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Abstract
A typical question in graph drawing is to determine, for a given graph drawing style, the boundary
between polynomial-time solvability and NP-hardness. For two examples from the area of drawing
graphs with few slopes, we sharpen this boundary. We suggest a framework for a certain type of
NP-hardness constructions where graphs have some parts that can only be realized as rigid structures,
whereas other parts allow a controllable degree of flexibility. Starting with an NP-complete problem
involving planarity (here, we use planar monotone rectilinear 3-SAT), we consider first a reduction
to a planar graph, which can be adjusted to an outerplanar graph, and finally to an outerpath.
An outerplanar graph is a graph admitting an outerplanar drawing, that is, a crossing-free drawing
where every vertex lies on the outer face, and an outerpath is a graph admitting an outerplanar
drawing where the weak dual is a path. The (weak) dual of a graph drawing is the graph that has a
node for every (inner) face and a link if two faces share an edge.

Specifically, we first show that, for every upward-planar directed outerpath G, it is NP-hard
to decide whether G admits an upward-planar straight-line drawing where every edge has one of
three distinct slopes, and we second show that, for every undirected outerpath G, it is NP-hard to
decide whether G admits a proper level-planar straight-line drawing where every edge has one of
two distinct slopes. For both problems, NP-hardness has been known before for outerplanar graphs.
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1 The Framework

Consider a problem where the input is a graph G with specific properties and the task is to
draw G in a specific drawing style without crossings. When reducing from planar monotone
rectilinear 3-SAT [2], we model variables by variable gadgets, and clauses by clause gadgets.
The gadgets are subgraphs of G that can only be drawn in a specific way – the boundaries
(/frames/skeletons) are rigid building blocks, while other parts can be drawn with a small
degree of flexibility allowing a mapping of truth values to variable gadgets and a crossing-free
drawing of a clause gadget only if the clause is satisfied. First, we construct G such that it is
planar and connected by following the planar incidence graph of the 3-SAT instance.

Second, we try to make G an outerplanar graph G′ while the reduction remains applicable.
To this end, we add gaps to the rigid boundary such that every vertex in a drawing of G′

lies on the outer face but G′ stays connected. Note that not every NP-hardness construction
in this flavor is directly suited here because the rigid and flexible structures should be “thin”.

Third, we try to make G′ an outerpath G′′ while the reduction remains applicable. To this
end, we trace the boundary of the embedding of G′. Note that this boundary is a cycle that
encounters every vertex of G′. Replace the boundary by a chain of the same rigid building

© Joshua Geis and Johannes Zink;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Graph Drawing and Network Visualization (GD 2024).
Editors: Stefan Felsner and Karsten Klein; Article No. 42; pp. 42:1–42:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zink@informatik.uni-wuerzburg.de
https://www.informatik.uni-wuerzburg.de/en/algo/team/zink-johannes/
https://orcid.org/0000-0002-7398-718X
https://doi.org/10.4230/LIPIcs.GD.2024.42
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


42:2 From Planar via Outerplanar to Outerpath – Engineering NP-Hardness Constructions

blocks as before (just “smaller”). For the flexible parts, one needs to carefully re-design them
as (multiple parts of) outerpaths such that the functionality in the reduction is preserved.
We keep a gap in the boundary such that the weak dual is not a wheel graph but a path.

2 Upward-Planar 3-Slope Drawings

An upward-planar graph is a directed graph that admits a planar drawing where every
directed edge uv is drawn as a y-monotone curve such that y(u) < y(v). Determining for a
directed graph whether it is upward planar is NP-hard in general [4], but polynomial-time
solvable if an embedding is given [1] or if the input graph is outerplanar [13]. We consider the
setting of straight-line drawings with a limited number of slopes. Determining the minimum
number of slopes is ∃R-hard for undirected and directed graphs [7, 14]. For three slopes
(w.l.o.g., 45, 90, 135 degrees w.r.t. the x-axis), Klawitter and Zink [9, 10] observe that a
specific (sub)graph can only be drawn as a square with a diagonal (we call them rigid square
here). Using them as the rigid structure, and using as the flexible structure sliders, which
are two parallel edges attached to rigid squares that can extend only in one dimension, they
show NP-hardness for directed outerplanar graphs. We extend their result as follows.

▶ Theorem 1. Given a directed outerpath G, which optionally can be equipped with an upward-
planar outerpath embedding, it is NP-hard to decide whether G admits an upward-planar
straight-line drawing where every edge has one of three distinct slopes.

According to the framework, we arrange rigid squares and triangles along the boundary.
We replace each slider by two sliders that are attached to two chains of rigid squares that are
twisted into each other such that we cannot move the two sliders much and the replacement
of the slider behaves like the original. For details see the theses by Geis [5] and Zink [15].

3 Proper Level-Planar 2-Slope Drawings

A level-planar graph drawing is crossing free and every vertex is placed at a specific level
(levels are equidistant horizontal lines). A level-planar drawing is proper if, for every edge e,
the endpoints of e lie on consecutive levels. The setting where a leveling of the vertices
is given in addition to the graph is most common. This is testing upward planarity with
prescribed y-coordinates, which is polynomial-time solvable [3, 6, 8]. We focus on the case of
straight-line edges with a limited set of slopes. Brückner, Krisam, and Mchedlidze show for
this case that deciding if a graph given with a leveling and an arbitrary number of slopes
admits a level-planar drawing can be solved in polynomial time if the leveling is proper, but
otherwise it is NP-hard even for just two slopes. Here, we study the case where no leveling (or
edge directions) are given but the generated drawing shall be proper. The problem becomes
NP-hard with two slopes even for outerplanar graphs as shown by Kraus [11]. Again, squares
are used as rigid structure and the flexible structure are edges going either a level up or down,
and edges having either the first or the second slope. We extend this result to outerpaths.

▶ Theorem 2. Given an outerpath G, it is NP-hard to decide whether G admits a proper
level-planar straight-line drawing where every edge has one of two distinct slopes.
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4 Conclusion and Open Questions

The framework seems to be suited for settings with a small number of edge slopes or edge
lengths. The two NP-hardness constructions presented here are very similar to each other and
to Nöllenburg’s [12] NP-hardness proof for planar octilinear metro maps. However, it is not
obvious how to change his construction to work for outerplanar graphs or even outerpaths.
Are there more examples of graph drawing problems where NP-hardness for (outer)planar
graphs is known, while the “simpler” trees and cactus graphs are polynomial-time solvable,
and the known construction can be adjusted to outerplanar graphs or outerpaths?
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