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Abstract
A matchstick graph is a plane graph with edges drawn as unit distance line segments. This class of
graphs was introduced by Harborth who conjectured that a matchstick graph on n vertices can have
at most ⌊3n −

√
12n − 3⌋ edges. Recently his conjecture was settled by Lavollée and Swanepoel.

In this paper we consider 1-planar unit distance graphs. We say that a graph is a 1-planar unit
distance graph if it can be drawn in the plane such that all edges are drawn as unit distance line
segments while each of them are involved in at most one crossing. We show that such graphs on n

vertices can have at most 3n − 4√n/10 edges.
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1 Introduction

A graph is called a matchstick graph if it can be drawn in the plane with no crossings such
that all edges are drawn as unit segments. This graph class was introduced by Harborth in
1981 [7, 9]. He conjectured that the maximum number of edges of a matchstick graph with n

vertices is ⌊3n −
√

12n − 3⌋. He managed to prove it in a special case where the unit distance
is also the smallest distance among the points [8]. Recently his conjecture was settled by
Lavollée and Swanepoel [12].

Other interesting classes of graphs are the k-planar graphs. For any k ≥ 0, a graph G is
called k-planar if it can be drawn in the plane such that each edge is involved in at most k

crossings. Let ek(n) denote the maximum number of edges of a k-planar graph on n vertices.
Since 0-planar graphs are the well known planar graphs, e0(n) = 3n − 6 for n ≥ 3. We have
e1(n) = 4n − 8 for n ≥ 4 [19], e2(n) ≤ 5n − 10, which is tight for infinitely many n [19],
e3(n) ≤ 5.5n − 11, which is tight up to an additive constant [17] and e4(n) ≤ 6n − 12, which
is also tight up to an additive constant [1]. For general k we have ek(n) ≤ c

√
kn for some

constant c, which is tight apart from the value of c [19, 1].
A k-planar unit distance graph is a graph that can be drawn in the plane such that each

edge is a unit segment and involved in at most k crossings. Let uk(n) be the maximum number
of edges of a k-planar unit distance graph. Since 0-planar unit distance graphs are exactly the
matchstick graphs, by the result of Lavollée and Swanepoel we have u0(n) = ⌊3n−

√
12n − 3⌋.

We do not have any better lower bound for u1(n) than the value of u0(n). That is, allowing
to use one crossing on each edge does not seem to help, still a proper piece of the triangular
grid is the best known construction. Somewhat surprisingly, we prove an almost matching
upper bound.
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6:2 1-Planar Unit Distance Graphs

Figure 1 An edge in E1 can be partitioned into two halfedges, α1 and α2.

▶ Theorem 1. For the maximum number of edges of a 1-planar unit distance graph, u1(n),
we have ⌊3n −

√
12n − 3⌋ ≤ u1(n) ≤ 3n − 4

√
n/10.

For general k, the best known lower bound is due to Günter Rote (personal communication,
2023).

▶ Theorem 2 (Rote). For the maximum number of edges of a k-planar unit distance graph,
uk(n), we have uk(n) ≥ 2Ω(log k/ log log k)n.

We have the following upper bound.

▶ Theorem 3. For any n, k ≥ 0 we have uk(n) ≤ c 4
√

kn for some constant c > 0.

2 1-planar unit distance graphs

Proof of Theorem 1. The lower bound follows directly from Harborth’s construction for
matchstick graphs [8]. We prove the upper bound. Let G be a 1-planar unit distance graph
with n vertices and consider a 1-plane unit distance drawing of G. Let E be the set of edges,
|E| = e. Let G0 be a plane subgraph of G with maximum number of edges, and among those
one with the minimum number of triangular faces. Let E0 ⊂ E denote the set of edges of
G0 and E1 = E \ E0 denote the set of remaining edges, |E0| = e0, |E1| = e1. Let f be the
number of faces of G0, including the unbounded face and let Φ1, Φ2 . . . Φf be the faces of G0.
For any face Φi, |Φi| is the number of bounding edges of it, counted with multiplicity. That
is, if an edge bounds Φi from both sides, then it is counted twice. Due to the maximality of
G0 and 1-planarity of G, every edge α ∈ E1 crosses an edge in E0 and connects two vertices
that belong to neighbouring faces of G0. Therefore, we can partition every edge α ∈ E1 into
two halfedges, α1 and α2 at the unique crossing point on α. See Figure 1. Each halfedge
is contained in a face Φ, one of its endpoints is a vertex of Φ and the other endpoint is an
interior point of a bounding edge.

▷ Claim 4. A triangular face of G0 does not contain any halfedge.

Proof. Let Φ = uvw be a triangular face of G0 that contains a halfedge α1, which is part
of the edge α = ux. Then α crosses the edge vw. Replace the edge vw by α in G0. See
Figure 2. Since vw is the only edge of G that crosses α, we obtain another plane subgraph
of G. It has the same number of edges.
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Figure 2 The number of triangles in G0 can be reduced by edge flips.

Figure 3 A quadrilateral can have at most two halfedges.

We claim that it has fewer triangular faces. The triangular face Φ disappeared. Suppose
that we have created a new triangular face. Then α should be a side of it. But then either
uv or uw is also a side, suppose without loss of generality that it is uv. But then uvx is also
a unit equilateral triangle. If the two equilateral triangles uvw and uvx are on the same side
of uv then x = w, if they are on opposite sides then vw and ux can not cross. ◁

Assign weight 1/2 to each halfedge. For any face Φi, let s(Φi) be the sum of the weights
of its halfedges. Clearly, we have

∑f
i=1 s(Φi) = |E1|. For any face Φ of G0, let t(Φ) denote

the number of edges in a triangulation of Φ. A straightforward consequence of Euler’s
formula is the following statement. If the boundary of Φi has m connected components, then
t(Φi) = |Φi| + 3m − 6.

▷ Claim 5. For any face Φ of G0 we have (a) s(Φ) ≤ t(Φ), and if |Φ| ≥ 5 then (b)
s(Φ) ≤ t(Φ) − |Φ|/10.

Proof. Suppose first that the boundary of Φ is not connected, that is, m ≥ 2. Each of the
|Φi| edges on the boundary of Φi is crossed by at most one halfedge, therefore, s(Φ) ≤ |Φ|/2.
On the other hand, t(Φ) ≥ |Φ|. Therefore, t(Φ) ≥ |Φ| ≥ |Φ|/2 + |Φ|/10 ≥ s(Φ) + |Φ|/10 and
we are done in this case.

Suppose now that the boundary of Φi is connected, that is, m = 1. If |Φ| = 3, then Φ is
a triangle. Then t(Φ) = 0 and by Claim 4, s(Φ) = 0. If |Φ| = 4, then Φ is a quadrilateral
(actually, a rhombus). Then t(Φ) = 1. Figure 3 shows all possible cases when Φ has two
halfedges. On the other hand, it is shown in [19] by an easy case analysis that no more
halfedges can be added. Therefore, s(Φ) ≤ 1 = t(Φ). This finishes part (a).

Suppose that |Φi| ≥ 5. We can assume that Φi has at least two halfedges, otherwise we
are done. A halfedge α in Φ divides Φ into two parts. Let a(α) and b(α) be the number of
vertices of Φ in the two parts. If a vertex appears on the boundary more than once, then
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Figure 4 Halfedges α and β are minimal, edges a and b are uncrossed.

it is counted with multiplicity. Since the halfedges in Φ do not cross each other, all other
halfedges are entirely in one of these two parts. If one part does not contain any halfedge,
then α is called a minimal halfedge. Let α be a halfedge for which M = min{a(α), b(α)} is
minimal. Then there are M vertices of Φi on one side of α. Clearly, this part cannot contain
any halfedge, so α is minimal. Now for any other halfedge β ̸= α, let c(β) be the number of
vertices of Φi on the side of β not containing α. Take a halfedge β for which c(β) is minimal.
Then β is also a minimal halfedge. So, we can conclude that there are at least two minimal
halfedges in Φ, say, α and β.

Then α and β together partition Φ into three parts, two parts contain no other halfedges
but both contain an edge of Φ. So, at most |Φ| − 2 edges of Φ are crossed by a halfedge,
therefore, there are at most |Φ| − 2 halfedges in Φ, consequently s(Φ) ≤ (|Φ| − 2)/2. See
Figure 4.

On the other hand, t(Φ) = |Φ| − 3. Since |Φ| ≥ 5, we have t(Φ) = |Φ| − 3 ≥ (|Φ| − 2)/2 +
|Φ|/10 ≥ s(Φ) + |Φ|/10. This concludes the proof of the Claim. ◁

Return to the proof of Theorem 1. For i ≥ 3, let fi denote the number of faces Φ of G0
with |Φ| = i. By definition,

∑∞
i=3 fi = f and

∑∞
i=3 ifi = 2e0. Let F≥5 =

∑∞
i=5 ifi. By the

maximality of G0, every edge in E1 crosses an edge in E0, and by 1-planarity, every edge in
E0 is crossed by at most one edge in E1. Consequently, |E0| = e0 ≥ |E1| = e1.

If e0 ≤ n, then e = e0 + e1 ≤ 2e0 ≤ 2n < 3n − c 4
√

n, so we are done. Therefore, for the
rest of the proof we can assume that e0 ≥ n. It follows that 3f3 + 4f4 + F≥5 = 2e0 ≥ 2n.

▷ Claim 6. Suppose that F≥5 ≥ p. Then e = e0 + e1 ≤ 3n − p/10.

Proof. By the previous observations,

e = e0 + e1 = e0 +
∑

α is a
halfedge

1/2 = e0 +
f∑

i=1
s(Φi) = e0 +

∑
|Φ|=3

s(Φ) +
∑

|Φ|=4

s(Φ) +
∑

|Φ|≥5

s(Φ)

≤ e0 +
∑

|Φ|=3

t(Φ) +
∑

|Φ|=4

t(Φ) +
∑

|Φ|≥5

(t(Φ) − |Φ|/10)

≤ e0 +
∑
|Φ|

t(Φ) −
∑

|Φ|≥5

|Φ|/10 ≤ 3n − 6 − F≥5/10 ≤ 3n − p/10. ◁
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▷ Claim 7. Suppose that f3 ≥ p. Then e = e0 + e1 ≤ 3n − √
p/5.

Proof. We can assume that Ψ, the unbounded face of G0 has at least 5 edges. If not, the
statement holds trivially. Since we have p equilateral triangles in G0, the union of all bounded
faces, R, has area at least

√
3p/4. The Isoperimetric inequality states that if a polygon

has perimeter l and area A, then l2 ≥ 4πA [5]. It implies that R has perimeter at least
4
√

3√
πp > 2√

p. That is |Ψ| ≥ 2√
p. Therefore,

e = e0 + e1 = e0 +
∑

α is a
halfedge

1/2 = e0 +
f∑

i=1
s(Φi) = e0 +

∑
Φ̸=Ψ

s(Φ) + s(Ψ)

≤ e0 +
∑
Φ ̸=Ψ

t(Φ) + t(Ψ) − |Ψ|/10 = 3n − 6 − |Ψ|/10 ≤ 3n − 6 − √
p/5. ◁

We can assume that n ≥ 5, otherwise Theorem 1 holds trivially. If F≥5 ≥ n/2, then
by Claim 6, e ≤ 3n − n/20 ≤ 3n − 4

√
n/10 and we are done. If f3 ≥ n/9, then by Claim 7,

e ≤ 3n −
√

n/15 ≤ 3n − 4
√

n/10 and we are done again. So, we can assume that F≥5 ≤ n/2,
f3 ≤ n/9. Since 3f3 + 4f4 + F≥5 = 2e0 ≥ 2n, it follows that f4 ≥ n/4.

Suppose without loss of generality that none of the edges of G are vertical. Otherwise
apply a rotation. Define an auxiliary graph H as follows. The vertices represent the
quadrilateral faces of G0. Since all edges are of unit length, all these faces are rhombuses.
Two vertices are connected by an edge if the corresponding rhombuses have a common edge.
The edges of H correspond to the edges of G0 with a rhombus face on both sides. For every
edge of H define its weight as the slope of the corresponding edge of G0. A path in H, such
that all of its edges have the same weight w, is called a w-chain, or briefly a chain. A chain
corresponds to a sequence of rhombuses such that the consecutive pairs share a side and all
these sides are parallel. A chain, with at least two vertices (rhombuses) is called maximal
if it cannot be extended. With one-vertex chains we have to be careful. Suppose that v is
a vertex of H, R is the corresponding rhombus, and let w1, w2 be the slopes of its sides.
The one-vertex chain v is maximal if it cannot be extended to a larger w1-chain or a larger
w2-chain. Each vertex of H is in exactly two maximal chains.

▷ Claim 8. The intersection of two chains is empty or forms a chain.

Proof. If the intersection is just one vertex then the statement clearly holds. Suppose that A

and B are chains with at least two common vertices, and their intersection is not a chain.
Let A = v1, v2, . . . va. We can assume without loss of generality that v1, va ∈ B but no other
vertex of A is in B. Otherwise we can delete some vertices of A to obtain this situation.
Delete all vertices of B which are not between v1 and va. Now B = u1, u2, . . . ub where
v1 = u1, va = ub and these are the only common points of A and B. Let R be the rhombus
that represents v1 = u1 in G0. Its sides have slopes w1 and w2 such that A is a w1-chain, B

is a w2-chain. Apply an affine transformation so that R is a unit square, w1 is the horizontal,
w2 is the vertical direction. Suppose that Q is the rhombus that represents va = ub. Then
its sides also have slopes w1 and w2, so Q is also an axis-parallel unit square. Represent each
vertex v1, v2, . . . va, u1, u2, . . . ub by the center of the corresponding rhombus. For simplicity
we call these points also v1, v2, . . . va, u1, u2, . . . ub, respectively. Assume without loss of
generality that the point va = ub has larger x and y coordinates, than v1 = u1. Connect the
consecutive points in both chains by straight line segments. Since A is a w1-chain and w1 is
the horizontal direction, the polygonal chain PA = v1, v2, . . . va is y-monotone, and similarly,
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Figure 5 The intersection of two chains is empty or forms a chain.

the polygonal chain PB = u1, v2, . . . vb is x-monotone. Let l1 be the horizontal halfline from
v1 = u1, pointing to the left and let l2 be the horizontal halfline from va = ub, pointing to
the right. The bi-infinite curve l1 ∪ PB ∪ l2 is simple, because PB is x-monotone. It divides
the plane into two regions, Rdown, which is below it and its complement, Rup, see Figure 5.

Observe that the initial part of PA, near v1 = u1 is in Rup, while the final part, near
va = ub is in Rdown. On the other hand, PA does not intersect the boundary of Rdown and
Rup. Indeed, it does not intersect l1 and l2 since it is y-monotone, and does not intersect PB

by assumption. This is clearly a contradiction which proves the Claim. ◁

▷ Claim 9. There are at least
√

n/
√

2 disjoint maximal chains.

Proof. For any vertex of H (that is, for any rhombus face in G0) there are exactly two
maximal chains containing it. Therefore, the total length of all the maximal chains is
2f4 ≥ n/2. If there are less than

√
n/

√
2 disjoint maximal chains, then one of them has

length at least
√

n/
√

2. Through each of its vertices, there is another maximal chain and by
Claim 8 all of these chains are different. ◁

By Claim 9, we have at least
√

n/
√

2 disjoint maximal chains. Each of them has two
ending rhombuses with sides that bound a face of size different than 4. All of these bounding
edges are different, therefore, 3f3 + F≥5 ≥

√
2
√

n, which implies that either 3f3 ≥
√

n/
√

2,
or F≥5 ≥

√
n/

√
2.

In the first case, by Claim 7 we have e ≤ 3n − 4
√

n/10. In the second case, by Claim 6 we
have e ≤ 3n −

√
n/10. This concludes the proof of Theorem 1. ◀

3 k-planar unit distance graphs

Proof of Theorem 2. Suppose that n, k > 100. The following is a well known result in
number theory (see [14], [16]). For any m, there is an r < m such that r can be written as
a2 + b2 in 2Ω(log m/ log log m) different ways where a and b are integers. For any fixed m let r

be the product of the first l primes congruent to 1 mod 4, such that l is maximal with the
property that r < m. This r satisfies the requirements.
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Erdős [6] used it to construct a set of n points that determine n2Ω(log n/ log log n) unit
distances. Clearly, r is square-free, therefore, whenever r = a2 + b2, (a, b) = 1.

Apply the above result for m =
√

k/5. We obtain r <
√

k/5 that can be written as
the sum of two integer squares, r = a2 + b2 in 2Ω(log m/ log log m) = 2Ω(log k/ log log k) different
ways. Take a

√
n ×

√
n unit square grid and connect two points by a straight line segment

if they are at distance
√

r. Then each vertex has degree 2Ω(log k/ log log k), so our graph has
n2Ω(log k/ log log k) edges. Observe that no edge contains a vertex in its interior.

Let uv be an edge. Consider all vertices adjacent to an edge that crosses uv. All these
vertices are at distance at most

√
r from uv. This region has area (2 + π)r, so the number of

vertices in this region is less than 6r. Each of these vertices have degree at most 4r, so uv is
crossed by at most 24r2 < k edges. Scale the picture by a factor of 1/

√
r and we obtain a

k-planar unit distance graph of n vertices and 2Ω(log k/ log log k) edges. ◀

For the proof of Theorem 3 we need some introduction. Let cr(G) denote the crossing
number of graph G, that is, the minimum number of edge crossing over all drawings of G

in the plane. According to the Crossing Lemma [3, 13], for every graph G with n vertices
and e ≥ 4n edges, cr(G) ≥ 1

64
e3

n2 . It is asymptotically tight in general for simple graphs [19].
However, there are better bounds for graphs satisfying some monotone property [15], or for
monotone drawing styles [10].

A drawing style D is a subset of all drawings of a graph G. so some drawings belong to
D, others do not. It is monotone if removing edges retains the drawing style. A vertex split
is the following operation. (a) Replace a vertex v of G by two vertices, v1 and v2, both very
close to v. Connect each edge of G incident to v either to v1 or v2 by locally modifying them
such that no additional crossing is created. Or as an extreme or limiting case, (b) place both
v1 and v2 to the same point where v was, connect each edge incident to v either to v1 or v2
without modifying them, such that the edges incident to v in G that are connected to v1
(resp. v2) after the split form an interval in the clockwise order from v. A drawing style D is
split-compatible if performing vertex splits retains the drawing style.

The bisection width b(G) of a graph G is the smallest number of edges whose removal
splits G into two graphs, G1 and G2, such that |V (G1)|, |V (G2)| ≥ |V (G)|/5. For a drawing
style D the D-bisection width bD(G) of a graph G in drawing style D is the smallest number of
edges whose removal splits G into two graphs, G1 and G2, both in drawing style D such that
|V (G1)|, |V (G2)| ≥ |V (G)|/5. Let ∆(G) denote the maximum degree in G. The following
result is a generalization of the Crossing Lemma.

▶ Theorem 10 (Kaufmann-Pach-Tóth-Ueckerdt [10]). Suppose that D is a monotone and
split-compatible drawing style, and there are constants k1, k2, k3 > 0 and b > 1 such that
each of the following holds for every n-vertex e-edge graph G in drawing style D:
1. If crD(G) = 0, then e ≤ k1 · n.
2. The D-bisection width satisfies bD(G) ≤ k2

√
crD(G) + ∆(G) · e + n.

3. e ≤ k3 · nb.

Then there exists a constant α > 0 such that for any n-vertex e-edge graph G in drawing
style D we have crD(G) ≥ α e1/(b−1)+2

n1/(b−1)+1 provided e > (k1 + 1)n.

In [10] only vertex split of type (a) was allowed, but the proof works also for type (b).

▶ Theorem 11 (Spencer-Szemerédi-Trotter [20]). Let G be a unit distance graph on n verices.
The number of edges in G is at most cn4/3 where c > 0 is a constant.

GD 2024
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Proof of Theorem 3. Consider now the following drawing style D for a graph G.
1. Vertices are represented by not necessarily distinct points.
2. Edges are represented by unit segments between the corresponding points.
3. The intersection of two edges is empty or a point, that is, they cannot overlap.
4. If a point p represents more than one vertex, say, v1, . . . , vm, then the sets of edges

incident to v1, . . . , vm, respectively, form an interval in the clockwise order from point p.

Clearly, D satisfies the following properties.
1. The drawing style D is monotone and split-compatible.
2. If cr(G) = 0, then e ≤ 3n − 6. In fact, by [12], e ≤ ⌊3n −

√
12n − 3⌋.

3. For any graph G, we have b(G) ≤ 10
√

cr(G) + ∆(G) · e + n by the result of Pach,
Shahrokhi and Szegedy [18]. But if G is drawn in drawing style D, then all of its subgraphs
are also drawn in drawing style D. Therefore, bD(G) ≤ 10

√
cr(G) + ∆(G) · e + n.

4. By [2], any n-vertex graph in drawing style D has less than 1.94n4/3 edges.

Summarizing, we can apply Theorem 10 with k1 = 3, k2 = 10, k3 = 1.94, b = 4/3 and
obtain the following. For any graph G in drawing style D with n vertices and e > 4n edges
we have crD(G) ≥ α e1/(b−1)+2

n1/(b−1)+1 = α e5

n4 for some α > 0.
Consider now a k-plane drawing of a unit distance graph G with n vertices and e edges.

If e ≤ 4n, we are done, suppose that e ≥ 4n. Since each edge contains at most k crossings,
the total number of crossings c(G) satisfies c(G) ≤ ek/2. On the other hand, we have
c(G) ≥ α e5

n4 . Therefore, ek/2 ≥ α e5

n4 so e ≤ β 4
√

kn for some β > 0. ◀

4 Open questions

In this paper we proved that a 1-planar unit distance graph on n vertices can have at most
u1(n) ≤ 3n − 4

√
n/10 edges. However, the best known lower bound construction for u1(n) is

the same as for u0(n).

▶ Problem 12. Is it true that u0(n) = u1(n)?

For k = 2 there is a slightly better construction by Dániel Simon (personal communication,
2023) of roughly 3n −

√
192
23 n edges and for k = 3 there is an easy construction (a piece of a

unit triangular grid and its shifted copy by a unit vector) with 3.5n − c
√

n edges.
For a larger k our lower and upper bounds for uk(n) are very far from each other.

▶ Problem 13. Determine the maximum number of edges of a k-planar unit distance graph.

There are r-regular matchstick graphs for r ≤ 4 [9, 21] and there are no r-regular
matchstick graphs for r ≥ 5 [4, 11]. It follows from Theorem 1 that there are no r-regular
1-planar unit distance graphs for r ≥ 6.

▶ Problem 14. Are there 5-regular 1-planar unit distance graphs?
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