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Abstract
We consider three simple quadratic-time algorithms for Level Planarity and give a level-planar
instance that they either falsely classify as negative or for which they output a non-planar drawing.
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1 Introduction

Given a graph G = (V, E) and a level assignment ℓ : V (G) → N, the problem Level
Planarity asks for a crossing-free drawing of G where vertices have their prescribed level
as y-coordinate and all edges are y-monotone. When initially considering the problem in
1988, Di Battista and Nardelli [1] gave a linear-time algorithm for the restricted case where
the graph is a hierarchy, i.e., only one vertex has no neighbors on a lower level. A subsequent
attempt to extend this algorithm to the general case [7] was shown to be incomplete [10].
Jünger et al. finally gave the first linear-time algorithm for testing [11] and embedding [8, 9]
level graphs around the turn of the millennium. Because this algorithm is quite involved,
slower but simpler algorithms were developed by Randerath et al. [12], Healy and Kuusik [6],
as well as Harrigan and Healy [5] in the decade thereafter. All these algorithms consider
the pairwise ordering of vertices on the same level, greedily fixing an order for a (certain)
pair and then checking for further orders implied by this. If the process terminates without
finding a contradiction, we obtain a total vertex order for each level and thereby a level
planar embedding. In the following, we give a level-planar counterexample that each known
variant of this algorithm either incorrectly classifies as negative instance or correctly identifies
as positive instance but outputs a drawing that is not planar. To the best of our knowledge,
this leaves no correct simple embedding algorithm for level graphs. In particular, we are not
aware of any correct implementation for embedding level-planar graphs.

Randerath et al. use an explicit 2-SAT formulation for the pairwise orders of vertices on
the same level. Due to known gaps in the proof of Randerath et al., Brückner et al. [2, 3]
showed this characterization via a 2-SAT formula is equivalent to the Hanani-Tutte-style
characterization of Level Planarity [4]. Thereby, our counterexample only breaks the
proof of correctness as well as the embedder by Randerath et al., while their 2-SAT formulation
still yields a correct test for Level Planarity via this indirect proof [2, 3].
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2 Randerath et al.

The algorithm by Randerath et al. [12] works as follows. First, edges spanning multiple levels
are subdivided such that subsequently edges only occur between adjacent levels, resulting
in a proper level graph. The planarity of the resulting graph is then tested using a 2-SAT
formula. The formula contains a variable (a < b) for every pair a, b of vertices that appear
on the same level, encoding the relative order of these two vertices. For every pair of edges
uv, xy ∈ E with ℓ(u) = ℓ(x) = ℓ(v) + 1 = ℓ(y) + 1 with u ̸= x, v ̸= y it adds the 2-SAT
constraint (u < x) ⇔ (v < y). Combining this with the constraints for antisymmetry
((a < b) ⇔ ¬(b < a)) and transitivity ((a < b) ∧ (b < c) ⇒ (a < c)) necessary for finding
total orders yields a 3-SAT formula. However, Randerath et al. [12] show that omitting the
transitivity constraints yields an equisatisfiable 2-SAT formula. To prove this equivalence,
they show that the 2-SAT formula can be used to compute a level-planar embedding of the
input graph. They greedily pick and assign equivalence classes of the formula in arbitrary
order, but prioritize transitive closures where possible. Figure 1 shows a counterexample
where the algorithm gives a false-negative answer when assigning classes in the shown order.

3 Healy and Kuusik & Harrigan and Healy

The algorithms by Healy and Kuusik [6] as well as the one by Harrigan and Healy [5] uses a
similar concept. Instead of working with equivalence classes of a 2-SAT formula, they work
with connected components of the closely related vertex exchange graph (ve-graph). This
graph contains one vertex for every ordered pair of vertices that appear on the same level.
Two vertices of the ve-graph are adjacent if they correspond to a pair of independent edges
between the same levels. Starting with an arbitrary drawing L of the input graph, the edges
of the ve-graph are first labeled with + or −, depending on whether the corresponding edges
cross in L. Subsequently, a DFS is used to test the ve-graph for odd-labeled cycles, which
corresponds to a contradiction within a 2-SAT equivalence class. The two algorithms now
differ slightly in how they continue to construct an embedding. Similar to Randerath et al.,
Healy and Kuusik [6] fix the orders of vertex pairs (i.e., whether all pairs of a connected
ve-graph component are swapped or not) in an arbitrary order, also performing the transitive
closure if possible. Thus, the processing order from Figure 1 also breaks this approach.

The later Harrigan and Healy approach [5] is slightly more involved. During the DFS
traversal, they already change the relative order of some vertex pairs compared to the initial
drawing L [5, Algorithm 1]. Subsequently, the ve-graph is traversed again in a specific order
and, for some vertices of L, the chosen vertex order is flipped [5, Algorithm 2]. Using choices
as shown in Figure 2, this does not yield a planar embedding even for a positive instance.
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Figure 1 (a) A level-planar graph G. (b) The green, blue, and red 2-SAT equivalence classes
can be greedily assigned in this order. Subsequently, transitive closure forces a < b as well as i < g,
but the planarity constraints force a < b ↔ f < h ↔ k < l ↔ g < i (c), yielding a contradiction.
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Figure 2 (a) An initial drawing L for Figure 1a. (b) The corresponding labeled ve-graph. Arrows
mark the chosen DFS entry points, pairs marked as swapped by Algorithm 1 are shown in gray. (c)
The processing order for the vertices of the ve-graph in Algorithm 2.
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