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Abstract
In cased drawings of graphs, edges are drawn in front of others in order to decrease the negative
impact of crossings on readability. In this context, a switch on an edge is defined as two consecutive
crossings, where the edge is drawn in the front at one crossing and behind another edge at the
next crossing. We investigate the problem of minimizing the maximum number of switches on any
edge – both in a fixed drawing as well as for non-embedded graphs. We resolve an open question
by Eppstein, van Kreveld, Mumford, and Speckmann (2009) by establishing the NP-hardness of
minimizing the number of switches in a fixed drawing, provide a fixed-parameter algorithm for this
problem, and obtain a full characterization of the problem for non-embedded graphs.
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1 Introduction

Edge casing is a frequently used visual rendering method to improve the readability of
crossings in non-planar graph drawings. In a cased drawing – introduced by Eppstein et
al. [2] – two crossing edges are locally ordered into an upper and a lower edge and the curve
representing the lower edge (called the tunnel) is locally interrupted to let the upper edge
(called the bridge) pass through the created gap. This can be particularly important for
graph drawings with regions of high feature density and many edge crossings, which, in
non-cased drawings, are hard to discern from the small disk symbols typically representing
the vertices; see Figure 1.

(a) (b)

Figure 1 (a) A drawing of a graph with crossings; (b) The same drawing with edge casing.
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43:2 Minimizing Switches in Cased Graph Drawings
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Figure 2 Cased drawing of K5; the close-up shows a tunnel, bridge, and switch of the black edge.

Eppstein et al. defined several optimization problems, either concerning the number,
length, or distance of the tunnels per edge, or concerning the number of switches, which are
pairs of consecutive crossings of an edge e, one of which is a tunnel for e and the other one a
bridge (see Figure 2). We revisit cased drawings and focus on the problem of minimizing the
number of switches.

2 Results

We resolve an open question of Eppstein et al. [2] on the complexity of the MinMaxSwitches
problem of minimizing the maximum number of switches per edge for a given graph drawing.
We show that this problem is NP-complete even when the target number of switches per
edge is 1, i.e., when we need to decide whether a given drawing δG can be embedded with
at most 1 switch per edge. On the other hand, it is known that deciding whether δG can
be embedded with 0 switches per edge is polynomial-time solvable [2]. We complement our
hardness proof with a fixed-parameter algorithm. The structure of the input graph can be
assumed to be trivial as every instance can be transformed into an equivalent matching.
Therefore, we use the vertex cover number of the cell adjacency graph of the input drawing
as a parameter. All results obtained also directly carry over to the straight-line setting.

▶ Theorem 1. MinMaxSwitches is NP-complete.

Proof Sketch. Inclusion in NP is immediate; we show hardness by reducing from NAE
3-SAT, i.e., the NP-complete variant of 3-SAT where clauses are required to contain at least
one satisfied and at least one unsatisfied literal [4]. ◀

The structural parameter we use to achieve our tractability result is the vertex cover
number ℓ of χG. The cell adjacency graph χG = (F , E′) is the graph, whose vertices are
precisely the cells F of δG (i.e., the connected regions of R2 \ δG) and where two cells are
adjacent if and only they touch, i.e., share a edge segment or crossing on their boundary.

▶ Theorem 2. MinMaxSwitches is fixed-parameter tractable when parameterized by the
vertex cover number ℓ of χG.

Proof Sketch. Two reduction rules are applied. First, remove any edge e with at most 2
crossings. Secondly, split the drawing into bridgeless subproblems. A drawing δG is bridgeless
if there is no edge segment between two crossing points whose removal would disconnect δG.
We claim that – after exhaustively applying the aforementioned reduction rules – the size of
the obtained kernel is upper-bounded by O(ℓ4). ◀
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Moreover, following the definition of k-gap-planar graphs by Bae et al. [1], we define a
graph to be k-switch-planar if it admits a cased drawing with at most k switches per edge.
We give a full characterization of this notion. Recall that a graph G is biplanar if it has
thickness at most 2, i.e., its edge set can be partitioned into two planar subgraphs.

▶ Theorem 3. A graph G is 0-switch-planar if and only if it is biplanar.

Theorem 3 implies that determining whether a graph admits a cased drawing without
switches is NP-complete, as this is the case for testing a graph for biplanarity [3].

▶ Theorem 4. Every graph G is 1-switch-planar.
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