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Abstract
Evolutionary algorithms (EAs) are universal solvers inspired by principles of natural evolution. In
many applications, EAs produce astonishingly good solutions. To complement recent theoretical
advances in the analysis of EAs on graph drawing [1], we contribute a fundamental empirical study.

We consider the so-called One-Sided Bipartite Crossing Minimisation (OBCM): given two
layers of a bipartite graph and a fixed horizontal order of vertices on the first layer, the task is to order
the vertices on the second layer to minimise the number of edge crossings. We empirically analyse the
performance of simple EAs for OBCM and compare different mutation operators on the underlying
permutation ordering problem: exchanging two elements (exchange), swapping adjacent elements
(swap) and jumping an element to a new position (jump). EAs using jumps easily outperform all
deterministic algorithms in terms of solution quality after a reasonable number of generations. We
also design variations of the best-performing EAs to reduce the execution time for each generation.
The improved EAs can obtain the same solution quality as before and run up to 100 times faster.
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1 Empirical Performance Comparison

We study the mutations swap, exchange, and jump on a simplistic (1+1)-type EA [7], on One-
Sided Bipartite Crossing Minimisation [3]. The (1 + 1)-EAs (Swap-EA, Exchange-EA,
Jump-EA) start with a random permutation and apply the corresponding operator k times,
following a Poisson distribution with λ = 1. We also consider the randomised local search
(RLS), where we set k = 1 constant. We compare the EAs to four state-of-the-art algorithms:
The Barycenter and Median algorithms [3], Nagamochi’s algorithm [6], and a heuristic known
as Sifting [5]. Nagamochi’s algorithm gives the best theoretical approximation ratio, but its
performance was never empirically evaluated; a gap we aim to close with this work. We note
that there are other well-performing algorithms, for which evaluations are readily available.
We believe that the chosen subset is sufficient for this comparison.

We performed tests on three different instances, similar to [2]. Due to space limitations,
and as there are no significant differences, we present only the results for random instances,
with n = 100 vertices on both layers, where we added each edge with a fixed probability p.
Note that we also considered differently sized layers and increasing density p; the behaviour
of RLS/EAs was basically the same, while the other algorithms were slightly affected, most
of which was also covered in [2]. We computed the optimum solution using an ILP [4], which
can solve instances of size up to n ≈ 190. EAs and RLS perform a preprocessing step of
computing the cross table [2], which takes Θ(nm) steps.
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(a) Preprocessing is needed for Sifting and EAs/RLS.
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(b) Classical algorithms and simple EAs.
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(c) Jump variants.

Figure 1 (a) Wall-clock times averaged over the same 100 random instances with increasing n.
Evolutionary algorithms were stopped when no improvement was found throughout n1.5 subsequent
generations. The costs for initialising the crossing matrix for the EAs and the Sifting algorithm are
subtracted and shown separately. (b) & (c) Difference between the final evolved crossing number
(for EAs) or the returned crossing number (for deterministic algorithms) and the optimal crossing
number plotted over generations for classical algorithms and evolutionary algorithms. The plots
show averages taken over a suite of instances.

Previous theoretical work [1] suggests that jump is the most effective mutation operator,
which we confirm empirically. When given enough time, Jump-RLS/EA almost find nearly-
optimal solutions, see Figure 1(b). We verify with statistical significance (using the Wilcoxon
rank sum test [8]) that swaps are worse than exchange, which are in turn worse than jumps
on the tested instances. The jump-operator also clearly outperforms all other state-of-the-art
algorithms when given enough time.

While the jump-algorithms show the best performance, their running times are amongst
the highest, see Figure 1. We improve the convergence-speed of Jump-RLS by not performing
jumps at random, but by scanning for acceptable jumps (i.e. not increasing the crossings
number), which does not increase the expected running time asymptotically. We propose
three different strategies to make a choice among the acceptable moves found by the algorithm:
Performing the first acceptable jump (JFIRLS), scanning all jumps and selecting an acceptable
one uniformly at random (JRIRLS), and choosing the best jump (JSRLS). We tested the
three algorithms on the same datasets. We verified with statistical significance that the
JFIRLS is worse than the other two variants, which show roughly the same performance, see
Figure 1(c). The JRIRLS and the JSRLS converge up to 100 times faster than a normal
Jump-RLS or Jump-EA on these instances, which coincides with a factor of n.
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