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Abstract
A complete geometric graph consists of a set P of n points in the plane, in general position, and all
segments (edges) connecting them. It is a well known question of Bose, Hurtado, Rivera-Campo,
and Wood, whether there exists a positive constant c < 1, such that every complete geometric graph
on n points can be partitioned into at most cn plane graphs (that is, noncrossing subgraphs). We
answer this question in the affirmative in the special case where the underlying point set P is dense,
which means that the ratio between the maximum and the minimum distances in P is of the order
of Θ(

√
n).
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1 Introduction

A set of points in the plane is said to be: (i) in general position if no 3 points are collinear;
and (ii) in convex position if none of the points lies in the convex hull of the other points.
For a set A of n points in the plane, consider the ratio

D(A) = max{dist(a, b) : a, b ∈ A, a ̸= b}
min{dist(a, b) : a, b ∈ A, a ̸= b}

,

where dist(a, b) is the Euclidean distance between points a and b. We assume throughout
this paper and without loss of generality that the minimum pairwise distance is 1. In this
case D(A) is the diameter of A. A standard volume argument shows that if A has n points,
then D(A) ≥ α0 n1/2, with

α0 := 21/231/4π−1/2 ≈ 1.05, (1)

provided that n is large enough; see [26, Prop. 4.10]. On the other hand, a
√

n ×
√

n section
of the integer lattice shows that this bound is tight up to a constant factor.

Given n points in the plane, in general position, the graph obtained by connecting certain
point-pairs by straight-line segments is called a geometric graph G. If no two segments
(edges) of G cross each other, then G is a plane graph. A graph of the form K1s, where s ≥ 0,
is a special plane graph, called a star ; in particular, a single vertex is a star with no leaves.
A graph in which every connected component is a star is called a star-forest; see, e.g., [3].
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9:2 Partitioning Complete Geometric Graphs into Plane Subgraphs

Obviously, every complete geometric graph of n vertices can be decomposed into n−1 plane
stars. In the present note, we address the following problem of Bose, Hurtado, Rivera-Campo,
and Wood [7], raised almost 20 years ago.

▶ Problem 1 ([7]). Does there exist a positive constant c < 1 such that every complete
geometric graph on n vertices can be partitioned into at most cn plane subgraphs?

An n-element point set A satisfying the condition D(A) ≤ α n1/2, for some constant
α ≥ α0, is said to be α-dense; see the works of Edelsbrunner, Valtr, and Welzl [10], Kovács
and Tóth [15], and Valtr [27]. (Note, the larger α becomes, the “less dense” the set gets.)

Here, we solve Problem 1 for dense point sets.

▶ Theorem 2. Let A be an α-dense point set of n points in general position in the plane,
and let Kn = Kn[A] denote the complete geometric graph induced by A. Then (the edge set
of) Kn can be decomposed into at most cn plane subgraphs, where c = c(α) < 1 is a constant.
Specifically, we have

c(α) ≤ 1 − Ω
(
α−12)

. (2)

Each of these plane graphs is either a star or a plane union of two stars.

Let A be a randomly and uniformly distributed set of n points in the unit square. With
probability tending to 1, as n → ∞, the order of magnitude of the minimum distance in A

will be much smaller than n−1/2. Therefore, D(A) will be larger than α n1/2, for every α,
provided that n is sufficiently large, and Theorem 2 cannot be applied to Kn[A]. Nevertheless,
A almost surely contains a linear-size α′-dense subset, for a suitable constant α′, and we
can easily deduce the following statement, which is also implied by a result of Valtr [28,
Thm. 14] in conjunction with Lemma 5 below. In Section 3 we provide an alternative proof
of Corollary 3.

▶ Corollary 3. Let A be a set of n random points uniformly distributed in [0, 1]2, and let
n → ∞. There exists an absolute constant c < 1 such that, with probability tending to 1, the
complete geometric graph induced by A can be decomposed into at most cn plane subgraphs.

There is an intimate relationship between the above problem and another old question in
combinatorial geometry, due to Aronov, Erdős, Goddard, Kleitman, Klugerman, Pach, and
Schulman [5]. Two segments are said to cross each other if they do not share an endpoint
and they have an interior point in common.

▶ Problem 4 ([5]). Does there exist a positive constant c < 1/2 such that every complete
geometric graph on n vertices has cn pairwise crossing edges?

In the general case, Pach, Rubin, and Tardos [19] established the existence of at least
n/2O(

√
log n) = n1−o(1) pairwise crossing edges. For dense point sets, a better, but still

sublinear, lower bound was established by Valtr[28]. From the other direction, Aichholzer,
Kynčl, Scheucher, Vogtenhuber, and Valtr [1] constructed n-element point sets that do not
contain more than 8⌈ n

41 ⌉ pairwise crossing edges; see also [13].
Problems 1 and 4 are connected by the following simple, but important finding of

Bose et al. [7].

▶ Lemma 5 ([7]). If a complete geometric graph Kn of n vertices has p pairwise crossing
edges, then Kn can be partitioned into n−p plane trees and, hence, into n−p plane subgraphs.
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In view of this statement, a positive answer to Problem 4 would immediately imply our
Theorem 2. Lacking such an answer, we need to take a different approach, which is described
in the next section.

All point sets appearing in this note are in general position, and the logarithms are in
base 2. For any triple of points a, b, c, let ∆abc denote the triangle with vertices a, b, c.

2 Proof of Theorem 2

In this section we prove Theorem 2. We start with a basic observation.

▶ Lemma 6. Let A be a set of n points in general position in the plane, and let B ⊆ A where
|B| = b. Suppose that the complete geometric graph Kb[B] induced by B can be decomposed
into b − p plane subgraphs, for some p ≥ 1. Then Kn[A], the complete geometric graph
induced by A, can be decomposed into n − p plane subgraphs.

Proof. Consider the n − b stars centered at points in A \ B together with the b − p plane
subgraphs in the decomposition of Kb[B], and delete duplicate edges. ◀

In view of Lemma 6, to establish Theorem 2, it is enough to find a large subset B ⊆ A

that can be decomposed into relatively few plane graphs. Instead of Lemma 5, we use the
following result, whose proof is included for completeness.

▶ Lemma 7 (Pach, Saghafian, and Schnider [20]). Let B =
⋃4

i=1 Bi be a set of 4m points
in general position in the plane, where |B1| = |B2| = |B3| = |B4| = m, such that for every
choice pi ∈ Bi, for i = 1, 2, 3, 4, we have that p4 lies inside the convex hull of {p1, p2, p3}.
Then the complete geometric graph K4m[B] induced by B can be decomposed into at most
3m plane subgraphs.

Proof. We decompose the complete geometric graph K4m[B] into 3m plane star-forests,
which come in three families; see Fig. 1:
1. all stars emanating from points in B1 connecting to all points in B1 and B2 together

with all stars emanating from points in B3 connecting to all points in B3 and B4

2. all stars emanating from points in B2 connecting to all points in B2 and B3 together
with all stars emanating from points in B4 connecting to all points in B4 and B1

3. all stars emanating from points in B1 connecting to all points in B1 and B3 together
with all stars emanating from points in B2 connecting to all points in B2 and B4

4 4

3

4

1 1

2

1

2 33 2

Figure 1 Schematic representation of the 3m plane subgraphs in Lemma 7: i ∈ {1, 2, 3, 4}
represents cluster Bi.

Observe that these stars cover all edges of K4m[B]. The first family is the union of m

plane subgraphs: indeed, no star connecting a point in B1 to every point in B1 and B2
crosses any star connecting a point in B3 to every point in B3 and B4 by the assumption.
Therefore, these stars can be grouped in pairs such that each pair forms a plane star forest.
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9:4 Partitioning Complete Geometric Graphs into Plane Subgraphs

Similarly, the second and third families also consist of m plane subgraphs, each. Removing
duplicate edges, we obtain a decomposition of K4m[B] into 3m plane star forests. ◀

We show that every α-dense n-element point set A contains a subset B satisfying the
conditions in Lemma 7 with m = Ω(n). The overall idea is to find four large (linear-size)
subsets of A clustered around four points not in convex position, as depicted in Fig. 3 (right).
Once this favorable configuration is found, it yields a partition of the corresponding complete
geometric graph into a small number of plane subgraphs. This partition is extended to a
partition of the complete geometric graph of the original set into a small number of plane
subgraphs. We next provide the details.

Let k(α) ≥ 3α2 be an increasing function of α, and set

k = k(α), and n0 = ⌈12k2/α2⌉. (3)

The function k(α) will be specified in (4) and (8), in two different ways, as required by the
proof of Lemma 10. We may assume without loss of generality that k(α) takes integer values
(by applying the ceiling function if needed). We distinguish between two cases: n ≤ n0, and
n ≥ n0. Suppose first, that n ≤ n0. Recall that there is a decomposition of Kn[A] into n − 1
plane subgraphs that are stars. Note that n − 1 ≤ cn for n ≤ n0 provided that c < 1 is large
enough: indeed, n(1 − c) ≤ n0(1 − c) ≤ 1 for c ≥ 1 − 1/n0.

Suppose next, that n ≥ n0. Let A be an n-element α-dense set. Since D(A) ≤ α
√

n, we
may assume that A is contained in an axis-aligned square Q of side-length α

√
n. Subdivide

Q into k2 axis-parallel squares, called cells, each of side-length α
√

n/k. Let Σ be the set of
all k2 cells in Q. We may assume without loss of generality that no point in A lies on a cell
boundary.

▶ Lemma 8. Each cell in Σ contains at most 2α2

k2 n points of A.

Proof. Let σ ⊂ Q be any cell and σ′ be the axis-aligned square concentric with σ and whose
side-length is α

√
n

k + 1. Obviously, σ′ contains all disks of radius 1/2 centered at the points
of A ∩ σ. Moreover, since A is α-dense, these n disks are interior disjoint. Moreover, σ′ is
a so-called tiling domain, i.e., a domain that can be used to tile the whole plane. Let m

denote the number of points of A ∩ σ. A packing of m congruent disks of radius 1/2 in σ′

requires [25, Ch. 3.4] that m π
4 ≤ π√

12 Area(σ′), which yields (by using that n ≥ n0):

m ≤ 2√
3

(
α

√
n

k
+ 1

)2

≤ 2√
3

(
1 + 1√

12

)2
α2

k2 n ≤ 2α2

k2 n. ◀

A cell σ ∈ Σ is said to be rich if it contains at least n/(3k2) points of A, and poor
otherwise. Let R ⊂ Σ denote the set of rich cells.

▶ Lemma 9. There are at least k2

3α2 rich cells; that is, |R| ≥ k2

3α2 .

Proof. Let r = |R| denote the number of rich cells. Assume for contradiction that r < k2

3α2 .
By Lemma 8 the total number of points of rich cells is at most

r · 2α2

k2 n <
k2

3α2 · 2α2

k2 n = 2
3 n.

The total number of points of poor cells is less than

k2 · n

3k2 = n

3 .

Thus the total number of points of A is strictly less than n, a contradiction that
completes the proof. ◀
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▶ Lemma 10. There exist four rich cells σ′
1, σ′

2, σ′
3, σ′

4, such that:
for any four points ai ∈ σ′

i ∩ A, i = 1, 2, 3, 4, we have a4 ∈ ∆a1a2a3.

Before presenting our proof of Lemma 10, we sketch a simple alternative proof using a very
powerful tool: the Furstenberg-Katznelson theorem, also called Density Hales-Jewett theorem.
However, it is not strong enough to yield the quantitative statement in Theorem 2. In a
sufficiently large dense subset of a grid in Zd, for any fixed d and s, one can always find a s×s

grid as a subgrid. The case d = 1 corresponds to a classical result of Szemerédi [24]. A higher
dimensional generalization of Szemerédi’s density theorem was obtained by Furstenberg and
Katznelson [14]; see also [17]. Their proof uses infinitary methods in ergodic theory. A more
recent combinatorial proof of this statement can be found in [22], but the resulting bound is
huge (a tower of 2’s of polynomial height).

▶ Theorem 11 (Furstenberg–Katznelson [14]). For all positive integers d, s and every c > 0,
there exists a positive integer N = N(d, s, c) with the following property: every subset X of
{1, 2, . . . , N}d of size at least cNd contains a homothetic copy of {1, 2, . . . , s}d.

Figure 2 Left: A 5 × 5 subgrid of rich cells (shaded) and a relevant subset of four cells.
Right: A 5 × 5 subgrid of rich cells with some separation.

To deduce Lemma 10, apply Theorem 11 with d = 2, s = 5, and c = 1/(3α2), to the set
Σ of cells in Q and its subset R of rich cells. That is, let

k(α) = N(2, 5, 1/(3α2)), (4)

and recall that we have set k = k(α) in the beginning of the proof. By (3), if n is large
enough, this setting ensures the existence of a 5 × 5 subgrid of rich cells. Fig. 2 shows the
four selected rich cells satisfying the requirements in Lemma 10. Note that a separation
between subgrid cells, if any, does not interfere with the result.

Proof of Lemma 10. Let P = conv(R) and v(P ) denote the number of vertices of P . Note
that P is a lattice polygon whose vertices are in the (k + 1) × (k + 1) grid G subdividing
Q. Let C ⊂ R denote the set of rich cells incident to vertices of P : we have |C| ≤ v(P ).
By a well-known result, P has v(P ) ≤ c′k2/3 vertices in G, where c′ > 0 is a constant [16,
Exercise 2, p. 34]. Further, we may take c′ = (8π2)1/3, see [6], and we will use this value
later in (8).

Choose an arbitrary element of C, say a leftmost one, and denote it by σ0. Label the
remaining elements of C in clockwise order around the boundary of P as σ1, σ2, . . . , σ|C|−1.
Consider the convex sets τ1, τ2, . . . , τ2|C|−3 defined as follows:

GD 2024



9:6 Partitioning Complete Geometric Graphs into Plane Subgraphs

τj = conv(σ0 ∪ σj), j = 1, 2, . . . , |C| − 1, (5)
τ|C|+j−1 = conv(σj ∪ σj+1), j = 1, . . . , |C| − 2, and let (6)

K =
2|C|−3⋃

j=1
τj . (7)

We refer to K as the star triangulation from the boundary cell σ0. Let S denote the set
of segments that appear on the boundaries of τ1, τ2, . . . , τ2|C|−3. See Fig. 3 for an example.

2

3

1

4

Figure 3 Left: The set of rich cells in Q (each rich cell is shaded). Center: the star triangulation K

from a boundary cell in C. Here |R| = 22 and |C| = 7. Segments in S are in bold lines. Right: a set
of four rich cells as in Lemma 10.

▷ Claim 12. The segments in S intersect at most 8c′k5/3 cells in Σ.

We verify the claim. Observe that for each i = 1, . . . , 2|C|−3, the segments in S associated
with τi intersect at most 4k cells in Σ (recall that Σ consists of k2 cells). Indeed, if the
translation vector corresponding to the pair of cells in τi makes an angle of at most 45◦ with
the x-axis, τi can intersect at most four cells in each column. Otherwise τi can intersect at
most four cells in each row. Since no point of A lies on a cell boundary and |C| ≤ c′k2/3, the
claim follows.

Since P = conv(R), there are no rich cells in the exterior of P . Moreover, every rich
cell intersecting some τi intersects a segment in S. Note that for k > (24c′ · α2)3 we have
k2

3α2 − 8c′ k5/3 > 0. To this end, let

k(α) = ⌈(24c′ · α2)3⌉ + 1, (8)

and recall that we have set k = k(α) in the beginning of the proof. It follows that there
exists at least one rich cell completely inside one of the triangles of the star triangulation
from σ0. More precisely, if σ0, σj , σj+1, is such a triangle (triple) of rich cells and σ′ is a rich
cell inside the triangle, then

conv(σ0 ∪ σj) ∩ σ′ = ∅, conv(σ0 ∪ σj+1) ∩ σ′ = ∅, and conv(σj ∪ σj+1) ∩ σ′ = ∅. (9)

Setting σ′
1 := σ0, σ′

2 := σj , σ′
3 := σj+1, and σ′

4 := σ′, it is now easily verified that for any
four points ai ∈ σ′

i ∩ A, i = 1, 2, 3, 4, we have a4 ∈ ∆a1a2a3, as required. ◀

Final argument. We use the point set structure guaranteed by Lemma 10. A very similar
structure is highlighted and implicitly used in [20]. For completeness we include the proof
tailored for our structure.
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Recall that a cell σ ∈ Σ is rich if it contains at least n/(3k2) points in A. Consider
four rich cells σ1, σ2, σ3, σ4, such that for any four points ai ∈ σi ∩ A, i = 1, 2, 3, 4, we have
a4 ∈ ∆a1a2a3. Let Ai = A ∩ σi, for i = 1, 2, 3, 4. Remove points from each of the four cells, if
needed, until there are exactly ⌈n/(3k2)⌉ points in A in each of these cells. Let us denote the
resulting sets as Bi ⊆ Ai, for i = 1, 2, 3, 4, where |B1| = |B2| = |B3| = |B4| = m = ⌈n/(3k2)⌉.

Recall that we are in the case n ≥ n0 and that m = ⌈n/(3k2)⌉, where k = k(α) is a fixed
integer. Applying Lemma 6 with P := A and Q := B and Lemma 7 yields that the edge-set
of the complete geometric graph Kn[A] can be decomposed into at most

n − 4m + 3m = n − m ≤
(

1 − 1
3k2

)
n (10)

plane subgraphs. Setting c(α) = 1 − 1
3k2(α) and recalling (8) completes the proof of inequal-

ity (2). ◀

Note. Next, we show that c(α) ≥ 1/2 in Theorem 2, i.e., some sets require at least n/2
plane subgraphs in the partition. For simplicity, we give a grid example, where α ≤

√
2 + ε,

for a small ε > 0. (A suitable example can be found for every α > α0.) Let n = k2 − 1, where
k = 2a + 1. Consider the n/2 integer points with positive y-coordinates or zero y-coordinate
and negative x-coordinate in the lattice section {−a, . . . , a}2, suitably perturbed to avoid
collinearities. Refer to Fig. 4. Add to these points the n/2 reflections with respect to the

Figure 4 A dense set of 24 points with a crossing family of size 12. The origin (marked with a
cross) is not part of the set.

origin, suitably perturbed to avoid collinearities. Observe that the resulting point set has
n points and admits a crossing family of size n/2 consisting of n/2 edges connecting the
n/2 initial points with their reflections. Consequently, any partition of the corresponding
complete geometric graphs into plane subgraphs consists of at least n/2 such subgraphs.

3 Concluding remarks

A. There are many geometric results for finite point sets that can be strengthened under
the assumption that the set is dense, for instance in the case of crossing families or the
classic Erdős–Szekeres problem on points in convex position, as explained next; see also [8,
Ch. 10]. In 1935, Erdős and Szekeres [11] proved, as one of the first Ramsey-type results in
combinatorial geometry, that every set of n points in general position in the plane contains
Ω(log n) points in convex position, and some 25 years later showed [12] that this bound is
tight up to the multiplicative constant. According to the current best (asymptotic) upper
bound, due to Suk [23], every set of n points in general position in the plane contains
(1 − o(1)) log n points in convex position, and this bound is tight up to lower-order terms.

In contrast, a classic result of Valtr given below specifies a much larger threshold for the
maximum size of a subset in convex position in a density-restricted point set [26]: For every
α ≥ α0 there exists β = β(α) > 0 such that any set of n points in general position in the

GD 2024



9:8 Partitioning Complete Geometric Graphs into Plane Subgraphs

plane satisfying D(A) ≤ αn1/2, contains a subset of βn1/3 points in convex position. On the
other hand, for every n ∈ N there exists an n-element point set A ⊂ R2 in general position,
satisfying D(A) = O(n1/2), in which every subset in convex position has at most O(n1/3)
points. In particular, a suitable small perturbation of a piece of the integer lattice has this
property.

B. Pach and Solymosi [21] gave a concise characterization of point sets admitting a cross
ing family of size n/2. They showed that a set P of n points in general position in the plane
(n even) admits a perfect matching with pairwise crossing segments if and only if P has
precisely n halving lines. A halving line for such a set is a line incident to two points of the
set and leaving exactly n/2 − 1 points in each of the two open halfplanes it determines [8,
Ch. 8.3].

As defined by Dillencourt, Eppstein, and Hirschberg [9], the geometric thickness of
an abstract graph G is the minimum k ∈ N such that G has a drawing as a geometric
graph whose edges can be partitioned into k plane subgraphs. The authors proved that the
geometric thickness of Kn is between ⌈(n/5.646) + 0.342⌉ and ⌈n/4⌉. As pointed out in [7],
the difference between Problem 1 and determining the geometric thickness of Kn is that
Problem 1 deals with all possible drawings of Kn whereas geometric thickness asks for the
best drawing.

Decompositions of the edge-set of a complete geometric graph on n points into the
minimum number of families of pairwise disjoint edges (resp., pairwise intersecting edges),
have been studied among others, by Araujo, Dumitrescu, Hurtado, Noy, and Urrutia [4].

Recently, Obenaus and Orthaber [18] gave a negative answer to the question of whether
every complete geometric graph on n vertices (n even) can be partitioned into n/2 plane
subgraphs. See also [2]. As such, n/2 + 1 is a lower bound in some instances on the number
of such subgraphs in Problem 1.

C. If X is a finite point set in the plane, every point of conv(X) can be expressed as a
convex combination of at most 3 points in X. This implies that every point set in general
position that is not in convex position contains a subset of 4 points that are not in convex
position, i.e., a four-tuple a, b, c, d ∈ X such that d ∈ ∆abc.

Our Theorem 2 gives the following quantitative version of Carathéodory’s Theorem for
α-dense sets.

▶ Corollary 13. Let A be a set of n points in the plane, with D(A) ≤ αn1/2, for some
α ≥ α0. Then there exist at least cn4 four-tuples a1, a2, a3, a4 ∈ A such that a4 ∈ ∆a1a2a3,
where c = c(α) > 0 is a constant.

Proof. We may assume that n is large enough. Recall that m = ⌈n/(3k2)⌉, where k = k(α)
is a fixed integer. By Lemma 10, there exist four rich cells σ′

1, σ′
2, σ′

3, σ′
4, such that for any

four points ai ∈ σ′
i ∩ A, i = 1, 2, 3, 4, we have a4 ∈ ∆a1a2a3. Consequently, the number of

(ordered) 4-tuples with this property is at least m4 ≥ n4/(81k8). Setting c(α) = 3−4k−8(α)
completes the proof of the lower bound. On the other hand, the total number of such 4-tuples
is clearly less than n4. ◀

D. The proof of Corollary 3 is straightforward. Subdivide U = [0, 1]2 into 25 smaller
axis-parallel squares as in Fig. 5. Consider the four subsquares: σ1 = [0, 1/5]2, σ2 =
[4/5, 1] × [0, 1/5], σ3 = [2/5, 3/5] × [4/5, 1], and σ4 = [2/5, 3/5] × [1/5, 2/5].
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Figure 5 The four distinguished subsquares are shaded.

The expected number of points in each subsquare is n/25. With probability tending to 1
as n → ∞, each of the four subsquares contains at least n/50 points in A.

Observe that any line connecting a point in σ1 with a point in σ3 leaves σ4 below. By
symmetry, any line connecting a point in σ2 with a point in σ3 leaves σ4 below. Third,
any line connecting a point in σ1 with a point in σ2 leaves σ4 above. As such, a structure
analogous to that in Lemma 10 is obtained, and the corollary follows. ◀

E. Can the dependency of c(α) on α in (2) be improved? Or completely eliminated?
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