drawings using a sequence of intermediate goals. Two orthogonal
box drawings of the same graph are port-aligned if, for each vertex v, when we compare the
two vertex boxes representing v, then for every side (top, bottom, right left) the sequence of
edges attached to that side of the vertex box is the same in both drawings. Two drawings
without degenerate bends are parallel if they are port aligned and for every directed edge
the two directed poly-lines representing the edge have the same sequence of left/right turns.
To make drawings parallel, we use twists and zig-zag eliminations (to be defined), where a
zig-zag is a sequence of two opposite turns, left then right, or right then left.

1 This is similar to the “rotation” steps used to morph rectangular duals [5].

GD 2024

40:6 Morphing Planar Graph Drawings via Orthogonal Box Drawings

2 Algorithm Overview

This section gives the main steps of the algorithm that will prove Theorem 1. The input is a
pair of compatible straight-line planar drawings of a graph G on n vertices.

▶ Algorithm 1 (Reduction to orthogonal box drawings).

Morph each of the straight-line drawings to an admitted poly-line drawing of an orthogonal
box drawing in which edges are drawn as single horizontal/vertical segments. See Figure 1
for an example. We prove in Lemma 3 that a morph of an orthogonal box drawing induces a
morph of its admitted poly-line drawing, so this step reduces the problem to that of morphing
orthogonal box drawings with zero bends per edge. Details of the reduction are in Section 3.

▶ Algorithm 2 (Morphing between planar orthogonal box drawings).

The input consists of a pair of compatible planar orthogonal box drawings P and Q of a
graph G on n vertices. P and Q may have bends, which is more general than the output of
Algorithm 1. We describe steps of the morph “from both ends”, modifying P and Q until
they meet in the middle, which is legitimate since linear morphs are reversible.

Phase I: Morph P and Q to become parallel. Building on the approach of Biedl et al. [4]
for the case of orthogonal point drawings, we use the following steps:
Phase Ia: Morph P to become port-aligned with Q. This adds bends in edges of P .
Phase Ib: Morph P and Q to eliminate zig-zags. (In the situation required to prove

Theorem 1, Q has no bends and thus no zig-zags.)
Phase Ic: Morph P so that for every directed edge the difference between its number

of left and right turns (the “spirality”) is the same in P as in Q, while preserving
port-alignment. This is accomplished via twists, which are interspersed with zig-zag
eliminations. We use the property that if P and Q are port-aligned with matching
spirality and no zig-zags or degenerate bends, then they are parallel.

Details of Phase I can be found in Section 4.
Phase II: Morph between the two parallel orthogonal box drawings. To do this, we imagine

ports, corners, and bends as vertices and appeal directly to the result of Biedl et al. [4]
for morphing parallel orthogonal point drawings. See the full version for details.

See Figure 2 for a sketch of all these steps. Although most of the detailed proofs that
our morphs are planarity-preserving appear only in the full version, it is worth noting that,
apart from twists (which are handled in Section 4.3.1) and the reduction to orthogonal box
drawings, all of our morphs are horizontal or vertical, which simplifies the task. We prove in
the full version that a horizontal morph between planar orthogonal box drawings P and Q is
planarity-preserving so long as every horizontal line intersects the same sequence of defining
points and edge/box segments.

3 Reduction to Orthogonal Box Drawings

In this section we morph a straight-line planar graph drawing to an admitted poly-line
drawing of an orthogonal box drawing, and we prove that a morph between two orthogonal
box drawings induces a morph between their admitted drawings. In all cases “morph” means
satisfying all our conditions, as detailed below. We begin with the second result:

T. Biedl, A. Lubiw, and J. Spalding-Jamieson 40:7

▶ Lemma 3. Let P and Q be planar orthogonal box drawings of the same graph. Let P ′ and
Q′ be the admitted planar poly-line drawings of P and Q, respectively. Suppose there is a
planarity-preserving linear morph from P to Q. Then the linear morph from P ′ to Q′ is also
planarity-preserving.

The idea is that a linear combination is preserved throughout a linear morph, and the
center of a vertex box/rectangle is a linear combination (the average) of the four corners.
For details, see the full version.

We now turn to the problem of morphing a straight-line planar drawing to an admitted
drawing of an orthogonal box drawing.

▶ Theorem 4. Let P be a planar straight-line drawing of a graph G with n vertices drawn
on an O(n) × O(n) integer grid. Then there is a planar orthogonal box drawing D of G

on an O(n) × O(n) grid with no bends, and there is a planarity-preserving linear morph
sequence of length O(n) from P to P ′, the admitted poly-line drawing of D, where each
explicit intermediate drawing lies on an O(n) × O(n) grid. Moreover, this sequence can be
computed in O(n2) time.

(a) (b) (c)

Figure 4 (a) a straight-line drawing P ; (b) the corresponding orthogonal box drawing D and
admitted drawing P ′ with every vertex at the same y-coordinate as in P ; (c) adding two bends to
each edge of P would allow a horizontal morph to P ′, but this is forbidden since the bends are not
on the grid.

We prove Theorem 4 in two steps: (1) construct an orthogonal box drawing D with
certain properties as described below; (2) show how to morph from P to P ′.

For (1) a vertex v of P at y-coordinate c will be replaced in D by a vertex box that is
skinny in the y-direction: we add a new grid line just below c and a new grid line just above
c and construct a vertex box between these new grid lines. Adding the grid lines refines the
grid in the y direction by a factor of 3. See Figure 4. The properties for D are that edges
have no bends, each vertex has the same y-coordinate in P and in the refined grid of P ′, and
every horizontal line intersects the same sequence of edges in P and P ′. We construct D in
O(n log n) time by turning an existence result due to Biedl [3] into an efficient algorithm. Her
result says that any planar straight-line drawing can be redrawn so that each vertex becomes
a horizontal segment (or “bar”) with the same y-coordinate, and each non-horizontal edge
becomes a vertical segment incident to the bars representing its endpoints, while maintaining
the order of edges and vertices crossed by any horizontal line. Thickening the vertex bars to
boxes gives the result we need. For details, see the full version.

For (2), we show how to morph from P to the admitted drawing P ′. It would be straight-
forward to add degenerate bends where each edge crosses the newly added horizontal grid
lines (see Figure 4(c)), and perform a single horizontal morph to move those bends to the
position of the corresponding ports. However, our rule is that new bends can only be added

GD 2024

40:8 Morphing Planar Graph Drawings via Orthogonal Box Drawings

at grid points, so we are forced to a more complicated solution. Imagine P ′ drawn strictly to
the left of P . Order the edges and vertices of P left-to-right, with priority given to edges.
One by one, in this order, pull the edges and vertices of P to their positions in P ′. To handle
one edge of P we add two new bends at its endpoints, and morph them to the positions of
the corresponding ports. See Figure 5 for a sketch of the algorithm and the full version for
more details.

one operation for each
remaining edge/vertex. . .

Figure 5 Morphing from a straight-line drawing on the right to (the admitted drawing of) an
orthogonal box drawing on the left by moving edges/vertices one-by-one. Each pane shows the newly
morphed edge/vertex in red.

4 Morphing Orthogonal Box Drawings

This section contains the algorithm to morph between orthogonal box drawings (Algorithm 2).
The algorithm works for any two compatible planar orthogonal box drawings, but the bounds
needed to prove our main theorem (number of linear morphs, run-time, grid size, and number
of bends) apply only when the input drawings lie on an O(n) × O(n) grid and have O(1)
bends per edge. Informally, we call these small drawings but lemma statements are precise.
Let f(D) denote the number of defining points of orthogonal box drawing D. A count of
box corners, ports, and bends shows that f(D) is O(n) if the number of bends is O(n).

Recall from Section 2 that the algorithm has two phases. Phase I morphs the drawings P

and Q to become parallel, and is described in this section. Phase II morphs between the
resulting parallel drawings, and is deferred to the full version, since it follows directly from
Biedl et al. [4].

Phase Ia, port alignment, is in Section 4.1. Port aligned drawings are parallel if each
directed edge has the same sequence of left/right turns in both drawings. Following Biedl
et al. [4], we define the spirality of a directed orthogonal poly-line to be its number of left
turns minus its number of right turns2 ignoring degenerate bends. An edge drawn without
zig-zags has only left turns or only right turns. Thus if the two drawings of an edge have the
same spirality, no degenerate bends, and no zig-zags, then they have the same sequence of
left/right turns. We eliminate zig-zags in Section 4.2 and adjust spirality in Section 4.3. A
main novel contribution is the twist operation for boxes in Section 4.3.1.

4.1 Phase Ia: Port Alignment
We morph P to be port-aligned with Q by successively “turning” a port around the corner of
a vertex box as shown in Figure 6. Each turn operation uses O(1) planarity-preserving linear
morphs, and adds 3 bends and 3 grid lines. We prove in the full version that O(1) such turn

2 This is different from the definition of spirality in [13].

T. Biedl, A. Lubiw, and J. Spalding-Jamieson 40:9

b2 b3

b1 p

b2

b3

pb1

b2

p

b3

b1

b2

p

b3

b1

Figure 6 A sketch of how a port can be morphed around a corner by introducing 3 bends bi and
3 new grid lines (in red).

operations per edge suffice. For small drawings, we use in total O(n) linear morphs, and
remain on an O(n) × O(n) grid with O(1) bends per edge. The run-time is O(n2). Note that
a port may be coincident with a corner of a vertex box in explicit intermediate drawings.
However, after Phase Ia, we never allow a port at a corner.

4.2 Phase Ib: Zig-zag Elimination
Zig-zag elimination is used in Phases Ib and Ic. It performs a sequence of horizontal and
vertical morphs to get rid of all the zig-zags in an orthogonal box drawing, and produces
a drawing D with grid size f(D). This is O(n) if each edge has O(1) bends, but the exact
bound f(D) will be important when we apply zig-zag elimination O(n) times in Phase Ic.

In Phase Ib, we apply zig-zag elimination once to P , and, if necessary, once to Q. Note
that during Phase I, the drawing Q is altered only in Phase Ib, and is not altered at all in
the situation arising from Theorem 1.

A zig-zag is horizontal [vertical] if the segment between the two turns is horizontal
[vertical]. Biedl et al. [4] were the first to show that a horizontal linear morph can be used to
eliminate one horizontal zig-zag in an orthogonal point drawing. Figure 7 shows the idea as
applied to an orthogonal box drawing. Van Goethem et al. [13] observed that all horizontal
zig-zags in a drawing P can be eliminated simultaneously with a single horizontal linear
morph to a drawing P ′. Their result also applies to orthogonal box drawings, but we must
improve the grid size and runtime, see below.

Figure 7 An orthogonal box drawing with a horizontal zig-zag, and the zig-zag elimination that
converts its segment into two coinciding degenerate bends.

One could determine P ′ by pretending to perform O(n) individual zig-zag eliminations
in P , but this would be too slow and result in a large grid. Instead we compute P ′ via
compaction techniques. We encode the relative x-order of all maximal vertical segments of

GD 2024

40:10 Morphing Planar Graph Drawings via Orthogonal Box Drawings

(a) A drawing P with a vertical zig-zag
and no horizontal zig-zags.

(b) A drawing P ′ with a horizontal zig-zag resulting
from a zig-zag elimination on P .

Figure 8 An example of a vertical zig-zag elimination that results a new horizontal zig-zag.

a drawing P in an auxiliary directed acyclic graph GT (P) of size at most f(P). Then we
modify GT (P) to capture that the segments of horizontal zig-zags must vanish, and determine
the target-drawing P ′ simply by computing longest paths in GT (P) to get the x-coordinates
of defining points (y-coordinates remain unchanged). Graph GT (P) can be computed in
O(n log n) time using a so-called trapezoidal map; the run-time can be reduced to O(n) when
P represents a connected graph using Chazelle’s triangulation results [6]. The computed
x-coordinates are at most the number of defining points of P ′, not counting degenerate bends
(which we are about to eliminate). More details of this morph to eliminate all horizontal
zig-zags are given in the full version.

By repeatedly eliminating horizontal zig-zags and then eliminating vertical zig-zags we
can eliminate all zig-zags, which yields the main result of this section:

▶ Lemma 5. Let G be a planar graph with n vertices. Let P be a planar orthogonal box
drawing of G on an O(n) × O(n) grid with O(1) bends per edge. Then there is a planarity-
preserving linear morph sequence of length O(1) from P to a zig-zag-free orthogonal box
drawing P ′ with the same port alignment and edge spiralities as P such that P ′ is drawn on
an f(P ′) × f(P ′) (hence O(n) × O(n)) grid. Furthermore, during the linear morph sequence,
the number of bends never increases, and the width and height of the grid may increase but
never beyond f(P). Finally, the linear morph sequence can be computed in O(n) time.

Proof. Repeat the following four steps (a “round”) until no bends have been removed for an
entire round:
1. eliminate all horizontal zig-zags with one horizontal morph as described above,
2. remove degenerate bends,
3. eliminate all vertical zig-zags with one vertical morph,
4. remove degenerate bends.

Note that we need multiple rounds in general because eliminating vertical zig-zags may
create horizontal ones, and vice versa (see Figure 8). Except for the last round, each round
eliminates at least one zig-zag – and thus at least two bends – from every edge that has
zig-zags. No bends are ever added. Thus the number of rounds (hence also the number of
morphs) is O(1). Each drawing in the linear morph sequence can be computed in O(n) time,
so the run-time to compute all of them is also in O(n).

Each morph preserves port alignment and edge spiralities. Steps 1 and 2 do not change
the grid height and result in a drawing of width at most the (current) number of defining
points, which is at most the initial number f(P). Symmetrically, steps 3 and 4 do not change
the grid width and result in a drawing of height at most the current number of defining
points, which is at most f(P). At the end, the final drawing P ′ lies on an f(P ′) × f(P ′) grid
since the last round did not decrease the number of defining points. ◀

T. Biedl, A. Lubiw, and J. Spalding-Jamieson 40:11

4.3 Phase Ic: Adjusting Spirality
In Phase Ic we morph P so that the spirality of each edge matches its spirality in Q. The
basic operation we use is a “twist”, a morph that essentially turns all the ports around a
vertex box: in a clockwise twist the ports on the top of the box become ports on the right,
while ports on the right become ports on the bottom, and so on around the box. (Note that
doing this by turning edges around corners as in Section 4.1 would require a linear number
of morphs.) We describe twists in Section 4.3.1.

How do twists adjust spirality? We will see that a clockwise twist of a vertex box adds two
left turns and one right turn to all edges leaving the vertex box. This guides the calculation
of how many twists to apply at each vertex box. We also need a multiple of four twists
for each vertex box in order to maintain port alignment. The question of how many twists
to apply and what order to apply them in is addressed in Section 4.3.2. We also keep the
drawing zig-zag free, and on a small grid.

4.3.1 Performing twists
In this section we focus on how to perform one twist simultaneously on a set of vertex boxes.
We need a preliminary set-up step that makes all the vertex boxes square and clears some
space around them. More precisely, the k-proximal region of the vertex box of vertex v

consists of all points within L∞ distance k · deg(v) from the box, where deg(v) is the degree
of v (thus the k-proximal region is a rectangle formed by enlarged the vertex box by k · deg(v)
on each side). The vertex boxes of a drawing are k-spaced if their k-proximal regions are
disjoint and the only edge segments intersecting a k-proximal region are those incident to the
vertex box. With a constant number of linear morphs we can make all vertex boxes square
and 2-spaced (as shown in the first pane of Figure 9), while keeping the drawing port-aligned,
and preserving the spirality of each edge. See the full version.

We next describe how to take an orthogonal box drawing that has square 2-spaced vertex
boxes, and perform one twist of one vertex box. The twist will only alter the drawing inside
the 2-proximal region of the vertex box, so we can twist multiple vertices simultaneously, see
Lemma 7 below.

A clockwise twist operation is defined as follows, see Figure 9. (Counterclockwise twists
are defined analogously.) Let v be a vertex of degree deg(v) and let S be its square vertex
box. In the first step of the morph we add 3 degenerate bends in each edge incident to S.
The second step is the actual linear morph. We give exact coordinates for the bends added
to the ith edge ei (in clockwise order) that is attached to the top side of S, say at port pi.
Other coordinates are analogous. Bend bi,1 is placed at pi. Bends bi,2 and bi,3 are placed on
the edge ei, at distance deg(v) + i above pi.

During the linear morph, each corner of S moves to the next clockwise corner. Each port
on S is a linear combination of two box corners; this is maintained throughout the morph. It
remains to describe the positions of the bends. As before, we give exact coordinates only for
edge ei attached to the top side. Let p′

i be the new position for port pi. Bend bi,3 does not
move, so b′

i,3 = bi,3. Bend bi,1 moves to a point b′
i,1 that is i units to the right of p′

i. Bend
bi,2 moves horizontally to a point b′

i,2 directly above b′
i,1.

▶ Lemma 6. The clockwise twist is structure-preserving and planarity-preserving.

Proof outline. We need only focus on the 2-proximal region of S. We first show that the
twist is structure-preserving. Because S is square, it remains square throughout the morph.
Also, each port stays attached to its side of S. The edge segment pibi,1 remains horizontal,

GD 2024

40:12 Morphing Planar Graph Drawings via Orthogonal Box Drawings

Figure 9 Performing a clockwise twist. Bends are drawn as small red circles. The top left box
corner (marked with a hollow circle) moves to the top right.

starting at length zero and ending at length i. Segment bi,1bi,2 remains vertical of positive
length, and segment bi,2bi,3 remains horizontal, starting at length zero and ending at positive
length.

We next show that the twist is planarity-preserving. It follows from the above that edges
do not intersect the vertex box during the morph. It remains to show that no two edges
intersect. For edges incident to the same side (say the top side) of S, observe that: the
vertical segments bi,1bi,2 maintain their left-to-right ordering; the horizontal segments bi,2bi,3
remain at constant, distinct y-coordinates, and the horizontal segments pibi,1 maintain their
top-to-bottom ordering. For edges incident to different sides of S, we define four disjoint
subregions of the 2-proximal region of S as shown in Figure 10, and argue that edges remain in
their subregion as we morph the edges and the subregions (details are in the full version). ◀

Because a twist does not change the drawing outside the 2-proximal region of a vertex box,
we can indeed (as promised before) twist multiple vertices simultaneously, which immediately
gives the following:

▶ Lemma 7. Let G be a connected planar graph with n vertices. Let P be a planar
orthogonal box drawing of G drawn on an O(n) × O(n) grid with O(1) bends per edge. Let
t : V (G) → {−1, 0, 1} specify the twists to be performed at vertices, where −1 indicates a
clockwise twist and 1 indicates a counterclockwise twist. Then there is a planarity-preserving
sequence of length O(1) from P to an orthogonal box drawing P ′ that effects the twists of t,
where each explicit intermediate drawing is drawn on an O(n) × O(n) grid with O(1) bends
per edge. Moreover, the linear morph sequence can be computed in O(n2) time.

T. Biedl, A. Lubiw, and J. Spalding-Jamieson 40:13

Figure 10 The subregion of the 2-proximal region of S corresponding to the top side of an initial
box, throughout the morph.

4.3.2 Planning twists
There are two aspects to planning twists in P : (1) decide how many twists to perform at
each vertex box; and (2) schedule the twists into rounds where each round twists each vertex
box at most once, so that one round can be performed simultaneously as in Lemma 7. For
(1) we solve a set of equations, the same as in Biedl et al. [4]. Step (2) is new, as are the
improved bounds on the number of linear morphs and the grid size that complete Phase Ic.

Numbers of twists. We need some notation. For edge e = uv and any orthogonal box
drawing D, let sD(u, v) denote the spirality of the edge in D. Our goal is to morph P

(while leaving Q unchanged) until for every edge uv its spirality difference, ∆sP (u, v) :=
sP (u, v)−sQ(u, v), becomes zero. The final P must also be port-aligned with Q (equivalently,
port-aligned with the initial P), although this need not be true of the explicit intermediate
drawings. These two conditions together constitute the requirements for our twists.

Observe that a clockwise twist (as defined in the previous section) at u’s vertex box
adds two left turns and one right turn to every edge leaving u, for a net change of +1 in
the spirality of edges uv leaving u, and a net change of −1 for edges vu entering u. These
are reversed for a counterclockwise twist. For example, if ∆sP (u, v) is positive, we should
apply counterclockwise twists to u and/or clockwise twists to v. For vertex v, let t(v) be the
number of twists to be performed on v’s vertex box in P , where a positive value indicates
counterclockwise twists and a negative value indicates clockwise twists. Necessary and
sufficient conditions to meet the requirements for our twists are:

for each edge uv ∆sP (u, v) = t(u) − t(v) (1)
for each vertex v t(v) ≡ 0 mod 4 (2)

▶ Lemma 8. A solution to the above equations with |t(v)| ∈ O(n) can be found in O(n) time.

Proof outline. The lemma was proved by Biedl et al. [4] for orthogonal point drawings. As
a main ingredient, they prove that it suffices to impose condition (2) for a single vertex v0,
and to impose condition (1) for the edges of a spanning tree T rooted at v0. The idea is
that a non-tree edge e creates a cycle with T which corresponds to a face of the drawing.
Condition (1) is then proved for e using the fact that a planar orthogonal cycle has 4 more
right turns than left turns when traversed clockwise. We prove that this main ingredient
carries over to orthogonal box drawings – the difference is that a face of the point drawing
has edges meeting at vertices, whereas a face of a box drawing contains portions of box sides.
See the full version.

GD 2024

40:14 Morphing Planar Graph Drawings via Orthogonal Box Drawings

Given this main ingredient, we assign t(v0) := 0, and assign t(v) to be t(v0) plus the sum
of the spirality differences on edges of the path from v0 to v in T . This takes O(n) time, and
gives t(v) ∈ O(n) since the spirality difference of each edge is constant. ◀

Allocating twists to rounds. We allocate the twists t(v) to rounds ri, where i ranges from
1 to k := maxv |t(v)| so that each vertex box is twisted at most once in each round. For
vertex v, we put its twists into rounds 1 through |t(v)|.

Algorithm for Phase Ic. Let P ′
0 := P . For i = 1, . . . , k, perform the simultaneous twists of

round ri on input P ′
i−1 according to Lemma 7 to obtain Pi, and then do zig-zag elimination

on Pi according to Lemma 5 to obtain P ′
i . Output P ′

k.

Analyzing the algorithm. Note that the algorithm does O(n) linear morphs. It remains
to bound the grid size, the number of bends, and the run-time for Phase Ic. Since zig-zag
elimination is called O(n) times it becomes important to give absolute bounds to avoid hiding
a “growing constant” inside the O(n) bound on grid size. The main idea is to analyze the
number of bends, since that determines the grid size after zig-zag elimination.

▶ Lemma 9. There are constants c and d, independent of i, such that Pi and P ′
i , i = 1, . . . , k

lie on a grid of size cn × cn with at most d bends per edge.

Proof. We first prove a bound on bends for P ′
i for i = 0, . . . , k. The drawing P ′

i is zig-zag-free
so the number of bends on edge uv is the absolute value of its spirality, which is the same
as in Pi since zig-zag elimination preserves spirality (Lemma 5). Our method of allocating
twists to rounds ensures that the spirality of an edge stays the same except during a constant
number of rounds where it improves. More formally:

▷ Claim 10 (Proof in the full version). After each round of simultaneous twists, the spirality
of an edge remains the same or gets closer to its spirality in Q, i.e., sPi

(u, v) lies in the closed
interval between sPi−1(u, v) and sQ(u, v).

Thus |sPi
(u, v)| ≤ max{|sP (u, v)|, |sQ(u, v)|} which is bounded by some constant d′ since

edges in P and Q each have a constant number of bends.
We now turn to the grid size. For i = 0, . . . , k drawing P ′

i is the result of applying
Lemma 5 and hence its grid size is f(P ′

i) × f(P ′
i), where f(P ′

i) is the number of defining
points of P ′

i . Counting box corners, ports and bends, gives f(P ′
i) ≤ 4n + 2m + d′m, where G

has m ≤ 3n − 6 edges, so f(P ′
i) ≤ c′n for some c′ ≤ 10 + 3d′. Pi is obtained from P ′

i−1 by
applying one round of simultaneous twists as in Lemma 7. This may add a constant term to
the bound d′ on the number of bends, and may increase the bound c′n × c′n on the grid size
by a constant factor, which gives the final values of d and c. ◀

We summarize Phase Ic as follows:

▶ Lemma 11. Let G be a connected planar graph with n vertices. Let P and Q be compatible
port-aligned zig-zag-free planar orthogonal box drawings of G on an O(n) × O(n) grid with
O(1) bends per edge. Then there is a planarity-preserving linear morph sequence of length
O(n) from P to a zig-zag-free orthogonal box drawing P ′ with the same port-alignment and
edge spiralities as Q (thus P ′ and Q are parallel) such that all explicit intermediate drawings
are on an O(n) × O(n) grid with O(1) bends per edge. Moreover, the linear morph sequence
can be computed in O(n2) time.

T. Biedl, A. Lubiw, and J. Spalding-Jamieson 40:15

5 Conclusions

We have now assembled all the ingredients for proving our two main theorems. In summary,
Theorem 2 (morphing planar orthogonal box drawings) is proved by the steps of Algorithm 2:
Phase Ia (port-alignment) is sketched in Section 4.1, with details in the full version; Phase Ib
(zig-zag elimination in both drawings) is handled by Lemma 5; Phase Ic (spirality) is handled
by Lemma 11; and Phase II (morphing parallel drawings) simply appeals to [4] (details are
in the full version).

Theorem 1 (morphing straight-line drawings on a small grid) is proved by the reduction
to morphing orthogonal box drawings (see Theorem 4 in Section 3) plus Theorem 2.

In conclusion, our main result is an algorithm to morph compatible planar straight-line
drawings with a linear number of linear morphs for which all explicit intermediate drawings
lie on small grids, have few bends per edge, and can be computed quickly. Extending the
result to disconnected graphs involves further details, and is left for future work.

The biggest remaining open problem is the one from the introduction: Is there a piece-wise
linear morph with small explicit intermediate drawings without bends? If so, can we limit to
a short linear morph sequence? And if not, can we at least limit the number of bends per
edge to a very small constant, such as 1 or 2?

References
1 Soroush Alamdari, Patrizio Angelini, Fidel Barrera-Cruz, Timothy M Chan, Giordano Da

Lozzo, Giuseppe Di Battista, Fabrizio Frati, Penny Haxell, Anna Lubiw, Maurizio Patrignani,
Vincenzo Roselli, Sahil Singla, and Bryan T Wilkinson. How to morph planar graph drawings.
SIAM Journal on Computing, 46(2):824–852, 2017. doi:10.1137/16M1069171.

2 Fidel Barrera-Cruz, Penny Haxell, and Anna Lubiw. Morphing Schnyder drawings of
planar triangulations. Discrete & Computational Geometry, 61:161–184, 2019. doi:
10.1007/s00454-018-0018-9.

3 Therese Biedl. Height-preserving transformations of planar graph drawings. In Christian
Duncan and Antonios Symvonis, editors, Graph Drawing: 22nd International Symposium, GD
2014, Würzburg, Germany, September 24-26, 2014, pages 380–391, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg. doi:10.1007/978-3-662-45803-7_32.

4 Therese Biedl, Anna Lubiw, Mark Petrick, and Michael Spriggs. Morphing orthogonal
planar graph drawings. ACM Transactions on Algorithms (TALG), 9(4):1–24, 2013. doi:
10.1145/2500118.

5 Steven Chaplick, Philipp Kindermann, Jonathan Klawitter, Ignaz Rutter, and Alexander Wolff.
Morphing rectangular duals. In Graph Drawing and Network Visualization: 30th International
Symposium, GD 2022, Tokyo, Japan, September 13–16, 2022, pages 389–403. Springer, 2023.
doi:10.1007/978-3-031-22203-0_28.

6 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational
Geometry, 6(3):485–524, 1991. doi:10.1007/BF02574703.

7 Hubert De Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a
grid. Combinatorica, 10:41–51, 1990. doi:10.1007/BF02122694.

8 Giuseppe Di Battista and Fabrizio Frati. From Tutte to Floater and Gotsman: on the resolution
of planar straight-line drawings and morphs. In Graph Drawing and Network Visualization:
29th International Symposium, GD 2021, Tübingen, Germany, September 14–17, 2021, pages
109–122. Springer, 2021. doi:10.1007/978-3-030-92931-2_8.

9 Jeff Erickson and Patrick Lin. Planar and toroidal morphs made easier. Journal of Graph
Algorithms and Applications, 27(2):95–118, 2023. doi:10.7155/jgaa.00616.

GD 2024

https://doi.org/10.1137/16M1069171
https://doi.org/10.1007/s00454-018-0018-9
https://doi.org/10.1007/s00454-018-0018-9
https://doi.org/10.1007/978-3-662-45803-7_32
https://doi.org/10.1145/2500118
https://doi.org/10.1145/2500118
https://doi.org/10.1007/978-3-031-22203-0_28
https://doi.org/10.1007/BF02574703
https://doi.org/10.1007/BF02122694
https://doi.org/10.1007/978-3-030-92931-2_8
https://doi.org/10.7155/jgaa.00616

40:16 Morphing Planar Graph Drawings via Orthogonal Box Drawings

10 Boris Klemz. Convex Drawings of Hierarchical Graphs in Linear Time, with Applications to
Planar Graph Morphing. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th
Annual European Symposium on Algorithms (ESA 2021), volume 204 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 57:1–57:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.ESA.2021.57.

11 Anna Lubiw and Mark Petrick. Morphing planar graph drawings with bent edges. Journal of
Graph Algorithms and Applications, 15(2):205–227, 2011. URL: https://jgaa.info/index.
php/jgaa/article/view/paper223/2737, doi:10.7155/JGAA.00223.

12 Walter Schnyder. Embedding planar graphs on the grid. In SODA ’90: Proceedings of the
First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 138–148, 1990. URL:
https://dl.acm.org/doi/pdf/10.5555/320176.320191.

13 Arthur van Goethem, Bettina Speckmann, and Kevin Verbeek. Optimal morphs of planar
orthogonal drawings. Journal of Computational Geometry, 13(1):263–297, 2022. doi:10.
20382/jocg.v13i1a11.

14 Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds
for matrix multiplication: from alpha to omega. In Proceedings of the 2024 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 3792–3835, 2024. doi:10.1137/1.
9781611977912.134.

https://doi.org/10.4230/LIPIcs.ESA.2021.57
https://jgaa.info/index.php/jgaa/article/view/paper223/2737
https://jgaa.info/index.php/jgaa/article/view/paper223/2737
https://doi.org/10.7155/JGAA.00223
https://dl.acm.org/doi/pdf/10.5555/320176.320191
https://doi.org/10.20382/jocg.v13i1a11
https://doi.org/10.20382/jocg.v13i1a11
https://doi.org/10.1137/1.9781611977912.134
https://doi.org/10.1137/1.9781611977912.134

	1 Introduction
	1.1 Preliminaries

	2 Algorithm Overview
	3 Reduction to Orthogonal Box Drawings
	4 Morphing Orthogonal Box Drawings
	4.1 Phase Ia: Port Alignment
	4.2 Phase Ib: Zig-zag Elimination
	4.3 Phase Ic: Adjusting Spirality
	4.3.1 Performing twists
	4.3.2 Planning twists

	5 Conclusions

