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Abstract
We present a deterministic n2+o(1)-time algorithm that approximates the crossing number of any
graph G of order n up to an additive error of o(n4), as well as a randomized polynomial-time
algorithm that constructs a drawing of G with cr(G) + o(n4) crossings. These results imply a
(1 + o(1))-approximation algorithm for the crossing number of dense graphs. Our work builds on the
machinery used by Fox, Pach and Súk [10], who obtained similar results for the rectilinear crossing
number.
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1 Preliminaries and previous work

Let G be a finite simple graph. The crossing number of G, denoted by cr(G), is the minimum
number of crossing points between edges, where the minimum is taken over all drawings of
G on the plane. A straight-line drawing of G is a drawing such that each edge is represented
by a segment joining the corresponding endpoints. The rectilinear crossing number of G,
cr(G), is the least number of crossings amongst all straight-line drawings of G. Clearly,
cr(G) ≤ cr(G), and it is known that there are graphs for which the inequality is strict [5].
The crossing number and the rectilinear crossing number have been studied extensively, and
we refer the reader to the comprehensive monograph of Schaefer [17] for a review of the
existing literature and several interesting questions.

Computing the crossing number is known to be NP-complete [11], while determining the
rectilinear crossing numbers is complete for the existential theory of reals [4], and hence
NP-hard. For any fixed k, there is a linear time algorithm that decides whether cr(G) ≤ k.
In contrast, it is NP-hard to determine if cr(G) ≤ k holds. A considerable amount of work
has been put into developing approximation algorithms for both cr(G) and cr(G). A graph
drawing technique of Bhatt and Leighton [3] and the approximation algorithm for optimal
balanced cuts of Arora et al. [2] can be used to find, in polynomial time, a straight-line
drawing of any bounded degree n-vertex graph G with no more than O(log4 n(n + cr(G))
crossings. It wasn’t until several years later that Chuzhoy [6], using the edge planarization
method from [8], found a polynomial-time O(n9/10)-approximation algorithm for cr(G) for
bounded degree graphs (by this, we mean a multiplicative approximation). Building on this
method further, Kawarabayashi and Sidiropoulos [12, 13] improved the approximation ratio
to O(n1/2), and then Mahabadi and Tan [7] found a randomized O(n1/2−δ)-approximation
algorithm, where δ > 0 is a constant.
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54:2 Approximating the Crossing Number of Dense Graphs

It is well known that if an n-vertex graph G is dense (i.e., it has Ω(n2) edges) then both
cr(G) and cr(G) are of order Ω(n4) (this follows from the celebrated crossing lemma of Ajtai
at al. [1] and Leighton [14]). Fox, Pach and Suk [10] presented an algorithm that constructs
a straight-line drawing of G with cr(G) + o(n4) crossings. If G is dense then this algorithm
produces a drawing with (1 + o(1))cr(G) crossings.

2 Our results

We have obtained a close analog of the result from [10] for the crossing number.

▶ Theorem 1. There exists a deterministic n2+o(1)-time algorithm that for any given n-vertex
graph G approximates cr(G) up to an additive error of O(n4/(log log n)δ). Furthermore,
there is a randomized polynomial-time algorithm that, with probability 1 − o(1), computes a
drawing of G with cr(G) + O(n4/(log log n)δ) crossings. Here, δ denotes an absolute positive
constant.

The approximation part of the algorithm follows the same strategy as the one for rectilinear
crossing numbers:
1. We are given an n-vertex graph G = (V, E) as input.
2. Set ε = (log log n)− 1

2c for some suitable absolute constant c and find an equitable Frieze-
Kannan ε-regular partition P = {V1, V2, . . . , Vk} of G using the algorithm in [9], where
k ≤ O(2

√
log log n). This takes n2+o(1) time.

3. Construct the edge weighted graph G/P which has a vertex for each Vi and where the
edge between Vi and Vj has weight equal to the number of edges between these two sets.
Then, compute the crossing number of G/P (a crossing between edges of weights w1 and
w2 has weight w1w2) by brute force and output this quantity. This can be done in no(1)

time.

3 Overview of the proof of correctness

The main novel ingredient which makes it possible to prove the correctness of the above
algorithm is the following bound on the difference between the crossing numbers of two
graphs on the same vertex set in terms of their distance in the (labeled) cut metric. The
definition of this metric can be found, for example, in [15].

▶ Theorem 2. Let G1 and G2 be graphs with the same vertex set V . If d□(G1, G2) ≥ n−4,
then | cr(G1) − cr(G2)| ≤ Cd□(G1, G2)1/4n4, where C is an absolute constant.

Proof sketch. Start with a drawing D of G1 which attains cr(G1); we will use D as a
blueprint to construct a drawing of G2 with few crossings. After adding a node at each
crossing of D, we arrive at a planar map. By carefully and repeatedly applying a planar
cycle separator theorem due to Miller [16], along with some packing and covering arguments,
for any t ∈ (0, 1) it is possible to subdivide the plane into r = O(1/t2) connected regions
which contain no more than ⌈t2n⌉ vertices of G and satisfy the following key property: Any
vertex of G inside the region and any point on its boundary can be connected by a curve
that has no more than tn2 intersection points with the edges of the drawing that have no
endpoint in that same region.

Let P1, P2, . . . , Pr denote the sets of vertices within each of the r regions of the subdivision.
As long as d□(G1, G2) is small, the number of edges between Pi and Pj will be similar in
G1 and G2. For each edge e in G2 between Pi and Pj (i ̸= j), choose an edge e′ of G1
between the same sets uniformly at random and route e along e′. Since e and e′ might have
different endpoints, we need to do some adjustments near the endpoints of e. Because of the
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aforementioned property that the regions of the subdivision posses, this adjustments can be
carried out without incurring in too many additional crossings. The edges of G2 that have
both endpoints in Pi can be added to the drawing at the end without many complications.
One con show that the expected number of crossings in such a drawing of G2 is no more
than cr(G1) + Cd□(G1, G2)1/4n4. ◀
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