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Abstract
The k-planar graphs, which are (usually with small values of k such as 1, 2, 3) subject to recent
intense research, admit a drawing in which edges are allowed to cross, but each one edge is allowed
to carry at most k crossings. In recently introduced [Binucci et al., GD 2023] min-k-planar drawings
of graphs, edges may possibly carry more than k crossings, but in any two crossing edges, at least
one of the two must have at most k crossings. In both concepts, one may consider general drawings
or a popular restricted concept of drawings called simple. In a simple drawing, every two edges are
allowed to cross at most once, and any two edges which share a vertex are forbidden to cross.

While, regarding the former concept, it is for k ≤ 3 known (but perhaps not widely known)
that every general k-planar graph admits a simple k-planar drawing and this ceases to be true for
any k ≥ 4, the difference between general and simple drawings in the latter concept is more striking.
We prove that there exist graphs with a min-2-planar drawing, or with a min-3-planar drawing
avoiding crossings of adjacent edges, which have no simple min-k-planar drawings for arbitrarily
large fixed k.
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1 Introduction

One of the most popular current research directions in graph drawing is going “beyond
planarity” [7, 10]. This somewhat broad direction can be described as considering drawings
of graphs in which edges may cross, but the overall pattern of edge crossings is restricted,
usually in a local setting. Some of the earliest examples are 1-planar graphs (every edge may
have at most 1 crossing), and popular extensions nowadays include many families among
which we, for example, mention k-planar- and fan-planar graphs, or k-quasiplanar graphs.
These diverse classes often share some nice properties of planar graphs, such as having
few edges (e.g., for 1-planar graphs [18], for k-planar graphs [14], and for 3-quasiplanar
graphs [2]). However, they may differ greatly from planar graphs in other respects; for
instance, recognizing 1-planar graphs is NP-complete [9, 12].

We refer to Section 2 for a precise definition of a drawing of a graph, and of simple and
min-k-planar drawings. Briefly, by a drawing of a graph (here exclusively in the plane) we
mean a topological representation in which edges (as arcs) join their end vertices (as points)
and avoid passing through other vertices. Furthermore, every two distinct edges intersect
finitely many times, and at most two edges intersect in one point except when it is their
common end vertex. In a simple drawing, we additionally require that every two distinct
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8:2 Note on Min-k-Planar Drawings of Graphs

edges intersect in at most one point – a crossing or a common end. (However, one has to
be careful with this simplified definition when considering a simple drawing of a non-simple
graph; then two parallel edges share two common ends.)

It is very common that research papers assume only simple drawings, for convenience, but
it is sometimes not quite clear whether this assumption is made “without loss of generality,”
or whether it is a significant restriction on the kinds of drawings considered. For instance,
when studying the crossing number of a graph (the minimum total number of crossings
over all drawings), one can quite easily restrict attention to simple drawings without loss of
generality, but such restriction is not possible when studying the odd crossing number [16].
On a different note, so-called fan-planar graphs can be assumed to have a simple fan-planar
drawing without loss of generality, but the proof [11] is highly nontrivial.

Consider k-planar graphs, which are graphs admitting a drawing in which no edge carries
more than k crossings. (The same concept is also known as the local crossing number [17]
or the crossing parameter [9].) The seminal paper of Pach and Tóth [14] explicitly requires
simple k-planar drawings, while, e.g., “algorithmic” papers Grigoriev and Bodlaender [9] and
Korzhik and Mohar [12] deal with general k-planar drawings (in fact, [12] mentions that any
1-planar drawing can be turned into a simple one) and Ackerman [1] distinguishes the cases.
A recent survey on beyond planarity [7] unfortunately does not explicitly address this issue,
and it mostly only implicitly restricts to results about simple drawings in this respect.

To illustrate the potential problem points (of unwary mixing general and simple k-planar
drawings in research), we mention, e.g., [3] which formulates results about general 3-planar
drawings, but importantly uses a lemma of [14] which, in unmentioned fact, relies on the
assumption of a simple drawing. In this particular case of [3], as well as in other papers which
deal with k-planar drawings for only k ≤ 3, there is no reall problem since every general
k-planar graph for k ≤ 3 admits a simple k-planar drawing, as shown already by Pach et
al. [13]. On the other hand, for every k ≥ 4 there exist k-planar graphs which have no simple
k-planar drawing, e.g., Schaefer [17, Chapter 7].

Concerning the new related concept of min-k-planar graphs, which are graphs admitting
a drawing in which every pair of crossing edges has one of the two edges with at most
k crossings; the introductory paper by Binucci et al. [4, 5] requires simple drawings by
the definition. However, min-k-planar drawings may also be understood in the general
(non-simple) setting, and the difference between the general and the simple settings is much
more striking than in the case of k-planar graphs.

Namely, we prove (Theorem 2.1) that for arbitrarily large fixed k there exist graphs
that are min-2-planar without restricting to simple drawings, but which have no simple
min-k-planar drawing. Alternatively, counterexample graphs with a min-3-planar drawing
in which no two edges sharing a common vertex cross can also be constructed. In other
words, the concepts of simple and general min-k-planar drawings always significantly differ,
except in the trivial case of k = 1 (in which we can easily simplify any min-1-planar drawing,
cf. Proposition 2.2), and they differ for k ≥ 3 even if we forbid general drawings in which
two edges with a common vertex cross.

In the course of proving this result, we develop a technical tool (Lemma 3.2) which
suitably constrains possible min-k-planar drawings of graphs within a rigid “frame”, and we
suggest this tool can be useful in further research of the properties of min-k-planar graphs.

2 Min-k-planar Drawings and Graphs

We consider general finite undirected graphs (with possible parallel edges or loops), and say
that a graph is simple if it has no parallel edges and no loops.
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A drawing G of a graph G in the Euclidean plane R2 is a function that maps each vertex
v ∈ V (G) to a distinct point G(v) ∈ R2 and each edge e = uv ∈ E(G) to a simple curve
(non-self-intersecting Jordan arc) G(e) ⊂ R2 with the ends G(u) and G(v). We require that
G(e) is disjoint from G(w) for all w ∈ V (G) \ {u, v} and that G(e) ∩ G(f) is finite for all
e ̸= f ∈ E(G). In a slight abuse of notation we identify a vertex v with its image G(v) and
an edge e with G(e). An intersection (possibly tangential) of two edges e and f other than a
common end vertex, in other words a point x ∈ G(e) ∩ G(f), is called a crossing (of e and f),
and the pair e, f is said to cross in x. A planar drawing is a drawing with no crossings.

For further concepts, the definition of a “crossing” needs a careful clarification. If k > 2
edges together cross in one point, then this situation, strictly, counts as

(
k
2
)

crossings of
pairs of these edges (see, e.g., [6]). Since a slight local perturbation of the involved edges
avoids common crossings of triples without adding any new crossing, for our purposes, we
may simply discard the possibility that k > 2 edges together cross in one point, which is a
common approach in literature. Therefore, without loss of generality, we require that, in
every drawing, no three edges cross in the same point, unless stated otherwise.

One may, likewise, deal with possible tangential crossings in a drawing, which can be
discarded by a slight local perturbation as well, and so exclude tangential crossings by the
definition (as many papers do for convenience), but here we stay on the more general side
and do not exclude them.

In a simple drawing G (otherwise known as a good drawing [8, 17], but we wish to adhere
to the recent terminology), crossings are allowed, but (again) no three edges cross in the
same point, no two edges have more than one crossing in common, and no two adjacent edges
(i.e., with a common end vertex) cross. Hence, in our setting, a simple drawing G is defined
such that, for every e ̸= f ∈ E(G), we have |G(e) ∩ G(f)| ≤ 1, except that |G(e) ∩ G(f)| = 2
when e and f are parallel edges (the latter is irrelevant for simple graphs).

A drawing G is k-planar if no edge contains more than k crossings. A drawing G is
min-k-planar if, for every two crossing edges e and f in G, one (or both) of e, f has no more
than k crossings. If an edge e has more than k crossings in a min-k-planar drawing G, then e is
called heavy in G (hence two heavy edges cannot cross each other in a min-k-planar drawing).

A graph G is min-k-planar if G admits a min-k-planar drawing. Moreover, a graph
G is simply min-k-planar if G admits a min-k-planar drawing G such that G is a simple
drawing. Since some papers shortly speak about min-k-planar graphs while requiring simple
drawings, to avoid further confusion, we will call min-k-planar graph without the additional
requirement of a simple drawing as general min-k-planar.

A careful distinction between general min-k-planar graphs and simply min-k-planar
graphs is indeed necessary for all k > 1, as we are going to prove here.

▶ Theorem 2.1 (Proof in Section 3).
a) For every k ≥ 2, there exists a simple graph Hk which is general min-2-planar, but Hk

has no simple min-k-planar drawing.
b) Moreover, for all k ≥ 3, there exists a graph H ′

k which has a general min-3-planar drawing
in which no two adjacent edges cross, but, again, H ′

k has no simple min-k-planar drawing.

To complement Theorem 2.1, we resolve the remaining trivial cases in Proposition 2.2.

▶ Proposition 2.2.
a) Every general min-1-planar graph admits a simple min-1-planar drawing (hence is simply

min-1-planar).
b) Every graph with a min-2-planar drawing in which no two adjacent edges cross also admits

a simple min-2-planar drawing.

GD 2024



8:4 Note on Min-k-Planar Drawings of Graphs

e1

f1
e

f

x y

e′
1

x y

e′′

f ′′

Figure 1 An illustration of Proposition 2.2 a); up to symmetry between e and f (with common
end vertex x), the edge e carries no other crossing than the point y, and so one can draw an uncrossed
arc e′

1 tightly along the segment e1 ⊆ e from x to y. When redrawing from e to e′′ and from f to f ′′

(using e′
1), the crossing at y is eliminated and no new crossings are added to any edge in the picture.

e1

f1
e

f

x y

e′
1

x y

e′′

f ′′

Figure 2 An illustration of Proposition 2.2 b); now we have two crossings x and y of the same
pair e and f of edges, and there are no more crossings on e. Similarly to Figure 1, when redrawing
from e to e′′ and from f to f ′′ (using the uncrossed arc e′

1), at least one of the crossings at x or y is
eliminated and no new crossings are added to any edge in the picture.

Proof.
a) Let G be a general min-1-planar graph and take a min-1-planar drawing G of G. For

simplicity, in this proof, we write e (an edge) also for the point set G(e) in the drawing.
We may assume that G minimizes the number of edge pairs which violate the simplicity
of the drawing, i.e., edge pairs which share a vertex and cross, since a pair cannot cross
twice in a min-1-planar drawing. Let e, f ∈ E(G) be such a violating edge pair in G;
hence the intersection of e and f contains two distinct points x, y ∈ e ∩ f where x is a
vertex and y a crossing. Moreover, we may assume up to symmetry that e has no crossing
other than with f .
Let us denote by e1 and f1 the subarcs of e and f , respectively, in G with the ends x, y.
Since e1 is internally crossing-free, there exists an arc e′

1 from x to y drawn sufficiently
close to e1 such that e′

1 is disjoint from G except in x, y. We replace f in G with
f ′ := (f \ f1) ∪ e′

1; this new drawing G′ of G is again min-1-planar since no crossings of G
have been affected. If y is a tangent of the edges e and f ′ (not crossing transversely at y),
then a local perturbation of e around y simply removes this tangential crossing, and so we
eliminate one violating edge pair from G in G′. Otherwise, if e and f ′ cross transversely
at y, we instead replace e with e′′ := (e \ e1) ∪ e′

1 and f with f ′′ := (f \ f1) ∪ e1 in G. See
Figure 1. The new drawing G′′ of G is min-1-planar, too, and y is now a tangent of the
edges e′′ and f ′′, which can be eliminated as previously.

b) We let G be a min-2-planar drawing of a graph G in which no two adjacent edges cross.
Again, we may assume that G minimizes the number of edge pairs which violate the
simplicity of the drawing – these are now the pairs which mutually cross exactly twice.
Let e, f ∈ E(G) be such a violating edge pair in G; hence the intersection of e and f

contains two distinct points x, y ∈ e ∩ f which are crossings.
Since G is min-2-planar, up to symmetry, the edge e has no other crossings than x, y.
Denote by e1 and f1 the subarcs of e and f , respectively, in G with the ends x, y. Since e1
is internally crossing-free, there exists an arc e′

1 from x to y drawn sufficiently close to e1
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a1 a2

c1

c2

b1

C3

M1

M2

S2

S1

Figure 3 An anchored general min-2-planar drawing of the anchored graph (Gk, Ak) (here for
k = 3, with the heavy edges drawn thick) as used in the proof of Lemma 2.3. With general k ≥ 2, at
least k − 1 of the edges of the star S1 with center a2 follow the depicted route of the red edge a2b1,
while crossing the edge a2a1.

such that e′
1 is disjoint from G except in x, y. We define new arcs of the edges e and f in

G as follows; e′ = e and f ′ := (f \ f1) ∪ e′
1, and e′′ := (e \ e1) ∪ e′

1 and f ′′ := (f \ f1) ∪ e1.
Clearly, for at least one of the pairs e′, f ′ or e′′, f ′′, some of the points x, y is now a
tangential crossing, which can be eliminated as previously. See Figure 2. The new drawing
G′ of G is min-2-planar, too, and no new crossings have been created between any edge
pairs.

Altogether, we have in each case decreased the number of violating edge pairs, contra-
dicting our minimal choice of the drawing G. ◀

To prove Theorem 2.1, we use the following intermediate result formulated for so-called
anchored graphs, which captures the essence of Theorem 2.1. An anchored graph is a pair
(G, A) where A ⊆ V (G) is an ordered tuple of vertices. An anchored drawing of (G, A) in
the unit disk D ⊆ R2 is a drawing G ⊆ D of G such that G intersects the boundary of D

precisely in the points of A (the anchors) in this clockwise order. We naturally extend the
adjective anchored to min-k-planar drawings. We prove:

▶ Lemma 2.3. For every k ≥ 2, there exists a simple anchored graph (Gk, Ak) which has an
anchored general min-2-planar drawing, but (Gk, Ak) has no anchored simple min-k-planar
drawing. Furthermore, for any k ≥ 3, there exists a simple anchored graph (G′

k, A′
k) which

has an anchored general min-3-planar drawing in which no pair of adjacent edges cross, but
(G′

k, A′
k) has no anchored simple min-k-planar drawing.

Proof. We define the anchored graph (Gk, Ak) as depicted in Figure 3. Gk is a disjoint
union of two induced matchings M1 and M2 of k + 1 edges each, and of two induced stars
S1 and S2, where S1 has center a2 and k + 1 leaves including a1, b1 and S2 has center c2 and
k + 2 leaves in the set C3 ∪ {c1} where |C3| = k + 1. The anchor set is Ak = V (Gk) \ {c2}
ordered as in Figure 3. Figure 3 also shows an anchored min-2-planar drawing of (Gk, Ak)
(however, a1a2 crosses b1a2 there).

Assume, for a contradiction, that there exists an anchored simple min-k-planar drawing
G of (Gk, Ak). By Jordan Curve Theorem, the edge a1a2 has to cross all k + 1 edges of
M1, and so a1a2 is heavy in G. If the edge c1c2 was crossing a1a2, then, again using Jordan

GD 2024
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a1 a2

c1

c2

b1 b2

c3

M1

M2

M3

Figure 4 An anchored general min-3-planar drawing of the anchored graph (G′
k, A′

k) (here for
k = 4, with the heavy edges drawn thick) as used in the proof of Lemma 2.3. For general k ≥ 3, at
least k − 2 of the edges of the matching M3 follow the route of the red edge b1b2. These edges cross
the heavy edge a1a2 twice, and so the drawing is neither simple nor general min-2-planar.

Curve Theorem, some edge of M2 would cross twice with a1a2 – which is not simple, or c1c2
would cross all edges of M2 and be heavy as well – which contradicts G being min-2-planar.
Therefore, all k + 1 edges from c2 to C3 have to cross a1a2 and are non-heavy.

Consequently, none of the edges between c2 and C3 can cross all k + 1 edges of S1. By
Jordan Curve Theorem, hence, some edge of S1, say b1a2 (as in the picture) crosses c1c2.
However, again by Jordan Curve Theorem, from this crossing point to b1, the edge b1a2 has
to cross the edge a1a2, contradicting the assumption that G is simple.

For k ≥ 3, we define the anchored graph (G′
k, A′

k) as depicted (with a min-3-planar
drawing) in Figure 4. The definition is analogous to that of (Gk, Ak), except that the star
S1 is now replaced with an induced matching M3 of k + 1 edges (including the edge a1a2),
and the star S2 is replaced with a path (c1, c2, c3) of length two.

A proof that (G′
k, A′

k) has no anchored simple min-k-planar drawing starts with the same
steps as the previous one. We get that the edge a1a2 is heavy and not crossing c1c2, and so
the edge c2c3 has to cross a1a2 and is non-heavy. Then each of the k edges of M3 has to
cross c2c3 or c1c2, but not all may cross c2c3 which would become heavy. Consequently, some
edge, say b1b2 ∈ E(M3), crosses the edge c1c2. Since c1c2 is separated from V (M3) by a1a2,
by Jordan Curve Theorem, the edge b1b2 has to cross a1a2 twice, again a contradiction. ◀

3 Technical Proofs

In this section we give the technical details leading to the proof of Theorem 2.1. In a nutshell,
we are going to construct a “frame graph” which enforces a predefined anchored subdrawing
of a given anchored graph, and then we apply this construction to the graphs of Lemma 2.3.

A t-amplification of a graph G is the graph obtained from G by replacing every edge
e = xy ∈ E(G) with a new collection of t pairwise internally disjoint paths of length 2 from
x to y. Observe that any t-amplification of a planar graph G is again planar.

▶ Lemma 3.1. For every planar graph G, there exists an integer t = t(G, k, w), depending on
G and integers k and w, such that the following holds. Every general min-k-planar drawing
G of the t-amplification Gt of G contains a planar subdrawing G′ which is isomorphic to the
w-amplification Gw of G.
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Proof. Let the length-2 paths (with ends in V (G) ) from the definition of the t-amplification
Gt be called double edges of Gt. We start with an easy claim:
(*) Let a1, a2, b1, b2 ∈ V (G) (possibly a1 = a2 or b1 = b2), and let D1 and D2 be sets of

double edges of Gt where those of Di have ends ai and bi, such that each double edge
of D1 crosses each one of D2 in the drawing G. If |D1|, |D2| ≥ 2k + 1, then G is not
min-k-planar.

Indeed, since every double edge P ∈ D1 crosses all of D2, one of the two edges of P has at least
k + 1 crossings and is heavy. The same holds for every P ′ ∈ D2. Without loss of generality,
assume now |D1| = |D2| = 2k + 1. If every crossing occurring between D1 and D2 involved a
non-heavy edge, then the total number of these crossings would be bounded (counted along
all non-heavy edges) by at most |D1| · k + |D2| · k = k(4k + 2) < (2k + 1)2 = |D1| · |D2|,
which is impossible. Hence some two heavy edges cross and G is not min-k-planar.

We continue with a Ramsey-type argument.1 For any f ∈ E(G) and any t1, by Ramsey
Theorem, there is a sufficiently large t such that the following holds. Among the t double
edges replacing f in the t-amplification Gt, there exist 2(2k + 1) pairwise crossing ones or
t1 pairwise non-crossing ones. If the former (crossing) case happens, then by (*) we get
a contradiction to the assumption of this lemma, that G is min-k-planar. Therefore, the
non-crossing case happens, and we apply the same argument concurrently to all edges of G.
This way we get a subdrawing G1 ⊆ G of a t1-amplification Gt1 of G such that the collection
of paths replacing any edge of G is alone crossing-free in G1.

Likewise, for any pair of edges f, f ′ ∈ E(G) and any t2, by the bipartite Ramsey Theorem,
there is a sufficiently large t1 such that we get t2 double edges replacing f and another t2
replacing f ′ in Gt1 , which are pairwise noncrossing in G1, or we again get a contradiction
via (*). Applying this argument concurrently to disjoint pairs of edges of G, we obtain a
subdrawing G2 ⊆ G1 of a t2-amplification of G. We iterate this argument until we exhaust
all pairs of edges of G. Starting from a sufficiently large t, the resulting drawing G′ of this
iterative process is a w-amplification of G, and no two double edges cross in G′, as desired. ◀

▶ Lemma 3.2. For any integers a, k and simple graph G with an ordered subset A ⊆ V (G),
|A| = a, there exists a simple anchored graph (H, A) disjoint from G except in the anchors A,
such that the following hold:
a) (H, A) has an anchored simple min-1-planar drawing.
b) In every general min-k-planar drawing H of H ∪ G, the subdrawing G ⊆ H of G is

(spherically) homeomorphic to an anchored drawing of (G, A) or its mirror image.

Proof. For a start, we ignore all components of G − A which attach to A in at most one
vertex; their possible subdrawings can always be added homeomorphically and without
further crossings to the rest of an anchored drawing of (G, A). Let ℓ be the maximum
finite(!) distance in G between a vertex of A and a (reachable) vertex of V (G) \ A. Let
d = a(2kℓ + 2k + 1).

We begin with the graph H0 which is a double wheel of d spokes, i.e., a graph made
from the cycle Cd by adding two central vertices w1, w2 adjacent to all cycle vertices. Let
H∗

0 be the planar dual of H0, and H1 be constructed from H0 ∪ H∗
0 by adding extra edges

uv ∈ E(H1) for every pair u ∈ V (H0) and v ∈ V (H∗
0 ) such that u is a vertex incident to the

face of (the unique planar drawing of) H0 represented by v. We construct the graph H2 by

1 One can get better estimates of t using homotopy-based arguments, but that would not make our result
stronger and we prefer simplicity of brute-force Ramsey here.

GD 2024
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H ′
2

w1

w1
2 w2

2

w3
2

H ′′
2

Figure 5 An illustration of the graph H2 from the proof of Lemma 3.2. The three black circled
vertices are the designated anchors A (here A = {w1

2, w2
2, w3

2}). The subgraph H ′
2 is in thick black and

H ′′
2 in magenta colour. All magenta edges get t-amplified in the construction of H, and consequently,

the black edges forced to cross them will be heavy in any min-k-planar drawing of H by Lemma 3.1.

splitting the central vertex w2 into a vertices, each incident with 2kℓ + 2k + 1 consecutive
spokes of H0 and with naturally corresponding extra edges of H1. See Figure 5. The vertices
split from w2, in their clockwise order, define the anchor set A.

Furthermore, let H ′
2 ⊆ H2 be the subgraph formed by the original edges of H0, and

H ′′
2 = H2 \ E(H ′

2). Observe one important property of planar H ′′
2 ; for every planar drawing

of H ′′
2 and each edge uv ∈ E(H ′

2), the points u and v are separated by a cycle (e.g., the
dual cycle of u ̸= w2) in H ′′

2 . Let now t = t(H ′′
2 , k, k + 1) be as in Lemma 3.1. We construct

H := H ′
2 ∪ Ht

2 where Ht
2 is the t-amplification of H ′′

2 . Obviously, (H, A) has an anchored
simple min-1-planar drawing, e.g., one following Figure 5.

Consider now a min-k-planar drawing H of H ∪G, and denote by H0 ⊆ H the subdrawing
of Ht

2. By Lemma 3.1, H0 contains a planar subdrawing of a (k + 1)-amplification of H ′′
2 .

By the mentioned property of H ′′
2 , every edge of H ′

2 thus has to cross at least k + 1 edges of
Ht

2 and is heavy. In particular, the subdrawing of H ′
2 within H is planar (and so has to look

as in Figure 5).
We pick an anchor vertex a ∈ A and observe that a has 2kℓ+2k+1 disjoint length-2 paths

to w1 in H ′
2. Let Pa denote the “middle” one of them. Assume that an edge f = xy ∈ E(G)

crosses Pa in the drawing H. Then each end x or y has distance at most ℓ in G to a vertex
b ∈ A \ {a} by our choice of ℓ, and so ≤ ℓ + 1 edges of a path from f (and including f) to b

have to cross together kℓ + k + 1 paths of H ′
2 between a and w1, by Jordan Curve Theorem.

Therefore, some edge of this path of G must cross at least k + 1 edges of H ′
2, and we get

pair(s) of crossing heavy edges, which is a contradiction.
Therefore, in H there are H ′

2-paths from each anchor vertex a ∈ A to central w1 which
are not crossed by any edge of the subdrawing of G. This means that the subdrawing of G

within H can be homeomorphically deformed in the sphere so that the vertices of A will be
drawn on a disk boundary and the rest inside, as required by an anchored drawing. The
correct cyclic order (up to a mirror image) of the anchors A on the disk boundary is ensured
by the cycle of H ′

2 on the neighbours of w1 (the rim cycle of the starting wheel). ◀
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We are now ready to finish the proof of the main result.

Proof of Theorem 2.1. We take the anchored graph (Gk, Ak), k ≥ 2, and the anchored
graph (G′

k, A′
k), k ≥ 3, from Lemma 2.3 for (a) and (b), respectively, and plug them into

Lemma 3.2 as G. The rest is an immediate consequence of the previous statements. ◀

4 Conclusions

Many papers in the graph drawing area deal with only simple drawings, either as a convenient
simplification of the general case, or as a strict condition in the definition. However, some
works are not clear in distinguishing between the two situations and this can bring troublesome
problems in the future. In this regard, we would like to mention, for instance, a similar
past confusion thoroughly studied in the remarkable paper of Pach and Tóth [15] (entitled
“Which crossing number is it anyway?”).

We have demonstrated that a careful distinction (between simple / non-simple drawings) is
surely necessary when considering the recent min-k-planar graphs. Our note brings a natural
open question about which of the published results of [4] concerning simply min-k-planar
graphs with k ≥ 2 remain valid also for general min-k-planar graphs.

References
1 Eyal Ackerman. On topological graphs with at most four crossings per edge. Comput. Geom.,

85:101574, 2019. doi:10.1016/J.COMGEO.2019.101574.
2 Pankaj K. Agarwal, Boris Aronov, János Pach, Richard Pollack, and Micha Sharir. Quasi-planar

graphs have a linear number of edges. Comb., 17(1):1–9, 1997. doi:10.1007/BF01196127.
3 Michael A. Bekos, Michael Kaufmann, and Chrysanthi N. Raftopoulou. On the density of

non-simple 3-planar graphs. In GD, volume 9801 of Lecture Notes in Computer Science, pages
344–356. Springer, 2016. doi:10.1007/978-3-319-50106-2_27.

4 Carla Binucci, Aaron Büngener, Giuseppe Di Battista, Walter Didimo, Vida Dujmovic,
Seok-Hee Hong, Michael Kaufmann, Giuseppe Liotta, Pat Morin, and Alessandra Tappini.
Min-k-planar drawings of graphs. In GD (1), volume 14465 of Lecture Notes in Computer
Science, pages 39–52. Springer, 2023. doi:10.1007/978-3-031-49272-3_3.

5 Carla Binucci, Aaron Büngener, Giuseppe Di Battista, Walter Didimo, Vida Dujmovic, Seok-
Hee Hong, Michael Kaufmann, Giuseppe Liotta, Pat Morin, and Alessandra Tappini. Min-k-
planar drawings of graphs. CoRR, abs/2308.13401v3, 2024. doi:10.48550/arXiv.2308.13401.

6 Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes crossing number
and 1-planarity hard. SIAM J. Comput., 42(5):1803–1829, 2013. doi:10.1137/120872310.

7 Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing
beyond planarity. ACM Comput. Surv., 52(1):4:1–4:37, 2019. doi:10.1145/3301281.

8 P. Erdős and R. K. Guy. Crossing number problems. The American Mathematical Monthly,
80(1):52–58, 1973. doi:10.2307/2319261.

9 Alexander Grigoriev and Hans L. Bodlaender. Algorithms for graphs embeddable with few
crossings per edge. Algorithmica, 49(1):1–11, 2007. doi:10.1007/S00453-007-0010-X.

10 Seok-Hee Hong and Takeshi Tokuyama, editors. Beyond Planar Graphs, Communications of
NII Shonan Meetings. Springer, 2020. doi:10.1007/978-981-15-6533-5.

11 Boris Klemz, Kristin Knorr, Meghana M. Reddy, and Felix Schröder. Simplifying non-simple
fan-planar drawings. J. Graph Algorithms Appl., 27(2):147–172, 2023. doi:10.7155/JGAA.
00618.

12 Vladimir P. Korzhik and Bojan Mohar. Minimal obstructions for 1-immersions and hardness of
1-planarity testing. In GD, volume 5417 of Lecture Notes in Computer Science, pages 302–312.
Springer, 2008. doi:10.1007/978-3-642-00219-9_29.

GD 2024

https://doi.org/10.1016/J.COMGEO.2019.101574
https://doi.org/10.1007/BF01196127
https://doi.org/10.1007/978-3-319-50106-2_27
https://doi.org/10.1007/978-3-031-49272-3_3
https://doi.org/10.48550/arXiv.2308.13401
https://doi.org/10.1137/120872310
https://doi.org/10.1145/3301281
https://doi.org/10.2307/2319261
https://doi.org/10.1007/S00453-007-0010-X
https://doi.org/10.1007/978-981-15-6533-5
https://doi.org/10.7155/JGAA.00618
https://doi.org/10.7155/JGAA.00618
https://doi.org/10.1007/978-3-642-00219-9_29


8:10 Note on Min-k-Planar Drawings of Graphs

13 János Pach, Rados Radoicic, Gábor Tardos, and Géza Tóth. Improving the crossing lemma
by finding more crossings in sparse graphs. Discret. Comput. Geom., 36(4):527–552, 2006.
doi:10.1007/S00454-006-1264-9.

14 János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Comb., 17(3):427–439,
1997. doi:10.1007/BF01215922.

15 János Pach and Géza Tóth. Which crossing number is it anyway? J. Comb. Theory, Ser. B,
80(2):225–246, 2000. doi:10.1006/JCTB.2000.1978.

16 Michael J. Pelsmajer, Marcus Schaefer, and Daniel Stefankovic. Odd crossing number and
crossing number are not the same. Discret. Comput. Geom., 39(1-3):442–454, 2008. doi:
10.1007/S00454-008-9058-X.

17 M. Schaefer. Crossing Numbers of Graphs. Discrete mathematics and its applications. CRC
Press, Taylor & Francis Group, 2017.

18 Von H. Schumacher. Zur struktur 1-planarer graphen. Mathematische Nachrichten, 125(1):291–
300, 1986. doi:10.1002/mana.19861250122.

https://doi.org/10.1007/S00454-006-1264-9
https://doi.org/10.1007/BF01215922
https://doi.org/10.1006/JCTB.2000.1978
https://doi.org/10.1007/S00454-008-9058-X
https://doi.org/10.1007/S00454-008-9058-X
https://doi.org/10.1002/mana.19861250122

	1 Introduction
	2 Min-k-planar Drawings and Graphs
	3 Technical Proofs
	4 Conclusions

