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Abstract
Given a rooted binary tree T and a tuple (w, h), we wish to test whether there exists a strict

upward drawing of T on a w × h grid; that is, a planar grid drawing with straight-line edges where
every vertex has a strictly lower y-coordinate than its parent.

Biedl and Mondal [2] prove that this problem is NP-hard for general trees; their construction
crucially uses nodes of very high degree. Akatiya et al [1] prove that the problem is also NP-hard for
binary trees with a fixed combinatorial embedding; their construction crucially relies on the fixed
embedding. Both pose the question for binary trees and a free embedding as an open problem.

Here, we show that this problem is also NP-hard.
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1 Result

▶ Theorem 1. Testing whether a rooted binary tree T admits a strict upward planar embedding
on a w × h grid is NP-complete.

We reduce from monotone not-all-equal-3SAT, which is NP-hard by Schaefer’s dichotomy
theorem [3]. In this problem, we are given a n variables and m clauses (triples of variables,
since negative literals do not occur), and we need to find a variable assignment such that all
variables in each clause are neither all true nor all false.

Given a 3SAT formula, we set w = n + 4 and h = n + 4m + 1 and construct a tree T as
follows.
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Figure 1 (left) Three embeddings of the permutation gadget. (right) The three clause patterns.

Variables are represented by paths in T of length h. In a strict upward drawing, these
paths must have one vertex on every row of the grid.

The top n + 1 rows contain the permutation gadget. In the ith row, we can choose to
place the path representing xi either on the left or on the right, which encodes the true and
false states of xi. We also add a dummy variable xn+1, which has no truth assignment.
Refer to Figure 1 (left).
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The vertices in the n + 1st row, and thus the paths hanging from them, have 2n possible
permutations. Specifically, these permutations have all true variables to the left with
increasing indices, and all false variables to the right with decreasing indices; these groups
are separated by xn+1.

Clauses
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Figure 2 The clause gadget can be embedded if not both outermost paths use pattern A.

Each clause is represented by four rows, which we index 1—4; we also refer to the last
row of the previous gadget as row 0. A clause (xa, xb, xc) with a < b < c is encoded using
the four paths for xa, xb, xc, and xn+1. Each of these has 3 additional vertices in one or
two subtrees, for 12 additional vertices in total. The total width of the construction is n + 4;
there are three “empty columns”, giving 12 empty spots in these four rows. Our gadget will
allow us to fill exactly these spots if and only if the clause is satisfied. We use 3 different
patterns for attaching the additional vertices, where we use the same pattern for both xa

and xn+1. Refer to Figure 1 (right).

▶ Lemma 2. There is a valid embedding if and only if the two outermost patterns are not
both A.

Proof sketch. For the “if” part, refer to Figure 2 for example valid embeddings. For the
“only if” part, when both outermost paths use pattern A, then both of them must fill rows
1, 2, and 3 of the gadget, which leaves three empty spots in row 4 but only two remaining
paths, which is impossible. ◀

Note that the variable assignment in which xa, xb, and xc are all true results in the
permutaton xa, xb, xc, xn+1, and the assignment in which they are all false results in the
symmetric permutaton xn+1, xc, xb, xa, both of which have xa and xn+1 on the outside,
and all other variable assignments will not have xn+1 on the outside. Therefore, by Lemma 2
we encode exactly the not-all-equal property of a clause.

Full construction

Our full construction (refer to accompanying poster for an example) uses straight paths
without additional vertices for each variable that is not part of a clause. The correctness
relies the ability of these paths to not influence the gadget.

▶ Lemma 3. The presence or absence of any vertical paths separating the four subtrees in a
clause gadget has no influence on the satisfiability of the gadget.

We also need the clause gadgets to be independent; that is, additional vertices in one
clause gadget should not fill empty spots in different gadgets.

▶ Lemma 4. The entire construction can be embedded if and only if each clause can be
individually satisfied.
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2 Future Work

Our construction relies critically on the strictness of the drawings. What is the complexity
of finding non-strict upward planar embeddings of trees on a given grid?
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