
Strict Upward Planar Grid Drawings of Binary
Trees with Minimal Area
Maarten Löffler #

Utrecht University, The Netherlands

Abstract
Given a rooted binary tree T and a tuple (w, h), we wish to test whether there exists a strict

upward drawing of T on a w × h grid; that is, a planar grid drawing with straight-line edges where
every vertex has a strictly lower y-coordinate than its parent.

Biedl and Mondal [2] prove that this problem is NP-hard for general trees; their construction
crucially uses nodes of very high degree. Akatiya et al [1] prove that the problem is also NP-hard for
binary trees with a fixed combinatorial embedding; their construction crucially relies on the fixed
embedding. Both pose the question for binary trees and a free embedding as an open problem.

Here, we show that this problem is also NP-hard.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Upward drawings, grid drawings, minimal area

Digital Object Identifier 10.4230/LIPIcs.GD.2024.47

Category Poster Abstract

1 Result

▶ Theorem 1. Testing whether a rooted binary tree T admits a strict upward planar embedding
on a w × h grid is NP-complete.

We reduce from monotone not-all-equal-3SAT, which is NP-hard by Schaefer’s dichotomy
theorem [3]. In this problem, we are given a n variables and m clauses (triples of variables,
since negative literals do not occur), and we need to find a variable assignment such that all
variables in each clause are neither all true nor all false.

Given a 3SAT formula, we set w = n + 4 and h = n + 4m + 1 and construct a tree T as
follows.

Variables

x1x2 x3 x4x5 x6x1 x2 x3 x4 x5 x6 x1x2x3x4x5x6

xa and xn+1

pattern A pattern B pattern C

xb xc

row 0

row 1

row 2

row 3

row 4

Figure 1 (left) Three embeddings of the permutation gadget. (right) The three clause patterns.

Variables are represented by paths in T of length h. In a strict upward drawing, these
paths must have one vertex on every row of the grid.

The top n + 1 rows contain the permutation gadget. In the ith row, we can choose to
place the path representing xi either on the left or on the right, which encodes the true and
false states of xi. We also add a dummy variable xn+1, which has no truth assignment.
Refer to Figure 1 (left).

© Maarten Löffler;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Graph Drawing and Network Visualization (GD 2024).
Editors: Stefan Felsner and Karsten Klein; Article No. 47; pp. 47:1–47:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.loffler@uu.nl
https://orcid.org/0009-0001-9403-8856
https://doi.org/10.4230/LIPIcs.GD.2024.47
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


47:2 Strict Upward Planar Grid Drawings of Binary Trees with Minimal Area

The vertices in the n + 1st row, and thus the paths hanging from them, have 2n possible
permutations. Specifically, these permutations have all true variables to the left with
increasing indices, and all false variables to the right with decreasing indices; these groups
are separated by xn+1.

Clauses

valid permutations invalid permutation

? ??

A A C BA A CB A A CB A AC B A B AC

Figure 2 The clause gadget can be embedded if not both outermost paths use pattern A.

Each clause is represented by four rows, which we index 1—4; we also refer to the last
row of the previous gadget as row 0. A clause (xa, xb, xc) with a < b < c is encoded using
the four paths for xa, xb, xc, and xn+1. Each of these has 3 additional vertices in one or
two subtrees, for 12 additional vertices in total. The total width of the construction is n + 4;
there are three “empty columns”, giving 12 empty spots in these four rows. Our gadget will
allow us to fill exactly these spots if and only if the clause is satisfied. We use 3 different
patterns for attaching the additional vertices, where we use the same pattern for both xa

and xn+1. Refer to Figure 1 (right).

▶ Lemma 2. There is a valid embedding if and only if the two outermost patterns are not
both A.

Proof sketch. For the “if” part, refer to Figure 2 for example valid embeddings. For the
“only if” part, when both outermost paths use pattern A, then both of them must fill rows
1, 2, and 3 of the gadget, which leaves three empty spots in row 4 but only two remaining
paths, which is impossible. ◀

Note that the variable assignment in which xa, xb, and xc are all true results in the
permutaton xa, xb, xc, xn+1, and the assignment in which they are all false results in the
symmetric permutaton xn+1, xc, xb, xa, both of which have xa and xn+1 on the outside,
and all other variable assignments will not have xn+1 on the outside. Therefore, by Lemma 2
we encode exactly the not-all-equal property of a clause.

Full construction

Our full construction (refer to accompanying poster for an example) uses straight paths
without additional vertices for each variable that is not part of a clause. The correctness
relies the ability of these paths to not influence the gadget.

▶ Lemma 3. The presence or absence of any vertical paths separating the four subtrees in a
clause gadget has no influence on the satisfiability of the gadget.

We also need the clause gadgets to be independent; that is, additional vertices in one
clause gadget should not fill empty spots in different gadgets.

▶ Lemma 4. The entire construction can be embedded if and only if each clause can be
individually satisfied.



M. Löffler 47:3

2 Future Work

Our construction relies critically on the strictness of the drawings. What is the complexity
of finding non-strict upward planar embeddings of trees on a given grid?

References
1 Hugo Akitaya, Maarten Löffler, and Irene Parada. How to fit a tree in a box. Graphs and

Combinatorics, 2022.
2 Therese Biedl and Debajyoti Mondal. On upward drawings of trees on a given grid. In Fabrizio

Frati and Kwan-Liu Ma, editors, Graph Drawing and Network Visualization, pages 318–325,
Cham, 2018. Springer International Publishing.

3 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226, New York, NY,
USA, 1978. Association for Computing Machinery. doi:10.1145/800133.804350.

GD 2024

https://doi.org/10.1145/800133.804350

	1 Result
	2 Future Work

